WO2013034727A1 - Pre-engineered recyclable products - Google Patents
Pre-engineered recyclable products Download PDFInfo
- Publication number
- WO2013034727A1 WO2013034727A1 PCT/EP2012/067562 EP2012067562W WO2013034727A1 WO 2013034727 A1 WO2013034727 A1 WO 2013034727A1 EP 2012067562 W EP2012067562 W EP 2012067562W WO 2013034727 A1 WO2013034727 A1 WO 2013034727A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- paper
- grinding
- cellulose
- release
- additive
- Prior art date
Links
- 239000000463 material Substances 0.000 claims abstract description 179
- 229920002678 cellulose Polymers 0.000 claims abstract description 48
- 239000001913 cellulose Substances 0.000 claims abstract description 48
- 238000000034 method Methods 0.000 claims abstract description 42
- 239000000654 additive Substances 0.000 claims abstract description 39
- 229920003023 plastic Polymers 0.000 claims abstract description 32
- 238000000227 grinding Methods 0.000 claims abstract description 31
- 230000000996 additive effect Effects 0.000 claims abstract description 29
- 239000003063 flame retardant Substances 0.000 claims abstract description 28
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000000203 mixture Substances 0.000 claims abstract description 22
- 239000010893 paper waste Substances 0.000 claims abstract description 13
- 238000002156 mixing Methods 0.000 claims abstract description 7
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 6
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 6
- 239000011707 mineral Substances 0.000 claims abstract description 6
- 239000013502 plastic waste Substances 0.000 claims abstract description 6
- 229910052751 metal Inorganic materials 0.000 claims abstract description 5
- 239000002184 metal Substances 0.000 claims abstract description 5
- 235000015097 nutrients Nutrition 0.000 claims abstract description 5
- 150000002739 metals Chemical class 0.000 claims abstract description 4
- 239000000575 pesticide Substances 0.000 claims abstract description 4
- 239000004009 herbicide Substances 0.000 claims abstract 3
- 239000002699 waste material Substances 0.000 claims description 44
- 239000012774 insulation material Substances 0.000 claims description 37
- 239000000123 paper Substances 0.000 claims description 32
- 239000003795 chemical substances by application Substances 0.000 claims description 31
- 239000004033 plastic Substances 0.000 claims description 27
- 239000000853 adhesive Substances 0.000 claims description 19
- 238000000576 coating method Methods 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 238000007664 blowing Methods 0.000 claims description 16
- 239000011230 binding agent Substances 0.000 claims description 14
- 235000001674 Agaricus brunnescens Nutrition 0.000 claims description 13
- 239000011248 coating agent Substances 0.000 claims description 13
- 229920001296 polysiloxane Polymers 0.000 claims description 13
- 229920001169 thermoplastic Polymers 0.000 claims description 11
- 239000004416 thermosoftening plastic Substances 0.000 claims description 11
- 230000001070 adhesive effect Effects 0.000 claims description 10
- 239000002689 soil Substances 0.000 claims description 9
- 238000011049 filling Methods 0.000 claims description 8
- 238000004806 packaging method and process Methods 0.000 claims description 8
- 238000011282 treatment Methods 0.000 claims description 8
- 238000009837 dry grinding Methods 0.000 claims description 7
- 239000000945 filler Substances 0.000 claims description 7
- 238000000926 separation method Methods 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 239000003990 capacitor Substances 0.000 claims description 4
- 239000004567 concrete Substances 0.000 claims description 4
- 238000003860 storage Methods 0.000 claims description 4
- 235000013311 vegetables Nutrition 0.000 claims description 4
- 235000008733 Citrus aurantifolia Nutrition 0.000 claims description 3
- 235000011941 Tilia x europaea Nutrition 0.000 claims description 3
- 239000004566 building material Substances 0.000 claims description 3
- 239000004927 clay Substances 0.000 claims description 3
- 239000011086 glassine Substances 0.000 claims description 3
- 239000002655 kraft paper Substances 0.000 claims description 3
- 239000004571 lime Substances 0.000 claims description 3
- 235000013305 food Nutrition 0.000 claims description 2
- 239000003973 paint Substances 0.000 claims description 2
- 239000004034 viscosity adjusting agent Substances 0.000 claims description 2
- 238000005338 heat storage Methods 0.000 claims 1
- 235000010980 cellulose Nutrition 0.000 description 44
- 239000000047 product Substances 0.000 description 44
- 239000011810 insulating material Substances 0.000 description 25
- 238000004064 recycling Methods 0.000 description 20
- 238000004519 manufacturing process Methods 0.000 description 16
- 238000005507 spraying Methods 0.000 description 15
- 230000008569 process Effects 0.000 description 13
- 239000000969 carrier Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 230000008901 benefit Effects 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 8
- 239000004327 boric acid Substances 0.000 description 8
- 238000005056 compaction Methods 0.000 description 8
- 239000002361 compost Substances 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 229920003043 Cellulose fiber Polymers 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000009413 insulation Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 239000012876 carrier material Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 239000011236 particulate material Substances 0.000 description 4
- 239000005060 rubber Substances 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 3
- 241000607479 Yersinia pestis Species 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 229910021538 borax Inorganic materials 0.000 description 3
- 239000004568 cement Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 239000003292 glue Substances 0.000 description 3
- 235000010755 mineral Nutrition 0.000 description 3
- 239000012188 paraffin wax Substances 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000004328 sodium tetraborate Substances 0.000 description 3
- 235000010339 sodium tetraborate Nutrition 0.000 description 3
- 239000012855 volatile organic compound Substances 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000003139 buffering effect Effects 0.000 description 2
- 229940106135 cellulose Drugs 0.000 description 2
- 238000009264 composting Methods 0.000 description 2
- 239000010791 domestic waste Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 239000002362 mulch Substances 0.000 description 2
- 239000005022 packaging material Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 239000005871 repellent Substances 0.000 description 2
- 230000002940 repellent Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- -1 seed Substances 0.000 description 2
