WO2013035227A1 - 受光モジュール - Google Patents

受光モジュール Download PDF

Info

Publication number
WO2013035227A1
WO2013035227A1 PCT/JP2012/003806 JP2012003806W WO2013035227A1 WO 2013035227 A1 WO2013035227 A1 WO 2013035227A1 JP 2012003806 W JP2012003806 W JP 2012003806W WO 2013035227 A1 WO2013035227 A1 WO 2013035227A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
mirror
signal light
receiving module
plc
Prior art date
Application number
PCT/JP2012/003806
Other languages
English (en)
French (fr)
Inventor
功 冨田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2013532407A priority Critical patent/JP5742947B2/ja
Priority to US14/343,100 priority patent/US9383528B2/en
Priority to CN201280043411.8A priority patent/CN103858039B/zh
Publication of WO2013035227A1 publication Critical patent/WO2013035227A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02325Optical elements or arrangements associated with the device the optical elements not being integrated nor being directly associated with the device

Definitions

  • the present invention relates to a light receiving module, and more particularly to a light receiving module used for optical communication.
  • An optical communication module is a key device of an optical network system, and a reduction in size and speed of the optical communication module is required as the speed and capacity of the system increase.
  • optical fibers that transmit optical signals
  • PDs Photo Diodes
  • TIA Trans Impedance Amplifier
  • the multi-channel interference signal light generated by the PLC is bent, and the light is incident on the PD mounted on the same carrier as the TIA and ceramic wiring boards.
  • Such a structure is generally known.
  • the light receiving module has a structure in which a monitor PD is mounted and the signal level is monitored via a tap prism in order to confirm the intensity of the transmitted signal light.
  • a monitor PD is mounted and the signal level is monitored via a tap prism in order to confirm the intensity of the transmitted signal light.
  • the collimating optical system is generally used because the component characteristics are not stable with the enlarged / focused light.
  • the light receiving module does not have an element serving as a light source, a method of actively mounting light incident from the optical fiber side while checking the PD current value is common.
  • the lens mounting position for collimated light can be determined by using the fine light of the PD that shines by passing the PD forward current as the light source.
  • the light receiving module having a structure in which the signal light is branched into multiple channels has a problem that the light quantity that can be monitored from the weak light due to the PD forward current cannot be obtained due to the propagation loss to the incident end. For this reason, a method of monitoring and mounting dummy light having a large light amount by making the laser light source incident in the opposite direction of the optical path is also conceivable.
  • a light receiving module having a structure in which an optical fiber is arranged outside the package there is no method for inserting dummy light because the outer wall of the package becomes an obstacle. That is, there is a problem that it is difficult to position the lens in the light receiving module.
  • Patent Document 1 discloses, as a related technique, a technique in which an optical axis is adjusted by providing a dummy light source in a light emitting module configured such that light from a light source directly enters a lens system.
  • the outer wall of the package becomes an obstacle, so it is difficult to apply the technique disclosed in Patent Document 1.
  • an object of the present invention is to solve the above-described problem that it is difficult to position the lens in the light receiving module.
  • the light receiving module is: A lens for collimating the signal light incident from the optical fiber, a PLC (Planar Lightwave Circuit) on which the signal light collimated and emitted by the lens is incident, and the signal light emitted from the PLC in a predetermined direction
  • a mirror having a function of reflecting and transmitting, and a light receiving element for receiving the signal light reflected by the mirror,
  • the mirror has a function of transmitting light from a direction opposite to a direction of transmitting signal light emitted from the PLC;
  • the external light incident from the outside is reflected in the direction of the PLC on the output side of the signal light that passes through the mirror with respect to the mirror, and the reflected external light is the transmission direction of the signal light.
  • a dummy mirror that is transmitted through the mirror from the opposite direction and incident on the PLC and guided to the optical fiber through the PLC;
  • the configuration is as follows.
  • an adjustment method of a light receiving module is as follows.
  • the mirror has a function of transmitting light from a direction opposite to a direction of transmitting signal light emitted from the PLC;
  • the external light incident from the outside is reflected in the direction of the PLC on the output side of the signal light that has passed through the mirror with respect to the mirror, and the reflected external light is the transmission direction of the signal light.
  • a light receiving module including a dummy mirror that transmits the mirror from the opposite direction, enters the PLC, and guides the light to the optical fiber through the PLC.
  • the external light is incident on the dummy mirror, Detecting the external light from the optical fiber side and adjusting the position of the component according to the detected value;
  • the present invention is configured as described above, which facilitates the positioning of the lens in the light receiving module.
  • FIG. 1A shows a top view of the light receiving module in this embodiment
  • FIG. 1B shows a side view thereof.
  • the light receiving module is configured by being surrounded by a ceramic package 16, and optical fibers 1 for allowing signal light and local light to enter the package 16 are connected to each other.
  • a lens 2 for collimating incident light from the optical fiber 1 is provided.
  • the light receiving module includes a tap prism 5 (signal light branching means) for branching a part of the signal light collimated by the lens 2 in the package 16 and a signal branched by the tap prism 5.
  • PD Photo-Diode
  • PD signal light level detection element 4 that receives and detects the light reception level and monitors it, and collects the signal light transmitted through the tap prism 5 and each collimated light as local light to the PLC 7.
  • Each condenser lens 6 that emits light, a PLC (Planar Lightwave Circuit) 7 having a coherent mixer function, and an element carrier 3 that supports them are provided.
  • the light receiving module includes a lens 8 that collimates the interference light emitted from the PLC 7 in the package 16, a mirror 10 that changes the optical path of the interference light, and interference between the signal light emitted from the PLC 7 and the local light.
  • a PD (Photodiode) (light receiving element) 12 that receives a signal and performs photoelectric conversion is provided, and a lens 9 that couples interference light to the PD 12.
  • the light receiving module includes a TIA (Transimpedance Amplifier) 13 that converts the current output from the PD 12 into a voltage in the package 16, a wiring substrate 14, a substrate carrier 15 that supports the PD 12, and the like, and a PLC 16 from outside the package 16. And a dummy mirror 11 for performing light incidence.
