WO2013035249A1 - Optical film manufacturing method - Google Patents

Optical film manufacturing method Download PDF

Info

Publication number
WO2013035249A1
WO2013035249A1 PCT/JP2012/005175 JP2012005175W WO2013035249A1 WO 2013035249 A1 WO2013035249 A1 WO 2013035249A1 JP 2012005175 W JP2012005175 W JP 2012005175W WO 2013035249 A1 WO2013035249 A1 WO 2013035249A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
dope
resin
casting
cellulose ester
Prior art date
Application number
PCT/JP2012/005175
Other languages
French (fr)
Japanese (ja)
Inventor
忠浩 金子
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Priority to KR1020147003742A priority Critical patent/KR101594265B1/en
Publication of WO2013035249A1 publication Critical patent/WO2013035249A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/28Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on an endless belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/30Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length incorporating preformed parts or layers, e.g. moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2001/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
    • B29K2001/08Cellulose derivatives

Definitions

  • the present invention relates to a method for producing an optical film. More specifically, when an optical film is produced by a solution casting method, a dope in which a resin is dissolved in a solvent is cast from a nozzle onto an endless support, and the formed casting film is peeled from the endless support.
  • the present invention relates to a method for producing an optical film in which an end of a cast film remains on an endless support and cracks at the end are prevented.
  • a polarizing film of a polarizing plate is formed by laminating a cellulose ester film as a protective film on one or both sides of a polarizer made of a stretched polyvinyl alcohol film.
  • Such an optical film is required to have a smooth surface without optical defects. In particular, as the size of monitors and TVs increases and the definition becomes higher, these required qualities are becoming stricter.
  • the display device can be used as a large display installed in a street or a store, or used as an advertising display in a public place using a display device called digital signage.
  • One of the optical film manufacturing methods is a solution casting film forming method.
  • a resin is dissolved in a solvent, and the solution (dope) is cast from a dope outlet of a casting die onto a metal endless support, and a predetermined amount of solvent is evaporated on the endless support. Then, it peels from an endless support body, and also is extended
  • the cast film on the endless support is dried to a predetermined concentration on the endless support, but the end of the cast film is dried and harder than the center part of the cast film.
  • a tear may occur at the end of the cast film. Once such a rift is formed, the tear proceeds due to the conveying tension, leading to rupture.
  • the casting film on the endless support is thin, and the width is wide and the moving speed of the endless support is high. A tear may occur at the end.
  • the solvent that dissolves the raw material resin is allowed to flow from both ends of the dope outlet to the end of the casting film, thereby preventing the formation of a film due to drying of the end of the casting film.
  • Patent Document 1 Japanese Patent Document 1
  • Patent Document 1 uses a dope in which a cellulose ester resin and an acrylic resin are mixed and dissolved in a solvent, and when the moving speed of the wide, thin film, and endless support is high, a casting film is formed from the endless support. How to prevent cracking and tearing at the end of the casting film when peeling the casting film from the endless support has not been thoroughly investigated for prevention of cracking and tearing at the end of the casting film when peeling. Was not found, and the study was desired.
  • the present invention has been made in view of the above situation, and its purpose is to use a dope prepared by mixing a cellulose ester resin and an acrylic resin and dissolving in a solvent, and forming a wide, thin film formed on an endless support. It is an object of the present invention to provide a method for producing an optical film in which a tear is prevented from occurring at the end of a cast film when the cast film is peeled off from an endless support that moves at high speed.
  • one aspect of the present invention is A dope in which a mixed resin of a raw material acrylic resin and a cellulose ester resin is dissolved in a solvent flows out of a die, and a dope film is cast on an endless belt support, and a casting part that forms a cast film; , Optics for producing an optical film by a solution casting production apparatus having at least a stretching part that stretches after peeling the casting film from the endless belt support, a drying part that dries, and a winding part that winds.
  • the casting portion includes an end reinforcement including the cellulose ester resin at a mass ratio larger than a mass ratio of the cellulose ester resin constituting the dope at both ends of the dope film or the casting film. Having an edge reinforcing solution supply means for supplying the solution;
  • the optical film is produced by casting while supplying the end portion reinforcing solution from the end portion reinforcing solution supply means to the both end portions.
  • an endless support that uses a dope prepared by mixing a cellulose ester resin and an acrylic resin and dissolved in a solvent, and moves a wide, thin cast film formed on the endless support at high speed. It is possible to provide a method for producing an optical film that prevents the tearing from occurring at the end of the cast film when the film is peeled off.
  • FIG. 1 is a schematic diagram of an apparatus for producing an optical film by a solution casting method for supplying an edge reinforcing solution to both ends of a dope film.
  • FIG. 2 is a schematic view of an optical film manufacturing apparatus using a solution casting method in which an edge reinforcing solution is supplied to both ends of a casting film.
  • FIG. 3 is an enlarged schematic view of a portion indicated by T in FIG.
  • FIG. 4 is a schematic plan view of the tip of the end portion reinforcing solution supply nozzle.
  • the present inventor uses a dope prepared by mixing a cellulose ester resin and an acrylic resin and dissolving in a solvent in the production of an optical film by a solution casting method, and casting a wide, thin film formed on an endless support.
  • a dope prepared by mixing a cellulose ester resin and an acrylic resin and dissolving in a solvent in the production of an optical film by a solution casting method, and casting a wide, thin film formed on an endless support.
  • the end reinforcement solution containing a large amount of cellulose ester resin among the resin materials constituting the dope at the end of the cast film is supplied. It has been found that it is effective to do so, and the present invention has been achieved.
  • 1a and 1b are manufacturing apparatuses
  • 101 is a casting part
  • 101a is an endless specular belt and / or a metal casting belt support (endless belt support)
  • 101b is a die
  • 101c is a decompression chamber
  • 101d is an end reinforcing solution supply means
  • 101d1 is an end reinforcing solution supply nozzle
  • 101d2 is an end reinforcing solution tank
  • 101d3 is an end reinforcing solution supply pump
  • 101d4 is an end reinforcing solution supply pipe
  • 101e is a dope film
  • 101f Is a casting film
  • 102 is a first drying section
  • 103 is a stretching section
  • 104 is a second drying section
  • 105 is a knurling forming section
  • 106 is a collection section.
  • FIG. 1 is a schematic diagram of an optical film manufacturing apparatus using a solution casting method in which an edge reinforcing solution is supplied to both ends of a dope film.
  • the solution casting method is an acrylic prepared by dissolving the raw material resin in a solvent and adding various additives such as plasticizers, ultraviolet absorbers, deterioration inhibitors, slipping agents, peeling accelerators as necessary.
  • a dope prepared by dissolving a mixed resin of a cellulose resin and a cellulose ester resin in a solvent is discharged from a die onto an endless metal support (for example, a belt or a drum) that moves indefinitely, cast, and then an endless support.
  • an endless metal support for example, a belt or a drum
  • it is peeled off from the endless support, and then passed through a drying section by various conveying means to remove the solvent and wind it around a winding shaft.
  • reference numeral 1a denotes an optical film manufacturing apparatus using a solution casting method.
  • the manufacturing apparatus 1a includes a casting unit 101, a first drying unit 102, an extending unit 103, a second drying unit 104, a knurling forming unit 105, and a recovery unit 106.
  • the casting part 101 includes two support rolls 101h and an endless specular belt-like metal casting belt support (hereinafter referred to as an endless belt support) 101a that is wound around the support roll 101i and travels endlessly (in the direction of the arrow in the figure). And a die 101b, a decompression chamber 101c, and an end portion reinforcing solution supply means 101d.
  • the moving speed of the endless belt support 101a is preferably 20 m / min to 200 m / min in consideration of productivity, film flatness, and the like.
  • the edge reinforcing solution supply means 101d has an edge reinforcing solution supply nozzle 101d1, an edge reinforcing solution tank 101d2 having an edge reinforcing solution supply pump 101d3, and an edge reinforcing solution supply pipe 101d4.
  • Two end reinforcing solution supply nozzles 101d are arranged so as to supply the end reinforcing solution to both ends of the dope film 101e (see FIG. 3).
  • the end reinforcing solution supply nozzle 101d1 receives an end reinforcing solution whose supply amount is adjusted from the end reinforcing solution tank 101d2 by the end reinforcing solution supply pump 101d3 via the end reinforcing solution supply pipe 101d4.
  • An end portion reinforcing solution is supplied to the end portion of the dope film 101e supplied to the supply nozzle 101d1.
  • the end portion refers to a range of about 10 mm in the width direction from the end side of the doped film 101e (see FIG. 3).
  • the distance between the tip of the end reinforcing solution supply nozzle 101d1 and the surface of the end of the dope film 101e is too far away, the end reinforcing solution due to solvent evaporation is flowing while the end reinforcing solution is flowing.
  • the increase in concentration increases and the viscosity is increased, so that the end portion does not spread uniformly and water condensation occurs due to the evaporation of the solvent resulting in a decrease in the temperature of the end portion reinforcing solution channel.
  • the distance from the tip of the end portion reinforcing solution supply nozzle 101d1 to the surface of the end portion of the dope film 101e is preferably 2 mm to 20 mm.
  • a commercially available general pump such as a gear pump, a plunger pump, a diaphragm, or a Mono pump can be used.
  • the dice 101b is supplied with a dope whose supply amount is adjusted by a dope supply pump 101b3 from a dope tank 101b1 that stores dopes via a supply pipe 101b2, and the dope film 101e (see FIG. 3) is placed on the endless belt support 101a. To be cast.
  • the decompression chamber 101c is disposed on the upstream side of the die 101b with respect to the traveling direction of the endless belt support 101a, and the dope film 101e (see FIG. 3) flowing out of the die 101b is decompressed by reducing the inside of the endless belt 101c. It is possible to stably land on the support 101a.
  • Reference numeral 101g denotes a peeling roll which is cast and formed on the endless belt support 101a and peels off the casting film 101f.
  • the peeled cast film is referred to as an unstretched film 2 for convenience.
  • the content is preferably 10% by mass to 90% by mass.
  • the amount of residual solvent shows the value measured by the method shown below.
  • the first drying step 102 includes a drying box 102a having a drying air intake port 102c, a discharge port 102b, and a transport roll 102d composed of a plurality of sets, one set at the top and bottom for transporting the unstretched film 2.
  • the slitter 102e which cuts off the both ends of the unstretched film 2 is provided.
  • the dry air intake port 102c and the discharge port 102b may be reversed.
  • the stretching step 103 includes an MD (Machine Direction) stretching portion (not shown), a TD (Transverse Direction) stretching portion (not shown), and a slitter 103a that cuts both ends of the stretched film 2a.
  • the unstretched film 2 conveyed from the first drying step 102 is stretched to form a stretched film 2a.
  • a drying box (104a) having a drying air intake port 104c, a discharge port 104b, and a transport roll 104d composed of a plurality of sets, one set at the top and bottom for transporting the stretched film 2a.
  • a drying box (104a) having a drying air intake port 104c, a discharge port 104b, and a transport roll 104d composed of a plurality of sets, one set at the top and bottom for transporting the stretched film 2a.
  • the dry air inlet 104c and the outlet 104b may be reversed.
  • the collection unit 106 has a winder (not shown) that winds the stretched film 2a, and controls the winding tension corresponding to the winding length so as to wind the stretched film 2a around the winding shaft. It has become.
  • the resin of the raw material is dissolved in a solvent, and various additions such as a plasticizer, an ultraviolet absorber, a deterioration preventing agent, a slipping agent and a peeling accelerator are added to this as necessary.
  • An endless belt support that travels endlessly (in the direction of the arrow in the figure) by discharging the end portion reinforcing solution from the end portion reinforcing solution supply nozzle 101d to both ends of the dope film flowing out from the die 101b.
  • the cast film formed by casting on both ends is reinforced on the endless belt support to a certain extent, and then peeled off from the endless belt support, and then dried by various conveying means,
  • An optical film is manufactured by passing the stretched portion 103 and forming a knurling at both ends as necessary, and then winding the sample around the winding shaft by the collecting portion 106.
  • the length of the optical film wound on the winding shaft is preferably 2000 m to 8000 m.
  • the width is preferably 1000 mm to 3500 mm.
  • the thickness is preferably 10 ⁇ m to 120 ⁇ m.
  • FIG. 2 is a schematic view of an apparatus for producing an optical film by a solution casting method in which an edge reinforcing solution is supplied to both ends of the casting membrane.
  • 1b represents an optical film manufacturing apparatus using a solution casting method.
  • Other reference numerals are the same as those in FIG.
  • the difference from the manufacturing apparatus 1a shown in FIG. 1 is that the position of the end reinforcing solution supply nozzle 101d1 of the end reinforcing solution supply means 101d is arranged at a position where the end reinforcing solution can be supplied to the end of the casting membrane 101f. It is only provided, and everything else is the same as the manufacturing apparatus 1a shown in FIG.
  • the end portion means a range of 10 mm in the width direction from the end side of the casting film 101f.
  • Two end reinforcing solution supply nozzles 101d are provided so as to supply the end reinforcing solution to both ends of the casting film 101f.
  • the positions where the end portion reinforcing solution supply nozzle 101d1 is disposed in the casting step 101 are located at both ends of the casting membrane 101f from the end portion reinforcing solution supply nozzle 101d1.
  • the position at which the solvent of the edge reinforcing solution is removed to such an extent that the edge reinforcing solution supplied to the edge does not become an obstacle when the cast film 101f is peeled off from the endless belt support 101a (the toughness required for the edge is The position is not particularly limited.
  • This embodiment relates to a method for producing an optical film by the solution casting method shown in FIGS. 1 and 2, and more specifically, a mixed resin of a raw acrylic resin and a cellulose ester resin on an endless belt support.
  • the present invention relates to a method for producing an optical film, in which a dope dissolved in a solvent is cast, and a tear is prevented from occurring in the cast film when the cast film formed is peeled off from an endless belt support.
  • FIG. 3 is an enlarged schematic view of a portion indicated by T in FIG.
  • FIG. 3A is an enlarged schematic view showing the arrangement position of the end portion reinforcing solution supply nozzle indicated by T in FIG.
  • FIG.3 (b) is an expansion schematic front view from the edge part reinforcement solution supply nozzle side shown by Fig.3 (a).
  • reference numeral 101e denotes a doped film formed from a dope discharged from the die 101b in a film shape.
  • the position where the end portion reinforcing solution supply nozzle 101d1 is disposed is not particularly limited as long as the end portion reinforcing solution can be supplied until the dope film 101e discharged from the die 101b reaches the endless belt support 101a.
  • the end portion reinforcing solution supply nozzle 101d1 may be incorporated inside the die 101b or may be disposed outside the die 101b. This figure shows the case where it arrange
  • the two end reinforcing solution supply nozzles 101d1 may each have an independent end reinforcing solution tank 101d2 (see FIG. 1) and an end reinforcing solution supply pipe 101d4 (see FIG. 1).
  • One end reinforcing solution tank 101d2 (see FIG. 1) is used as one to branch the end reinforcing solution supply pipe 101d4 (see FIG. 1) and supply the end reinforcing solution to the two end reinforcing solution supply nozzles 101d1. May be selected as necessary.
  • FIG. 4 is a schematic plan view of the tip of the end reinforcing solution supply nozzle.
  • FIG. 4A shows the case where the end of the end portion reinforcing solution supply nozzle 101d1 is formed of a single tube.
  • U indicates the inner diameter of the tip of the end portion reinforcing solution supply nozzle 101d1.
  • the inner diameter U is preferably 1 mm to 10 mm in view of the fact that if it is too large, the solvent will evaporate in the middle and the solution concentration will change, and if it is too small, the liquid will clog and become difficult to flow.
  • FIG. 4B shows a case where the tip of the end portion reinforcing solution supply nozzle 101d1 is formed of a plurality of thin tubes.
  • W represents the inner diameter of the thin tube.
  • the inner diameter W is preferably 0.5 mm to 3.0 mm considering that the solution does not stay in the tube and can maintain a constant flow rate.
  • the number of capillaries is preferably 3 to 10.
  • the shape of the tip of the end reinforcing solution supply nozzle 101d1 is a rain gutter that is narrowed down gradually toward the shape of the injection needle, the dope film or the casting film so as not to widen the end reinforcing solution.
  • the tip of the end portion reinforcing solution supply nozzle 101d1 may be formed by combining a plurality of nozzles having a thin tip at a circular shape.
  • the supply amount of the edge reinforcement solution from the edge reinforcement solution supply nozzle 101d1 is too small, the effect of increasing the strength of the edge of the casting film is small, and if too large, the edge of the casting film becomes thick.
  • it is preferably 0.2 ml / min to 50 ml / min.
  • the edge reinforcing solution is prepared so as to include the cellulose ester resin at a mass ratio larger than the mass ratio of the cellulose ester resin constituting the dope.
  • the end portion reinforcing solution preferably contains 40% or more of a cellulose ester resin by mass ratio.
  • the end portion reinforcing solution contains 45% to 100% of cellulose ester resin by mass ratio.
  • the end of the cast film formed from the dope and the thin resin layer formed by the end reinforcement solution formed at the end are integrated to form an end.
  • toughness that is resistant to stress applied to both ends is imparted to both ends of the cast film, and it is possible to prevent the tearing of both ends.
  • the cellulose ester-based resin has a total acyl group substitution degree (T) of 2.0 to 3.0, an acyl group substitution number of 3 to 7 carbon atoms of 1.2 to 3.0, and a carbon number of
  • the substitution degree of the acyl group of 3 to 7 is preferably 2.0 to 3.0. That is, the cellulose ester resin of the present embodiment is a cellulose ester resin substituted with an acyl group having 3 to 7 carbon atoms.
  • propionyl, butyryl and the like are preferably used, and a propionyl group is particularly preferable. Used.
  • Examples of the solvent used for the edge reinforcing solution include the solvent used for preparing the dope.
  • the viscosity of the edge reinforcing solution is 5 mPa ⁇ s (25 ° C.) in consideration of the fluidity of the liquid feeding in the pipe and the appropriate spreading and wetting when supplied to the edge of the dope film or the edge of the casting film. ) To 500 mPa ⁇ s (25 ° C.). The viscosity is a value measured at a temperature of 25 ° C. by a model LVT manufactured by BROOKFIELD, generically called a B-type viscometer.
  • cellulose using a dope in which a mixed resin of an acrylic resin and a cellulose ester resin is dissolved in a solvent, and a dope is formed at both ends of the dope film or the casting film
  • the effects shown below were obtained by producing an optical film while supplying an end portion reinforcing solution containing the cellulose ester resin more than the mass ratio of the ester resin. 1.
  • the unstretched film is soft because the amount of residual solvent immediately after peeling and peeling is soft, the strength of both ends of the unstretched film is high, which reduces skewing during conveyance, and reduces creases and wrinkles. Wideness of optical characteristics such as, and longitudinal variations have been greatly reduced. 2.
  • Methacrylic resin is also contained in the acrylic resin concerning the manufacturing method of the optical film of this embodiment. Although it does not restrict
  • alkyl methacrylates having 2 to 18 alkyl carbon atoms examples include alkyl methacrylates having 2 to 18 alkyl carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, acrylic acid, methacrylic acid, and other ⁇ , ⁇ -insoluble monomers.
  • Unsaturated group-containing divalent carboxylic acids such as saturated acid, maleic acid, fumaric acid and itaconic acid, aromatic vinyl compounds such as styrene and ⁇ -methylstyrene, ⁇ , ⁇ -unsaturated nitriles such as acrylonitrile and methacrylonitrile, Examples thereof include maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride and the like, and these can be used alone or in combination of two or more monomers.
  • methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable from the viewpoint of thermal decomposition resistance and fluidity of the copolymer.
  • n-Butyl acrylate is particularly preferably used.
  • the acrylic resin related to the method for producing an optical film of the present embodiment has a weight average molecular weight (Mw) particularly from the viewpoint of improving brittleness as an optical film and improving transparency when compatible with a cellulose ester resin. 80,000 or more.
  • Mw weight average molecular weight
  • the weight average molecular weight (Mw) of the acrylic resin is more preferably in the range of 80,000 to 1,000,000, particularly preferably in the range of 100,000 to 600,000, and most preferably in the range of 150,000 to 400,000.
  • the upper limit of the weight average molecular weight (Mw) of the acrylic resin is not particularly limited, but is preferably 1000000 or less from the viewpoint of production.
  • the weight average molecular weight of the acrylic resin related to the method for producing the optical film of the present embodiment can be measured by gel permeation chromatography.
  • the measurement conditions are as follows.
  • the production method of the acrylic resin in the present embodiment is not particularly limited, and any known method such as suspension polymerization, emulsion polymerization, bulk polymerization, or solution polymerization may be used.
  • a polymerization initiator a normal peroxide type and an azo type can be used, and a redox type can also be used.