- 238000007669 thermal treatment Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- BHMLFPOTZYRDKA-IRXDYDNUSA-N (2s)-2-[(s)-(2-iodophenoxy)-phenylmethyl]morpholine Chemical compound IC1=CC=CC=C1O[C@@H](C=1C=CC=CC=1)[C@H]1OCCNC1 BHMLFPOTZYRDKA-IRXDYDNUSA-N 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 241000258937 Hemiptera Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229920002522 Wood fibre Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910021502 aluminium hydroxide Inorganic materials 0.000 description 1
- 239000001164 aluminium sulphate Substances 0.000 description 1
- 235000011128 aluminium sulphate Nutrition 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000011111 cardboard Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000002761 deinking Substances 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- BUACSMWVFUNQET-UHFFFAOYSA-H dialuminum;trisulfate;hydrate Chemical compound O.[Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O BUACSMWVFUNQET-UHFFFAOYSA-H 0.000 description 1
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 description 1
- CDMADVZSLOHIFP-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane;decahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 CDMADVZSLOHIFP-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920005669 high impact polystyrene Polymers 0.000 description 1
- 239000004797 high-impact polystyrene Substances 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000003905 indoor air pollution Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000010871 livestock manure Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000006902 nitrogenation reaction Methods 0.000 description 1
- 239000010899 old newspaper Substances 0.000 description 1
- 239000010816 packaging waste Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000003415 peat Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000004537 pulping Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000007226 seed germination Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 238000004162 soil erosion Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G24/00—Growth substrates; Culture media; Apparatus or methods therefor
- A01G24/30—Growth substrates; Culture media; Apparatus or methods therefor based on or containing synthetic organic compounds
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G18/00—Cultivation of mushrooms
- A01G18/20—Culture media, e.g. compost
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G24/00—Growth substrates; Culture media; Apparatus or methods therefor
- A01G24/20—Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G24/00—Growth substrates; Culture media; Apparatus or methods therefor
- A01G24/40—Growth substrates; Culture media; Apparatus or methods therefor characterised by their structure
- A01G24/44—Growth substrates; Culture media; Apparatus or methods therefor characterised by their structure in block, mat or sheet form
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47C—CHAIRS; SOFAS; BEDS
- A47C27/00—Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
- A47C27/12—Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with fibrous inlays, e.g. made of wool, of cotton
- A47C27/122—Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with fibrous inlays, e.g. made of wool, of cotton with special fibres, such as acrylic thread, coconut, horsehair
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C23/00—Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
- B02C23/08—Separating or sorting of material, associated with crushing or disintegrating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C23/00—Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
- B02C23/08—Separating or sorting of material, associated with crushing or disintegrating
- B02C23/14—Separating or sorting of material, associated with crushing or disintegrating with more than one separator
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B17/00—Recovery of plastics or other constituents of waste material containing plastics
- B29B17/04—Disintegrating plastics, e.g. by milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B68—SADDLERY; UPHOLSTERY
- B68G—METHODS, EQUIPMENT, OR MACHINES FOR USE IN UPHOLSTERING; UPHOLSTERY NOT OTHERWISE PROVIDED FOR
- B68G1/00—Loose filling materials for upholstery
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J11/00—Recovery or working-up of waste materials
- C08J11/04—Recovery or working-up of waste materials of polymers
- C08J11/06—Recovery or working-up of waste materials of polymers without chemical reactions
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21B—FIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
- D21B1/00—Fibrous raw materials or their mechanical treatment
- D21B1/04—Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres
- D21B1/06—Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres by dry methods
- D21B1/08—Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres by dry methods the raw material being waste paper; the raw material being rags
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21B—FIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
- D21B1/00—Fibrous raw materials or their mechanical treatment
- D21B1/04—Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres
- D21B1/06—Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres by dry methods
- D21B1/08—Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres by dry methods the raw material being waste paper; the raw material being rags
- D21B1/10—Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres by dry methods the raw material being waste paper; the raw material being rags by cutting actions
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/7604—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only fillings for cavity walls
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/78—Heat insulating elements
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B2001/742—Use of special materials; Materials having special structures or shape
- E04B2001/746—Recycled materials, e.g. made of used tires, bumpers or newspapers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/24—Structural elements or technologies for improving thermal insulation
- Y02A30/244—Structural elements or technologies for improving thermal insulation using natural or recycled building materials, e.g. straw, wool, clay or used tires
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/64—Paper recycling
Definitions
- the present invention relates to pre-engineered recyclable products (pre-engineered waste material) such as plastic products and paper products whereby specific tailored additives are already incorporated into to the product formulations, such that the resulting treated waste material of said products can be more easily transformed into a new use or application without having the need to add such specific tailored additives for the new application upon manufacturing the product for its new use.
