WO2013035487A1 - Laser light source device and image projection apparatus - Google Patents

Laser light source device and image projection apparatus Download PDF

Info

Publication number
WO2013035487A1
WO2013035487A1 PCT/JP2012/070446 JP2012070446W WO2013035487A1 WO 2013035487 A1 WO2013035487 A1 WO 2013035487A1 JP 2012070446 W JP2012070446 W JP 2012070446W WO 2013035487 A1 WO2013035487 A1 WO 2013035487A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser light
light source
reflecting mirror
source device
rotation center
Prior art date
Application number
PCT/JP2012/070446
Other languages
French (fr)
Japanese (ja)
Inventor
三浦 雄一
崇寛 東間
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2013035487A1 publication Critical patent/WO2013035487A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • G02B27/1026Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with reflective spatial light modulators
    • G02B27/1033Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with reflective spatial light modulators having a single light modulator for all colour channels
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Definitions

  • the present invention relates to a laser light source device and an image projection device such as a projector device provided with the laser light source device.
  • Japanese Patent No. 4379482 of Patent Document 1 describes a method of reducing speckle noise by temporally changing an optical path from a laser light source device to a superimposed illumination element such as an integrator.
  • a superimposed illumination element such as an integrator.
  • the optical path conversion means for converting the optical path of the laser light emitted from the laser light source and causing the laser light to enter the superimposed illumination element is moved by the moving means.
  • Japanese Patent Application Laid-Open No. 2008-175869 of Patent Document 2 proposes a method of projecting a leveled interference pattern onto a screen via a condenser lens and an appropriate optical element.
  • the laser light incident surface is formed perpendicular to the laser light optical axis, and the laser light emission surface is inclined with respect to the laser light optical axis.
  • the traveling direction of the laser light is varied within a predetermined angle range with respect to the emitting direction of the laser light emitted from the laser light source. It is described.
  • the traveling direction of the laser light is changed by continuously moving the laser light emitted from the photorefractive element to a wide range. It is fluctuating. Specifically, the locus of the incident position where the laser light is incident on the incident surface of the condenser lens is moved so as to draw a circle or an ellipse. For this reason, there also existed a problem that the thing with a large aperture was needed as a condensing lens.
  • the present invention has been made based on the above situation, and an object thereof is to provide a laser light source device capable of sufficiently reducing speckle noise. It is another object of the present invention to provide an image projection apparatus that can obtain a projection image in which the speckle noise on the projection screen is reliably reduced and the temporal change in brightness is reduced.
  • the laser light source device of the present invention comprises a laser light source and a reflection mechanism configured to be rotatable about the optical axis of the laser light incident from the laser light source as a rotation center axis.
  • the reflection mechanism includes a first reflecting mirror disposed on the rotation center axis so that light traveling on the rotation center axis is reflected in a direction orthogonal to the rotation center axis, and the first reflection A second reflecting mirror that reflects light reflected by the mirror; The reflected light from the second reflecting mirror is emitted so as to be condensed at one point on the rotation center axis.
  • the reflection mechanism is configured to rotate at a frequency of 10 Hz or more.
  • the laser light source device of the present invention comprises a laser light source and a reflection mechanism that reflects the laser light from the laser light source,
  • the reflection mechanism includes a first reflecting mirror arranged on the optical axis of the laser light incident from the laser light source so that light traveling on the optical axis is reflected in a direction orthogonal to the optical axis; And a second reflecting mirror that has a reflecting surface that is rotationally symmetric with respect to the optical axis and that is fixedly disposed so as to surround the first reflecting mirror and that reflects light reflected by the first reflecting mirror.
  • the first reflecting mirror is configured to be rotatable about the optical axis as a rotation center axis. The reflected light from the second reflecting mirror is emitted so as to be collected at one point on the optical axis.
  • the first reflecting mirror is rotated at a frequency of 10 Hz or more.
  • An image projection device of the present invention comprises the above laser light source device and an integrator that emits laser light incident from the laser light source device as light of uniform intensity,
  • the integrator is arranged such that an optical axis coincides with the rotation center axis of the laser light source device, and a light incident surface is disposed at a position where the reflected light from the second reflecting mirror in the laser light source device is condensed. It is characterized by being.
  • the laser light source device of the present invention includes a reflection mechanism configured to be rotatable about the optical axis of laser light incident from the laser light source, and the reflection mechanism is on the rotation center axis.
  • a first reflecting mirror disposed so that light traveling on the axis is reflected in a direction perpendicular to the rotation center axis, and a second reflecting mirror that reflects light reflected by the first reflecting mirror;
  • the reflected light from the second reflecting mirror is emitted so as to be collected at one point on the rotation center axis. Therefore, according to the laser light source device of the present invention, the reflected light from the second reflecting mirror is changed only in the incident direction with the incident angle being a constant magnitude with respect to the condensing position. Become.
  • the position of the interference pattern due to the laser light emitted from the laser light source device is shifted in time, that is, the interference pattern is averaged by superimposing a large number of different interference patterns. Can be reliably reduced.
  • a second reflecting mirror having a reflecting surface that is rotationally symmetric with respect to the optical axis of the incident laser beam is used, and the second reflecting mirror is fixedly disposed so as to surround the first reflecting mirror.
  • the image projection apparatus including the laser light source device, the visual recognition of speckle noise on the projection screen is reliably reduced, and the optical distance from the laser light source device to the integrator is made constant. Therefore, the light capture rate in the integrator does not change with time, and a projection image with reduced change in brightness can be obtained.
  • the laser light source device since the laser light source device has a configuration in which light incident from the laser light source is collected by a reflecting mirror, light caused by chromatic aberration generated in a configuration in which the light is collected by an optical member having a light collecting function. It is possible to avoid the occurrence of problems such as a decrease in utilization rate and occurrence of flicker.
  • FIG. 4 is a conceptual diagram showing ray tracing lines by the reflection mechanism shown in FIGS. 2 and 3. It is an idea figure which shows the other structural example of the reflection mechanism in the laser light source apparatus of this invention with a ray tracing line. It is sectional drawing along the optical axis of the incident laser beam which shows roughly the further another structural example of the reflection mechanism in the laser light source apparatus of this invention. It is an idea figure which shows the ray tracing line by the reflection mechanism shown in FIG.
  • FIG. 1 is an explanatory diagram showing an outline of the configuration of an example of a projector apparatus according to an image projection apparatus of the present invention.
  • This projector device controls a laser light source device 10, a rod-shaped integrator 50 that emits light incident from the laser light source device 10 as light of uniform intensity, and a spread angle of the laser light emitted from the integrator 50.
  • a collimator lens 51 that is incident on a spatial modulation element 52 such as DMD (registered trademark), and a projection lens 53 that enlarges and projects video light modulated by the spatial modulation element 52 onto the screen S. .
  • DMD registered trademark
  • the laser light source device 10 includes a laser light emitting mechanism 20 and a reflecting mechanism 30 that reflects the laser light emitted from the laser light emitting mechanism 20.
  • the laser light emitting mechanism 20 includes a plurality of laser light sources, specifically, a blue laser light source 21A that emits blue laser light, a green laser light source 21B that emits green laser light, and a red laser light source 21C that emits red laser light. It has. Then, condensing lenses 22A, 22B, 22C and dichroic mirrors 28A, 28B, 28C are arranged at positions on the front side in the light emission direction of the respective laser light sources 21A, 21B, 21C.
  • the first first dichroic mirror 28A related to the blue laser light source 21A, the second dichroic mirror 28B related to the green laser light source 21B, and the third dichroic mirror 28C related to the red laser light source 21C are all plate-shaped.
  • Each of the laser light sources 21A, 21B, and 21C is arranged so that the optical axes of the emitted laser beams extend in parallel to each other.
  • Each condensing lens 22A, 22B, 22C is arrange
  • the dichroic mirrors 28A, 28B, and 28C are arranged in parallel with each other in a direction perpendicular to the optical axis in a state where the light emission surface is inclined with respect to the optical axis of the laser light emitted from the laser light source. Has been.
  • the blue laser light source 21A, the green laser light source 21B, and the red laser light source 21C for example, a semiconductor laser can be used.
  • the wavelength of the blue laser light emitted from the blue laser light source 21A is, for example, 460 nm.
  • the wavelength of the green laser light emitted from the green laser light source 21B is, for example, 530 nm.
  • the wavelength of the red laser light emitted from the red laser light source 21C is, for example, 640 m.
  • the reflection mechanism 30 includes a machine casing 31 having a cylindrical outer shape.
  • the machine casing 31 has a central axis extending along the optical axis C of the laser light L from the laser light emitting mechanism 20 that is incident on the reflecting mechanism 30, specifically, the optical axis of the incident laser light. Arranged in a state matching C. Therefore, in this example, as will be described later, the central axis of the machine casing 31 that coincides with the optical axis C of the incident laser light is the rotation central axis R of the reflection mechanism 30.
  • 32 is a light entrance window
  • 33 is a light exit window.
  • a first reflecting mirror 35 and a second reflecting mirror 36 for reflecting the light reflected by the first reflecting mirror 35 are arranged inside the machine casing 31 .