  • the polymerization temperature it can be carried out at 30 to 100 ° C. for suspension or emulsion polymerization, and at 80 to 160 ° C. for bulk or solution polymerization.
  • the polymerization can also be carried out using alkyl mercaptan or the like as a chain transfer agent.
  • acrylic resin related to the method for producing the optical film of the present embodiment a commercially available resin can also be used.
  • Delpet 60N, 80N manufactured by Asahi Kasei Chemicals Corporation
  • Dynal BR52, BR80, BR83, BR85, BR88, BR85 manufactured by Mitsubishi Rayon Co., Ltd.
  • KT75 manufactured by Denki Kagaku Kogyo Co., Ltd.
  • Two or more acrylic resins can be used in combination.
  • the cellulose ester resin relating to the method for producing an optical film of the present embodiment has a total acyl group substitution degree (T) of 2. from the viewpoint of transparency particularly when it is improved in brittleness or compatible with an acrylic resin.
  • T total acyl group substitution degree
  • the substitution degree of the acyl group having 0 to 3.0 and 3 to 7 carbon atoms is 1.2 to 3.0, and the substitution degree of the acyl group having 3 to 7 carbon atoms is 2.0 to 3.0.
  • the cellulose ester resin of the present embodiment is a cellulose ester resin substituted with an acyl group having 3 to 7 carbon atoms.
  • propionyl, butyryl and the like are preferably used, and a propionyl group is particularly preferable. Used.
  • the total substitution degree of the acyl group of the cellulose ester resin is less than 2.0, that is, when the residual degree of the hydroxyl groups at the 2, 3, and 6 positions of the cellulose ester molecule is more than 1.0, the acrylic resin and When the acrylic resin is not sufficiently compatible and used as an optical film, haze becomes a problem.
  • the total substitution degree of the acyl group is 2.0 or more, if the substitution degree of the acyl group having 3 to 7 carbon atoms is less than 1.2, still sufficient compatibility cannot be obtained, Brittleness will decrease.
  • the substitution degree of the acyl group having 2 carbon atoms that is, the acetyl group is high
  • the substitution degree of the acyl group having 3 to 7 carbon atoms is 1.
  • the compatibility is lowered and the haze is increased.
  • the substitution degree of the acyl group having 8 or more carbon atoms is high, and the substitution degree of the acyl group having 3 to 7 carbon atoms is less than 1.2. In such a case, the brittleness deteriorates and desired characteristics cannot be obtained.
  • the acyl substitution degree of the cellulose ester resin relating to the method for producing an optical film of the present embodiment is such that the total substitution degree (T) is 2.0 to 3.0, and the substitution degree of the acyl group having 3 to 7 carbon atoms is 1.2 to 3.0 is not a problem, but the total substitution degree of acyl groups other than 3 to 7 carbon atoms, that is, acetyl groups or acyl groups having 8 or more carbon atoms is 1.3 or less. It is preferable.
  • the total substitution degree (T) of the acyl group of the cellulose ester resin is more preferably in the range of 2.5 to 3.0.
  • the acyl group may be an aliphatic acyl group or an aromatic acyl group. In the case of an aliphatic acyl group, it may be linear or branched and may further have a substituent. The number of carbon atoms of the acyl group in this embodiment includes the substituent of the acyl group.
  • the number of substituents X substituted on the aromatic ring is preferably 0 to 5.
  • the substitution degree of the acyl group having 3 to 7 carbon atoms including the substituent is 1.2 to 3.0.
  • the benzoyl group has 7 carbon atoms, when it has a substituent containing carbon, the benzoyl group has 8 or more carbon atoms and is not included in the acyl group having 3 to 7 carbon atoms. Become.
  • substituents substituted on the aromatic ring when the number of substituents substituted on the aromatic ring is 2 or more, they may be the same or different from each other, but they may be linked together to form a condensed polycyclic compound (for example, naphthalene, indene, indane, phenanthrene, quinoline). , Isoquinoline, chromene, chroman, phthalazine, acridine, indole, indoline, etc.).
  • a condensed polycyclic compound for example, naphthalene, indene, indane, phenanthrene, quinoline.
  • Isoquinoline chromene, chroman, phthalazine, acridine, indole, indoline, etc.
  • cellulose ester resin having a structure having at least one aliphatic acyl group having 3 to 7 carbon atoms is used as a structure used for the cellulose ester resin used in the present embodiment.
  • the substitution degree of the cellulose ester resin related to the method for producing the optical film of the present embodiment is that the substitution degree of the acyl group having a total substitution degree (T) of the acyl group of 2.0 to 3.0 and 3 to 7 carbon atoms. Is 1.2 to 3.0.
  • the total substitution degree of the acyl group other than the acyl group having 3 to 7 carbon atoms, that is, the acetyl group and the acyl group having 8 or more carbon atoms is 1.3 or less.
  • the cellulose ester resin used in the present embodiment is preferably at least one selected from cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate benzoate, cellulose propionate, and cellulose butyrate, Those having an acyl group having 3 or 4 carbon atoms as a substituent are preferred.
  • particularly preferable cellulose ester resins are cellulose acetate propionate and cellulose propionate.
  • the portion not substituted with an acyl group usually exists as a hydroxyl group. These can be synthesized by known methods.
  • substitution degree of acetyl group and the substitution degree of other acyl groups are determined by the method prescribed in ASTM-D817-96.
  • the weight average molecular weight (Mw) of the cellulose ester resin related to the method for producing an optical film of the present embodiment is 75000 or more from the viewpoint of compatibility with an acrylic resin and improvement in brittleness, particularly in the range of 75,000 to 300,000. It is preferred that it is within the range of 100,000 to 240,000, particularly preferably 160,000 to 240,000. When the important average molecular weight (Mw) of the cellulose ester resin is less than 75,000, the heat resistance and brittleness improvement effects are not sufficient. In the present embodiment, two or more kinds of cellulose ester resins can be mixed and used.
  • the mass ratio of the acrylic resin and the cellulose ester resin in the dope relating to the method for producing the optical film of the present embodiment is from 95: 5 to 30:70 in consideration of the performance, moisture resistance, etc. of the cellulose ester resin. Although it is contained in a mass ratio and in a compatible state, it is preferably 95: 5 to 50:50, and more preferably 90:10 to 60:40.
  • the acrylic resin and the cellulose ester resin in the dope related to the method for producing the optical film of the present embodiment must be contained in a compatible state. This is achieved by mutually complementing physical properties and quality required for an optical film produced by compatibilizing an acrylic resin and a cellulose ester resin.
  • Whether or not the acrylic resin and the cellulose ester resin are in a compatible state can be determined by, for example, the glass transition temperature Tg.
  • the two resins have different glass transition temperatures
  • there are two or more glass transition temperatures for each resin because there is a glass transition temperature for each resin.
  • the glass transition temperature specific to each resin disappears and becomes one glass transition temperature, which is the glass transition temperature of the compatible resin.
  • the glass transition temperature referred to here is an intermediate value determined according to JIS K7121 (1987) using a differential scanning calorimeter (DSC-7 model manufactured by Perkin Elmer) at a heating rate of 20 ° C./min.
  • the point glass transition temperature (Tmg) is an intermediate value determined according to JIS K7121 (1987) using a differential scanning calorimeter (DSC-7 model manufactured by Perkin Elmer) at a heating rate of 20 ° C./min.
  • the point glass transition temperature (Tmg) The point glass transition temperature (Tmg).
  • the acrylic resin and the cellulose ester-based resin are each preferably an amorphous resin, and either one may be a crystalline polymer or a partially crystalline polymer. It is preferable that an acrylic resin and a cellulose ester resin are compatible with each other to form an amorphous resin.
  • the weight average molecular weight (Mw) of the acrylic resin used in the present embodiment, the weight average molecular weight (Mw) of the cellulose ester resin, and the degree of substitution are classified using the difference in solubility in the solvent of both resins. Then, it is obtained by measuring each.
  • fractionating the resin it is possible to extract and separate the soluble resin by adding a compatible resin in a solvent that is soluble only in either one. At this time, heating operation or reflux is performed. May be.
  • a combination of these solvents may be combined in two or more steps to separate the resin.
  • the dissolved resin and the resin remaining as an insoluble matter are filtered off, and the solution containing the extract can be separated by an operation of evaporating the solvent and drying.
  • These fractionated resins can be identified by general structural analysis of polymers.
  • the dope relating to the production of the optical film of the present embodiment contains a resin other than an acrylic resin or a cellulose ester resin, it can be separated by the same method.
  • the weight average molecular weights (Mw) of the compatible resins are different, the high molecular weight substances are eluted earlier by gel permeation chromatography (GPC), and the lower molecular weight substances are eluted after a longer time. Therefore, it can be easily fractionated and the molecular weight can be measured.
  • GPC gel permeation chromatography
  • the molecular weight of the compatible resin is measured by GPC, and at the same time, the resin solution eluted every time is separated, the solvent is distilled off, and the dried resin is different by quantitatively analyzing the structure.
  • the resin composition for each molecular weight fraction it is possible to identify each compatible resin.
  • the molecular weight distribution of each of the resins separated in advance by the difference in solubility in a solvent by GPC it is possible to detect each of the compatible resins.
  • containing acrylic resin or cellulose ester resin in a compatible state means that mixing each resin (polymer) results in a compatible state. This means that a state in which a precursor of acrylic resin such as monomer, dimer or oligomer is mixed with cellulose ester resin and then polymerized to be mixed resin is not included.
  • the step of obtaining a mixed resin by mixing a precursor of an acrylic resin such as a monomer, dimer, or oligomer with a cellulose ester resin and then polymerizing the polymerization reaction is complicated, and was prepared by this method.
  • the resin is difficult to control the reaction, and it is difficult to adjust the molecular weight.
  • graft polymerization, cross-linking reaction or cyclization reaction often occurs.
  • the resin is soluble in a solvent or cannot be melted by heating. It is also difficult to measure the weight average molecular weight (Mw) by eluting the system resin, so that it is difficult to control the physical properties and cannot be used as a resin for stably producing an optical film.
  • Mw weight average molecular weight
  • the dope relating to the production of the optical film of the present embodiment may be configured to contain resins and additives other than acrylic resins and cellulose ester resins, as long as the function as the produced optical film is not impaired. good.
  • the resin to be added may be mixed without being dissolved even if it is in a compatible state.
  • the total mass of the acrylic resin and the cellulose ester resin in the optical film produced by the production of the optical film of the present embodiment is preferably 55% by mass or more of the optical film, more preferably 60% by mass or more. Especially preferably, it is 70 mass% or more.
  • the dope relating to the production of the optical film of the present embodiment preferably contains acrylic particles.
  • An acrylic particle represents the acrylic component which exists in the state of particle
  • the acrylic particles used in the present embodiment are not particularly limited, but are preferably acrylic particles described in International Publication No. 2009-047924.
  • Examples of commercially available products include, for example, Mitsubishi Rayon Co. (Metablene W-341 (C2)), Kaneka Chemical Co., Ltd. (Kane Ace), Kureha Chemical Co., Ltd. (Paraloid), Rohm and Haas Co., Ltd. (Acryloid) ), Manufactured by Gantz Kasei Kogyo Co., Ltd. (Staffyroid), manufactured by Kuraray Co., Ltd. (Parapet SA), manufactured by Soken Chemical Co., Ltd. (Chemisnow MR-2G (C3), MS-300X (C4)), and the like.
  • a single compound or two or more compounds can be used.
  • the method of blending the acrylic particles with the acrylic resin is not particularly limited, and after the acrylic resin and other optional components are previously blended, the acrylic particles are usually added at 200 ° C. to 350 ° C. However, a method of uniformly melting and kneading with a single screw or twin screw extruder is preferably used.
  • a solution in which acrylic particles are dispersed in advance is added to and mixed with a dope in which acrylic resin and cellulose ester resin are dissolved, or a solution in which acrylic particles and other optional additives are dissolved and mixed is acrylic.
  • a method such as in-line addition to a dope in which a cellulose resin and a cellulose ester resin are dissolved can be used.
  • the addition amount of the acrylic particles is preferably 0.5 to 30% by mass with respect to the total mass of the resin constituting the optical film, and is contained in the range of 1.0 to 15% by mass. More preferably.
  • a plasticizer can be used in combination in order to improve the fluidity and flexibility of the composition.
  • the plasticizer include phthalate ester, fatty acid ester, trimellitic ester, phosphate ester, polyester, and epoxy.
  • polyester-based and phthalate-based plasticizers are preferably used.
  • Polyester plasticizers are superior in non-migration and extraction resistance compared to phthalate ester plasticizers such as dioctyl phthalate, but are slightly inferior in plasticizing effect and compatibility.
  • the polyester plasticizer is a reaction product of a monovalent or tetravalent carboxylic acid and a monovalent or hexavalent alcohol, and is mainly obtained by reacting a divalent carboxylic acid with a glycol.
  • Representative divalent carboxylic acids include glutaric acid, itaconic acid, adipic acid, phthalic acid, azelaic acid, sebacic acid and the like.
  • glycol examples include glycols such as ethylene, propylene, 1,3-butylene, 1,4-butylene, 1,6-hexamethylene, neopentylene, diethylene, triethylene, and dipropylene. These divalent carboxylic acids and glycols may be used alone or in combination.
  • the ester plasticizer may be any of ester, oligoester, and polyester types, and the molecular weight is preferably in the range of 100 to 10,000, preferably in the range of 600 to 3000, which has a large plasticizing effect.
  • the viscosity of the plasticizer has a correlation with the molecular structure and molecular weight.
  • the range is from 200 MPa ⁇ s (25 ° C.) to 5000 MPa ⁇ s (25 ° C.) because of compatibility and plasticizing efficiency. Is good.
  • some polyester plasticizers may be used in combination.
  • the plasticizer is preferably added in an amount of 0.5 to 30 parts by mass with respect to 100 parts by mass of the optical film produced by the production of the optical film of the present embodiment. If the added amount of the plasticizer exceeds 30 parts by mass, the surface becomes sticky, which is not preferable for practical use.
  • the dope relating to the production of the optical film of the present embodiment preferably contains an ultraviolet absorber, and examples of the ultraviolet absorber used include benzotriazole-based, 2-hydroxybenzophenone-based or salicylic acid phenyl ester-based ones. It is done.
  • 2- (5-methyl-2-hydroxyphenyl) benzotriazole 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2H-benzotriazole
  • 2- (3 Triazoles such as 5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone
  • Benzophenones such as
  • ultraviolet absorbers having a molecular weight of 400 or more are difficult to volatilize at a high boiling point and hardly disperse even during high-temperature molding, so that the weather resistance is effectively improved with a relatively small amount of addition. I can do it.
  • Examples of the ultraviolet absorber having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2-benzotriazole, 2,2-methylenebis [4- (1, 1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol], bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis ( Hindered amines such as 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonic acid Bis (1,2,2,6,6-pentamethyl-4-piperidyl), 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] Such as til] -4- [3- (3,5-di-tert-butyl
  • 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- (1,1,3,3- Tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol] is particularly preferred.
  • antioxidants can be added to the dope relating to the production of the optical film of the present embodiment in order to improve the thermal decomposability and thermal colorability during molding. It is also possible to add an antistatic agent to give the optical film antistatic performance.
  • a flame retardant acrylic resin composition containing a phosphorus flame retardant may be used for the dope relating to the production of the optical film of the present embodiment.
  • Phosphorus flame retardants used here include red phosphorus, triaryl phosphate ester, diaryl phosphate ester, monoaryl phosphate ester, aryl phosphonate compound, aryl phosphine oxide compound, condensed aryl phosphate ester, halogenated alkyl phosphorus. Examples thereof include one or a mixture of two or more selected from acid esters, halogen-containing condensed phosphates, halogen-containing condensed phosphonates, halogen-containing phosphites, and the like.
  • triphenyl phosphate 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, phenylphosphonic acid, tris ( ⁇ -chloroethyl) phosphate, tris (dichloropropyl) Examples thereof include phosphate and tris (tribromoneopentyl) phosphate.
  • Organic solvent useful for preparing the dope relating to the method for producing the optical film of the present embodiment can be used without limitation as long as it dissolves acrylic resin, cellulose ester resin, and other additives simultaneously. I can do it.
  • a chlorinated organic solvent methylene chloride
  • a non-chlorinated organic solvent methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pent
  • the dope preferably contains 1% to 40% by weight of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • the proportion of alcohol in the dope increases, the web gels and peeling from the metal support becomes easy.
  • the proportion of alcohol is small, acrylic resins and cellulose ester resins in non-chlorine organic solvents are used. There is also a role of promoting dissolution of the.
  • linear or branched aliphatic alcohol having 1 to 4 carbon atoms examples include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Ethanol is preferred because of the stability of these dopes, the relatively low boiling point, and good drying properties.
  • acrylic resin (A), cellulose ester resin (B), and acrylic particles (C) 3 A dope composition in which at least 15 to 45% by mass of the seed is dissolved is preferable.
  • the casting portion includes an end reinforcement including the cellulose ester resin at a mass ratio larger than a mass ratio of the cellulose ester resin constituting the dope at both ends of the dope film or the casting film. Having an edge reinforcing solution supply means for supplying the solution;
  • the optical film is produced by casting while supplying the end portion reinforcing solution from the end portion reinforcing solution supply means to the both end portions.
  • the supply amount of the edge reinforcing solution is 0.2 ml / min to 50 ml / min.
  • the effect of increasing the strength at the end of the casting film can be obtained more reliably, and the end of the casting film becomes too thick. Can also be suppressed.
  • Example 1 (Preparation of dope)
  • Dianar BR85 (Mw 280000 manufactured by Mitsubishi Rayon Co., Ltd.) 85 parts by mass
  • Mw 200000
  • Methylene chloride 300 parts by mass Ethanol 40 parts by mass
  • the above composition was sufficiently dissolved while stirring at 60 ° C. to prepare a dope solution.
  • the viscosity (25 ° C.) of the prepared edge reinforcing solution indicates a value measured with a model LVT manufactured by BROOKFIELD.
  • the prepared dope solution is end-reinforced to have a diameter of about 6 mm at both ends of a dope film discharged from a die on an endless belt support that rotates at a temperature of 22 ° C. and 100 m / min.
  • Solution No. While supplying 1-a to 1-e with an end reinforcing solution supply nozzle having an inner diameter of 7 mm shown in FIG. 4 (a) under the conditions shown below, the remaining cast film remains on the endless belt support.
  • the solvent was evaporated until the amount of the solvent reached 50% by mass, and the film was peeled off from the endless belt support with a peeling tension of 100 N / m as a converted value per 1 m film width to obtain an unstretched film. While peeling the unstretched film at 40 ° C., the solvent was evaporated, both ends were slit, and then the stretched portion was stretched at an MD stretch rate of 110% in the MD direction and stretched at a TD stretch rate of 170% in the TD direction. It was dried at a drying temperature of 150 ° C. After stretching, the drying is completed while the second drying section at 120 ° C.
  • the film is transferred by a number of rolls, and a knurling with a height of 5 ⁇ m is provided at both ends 10 mm of the stretched film.
  • the film is wound on a winding shaft having an initial tension of 220 N / m, a final tension of 110 N / m and an inner diameter of 11 inches, and an optical film having a width of 2500 mm and a thickness of 20 ⁇ m is wound.
  • 20 continuous rolls of 7800 m were manufactured and sample No. 101 to 105.
  • the residual solvent amount of the wound optical film was 0.02%.
  • the stretch ratio of TD shows the value calculated by the following method.
  • TD stretch ratio 100 ⁇ (film width of tenter film ⁇ film width with tenter) / film width with tenter
  • the measurement of the residual solvent amount was performed by the gas chromatograph mass spectrometry shown below under heating conditions of 120 ° C. for 30 minutes.
  • Analytical device manufacturer name Agilent Technologies Device type: HP 5890 Series II (GC) HP 7694 (HS: Head Space) Column type: DB-624 ID 0.25mm x capacity 30ml (End reinforcement solution supply conditions) Supply amount of edge reinforcement solution: 10 ml / min Distance between the tip of the end reinforcing solution supply nozzle and the end of the dope film: 15 mm
  • Sample No. according to the present invention 101 to 103 and sample no. In Nos. 106 to 108, there was no tearing of the edge portion of the film, but sample No. 106 using an end portion reinforcing resin solution having a mass ratio of cellulose ester resin to acrylic resin of 15:85 was used.
  • 105 and sample no. 110 and sample No. supplied only with solvent At the edges of 111 and 112, tears of about 10 mm occur almost continuously, and if the film is shocked due to changes in the film forming conditions, etc., it is dangerous that the entire width can be easily torn and broken. It was in a state.
  • Example 2 Sample No. 1 prepared in Example 1 was used. When producing 101, the optical film was manufactured under the same conditions except that the supply amount of the edge reinforcing solution was changed as shown in Table 3. 201 to 206.
  • the manufactured sample No. Table 3 shows the results of visually observing the presence or absence of breakage and the presence or absence of cracks between 201 and 206, after the cast film was peeled from the endless belt support, and until both ends were cut off.
  • the present invention has wide industrial applicability in the technical field related to the method for producing an optical film.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Polarising Elements (AREA)