  • a digital coherent receiver module (light receiving module) for DP-QPSK is configured.
  • the TE and TM components of the signal light are branched and delayed interference with the local light, resulting in 2 pairs x 4 outputs for a total of 8 ports.
  • the differential TIA 13 the modulated signal light that has passed through the transmission path is demodulated.
  • 8 PDs in the package 16 and 4 TIAs for signal demodulation are required.
  • the PD 12 and the TIA 13 are arranged adjacent to each other, and the light emitted from the PLC 7 is bent and received by the 8-unit PD so that the light emitted from the PLC 7 is received by the PD 12.
  • FIG. 2 shows the configuration of another light receiving module related to the present invention.
  • the light receiving module according to the present invention is provided with a monitoring PD 4 and a tap prism 5 before the PLC 7 is incident for signal light level monitoring.
  • a part of is branched in a direction of 90 ° with respect to the incident direction, and the light level of the signal light is monitored by the monitor PD4.
  • the optical system on the incident side of the PLC 7 needs to be a collimating optical system in order to branch a certain ratio of light at the tap prism 5, and the lens 2 for collimating the incident light is mounted outside the package 16.
  • a condenser lens 6 (second lens) is mounted on the rear side of the tap prism 5.
  • the condenser lens 6 is movably equipped so that the position can be adjusted.
  • a transmission band is provided in the mirror 10 that reflects the outgoing interference light from the PLC 7 toward the PD 12, and a dummy mirror 11 that reflects the outgoing interference light from the PLC 7 in the upper surface direction is further attached to the mirror 10.
  • a transmission band is provided in the mirror 10 that reflects the outgoing interference light from the PLC 7 toward the PD 12
  • a dummy mirror 11 that reflects the outgoing interference light from the PLC 7 in the upper surface direction is further attached to the mirror 10.
  • the mirror 10 transmits light having a signal wavelength band of ⁇ 1 to ⁇ n at 90 ° with respect to the incident direction of light, which is a direction from the optical fiber 1 side toward the mirror 10 side.
  • the light is bent and reflected in the direction (downward direction where the PD 12 is installed in FIGS. 3 and 4), and the other wavelength bands ( ⁇ n ⁇ ) are transmitted in the incident direction as indicated by the dotted arrows in FIG. Has characteristics.
  • the mirror 10 has a characteristic of transmitting light in the opposite direction to the above, that is, a characteristic of transmitting light from the opposite direction to the incident direction to the optical fiber 1 side. Also have.
  • the dummy mirror 11 is provided adjacent to the mirror 10 on the rear end side in the incident direction described above, and is detachable from the light receiving module.
  • the dummy mirror 11 has a characteristic of reflecting light in the transmission band (wavelength band ⁇ n ⁇ ) of the mirror 10 by bending it by 90 °. Specifically, as shown by the dotted arrow in FIG. 3, the dummy mirror 11 reflects so as to be bent 90 ° upward (opposite to the reflection direction of the mirror 10) with respect to the incident direction described above.
  • the reflection directions of the mirror 10 and the dummy mirror 11 are arranged so as to differ by 180 °.
  • the optical fiber 1 and the lens 2 are mounted outside the package 16 of the light receiving module described above, first, as shown by the dotted arrow in FIG. Collimated light that is light (dummy light) is incident. Then, external light is reflected by the dummy mirror 11 toward the mirror 10, passes through the mirror 10, and enters the PLC 7. Since the external light propagated through the waveguide of the PLC 7 propagates to the optical fiber 1, the external light is detected and monitored by the optical fiber 1 located outside the package 16. The positions of the components constituting the light receiving module are adjusted according to the monitored external light detection value.
  • a camera is installed in the optical fiber 1 and the position of the condenser lens 6 disposed between the tap prism 5 and the PLC 7 is adjusted so that the optical input power of the external light monitored by the camera is maximized. Further, the condenser lens 6 disposed between the tap prism 5 and the PLC 7 so as to move the camera along the axial direction of the optical fiber 1 to a position where the magnitude of the light does not change, that is, to be a comelit light. Adjust the position.
  • the light receiving module By adjusting the light receiving module as described above, a collimating optical system on the signal light incident side can be realized. Then, the interference light between the signal light and the local light incident from the optical fiber 1 is reflected by the mirror 10 and incident on the PD 12 as shown by the solid line arrow in FIG. 4 and functions as a light receiving module.
  • the dummy mirror 11 may be removed and used as a light receiving module as shown in FIG.
  • the position of the lens 6 arranged between the tap prism 5 and the PLC 7 is adjusted is described as an example. However, the accuracy of the light receiving module is improved by adjusting the positions of other components. You may make it raise.
  • the external light incident from the outside is reflected in the direction of the PLC on the output side of the signal light that passes through the mirror with respect to the mirror, and the reflected external light is the transmission direction of the signal light.
  • the light receiving module according to appendix 1 or 2,
  • the mirror has a function of reflecting signal light in a preset wavelength range and transmitting signal light in another preset wavelength range and the external light.
  • Light receiving module .
  • the mirror has a function of transmitting light from a direction opposite to a direction of transmitting signal light emitted from the PLC;
  • the external light incident from the outside is reflected in the direction of the PLC on the output side of the signal light that has passed through the mirror with respect to the mirror, and the reflected external light is the transmission direction of the signal light.
  • a light receiving module including a dummy mirror that transmits the mirror from the opposite direction, enters the PLC, and guides the light to the optical fiber through the PLC.
  • the external light is incident on the dummy mirror, Detecting the external light from the optical fiber side and adjusting the position of the component according to the detected value; Adjustment method of the light receiving module.
  • the light receiving module includes a signal light level detecting element that detects a light receiving level of the signal light, and a signal that branches a part of the signal light collimated and emitted by the lens and enters the signal light level detecting element.
  • Appendix 8 An adjustment method of the light receiving module according to appendix 7, Detecting the power of the external light from the optical fiber side, and adjusting the position of the second lens so that the power is maximized, Adjustment method of the light receiving module.
  • Appendix 9 A method for adjusting a light receiving module according to appendices 6 to 8, After adjusting the position of the components of the light receiving module, remove the dummy mirror, Adjustment method of the light receiving module.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