  • the first reflecting mirror 35 reflects the light traveling on the rotation center axis R of the incident laser light L in a direction orthogonal to the rotation center axis R, and is made of, for example, a plane mirror.
  • the first reflecting mirror 35 is disposed at a position on the rotation center axis R in a state where the light reflection surface 35A is inclined with respect to the rotation center axis R.
  • the second reflecting mirror 36 is made of, for example, a plane mirror, and is disposed in a state where the light reflecting surface 36A faces the light reflecting surface 35A of the first reflecting mirror 35.
  • the bearing member 40 has a substantially cylindrical shape, and has a flange portion 41 protruding radially inward at one end.
  • the machine frame 31 is inserted into the bearing member 40 with a bearing interposed between the peripheral side surface and the inner peripheral surface of the bearing member 40.
  • Reference numeral 45 in FIG. 2 and FIG. 3 is a drive motor for rotating the machine casing 31, and the drive shaft is arranged so as to extend along the rotation center axis R.
  • a drive gear 46 is fixed to the drive shaft, and the drive gear 46 meshes with a driven gear 34 provided on the machine casing 31. Therefore, in this laser light source device, the entire reflection mechanism 30 is configured to be rotatable about the rotation center axis R. It is preferable that the reflection mechanism 30 is rotationally driven under a condition that the number of rotations is 10 rotations or more, for example, at a frequency of 10 Hz or more, that is, for a time of 1 second. Thereby, the speckle noise reduction effect can be acquired reliably.
  • the optical axis coincides with the rotation center axis R of the reflection mechanism 30, and the light incident surface 50A is disposed at a position where the reflected light from the second reflecting mirror 36 in the reflection mechanism 30 is collected. .
  • the light emitted from the laser light emitting mechanism 20 in the laser light source device 10 is reflected by the rotating reflecting mechanism 30, and is collected and incident on the light incident surface 50A of the integrator 50. More specifically, in the laser light emitting mechanism 20 of the laser light source device 10, the blue laser light emitted from the blue laser light source 21A is condensed by the condenser lens 22A and applied to the first dichroic mirror 28A. Reflected by the first dichroic mirror 28A. Further, the green laser light emitted from the green laser light source 21B is condensed by the condenser lens 22B, irradiated to the second dichroic mirror 28B, and reflected by the second dichroic mirror 28B.
  • the reflected light from the second dichroic mirror 28B is combined with the transmitted light obtained by transmitting the reflected light from the first dichroic mirror 28A through the second dichroic mirror 28B.
  • the red laser light emitted from the red laser light source 21C is condensed by the condenser lens 22C, irradiated to the third dichroic mirror 28C, and reflected by the third dichroic mirror 28C.
  • the reflected light of the third dichroic mirror 28C is combined with the transmitted light of the blue laser light and the green laser light combined by the second dichroic mirror 28B transmitted through the third dichroic mirror 28C. . As shown in FIG.
  • the laser light emitted from the laser light emitting mechanism 20 (indicated by a two-dot chain line in FIG. 4) is the first in the reflecting mechanism 30 rotated around the rotation center axis R.
  • the light enters the reflecting mirror 35 along the rotation center axis R.
  • the light reflected by the first reflecting mirror 35 is reflected by the second reflecting mirror 36 rotated around the rotation center axis R in a state where the positional relationship with the first reflecting mirror 35 is maintained, and the integrator 50
  • the light is collected at a position on the rotation center axis R (the optical axis of the integrator 50) on the light incident surface 50A.
  • the incident angle of the light reflected by the second reflecting mirror 36 with respect to the light incident surface 50A of the integrator 50 specifically, the light reflected by the second reflecting mirror 36 with respect to the light traveling on the rotation center axis R.
  • the incident angle ⁇ with respect to the light incident surface 50A of the integrator 50 is selected so that the incident light is within the range of the light beam angle that can be used by the projector.
  • the incident angle ⁇ is desirably as large as possible within a range of 0 to 25 °, for example.
  • the laser light whose intensity is made uniform by the integrator 50 is emitted at the same emission angle as the incident angle with respect to the integrator 50.
  • image light is formed by being modulated by the spatial modulation element 52, and this image light is enlarged and projected onto the screen S via the projection lens 53.
  • the laser light source device 10 having the above-described configuration includes the reflection mechanism 30 configured to be rotatable about the optical axis C of the laser light incident from the laser light emitting mechanism 20 as the rotation center axis R.
  • 30 is arranged on the rotation center axis R so that the light traveling on the rotation center axis R is reflected in a direction orthogonal to the rotation center axis R;
  • a second reflecting mirror 36 that reflects the light reflected by the mirror 35 so that the light reflected by the second reflecting mirror 36 is collected at a position on the rotation center axis R of the light incident surface 50A of the integrator 50. It is set as the structure radiate
  • the reflected light from the second reflecting mirror 36 is in a state in which the incident angle is set to a constant magnitude with respect to the condensing position on the light incident surface 50A of the integrator 50.
  • the incident angle is set to a constant magnitude with respect to the condensing position on the light incident surface 50A of the integrator 50.
  • speckle noise can be reliably reduced. Therefore, according to the projector device provided with the laser light source device 10, the speckle noise on the screen S is reliably reduced, and the light incident surface of the integrator lens 50 from the laser light emitting mechanism 20 in the laser light source device 10 is reduced.
  • the optical distance up to 50A is constant, the light capture rate of the integrator lens 50 does not change with time, and a projection image with reduced brightness change can be obtained.
  • the laser light source device 10 is configured to condense light incident from the laser light source using a reflecting mirror, the chromatic aberration generated in the configuration configured to condense by an optical member having a condensing function. It can be avoided that a problem such as a decrease in the light utilization rate occurs.
  • the configuration of the reflecting mechanism is not limited to that according to the above-described embodiment.
  • the second reflecting mirror 36 is a plane mirror. Alternatively, it may be an elliptical mirror.
  • the second reflecting mirror 36 has a first focal point located on the reflecting surface 35 ⁇ / b> A of the first reflecting mirror 35 and a second focal point located on the light incident surface 50 ⁇ / b> A of the integrator 50. It is arranged in the state.
  • incident laser light (indicated by a two-dot chain line in FIG. 5) is reflected by the first reflecting mirror 35, and the reflected light is reflected by the second reflecting mirror 36.
  • the light is condensed at one point on the rotation center axis R on the light incident surface 50A of the integrator lens 50. Even in the laser light source device including the reflection mechanism 30 having such a configuration, the same effect as described above can be obtained.
  • FIG. 6 is a cross-sectional view along the optical axis of incident laser light, schematically showing another configuration example of the reflection mechanism in the laser light source device of the present invention.
  • FIG. 7 is a conceptual diagram showing ray tracing lines by the reflection mechanism shown in FIG.
  • the reflection mechanism 60 in the laser light source device includes a first reflection mirror 61 made of, for example, a plane mirror, and a second reflection mirror 62 having a reflection surface that is rotationally symmetric with respect to the optical axis C of the incident laser light L. Yes.
  • the first reflecting mirror 61 is configured so that the laser beam L (indicated by a two-dot chain line in FIG.
  • the first reflecting mirror 61 is arranged on the optical axis C of the incident laser beam L with the light reflecting surface 61A inclined with respect to the optical axis C.
  • the second reflecting mirror 62 is constituted by, for example, an elliptical mirror having a reflecting surface 62A made of a spheroid with the optical axis C as the center.
  • the second reflecting mirror 62 is fixed to a machine frame (not shown) so as to surround the first reflecting mirror 61.
  • the first focal point of the second reflecting mirror 62 is located on the reflecting surface 61 ⁇ / b> A of the first reflecting mirror, and the second focal point is located on the light incident surface 50 ⁇ / b> A of the integrator 50.
  • the reflecting mirror holding member 65 includes a substantially cylindrical shaft portion 66 extending along the optical axis C of the incident laser light L, and a flange formed over the entire circumference at one end of the shaft portion 66 (lower end in FIG. 6). Part 67.
  • the first reflecting mirror 61 is held and fixed at the other end of the shaft portion 66 (the upper end in FIG. 6).
  • Reference numeral 68 denotes a light transmission window.
  • the bearing member 70 has a cylindrical shape, and the shaft portion 66 of the reflecting mirror holding member 65 is inserted therein with, for example, a bearing interposed between the outer peripheral surface thereof and the inner peripheral surface of the bearing member 70. ing.
  • Reference numeral 45 in FIG. 6 denotes a drive motor that rotationally drives the reflecting mirror holding member 65, and is arranged such that the drive shaft extends along the rotation center axis R.
  • a drive gear 46 is fixed to the drive shaft, and this drive gear 46 meshes with a gear portion formed on the peripheral side surface of the flange portion 67 of the reflector holding member 65. Therefore, in this laser light source device, only the first reflecting mirror 61 is configured to be rotatable about the rotation center axis R.
  • the first reflecting mirror 61 is preferably rotationally driven under the condition that the frequency is, for example, 10 Hz or more, that is, the number of revolutions in the time of 1 second is 10 revolutions or more. Thereby, the speckle noise reduction effect can be acquired reliably.
  • the light emitted from the laser light emitting mechanism is along the rotation center axis R with respect to the first reflecting mirror 61 rotated around the rotation center axis R, as shown in FIG. Is incident.
  • the light reflected by the first reflecting mirror 61 is reflected by the second reflecting mirror 62, and the light reflected by the second reflecting mirror 62 is the rotation center axis R (the optical axis of the integrator 50) on the light incident surface 50A of the integrator 50. It is condensed at the upper position.
  • the incident angle ⁇ of the light reflected by the second reflecting mirror 62 with respect to the light incident surface 50A of the integrator 50 is selected so that the incident light is within the range of the light beam angle that can be used by the projector.
  • the incident angle ⁇ is desirably as large as possible within a range of 0 to 25 °, for example.
  • the same effect as described above can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Abstract