Abstract

The invention relates to an optical film manufacturing method for manufacturing optical films using a cast film extruder, which has at least a flow-casting unit for forming the flow-cast film by discharging a dope of a mixed resin of acrylic resin and cellulose ester resin starting materials solubilized in a solvent from a die and flow-casting a dope film onto an endless belt support, a drawing unit for drawing the flow-cast film after being peeled from the endless belt support, a drying unit for drying, and a take-up unit for winding. The optical film manufacturing method is characterized in that the flow-casting unit has an edge-reinforcing solution-supplying means for supplying an edge-reinforcing solution containing the cellulose ester resin in a higher mass ratio than the mass ratio of the cellulose ester resin configuring the dope onto both edges of the dope film or the flow-cast film, and performs flow-casting while supplying the edge-reinforcing solution onto both edges from the edge-reinforcing solution-supplying means.

Description

光学フィルムの製造方法Manufacturing method of optical film
 本発明は、光学フィルムの製造方法に関する。更に詳しくは、溶液流延製膜法により光学フィルムを製造する時、樹脂を溶媒に溶解したドープをノズルから無端支持体上に流延し、形成された流延膜を無端支持体から剥離するとき、流延膜の端部の無端支持体上への残り、端部の亀裂発生等を防止した光学フィルムの製造方法に関する。 The present invention relates to a method for producing an optical film. More specifically, when an optical film is produced by a solution casting method, a dope in which a resin is dissolved in a solvent is cast from a nozzle onto an endless support, and the formed casting film is peeled from the endless support. The present invention relates to a method for producing an optical film in which an end of a cast film remains on an endless support and cracks at the end are prevented.
 近年、光学フィルムが使用されている液晶テレビやプラズマディスプレイ(PDP)、有機ELディスプレイ等種々の表示装置が開発されてきている。液晶表示装置に用いられる光学フィルムとして、例えば偏光板の偏光フィルムは、延伸ポリビニルアルコールフィルムから成る偏光子の片面または両面にセルロースエステルフィルムが保護膜として積層されている。この様な光学フィルムでは、光学的な欠陥がなく、平滑な表面であることが要求される。特に、モニターやTVの大型化や高精細化が進み、これらの要求品質は、ますます厳しくなってきている。 In recent years, various display devices such as liquid crystal televisions, plasma displays (PDP), and organic EL displays that use optical films have been developed. As an optical film used for a liquid crystal display device, for example, a polarizing film of a polarizing plate is formed by laminating a cellulose ester film as a protective film on one or both sides of a polarizer made of a stretched polyvinyl alcohol film. Such an optical film is required to have a smooth surface without optical defects. In particular, as the size of monitors and TVs increases and the definition becomes higher, these required qualities are becoming stricter.
 又、表示装置は街頭や店頭に設置される大型ディスプレイとしての利用や、デジタルサイネージと呼ばれる表示機器を用いた公共の場における広告用ディスプレイへの利用等が挙げられる。 In addition, the display device can be used as a large display installed in a street or a store, or used as an advertising display in a public place using a display device called digital signage.
 この様な用途においては、屋外での利用が想定され、光学フィルムの吸湿による劣化が問題となるために、セルロースエステル系樹脂とアクリル系樹脂を混合した光学フィルムの検討が進められている。 In such a use, since it is assumed that the optical film is used outdoors and degradation due to moisture absorption of the optical film becomes a problem, an optical film in which a cellulose ester resin and an acrylic resin are mixed is being studied.
 近年は、表示装置も薄く、軽量化することが求められている。これに伴い、これらの表示装置に使用される光学フィルムの品質はいっそう厳しくなり、液晶ディスプレイの部材コスト低減、生産性の点から、光学フィルムはより幅広化、薄膜化、長尺化、高速化が進められている。 In recent years, there has been a demand for thinner and lighter display devices. Along with this, the quality of optical films used in these display devices will become more severe. From the viewpoint of reducing the cost of LCD panel materials and productivity, optical films will be wider, thinner, longer, and faster. Is underway.
 光学フィルムの製造方法の1つに溶液流延製膜法がある。この方法は、樹脂を溶媒に溶かして、その溶液(ドープ)を流延ダイのドープ流出口から金属製の無端支持体上に流延し、無端支持体上で所定量の溶媒を蒸発させた後、無端支持体から剥離し、さらに必要に応じて延伸して、光学フィルムを作製する方法である。 One of the optical film manufacturing methods is a solution casting film forming method. In this method, a resin is dissolved in a solvent, and the solution (dope) is cast from a dope outlet of a casting die onto a metal endless support, and a predetermined amount of solvent is evaporated on the endless support. Then, it peels from an endless support body, and also is extended | stretched as needed, and is the method of producing an optical film.
 又、無端支持体上の流延膜は、無端支持体上で所定の濃度まで乾燥されるが、流延膜端部が、流延膜中央部分に比べ乾燥され硬くなるため、無端支持体から流延膜を剥がす際、流延膜の端部に裂け目が発生することがある。この様な裂け目が一旦出来ると、搬送張力によって裂けは進行し、破断に至る。 In addition, the cast film on the endless support is dried to a predetermined concentration on the endless support, but the end of the cast film is dried and harder than the center part of the cast film. When the cast film is peeled off, a tear may occur at the end of the cast film. Once such a rift is formed, the tear proceeds due to the conveying tension, leading to rupture.
 特にセルロースエステル系樹脂とアクリル系樹脂を混合し溶媒に溶解したドープを使用し、無端支持体上の流延膜が薄膜、広幅で無端支持体の移動速度が高速の場合は、流延膜の端部に裂け目が発生することがある。 Especially when using a dope in which cellulose ester resin and acrylic resin are mixed and dissolved in a solvent, the casting film on the endless support is thin, and the width is wide and the moving speed of the endless support is high. A tear may occur at the end.
 このような問題を解決するために、原料樹脂を溶解する溶剤をドープ流出口の両端部から流延膜の端部に流下することで、流延膜の端部の乾燥による皮膜の形成を防止する方法が知られている(例えば、特許文献1参照。)。 In order to solve such a problem, the solvent that dissolves the raw material resin is allowed to flow from both ends of the dope outlet to the end of the casting film, thereby preventing the formation of a film due to drying of the end of the casting film. There is a known method (see, for example, Patent Document 1).
 しかしながら、特許文献1にはセルロースエステル系樹脂とアクリル系樹脂を混合し溶媒に溶解したドープを使用し、広幅、薄膜、無端支持体の移動速度が高速の場合、無端支持体から流延膜を剥がす時の流延膜の端部にひび割れ、裂けの防止については精査されておらず、無端支持体から流延膜を剥がす時の流延膜の端部にひび割れ、裂けの防止を防止する方法は見出されておらず、検討が望まれていた。 However, Patent Document 1 uses a dope in which a cellulose ester resin and an acrylic resin are mixed and dissolved in a solvent, and when the moving speed of the wide, thin film, and endless support is high, a casting film is formed from the endless support. How to prevent cracking and tearing at the end of the casting film when peeling the casting film from the endless support has not been thoroughly investigated for prevention of cracking and tearing at the end of the casting film when peeling. Was not found, and the study was desired.
特開2010-179475号公報JP 2010-179475 A
 本発明は、上記状況に鑑みなされたものであり、その目的は、セルロースエステル系樹脂とアクリル系樹脂を混合し溶媒に溶解したドープを使用し、無端支持体の上に形成した広幅、薄膜の流延膜を、高速で移動する無端支持体から剥がす時に、流延膜の端部に裂け目の発生を防止した光学フィルムの製造方法を提供することにある。 The present invention has been made in view of the above situation, and its purpose is to use a dope prepared by mixing a cellulose ester resin and an acrylic resin and dissolving in a solvent, and forming a wide, thin film formed on an endless support. It is an object of the present invention to provide a method for producing an optical film in which a tear is prevented from occurring at the end of a cast film when the cast film is peeled off from an endless support that moves at high speed.
 本発明の上記目的は下記の構成により達成することが出来る。 The above object of the present invention can be achieved by the following configuration.
 すなわち、本発明の一局面は、
 原料のアクリル系樹脂とセルロースエステル系樹脂との混合樹脂を溶媒に溶解したドープをダイスより流出して無端ベルト支持体の上にドープ膜を流延し、流延膜を形成する流延部と、
 前記流延膜を前記無端ベルト支持体より剥離した後に延伸する延伸部と、乾燥する乾燥部と、巻き取りをする巻き取り部とを少なくとも有する溶液流延製造装置により、光学フィルムを製造する光学フィルムの製造方法において、
 前記流延部は、前記ドープ膜又は前記流延膜の両端部に、前記ドープを構成している前記セルロースエステル系樹脂の質量比よりも多い質量比で前記セルロースエステル系樹脂を含む端部補強溶液を供給する端部補強溶液供給手段を有し、
 前記端部補強溶液供給手段より前記両端部に前記端部補強溶液を供給しながら流延することを特徴とする光学フィルムの製造方法である。
That is, one aspect of the present invention is
A dope in which a mixed resin of a raw material acrylic resin and a cellulose ester resin is dissolved in a solvent flows out of a die, and a dope film is cast on an endless belt support, and a casting part that forms a cast film; ,
Optics for producing an optical film by a solution casting production apparatus having at least a stretching part that stretches after peeling the casting film from the endless belt support, a drying part that dries, and a winding part that winds. In the film manufacturing method,
The casting portion includes an end reinforcement including the cellulose ester resin at a mass ratio larger than a mass ratio of the cellulose ester resin constituting the dope at both ends of the dope film or the casting film. Having an edge reinforcing solution supply means for supplying the solution;
The optical film is produced by casting while supplying the end portion reinforcing solution from the end portion reinforcing solution supply means to the both end portions.
 このような構成により、セルロースエステル系樹脂とアクリル系樹脂を混合し溶媒に溶解したドープを使用し、無端支持体の上に形成した広幅、薄膜の流延膜を、高速で移動する無端支持体から剥がす時に、流延膜の端部に裂け目の発生を防止した光学フィルムの製造方法を提供することが出来る。 With such a configuration, an endless support that uses a dope prepared by mixing a cellulose ester resin and an acrylic resin and dissolved in a solvent, and moves a wide, thin cast film formed on the endless support at high speed. It is possible to provide a method for producing an optical film that prevents the tearing from occurring at the end of the cast film when the film is peeled off.
図1は、ドープ膜の両端部に端部補強溶液を供給する溶液流延方式による光学フィルムの製造装置の模式図である。FIG. 1 is a schematic diagram of an apparatus for producing an optical film by a solution casting method for supplying an edge reinforcing solution to both ends of a dope film. 図2は、流延膜の両端部に端部補強溶液を供給する溶液流延方式による光学フィルムの製造装置の模式図である。FIG. 2 is a schematic view of an optical film manufacturing apparatus using a solution casting method in which an edge reinforcing solution is supplied to both ends of a casting film. 図3は、図1のTで示される部分の拡大概略図である。FIG. 3 is an enlarged schematic view of a portion indicated by T in FIG. 図4は、端部補強溶液供給ノズルの先端の概略平面図である。FIG. 4 is a schematic plan view of the tip of the end portion reinforcing solution supply nozzle.
 本発明者が、溶液流延方式による光学フィルムの製造で、セルロースエステル系樹脂とアクリル系樹脂を混合し溶媒に溶解したドープを使用し、無端支持体の上に形成した広幅、薄膜の流延膜を、高速で移動する無端支持体から剥がす時に発生する流延膜の端部に裂け目が何故発生するのかを検討した結果、次ぎのことが判った。
 1.流延膜を金属製の無端支持体から剥離する時、流延膜の両端部に引っ張り応力が集中し、それに加え、金属製の無端支持体からの剥離力も、長手方向の位置によっても差があり(表面粗さや、汚れ具合いの違いによるもの)、剥離し難い場所では、高い応力が流延膜の両端部に掛かってしまうことで裂け目が発生する。
 2.アクリル系樹脂を混合することで、セルロースエステル系樹脂単独よりも流延膜が脆く(靱性が低く)なっているため、金属製の無端支持体から剥離する時の応力に耐えられず裂け目が発生する。
 3.流延膜の両端にセルロースエステル系樹脂の良溶媒を供給する方法でも、アクリル系樹脂を混合することで脆くなった物性を変えることは出来ず、金属製の無端支持体から剥離する時の応力に耐えられず、裂け目が発生する。
The present inventor uses a dope prepared by mixing a cellulose ester resin and an acrylic resin and dissolving in a solvent in the production of an optical film by a solution casting method, and casting a wide, thin film formed on an endless support. As a result of investigating why the tear occurs at the end of the cast film that occurs when the film is peeled off from the endless support moving at high speed, the following was found.
1. When the casting film is peeled from the endless metal support, tensile stress is concentrated on both ends of the casting film, and in addition, the peeling force from the endless metal support varies depending on the position in the longitudinal direction. Yes (due to differences in surface roughness and dirt condition), and where it is difficult to peel off, a high stress is applied to both ends of the cast film, resulting in tears.
2. By mixing the acrylic resin, the cast film is more brittle (lower toughness) than the cellulose ester resin alone, so it can not withstand the stress when peeling from the endless support made of metal, and a tear will occur To do.
3. Even when a good solvent of cellulose ester resin is supplied to both ends of the cast film, the physical properties that became brittle by mixing the acrylic resin cannot be changed, and the stress when peeling from the endless metal support Can not withstand, and a tear occurs.
 そこで、セルロースエステル系樹脂とアクリル系樹脂を混合し溶媒に溶解したドープを使用し,広幅、薄膜の流延膜を金属製の無端支持体より剥がす時に流延膜の端部に発生する裂け目防止するためには、金属製の無端支持体より剥がす時の応力に耐えられる靱性を流延膜の端部に付与することが効果的であることが判った。 Therefore, using a dope in which cellulose ester resin and acrylic resin are mixed and dissolved in a solvent is used to prevent tearing that occurs at the end of the casting film when the wide, thin casting film is peeled off from the endless metal support. In order to achieve this, it has been found effective to impart to the end of the cast film toughness that can withstand the stress when it is peeled off from a metal endless support.
 更に、流延膜の端部に靱性を付与する方法を検討した結果、流延膜の端部にドープを構成している樹脂材料の内、セルロースエステル系樹脂を多く含む端部補強溶液を供給することが効果的であることが判り、本発明に至った次第である。 Furthermore, as a result of investigating the method of imparting toughness to the end of the cast film, the end reinforcement solution containing a large amount of cellulose ester resin among the resin materials constituting the dope at the end of the cast film is supplied. It has been found that it is effective to do so, and the present invention has been achieved.
 本発明の実施の形態を図1、図2を参照しながら説明するが、本発明はこれに限定されるものではない。 The embodiment of the present invention will be described with reference to FIGS. 1 and 2, but the present invention is not limited to this.
 なお、図面において、1a、1bは製造装置、101は流延部、101aは無端鏡面帯、及び/又は状金属流延ベルト支持体(無端ベルト支持体)、101bはダイス、101cは減圧室、101dは端部補強溶液供給手段、101d1は端部補強溶液供給ノズル、101d2は端部補強溶液タンク、101d3は端部補強溶液供給ポンプ、101d4は端部補強溶液供給管、101eはドープ膜、101fは流延膜、102は第1乾燥部、103は延伸部、104は第2乾燥部、105はナーリング形成部、106は回収部を示す。 In the drawings, 1a and 1b are manufacturing apparatuses, 101 is a casting part, 101a is an endless specular belt and / or a metal casting belt support (endless belt support), 101b is a die, 101c is a decompression chamber, 101d is an end reinforcing solution supply means, 101d1 is an end reinforcing solution supply nozzle, 101d2 is an end reinforcing solution tank, 101d3 is an end reinforcing solution supply pump, 101d4 is an end reinforcing solution supply pipe, 101e is a dope film, 101f Is a casting film, 102 is a first drying section, 103 is a stretching section, 104 is a second drying section, 105 is a knurling forming section, and 106 is a collection section.
 図1は、ドープ膜の両端部に端部補強溶液を供給する溶液流延方式による光学フィルムの製造装置の模式図である。 FIG. 1 is a schematic diagram of an optical film manufacturing apparatus using a solution casting method in which an edge reinforcing solution is supplied to both ends of a dope film.
 溶液流延方式は、原料の樹脂を溶媒に溶解し、これに必要に応じて可塑剤、紫外線吸収剤、劣化防止剤、滑り剤、剥離促進剤等の各種の添加剤を加えて調製したアクリル系樹脂とセルロースエステル系樹脂との混合樹脂を溶媒に溶解したドープを、無限移行する無端の金属支持体(例えばベルトあるいはドラム)の上に、ダイスより吐出し、流延した後、無端支持体上である程度まで溶媒を除去した後、無端支持体から剥離し、次いで各種の搬送手段により乾燥部を通過させて溶媒を除去し巻取り軸に巻き取り製造する方法である。 The solution casting method is an acrylic prepared by dissolving the raw material resin in a solvent and adding various additives such as plasticizers, ultraviolet absorbers, deterioration inhibitors, slipping agents, peeling accelerators as necessary. A dope prepared by dissolving a mixed resin of a cellulose resin and a cellulose ester resin in a solvent is discharged from a die onto an endless metal support (for example, a belt or a drum) that moves indefinitely, cast, and then an endless support. In this method, after removing the solvent to a certain extent, it is peeled off from the endless support, and then passed through a drying section by various conveying means to remove the solvent and wind it around a winding shaft.
 図中、1aは溶液流延方式による光学フィルムの製造装置を示す。製造装置1aは、流延部101と、第1乾燥部102と延伸部103と、第2乾燥部104と、ナーリング形成部105と回収部106とを有している。 In the figure, reference numeral 1a denotes an optical film manufacturing apparatus using a solution casting method. The manufacturing apparatus 1a includes a casting unit 101, a first drying unit 102, an extending unit 103, a second drying unit 104, a knurling forming unit 105, and a recovery unit 106.
 流延部101は、2つの支持ロール101hと、支持ロール101iに巻回されエンドレスで走行(図中の矢印方向)する無端鏡面帯状金属流延ベルト支持体(以下、無端ベルト支持体という)101aと、ダイス101bと、減圧室101cと、端部補強溶液供給手段101dとを有している。無端ベルト支持体101aの移動速度は、生産性、フィルム平面性等を考慮し、20m/minから200m/minであることが好ましい。 The casting part 101 includes two support rolls 101h and an endless specular belt-like metal casting belt support (hereinafter referred to as an endless belt support) 101a that is wound around the support roll 101i and travels endlessly (in the direction of the arrow in the figure). And a die 101b, a decompression chamber 101c, and an end portion reinforcing solution supply means 101d. The moving speed of the endless belt support 101a is preferably 20 m / min to 200 m / min in consideration of productivity, film flatness, and the like.
 端部補強溶液供給手段101dは、端部補強溶液供給ノズル101d1と、端部補強溶液供給ポンプ101d3を有する、端部補強溶液タンク101d2と、端部補強溶液供給管101d4とを有している。尚、端部補強溶液供給ノズル101dはドープ膜101e(図3参照)の両端部に端部補強溶液を供給する様に2本が配設されている。 The edge reinforcing solution supply means 101d has an edge reinforcing solution supply nozzle 101d1, an edge reinforcing solution tank 101d2 having an edge reinforcing solution supply pump 101d3, and an edge reinforcing solution supply pipe 101d4. Two end reinforcing solution supply nozzles 101d are arranged so as to supply the end reinforcing solution to both ends of the dope film 101e (see FIG. 3).
 端部補強溶液供給ノズル101d1には、端部補強溶液タンク101d2から端部補強溶液供給ポンプ101d3により供給量が調整された端部補強溶液が端部補強溶液供給管101d4を介して端部補強溶液供給ノズル101d1に供給されドープ膜101eの端部に端部補強溶液を供給する様になっている。端部とはドープ膜101e(図3参照)の端辺から幅手方向に10mm程度の範囲を言う。 The end reinforcing solution supply nozzle 101d1 receives an end reinforcing solution whose supply amount is adjusted from the end reinforcing solution tank 101d2 by the end reinforcing solution supply pump 101d3 via the end reinforcing solution supply pipe 101d4. An end portion reinforcing solution is supplied to the end portion of the dope film 101e supplied to the supply nozzle 101d1. The end portion refers to a range of about 10 mm in the width direction from the end side of the doped film 101e (see FIG. 3).