 本発明における受光モジュールは、光ファイバから入射された信号光をコリメートするレンズと、このレンズにてコリメートされ出射された信号光が入射されるPLC(Planar Lightwave Circuit)と、このPLCから出射された信号光を所定の方向に反射させると共に透過させる機能を有するミラーと、このミラーにて反射させた信号光を受光する受光素子と、を備え、上記ミラーは、PLCから出射された信号光を透過する方向とは反対方向からも光を透過させる機能を有し、ミラーに対して当該ミラーを透過する信号光の出射側に、外部から入射される外部光をPLCの方向に反射させ、この反射された外部光を、信号光の透過方向とは反対方向から前記ミラーを透過させてPLCに入射させ当該PLCを介して光ファイバに導光させるダミーミラーを備えた。

Description

受光モジュール
 本発明は、受光モジュールにかかり、特に、光通信に用いる受光モジュールに関する。
 近年、通信トラフィックの急激な増加により、伝送容量の拡大が必要となっている。光通信モジュールは、光ネットワークシステムのキーデバイスであり、システムの高速・大容量化に伴い、光通信モジュールの小型化・高速化が求められている。
 多くの光通信用光受光モジュールでは、光信号を伝送する光ファイバ、伝送路から送られてきた光信号を光-電流変換するPD(Photo Diode)、その電流信号をインピーダンス変換、増幅し、電圧信号として出力するTIA(Trans Impedance Amplifier)を有し、セラミックパッケージに搭載される。
 ここで、高速化のため、10Gbps×4で40Gbps、25Gbps×4で100Gbpsを実現するなどモジュール内部を多チャンネル化して光通信モジュールの高速化を行う技術が増えている。
 受光モジュールの高速化を実現するためには、電気信号の損失を少なくするために電気部品を同一基板に搭載しGND接地を共通化することや、部品間配線長を極力短くする必要がある。そこで、デジタルコヒーレントレシーバモジュールのような多チャンネルの高速受光モジュールでは、PLCで生成された多チャンネルの干渉信号光を折り曲げ、TIA、セラミック配線基板と同一のキャリア上に実装されたPDへ光を入射する構造が一般に知られている。
 また、受光モジュールでは、伝送してきた信号光の強度を確認するために、モニタ用PDを搭載し、タッププリズムを介して信号レベルをモニタする構造がある。そして、光路間にプリズムなどの光学部品を挿入する場合には、拡大・集束光では部品特性が安定しないため、コリメート光学系を用いることが一般的である。
 ここで、受光モジュールでは、光源となる素子がないため、光ファイバ側から光を入射し、PD電流値を確認しながらアクティブに実装する方法が一般的である。また、内部搭載部品の種類や構造によっては、PD順電流を流すことで光るPDの微かな光を光源として、コリメート光となるためのレンズの搭載位置を決めることもできる。
特開昭63-139307号公報
 しかしながら、信号光を多チャンネルに分岐する構造をとる受光モジュールでは、PD順電流による微弱な光からは、入射端までの伝搬損によってモニタできるほどの光量を得ることができない、という問題がある。そのため、レーザ光源を光路反対方向に入射させて光量の大きなダミー光をモニタして実装する方法も考えられる。ところが、パッケージ外部に光ファイバを配置する構造をとる受光モジュールでは、パッケージ外壁が障害となりダミー光を挿入する方法がない。つまり、受光モジュールにおいてレンズの位置決めが困難である、という問題がある。
 なお、特許文献1には、関連する技術として、レンズ系に光源からの光線が直接入射する構成の発光モジュールにおいて、ダミー光源を設けることにより光軸調整を行うという技術が開示されている。ところが、上述したように受光モジュールにおいては、パッケージ外壁が障害となるため、上記特許文献1に開示の技術を適用することは困難である。
 このため、本発明の目的は、上述した課題である、受光モジュールにおけるレンズの位置決めが困難であることを解決することにある。
 本発明の一形態である受光モジュールは、
 光ファイバから入射された信号光をコリメートするレンズと、このレンズにてコリメートされ出射された信号光が入射されるPLC(Planar Lightwave Circuit)と、このPLCから出射された信号光を所定の方向に反射させると共に透過させる機能を有するミラーと、このミラーにて反射させた信号光を受光する受光素子と、を備え、
 前記ミラーは、前記PLCから出射された信号光を透過する方向とは反対方向からも光を透過させる機能を有し、