- pre-engineered recyclable products pre-engineered waste material
- plastic products and paper products whereby specific tailored additives are already incorporated into to the product formulations, such that the resulting treated waste material of said products can be more easily transformed into a new use or application without having the need to add such specific tailored additives for the new application upon manufacturing the product for its new use.
- Waste material is everywhere and numerous efforts have been taken to find ecologically and economically jusitified solutions to address this challenge.
- a typical example of waste material are paper related products, among others, finding its origin in the label manufacturing.
- Self adhesive labels, films, and tapes have become very popular for their versatility and ease of use, since no extra glue is required to make them adhere to a substrate. They are used extensively in offices and by school children of course, but also large volumes are used by industries for labelling their products.
- the self-adhesive labels are provided attached to a release liner made of paper or a polymeric carrier and usually coated at least on one side with a release agent, most often consisting of a silicone release layer, which provides a release effect against the adhesive of the label.
- Other release agents are sometimes used, such as wax, paraffin, low surface energy fluorinated compounds, etc.
- silicone coated liners examples are given in US5275855, JP07279099, and US6036234. Silicone or other release agent coated liners are also used more generally as backing in the production of films, such as PVC films.
- the total global consumption of release liners in 2008 is believed to be around 32 Billion square meter of coated product, which is equal to 75% of the surface area of Switzerland. Approximately 85% of this material is paper based and 1 5% is plastic based (cf. http:/ /en.wikipedia.org/wiki/Release_liner).
- the liners are pure waste and must be disposed of. Considering the volumes mentioned above, there is a great source of waste, which is coming under the scrutiny of several governments which intend to tax the disposal thereof as packaging material.
- the building and transportation industries are making more and more use of cellulose materials coming from old newspaper, cardboard, etc. to manufacture heat and acoustic insulating materials in the form of loose fibrous materials, fibrous mats with or without skins, panels of varying stiffness, and even hollow blocks; the manufacture of blocks and panels may require the use of a binder, a glue or a cement.
- plastic materials are part of almost any aspect of daily life.
- Some of the prevalent primary polymer types in the waste plastic materials are ABS, HIPS, PP, PET and PC.
- the plastic or rubber materials that are used to create these products are formed from virgin plastic materials that are produced from petroleum and are not made from existing stock. Literally millions of tons of plastic and rubber are produced and consumed each year. Recycling plastic materials obviates the need for disposing of the plastic materials or product. Further, in an era of reduced and more expensive petroleum material cost, the expense of production of the plastic is reduced as less further petroleum is necessary for the production. When plastic materials are sent to be recycled, the feed streams rich in plastics may be separated into multiple product and by product streams.
- the recycling processes can be applied to a variety of plastics-rich streams derived from post-industrial and post- consumer sources.
- these streams may include plastics from office automation equipment (printers, computers, copiers, etc.), white goods (refrigerators, washing machines, etc.), consumer electronics (televisions, video cassette recorders, stereos, etc.), consumables (diapers, plastic utensils, plastic cups, etc.), automotive shredder residue, packaging waste, household waste, building waste and industrial scrap (molding, non-woven, fiber, extrusions, etc.).
- Plastics from more than one source of durable goods may be including in the mix of materials fed to a plastics recycling plant, which means that a very broad range of plastics may be included as potential sources of waste plastic material.
- the present invention now proposes a solution to these and other problems in the art of recycling.
- the present invention concerns a method for treating a plastic and/or paper waste material comprising the following steps:
- the present invention is directed to pre-engineered recyclable products such as plastic products and paper products whereby specific tailored additives are added to the product formulations, such that the treated waste material of said products can be transformed into a readily available second product without having the need to add such specific tailored additives upon the making of the second product.
- the present invention is directed to recycling of a recyclable product said recyclable product already formulated with a selected additive whereby said selected additive has a functional characteristic in support of the new application of the recycled product referred to as "new-use additive".
- Said additive may also have a functionality within the recyclable product but aims at providing the functionality needed in support of the new application.
- the recyclable product may be formulated with a "dormant additive" , the definition of this "dormant additive” being that the physical properties of the recyclable product either containing the dormant additive or not, and this in relation to its intended application are not substantially different, and both types of recyclable materials with an without dormant additive are interchangeable.