 端部補強溶液供給ノズル101d1の先端とドープ膜101e(図3参照)の端部の表面までの距離は、離れ過ぎると、端部補強溶液が流れている間に、溶剤蒸発による端部補強溶液濃度上昇が大きくなり、増粘することで均一に端部に濡れ広がらなかったり、溶剤の蒸発で端部補強溶液流路の温度低下による水コンデンス等を招く。一方、距離が近過ぎても、端部補強溶液の流量変動が直接端部に濡れ広がる量の変動につながることで均一性が低下するため、流量変動が均一化される程度のバッファ分の距離は必要になる。これら等を考慮し、端部補強溶液供給ノズル101d1の先端とドープ膜101e(図3参照)の端部の表面までの距離は、2mmから20mmが好ましい。 If the distance between the tip of the end reinforcing solution supply nozzle 101d1 and the surface of the end of the dope film 101e (see FIG. 3) is too far away, the end reinforcing solution due to solvent evaporation is flowing while the end reinforcing solution is flowing. The increase in concentration increases and the viscosity is increased, so that the end portion does not spread uniformly and water condensation occurs due to the evaporation of the solvent resulting in a decrease in the temperature of the end portion reinforcing solution channel. On the other hand, even if the distance is too close, the fluctuation of the flow rate of the edge reinforcing solution directly leads to the fluctuation of the amount that spreads to the edge part, and the uniformity is lowered. Is needed. Considering these factors, the distance from the tip of the end portion reinforcing solution supply nozzle 101d1 to the surface of the end portion of the dope film 101e (see FIG. 3) is preferably 2 mm to 20 mm.
 端部補強溶液供給ポンプ101d3としては、ギヤポンプ、プランジャーポンプ、ダイヤフラム、モーノポンプ等市販されている一般的なポンプの使用が可能である。 As the end portion reinforcing solution supply pump 101d3, a commercially available general pump such as a gear pump, a plunger pump, a diaphragm, or a Mono pump can be used.
 ダイス101bは、ドープを貯めたドープタンク101b1からドープ供給ポンプ101b3により供給量が調整されたドープを供給管101b2を介して供給され、ドープ膜101e(図3参照)を無端ベルト支持体101aの上に流延する様になっている。 The dice 101b is supplied with a dope whose supply amount is adjusted by a dope supply pump 101b3 from a dope tank 101b1 that stores dopes via a supply pipe 101b2, and the dope film 101e (see FIG. 3) is placed on the endless belt support 101a. To be cast.
 減圧室101cは無端ベルト支持体101aの走行方向に対してダイス101bの上流側に配設されており、内部を減圧にすることでダイス101bから流出するドープ膜101e(図3参照)が無端ベルト支持体101a上に安定に着地することを可能にしている。 The decompression chamber 101c is disposed on the upstream side of the die 101b with respect to the traveling direction of the endless belt support 101a, and the dope film 101e (see FIG. 3) flowing out of the die 101b is decompressed by reducing the inside of the endless belt 101c. It is possible to stably land on the support 101a.
 101gは無端ベルト支持体101aに流延され形成され流延膜101fを剥離する剥離ロールを示す。尚、本実施形態では剥離された流延膜を便宜上未延伸フィルム2という。 Reference numeral 101g denotes a peeling roll which is cast and formed on the endless belt support 101a and peels off the casting film 101f. In this embodiment, the peeled cast film is referred to as an unstretched film 2 for convenience.
 流延膜101fを無端ベルト支持体101aより剥がす時、流延膜101fの残留溶媒量が高い場合は流延膜が柔らかいため剥離時に平面性を損ねやすく、また、剥離直後の搬送でも、搬送張力によるツレやスジが発生し易いため、経済速度と品質との兼ね合いを考慮し、10質量%から90質量%が好ましい。残留溶媒量は、以下に示す方法で測定した値を示す。 When the casting film 101f is peeled off from the endless belt support 101a, when the residual solvent amount of the casting film 101f is high, the casting film is soft, so that the flatness is easily lost at the time of peeling. Therefore, in consideration of the balance between economic speed and quality, the content is preferably 10% by mass to 90% by mass. The amount of residual solvent shows the value measured by the method shown below.
 残留溶媒量の測定方法
 無端ベルト支持体から剥がした流延膜を密閉容器に入れて風袋ごと質量を測定、その後、流延膜を120℃で2時間完全に乾燥させた後、再度質量を測定し、下記式から求める。
 残留溶媒量(%)=100×(流延膜の加熱処理前質量-流延膜の加熱処理後質量)/(流延膜の加熱処理後質量)
Measuring method of residual solvent Put the cast film peeled from the endless belt support into a sealed container and measure the mass of the tare together. Then, dry the cast film at 120 ° C for 2 hours and then measure the mass again. And obtained from the following equation.
Residual solvent amount (%) = 100 × (mass before heat treatment of cast film−mass after heat treatment of cast film) / (mass after heat treatment of cast film)
 第1乾燥工程102は、乾燥風取り入れ口102cと、排出口102bと、未延伸フィルム2を搬送する上下で一組で、複数組から構成されている搬送ロール102dとを有する乾燥箱102aと、未延伸フィルム2の両端部を切除するスリッター102eを有している。尚、乾燥風取り入れ口102cと、排出口102bとは逆であっても構わない。 The first drying step 102 includes a drying box 102a having a drying air intake port 102c, a discharge port 102b, and a transport roll 102d composed of a plurality of sets, one set at the top and bottom for transporting the unstretched film 2. The slitter 102e which cuts off the both ends of the unstretched film 2 is provided. The dry air intake port 102c and the discharge port 102b may be reversed.
 第1乾燥工程102で延伸工程103に入る前の未延伸フィルム2に含まれる溶剤量の調整が行うことが可能となっており、必要に応じて適宜設置が可能となっている。 It is possible to adjust the amount of solvent contained in the unstretched film 2 before entering the stretching step 103 in the first drying step 102, and it can be installed as necessary.
 延伸工程103は、MD(Machine Direction)延伸部(不図示)、及びTD(Transverse Direction)延伸部(不図示)と、延伸フィルム2aの両端部を切除するスリッター103aとを有し、これにより、第1乾燥工程102から搬送されてくる未延伸フィルム2が延伸され、延伸フィルム2aが形成される様になっている。 The stretching step 103 includes an MD (Machine Direction) stretching portion (not shown), a TD (Transverse Direction) stretching portion (not shown), and a slitter 103a that cuts both ends of the stretched film 2a. The unstretched film 2 conveyed from the first drying step 102 is stretched to form a stretched film 2a.
 第2乾燥工程104は、乾燥風取り入れ口104cと、排出口104bと、延伸フィルム2aを搬送する上下で一組で、複数組から構成されている搬送ロール104dとを有する乾燥箱(104a)を有している。尚、乾燥風取り入れ口104cと、排出口104bとは逆であっても構わない。 In the second drying step 104, a drying box (104a) having a drying air intake port 104c, a discharge port 104b, and a transport roll 104d composed of a plurality of sets, one set at the top and bottom for transporting the stretched film 2a. Have. Note that the dry air inlet 104c and the outlet 104b may be reversed.
 回収部106は延伸フィルム2aを巻取る巻取り機(不図示)を有しており、巻取り長さに対応し巻取り張力を制御しながら、延伸フィルム2aを巻取り軸に巻取る様になっている。尚、回収部106で巻取る前に、必要に応じて両端部にナーリングを形成するナーリング部を設けても構わない。 The collection unit 106 has a winder (not shown) that winds the stretched film 2a, and controls the winding tension corresponding to the winding length so as to wind the stretched film 2a around the winding shaft. It has become. In addition, before winding by the collection | recovery part 106, you may provide the knurling part which forms a knurling in both ends as needed.
 本図に示すように、流延部101で、原料の樹脂を溶媒に溶解し、これに必要に応じて可塑剤、紫外線吸収剤、劣化防止剤、滑り剤、剥離促進剤等の各種の添加剤を加えて調製したドープを、ダイス101bから流出するドープ膜の両端に端部補強溶液供給ノズル101dより端部補強液を吐出し、エンドレスで走行(図中の矢印方向)する無端ベルト支持体101aの上に、流延し形成した両端が補強された流延膜を無端ベルト支持体上である程度まで溶媒を除去した後、無端ベルト支持体から剥離し、次いで各種の搬送手段により乾燥部、延伸部103を通過させて必要に応じて両端部にナーリングを形成した後に、回収部106で巻取り軸に巻取ることで光学フィルムが製造される。巻取り軸に巻取られた光学フィルムの長さは、2000mから8000mが好ましい。幅は、1000mmから3500mmが好ましい。厚さは、10μmから120μmが好ましい。 As shown in this figure, at the casting part 101, the resin of the raw material is dissolved in a solvent, and various additions such as a plasticizer, an ultraviolet absorber, a deterioration preventing agent, a slipping agent and a peeling accelerator are added to this as necessary. An endless belt support that travels endlessly (in the direction of the arrow in the figure) by discharging the end portion reinforcing solution from the end portion reinforcing solution supply nozzle 101d to both ends of the dope film flowing out from the die 101b. On the endless belt support, the cast film formed by casting on both ends is reinforced on the endless belt support to a certain extent, and then peeled off from the endless belt support, and then dried by various conveying means, An optical film is manufactured by passing the stretched portion 103 and forming a knurling at both ends as necessary, and then winding the sample around the winding shaft by the collecting portion 106. The length of the optical film wound on the winding shaft is preferably 2000 m to 8000 m. The width is preferably 1000 mm to 3500 mm. The thickness is preferably 10 μm to 120 μm.
 図2は、流延膜の両端部に端部補強溶液を供給する溶液流延方式による光学フィルムの製造装置の模式図である。 FIG. 2 is a schematic view of an apparatus for producing an optical film by a solution casting method in which an edge reinforcing solution is supplied to both ends of the casting membrane.
 図中、1bは溶液流延方式による光学フィルムの製造装置を示す。他の符号は図1と同義である。図1に示される製造装置1aとの違いは、端部補強溶液供給手段101dの端部補強溶液供給ノズル101d1の位置が、流延膜101fの端部に端部補強溶液を供給出来る位置に配設されていることのみであり、他は全て図1に示される製造装置1aと同じである。端部とは流延膜101fの端辺から幅手方向に10mmの範囲を言う。尚、端部補強溶液供給ノズル101dは流延膜101fの両端部に端部補強溶液を供給する様に2本が配設されている。 In the figure, 1b represents an optical film manufacturing apparatus using a solution casting method. Other reference numerals are the same as those in FIG. The difference from the manufacturing apparatus 1a shown in FIG. 1 is that the position of the end reinforcing solution supply nozzle 101d1 of the end reinforcing solution supply means 101d is arranged at a position where the end reinforcing solution can be supplied to the end of the casting membrane 101f. It is only provided, and everything else is the same as the manufacturing apparatus 1a shown in FIG. The end portion means a range of 10 mm in the width direction from the end side of the casting film 101f. Two end reinforcing solution supply nozzles 101d are provided so as to supply the end reinforcing solution to both ends of the casting film 101f.
 端部補強溶液供給ノズル101d1の先端と流延膜101fの端部の表面までの距離は、離れ過ぎると、端部補強溶液が流れている間に、溶剤蒸発による端部補強溶液濃度上昇が大きくなり、増粘することで均一に流延膜に濡れ広がらなかったり、溶剤の蒸発で端部補強溶液流路の温度低下による水コンデンス等を招く。一方、距離が近過ぎても、端部補強溶液の流量変動が直接流延膜に濡れ広がる量の変動につながることで均一性が低下するため、流量変動が均一化される程度のバッファ分の距離は必要になる。これら等を考慮し、2mmから20mmが好ましい。 If the distance between the tip of the end reinforcing solution supply nozzle 101d1 and the surface of the end of the casting membrane 101f is too far, the end reinforcing solution concentration rises greatly due to solvent evaporation while the end reinforcing solution is flowing. As a result of thickening, the casting film does not spread evenly, or evaporation of the solvent causes water condensation due to a decrease in the temperature of the end reinforcing solution flow path. On the other hand, even if the distance is too close, the flow rate fluctuation of the edge reinforcing solution directly leads to the fluctuation of the amount that spreads and spreads on the casting film. Distance is needed. Considering these and the like, 2 mm to 20 mm is preferable.
 流延膜101fの両端部に端部補強溶液を供給する場合、端部補強溶液供給ノズル101d1を流延工程101に配設する位置は、端部補強溶液供給ノズル101d1から流延膜101fの両端部に供給された端部補強溶液が、無端ベルト支持体101aより流延膜101fを剥がすときに障害とならない程度に端部補強溶液の溶媒が除去される位置(端部に必要とする靭性が付与される位置)であれば特に限定はない。 When supplying the end portion reinforcing solution to both ends of the casting membrane 101f, the positions where the end portion reinforcing solution supply nozzle 101d1 is disposed in the casting step 101 are located at both ends of the casting membrane 101f from the end portion reinforcing solution supply nozzle 101d1. The position at which the solvent of the edge reinforcing solution is removed to such an extent that the edge reinforcing solution supplied to the edge does not become an obstacle when the cast film 101f is peeled off from the endless belt support 101a (the toughness required for the edge is The position is not particularly limited.
 本実施形態は、図1、図2に示される溶液流延方式による光学フィルムの製造方法に関し、更に詳しくは、無端ベルト支持体上に原料のアクリル系樹脂とセルロースエステル系樹脂との混合樹脂を溶媒に溶解したドープを流延し、形成された流延膜を無端ベルト支持体より剥がす時に、流延膜に裂け目が発生することを防止した光学フィルムの製造方法に関するものである。 This embodiment relates to a method for producing an optical film by the solution casting method shown in FIGS. 1 and 2, and more specifically, a mixed resin of a raw acrylic resin and a cellulose ester resin on an endless belt support. The present invention relates to a method for producing an optical film, in which a dope dissolved in a solvent is cast, and a tear is prevented from occurring in the cast film when the cast film formed is peeled off from an endless belt support.
 図3は図1のTで示される部分の拡大概略図である。図3(a)は図1のTで示される端部補強溶液供給ノズルの配設位置を示す拡大概略図である。図3(b)は図3(a)に示される端部補強溶液供給ノズル側からの拡大概略正面図である。 FIG. 3 is an enlarged schematic view of a portion indicated by T in FIG. FIG. 3A is an enlarged schematic view showing the arrangement position of the end portion reinforcing solution supply nozzle indicated by T in FIG. FIG.3 (b) is an expansion schematic front view from the edge part reinforcement solution supply nozzle side shown by Fig.3 (a).
 図中、101eはダイス101bから膜状に吐出するドープから形成されたドープ膜を示す。端部補強溶液供給ノズル101d1の配設する位置は、ダイス101bから吐出されたドープ膜101eが無端ベルト支持体101aに着地する迄の間で、端部補強溶液を供給出来れば特に限定はない。例えば、ドープ膜101eの両端部に端部補強溶液を供給する場合は、端部補強溶液供給ノズル101d1をダイス101bの内部に組み込んでも良いし、ダイス101bの外側に配設しても構わない。本図は、ダイス101bの外側に配設した場合を示す。 In the figure, reference numeral 101e denotes a doped film formed from a dope discharged from the die 101b in a film shape. The position where the end portion reinforcing solution supply nozzle 101d1 is disposed is not particularly limited as long as the end portion reinforcing solution can be supplied until the dope film 101e discharged from the die 101b reaches the endless belt support 101a. For example, when supplying an end portion reinforcing solution to both ends of the dope film 101e, the end portion reinforcing solution supply nozzle 101d1 may be incorporated inside the die 101b or may be disposed outside the die 101b. This figure shows the case where it arrange | positions on the outer side of the dice | dies 101b.
 本図は、ドープ膜101eの両端部に端部補強溶液を供給する場合で、ダイス101bの外側に2本の端部補強溶液供給ノズル101dを配設した場合を示している。2本の端部補強溶液供給ノズル101d1は、各々が独立した端部補強溶液タンク101d2(図1参照)と、端部補強溶液供給管101d4(図1参照)とを有してもよいし、端部補強溶液タンク101d2(図1参照)を1つとして端部補強溶液供給管101d4(図1参照)を分岐して2本の端部補強溶液供給ノズル101d1に端部補強溶液を供給する方式であってもよく、必要に応じて選択することが可能となっている。 This figure shows a case where end reinforcement solutions are supplied to both ends of the dope film 101e, and two end reinforcement solution supply nozzles 101d are disposed outside the die 101b. The two end reinforcing solution supply nozzles 101d1 may each have an independent end reinforcing solution tank 101d2 (see FIG. 1) and an end reinforcing solution supply pipe 101d4 (see FIG. 1). One end reinforcing solution tank 101d2 (see FIG. 1) is used as one to branch the end reinforcing solution supply pipe 101d4 (see FIG. 1) and supply the end reinforcing solution to the two end reinforcing solution supply nozzles 101d1. May be selected as necessary.
 尚、図2に示す流延膜の両端部に端部補強溶液を供給する場合も本図と同じ構成となっている。 In addition, when supplying an edge reinforcement solution to the both ends of the casting membrane shown in FIG.
 図4は端部補強溶液供給ノズルの先端の概略平面図である。 FIG. 4 is a schematic plan view of the tip of the end reinforcing solution supply nozzle.
 図4(a)に示される端部補強溶液供給ノズル101d1の先端は、単一の管で形成されている場合を示す。Uは端部補強溶液供給ノズル101d1の先端の内径を示す。内径Uは、大き過ぎると途中で溶剤分が蒸発して溶液濃度が変わってしまい、小さすぎると液が詰まって流れ難くなる等を考慮し、1mmから10mmが好ましい。 FIG. 4A shows the case where the end of the end portion reinforcing solution supply nozzle 101d1 is formed of a single tube. U indicates the inner diameter of the tip of the end portion reinforcing solution supply nozzle 101d1. The inner diameter U is preferably 1 mm to 10 mm in view of the fact that if it is too large, the solvent will evaporate in the middle and the solution concentration will change, and if it is too small, the liquid will clog and become difficult to flow.
 図4(b)に示される端部補強溶液供給ノズル101d1の先端は、複数の細管で形成されている場合を示す。Wは細管の内径を示す。内径Wは、溶液が管内に滞留せず一定流量を維持できること等を考慮し、0.5mmから3.0mmが好ましい。細管の数は、3本から10本が好ましい。 FIG. 4B shows a case where the tip of the end portion reinforcing solution supply nozzle 101d1 is formed of a plurality of thin tubes. W represents the inner diameter of the thin tube. The inner diameter W is preferably 0.5 mm to 3.0 mm considering that the solution does not stay in the tube and can maintain a constant flow rate. The number of capillaries is preferably 3 to 10.
 端部補強溶液供給ノズル101d1の先端の形状は、端部補強溶液の巾広がらない様にするため、注射針の形状、ドープ膜又は流延膜に向かって巾を絞り徐々に絞り込んだ雨どい状の形状、シャープペンシルの先端のような円形配管を絞り込んだ形状、円形等が挙げられ、これらの中で円形が特に好ましい。又、端部補強溶液供給ノズル101d1の先端は、細い先端が円形のノズルを多数本組み合わせた形状にしてもよい。 The shape of the tip of the end reinforcing solution supply nozzle 101d1 is a rain gutter that is narrowed down gradually toward the shape of the injection needle, the dope film or the casting film so as not to widen the end reinforcing solution. , A shape obtained by narrowing a circular pipe such as the tip of a mechanical pencil, and a circle. Among these, a circle is particularly preferable. Further, the tip of the end portion reinforcing solution supply nozzle 101d1 may be formed by combining a plurality of nozzles having a thin tip at a circular shape.
 端部補強溶液供給ノズル101d1からの端部補強溶液の供給量は、少量過ぎると、流延膜の端部の強度を上げる効果が小さく、多過ぎると流延膜の端部が厚膜になり過ぎて無端ベルトが1周する間に、剥離できる残溶まで乾燥することができないことがある等を考慮し、0.2ml/minから50ml/minであることが好ましい。 If the supply amount of the edge reinforcement solution from the edge reinforcement solution supply nozzle 101d1 is too small, the effect of increasing the strength of the edge of the casting film is small, and if too large, the edge of the casting film becomes thick. In consideration of the fact that it may not be possible to dry the remaining melt until the endless belt makes one round after passing, it is preferably 0.2 ml / min to 50 ml / min.
 (端部補強溶液)
 本実施形態において、端部補強溶液は、ドープを構成している前記セルロースエステル系樹脂の質量比よりも多い質量比で前記セルロースエステル系樹脂を含むように調製される。具体的には、例えば、端部補強溶液は質量比で40%以上のセルロースエステル系樹脂を含有することが好ましい。
(End reinforcement solution)
In the present embodiment, the edge reinforcing solution is prepared so as to include the cellulose ester resin at a mass ratio larger than the mass ratio of the cellulose ester resin constituting the dope. Specifically, for example, the end portion reinforcing solution preferably contains 40% or more of a cellulose ester resin by mass ratio.
 端部補強溶液には質量比でセルロースエステル系樹脂を45%から100%含有していることが好ましい。 It is preferable that the end portion reinforcing solution contains 45% to 100% of cellulose ester resin by mass ratio.