 前記ミラーに対して当該ミラーを透過する前記信号光の出射側に、外部から入射される外部光を前記PLCの方向に反射させ、この反射された外部光を、前記信号光の透過方向とは反対方向から前記ミラーを透過させて前記PLCに入射させ当該PLCを介して前記光ファイバに導光させるダミーミラーを備えた、
という構成をとる。
 また、本発明の他の形態である受光モジュールの調整方法は、
 光ファイバから入射された信号光をコリメートするレンズと、このレンズにてコリメートされ出射された信号光が入射されるPLC(Planar Lightwave Circuit)と、このPLCから出射された信号光を所定の方向に反射させると共に透過させる機能を有するミラーと、このミラーにて反射させた信号光を受光する受光素子と、を備え、
 前記ミラーは、前記PLCから出射された信号光を透過する方向とは反対方向からも光を透過させる機能を有し、
 前記ミラーに対して当該ミラーを透過した前記信号光の出射側に、外部から入射される外部光を前記PLCの方向に反射させ、この反射された外部光を、前記信号光の透過方向とは反対方向から前記ミラーを透過させて前記PLCに入射させ当該PLCを介して前記光ファイバに導光させるダミーミラーを備えた受光モジュールにて、
 前記ダミーミラーに前記外部光を入射し、
 前記光ファイバ側から前記外部光を検出して、その検出値に応じて構成部品の位置を調整する、
という構成をとる。
 本発明は、以上のように構成されることにより、受光モジュールにおけるレンズの位置決めが容易となる。
本発明の実施形態1における受光モジュールの構成を示す図である。 本発明に関連する受光モジュールの構成を示す図である。 図1に開示した受光モジュールの一部の構成を示す図である。 図1に開示した受光モジュールの一部の構成を示す図である。 本発明の実施形態1における受光モジュールの他の構成を示す図である。
 <実施形態1>
 本発明の第1の実施形態を、図1乃至図5を参照して説明する。図1(A)に、本実施形態における受光モジュールの上面図を示し、図1(B)にその側面図を示す。図1に示すように、受光モジュールは、周囲をセラミックパッケージ16にて囲まれて構成されており、信号光と局発光をパッケージ16内に入射するための光ファイバ1がそれぞれ接続され、これら各光ファイバ1からの入射光をそれぞれコリメートするためのレンズ2を備えている。
 そして、受光モジュールは、パッケージ16内に、上記レンズ2にてコリメートされた信号光の一部を分岐するためのタッププリズム5(信号光分岐手段)と、このタッププリズム5にて分岐された信号光の入射を受けて受光レベルを検出してモニタするPD(Photo Diode)(信号光レベル検出素子)4と、タッププリズム5を透過した信号光及び局発光である各コリメート光をそれぞれPLC7へ集光する各集光レンズ6と、コヒーレントミキサー機能を持つPLC(Planar Lightwave Circuit)7と、これらを支持する素子キャリア3と、を備える。
 また、受光モジュールは、パッケージ16内に、PLC7から出射された干渉光をコリメートするレンズ8と、この干渉光の光路変更を行うミラー10と、PLC7から出射された信号光と局発光との干渉信号を受光して光-電気変換するPD(Photodiode)(受光素子)12と、干渉光をPD12へ結合するレンズ9と、を備える。さらに、受光モジュールは、パッケージ16内に、PD12から出力された電流を電圧変換するTIA(Transimpedance Amplifier)13と、配線基板14と、PD12等を支持する基板キャリア15と、パッケージ16外部からPLC7へ光入射を行うためのダミーミラー11と、を備える。かかる構成により、DP-QPSK用のデジタルコヒーレントレシーバモジュール(受光モジュール)が構成されている。
 DP-QPSK方式の受光モジュールでは、信号光のTE、TM成分を分岐し、局発光と遅延干渉させることで、2対×4つの計8ポート分の出力を得る。それを差動TIA13で受信することで、伝送路を通ってきた変調信号光を復調させる。PLC7からの出射光8ポート分の光出力を得るため、パッケージ16内には、8つのPD、信号復調のため4つのTIAが必要となっている。ここで、PD-TIA間距離が長くなると高周波特性が悪化するため、PD12、TIA13を可能な限り接近させて実装することで良好な電気特性を得る構造が一般的である。PD12とTIA13を隣接して配置し、PLC7からの出射光をPD12にて受光するために、PLC7からの出射光を折り曲げて8連PDに受光させる。