- a dormant additive will in most cases be present in a homogeneous mixture with the original product formulation and components rather than as a physically distinct part or layer in the recyclable product.
- the key difference of the present invention with previous attempts to recycle plastic and/or paper waste material such as release coated sheet material is that the recyclable release coated sheet material composition is already formulated with an additive being key to the functionality needed for a given new use of the recycled product.
- a preferred additive for paper waste material are fire retardants.
- the efficacy of the method of the present invention is further enhanced if the release coated cellulose or polymeric sheet material is collected from producers and end-users thereof in the form of dense, bulky masses, such as rolls and stacks, which are pre-shredded into smaller, less dense masses in preparation to step (b).
- the collected material already comprises a flame retardant, such as boric acid or any salt thereof.
- the flame retardant would be added to the sheet carrier by the sheet manufacturer, thus anticipating, driving and promoting the recycling of the produced material.
- the present method is highly advantageous as it is possible for certain release agent coated sheets to mechanically separate, during the primary and /or secondary dry-grinding operations, a substantial fraction of the release coating from the sheet carrier, in the absence of any chemical treatment.
- the two fractions may then be separated in a separating station, separating the incoming stream into a first, carrier rich fraction and a second, release agent rich fraction.
- the separating station may comprise one or more of a cyclone, a filter, and an ultrasonic or an electrostatic separation means.
- This embodiment is very advantageous as it permits the use of the carrier rich fraction to be further processed to produce either insulation materials, e.g., in the form of insulation batts or sheets; or to incorporate a conventional repulping process in an aqueous medium for producing recycled paper.
- insulation materials need not necessarily be formed from a carrier rich fraction, and are advantageously obtained directly from the comminuted release coated cellulose or polymeric sheet material, possibly blended with e.g., comminuted waste paper such as newspaper, to yield insulation materials of different grades, qualities, and prices.
- the cellulose and/or the release agent rich fractions may further be treated to become suitable for use as a filler, a binding agent or a viscosity modifier in concrete, cementitious, asphalteous, clay or lime mixtures and coatings, paints and other building materials
- the collected or treated material may be blended with cellulose or polymeric sheet waste material from other origins, or with a release agent, for example from the release agent rich fraction obtainable from the separation discussed supra.
- the second, release agent rich fraction separated from the carrier material can be blended with ground cellulose or polymeric sheet waste material from other origins in order to control the content in release agent of the final material.
- the cellulose rich fraction thus obtained may be further processed in a wet shaping station to form sheets of paper.
- a flame retardant preferably boric acid or any salt thereof may be added to, and mixed with the recycled material before, during or after the grinding steps (c).
- a preferred source of release coated cellulose or polymeric sheet material is liners for holding self-adhesive labels or films. They can conveniently be collected at the liner manufacturers, the self-adhesive label base material manufacturers, the label printers, the producers of goods on which are applied self-adhesive labels, and so on, all of them generating large volumes of such liners.
- the release agent is generally one of silicone, wax, paraffin, polyurethane, fluorinated or acrylic based material.
- Recycled material obtained from the method discussed above can be used in various applications facilitated by the new-use additive which was already incorporated into the formulation of the waste material composition.
- the thermal and acoustic insulating properties thereof can advantageously be used for insulating thermally and/or acoustically any of:
- thermoplastic carriers if sufficiently separated from their release coating, may be used in any thermoplastic recycling process well known in the art.
- Another field of applications of release coated cellulose sheet material is casing soil or growing medium used for growing some vegetables and mushrooms, or as additive to earth to enhance the water balance and water flow in said soil or earth.
- the treated material offered an optimal water buffering effect for the growth, e.g., of mushrooms.
- the material seems to act as a heat capacitor, absorbing heat, which it gradually releases in time. This property may also partly explain the excellent growth of mushrooms observed with the present material. This property makes the material suitable for other applications such as hot pillows, or hot compresses to be applied onto the skin.
- Hydromulching / hydroseeding is another application wherein the present material shows excellent potential. Hydromulching is applying a slurry of water, wood fibre mulch, and often a tackifier, to prevent soil erosion. Hydroseeding, often used as synonym of hydromulching, is a method for planting seeds, e.g., in the field of grass planting, comprising the steps of mixing mulch, seed, fertilizer, and water in the tank of a hydromulching machine.
- the mixed material is then pumped from the tank and sprayed onto the ground.
- the material is often referred to as a slurry, much like a soupy batch of green papier-mache. Once applied to the soil, the material enhances initial growth by providing a microenvironment beneficial to seed germination.
- the use of traditional recycled paper cellulose fibre material in hydromulching/hydroseeding applications is known.
- the use of recycled release coated cellulose sheet material treated according to the present invention instead of traditional recycled paper cellulose fibre seems advantageous in that the present material has a significantly lower tendency to create a dry crust as wel l as clogging together. Without wishing to be bound by any theory, it is believed that the release coating material present in the material contributes to this effect.