The purpose of the present invention is to provide a laser light source device which achieves a reduction in speckle noise, and an image projection apparatus which achieves a reduction in the visual recognition of speckle noise on a projection screen and by which a projected image with a reduced temporal change in brightness can be obtained. A laser light source device (10) is provided with laser light sources (21A, 21B, 21C), and a reflection mechanism (30) which is configured to be rotatable with the optical axis of incident laser light as a rotation center axis. The reflection mechanism comprises a first reflection mirror (35) which is disposed on the rotation center axis such that light traveling on the rotation center axis is reflected in the direction orthogonal thereto, and a second reflection mirror (36) which reflects reflected light from the first reflection mirror, and has a configuration such that reflected light from the second reflection mirror is emitted so as to be concentrated on one point on the rotation center axis. An image projection apparatus is provided with the laser light source device (10), and an integrator (50) the optical axis of which matches the rotation center axis of the reflection mechanism and the light incident surface of which is disposed at a position at which the reflected light from the second reflection mirror is concentrated.

Description

レーザ光源装置および画像投影装置Laser light source device and image projection device
 本発明は、レーザ光源装置、および、当該レーザ光源装置を具えた例えばプロジェクタ装置等の画像投影装置に関する。 The present invention relates to a laser light source device and an image projection device such as a projector device provided with the laser light source device.
 現在、例えば、液晶パネルやDMD(登録商標)素子を用いた画像投影装置としてプロジェクタ装置が広く用いられている。近年においては、プロジェクタ装置に用いられる光源として、レーザ光を利用する技術の開発が進められている。 Currently, for example, projector apparatuses are widely used as image projection apparatuses using liquid crystal panels or DMD (registered trademark) elements. In recent years, development of a technique using a laser beam as a light source used in a projector apparatus has been advanced.
 しかしながら、プロジェクタ装置における光源としてレーザ光源装置が用いられる場合には、スクリーン上において、『スペックルノイズ』と称される、ギラギラとしたチラツキが生ずることが観測される。この現象は、コヒーレント光であるレーザ光をスクリーン等に投射して映像光を観測すると、位相の合った光が干渉して網膜上に光量の強弱が生じることで発生するものである。 However, when a laser light source device is used as the light source in the projector device, it is observed that a glaring flicker called “speckle noise” occurs on the screen. This phenomenon occurs when image light is observed by projecting laser light, which is coherent light, onto a screen or the like, and light in phase is interfered to cause intensity of light on the retina.
 スペックルノイズを低減する方法としては、これまでに種々の方法が提案されている。
 例えば、特許文献1の特許第4379482号公報には、レーザ光源装置から例えばインテグレータなどの重畳照明素子に至る光路を時間的に変化させることによりスペックルノイズを低減させる方法が記載されている。そして、光路を時間的に変化させる方法としては、レーザ光源から出射されるレーザ光の光路を変換して重畳照明素子に入射させる光路変換手段を移動手段によって移動させることが記載されている。
 また、例えば特許文献2の特開2008-175869号公報には、平準化された干渉パターンを、集光レンズおよび適宜の光学素子を介して、スクリーンに投射する方法が提案されている。そして、平準化された干渉パターンを形成する方法としては、レーザ光の入射面がレーザ光の光軸に対して垂直に形成されると共にレーザ光の出射面がレーザ光の光軸に対して傾いて形成された光屈折素子をレーザ光の光軸を中心軸として回転させることにより、レーザ光源から出射されるレーザ光の出射方向に対して所定の角度範囲内でレーザ光の進行方向を変動させることが記載されている。
Various methods have been proposed so far for reducing speckle noise.
For example, Japanese Patent No. 4379482 of Patent Document 1 describes a method of reducing speckle noise by temporally changing an optical path from a laser light source device to a superimposed illumination element such as an integrator. As a method of changing the optical path with time, it is described that the optical path conversion means for converting the optical path of the laser light emitted from the laser light source and causing the laser light to enter the superimposed illumination element is moved by the moving means.
For example, Japanese Patent Application Laid-Open No. 2008-175869 of Patent Document 2 proposes a method of projecting a leveled interference pattern onto a screen via a condenser lens and an appropriate optical element. As a method of forming a leveled interference pattern, the laser light incident surface is formed perpendicular to the laser light optical axis, and the laser light emission surface is inclined with respect to the laser light optical axis. By rotating the photorefractive element formed in this manner with the optical axis of the laser light as the central axis, the traveling direction of the laser light is varied within a predetermined angle range with respect to the emitting direction of the laser light emitted from the laser light source. It is described.
特許第4379482号公報Japanese Patent No. 4379482 特開2008-175869号公報JP 2008-175869 A
 しかしながら、特許文献1に記載の方法では、レーザ光源装置から例えばインテグレータなどの重畳照明素子までの光学的な距離を変えていることになり、インテグレータでの光の補足率が時間的に変化する。このため、投影画像における明るさの時間的変化が視覚的に不快感を与えるといった問題が発生する。
 また、特許文献2に記載の方法では、例えば赤色レーザ光源から出射される赤色レーザ光と、緑色レーザ光源から出射される緑色レーザ光と、青色レーザ光源から出射される青色レーザ光とを合成してスクリーンにカラー画像を投影する場合には、赤色レーザ光、青色レーザ光および緑色レーザ光の、インテグレータに集光させる集光レンズでの屈折率が互いに異なるので、同一のレンズを使用した場合には色収差が発生する。これにより、光の利用率の低下、チラツキの発生といった問題が発生する。さらにまた、このような方法では、観察者による画像ノイズの認識を確実に抑制するために、光屈折素子から射出されたレーザ光が連続的に広範範囲に移動させることによりレーザ光の進行方向を変動させている。具体的には、レーザ光を集光レンズの入射面に入射する入射位置の軌跡が円、楕円を描くよう移動させている。このため、集光レンズとして口径の大きなものが必要となる、といった問題もあった。
However, in the method described in Patent Document 1, the optical distance from the laser light source device to a superimposed illumination element such as an integrator is changed, and the light capture rate in the integrator changes with time. For this reason, the problem that the temporal change of the brightness in a projection image gives a visually uncomfortable feeling arises.
In the method described in Patent Document 2, for example, red laser light emitted from a red laser light source, green laser light emitted from a green laser light source, and blue laser light emitted from a blue laser light source are synthesized. When projecting a color image on the screen, the refractive indices of the red, blue, and green laser beams that are collected by the integrator are different from each other. Causes chromatic aberration. As a result, problems such as a decrease in light utilization and flickering occur. Furthermore, in such a method, in order to reliably suppress the recognition of image noise by the observer, the traveling direction of the laser light is changed by continuously moving the laser light emitted from the photorefractive element to a wide range. It is fluctuating. Specifically, the locus of the incident position where the laser light is incident on the incident surface of the condenser lens is moved so as to draw a circle or an ellipse. For this reason, there also existed a problem that the thing with a large aperture was needed as a condensing lens.
 本発明は、以上のような事情に基づいてなされたものであり、スペックルノイズを十分に低減することのできるレーザ光源装置を提供することを目的とする。
 また、投射画面におけるスペックルノイズの視認が確実に低減されると共に、明るさの時間的変化が低減された投影画像の得られる画像投影装置を提供することを目的とする。  
The present invention has been made based on the above situation, and an object thereof is to provide a laser light source device capable of sufficiently reducing speckle noise.
It is another object of the present invention to provide an image projection apparatus that can obtain a projection image in which the speckle noise on the projection screen is reliably reduced and the temporal change in brightness is reduced.
 本発明のレーザ光源装置は、レーザ光源と、当該レーザ光源より入射されるレーザ光の光軸を回転中心軸として回転可能に構成された反射機構とを具えてなり、
 当該反射機構は、前記回転中心軸上において、当該回転中心軸上を進行する光が当該回転中心軸に直交する方向に反射されるよう配置された第一の反射鏡と、当該第一の反射鏡による反射光を反射する第二の反射鏡とを有し、
 前記第二の反射鏡による反射光が前記回転中心軸上の一点において集光されるよう出射されることを特徴とする。
The laser light source device of the present invention comprises a laser light source and a reflection mechanism configured to be rotatable about the optical axis of the laser light incident from the laser light source as a rotation center axis.
The reflection mechanism includes a first reflecting mirror disposed on the rotation center axis so that light traveling on the rotation center axis is reflected in a direction orthogonal to the rotation center axis, and the first reflection A second reflecting mirror that reflects light reflected by the mirror;
The reflected light from the second reflecting mirror is emitted so as to be condensed at one point on the rotation center axis.
 本発明のレーザ光源装置においては、前記反射機構は、10Hz以上の周波数で回転される構成とされていることが好ましい。 In the laser light source device of the present invention, it is preferable that the reflection mechanism is configured to rotate at a frequency of 10 Hz or more.
 また、本発明のレーザ光源装置は、レーザ光源と、当該レーザ光源からのレーザ光を反射する反射機構とを具えてなり、
 当該反射機構は、前記レーザ光源より入射されるレーザ光の光軸上において、当該光軸上を進行する光が当該光軸に直交する方向に反射されるよう配置された第一の反射鏡と、前記光軸に関して回転対称な反射面を有し、当該第一の反射鏡を囲むよう固定されて配置された、当該第一の反射鏡による反射光を反射する第二の反射鏡とを有し、前記第一の反射鏡は前記光軸を回転中心軸として回転可能に構成されており、
 前記第二の反射鏡による反射光が前記光軸上の一点で集光されるよう出射されることを特徴とする。
The laser light source device of the present invention comprises a laser light source and a reflection mechanism that reflects the laser light from the laser light source,
The reflection mechanism includes a first reflecting mirror arranged on the optical axis of the laser light incident from the laser light source so that light traveling on the optical axis is reflected in a direction orthogonal to the optical axis; And a second reflecting mirror that has a reflecting surface that is rotationally symmetric with respect to the optical axis and that is fixedly disposed so as to surround the first reflecting mirror and that reflects light reflected by the first reflecting mirror. The first reflecting mirror is configured to be rotatable about the optical axis as a rotation center axis.
The reflected light from the second reflecting mirror is emitted so as to be collected at one point on the optical axis.
 本発明のレーザ光源装置においては、前記第一の反射鏡は、10Hz以上の周波数で回転される構成とされていることが好ましい。 In the laser light source device of the present invention, it is preferable that the first reflecting mirror is rotated at a frequency of 10 Hz or more.
 本発明の画像投影装置は、上記のレーザ光源装置と、当該レーザ光源装置より入射されるレーザ光を均一な強度の光として出射するインテグレータとを具えており、
 前記インテグレータは、光軸が前記レーザ光源装置における前記回転中心軸に一致し、かつ、光入射面が当該レーザ光源装置における前記第二の反射鏡による反射光が集光される位置に配置されていることを特徴とする。