 セルロースエステル系樹脂を使用することで、ドープから形成された流延膜の端部と、端部に形成された端部補強溶液による薄い樹脂層が一体化して端部を形成するために、無端ベルト支持体から流延膜を剥がす時に両端部に掛かる応力に負けない靭性が流延膜の両端部に付与され、両端部の裂け目の発生を防止することが可能となる。 By using a cellulose ester resin, the end of the cast film formed from the dope and the thin resin layer formed by the end reinforcement solution formed at the end are integrated to form an end. When the cast film is peeled off from the belt support, toughness that is resistant to stress applied to both ends is imparted to both ends of the cast film, and it is possible to prevent the tearing of both ends.
 セルロースエステル系樹脂としては、アシル基の総置換度(T)が2.0から3.0、炭素数が3から7のアシル基の置換度が1.2から3.0であり、炭素数3から7のアシル基の置換度は、2.0から3.0であることが好ましい。即ち、本実施形態のセルロースエステル系樹脂は炭素数が3から7のアシル基により置換されたセルロースエステル樹脂であり、具体的には、プロピオニル、ブチリル等が好ましく用いられるが、特にプロピオニル基が好ましく用いられる。 The cellulose ester-based resin has a total acyl group substitution degree (T) of 2.0 to 3.0, an acyl group substitution number of 3 to 7 carbon atoms of 1.2 to 3.0, and a carbon number of The substitution degree of the acyl group of 3 to 7 is preferably 2.0 to 3.0. That is, the cellulose ester resin of the present embodiment is a cellulose ester resin substituted with an acyl group having 3 to 7 carbon atoms. Specifically, propionyl, butyryl and the like are preferably used, and a propionyl group is particularly preferable. Used.
 端部補強溶液に使用する溶媒は、ドープの調製に使用した溶媒が挙げられる。 Examples of the solvent used for the edge reinforcing solution include the solvent used for preparing the dope.
 端部補強溶液の粘度は、配管内の送液流動性や、ドープ膜の端部又は流延膜端部に供給された際に適度に濡れ広がること等を考慮し、5mPa・s(25℃)から500mPa・s(25℃)が好ましい。尚、粘度は、B型粘度計と総称される、BROOKFIELD社製、モデルLVTで温度25℃で測定した値を示す。 The viscosity of the edge reinforcing solution is 5 mPa · s (25 ° C.) in consideration of the fluidity of the liquid feeding in the pipe and the appropriate spreading and wetting when supplied to the edge of the dope film or the edge of the casting film. ) To 500 mPa · s (25 ° C.). The viscosity is a value measured at a temperature of 25 ° C. by a model LVT manufactured by BROOKFIELD, generically called a B-type viscometer.
 図1から図4に示す様に、アクリル系樹脂とセルロースエステル系樹脂との混合樹脂を溶媒に溶解したドープを使用して、ドープ膜又は流延膜の両端部にドープを構成しているセルロースエステル系樹脂の質量比よりも多く前記セルロースエステル系樹脂を含む端部補強溶液を供給しながら光学用フィルムを製造することで以下に示す効果が得られた。
1.剥離および剥離直後の膜残留溶媒量が高くて未延伸フィルムが柔らかいときに、未延伸フィルムの両端部の強度が高いことから搬送での斜行が低減、またツレ、シワも減少し、リターデーションなどの光学特性の幅手、長手ばらつきが大幅に減少した。
2.流延膜を無端ベルト支持体から剥がす時、端部に裂け目が発生することを防止することが出来、安定した薄膜、広幅の光学フィルムの製造が可能となった。
3.剥離後の初めのスリッターで、スリットしたトリムの帯電が減衰しやすくなり、帯電で貼りついてトラブルを起こすことがなくなった。
As shown in FIGS. 1 to 4, cellulose using a dope in which a mixed resin of an acrylic resin and a cellulose ester resin is dissolved in a solvent, and a dope is formed at both ends of the dope film or the casting film The effects shown below were obtained by producing an optical film while supplying an end portion reinforcing solution containing the cellulose ester resin more than the mass ratio of the ester resin.
1. When the unstretched film is soft because the amount of residual solvent immediately after peeling and peeling is soft, the strength of both ends of the unstretched film is high, which reduces skewing during conveyance, and reduces creases and wrinkles. Wideness of optical characteristics such as, and longitudinal variations have been greatly reduced.
2. When the cast film is peeled off from the endless belt support, it is possible to prevent a tear from occurring at the end, and a stable thin film and a wide optical film can be produced.
3. In the first slitter after peeling, charging of the slit trim is easy to attenuate, and there is no problem caused by sticking by charging.
 次に本実施形態の光学フィルムの製造方法に係わる材料に付き説明する。 Next, the materials related to the method for producing the optical film of the present embodiment will be described.
〈アクリル系樹脂〉
 本実施形態の光学フィルムの製造方法に係わるアクリル系樹脂には、メタクリル樹脂も含まれる。アクリル系樹脂としては特に制限されるものではないが、メチルメタクリレート単位50質量%から99質量%、およびこれと共重合可能な他の単量体単位1質量%から50質量%であるものが好ましい。
<Acrylic resin>
Methacrylic resin is also contained in the acrylic resin concerning the manufacturing method of the optical film of this embodiment. Although it does not restrict | limit especially as an acrylic resin, What is 50 to 99 mass% of methylmethacrylate units and 1 to 50 mass% of other monomer units copolymerizable with this is preferable. .
 共重合可能な他の単量体としては、アルキル数の炭素数が2から18のアルキルメタクリレート、アルキル数の炭素数が1から18のアルキルアクリレート、アクリル酸、メタクリル酸等のα,β-不飽和酸、マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸、スチレン、α-メチルスチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル、無水マレイン酸、マレイミド、N-置換マレイミド、グルタル酸無水物等が挙げられ、これらは単独で、あるいは2種以上の単量体を併用して用いることが出来る。 Other monomers that can be copolymerized include alkyl methacrylates having 2 to 18 alkyl carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, acrylic acid, methacrylic acid, and other α, β-insoluble monomers. Unsaturated group-containing divalent carboxylic acids such as saturated acid, maleic acid, fumaric acid and itaconic acid, aromatic vinyl compounds such as styrene and α-methylstyrene, α, β-unsaturated nitriles such as acrylonitrile and methacrylonitrile, Examples thereof include maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride and the like, and these can be used alone or in combination of two or more monomers.
 これらの中でも、共重合体の耐熱分解性や流動性の観点から、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、s-ブチルアクリレート、2-エチルヘキシルアクリレート等が好ましく、メチルアクリレートやn-ブチルアクリレートが特に好ましく用いられる。 Among these, methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable from the viewpoint of thermal decomposition resistance and fluidity of the copolymer. n-Butyl acrylate is particularly preferably used.
 本実施形態の光学フィルムの製造方法に係わるアクリル系樹脂は、特に光学フィルムとしての脆性の改善及びセルロースエステル系樹脂と相溶した際の透明性の改善の観点で、重量平均分子量(Mw)が80000以上である。アクリル系樹脂の重量平均分子量(Mw)が80000を下回ると、十分な脆性の改善が得られず、セルロースエステル系樹脂との相溶性が劣化する。アクリル系樹脂の重量平均分子量(Mw)は、80000から1000000の範囲内であることが更に好ましく、100000から600000の範囲内であることが特に好ましく、150000から400000の範囲であることが最も好ましい。アクリル系樹脂の重量平均分子量(Mw)の上限値は特に限定されるものではないが、製造上の観点から1000000以下とされることが好ましい形態である。 The acrylic resin related to the method for producing an optical film of the present embodiment has a weight average molecular weight (Mw) particularly from the viewpoint of improving brittleness as an optical film and improving transparency when compatible with a cellulose ester resin. 80,000 or more. When the weight average molecular weight (Mw) of the acrylic resin is less than 80000, sufficient brittle improvement cannot be obtained, and the compatibility with the cellulose ester resin is deteriorated. The weight average molecular weight (Mw) of the acrylic resin is more preferably in the range of 80,000 to 1,000,000, particularly preferably in the range of 100,000 to 600,000, and most preferably in the range of 150,000 to 400,000. The upper limit of the weight average molecular weight (Mw) of the acrylic resin is not particularly limited, but is preferably 1000000 or less from the viewpoint of production.
 本実施形態の光学フィルムの製造方法に係わるアクリル系樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより測定することができる。測定条件は以下の通りである。 The weight average molecular weight of the acrylic resin related to the method for producing the optical film of the present embodiment can be measured by gel permeation chromatography. The measurement conditions are as follows.
 溶媒   :メチレンクロライド
 カラム  :Shodex K806、K805、K803G
       (昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度 :0.1質量%
 検出器  :RI Model 504(GLサイエンス社製)
 ポンプ  :L6000(日立製作所(株)製)
 流量   :1.0ml/min
 校正曲線 :標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=2,800,000から500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
Solvent: Methylene chloride Column: Shodex K806, K805, K803G
(Used by connecting three Showa Denko Co., Ltd.)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (manufactured by GL Sciences)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0 ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corp.) Mw = 2,800,000-500 calibration curves with 13 samples were used. The 13 samples are preferably used at approximately equal intervals.
 本実施形態におけるアクリル系樹脂の製造方法としては、特に制限は無く、懸濁重合、乳化重合、塊状重合、あるいは溶液重合等の公知の方法のいずれを用いても良い。ここで、重合開始剤としては、通常のパーオキサイド系およびアゾ系のものを用いることが出来、また、レドックス系とすることも出来る。重合温度については、懸濁または乳化重合では30℃から100℃、塊状又は溶液重合では80℃から160℃で行うことが出来る。得られた共重合体の還元粘度を制御するために、アルキルメルカプタン等を連鎖移動剤として用いて重合を実施することも出来る。 The production method of the acrylic resin in the present embodiment is not particularly limited, and any known method such as suspension polymerization, emulsion polymerization, bulk polymerization, or solution polymerization may be used. Here, as a polymerization initiator, a normal peroxide type and an azo type can be used, and a redox type can also be used. Regarding the polymerization temperature, it can be carried out at 30 to 100 ° C. for suspension or emulsion polymerization, and at 80 to 160 ° C. for bulk or solution polymerization. In order to control the reduced viscosity of the obtained copolymer, the polymerization can also be carried out using alkyl mercaptan or the like as a chain transfer agent.
 本実施形態の光学フィルムの製造方法に係わるアクリル系樹脂としては、市販のものも使用することができる。例えば、デルペット60N、80N(旭化成ケミカルズ(株)製)、ダイヤナールBR52、BR80、BR83、BR85、BR88、BR85(三菱レイヨン(株)製)、KT75(電気化学工業(株)製)等が挙げられる。アクリル系樹脂は2種以上を併用することもできる。 As the acrylic resin related to the method for producing the optical film of the present embodiment, a commercially available resin can also be used. For example, Delpet 60N, 80N (manufactured by Asahi Kasei Chemicals Corporation), Dynal BR52, BR80, BR83, BR85, BR88, BR85 (manufactured by Mitsubishi Rayon Co., Ltd.), KT75 (manufactured by Denki Kagaku Kogyo Co., Ltd.), etc. Can be mentioned. Two or more acrylic resins can be used in combination.
 〈セルロースエステル系樹脂〉
 本実施形態の光学フィルムの製造方法に係わるセルロースエステル系樹脂は、特に脆性の改善やアクリル系樹脂と相溶させたときに透明性の観点から、アシル基の総置換度(T)が2.0から3.0、炭素数が3から7のアシル基の置換度が1.2から3.0であり、炭素数3から7のアシル基の置換度は、2.0から3.0であることが好ましい。即ち、本実施形態のセルロースエステル系樹脂は炭素数が3から7のアシル基により置換されたセルロースエステル樹脂であり、具体的には、プロピオニル、ブチリル等が好ましく用いられるが、特にプロピオニル基が好ましく用いられる。
<Cellulose ester resin>
The cellulose ester resin relating to the method for producing an optical film of the present embodiment has a total acyl group substitution degree (T) of 2. from the viewpoint of transparency particularly when it is improved in brittleness or compatible with an acrylic resin. The substitution degree of the acyl group having 0 to 3.0 and 3 to 7 carbon atoms is 1.2 to 3.0, and the substitution degree of the acyl group having 3 to 7 carbon atoms is 2.0 to 3.0. Preferably there is. That is, the cellulose ester resin of the present embodiment is a cellulose ester resin substituted with an acyl group having 3 to 7 carbon atoms. Specifically, propionyl, butyryl and the like are preferably used, and a propionyl group is particularly preferable. Used.
 セルロースエステル系樹脂の、アシル基の総置換度が2.0を下回る場合、即ち、セルロースエステル分子の2,3,6位の水酸基の残度が1.0を上回る場合には、アクリル樹脂とアクリル樹脂が十分に相溶せず光学フィルムとして用いる場合にヘーズが問題となる。また、アシル基の総置換度が2.0以上であっても、炭素数が3から7のアシル基の置換度が1.2を下回る場合は、やはり十分な相溶性が得られないか、脆性が低下することとなる。例えば、アシル基の総置換度が2.0以上の場合であっても、炭素数2のアシル基、即ちアセチル基の置換度が高く、炭素数3から7のアシル基の置換度が1.2を下回る場合は、相溶性が低下しヘーズが上昇する。また、アシル基の総置換度が2.0以上の場合であっても、炭素数8以上のアシル基の置換度が高く、炭素数3から7のアシル基の置換度が1.2を下回る場合は、脆性が劣化し、所望の特性が得られない。 When the total substitution degree of the acyl group of the cellulose ester resin is less than 2.0, that is, when the residual degree of the hydroxyl groups at the 2, 3, and 6 positions of the cellulose ester molecule is more than 1.0, the acrylic resin and When the acrylic resin is not sufficiently compatible and used as an optical film, haze becomes a problem. In addition, even when the total substitution degree of the acyl group is 2.0 or more, if the substitution degree of the acyl group having 3 to 7 carbon atoms is less than 1.2, still sufficient compatibility cannot be obtained, Brittleness will decrease. For example, even when the total substitution degree of the acyl group is 2.0 or more, the substitution degree of the acyl group having 2 carbon atoms, that is, the acetyl group is high, and the substitution degree of the acyl group having 3 to 7 carbon atoms is 1. When it is less than 2, the compatibility is lowered and the haze is increased. Further, even when the total substitution degree of the acyl group is 2.0 or more, the substitution degree of the acyl group having 8 or more carbon atoms is high, and the substitution degree of the acyl group having 3 to 7 carbon atoms is less than 1.2. In such a case, the brittleness deteriorates and desired characteristics cannot be obtained.
 本実施形態の光学フィルムの製造方法に係わるセルロースエステル樹脂のアシル置換度は、総置換度(T)が2.0から3.0であり、炭素数が3から7のアシル基の置換度が1.2から3.0であれば問題ないが、炭素数が3から7以外のアシル基、即ち、アセチル基や炭素数が8以上のアシル基の置換度の総計が1.3以下とされることが好ましい。 The acyl substitution degree of the cellulose ester resin relating to the method for producing an optical film of the present embodiment is such that the total substitution degree (T) is 2.0 to 3.0, and the substitution degree of the acyl group having 3 to 7 carbon atoms is 1.2 to 3.0 is not a problem, but the total substitution degree of acyl groups other than 3 to 7 carbon atoms, that is, acetyl groups or acyl groups having 8 or more carbon atoms is 1.3 or less. It is preferable.
 又、セルロースエステル系樹脂のアシル基の総置換度(T)は、2.5から3.0の範囲であることが更に好ましい。 Further, the total substitution degree (T) of the acyl group of the cellulose ester resin is more preferably in the range of 2.5 to 3.0.
 本実施形態において前記アシル基は、脂肪族アシル基であっても、芳香族アシル基であってもよい。脂肪族アシル基の場合は、直鎖であっても分岐していても良く、さらに置換基を有してもよい。本実施形態におけるアシル基の炭素数は、アシル基の置換基を包含するものである。 In this embodiment, the acyl group may be an aliphatic acyl group or an aromatic acyl group. In the case of an aliphatic acyl group, it may be linear or branched and may further have a substituent. The number of carbon atoms of the acyl group in this embodiment includes the substituent of the acyl group.
 本実施形態の光学フィルムの製造方法に係わるセルロースエステル系樹脂が、芳香族アシル基を置換基として有する場合、芳香族環に置換する置換基Xの数は0個から5個であることが好ましい。この場合も、置換基を含めた炭素数が3から7であるアシル基の置換度が1.2から3.0となるように留意が必要である。例えば、ベンゾイル基は炭素数が7になる為、炭素を含む置換基を有する場合は、ベンゾイル基としての炭素数は8以上となり、炭素数が3から7のアシル基には含まれないこととなる。 When the cellulose ester resin related to the method for producing an optical film of the present embodiment has an aromatic acyl group as a substituent, the number of substituents X substituted on the aromatic ring is preferably 0 to 5. . In this case, attention should be paid so that the substitution degree of the acyl group having 3 to 7 carbon atoms including the substituent is 1.2 to 3.0. For example, since the benzoyl group has 7 carbon atoms, when it has a substituent containing carbon, the benzoyl group has 8 or more carbon atoms and is not included in the acyl group having 3 to 7 carbon atoms. Become.
 更に、芳香族環に置換する置換基の数が2個以上の時、互いに同じでも異なっていてもよいが、また、互いに連結して縮合多環化合物(例えばナフタレン、インデン、インダン、フェナントレン、キノリン、イソキノリン、クロメン、クロマン、フタラジン、アクリジン、インドール、インドリンなど)を形成してもよい。 Further, when the number of substituents substituted on the aromatic ring is 2 or more, they may be the same or different from each other, but they may be linked together to form a condensed polycyclic compound (for example, naphthalene, indene, indane, phenanthrene, quinoline). , Isoquinoline, chromene, chroman, phthalazine, acridine, indole, indoline, etc.).
 上記のようなセルロースエステル樹脂においては、炭素数3から7の脂肪族アシル基の少なくとも1種を有する構造を有することが、本実施形態に使用するセルロースエステル系樹脂に用いる構造として用いられる。 In the cellulose ester resin as described above, having a structure having at least one aliphatic acyl group having 3 to 7 carbon atoms is used as a structure used for the cellulose ester resin used in the present embodiment.
 本実施形態の光学フィルムの製造方法に係わるセルロースエステル系樹脂の置換度は、アシル基の総置換度(T)が2.0から3.0、炭素数が3から7のアシル基の置換度が1.2から3.0である。 The substitution degree of the cellulose ester resin related to the method for producing the optical film of the present embodiment is that the substitution degree of the acyl group having a total substitution degree (T) of the acyl group of 2.0 to 3.0 and 3 to 7 carbon atoms. Is 1.2 to 3.0.
 又、炭素数が3から7のアシル基以外、即ちアセチル基と炭素数が8以上のアシル基の置換度の総和が1.3以下であることが好ましい構造である。 Further, it is preferable that the total substitution degree of the acyl group other than the acyl group having 3 to 7 carbon atoms, that is, the acetyl group and the acyl group having 8 or more carbon atoms is 1.3 or less.
 本実施形態に使用するセルロースエステル系樹脂としては、特にセルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートベンゾエート、セルロースプロピオネート、セルロースブチレートから選ばれる少なくとも一種であることが好ましく、即ち、炭素原子数3または4のアシル基を置換基として有するものが好ましい。 The cellulose ester resin used in the present embodiment is preferably at least one selected from cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate benzoate, cellulose propionate, and cellulose butyrate, Those having an acyl group having 3 or 4 carbon atoms as a substituent are preferred.
 これらの中で特に好ましいセルロースエステル系樹脂は、セルロースアセテートプロピオネートやセルロースプロピオネートである。 Among these, particularly preferable cellulose ester resins are cellulose acetate propionate and cellulose propionate.
 アシル基で置換されていない部分は通常水酸基として存在しているものである。これらは公知の方法で合成することが出来る。 The portion not substituted with an acyl group usually exists as a hydroxyl group. These can be synthesized by known methods.
 尚、アセチル基の置換度や他のアシル基の置換度は、ASTM-D817-96に規定の方法により求めたものである。 Incidentally, the substitution degree of acetyl group and the substitution degree of other acyl groups are determined by the method prescribed in ASTM-D817-96.
 本実施形態の光学フィルムの製造方法に係わるセルロースエステル系樹脂の重量平均分子量(Mw)は、特にアクリル系樹脂との相溶性、脆性の改善の観点から75000以上であり、75000から300000の範囲であることが好ましく、100000から240000の範囲内であることが更に好ましく、160000から240000のものが特に好ましい。セルロースエステル系樹脂の重要平均分子量(Mw)が75000を下回る場合は、耐熱性や脆性の改善効果が十分ではなくなる。本実施形態では2種以上のセルロースエステル系樹脂を混合して用いることもできる。 The weight average molecular weight (Mw) of the cellulose ester resin related to the method for producing an optical film of the present embodiment is 75000 or more from the viewpoint of compatibility with an acrylic resin and improvement in brittleness, particularly in the range of 75,000 to 300,000. It is preferred that it is within the range of 100,000 to 240,000, particularly preferably 160,000 to 240,000. When the important average molecular weight (Mw) of the cellulose ester resin is less than 75,000, the heat resistance and brittleness improvement effects are not sufficient. In the present embodiment, two or more kinds of cellulose ester resins can be mixed and used.