- the present invention also concerns an insulation material comprising shredded recycled material obtainable by a method as discussed supra.
- the paper or thermoplastic sheet material is a liner for adhesive labels, tapes, or films, and is preferably coated with sil icone as release agent and the carrier is as follows:
- the cellulose sheet material is paper, preferably glassine paper or kraft paper, or, alternatively,
- the polymeric sheet material is a thermoplastic fi lm, preferably selected from PE, PP, or PET.
- the insulation material of the present invention is preferably in a form suitable for blowing it dry into a cavity, as loose fill onto a surface, or wet against a surface. Alternatively, it can be in the form of a batt or a sheet.
- Figure 1 shows a transversal cut of a release coated carrier, typically used as liner for adhesive labels and the l ike.
- Figure 2A shows a schematic representation of a first embodi ment of the method of the present invention.
- Figure 2B shows a schematic representation of a second embodi ment of the method of the present invention.
- Figure 3 shows three embodiments for the appl ication of an insulating material in a building or means of transportation ;
- Figure 4 is a flowchart illustrating the complete life cycle of a release coated sheet material form production, use thereof as l iner, to recycli ng thereof, with the original sheet carrier comprising flame retardant.
- the present invention offers a new and advantageous solution to the difficult problem of recycling release coated sheet carriers (1 ), in particular silicone coated carriers which are widely used e.g., as liners for self adhesive labels, tapes, films and the like.
- liners comprise a carrier (2) which is often a cellulose material, such as glassine paper or kraft paper, or alternatively, the carrier (2) can be a thermoplastic film, made of a polyolefin like PE or PP, or of a polyester such as PET, PEN, etc.
- the term "sheet” is used to designate "a wide expanse or thin piece of something" (The Chambers Dictionary (2000)), which can be continuous or in discreet pieces of regular or irregular geometry, presented in any form such as rolled, stacked, or even crumpled.
- the carrier (2) is coated on one or two sides with a release agent (3), which provides a release effect against any type of sticky material such as the adhesive on a label.
- the release agents (3) most widely used on liners for adhesive labels, tapes, films, and the like, are crossli nkable silicones, but other release agents such as wax, paraffin, polyurethane, fluorinated or acrylic based material may also be found.
- the release agent is generally applied in an amount of the order 0.2 to 1 0.0 g / m 2 , which is enough to degrade the quality of paper recycled with such cellulose based liners by traditional wet paper repulping processes, because the disintegration of the fibres is insufficient and the resin particles tend to stick on the rolls and felts.
- This is a major inconvenience because unlike newspapers and the like, paper used for liners is generally produced from virgin material , which has never gone through any recycling cycle and has therefore a high ecological value.
- solutions exist to overcome this drawback associated with conventional wet re pul ping processes, but they require additional treatment steps and chemicals. The problem is even more acute when the carrier is a thermoplastic film since the generally crosslinked release coating cannot be easily separated from the carrier and may not be melted and reprocessed therewith.
- the present invention provides a particularly advantageous alternative method for recycling both cellulose and thermoplastic based release coated carriers (1 ) such as liners.
- the release coated carrier may be processed to form a novel and advantageous insulating material (1 0) suitable for the sound and thermal insulation of buildings and of sou nd barriers along the roads, as well as of means of transportation such as automotive vehicles, trains, ai rplanes, and the like. It can also be used to fill quilted garments and blankets, or upholstery. Other applications are possible, such as growing medium for mushrooms, vegetables, plants, etc. , or as heat capacitor in heated pillows or compresses to be applied on the skin.
- cellulose sheets coated with a release agent it is possi ble to mechanically separate a sufficient amount of release agent from the cellulose carrier during a mechanical g rinding step (23), (24).
- a cellulose rich fraction may be separated from a release agent rich fraction.
- Each fraction can be treated separately in conventional recycling processes, or combined with other sources of materials for further processing.
- the waste material can be collected from the producers and end users of for example adhesive labels, etc. like offices and administrations, but it is preferably collected from industries generating large amounts of waste liners.
- the waste material can be collected from liner manufacturers, self-adhesive labels manufacturers, label printers, producers of goods on which are applied self-adhesive labels, and the like. These represent a particularly advantageous source of "clean" waste release coated carriers, available in large quantities.
- Another group are the producers and /or users of cast polymeric sheet materials or self-adhesive tapes whereby the liner is being used as a support during the cast or coating process and is optionally being removed prior to selling the material to the end users.
- Liner manufacturers will of course generate some waste, be it for insufficient quality of a particular product batch or at start or end of a roll.
- the manufacturers of self-adhesive label base material combine large rolls of release coated material with corresponding rolls of label base material to form a 4-layer laminate comprising the carrier, the release coating, the adhesive, and the label support. The thus produced laminate is then slit to the desired width of the labels, thus generating large amounts of waste.
- label printers if different from the former, as they may be in charge of the final cutting of the labels.