An image projection device of the present invention comprises the above laser light source device and an integrator that emits laser light incident from the laser light source device as light of uniform intensity,
The integrator is arranged such that an optical axis coincides with the rotation center axis of the laser light source device, and a light incident surface is disposed at a position where the reflected light from the second reflecting mirror in the laser light source device is condensed. It is characterized by being.
 本発明のレーザ光源装置は、レーザ光源より入射されるレーザ光の光軸を回転中心軸として回転可能に構成された反射機構を具えてなり、反射機構が、回転中心軸上において、当該回転中心軸上を進行する光が当該回転中心軸に直交する方向に反射されるよう配置された第一の反射鏡と、第一の反射鏡による反射光を反射する第二の反射鏡とを有し、第二の反射鏡による反射光が回転中心軸上の一点において集光されるよう出射される構成とされている。従って、本発明のレーザ光源装置によれば、第二の反射鏡による反射光は、集光位置に対して、入射角度が一定の大きさとされた状態で、入射方向のみが変化されることとなる。これにより、レーザ光源装置から出射されるレーザ光による干渉パターンの位置が時間的にずれること、すなわち、互いに異なる多数の干渉パターンが重ね合わせられることにより干渉パターンが平均化されるので、スペックルノイズを確実に低滅することができる。
 また、第二の反射鏡として入射されるレーザ光の光軸に関して回転対称な反射面を有するものを用い、この第二の反射鏡を第一の反射鏡を囲むよう固定して配置し、第一の反射鏡のみを、入射されるレーザ光の光軸を回転中心軸として回転させる構成とされた反射機構を具えたレーザ光源装置によっても、上記効果を得ることができる。
The laser light source device of the present invention includes a reflection mechanism configured to be rotatable about the optical axis of laser light incident from the laser light source, and the reflection mechanism is on the rotation center axis. A first reflecting mirror disposed so that light traveling on the axis is reflected in a direction perpendicular to the rotation center axis, and a second reflecting mirror that reflects light reflected by the first reflecting mirror; The reflected light from the second reflecting mirror is emitted so as to be collected at one point on the rotation center axis. Therefore, according to the laser light source device of the present invention, the reflected light from the second reflecting mirror is changed only in the incident direction with the incident angle being a constant magnitude with respect to the condensing position. Become. As a result, the position of the interference pattern due to the laser light emitted from the laser light source device is shifted in time, that is, the interference pattern is averaged by superimposing a large number of different interference patterns. Can be reliably reduced.
In addition, a second reflecting mirror having a reflecting surface that is rotationally symmetric with respect to the optical axis of the incident laser beam is used, and the second reflecting mirror is fixedly disposed so as to surround the first reflecting mirror. The above effect can also be obtained by a laser light source device having a reflection mechanism in which only one reflecting mirror is rotated with the optical axis of the incident laser light as the rotation center axis.
 従って、上記レーザ光源装置を具えた画像投影装置によれば、投射画面におけるスペックルノイズの視認が確実に低減され、しかも、レーザ光源装置からインテグレータまでの光学的な距離が一定の大きさとされるので、インテグレータでの光の補足率が時間的に変化することがなく、明るさの変化が低減された投影画像を得ることができる。また、レーザ光源装置がレーザ光源から入射される光を反射鏡によって集光させる構成のものであることにより、集光機能を有する光学部材によって集光させる構成のものにおいて生ずる色収差に起因した光の利用率の低下、チラツキの発生といった問題が生ずることを回避することができる。 Therefore, according to the image projection apparatus including the laser light source device, the visual recognition of speckle noise on the projection screen is reliably reduced, and the optical distance from the laser light source device to the integrator is made constant. Therefore, the light capture rate in the integrator does not change with time, and a projection image with reduced change in brightness can be obtained. In addition, since the laser light source device has a configuration in which light incident from the laser light source is collected by a reflecting mirror, light caused by chromatic aberration generated in a configuration in which the light is collected by an optical member having a light collecting function. It is possible to avoid the occurrence of problems such as a decrease in utilization rate and occurrence of flicker.
本発明の画像投影装置に係るプロジェクタ装置の一例における構成の概略を示す説明図である。It is explanatory drawing which shows the outline of a structure in an example of the projector apparatus which concerns on the image projector of this invention. 図1に示すプロジェクタ装置におけるレーザ光源装置を構成する反射機構の一例における構成の概略を示す斜視図である。It is a perspective view which shows the outline of a structure in an example of the reflection mechanism which comprises the laser light source apparatus in the projector apparatus shown in FIG. 図2に示す反射機構の、入射するレーザ光の光軸に沿った断面図である。It is sectional drawing along the optical axis of the incident laser beam of the reflection mechanism shown in FIG. 図2および図3に示す反射機構による光線追跡線を示す観念図である。FIG. 4 is a conceptual diagram showing ray tracing lines by the reflection mechanism shown in FIGS. 2 and 3. 本発明のレーザ光源装置における反射機構の他の構成例を光線追跡線と共に示す観念図である。It is an idea figure which shows the other structural example of the reflection mechanism in the laser light source apparatus of this invention with a ray tracing line. 本発明のレーザ光源装置における反射機構のさらに他の構成例を概略的に示す、入射するレーザ光の光軸に沿った断面図である。It is sectional drawing along the optical axis of the incident laser beam which shows roughly the further another structural example of the reflection mechanism in the laser light source apparatus of this invention. 図6に示す反射機構による光線追跡線を示す観念図である。It is an idea figure which shows the ray tracing line by the reflection mechanism shown in FIG.
 以下、本発明の実施の形態について詳細に説明する。
 図1は、本発明の画像投影装置に係るプロジェクタ装置の一例における構成の概略を示す説明図である。
 このプロジェクタ装置は、レーザ光源装置10と、レーザ光源装置10より入射される光を均一な強度の光として出射するロッド状のインテグレータ50と、このインテグレータ50から出射されるレーザ光の広がり角を制御してDMD(登録商標)などの空間変調素子52に入射させるコリメータレンズ51と、空間変調素子52において変調されて形成された映像光をスクリーンS上に拡大投射する投射レンズ53とを具えている。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is an explanatory diagram showing an outline of the configuration of an example of a projector apparatus according to an image projection apparatus of the present invention.
This projector device controls a laser light source device 10, a rod-shaped integrator 50 that emits light incident from the laser light source device 10 as light of uniform intensity, and a spread angle of the laser light emitted from the integrator 50. A collimator lens 51 that is incident on a spatial modulation element 52 such as DMD (registered trademark), and a projection lens 53 that enlarges and projects video light modulated by the spatial modulation element 52 onto the screen S. .
 レーザ光源装置10は、レーザ光出射機構20と、このレーザ光出射機構20から出射されるレーザ光を反射する反射機構30とを具えている。 The laser light source device 10 includes a laser light emitting mechanism 20 and a reflecting mechanism 30 that reflects the laser light emitted from the laser light emitting mechanism 20.
 レーザ光出射機構20は、複数のレーザ光源、具体的には、青色レーザ光を出射する青色レーザ光源21A,緑色レーザ光を出射する緑色レーザ光源21Bおよび赤色レーザ光を出射する赤色レーザ光源21Cを具えている。そして、各々のレーザ光源21A,21B,21Cの光出射方向前方側の位置には、集光レンズ22A,22B,22C、および、ダイクロイックミラー28A,28B,28Cが配置されている。青色レーザ光源21Aに係る第1の第1のダイクロイックミラー28A、緑色レーザ光源21Bに係る第2のダイクロイックミラー28Bおよび赤色レーザ光源21Cに係る第3のダイクロイックミラー28Cは、いずれも、板状であって、互いに波長選択特性の異なるものである。
 各々のレーザ光源21A,21B,21Cは、出射されるレーザ光の光軸が互いに平行に延びるよう、配置されている。各々の集光レンズ22A,22B,22Cは、その光軸が対応するレーザ光源の光出射方向に沿って延びる姿勢で配置されている。また、各々のダイクロイックミラー28A,28B,28Cは、光出射面がレーザ光源から出射されるレーザ光の光軸に対して傾斜した状態で、当該光軸に直交する方向に互いに平行に並ぶよう配置されている。
The laser light emitting mechanism 20 includes a plurality of laser light sources, specifically, a blue laser light source 21A that emits blue laser light, a green laser light source 21B that emits green laser light, and a red laser light source 21C that emits red laser light. It has. Then, condensing lenses 22A, 22B, 22C and dichroic mirrors 28A, 28B, 28C are arranged at positions on the front side in the light emission direction of the respective laser light sources 21A, 21B, 21C. The first first dichroic mirror 28A related to the blue laser light source 21A, the second dichroic mirror 28B related to the green laser light source 21B, and the third dichroic mirror 28C related to the red laser light source 21C are all plate-shaped. Thus, the wavelength selection characteristics are different from each other.
Each of the laser light sources 21A, 21B, and 21C is arranged so that the optical axes of the emitted laser beams extend in parallel to each other. Each condensing lens 22A, 22B, 22C is arrange | positioned with the attitude | position in which the optical axis is extended along the light emission direction of a corresponding laser light source. The dichroic mirrors 28A, 28B, and 28C are arranged in parallel with each other in a direction perpendicular to the optical axis in a state where the light emission surface is inclined with respect to the optical axis of the laser light emitted from the laser light source. Has been.
 青色レーザ光源21A,緑色レーザ光源21B,赤色レーザ光源21Cとしては、例えば、半導体レーザを用いることができる。ここに、青色レーザ光源21Aより出射される青色レーザ光の波長は、例えば460nmである。また、緑色レーザ光源21Bより出射される緑色レーザ光の波長は、例えば530nmである。また、赤色レーザ光源21Cより出射される赤色レーザ光の波長は、例えば640mである。 As the blue laser light source 21A, the green laser light source 21B, and the red laser light source 21C, for example, a semiconductor laser can be used. Here, the wavelength of the blue laser light emitted from the blue laser light source 21A is, for example, 460 nm. The wavelength of the green laser light emitted from the green laser light source 21B is, for example, 530 nm. The wavelength of the red laser light emitted from the red laser light source 21C is, for example, 640 m.
 この実施の形態に係る反射機構30は、図2および図3に示すように、外形形状が円筒型の機枠31を具えている。機枠31は、その中心軸が当該反射機構30に入射されるレーザ光出射機構20からのレーザ光Lの光軸Cに沿って延びる状態、具体的には、入射されるレーザ光の光軸Cと一致する状態で、配置されている。従って、この例においては、後述するように、入射されるレーザ光の光軸Cと一致する機枠31の中心軸が、反射機構30の回転中心軸Rとされている。32は光入射窓、33は光出射窓である。
 機枠31の内部には、第一の反射鏡35および第一の反射鏡35による反射光を反射する第二の反射鏡36が配置されている。
As shown in FIGS. 2 and 3, the reflection mechanism 30 according to this embodiment includes a machine casing 31 having a cylindrical outer shape. The machine casing 31 has a central axis extending along the optical axis C of the laser light L from the laser light emitting mechanism 20 that is incident on the reflecting mechanism 30, specifically, the optical axis of the incident laser light. Arranged in a state matching C. Therefore, in this example, as will be described later, the central axis of the machine casing 31 that coincides with the optical axis C of the incident laser light is the rotation central axis R of the reflection mechanism 30. 32 is a light entrance window, and 33 is a light exit window.