 本実施形態の光学フィルムの製造方法に係わる、ドープ中のアクリル系樹脂とセルロースエステル系樹脂の質量比は、セルロースエステル系樹脂の性能、耐湿性等を考慮し、95:5から30:70の質量比で、且つ相溶状態で含有されるが、好ましくは95:5から50:50であり、更に好ましくは90:10から60:40である。 The mass ratio of the acrylic resin and the cellulose ester resin in the dope relating to the method for producing the optical film of the present embodiment is from 95: 5 to 30:70 in consideration of the performance, moisture resistance, etc. of the cellulose ester resin. Although it is contained in a mass ratio and in a compatible state, it is preferably 95: 5 to 50:50, and more preferably 90:10 to 60:40.
 本実施形態の光学フィルムの製造方法に係わる、ドープ中のアクリル系樹脂とセルロースエステル系樹脂とが相溶状態で含有される必要がある。アクリル系樹脂とセルロースエステル系樹脂とを相溶させることで製造される光学フィルムとして必要とされる物性や品質を相互に補うことにより達成している。 The acrylic resin and the cellulose ester resin in the dope related to the method for producing the optical film of the present embodiment must be contained in a compatible state. This is achieved by mutually complementing physical properties and quality required for an optical film produced by compatibilizing an acrylic resin and a cellulose ester resin.
 アクリル系樹脂とセルロースエステル系樹脂とが相溶状態となっているかどうかは、例えばガラス転移温度Tgにより判断することが可能である。 Whether or not the acrylic resin and the cellulose ester resin are in a compatible state can be determined by, for example, the glass transition temperature Tg.
 例えば、両者の樹脂のガラス転移温度が異なる場合、両者の樹脂を混合したときは、各々の樹脂のガラス転移温度が存在するため混合物のガラス転移温度は2つ以上存在するが、両者の樹脂が相溶したときは、各々の樹脂固有のガラス転移温度が消失し、1つのガラス転移温度となって相溶した樹脂のガラス転移温度となる。 For example, when the two resins have different glass transition temperatures, when the two resins are mixed, there are two or more glass transition temperatures for each resin because there is a glass transition temperature for each resin. When they are compatible, the glass transition temperature specific to each resin disappears and becomes one glass transition temperature, which is the glass transition temperature of the compatible resin.
 尚、ここでいうガラス転移温度とは、示差走査熱量測定器(Perkin Elmer社製DSC-7型)を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)に従い求めた中間点ガラス転移温度(Tmg)とする。 The glass transition temperature referred to here is an intermediate value determined according to JIS K7121 (1987) using a differential scanning calorimeter (DSC-7 model manufactured by Perkin Elmer) at a heating rate of 20 ° C./min. The point glass transition temperature (Tmg).
 アクリル系樹脂とセルロースエステル系樹脂は、それぞれ非結晶性樹脂であることが好ましく、何れか一方が結晶性高分子、あるいは部分的に結晶性を有する高分子であってもよいが、本実施形態においてアクリル系樹脂とセルロースエステル系樹脂が相溶することで、非結晶性樹脂となることが好ましい。 The acrylic resin and the cellulose ester-based resin are each preferably an amorphous resin, and either one may be a crystalline polymer or a partially crystalline polymer. It is preferable that an acrylic resin and a cellulose ester resin are compatible with each other to form an amorphous resin.
 本実施形態に使用するアクリル系樹脂の重量平均分子量(Mw)やセルロースエステル系樹脂の重量平均分子量(Mw)や置換度は、両者の樹脂の溶媒に対して溶解性の差を用いて、分別した後に、それぞれ測定することにより得られる。樹脂を分別する際には、いずれか一方にのみ溶解する溶媒中に相溶された樹脂を添加することで、溶解する樹脂を抽出して分別することができ、このとき加熱操作や環流を行ってもよい。これらの溶媒の組み合わせを2工程以上組み合わせて、樹脂を分別してもよい。溶解した樹脂と、不溶物として残った樹脂を濾別し、抽出物を含む溶液については、溶媒を蒸発させて乾燥させる操作によって樹脂を分別することができる。これらの分別した樹脂は、高分子の一般の構造解析によって特定することができる。 The weight average molecular weight (Mw) of the acrylic resin used in the present embodiment, the weight average molecular weight (Mw) of the cellulose ester resin, and the degree of substitution are classified using the difference in solubility in the solvent of both resins. Then, it is obtained by measuring each. When fractionating the resin, it is possible to extract and separate the soluble resin by adding a compatible resin in a solvent that is soluble only in either one. At this time, heating operation or reflux is performed. May be. A combination of these solvents may be combined in two or more steps to separate the resin. The dissolved resin and the resin remaining as an insoluble matter are filtered off, and the solution containing the extract can be separated by an operation of evaporating the solvent and drying. These fractionated resins can be identified by general structural analysis of polymers.
 本実施形態の光学フィルムの製造に係わるドープ中に、アクリル系樹脂やセルロースエステル系樹脂以外の樹脂を含有する場合も同様の方法で分別することができる。 When the dope relating to the production of the optical film of the present embodiment contains a resin other than an acrylic resin or a cellulose ester resin, it can be separated by the same method.
 又、相溶された樹脂の重量平均分子量(Mw)がそれぞれ異なる場合は、ゲルパーミエーションクロマトグラフィー(GPC)によって、高分子量物は早期に溶離され、低分子量物であるほど長い時間を経て溶離されるために、容易に分別可能であるとともに分子量を測定することも可能である。 When the weight average molecular weights (Mw) of the compatible resins are different, the high molecular weight substances are eluted earlier by gel permeation chromatography (GPC), and the lower molecular weight substances are eluted after a longer time. Therefore, it can be easily fractionated and the molecular weight can be measured.
 又、相溶した樹脂をGPCによって分子量測定を行うと同時に、時間毎に溶離された樹脂溶液を分取して溶媒を留去し乾燥した樹脂を、構造解析を定量的に行うことで、異なる分子量の分画毎の樹脂組成を検出することで、相溶されている樹脂をそれぞれ特定することができる。事前に溶媒への溶解性の差で分取した樹脂を、各々GPCによって分子量分布を測定することで、相溶されていた樹脂をそれぞれ検出することも出来る。 In addition, the molecular weight of the compatible resin is measured by GPC, and at the same time, the resin solution eluted every time is separated, the solvent is distilled off, and the dried resin is different by quantitatively analyzing the structure. By detecting the resin composition for each molecular weight fraction, it is possible to identify each compatible resin. By measuring the molecular weight distribution of each of the resins separated in advance by the difference in solubility in a solvent by GPC, it is possible to detect each of the compatible resins.
 又、本実施形態において、「アクリル系樹脂やセルロースエステル系樹脂を相溶状態で含有する」とは、各々の樹脂(ポリマー)を混合することで、結果として相溶された状態となることを意味しており、モノマー、ダイマー、あるいはオリゴマー等のアクリル系樹脂の前駆体をセルロースエステル系樹脂に混合させた後に重合させることにより混合樹脂とされた状態は含まれないものとする。 Further, in the present embodiment, “containing acrylic resin or cellulose ester resin in a compatible state” means that mixing each resin (polymer) results in a compatible state. This means that a state in which a precursor of acrylic resin such as monomer, dimer or oligomer is mixed with cellulose ester resin and then polymerized to be mixed resin is not included.
 例えば、モノマー、ダイマー、あるいはオリゴマー等のアクリル系樹脂の前駆体をセルロースエステル系樹脂に混合させた後に重合されることにより混合樹脂を得る工程は、重合反応が複雑であり、この方法で作成した樹脂は、反応の制御が困難であり、分子量の調整も困難となる。また、このような方法で樹脂を合成した場合は、グラフト重合、架橋反応や環化反応が生じることが多く、溶媒に溶解しいケースや、加熱により溶融できなくなることが多く、混合樹脂中におけるアクリル系樹脂を溶離して重量平均分子量(Mw)を測定することも困難である為、物性をコントロールすることが難しく光学フィルムを安定に製造する樹脂として用いることは出来ない。 For example, the step of obtaining a mixed resin by mixing a precursor of an acrylic resin such as a monomer, dimer, or oligomer with a cellulose ester resin and then polymerizing the polymerization reaction is complicated, and was prepared by this method. The resin is difficult to control the reaction, and it is difficult to adjust the molecular weight. In addition, when a resin is synthesized by such a method, graft polymerization, cross-linking reaction or cyclization reaction often occurs. In many cases, the resin is soluble in a solvent or cannot be melted by heating. It is also difficult to measure the weight average molecular weight (Mw) by eluting the system resin, so that it is difficult to control the physical properties and cannot be used as a resin for stably producing an optical film.
 本実施形態の光学フィルムの製造に係わるドープは、製造される光学フィルムとしての機能を損なわない限りは、アクリル系樹脂、セルロースエステル系樹脂以外の樹脂や添加剤を含有して構成されていても良い。 The dope relating to the production of the optical film of the present embodiment may be configured to contain resins and additives other than acrylic resins and cellulose ester resins, as long as the function as the produced optical film is not impaired. good.
 アクリル系樹脂、セルロースエステル系樹脂以外の樹脂を含有する場合、添加される樹脂が相溶状態であっても、溶解せずに混合されていてもよい。 When a resin other than an acrylic resin or a cellulose ester resin is contained, the resin to be added may be mixed without being dissolved even if it is in a compatible state.
 本実施形態の光学フィルムの製造により製造された光学フィルムにおけるアクリル系樹脂とセルロースエステル系樹脂の総質量は、光学フィルムの55質量%以上であることが好ましく、更に好ましくは60質量%以上であり、特に好ましくは、70質量%以上である。 The total mass of the acrylic resin and the cellulose ester resin in the optical film produced by the production of the optical film of the present embodiment is preferably 55% by mass or more of the optical film, more preferably 60% by mass or more. Especially preferably, it is 70 mass% or more.
 アクリル系樹脂とセルロースエステル系樹脂以外の樹脂や添加剤を用いる際には、本実施形態の光学フィルムの製造により製造された光学フィルムの機能を損なわない範囲で添加量を調整することが好ましい。 When using resins and additives other than acrylic resins and cellulose ester resins, it is preferable to adjust the addition amount in a range that does not impair the function of the optical film produced by the production of the optical film of the present embodiment.
〈アクリル粒子〉
 本実施形態の光学フィルムの製造に係わるドープには、アクリル粒子を含有することが好ましい。アクリル粒子とは、アクリル系樹脂及びセルロースエステル系樹脂を相溶状態で含有する光学フィルム中に粒子の状態(非相溶状態ともいう)で存在するアクリル成分を表す。
<Acrylic particles>
The dope relating to the production of the optical film of the present embodiment preferably contains acrylic particles. An acrylic particle represents the acrylic component which exists in the state of particle | grains (it is also called an incompatible state) in the optical film which contains acrylic resin and a cellulose-ester resin in a compatible state.
 本実施形態に用いられるアクリル粒子は特に限定されるものではないが、国際公開第2009-047924号に記載のアクリル粒子であることが好ましい。又、市販品の例としては、例えば、三菱レイヨン社製(メタブレンW-341(C2))、鐘淵化学工業社製(カネエース)、呉羽化学工業社製(パラロイド)ロームアンドハース社製(アクリロイド)、ガンツ化成工業社製(スタフィロイド)、クラレ社製(パラペットSA)、綜研化学(株)製(ケミスノーMR-2G(C3)、MS-300X(C4))などが挙げられ、これらは、単独ないし2種以上を用いることができる。 The acrylic particles used in the present embodiment are not particularly limited, but are preferably acrylic particles described in International Publication No. 2009-047924. Examples of commercially available products include, for example, Mitsubishi Rayon Co. (Metablene W-341 (C2)), Kaneka Chemical Co., Ltd. (Kane Ace), Kureha Chemical Co., Ltd. (Paraloid), Rohm and Haas Co., Ltd. (Acryloid) ), Manufactured by Gantz Kasei Kogyo Co., Ltd. (Staffyroid), manufactured by Kuraray Co., Ltd. (Parapet SA), manufactured by Soken Chemical Co., Ltd. (Chemisnow MR-2G (C3), MS-300X (C4)), and the like. A single compound or two or more compounds can be used.
 本実施形態においてアクリル系樹脂に、アクリル粒子を配合する方法には、特に制限はなく、アクリル系樹脂とその他の任意成分を予めブレンドした後、通常200℃から350℃において、アクリル粒子を添加しながら一軸または二軸押出機により均一に溶融混練する方法が好ましく用いられる。 In the present embodiment, the method of blending the acrylic particles with the acrylic resin is not particularly limited, and after the acrylic resin and other optional components are previously blended, the acrylic particles are usually added at 200 ° C. to 350 ° C. However, a method of uniformly melting and kneading with a single screw or twin screw extruder is preferably used.
 また、アクリル粒子を予め分散した溶液を、アクリル系樹脂、及びセルロースエステル系樹脂を溶解したドープに添加して混合する方法や、アクリル粒子及びその他の任意の添加剤を溶解、混合した溶液をアクリル系樹脂、及びセルロースエステル系樹脂を溶解したドープにインライン添加する等の方法を用いることが出来る。アクリル粒子の添加量としては、光学フィルムを構成する樹脂の総質量に対して、0.5質量%から30質量%を含有することが好ましく、1.0質量%から15質量%の範囲で含有することが更に好ましい。 In addition, a solution in which acrylic particles are dispersed in advance is added to and mixed with a dope in which acrylic resin and cellulose ester resin are dissolved, or a solution in which acrylic particles and other optional additives are dissolved and mixed is acrylic. A method such as in-line addition to a dope in which a cellulose resin and a cellulose ester resin are dissolved can be used. The addition amount of the acrylic particles is preferably 0.5 to 30% by mass with respect to the total mass of the resin constituting the optical film, and is contained in the range of 1.0 to 15% by mass. More preferably.
 〈その他の添加剤〉
 本実施形態の光学フィルムの製造に係わるドープにおいては、組成物の流動性や柔軟性を向上するために、可塑剤を併用することも可能である。可塑剤としては、フタル酸エステル系、脂肪酸エステル系、トリメリット酸エステル系、リン酸エステル系、ポリエステル系、あるいはエポキシ系等が挙げられる。
<Other additives>
In the dope relating to the production of the optical film of the present embodiment, a plasticizer can be used in combination in order to improve the fluidity and flexibility of the composition. Examples of the plasticizer include phthalate ester, fatty acid ester, trimellitic ester, phosphate ester, polyester, and epoxy.
 この中で、ポリエステル系とフタル酸エステル系の可塑剤が好ましく用いられる。ポリエステル系可塑剤は、フタル酸ジオクチルなどのフタル酸エステル系の可塑剤に比べて非移行性や耐抽出性に優れるが、可塑化効果や相溶性にはやや劣る。 Of these, polyester-based and phthalate-based plasticizers are preferably used. Polyester plasticizers are superior in non-migration and extraction resistance compared to phthalate ester plasticizers such as dioctyl phthalate, but are slightly inferior in plasticizing effect and compatibility.
 従って、用途に応じてこれらの可塑剤を選択、あるいは併用することによって、広範囲の用途に適用出来る。 Therefore, it can be applied to a wide range of uses by selecting or using these plasticizers according to the use.
 ポリエステル系可塑剤は、一価ないし四価のカルボン酸と一価ないし六価のアルコールとの反応物であるが、主に二価カルボン酸とグリコールとを反応させて得られたものが用いられる。代表的な二価カルボン酸としては、グルタル酸、イタコン酸、アジピン酸、フタル酸、アゼライン酸、セバシン酸などが挙げられる。 The polyester plasticizer is a reaction product of a monovalent or tetravalent carboxylic acid and a monovalent or hexavalent alcohol, and is mainly obtained by reacting a divalent carboxylic acid with a glycol. . Representative divalent carboxylic acids include glutaric acid, itaconic acid, adipic acid, phthalic acid, azelaic acid, sebacic acid and the like.
 特に、アジピン酸、フタル酸などを用いると可塑化特性に優れたものが得られる。グリコールとしてはエチレン、プロピレン、1,3-ブチレン、1,4-ブチレン、1,6-ヘキサメチレン、ネオペンチレン、ジエチレン、トリエチレン、ジプロピレンなどのグリコールが挙げられる。これらの二価カルボン酸およびグリコールはそれぞれ単独で、あるいは混合して使用してもよい。 In particular, when adipic acid, phthalic acid, or the like is used, those having excellent plasticizing properties can be obtained. Examples of the glycol include glycols such as ethylene, propylene, 1,3-butylene, 1,4-butylene, 1,6-hexamethylene, neopentylene, diethylene, triethylene, and dipropylene. These divalent carboxylic acids and glycols may be used alone or in combination.
 このエステル系の可塑剤はエステル、オリゴエステル、ポリエステルの型のいずれでもよく、分子量は100から10000の範囲が良いが、好ましくは600から3000の範囲が、可塑化効果が大きい。 The ester plasticizer may be any of ester, oligoester, and polyester types, and the molecular weight is preferably in the range of 100 to 10,000, preferably in the range of 600 to 3000, which has a large plasticizing effect.
 又、可塑剤の粘度は分子構造や分子量と相関があるが、アジピン酸系可塑剤の場合相溶性、可塑化効率の関係から200MPa・s(25℃)から5000MPa・s(25℃)の範囲が良い。更に、いくつかのポリエステル系可塑剤を併用してもかまわない。 The viscosity of the plasticizer has a correlation with the molecular structure and molecular weight. In the case of an adipic acid plasticizer, the range is from 200 MPa · s (25 ° C.) to 5000 MPa · s (25 ° C.) because of compatibility and plasticizing efficiency. Is good. Furthermore, some polyester plasticizers may be used in combination.
 可塑剤は本実施形態の光学フィルムの製造により製造された光学フィルム100質量部に対して、0.5質量部から30質量部を添加するのが好ましい。可塑剤の添加量が30質量部を越えると、表面がべとつくので、実用上好ましくない。 The plasticizer is preferably added in an amount of 0.5 to 30 parts by mass with respect to 100 parts by mass of the optical film produced by the production of the optical film of the present embodiment. If the added amount of the plasticizer exceeds 30 parts by mass, the surface becomes sticky, which is not preferable for practical use.
 本実施形態の光学フィルムの製造に係わるドープは、紫外線吸収剤を含有することも好ましく、用いられる紫外線吸収剤としては、ベンゾトリアゾール系、2-ヒドロキシベンゾフェノン系またはサリチル酸フェニルエステル系のもの等が挙げられる。例えば、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール等のトリアゾール類、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン等のベンゾフェノン類を例示することが出来る。 The dope relating to the production of the optical film of the present embodiment preferably contains an ultraviolet absorber, and examples of the ultraviolet absorber used include benzotriazole-based, 2-hydroxybenzophenone-based or salicylic acid phenyl ester-based ones. It is done. For example, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, 2- (3 Triazoles such as 5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone Benzophenones such as
 ここで、紫外線吸収剤のうちでも、分子量が400以上の紫外線吸収剤は、高沸点で揮発しにくく、高温成形時にも飛散し難いため、比較的少量の添加で効果的に耐候性を改良することが出来る。 Here, among ultraviolet absorbers, ultraviolet absorbers having a molecular weight of 400 or more are difficult to volatilize at a high boiling point and hardly disperse even during high-temperature molding, so that the weather resistance is effectively improved with a relatively small amount of addition. I can do it.
 分子量が400以上の紫外線吸収剤としては、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2-ベンゾトリアゾール、2,2-メチレンビス[4-(1,1,3,3-テトラブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]等のベンゾトリアゾール系、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート等のヒンダードアミン系、さらには2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)、1-[2-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]エチル]-4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-2,2,6,6-テトラメチルピペリジン等の分子内にヒンダードフェノールとヒンダードアミンの構造を共に有するハイブリッド系のものが挙げられ、これらは単独で、あるいは2種以上を併用して使用することができる。これらのうちでも、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2-ベンゾトリアゾールや2,2-メチレンビス[4-(1,1,3,3-テトラブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]が特に好ましい。 Examples of the ultraviolet absorber having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2-benzotriazole, 2,2-methylenebis [4- (1, 1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol], bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis ( Hindered amines such as 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonic acid Bis (1,2,2,6,6-pentamethyl-4-piperidyl), 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] Such as til] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine A hybrid system having both structures can be mentioned, and these can be used alone or in combination of two or more. Among these, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- (1,1,3,3- Tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol] is particularly preferred.