- the producers of goods on which are applied self-adhesive labels will generate as much liner waste as self-adhesive labels are applied on their goods.
- the amount of waste liner material thus generated can be huge and these industries are usually equipped with automated collecting means for collecting the waste liners, as described e.g., in WO20051 1 0902. In most cases, the huge amounts of waste liners thus collected are in the form of dense, bulky masses, usually rolls or stacks.
- the collected release coated sheet waste material may be conveyed with supplying means (21 0), such as a conveying belt, to a supply station (21 ).
- the collected material is in the form of dense, bulky masses (29a), such as rolls or stacks of liners, which cannot be ground as such in conventional dry-grinding lines
- the material is first supplied from supply station (21 ) to a pre-shredding station (22), breaking the dense masses of sheet material into looser chunks and lumps of smaller sizes suitable for being ground in dry conventional grinding stations.
- Pre-shredding stations suitable for the purpose of the present invention can be found, as illustrative purpose and in no way being restricted thereto, in the catalogue of the company SSI Shredding Systems (cf.
- the thus pre-shredded chunks of waste material are comparable in size and texture with more traditional sources of household waste sheet material comprising newspapers, magazines, packaging, etc., and may from here on be blended with other such sources of waste material.
- the release coated waste material, blended or not with other sources of waste material can be prepared for primary grinding by mixing it and removing all foreign bodies such as metal clips, staples, plastic sheets in case of cellulose waste material, and the like.
- the material can be shredded and dry-ground into particulate material in a grinding station (23), (24). It is often preferred to use several grinders, which can be grouped as a primary, coarser grinder (23) and a secondary, finer grinder (24).
- the primary grinder (23) which may itself be composed of a cascade of several grinders (23a), (23b), (23c)
- the thus prepared waste material is shredded into small pieces, preferably into stripes of an average length comprised between 5 and 30 mm, more preferably, between 7 and 20 mm, most preferably between 1 0 and 1 5 mm. For some applications, this size is sufficiently small and the material needs no further comminution steps.
- the primary grinding station (23) may be connected to an additive supply means (28a) to add further additives such as flame retardants, hydrophobic materials, pest repellents, and the like.
- the material may also be blended with other sources of waste material in the primary grinding station (23).
- the stripes thus obtained may also undergo a crimping process to yield an insulating material with higher specific volume. For many applications, however, it is necessary to further reduce the size of the particles to lower than 1 0 mm.
- the stripes of waste material may be transferred to a secondary grinding station (24).
- the secondary grinding station (24) may be composed of a cascade of several grinders (24a), (24b), (24c).
- the size of the stripes is further reduced to an average particle size smaller than 4 mm, preferably smaller than 2 mm; more preferably smaller than 1 mm.
- the secondary grinding station (24) may be connected to an additive supply means (28b) to add additives. Suitable primary and secondary grinding stations may be found, for example, in
- Grinding includes spraying of a limited amount of liquid onto the material as well as the formation of a suspension of the treated material in a liquid as in conventional paper repulping processes.
- the treated material is in a solid form.
- the particulate material 26(b) is transferred to a treating station (26c) for e.g., shaping the material into sheets, panels, batts, etc. and/or for packaging.
- the treating station (26c) may be connected to an additive supply means (28c) to supply e.g., water, an organic or mineral binder (e.g., cement), flame retardant, a dye, or the like.
- Treating station (26c) may comprise any means for shaping the recycled particles in any desired form, such as a press to form e.g., panels, means for dewatering the slurry to form sheets, in case water was added after dry-grinding the material, curing means, such as convection, induction or IR-ovens, UV-station, etc, in case a binder is used, and the like.
- the recycled material (1 0) can then be removed with conveying means (21 1 ) and is ready for commercialisation as insulating material as dry particulate, sheets, panels, batts, and the like, as is discussed below.
- the comminuted material may be advantageously used as filler in concrete, cementitious mixtures and other building materials.
- the comminuted release coated material can also be used as casing soil in replacement of, or complement to peat casing soil used for growing some vegetables and mushrooms.
- the treating station (26c) could include composting means and the additive supply means (28c) may further include a source of nitrogen and possibly a source of a hydrophobic material.
- Composting and nitrogenation are preferably carried out off-line from the grinding line, as illustrated by the broken line (26b). It can also be taken profit of the advantageous behaviour of the materials produced with the method of the present invention by using it as additive to earth, to enhance the water balance and water flow in said earth and soil.
- the treated material shows a relatively high heat capacity, storing energy that it releases gradually to ambient. This property could partly explain the excellent results obtained with mushrooms.
- the compost layer is the layer containing fermented manure, straw and some different additives, and acts as feeding stock for the growth of the mushrooms. This compost layer is covered by casing soil onto which the mushrooms start growing.
- the current problem with this system is the initial rising of the temperature of the compost in the first days of the process. This leads to too fast and uncontrolled mycelium growth.