Inside the machine casing 31, a first reflecting mirror 35 and a second reflecting mirror 36 for reflecting the light reflected by the first reflecting mirror 35 are arranged.
 第一の反射鏡35は、入射されるレーザ光Lの回転中心軸R上を進行する光を回転中心軸Rに直交する方向に反射させるものであって、例えば平面鏡よりなる。この第一の反射鏡35は、回転中心軸R上の位置において、光反射面35Aが回転中心軸Rに対して傾斜した状態で、配置されている。 The first reflecting mirror 35 reflects the light traveling on the rotation center axis R of the incident laser light L in a direction orthogonal to the rotation center axis R, and is made of, for example, a plane mirror. The first reflecting mirror 35 is disposed at a position on the rotation center axis R in a state where the light reflection surface 35A is inclined with respect to the rotation center axis R.
 第二の反射鏡36は、例えば平面鏡よりなり、光反射面36Aが第一の反射鏡35の光反射面35Aと対向する状態で配置されている。 The second reflecting mirror 36 is made of, for example, a plane mirror, and is disposed in a state where the light reflecting surface 36A faces the light reflecting surface 35A of the first reflecting mirror 35.
 図2および図3における符号40は、機枠31を回転中心軸Rを中心に回転自在に保持する軸受け部材である。この軸受け部材40は、略円筒型であって、一端に径方向内方に突出するフランジ部41を有する。そして、軸受け部材40の内部には、機枠31がその周側面と軸受け部材40の内周面との間に例えばベアリングが介在された状態で挿入されている。 2 and 3 is a bearing member that holds the machine casing 31 so as to be rotatable about the rotation center axis R. The bearing member 40 has a substantially cylindrical shape, and has a flange portion 41 protruding radially inward at one end. The machine frame 31 is inserted into the bearing member 40 with a bearing interposed between the peripheral side surface and the inner peripheral surface of the bearing member 40.
 図2および図3における符号45は、機枠31を回転駆動させる駆動用モータであって、駆動軸が回転中心軸Rに沿って延びるよう配置されている。この駆動軸には、駆動ギア46が固定されており、この駆動ギア46は、機枠31に設けられた従動ギア34と噛合している。従って、このレーザ光源装置においては、反射機構30全体が回転中心軸Rを中心に回転可能に構成されている。
 反射機構30は、例えば10Hz以上の周波数、すなわち1秒間の時間の間における回転数が10回転以上となる条件で回転駆動されることが好ましい。これにより、スペックルノイズ低減効果を確実に得ることができる。
Reference numeral 45 in FIG. 2 and FIG. 3 is a drive motor for rotating the machine casing 31, and the drive shaft is arranged so as to extend along the rotation center axis R. A drive gear 46 is fixed to the drive shaft, and the drive gear 46 meshes with a driven gear 34 provided on the machine casing 31. Therefore, in this laser light source device, the entire reflection mechanism 30 is configured to be rotatable about the rotation center axis R.
It is preferable that the reflection mechanism 30 is rotationally driven under a condition that the number of rotations is 10 rotations or more, for example, at a frequency of 10 Hz or more, that is, for a time of 1 second. Thereby, the speckle noise reduction effect can be acquired reliably.
 インテグレータ50は、光軸が反射機構30の回転中心軸Rに一致し、かつ、光入射面50Aが反射機構30における第二の反射鏡36による反射光が集光される位置に配置されている。 In the integrator 50, the optical axis coincides with the rotation center axis R of the reflection mechanism 30, and the light incident surface 50A is disposed at a position where the reflected light from the second reflecting mirror 36 in the reflection mechanism 30 is collected. .
 上記のプロジェクタ装置においては、レーザ光源装置10におけるレーザ光出射機構20から出射された光が、回転される反射機構30によって反射され、インテグレータ50の光入射面50Aに集光されて入射される。具体的に説明すると、レーザ光源装置10のレーザ光出射機構20においては、青色レーザ光源21Aから出射された青色レーザ光が集光レンズ22Aによって集光されて第1のダイクロイックミラー28Aに照射され、第1のダイクロイックミラー28Aによって反射される。また、緑色レーザ光源21Bから出射された緑色レーザ光が集光レンズ22Bによって集光されて第2のダイクロイックミラー28Bに照射され、第2のダイクロイックミラー28Bによって反射される。このとき、第1のダイクロイックミラー28Aによる反射光が第2のダイクロイックミラー28Bを透過した透過光に、第2のダイクロイックミラー28Bによる反射光が合成される。さらに、赤色レーザ光源21Cから出射された赤色レーザ光が集光レンズ22Cによって集光されて第3のダイクロイックミラー28Cに照射され、第3のダイクロイックミラー28Cによって反射される。このとき、第2のダイクロイックミラー28Bによって合成された青色レーザ光と緑色レーザ光の合成光が第3のダイクロイックミラー28Cを透過した透過光に、第3のダイクロイックミラー28Cによる反射光が合成される。そして、図4に示すように、レーザ光出射機構20から出射されたレーザ光(図4において二点鎖線で示す。)は、回転中心軸Rを中心に回転された反射機構30における第一の反射鏡35に対して回転中心軸Rに沿って入射される。第一の反射鏡35による反射光は、第一の反射鏡35との位置関係が維持された状態で回転中心軸Rの周りを回転される第二の反射鏡36によって反射されてインテグレータ50の光入射面50Aにおける回転中心軸R(インテグレータ50の光軸)上の位置に集光される。ここに、第二の反射鏡36による反射光の、インテグレータ50の光入射面50Aに対する入射角度、具体的には、回転中心軸R上を進行する光についての第二の反射鏡36による反射光の、インテグレータ50の光入射面50Aに対する入射角度αは、入射光がプロジェクタで利用できる光線角度の範囲内にあるように選ばれる。入射角度αは、例えば0~25°の範囲内で出来るだけ大きな値とされることが望ましい。 In the projector device described above, the light emitted from the laser light emitting mechanism 20 in the laser light source device 10 is reflected by the rotating reflecting mechanism 30, and is collected and incident on the light incident surface 50A of the integrator 50. More specifically, in the laser light emitting mechanism 20 of the laser light source device 10, the blue laser light emitted from the blue laser light source 21A is condensed by the condenser lens 22A and applied to the first dichroic mirror 28A. Reflected by the first dichroic mirror 28A. Further, the green laser light emitted from the green laser light source 21B is condensed by the condenser lens 22B, irradiated to the second dichroic mirror 28B, and reflected by the second dichroic mirror 28B. At this time, the reflected light from the second dichroic mirror 28B is combined with the transmitted light obtained by transmitting the reflected light from the first dichroic mirror 28A through the second dichroic mirror 28B. Further, the red laser light emitted from the red laser light source 21C is condensed by the condenser lens 22C, irradiated to the third dichroic mirror 28C, and reflected by the third dichroic mirror 28C. At this time, the reflected light of the third dichroic mirror 28C is combined with the transmitted light of the blue laser light and the green laser light combined by the second dichroic mirror 28B transmitted through the third dichroic mirror 28C. . As shown in FIG. 4, the laser light emitted from the laser light emitting mechanism 20 (indicated by a two-dot chain line in FIG. 4) is the first in the reflecting mechanism 30 rotated around the rotation center axis R. The light enters the reflecting mirror 35 along the rotation center axis R. The light reflected by the first reflecting mirror 35 is reflected by the second reflecting mirror 36 rotated around the rotation center axis R in a state where the positional relationship with the first reflecting mirror 35 is maintained, and the integrator 50 The light is collected at a position on the rotation center axis R (the optical axis of the integrator 50) on the light incident surface 50A. Here, the incident angle of the light reflected by the second reflecting mirror 36 with respect to the light incident surface 50A of the integrator 50, specifically, the light reflected by the second reflecting mirror 36 with respect to the light traveling on the rotation center axis R. The incident angle α with respect to the light incident surface 50A of the integrator 50 is selected so that the incident light is within the range of the light beam angle that can be used by the projector. The incident angle α is desirably as large as possible within a range of 0 to 25 °, for example.
 そして、インテグレータ50によって強度が均一化されたレーザ光がインテグレータ50に対する入射角と同一の出射角で出射される。その後、空間変調素子52によって変調されることにより映像光が形成され、この映像光が投射レンズ53を介してスクリーンSに拡大投射される。 Then, the laser light whose intensity is made uniform by the integrator 50 is emitted at the same emission angle as the incident angle with respect to the integrator 50. Thereafter, image light is formed by being modulated by the spatial modulation element 52, and this image light is enlarged and projected onto the screen S via the projection lens 53.
 而して、上記構成のレーザ光源装置10は、レーザ光出射機構20より入射されるレーザ光の光軸Cを回転中心軸Rとして回転可能に構成された反射機構30を具えてなり、反射機構30が、回転中心軸R上において、当該回転中心軸R上を進行する光が当該回転中心軸Rに直交する方向に反射されるよう配置された第一の反射鏡35と、第一の反射鏡35による反射光を反射する第二の反射鏡36とを有し、第二の反射鏡36による反射光がインテグレータ50の光入射面50Aにおける回転中心軸R上の位置において集光されるよう出射される構成とされている。従って、上記構成のレーザ光源装置10によれば、第二の反射鏡36による反射光は、インテグレータ50の光入射面50A上の集光位置に対して、入射角度が一定の大きさとされた状態で、入射方向のみが変化されてインテグレータ50に入射されることとなる。従って、スクリーンS上に形成される干渉パターンの位置が時間的にずれることによって干渉パターンが平均化されるので、スペックルノイズを確実に低滅することできる。
 従って、上記レーザ光源装置10を具えたプロジェクタ装置によれば、スクリーンSにおけるスペックルノイズの視認が確実に低減され、しかも、レーザ光源装置10におけるレーザ光出射機構20からインテグレータレンズ50の光入射面50Aまでの光学的な距離が一定の大きさとされるので、インテグレータレンズ50での光の補足率が時間的に変化することがなく、明るさの変化が低減された投影画像を得ることができる。
 また、レーザ光源装置10がレーザ光源から入射される光を反射鏡を利用して集光させる構成のものであることにより、集光機能を有する光学部材によって集光させる構成のものにおいて生ずる色収差に起因して光の利用率が低下するといった問題が生ずることを回避することができる。
Thus, the laser light source device 10 having the above-described configuration includes the reflection mechanism 30 configured to be rotatable about the optical axis C of the laser light incident from the laser light emitting mechanism 20 as the rotation center axis R. 30 is arranged on the rotation center axis R so that the light traveling on the rotation center axis R is reflected in a direction orthogonal to the rotation center axis R; A second reflecting mirror 36 that reflects the light reflected by the mirror 35 so that the light reflected by the second reflecting mirror 36 is collected at a position on the rotation center axis R of the light incident surface 50A of the integrator 50. It is set as the structure radiate | emitted. Therefore, according to the laser light source device 10 configured as described above, the reflected light from the second reflecting mirror 36 is in a state in which the incident angle is set to a constant magnitude with respect to the condensing position on the light incident surface 50A of the integrator 50. Thus, only the incident direction is changed and incident on the integrator 50. Accordingly, since the interference patterns are averaged by shifting the position of the interference pattern formed on the screen S with time, speckle noise can be reliably reduced.
Therefore, according to the projector device provided with the laser light source device 10, the speckle noise on the screen S is reliably reduced, and the light incident surface of the integrator lens 50 from the laser light emitting mechanism 20 in the laser light source device 10 is reduced. Since the optical distance up to 50A is constant, the light capture rate of the integrator lens 50 does not change with time, and a projection image with reduced brightness change can be obtained. .