 また、図2に本発明に関連する他の受光モジュールの構成を示す。この図2に示す他の受光モジュールとは異なり、本発明における受光モジュールでは、信号光レベルモニタのため、PLC7入射前にモニタ用PD4とタッププリズム5とを設け、当該タッププリズム5にて信号光の一部を入射方向に対して90°の方向に分岐してモニタ用PD4にて信号光の光レベルをモニタする。このとき、タッププリズム5にて一定割合の光を分岐するために、PLC7入射側の光学系はコリメート光学系とする必要があり、パッケージ16外部に入射光をコリメートするレンズ2を搭載すると共に、タッププリズム5透過後側に集光レンズ6(第二レンズ)を搭載している。
 ここで、パッケージ16外部のレンズ2と光ファイバ1とを高精度に固定するためには、信号伝搬とは反対方向に光を入射してPLC7を伝搬させ、集光レンズ6にてコリメートされた光をパッケージ16外部でモニタしながら、集光レンズ6の位置調整を行う必要がある。このため、集光レンズ6は、位置調整できるよう可動可能に装備されている。
 しかしながら、パッケージ16内に部品が搭載された状態では、パッケージ16の外壁が障害となってしまい、PLC7へ光を入射する方法がこれまではなかった。
 そこで、本発明では、PLC7からの出射干渉光をPD12側へ反射させるミラー10に透過帯域を設け、このミラー10にさらにPLC7からの出射干渉光を上面方向に反射するダミーミラー11を貼り付けることによって、パッケージ16外部からPLC7へ光の入射を可能としている。具体的に、ミラー10とダミーミラー11について、図3及び図4を参照して説明する。
 上記ミラー10は、図3の実線矢印に示すように、信号波長帯域であるλ1~λnの光を、光ファイバ1側からミラー10側に向かう方向である光の入射方向に対して90°の方向(図3,4では、PD12が設置されている下方向)に屈曲させて反射すると共に、その他の波長帯域(λn~)は、図3の点線矢印に示すように、入射方向に透過する特性を持つ。また、ミラー10は、図4の点線矢印に示すように、上記とは逆方向にも光を透過させる特性、つまり、入射方向に対して逆方向からの光を光ファイバ1側に透過させる特性も有する。
 また、上記ダミーミラー11は、上記ミラー10に隣接して、上述した入射方向における後端側に設けられており、受光モジュールに対して着脱自在である。そして、ダミーミラー11は、ミラー10における透過帯域の光(波長帯域λn~)を90°屈曲させて反射する特性を有する。具体的に、ダミーミラー11は、図3の点線矢印に示すように、上述した入射方向に対して上方(ミラー10の反射方向とは逆方向)に向かって90°屈曲させるよう反射する。このように、ミラー10とダミーミラー11の反射方向は、180°異なるよう配置されている。
 そして、上述した受光モジュールのパッケージ16外部に、光ファイバ1とレンズ2とを実装する際には、まず、図4の点線矢印に示すようにパッケージ16の上面側からダミーミラー11に向けて外部光(ダミー光)であるコリメート光を入射する。すると、ダミーミラー11にて外部光がミラー10側に向かって反射し、当該ミラー10を透過してPLC7に入射する。そして、PLC7の導波路を伝搬した外部光は光ファイバ1まで伝搬するため、パッケージ16外部に位置する光ファイバ1にて外部光を検出してモニタする。このモニタした外部光の検出値に応じて、受光モジュールを構成する構成部品の位置を調整する。例えば、光ファイバ1にカメラを設置して当該カメラにてモニタした外部光の光入力パワーが最大となるようタッププリズム5とPLC7の間に配置された集光レンズ6の位置を調整する。また、カメラを光ファイバ1の軸方向に沿って動かして光の大きさが変わらない位置となるよう、つまり、コメリート光となるよう、タッププリズム5とPLC7の間に配置された集光レンズ6の位置を調整する。
 以上のようにして受光モジュールを調整することで、信号光入射側のコリメート光学系を実現することができる。そして、光ファイバ1から入射された信号光と局発光との干渉光は、図4の実線矢印に示すように、ミラー10で反射されてPD12に入射され、受光モジュールとしての機能を果たす。ここで、上述したようにレンズ6の位置を調整した後に、図5に示すようにダミーミラー11は取り外して、受光モジュールとして使用してもよい。なお、上記では、タッププリズム5とPLC7との間に配置されたレンズ6の位置を調整する場合を一例に挙げて説明したが、他の構成部品の位置を調整して、受光モジュールの精度を上げるようにしてもよい。
 <付記>
 上記実施形態の一部又は全部は、以下の付記のようにも記載されうる。以下、本発明における受光モジュール及びその調整方法の構成の概略を説明する。但し、本発明は、以下の構成に限定されない。
(付記1)
 光ファイバから入射された信号光をコリメートするレンズと、このレンズにてコリメートされ出射された信号光が入射されるPLC(Planar Lightwave Circuit)と、このPLCから出射された信号光を所定の方向に反射させると共に透過させる機能を有するミラーと、このミラーにて反射させた信号光を受光する受光素子と、を備え、