- the traditional way of solving this problem is to cool down the whole atmosphere in the room. Besides costing a lot of energy, the negative effect of the cooling is a slowing down of the entire growth cycle by several days.
- the property of the present material to act as a heat capacitance, absorbing thermal energy that it releases gradually in time can advantageously be used in heated pillows and compresses to be applied on the skin, or to not only passively insulate a piece of good contained in a package, but actually actively heating it.
- release coating is mechanically released from the carrier during the primary or secondary grinding stages (23), (24). This may happen in particular during the dry-grinding stage, which generates intense shear stresses that may provoke cohesive failure in the carrier material, close and parallel to the interface between carrier and release coating. This phenomenon is observed in particular with cellulose carrier material of rather low density, wherein the hydrogen bonds between not so closely packed cellulose fibres are weaker than the interfacial bond between the release agent and the cellulose carrier. Cohesive failure is less likely to happen with thermoplastic carriers, but some separation of the release coating was observed nonetheless with some particular materials combinations, in particular when low surface energy thermoplastic carriers were used, such as polyolefins.
- the separating station may comprise any known means for separating two bodies having differing physical and chemical properties, such as, for example, a cyclone, a floatation station, a filter, and ultrasonic or electrostatic separation means, and any combinations thereof.
- the release agent rich fraction (27) may further be processed in a treating station (27a) to to be suitable for use as a filler or a binding agent in concrete, cementitious, asphalteous, clay or lime mixtures and coatings.
- the release agent rich fraction (27) may be added to a stream of cellulose insulation material based on waste paper other than release coated, such as newspapers, magazines, packaging material, and the like, to enhance the properties thereof.
- the carrier rich fraction (26) may further be processed in a treating station (26a) to produce, as discussed above in respect of station (26c) in Figure 2(a), an insulating material of more accurately controlled composition or, alternatively, to produce recycled paper by methods well known in the art in case of cellulose carriers.
- the recycled product (1 0a) can then be removed with conveying means (21 1 ).
- the treated material can be used as insulating material (1 0) to be applied in different forms and different ways to a surface;
- the insulating material (1 0) may be blown in a dry form with a gun (20) into a cavity (1 3) formed by two panels or walls or any retainer (1 ).
- the material can be blown through a hole drilled on top of the outer panel of a wall.
- the insulation material (1 0) must be blown until it reaches the appropriate density. With this form of application settling is observed and may reach as much as 20% with state of the art cellulose insulation materials. It is usually observed that a lower degree of settling occurs with higher initial densities.
- the level of settling is very much reduced with the insulation material of the present invention since the silicone acts somewhat like a loose binder that stabilizes the structure.
- the front panel may be withdrawn if desired as, depending on the degree of compaction thereof, the material will remain in place.
- the application of the insulating material (1 0) by dry blowing has the advantages of minimizing air gaps especially around inserts or intricate regions. It is, however, recommended to call an experienced installer for dry blowing the insulation material as the control of the density, settling, and pressure applied on the panels must all be controlled carefully.
- the insulating material (1 0) in a particulate form may also be sprayed in place with a gun (20) against a wall (1 ) or even a horizontal ceiling by mixing it with a fluid like water. Upon drying the material will remain in place thanks to the hydrogen bonds between cellulose hydroxyl groups created by the fluid such as water.
- the carrier (2) is a thermoplastic material
- the use of a binder may be necessary in this type of applications.
- This technique of wet spraying is schematically illustrated in Figure 3(b) and it has the advantage over dry blowing of requiring no cavity (1 3) to fill, of generating substantially less dust upon application, and of settling much less. Air gaps are minimized with this technique, thus enhancing the insulation properties of the material.
- the insulation material (1 0) in a particulate form for blowing/spraying can be supplied as preforms (1 0A) such as batts, sheets, mats, tiles, or even bricks.
- a binder may be necessary, but not mandatory, as with cellulose materials sufficient integrity of the preforms may be obtained through a wet process. If a binder is used, it can be organic, like a glue or a resin, or mineral like cement, gypsum, etc. Fillers like sand, talc, etc. may be used too.
- the preforms (1 0A) may have a sandwich structure with two skins holding a central core made of the insulating material (1 0). In some instances, a single skin may be sufficient.
- the role of the skins is not restricted to mechanical integrity of the preforms (1 0A), but may advantageously act as a barrier against moisture, gas, radiations, etc. and can therefore be useful when a binder is used too.
- Figure 3 illustrates embodiments of applications in the insulation of a building.
- the insulation material of the present invention can be used in other fields such as the transportation industry, e.g., in applications as disclosed e.g., in DE202005501 1 581 and US200202542 1 for the automotive industry and in DE4331 567 for the aircraft industry. It can also be used on sound dampening wall along roads. Other applications can be found in the textile industry, as fill for quilted garments and blankets or even for upholstery and mattresses.
- the insulation material of the present invention has an even lower embodied energy than most traditional cellulose insu lation materials for the following reasons.