Further, since the laser light source device 10 is configured to condense light incident from the laser light source using a reflecting mirror, the chromatic aberration generated in the configuration configured to condense by an optical member having a condensing function. It can be avoided that a problem such as a decrease in the light utilization rate occurs.
 以上、本発明の一実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、種々の変更を加えることができる。
 例えば、反射機構の構成は、上記の実施の形態に係るものに限定されず、例えば図5に示すように、図2および図3に示す構成のものにおいて、第二の反射鏡36が平面鏡ではなく、楕円鏡により構成されたものであってもよい。この反射機構30においては、第二の反射鏡36は、第一焦点が第一の反射鏡35の反射面35A上に位置されると共に第二焦点がインテグレータ50の光入射面50A上に位置される状態で、配置されている。そして、この反射機構30においては、入射されるレーザ光(図5において二点鎖線で示す)が第一の反射鏡35によって反射され、その反射光が第二の反射鏡36によって反射されることによりインテグレータレンズ50の光入射面50Aにおける回転中心軸R上の一点で集光される。このような構成の反射機構30を具えたレーザ光源装置においても、上記と同様の効果を得ることができる。
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to said embodiment, A various change can be added.
For example, the configuration of the reflecting mechanism is not limited to that according to the above-described embodiment. For example, as shown in FIG. 5, in the configuration shown in FIGS. 2 and 3, the second reflecting mirror 36 is a plane mirror. Alternatively, it may be an elliptical mirror. In the reflecting mechanism 30, the second reflecting mirror 36 has a first focal point located on the reflecting surface 35 </ b> A of the first reflecting mirror 35 and a second focal point located on the light incident surface 50 </ b> A of the integrator 50. It is arranged in the state. In the reflection mechanism 30, incident laser light (indicated by a two-dot chain line in FIG. 5) is reflected by the first reflecting mirror 35, and the reflected light is reflected by the second reflecting mirror 36. Thus, the light is condensed at one point on the rotation center axis R on the light incident surface 50A of the integrator lens 50. Even in the laser light source device including the reflection mechanism 30 having such a configuration, the same effect as described above can be obtained.
 以上においては、反射機構30全体が入射されるレーザ光の光軸Cを回転中心軸Rとして回転されることによりインテグレータ50の光入射面50Aに対するレーザ光の入射方向を変化させる構成のものについて説明したが、反射機構30全体が回転される構成とされている必要はない。 In the above description, the structure in which the incident direction of the laser light with respect to the light incident surface 50A of the integrator 50 is changed by rotating the entire reflection mechanism 30 with the optical axis C of the incident laser light as the rotation center axis R will be described. However, it is not necessary that the entire reflection mechanism 30 is rotated.
 図6は、本発明のレーザ光源装置における反射機構の他の構成例を概略的に示す、入射するレーザ光の光軸に沿った断面図である。図7は、図6に示す反射機構による光線追跡線を示す観念図である。
 このレーザ光源装置における反射機構60は、例えば平面鏡よりなる第一の反射鏡61と、入射されるレーザ光Lの光軸Cに関して回転対称な反射面を有する第二の反射鏡62とを具えている。
 第一の反射鏡61は、レーザ光出射機構より入射されるレーザ光L(図7においては二点鎖線で示す。)の、光軸C上を進行する光を光軸Cに直交する方向に反射するものである。この第一の反射鏡61は、入射されるレーザ光Lの光軸C上において、光反射面61Aが光軸Cに対して傾斜した状態で、配置されている。
 第二の反射鏡62は、例えば、光軸Cを中心とする回転楕円面よりなる反射面62Aを有する楕円鏡により構成されている。この第二の反射鏡62は、第一の反射鏡61を囲むよう機枠(図示せず)に固定されて配置されている。第二の反射鏡62の第一焦点は、第一の反射鏡の反射面61A上に位置されており、第二焦点は、インテグレータ50の光入射面50A上に位置されている。
FIG. 6 is a cross-sectional view along the optical axis of incident laser light, schematically showing another configuration example of the reflection mechanism in the laser light source device of the present invention. FIG. 7 is a conceptual diagram showing ray tracing lines by the reflection mechanism shown in FIG.
The reflection mechanism 60 in the laser light source device includes a first reflection mirror 61 made of, for example, a plane mirror, and a second reflection mirror 62 having a reflection surface that is rotationally symmetric with respect to the optical axis C of the incident laser light L. Yes.
The first reflecting mirror 61 is configured so that the laser beam L (indicated by a two-dot chain line in FIG. 7) incident from the laser beam emitting mechanism travels on the optical axis C in a direction perpendicular to the optical axis C. It is a reflection. The first reflecting mirror 61 is arranged on the optical axis C of the incident laser beam L with the light reflecting surface 61A inclined with respect to the optical axis C.
The second reflecting mirror 62 is constituted by, for example, an elliptical mirror having a reflecting surface 62A made of a spheroid with the optical axis C as the center. The second reflecting mirror 62 is fixed to a machine frame (not shown) so as to surround the first reflecting mirror 61. The first focal point of the second reflecting mirror 62 is located on the reflecting surface 61 </ b> A of the first reflecting mirror, and the second focal point is located on the light incident surface 50 </ b> A of the integrator 50.
 図6における符号65は、第一の反射鏡61を保持する反射鏡保持部材である。この反射鏡保持部材65は、入射されるレーザ光Lの光軸Cに沿って延びる略円筒状の軸部66およびこの軸部66の一端(図6における下端)において全周にわたって形成されたフランジ部67を有する。そして、軸部66の他端(図6における上端)において、第一の反射鏡61が保持固定されている。68は光透過窓である。 6 is a reflecting mirror holding member for holding the first reflecting mirror 61. The reflecting mirror holding member 65 includes a substantially cylindrical shaft portion 66 extending along the optical axis C of the incident laser light L, and a flange formed over the entire circumference at one end of the shaft portion 66 (lower end in FIG. 6). Part 67. The first reflecting mirror 61 is held and fixed at the other end of the shaft portion 66 (the upper end in FIG. 6). Reference numeral 68 denotes a light transmission window.
 図6における符号70は、反射鏡保持部材65を入射されるレーザ光の光軸Cを回転中心軸Rとして回転自在に保持する軸受け部材である。この軸受け部材70は、円筒型であって、内部に、反射鏡保持部材65の軸部66がその外周面と軸受け部材70の内周面との間に例えばベアリングが介在された状態で挿入されている。 6 is a bearing member that rotatably holds the reflecting mirror holding member 65 with the optical axis C of the incident laser light as the rotation center axis R. The bearing member 70 has a cylindrical shape, and the shaft portion 66 of the reflecting mirror holding member 65 is inserted therein with, for example, a bearing interposed between the outer peripheral surface thereof and the inner peripheral surface of the bearing member 70. ing.
 図6における符号45は、反射鏡保持部材65を回転駆動させる駆動用モータであって、駆動軸が回転中心軸Rに沿って延びるよう配置されている。駆動軸には、駆動ギア46が固定されており、この駆動ギア46は、反射鏡保持部材65のフランジ部67の周側面に形成されたギア部と噛合している。従って、このレーザ光源装置においては、第一の反射鏡61のみが回転中心軸Rを中心に回転可能に構成されている。
 第一の反射鏡61は、例えば10Hz以上の周波数、すなわち1秒間の時間の間における回転数が10回転以上となる条件で回転駆動されることが好ましい。これにより、スペックルノイズ低減効果を確実に得ることができる。
Reference numeral 45 in FIG. 6 denotes a drive motor that rotationally drives the reflecting mirror holding member 65, and is arranged such that the drive shaft extends along the rotation center axis R. A drive gear 46 is fixed to the drive shaft, and this drive gear 46 meshes with a gear portion formed on the peripheral side surface of the flange portion 67 of the reflector holding member 65. Therefore, in this laser light source device, only the first reflecting mirror 61 is configured to be rotatable about the rotation center axis R.
The first reflecting mirror 61 is preferably rotationally driven under the condition that the frequency is, for example, 10 Hz or more, that is, the number of revolutions in the time of 1 second is 10 revolutions or more. Thereby, the speckle noise reduction effect can be acquired reliably.
 このレーザ光源装置においては、レーザ光出射機構から出射された光は、図7に示すように、回転中心軸Rを中心に回転された第一の反射鏡61に対して回転中心軸Rに沿って入射される。第一の反射鏡61による反射光は、第二の反射鏡62によって反射され、第二の反射鏡62による反射光がインテグレータ50の光入射面50Aにおける回転中心軸R(インテグレータ50の光軸)上の位置に集光される。ここに、第二の反射鏡62による反射光の、インテグレータ50の光入射面50Aに対する入射角度αは、入射光がプロジェクタで利用できる光線角度の範囲内にあるように選ばれる。入射角度αは、例えば0~25°の範囲内で出来るだけ大きな値とされることが望ましい。 In this laser light source device, the light emitted from the laser light emitting mechanism is along the rotation center axis R with respect to the first reflecting mirror 61 rotated around the rotation center axis R, as shown in FIG. Is incident. The light reflected by the first reflecting mirror 61 is reflected by the second reflecting mirror 62, and the light reflected by the second reflecting mirror 62 is the rotation center axis R (the optical axis of the integrator 50) on the light incident surface 50A of the integrator 50. It is condensed at the upper position. Here, the incident angle α of the light reflected by the second reflecting mirror 62 with respect to the light incident surface 50A of the integrator 50 is selected so that the incident light is within the range of the light beam angle that can be used by the projector. The incident angle α is desirably as large as possible within a range of 0 to 25 °, for example.
 このような構成の反射機構60を具えたレーザ光源装置においても、上記と同様の効果を得ることができる。 Also in the laser light source device including the reflection mechanism 60 having such a configuration, the same effect as described above can be obtained.
 10 レーザ光源装置
 20 レーザ光出射機構
 21A 青色レーザ光源
 21B 緑色レーザ光源
 21C 赤色レーザ光源
 22A,22B,22C 集光レンズ
 28A 第1のダイクロイックミラー
 28B 第2のダイクロイックミラー
 28C 第3のダイクロイックミラー
 30 反射機構
 31 機枠
 32 光入射窓
 33 光出射窓
 34 従動ギア
 35 第一の反射鏡
 35A 光反射面
 36 第二の反射鏡
 36A 光反射面
 40 軸受け部材
 41 フランジ部
 45 駆動用モータ
 46 駆動ギア
 50 インテグレータ
 50A 光入射面
 51 コリメータレンズ
 52 空間変調素子
 53 投射レンズ
 60 反射機構
 61 第一の反射鏡
 61A 光反射面
 62 第二の反射鏡
 62A 光反射面
 65 反射鏡保持部材
 66 軸部
 67 フランジ部
 68 光透過窓
 70 軸受け部材
  C 反射機構に入射されるレーザ光の光軸
  R 回転中心軸
  S スクリーン
  L レーザ光
DESCRIPTION OF SYMBOLS 10 Laser light source device 20 Laser light emission mechanism 21A Blue laser light source 21B Green laser light source 21C Red laser light source 22A, 22B, 22C Condensing lens 28A 1st dichroic mirror 28B 2nd dichroic mirror 28C 3rd dichroic mirror 30 Reflection mechanism DESCRIPTION OF SYMBOLS 31 Machine frame 32 Light entrance window 33 Light exit window 34 Driven gear 35 First reflective mirror 35A Light reflective surface 36 Second reflective mirror 36A Light reflective surface 40 Bearing member 41 Flange part 45 Driving motor 46 Drive gear 50 Integrator 50A Light incident surface 51 Collimator lens 52 Spatial modulation element 53 Projection lens 60 Reflection mechanism 61 First reflecting mirror 61A Light reflecting surface 62 Second reflecting mirror 62A Light reflecting surface 65 Reflecting mirror holding member 66 Shaft portion 67 Flange portion 68 Light transmission Window 70 Bearing member C Optical axis of laser light incident on reflection mechanism R Rotation center axis S Screen L Laser light