 前記ミラーは、前記PLCから出射された信号光を透過する方向とは反対方向からも光を透過させる機能を有し、
 前記ミラーに対して当該ミラーを透過する前記信号光の出射側に、外部から入射される外部光を前記PLCの方向に反射させ、この反射された外部光を、前記信号光の透過方向とは反対方向から前記ミラーを透過させて前記PLCに入射させ当該PLCを介して前記光ファイバに導光させるダミーミラーを備えた、
受光モジュール。
(付記2)
 付記1に記載の受光モジュールであって、
 前記信号光の受光レベルを検出する信号光レベル検出素子と、
 前記レンズにてコリメートされ出射された前記信号光の一部を分岐させて前記信号光レベル検出素子に入射させる信号光分岐手段と、
 前記信号光分岐手段を透過した前記信号光を前記PLCに集光する第二レンズと、を備え、
 前記第二レンズは、位置調整可能なよう設置されている、
受光モジュール。
(付記3)
 付記1又は2に記載の受光モジュールであって、
 前記ミラーは、予め設定された波長範囲の信号光を反射させると共に、予め設定された他の波長範囲の信号光及び前記外部光を透過させる機能を有する、
受光モジュール。
(付記4)
 付記3に記載の受光モジュールであって、
 前記ミラーは、前記予め設定された波長範囲の信号光を入射方向に対して90度屈曲させて反射させる機能を有し、
 前記ダミーミラーは、前記ミラーを透過した前記信号光を当該ミラーにおける反射の方向とは反対方向に、入射方向に対して90度屈曲させて反射させる機能を有する、
受光モジュール。
(付記5)
 付記1乃至4のいずれかに記載の受光モジュールであって、
 前記ダミーミラーは、受光モジュールから着脱自在に設置されている、
受光モジュール。
(付記6)
 光ファイバから入射された信号光をコリメートするレンズと、このレンズにてコリメートされ出射された信号光が入射されるPLC(Planar Lightwave Circuit)と、このPLCから出射された信号光を所定の方向に反射させると共に透過させる機能を有するミラーと、このミラーにて反射させた信号光を受光する受光素子と、を備え、
 前記ミラーは、前記PLCから出射された信号光を透過する方向とは反対方向からも光を透過させる機能を有し、
 前記ミラーに対して当該ミラーを透過した前記信号光の出射側に、外部から入射される外部光を前記PLCの方向に反射させ、この反射された外部光を、前記信号光の透過方向とは反対方向から前記ミラーを透過させて前記PLCに入射させ当該PLCを介して前記光ファイバに導光させるダミーミラーを備えた受光モジュールにて、
 前記ダミーミラーに前記外部光を入射し、
 前記光ファイバ側から前記外部光を検出して、その検出値に応じて構成部品の位置を調整する、
受光モジュールの調整方法。
(付記7)
 付記6に記載の受光モジュールの調整方法であって、
 前記受光モジュールは、前記信号光の受光レベルを検出する信号光レベル検出素子と、前記レンズにてコリメートされ出射された前記信号光の一部を分岐させて前記信号光レベル検出素子に入射させる信号光分岐手段と、前記信号光分岐手段を透過した前記信号光を前記PLCに集光する第二レンズと、を備えており、
 前記光ファイバ側から検出した前記外部光の検出値に応じて、前記第二レンズの位置を調整する、
受光モジュールの調整方法。
(付記8)
 付記7に記載の受光モジュールの調整方法であって、
 前記光ファイバ側から前記外部光のパワーを検出して、当該パワーが最大となるよう前記第二レンズの位置を調整する、
受光モジュールの調整方法。
(付記9)
 付記6乃至8に記載の受光モジュールの調整方法であって、
 前記受光モジュールの構成部品の位置を調整した後に、前記ダミーミラーを取り外す、
受光モジュールの調整方法。
 以上、上記各実施形態を参照して本願発明を説明したが、本願発明は、上述した実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明の範囲内で当業者が理解しうる様々な変更をすることができる。
 なお、本発明は、日本国にて2011年9月9日に特許出願された特願2011-196962の特許出願に基づく優先権主張の利益を享受するものであり、当該特許出願に記載された内容は、全て本明細書に含まれるものとする。
1 光ファイバ
2 レンズ
3 素子キャリア
4 PD
5 タッププリズム
6 集光レンズ
7 PLC
8 レンズ
9 レンズ
10 ミラー
11 ダミーミラー
12 PD
13 TIA
14 配線基板
15 基板キャリア
16 パッケージ
 