 更に、本実施形態の光学フィルムの製造に係わるドープには、成形加工時の熱分解性や熱着色性を改良するために各種の酸化防止剤を添加することもできる。また帯電防止剤を加えて、光学フィルムに帯電防止性能を与えることも可能である。 Furthermore, various antioxidants can be added to the dope relating to the production of the optical film of the present embodiment in order to improve the thermal decomposability and thermal colorability during molding. It is also possible to add an antistatic agent to give the optical film antistatic performance.
 本実施形態の光学フィルムの製造に係わるドープには、リン系難燃剤を配合した難燃アクリル系樹脂組成物を用いても良い。 A flame retardant acrylic resin composition containing a phosphorus flame retardant may be used for the dope relating to the production of the optical film of the present embodiment.
 ここで用いられるリン系難燃剤としては、赤リン、トリアリールリン酸エステル、ジアリールリン酸エステル、モノアリールリン酸エステル、アリールホスホン酸化合物、アリールホスフィンオキシド化合物、縮合アリールリン酸エステル、ハロゲン化アルキルリン酸エステル、含ハロゲン縮合リン酸エステル、含ハロゲン縮合ホスホン酸エステル、含ハロゲン亜リン酸エステル等から選ばれる1種、あるいは2種以上の混合物を挙げることが出来る。 Phosphorus flame retardants used here include red phosphorus, triaryl phosphate ester, diaryl phosphate ester, monoaryl phosphate ester, aryl phosphonate compound, aryl phosphine oxide compound, condensed aryl phosphate ester, halogenated alkyl phosphorus. Examples thereof include one or a mixture of two or more selected from acid esters, halogen-containing condensed phosphates, halogen-containing condensed phosphonates, halogen-containing phosphites, and the like.
 具体的な例としては、トリフェニルホスフェート、9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン-10-オキシド、フェニルホスホン酸、トリス(β-クロロエチル)ホスフェート、トリス(ジクロロプロピル)ホスフェート、トリス(トリブロモネオペンチル)ホスフェート等が挙げられる。 Specific examples include triphenyl phosphate, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, phenylphosphonic acid, tris (β-chloroethyl) phosphate, tris (dichloropropyl) Examples thereof include phosphate and tris (tribromoneopentyl) phosphate.
 (有機溶媒)
 本実施形態の光学用フィルムの製造方法に係わるドープを調製するのに有用な有機溶媒は、アクリル系樹脂、セルロースエステル系樹脂、その他の添加剤を同時に溶解するものであれば制限なく用いることが出来る。例えば、塩素系有機溶媒としては、塩化メチレン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン等を挙げることが出来、塩化メチレン、酢酸メチル、酢酸エチル、アセトンを好ましく使用し得る。
(Organic solvent)
The organic solvent useful for preparing the dope relating to the method for producing the optical film of the present embodiment can be used without limitation as long as it dissolves acrylic resin, cellulose ester resin, and other additives simultaneously. I can do it. For example, as a chlorinated organic solvent, methylene chloride, as a non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, etc. Methylene chloride, methyl acetate, ethyl acetate and acetone can be preferably used.
 ドープには、上記有機溶媒の他に、1質量%から40質量%の炭素原子数1から4の直鎖または分岐鎖状の脂肪族アルコールを含有させることが好ましい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になり、また、アルコールの割合が少ない時は非塩素系有機溶媒系でのアクリル系樹脂、セルロースエステル系樹脂の溶解を促進する役割もある。 In addition to the organic solvent, the dope preferably contains 1% to 40% by weight of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. When the proportion of alcohol in the dope increases, the web gels and peeling from the metal support becomes easy. When the proportion of alcohol is small, acrylic resins and cellulose ester resins in non-chlorine organic solvents are used. There is also a role of promoting dissolution of the.
 炭素原子数1から4の直鎖または分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることが出来る。これらの内ドープの安定性、沸点も比較的低く、乾燥性もよいこと等からエタノールが好ましい。 Examples of the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Ethanol is preferred because of the stability of these dopes, the relatively low boiling point, and good drying properties.
 特に、メチレンクロライド、及び炭素数1から4の直鎖または分岐鎖状の脂肪族アルコールを含有する溶媒に、アクリル樹脂(A)と、セルロースエステル樹脂(B)と、アクリル粒子(C)の3種を、少なくとも計15質量%から45質量%溶解させたドープ組成物であることが好ましい。 In particular, in a solvent containing methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms, acrylic resin (A), cellulose ester resin (B), and acrylic particles (C) 3 A dope composition in which at least 15 to 45% by mass of the seed is dissolved is preferable.
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 本発明の一局面は、
 原料のアクリル系樹脂とセルロースエステル系樹脂との混合樹脂を溶媒に溶解したドープをダイスより流出して無端ベルト支持体の上にドープ膜を流延し、流延膜を形成する流延部と、
 前記流延膜を前記無端ベルト支持体より剥離した後に延伸する延伸部と、乾燥する乾燥部と、巻き取りをする巻き取り部とを少なくとも有する溶液流延製造装置により、光学フィルムを製造する光学フィルムの製造方法において、
 前記流延部は、前記ドープ膜又は前記流延膜の両端部に、前記ドープを構成している前記セルロースエステル系樹脂の質量比よりも多い質量比で前記セルロースエステル系樹脂を含む端部補強溶液を供給する端部補強溶液供給手段を有し、
 前記端部補強溶液供給手段より前記両端部に前記端部補強溶液を供給しながら流延することを特徴とする光学フィルムの製造方法である。
One aspect of the present invention is:
A dope in which a mixed resin of a raw material acrylic resin and a cellulose ester resin is dissolved in a solvent flows out of a die, and a dope film is cast on an endless belt support, and a casting part that forms a cast film; ,
Optics for producing an optical film by a solution casting production apparatus having at least a stretching part that stretches after peeling the casting film from the endless belt support, a drying part that dries, and a winding part that winds. In the film manufacturing method,
The casting portion includes an end reinforcement including the cellulose ester resin at a mass ratio larger than a mass ratio of the cellulose ester resin constituting the dope at both ends of the dope film or the casting film. Having an edge reinforcing solution supply means for supplying the solution;
The optical film is produced by casting while supplying the end portion reinforcing solution from the end portion reinforcing solution supply means to the both end portions.
 このような構成により、セルロースエステル系樹脂とアクリル系樹脂を混合し溶媒に溶解したドープを使用して光学フィルムを製造する際に、流延膜の端部に強度を上げることができる。よって、セルロースエステル系樹脂とアクリル系樹脂を混合し溶媒に溶解したドープを使用し、無端支持体の上に形成した広幅、薄膜の流延膜を、高速で移動する無端支持体から剥がす時に、流延膜の端部に裂け目の発生を防止した光学フィルムの製造方法を提供することが出来る。 With such a configuration, when an optical film is produced using a dope in which a cellulose ester resin and an acrylic resin are mixed and dissolved in a solvent, the strength can be increased at the end of the cast film. Therefore, when using a dope in which cellulose ester resin and acrylic resin are mixed and dissolved in a solvent, the wide and thin cast film formed on the endless support is peeled off from the endless support moving at high speed. The manufacturing method of the optical film which prevented generation | occurrence | production of the tear at the edge part of a cast film can be provided.
 さらに、前記光学フィルムの製造方法において、前記端部補強溶液の供給量が、0.2ml/minから50ml/minであることが好ましい。 Furthermore, in the manufacturing method of the optical film, it is preferable that the supply amount of the edge reinforcing solution is 0.2 ml / min to 50 ml / min.
 このような供給量で端部補強溶液を供給することにより、流延膜の端部に強度を上げる効果がより確実に得られ、かつ、流延膜の端部が厚膜になりすぎるといった事態も抑えることができる。 By supplying the end reinforcement solution at such a supply amount, the effect of increasing the strength at the end of the casting film can be obtained more reliably, and the end of the casting film becomes too thick. Can also be suppressed.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 実施例1
 (ドープの調製)
 ダイヤナールBR85(三菱レイヨン(株)製 Mw280000)
                            85質量部
 セルロースエステル樹脂
  (セルロースアセテートプロピオネート アシル基総置換度2.75、
   アセチル基置換度0.19、プロピオニル基置換度2.56、
   Mw=200000)               15質量部
 メチレンクロライド                 300質量部
 エタノール                      40質量部
 上記組成物を、60℃で攪拌しながら十分に溶解し、ドープ液を調製した。
Example 1
(Preparation of dope)
Dianar BR85 (Mw 280000 manufactured by Mitsubishi Rayon Co., Ltd.)
85 parts by mass Cellulose ester resin (cellulose acetate propionate acyl group total substitution degree 2.75,
Acetyl group substitution degree 0.19, propionyl group substitution degree 2.56,
Mw = 200000) 15 parts by mass Methylene chloride 300 parts by mass Ethanol 40 parts by mass The above composition was sufficiently dissolved while stirring at 60 ° C. to prepare a dope solution.
 (端部補強溶液の調製)
 表1に示す樹脂A、樹脂Bを表1に示す樹脂質量比で混合した混合樹脂10質量部を、メチレンクロライド100質量部に60℃で攪拌しながら十分に溶解し、端部補強溶液を調製しNo.1-aから1-eとした。
(Preparation of edge reinforcement solution)
10 parts by mass of a mixed resin obtained by mixing the resin A and the resin B shown in Table 1 at a resin mass ratio shown in Table 1 is sufficiently dissolved in 100 parts by mass of methylene chloride while stirring at 60 ° C. to prepare an edge reinforcing solution. No. 1-a to 1-e.
 調製した端部補強溶液の粘度(25℃)は、BROOKFIELD社製のモデルLVTで測定した値を示す。 The viscosity (25 ° C.) of the prepared edge reinforcing solution indicates a value measured with a model LVT manufactured by BROOKFIELD.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
*1:セルロースエステル樹脂:ドープに使用したセルロースエステルと同じもの
*2:アクリル樹脂:ダイヤナールBR88(三菱レイヨン社製) Mw480000
*3:ノルボルネン樹脂(アートンG JSR社製)
* 1: Cellulose ester resin: Same as the cellulose ester used for the dope * 2: Acrylic resin: Dianal BR88 (Mitsubishi Rayon Co., Ltd.) Mw 480000
* 3: Norbornene resin (manufactured by Arton G JSR)
 〔光学フィルム試料No.101から105の作製〕
 図1に示す製造装置を使用し、調製したドープ液を、温度22℃、100m/minで回転移動する無端ベルト支持体上にダイスより吐出したドープ膜の両端部約6mmに調製した端部補強溶液No.1-aから1-eを、図4(a)に示す内径7mmの端部補強溶液供給ノズルを使用し、下記に示す条件で供給しながら、無端ベルト支持体上で、流延膜の残留溶剤量が50質量%になるまで溶媒を蒸発させ、フィルム巾1m巾当たりの換算値として剥離張力100N/mで無端ベルト支持体上から剥離し未延伸フィルムを得た。剥離した未延伸フィルムを40℃で溶媒を蒸発させ、両端部をスリットし、その後、延伸部で、MD方向にMD延伸率110%で延伸、TD方向にTD延伸率170%で延伸しながら、150℃の乾燥温度で乾燥させた。延伸後、120℃の第2乾燥部を多数のロールで移送させながら乾燥を終了させ、延伸フィルムの両端部10mmに高さ5μmのナーリングを設けた後、回収部で巻軸に巻取り速度110m/minで、フィルム巾1m巾当たりの換算値として、初期張力220N/m、終張力110N/mで内径11インチの巻軸に巻き取り、幅2500mm、厚さ20μmの光学フィルムを巻取り長さ7800mのロール体として20本連続製造し、試料No.101から105とした。巻取った光学フィルムの残留溶媒量は、0.02%であった。
[Optical film sample No. Production of 101 to 105]
Using the manufacturing apparatus shown in FIG. 1, the prepared dope solution is end-reinforced to have a diameter of about 6 mm at both ends of a dope film discharged from a die on an endless belt support that rotates at a temperature of 22 ° C. and 100 m / min. Solution No. While supplying 1-a to 1-e with an end reinforcing solution supply nozzle having an inner diameter of 7 mm shown in FIG. 4 (a) under the conditions shown below, the remaining cast film remains on the endless belt support. The solvent was evaporated until the amount of the solvent reached 50% by mass, and the film was peeled off from the endless belt support with a peeling tension of 100 N / m as a converted value per 1 m film width to obtain an unstretched film. While peeling the unstretched film at 40 ° C., the solvent was evaporated, both ends were slit, and then the stretched portion was stretched at an MD stretch rate of 110% in the MD direction and stretched at a TD stretch rate of 170% in the TD direction. It was dried at a drying temperature of 150 ° C. After stretching, the drying is completed while the second drying section at 120 ° C. is transferred by a number of rolls, and a knurling with a height of 5 μm is provided at both ends 10 mm of the stretched film. As a converted value per 1 m of the film width at / min, the film is wound on a winding shaft having an initial tension of 220 N / m, a final tension of 110 N / m and an inner diameter of 11 inches, and an optical film having a width of 2500 mm and a thickness of 20 μm is wound. 20 continuous rolls of 7800 m were manufactured and sample No. 101 to 105. The residual solvent amount of the wound optical film was 0.02%.
 MDの延伸率は、以下の方法で計算で求めた値を示す。
 MD延伸率=100×(巻取り速度-無端ベルト搬送速度)/無端ベルト搬送速度
The MD stretching ratio indicates a value obtained by calculation according to the following method.
MD stretch ratio = 100 × (winding speed−endless belt conveyance speed) / endless belt conveyance speed
 TDの延伸率は、以下の方法で計算で求めた値を示す。
 TD延伸率=100×(テンター出フィルム巾-テンター入りフィルム巾)/テンター入りフィルム巾
The stretch ratio of TD shows the value calculated by the following method.
TD stretch ratio = 100 × (film width of tenter film−film width with tenter) / film width with tenter
 残留溶剤量の測定は、以下に示すガスクロマトグラフ質量分析法にて、加熱条件120℃、30分で分析を行った。 The measurement of the residual solvent amount was performed by the gas chromatograph mass spectrometry shown below under heating conditions of 120 ° C. for 30 minutes.
分析装置メーカー名:Agilent Technologies
装置の型式:HP 5890 Series II (GC)
      HP 7694 (HS:Head Space)
カラム種類:DB-624 内径0.25mm×容量30ml
 (端部補強溶液供給条件)
 端部補強溶液の供給量:10ml/min
 端部補強溶液供給ノズル先端とドープ膜端部との距離:15mm
Analytical device manufacturer name: Agilent Technologies
Device type: HP 5890 Series II (GC)
HP 7694 (HS: Head Space)
Column type: DB-624 ID 0.25mm x capacity 30ml
(End reinforcement solution supply conditions)
Supply amount of edge reinforcement solution: 10 ml / min
Distance between the tip of the end reinforcing solution supply nozzle and the end of the dope film: 15 mm
 〔光学フィルム試料No.106から110の作製〕
 図2に示す製造装置を使用し、端部補強溶液を流延膜の両端部10mmに端部補強溶液を供給した他は全て試料No.101と同じ条件で光学フィルムのロール体を製造し試料No.106から110とした。尚、流延膜の両端部に端部補強溶液を供給する位置はドープ膜が無端ベルト支持体に着地した位置から15mm離れた位置とした。
[Optical film sample No. Fabrication of 106 to 110]
Using the production apparatus shown in FIG. 2, all samples except for the end reinforcement solution were supplied to the both end portions 10 mm of the casting membrane. An optical film roll was produced under the same conditions as in 101, and sample No. 106 to 110. In addition, the position which supplies an edge part reinforcement solution to the both ends of a casting film was made into the position 15 mm away from the position where the dope film landed on the endless belt support body.
 〔光学フィルム比較試料No.111の作製〕
 試料No.101を製造する時に端部補強溶液の代わりに、メチレンクロライドを使用した他は全て同じ条件で光学フィルムのロール体を製造し比較試料No.111とした。
[Optical film comparative sample No. 111 production)
Sample No. A roll body of the optical film was manufactured under the same conditions except that methylene chloride was used instead of the edge reinforcing solution when manufacturing the 101, and Comparative Sample No. 111.
 〔光学フィルム比較試料No.112の作製〕
 試料No.106を製造する時に端部補強溶液の代わりに、メチレンクロライドを使用した他は全て同じ条件で光学フィルムのロール体を製造し比較試料No.112とした。
[Optical film comparative sample No. 112)
Sample No. A roll body of the optical film was manufactured under the same conditions except that methylene chloride was used instead of the edge reinforcing solution when manufacturing the edge 106, and Comparative Sample No. 112.
 評価
 製造した光学フィルムNo.101から112に付き、無端ベルト支持体から流延膜を剥がした後、両端部を切除する迄の間に裂けの発生の有無を目視で観察した結果を表2に示す。
Evaluation The produced optical film No. Table 2 shows the results of visually observing the occurrence of tearing between 101 and 112, after the cast film was peeled from the endless belt support, and until both ends were excised.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明に係る試料No.101から103と試料No.106から108は、フィルムのエッジ部の裂けは皆無であったが、セルロースエステル樹脂とアクリル樹脂との質量比を15:85とした端部補強樹脂溶液を使用した試料No.104、109、ノルボルネン樹脂を供給した試料No.105と試料No.110および溶剤のみ供給した試料No.111、112のエッジには、ほぼ連続して10mm前後の裂けが発生しており、製膜条件の変更等でフィルムにショックが掛れば簡単に全巾裂けて破断してしまうような危険な状態であった。 Sample No. according to the present invention. 101 to 103 and sample no. In Nos. 106 to 108, there was no tearing of the edge portion of the film, but sample No. 106 using an end portion reinforcing resin solution having a mass ratio of cellulose ester resin to acrylic resin of 15:85 was used. 104, 109, sample No. supplied with norbornene resin. 105 and sample no. 110 and sample No. supplied only with solvent. At the edges of 111 and 112, tears of about 10 mm occur almost continuously, and if the film is shocked due to changes in the film forming conditions, etc., it is dangerous that the entire width can be easily torn and broken. It was in a state.
 実施例2
 実施例1で作成した試料No.101を作成する時、端部補強溶液の供給量を表3に示す様に変えた他は、全て同じ条件で光学フィルムを製造し試料No.201から206とした。
Example 2
Sample No. 1 prepared in Example 1 was used. When producing 101, the optical film was manufactured under the same conditions except that the supply amount of the edge reinforcing solution was changed as shown in Table 3. 201 to 206.
 評価
 製造した試料No.201から206に付き、無端ベルト支持体から流延膜を剥がした後、両端部を切除する迄の間に破断の発生の有無、ヒビ割れの有無を目視で観察した結果を表3に示す。
Evaluation The manufactured sample No. Table 3 shows the results of visually observing the presence or absence of breakage and the presence or absence of cracks between 201 and 206, after the cast film was peeled from the endless belt support, and until both ends were cut off.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 端部補強溶液の供給量が、0.2ml/minから50ml/minの範囲で製造した試料No.202から205は何れも裂けの発生がなく、優れた性能を示した。 Specimen No. manufactured in the range of 0.2 ml / min to 50 ml / min supplied end reinforcement solution. All of 202 to 205 showed no performance and showed excellent performance.
 端部補強溶液の供給量を0.1ml/minとして製造した試料No.201は、裂けの発生はないが、製造に影響がない程度の僅かなひび割れ発生した。 Specimen No. manufactured with a supply amount of the edge reinforcement solution of 0.1 ml / min. In 201, there was no cracking, but slight cracks that did not affect the production occurred.
 端部補強溶液の供給量を60ml/minとして製造した試料No.206は、破断、ヒビ割れの発生はないが、流延膜の両端部が広い範囲に渡って厚膜となったためベルト1周で十分乾燥されず、結果、ベルトからの剥離位置が両端部がより下流にずれて、剥離フィルムにツレ、シワを招いたが、生産には影響ない微弱なレベルであった。 Sample No. manufactured with an end reinforcement solution supply rate of 60 ml / min. 206, no breakage or cracking occurred, but both ends of the cast film became thick over a wide range, so the belt was not sufficiently dried around the circumference of the belt. Although it slipped further downstream and caused peeling and wrinkles in the release film, it was a weak level that did not affect production.
 この出願は、2011年9月8日に出願された日本国特許出願特願2011-195753を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2011-195753 filed on Sep. 8, 2011, the contents of which are included in the present application.
 本発明を表現するために、前述において図面等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been described appropriately and sufficiently through the embodiments with reference to the drawings and the like. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that it can be done. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not limited to the scope of the claims. To be construed as inclusive.
 本発明は、光学フィルムの製造方法に関する技術分野において、広範な産業上の利用可能性を有する。
 