Claims (5)

  1.  レーザ光源と、当該レーザ光源より入射されるレーザ光の光軸を回転中心軸として回転可能に構成された反射機構とを具えてなり、
     当該反射機構は、前記回転中心軸上において、当該回転中心軸上を進行する光が当該回転中心軸に直交する方向に反射されるよう配置された第一の反射鏡と、当該第一の反射鏡による反射光を反射する第二の反射鏡とを有し、
     前記第二の反射鏡による反射光が前記回転中心軸上の一点において集光されるよう出射されることを特徴とするレーザ光源装置。
    Comprising a laser light source and a reflection mechanism configured to be rotatable about the optical axis of the laser light incident from the laser light source,
    The reflection mechanism includes a first reflecting mirror disposed on the rotation center axis so that light traveling on the rotation center axis is reflected in a direction orthogonal to the rotation center axis, and the first reflection A second reflecting mirror that reflects light reflected by the mirror;
    The laser light source device characterized in that the light reflected by the second reflecting mirror is emitted so as to be condensed at one point on the rotation center axis.
  2.  前記反射機構は、10Hz以上の周波数で回転されることを特徴とする請求項1に記載のレーザ光源装置。 The laser light source device according to claim 1, wherein the reflection mechanism is rotated at a frequency of 10 Hz or more.
  3.  レーザ光源と、当該レーザ光源からのレーザ光を反射する反射機構とを具えてなり、
     当該反射機構は、前記レーザ光源より入射されるレーザ光の光軸上において、当該光軸上を進行する光が当該光軸に直交する方向に反射されるよう配置された第一の反射鏡と、前記光軸に関して回転対称な反射面を有し、当該第一の反射鏡を囲むよう固定されて配置された、当該第一の反射鏡による反射光を反射する第二の反射鏡とを有し、前記第一の反射鏡は前記光軸を回転中心軸として回転可能に構成されており、
     前記第二の反射鏡による反射光が前記光軸上の一点で集光されるよう出射されることを特徴とするレーザ光源装置。
    Comprising a laser light source and a reflection mechanism for reflecting the laser light from the laser light source;
    The reflection mechanism includes a first reflecting mirror arranged on the optical axis of the laser light incident from the laser light source so that light traveling on the optical axis is reflected in a direction orthogonal to the optical axis; And a second reflecting mirror that has a reflecting surface that is rotationally symmetric with respect to the optical axis and that is fixedly disposed so as to surround the first reflecting mirror and that reflects light reflected by the first reflecting mirror. The first reflecting mirror is configured to be rotatable about the optical axis as a rotation center axis.
    The laser light source device characterized in that the light reflected by the second reflecting mirror is emitted so as to be condensed at one point on the optical axis.
  4.  前記第一の反射鏡は、10Hz以上の周波数で回転されることを特徴とする請求項3に記載のレーザ光源装置。 4. The laser light source device according to claim 3, wherein the first reflecting mirror is rotated at a frequency of 10 Hz or more.
  5.  請求項1乃至請求項4のいずれかに記載のレーザ光源装置と、当該レーザ光源装置より入射されるレーザ光を均一な強度の光として出射するインテグレータとを具えており、
     前記インテグレータは、光軸が前記レーザ光源装置における前記回転中心軸に一致し、かつ、光入射面が当該レーザ光源装置における前記第二の反射鏡による反射光が集光される位置に配置されていることを特徴とする画像投影装置。
    The laser light source device according to any one of claims 1 to 4, and an integrator that emits laser light incident from the laser light source device as light of uniform intensity,
    The integrator is arranged such that an optical axis coincides with the rotation center axis of the laser light source device, and a light incident surface is disposed at a position where the reflected light from the second reflecting mirror in the laser light source device is condensed. An image projection apparatus characterized by comprising:
PCT/JP2012/070446 2011-09-08 2012-08-10 Laser light source device and image projection apparatus WO2013035487A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-195765 2011-09-08
JP2011195765A JP2013057785A (en) 2011-09-08 2011-09-08 Laser source device and image projection apparatus