Claims (9)

  1.  光ファイバから入射された信号光をコリメートするレンズと、このレンズにてコリメートされ出射された信号光が入射されるPLC(Planar Lightwave Circuit)と、このPLCから出射された信号光を所定の方向に反射させると共に透過させる機能を有するミラーと、このミラーにて反射させた信号光を受光する受光素子と、を備え、
     前記ミラーは、前記PLCから出射された信号光を透過する方向とは反対方向からも光を透過させる機能を有し、
     前記ミラーに対して当該ミラーを透過する前記信号光の出射側に、外部から入射される外部光を前記PLCの方向に反射させ、この反射された外部光を、前記信号光の透過方向とは反対方向から前記ミラーを透過させて前記PLCに入射させ当該PLCを介して前記光ファイバに導光させるダミーミラーを備えた、
    受光モジュール。
  2.  請求項1に記載の受光モジュールであって、
     前記信号光の受光レベルを検出する信号光レベル検出素子と、
     前記レンズにてコリメートされ出射された前記信号光の一部を分岐させて前記信号光レベル検出素子に入射させる信号光分岐手段と、
     前記信号光分岐手段を透過した前記信号光を前記PLCに集光する第二レンズと、を備え、
     前記第二レンズは、位置調整可能なよう設置されている、
    受光モジュール。
  3.  請求項1又は2に記載の受光モジュールであって、
     前記ミラーは、予め設定された波長範囲の信号光を反射させると共に、予め設定された他の波長範囲の信号光及び前記外部光を透過させる機能を有する、
    受光モジュール。
  4.  請求項3に記載の受光モジュールであって、
     前記ミラーは、前記予め設定された波長範囲の信号光を入射方向に対して90度屈曲させて反射させる機能を有し、
     前記ダミーミラーは、前記ミラーを透過した前記信号光を当該ミラーにおける反射の方向とは反対方向に、入射方向に対して90度屈曲させて反射させる機能を有する、
    受光モジュール。
  5.  請求項1乃至4のいずれかに記載の受光モジュールであって、
     前記ダミーミラーは、受光モジュールから着脱自在に設置されている、
    受光モジュール。
  6.  光ファイバから入射された信号光をコリメートするレンズと、このレンズにてコリメートされ出射された信号光が入射されるPLC(Planar Lightwave Circuit)と、このPLCから出射された信号光を所定の方向に反射させると共に透過させる機能を有するミラーと、このミラーにて反射させた信号光を受光する受光素子と、を備え、
     前記ミラーは、前記PLCから出射された信号光を透過する方向とは反対方向からも光を透過させる機能を有し、
     前記ミラーに対して当該ミラーを透過した前記信号光の出射側に、外部から入射される外部光を前記PLCの方向に反射させ、この反射された外部光を、前記信号光の透過方向とは反対方向から前記ミラーを透過させて前記PLCに入射させ当該PLCを介して前記光ファイバに導光させるダミーミラーを備えた受光モジュールにて、
     前記ダミーミラーに前記外部光を入射し、
     前記光ファイバ側から前記外部光を検出して、その検出値に応じて構成部品の位置を調整する、
    受光モジュールの調整方法。
  7.  請求項6に記載の受光モジュールの調整方法であって、
     前記受光モジュールは、前記信号光の受光レベルを検出する信号光レベル検出素子と、前記レンズにてコリメートされ出射された前記信号光の一部を分岐させて前記信号光レベル検出素子に入射させる信号光分岐手段と、前記信号光分岐手段を透過した前記信号光を前記PLCに集光する第二レンズと、を備えており、
     前記光ファイバ側から検出した前記外部光の検出値に応じて、前記第二レンズの位置を調整する、
    受光モジュールの調整方法。
  8.  請求項7に記載の受光モジュールの調整方法であって、
     前記光ファイバ側から前記外部光のパワーを検出して、当該パワーが最大となるよう前記第二レンズの位置を調整する、
    受光モジュールの調整方法。
  9.  請求項6乃至8に記載の受光モジュールの調整方法であって、
     前記受光モジュールの構成部品の位置を調整した後に、前記ダミーミラーを取り外す、
    受光モジュールの調整方法。
     
PCT/JP2012/003806 2011-09-09 2012-06-12 受光モジュール WO2013035227A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013532407A JP5742947B2 (ja) 2011-09-09 2012-06-12 受光モジュール
US14/343,100 US9383528B2 (en) 2011-09-09 2012-06-12 Light-receiving module
CN201280043411.8A CN103858039B (zh) 2011-09-09 2012-06-12 光接收模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011196962 2011-09-09
JP2011-196962 2011-09-09

Publications (1)

Publication Number Publication Date
WO2013035227A1 true WO2013035227A1 (ja) 2013-03-14

Family

ID=47831709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003806 WO2013035227A1 (ja) 2011-09-09 2012-06-12 受光モジュール

Country Status (4)

Country Link
US (1) US9383528B2 (ja)
JP (1) JP5742947B2 (ja)
CN (1) CN103858039B (ja)
WO (1) WO2013035227A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103676035A (zh) * 2013-12-17 2014-03-26 昂纳信息技术(深圳)有限公司 平面光波导芯片的封装方法
WO2014157328A1 (ja) * 2013-03-26 2014-10-02 日本電気株式会社 光分配機構及びこれを備えたコヒーレントミキサ装置
JP2015007670A (ja) * 2013-06-24 2015-01-15 住友電気工業株式会社 光受信器及びその光軸調芯方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10094988B2 (en) * 2012-08-31 2018-10-09 Micron Technology, Inc. Method of forming photonics structures
CN105467532B (zh) * 2014-09-12 2017-06-13 祥茂光电科技股份有限公司 光接收次组件与其制造方法
WO2021179312A1 (zh) * 2020-03-13 2021-09-16 华为技术有限公司 接收光组件和光模块