The present invention has wide industrial applicability in the technical field related to the method for producing an optical film.

Claims (2)

  1.  原料のアクリル系樹脂とセルロースエステル系樹脂との混合樹脂を溶媒に溶解したドープをダイスより流出して無端ベルト支持体の上にドープ膜を流延し、流延膜を形成する流延部と、
     前記流延膜を前記無端ベルト支持体より剥離した後に延伸する延伸部と、乾燥する乾燥部と、巻き取りをする巻き取り部とを少なくとも有する溶液流延製造装置により、光学フィルムを製造する光学フィルムの製造方法において、
     前記流延部は、前記ドープ膜又は前記流延膜の両端部に、前記ドープを構成している前記セルロースエステル系樹脂の質量比よりも多い質量比で前記セルロースエステル系樹脂を含む端部補強溶液を供給する端部補強溶液供給手段を有し、
     前記端部補強溶液供給手段より前記両端部に前記端部補強溶液を供給しながら流延することを特徴とする光学フィルムの製造方法。
    A dope in which a mixed resin of a raw material acrylic resin and a cellulose ester resin is dissolved in a solvent flows out of a die, and a dope film is cast on an endless belt support, and a casting part that forms a cast film; ,
    Optics for producing an optical film by a solution casting production apparatus having at least a stretching part that stretches after peeling the casting film from the endless belt support, a drying part that dries, and a winding part that winds. In the film manufacturing method,
    The casting portion includes an end reinforcement including the cellulose ester resin at a mass ratio larger than a mass ratio of the cellulose ester resin constituting the dope at both ends of the dope film or the casting film. Having an edge reinforcing solution supply means for supplying the solution;
    A method for producing an optical film, wherein the end portion reinforcing solution supply means is cast while supplying the end portion reinforcing solution to both ends.
  2.  前記端部補強溶液の供給量が、0.2ml/minから50ml/minであることを特徴とする請求項1に記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 1, wherein the supply amount of the edge reinforcing solution is 0.2 ml / min to 50 ml / min.
PCT/JP2012/005175 2011-09-08 2012-08-16 Optical film manufacturing method WO2013035249A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020147003742A KR101594265B1 (en) 2011-09-08 2012-08-16 Optical film manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011195753 2011-09-08
JP2011-195753 2011-09-08

Publications (1)

Publication Number Publication Date
WO2013035249A1 true WO2013035249A1 (en) 2013-03-14

Family

ID=47831726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005175 WO2013035249A1 (en) 2011-09-08 2012-08-16 Optical film manufacturing method

Country Status (3)

Country Link
JP (1) JPWO2013035249A1 (en)
KR (1) KR101594265B1 (en)
WO (1) WO2013035249A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061350A1 (en) * 2016-09-30 2018-04-05 コニカミノルタ株式会社 Method for manufacturing optical film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208650A (en) * 1989-02-08 1990-08-20 Konica Corp Production of cellulose triacetate film
JP2005199725A (en) * 2005-03-24 2005-07-28 Fuji Photo Film Co Ltd Film manufacturing process and device
JP2005279956A (en) * 2004-03-26 2005-10-13 Fuji Photo Film Co Ltd Method and apparatus for manufacturing film
JP2008183758A (en) * 2007-01-29 2008-08-14 Konica Minolta Opto Inc Method of manufacturing optical film, optical film, polarizing plate and liquid crystal display
JP2009234169A (en) * 2008-03-28 2009-10-15 Konica Minolta Opto Inc Manufacturing method for optical film
WO2009150926A1 (en) * 2008-06-13 2009-12-17 コニカミノルタオプト株式会社 Method for production of acrylic film, and acrylic film produced by the method
JP2010179475A (en) * 2009-02-03 2010-08-19 Konica Minolta Opto Inc Method for producing optical film, optical film, polarizing plate, and indication device
WO2011055590A1 (en) * 2009-11-04 2011-05-12 コニカミノルタオプト株式会社 Protective film roll for liquid crystal polarization plate and manufacturing method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208650A (en) * 1989-02-08 1990-08-20 Konica Corp Production of cellulose triacetate film
JP2005279956A (en) * 2004-03-26 2005-10-13 Fuji Photo Film Co Ltd Method and apparatus for manufacturing film
JP2005199725A (en) * 2005-03-24 2005-07-28 Fuji Photo Film Co Ltd Film manufacturing process and device
JP2008183758A (en) * 2007-01-29 2008-08-14 Konica Minolta Opto Inc Method of manufacturing optical film, optical film, polarizing plate and liquid crystal display
JP2009234169A (en) * 2008-03-28 2009-10-15 Konica Minolta Opto Inc Manufacturing method for optical film
WO2009150926A1 (en) * 2008-06-13 2009-12-17 コニカミノルタオプト株式会社 Method for production of acrylic film, and acrylic film produced by the method
JP2010179475A (en) * 2009-02-03 2010-08-19 Konica Minolta Opto Inc Method for producing optical film, optical film, polarizing plate, and indication device
WO2011055590A1 (en) * 2009-11-04 2011-05-12 コニカミノルタオプト株式会社 Protective film roll for liquid crystal polarization plate and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061350A1 (en) * 2016-09-30 2018-04-05 コニカミノルタ株式会社 Method for manufacturing optical film
JPWO2018061350A1 (en) * 2016-09-30 2019-07-11 コニカミノルタ株式会社 Optical film manufacturing method

Also Published As

Publication number Publication date
KR20140035527A (en) 2014-03-21
JPWO2013035249A1 (en) 2015-03-23
KR101594265B1 (en) 2016-02-15

Similar Documents

Publication Publication Date Title
JP4379547B2 (en) Manufacturing method of optical film
JP5463912B2 (en) Acrylic resin-containing film, polarizing plate and liquid crystal display device using the same
JP5521552B2 (en) Acrylic resin-containing film, polarizing plate and liquid crystal display device using the same
JP5333447B2 (en) Acrylic film manufacturing method and acrylic film manufactured by the manufacturing method
US20100291376A1 (en) Acryl resin containing film, polarizing plate by use thereof and liquid crystal display
KR101390618B1 (en) Optical film
JP5402925B2 (en) Polarizing plate and liquid crystal display device
JP5445449B2 (en) Acrylic resin-containing film, polarizing plate and liquid crystal display device using the same
JPWO2013080847A1 (en) Method for producing acrylic resin-containing film
TWI468749B (en) An optical film, a polarizing plate and a liquid crystal display device using the same
WO2013035249A1 (en) Optical film manufacturing method
JP5045539B2 (en) Protective film for polarizing plate, polarizing plate and liquid crystal display device
TWI544014B (en) Optical film
JP5533857B2 (en) Optical film, polarizing plate and liquid crystal display device using the same
JP5733066B2 (en) Optical film and polarizing plate
JP5640743B2 (en) Optical film for polarizing plate, production method thereof, polarizing plate and liquid crystal display device using the same
JPWO2009119268A1 (en) Acrylic resin-containing film, acrylic resin-containing film manufacturing method, polarizing plate and liquid crystal display device using the same
JP2010242017A (en) Method for producing optical film
JP5304591B2 (en) Optical film
JP2012016844A (en) Optical film forming method, optical film, polarizing plate, and liquid crystal display
JP2012016845A (en) Optical film forming method, optical film, polarizing plate, and liquid crystal display
JPWO2010116822A1 (en) Optical film, method of manufacturing optical film, liquid crystal panel, and image display device
JPWO2010116823A1 (en) Optical film, method of manufacturing optical film, liquid crystal panel, and image display device
JP2011123402A (en) Sheet polarizer and liquid crystal display device using the same
JP5720458B2 (en) Kind switching method and optical film in manufacturing optical film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829286

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013532414

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147003742

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12829286

Country of ref document: EP

Kind code of ref document: A1