Publications (1)

Publication Number Publication Date
WO2013035487A1 true WO2013035487A1 (en) 2013-03-14

Family

ID=47831938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070446 WO2013035487A1 (en) 2011-09-08 2012-08-10 Laser light source device and image projection apparatus

Country Status (2)

Country Link
JP (1) JP2013057785A (en)
WO (1) WO2013035487A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109426355A (en) * 2017-08-31 2019-03-05 华为终端(东莞)有限公司 Input method, input unit and the electronic equipment of a kind of electronic equipment
CN110191328A (en) * 2019-06-19 2019-08-30 广景视睿科技(深圳)有限公司 A kind of trend projection arrangement, method and projector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997002507A1 (en) * 1995-07-03 1997-01-23 The Regents Of The University Of California Speckle averaging system for laser raster-scan image projection
JP2010164855A (en) * 2009-01-16 2010-07-29 Olympus Corp Rod integrator, and illumination system and projection apparatus each having the same
WO2010126951A1 (en) * 2009-04-29 2010-11-04 Corning Incorporated Spinning optics for speckle mitigation in laser projection systems
JP2010256573A (en) * 2009-04-23 2010-11-11 Olympus Corp Projection type display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997002507A1 (en) * 1995-07-03 1997-01-23 The Regents Of The University Of California Speckle averaging system for laser raster-scan image projection
JP2010164855A (en) * 2009-01-16 2010-07-29 Olympus Corp Rod integrator, and illumination system and projection apparatus each having the same
JP2010256573A (en) * 2009-04-23 2010-11-11 Olympus Corp Projection type display
WO2010126951A1 (en) * 2009-04-29 2010-11-04 Corning Incorporated Spinning optics for speckle mitigation in laser projection systems

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109426355A (en) * 2017-08-31 2019-03-05 华为终端(东莞)有限公司 Input method, input unit and the electronic equipment of a kind of electronic equipment
CN110191328A (en) * 2019-06-19 2019-08-30 广景视睿科技(深圳)有限公司 A kind of trend projection arrangement, method and projector
US11402732B2 (en) 2019-06-19 2022-08-02 Iview Displays (Shenzhen) Company Ltd. Dynamic projection device, method and projector

Also Published As

Publication number Publication date
JP2013057785A (en) 2013-03-28

Similar Documents

Publication Publication Date Title
US9325955B2 (en) Light source apparatus and projector apparatus with optical system having reduced color irregularity
JP5910554B2 (en) Light source device and display device
JP5326596B2 (en) Illumination apparatus and projection image display apparatus using the same
JP6999418B2 (en) Speckle removal system for projected light
WO2014192115A1 (en) Light source device, and projection-type display device
JP5313029B2 (en) Projection display
JP2008257242A (en) Image generating apparatus
JP2011164151A (en) Illumination device and projection type image display device
TWI556051B (en) Digital light procession projector
JP6118987B2 (en) Light source device and projection display device using the same
WO2011108077A1 (en) Projecting display device
JP2019139114A (en) Luminaire and image projection device
JP5070614B2 (en) Projector and control method thereof
US9448417B2 (en) Illumination device and projector
JP2007334240A (en) Screen, rear projector, projection system, and image display device
WO2013035487A1 (en) Laser light source device and image projection apparatus
JP5401977B2 (en) Image display device and light source device
JP2014178693A (en) Lighting device and display device
JP2013057786A (en) Laser source device and image projection apparatus
JP2014119670A (en) Fluorescence generating device, projection device, and excitation beam generating device
JP2016184064A (en) Despeckle illumination device, despeckle illumination method, and projection type display device
JP2012063708A (en) Lighting system and projection type video display device
TWI587065B (en) Projecting apparatus, colored light generating module thereof and projecting method
JP6179130B2 (en) Light source device and projection device
WO2020125070A1 (en) Laser light source and laser projector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12830159

Country of ref document: EP

Kind code of ref document: A1