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139307A (ja) * 1986-12-02 1988-06-11 Fujitsu Ltd 発光体モジユ−ルの光軸調整方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131543A (ja) * 1998-10-26 2000-05-12 Pioneer Electronic Corp 光送受信モジュール及びその製造方法
CN1510448A (zh) * 2002-12-26 2004-07-07 台达电子工业股份有限公司 平面光波导组件及其与光纤数组的对准方法
TWM241892U (en) * 2003-10-03 2004-08-21 Foci Fiber Optic Communication A silicon optical bench based bi-directional transceiver module
US7313293B2 (en) * 2004-03-16 2007-12-25 Sumitomo Electric Industries, Ltd. Optical power monitoring apparatus, optical power monitoring method, and light receiving device
JP2007025431A (ja) * 2005-07-20 2007-02-01 Fujifilm Holdings Corp レーザモジュール
US7512291B2 (en) * 2006-05-31 2009-03-31 Mendoza Edgar A Fiber bragg crating sensor interrogation method
WO2010140185A1 (ja) * 2009-06-01 2010-12-09 三菱電機株式会社 光送受信モジュール及び光送受信モジュールの製造方法
US8748805B2 (en) * 2011-11-07 2014-06-10 Gooch And Housego Plc Polarization diversity detector with birefringent diversity element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139307A (ja) * 1986-12-02 1988-06-11 Fujitsu Ltd 発光体モジユ−ルの光軸調整方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157328A1 (ja) * 2013-03-26 2014-10-02 日本電気株式会社 光分配機構及びこれを備えたコヒーレントミキサ装置
JP2015007670A (ja) * 2013-06-24 2015-01-15 住友電気工業株式会社 光受信器及びその光軸調芯方法
US9780884B2 (en) 2013-06-24 2017-10-03 Sumitomo Electric Industries, Ltd. Optical receiver and optical axis alignment method thereof
CN103676035A (zh) * 2013-12-17 2014-03-26 昂纳信息技术(深圳)有限公司 平面光波导芯片的封装方法

Also Published As

Publication number Publication date
US9383528B2 (en) 2016-07-05
US20140217270A1 (en) 2014-08-07
JPWO2013035227A1 (ja) 2015-03-23
CN103858039B (zh) 2015-11-25
JP5742947B2 (ja) 2015-07-01
CN103858039A (zh) 2014-06-11

Similar Documents

Publication Publication Date Title
JP5539381B2 (ja) 可同調局部発振器を備えたコヒーレント光学システム
JP5742947B2 (ja) 受光モジュール
US10439727B2 (en) Method and system for selectable parallel optical fiber and wavelength division multiplexed operation
CN107479144B (zh) 具有直接对准光复用器输入端的光发射子组件(tosa)模块的光发射器或收发器
US8916812B2 (en) Optical module
WO2015023164A1 (ko) 파장 가변형 파장 선택성 필터가 내장되는 광수신 모듈
US20220014272A1 (en) Multi-channel, bi-directional optical communication module
CN102156333A (zh) 光收发一体装置
CN112444926B (zh) 具有倾斜的输出界面以增加耦合效率的光转向镜及使用其的多频道光次组件
Doi et al. Compact ROSA for 100-Gb/s (4× 25 Gb/s) Ethernet with a PLC-based AWG demultiplexer
KR100526505B1 (ko) 광도파로와 광학소자의 결합 구조 및 이를 이용한 광학정렬 방법
EP3389199A1 (en) Bi-directional optical sub-assembly
WO2019173998A1 (zh) 光接收、组合收发组件、组合光模块、olt及pon系统
US8938142B2 (en) Silicon-based opto-electronic integrated circuit with reduced polarization dependent loss
US20090162073A1 (en) Optical module
JP2006345474A (ja) 光トランシーバモジュール
Doi et al. Compact high-responsivity receiver optical subassembly with a multimode-output-arrayed waveguide grating for 100-Gb/s Ethernet
JP2011039117A (ja) 双方向光通信モジュール
CN113296199A (zh) 一种单纤双向光组件和光模块
CN112444924B (zh) 具有整合的光学配置以偏移输出光路径的定位元件
Ohta et al. Ultra compact athermal 400G-FR4 silicon photonics receiver with polarization diversity
Stern et al. Silicon photonic direct-detection phase retrieval receiver
Yun et al. Hybrid-Integrated 400G TROSA Module and Its Performance Evaluation Using PAM4 DSP Chip
Theurer et al. Polymer based hybrid integrated coherent receiver for next generation optical access networks
Bolle et al. Compact Hybridly Integrated 10$\,\times\, $11.1-Gb/s DWDM Optical Receiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830102

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013532407

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14343100

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12830102

Country of ref document: EP

Kind code of ref document: A1