- Traditional cellu lose material is generally made of recycled paper of various origins, including newspapers, printed matter, wrapping papers, etc., which may need an additional treatment to eliminate inks and volatile components before being reprocessed into insulation material. This additional treatment usually involves a thermal treatment with chemicals, which is not necessary with waste liners collected from industrial end users, as the material is homogeneous and devoid of any printed matter.
- Another advantage of the insulation material of the present invention is that packaging volume can be reduced with respect to most traditional cellulose insulation materials on the market.
- Particulate cellulose insulation material is generally su pplied in 1 0- 1 5 kg packages with a degree of compaction which is lim ited by the ability of the compacted material to fluff up to the desired density upon dry blowing thereof.
- the degree of compaction of the packaged materiel is about double of the desired density of the insulation material in place when applied d ry, i.e., with one package of volu me Vi , a cavity of volume of the order of 2 x Vi can be filled . It has been found that insulation material according to the present invention could be dry blown to a desired density even when the material was packaged with a degree of compaction of three or four (i.e., down to a volume of the order of 1 ⁇ 2 Vi).
- the insulation material obtained with the method of the present invention is advantageous over other similar materials of the prior art, even without separation of the release coating from the carrier, because the presence of the generally crosslinked release agent such as silicone gives the particulate material a cohesion which cannot be found in the prior art materials without the addition of a separate binder.
- This cohesion is advantageous in dry blow applications (cf. Figure 3(a)) because it reduces substantially the amount of dust upon blowing, and it especially reduces substantially the level of settling of the material, yielding an insulation layer stable in time and homogeneous throughout the height of the insulated wall.
- wet spraying applications cf.
- VOC volatile organic compounds
- allergies cf. e.g., http:/ /www.healthyhouseinstitute.com/a_688- Cellulosejnsulation.
- VOC volatile organic compounds
- large volumes of release coated sheet material can be recovered directly from companies, a control on the quality of the waste material to be recycled never afforded to date is possible, thus allowing to provide a "premium version" of VOC-free insulation material.
- the liner producers (1 00) treat their liners with flame retardant to yield flame retarded liners (FR-liners (1 01 b) (cf. Figure 4).
- the amount of flame retardant for treating a given amount of liner material is less if applied directly to the pulp by the liner producer, upstream of the life cycle of the material, than if added at any stage after collection of the liner waste material.
- the flame retardant is more homogeneously distributed at the level of the cellulose fibres, it is likely that higher fire resistance classes can be reached by the paper producer with the same amount of flame retardant.
- FR-liners would be sold at a higher cost to the printer (1 02 b) who would sell their labels applied on flame treated liners to the end users (1 03b) to an overall higher cost, comprising the non refundable price of a label applied on a non flame treated liner + a refundable, recycling deposit for recycling the liner.
- the waste FR-liners are collected as described above, and the recycling deposit is refunded to the end user, by the recycling operator, who can save money in flame retardant, and transportation.
- the material needs only be, preferably, dry-ground to the desired particle size prior to being used as insulating material in the building, transportation, furniture, or apparel industries (1 08) without the need of adding any additional flame retardant.
- An insulating material according to the present invention is particularly advantageous because, on the one hand, it offers a solution for recycling huge volumes of release coated sheet material such as liners, which is otherwise very difficult to recycle and, on the other hand, because the properties of this material, in particular volumetric stability in time, are superior to most existing comparable products in the market, obtained from other sources of sheet materials.
- the insulating material (1 0) of the present invention comprises shredded and ground particles of recycled release coated sheet material possibly admixed with further additives to control the resistance to flame, moisture, and pests, such as insects, bugs, rodents, etc. as discussed supra.
- boric acid or any salt thereof is the most commonly used flame retardant and is particularly advantageous, since not only does it provide the required resistance to flame but it also provides moisture, mould, and microbial resistance and acts as a repellent against pests of different kinds.
- Salts of boric acid that can be used are for example, borax with different levels of hydratation, such as borax penthahydrate and borax decahydrate.
- Boric acid or salts thereof may be applied in an amount comprised between 1 and 50 wt%, preferably between 1 0 and 45 wt%, more preferably between 25 and 40 wt%. It can be added to the recycled material as dry powder but is in some cases mixed with water and wet sprayed into the recycled material.
- boric acid or salt thereof such as mono- or d iammonium sulphate, aluminium sulphate, aluminium hydroxide, soda ash, an hydrous silica gel, diammoniu m phosphate, sodium tetraborate, ferrous sulfate, zinc sulfate, and mixtures thereof, as disclosed, e.g ., in US41 82681 .
- the mixture of recycled material and additives can then be used as such for blowing /spraying dry or with addition of some water to enhance adhesion to non horizontal walls (cf. Figure 3(a)&(b)) or, alternatively, can be formed into a sheet, batt, or the like by pressing optionally with admixture of a binder and /or sandwiched between two sheets.
- additives or fillers may of course be added as well known by the persons skilled in the art.
- Material clogging in a hose is a major issue when spraying the insulation material in place. This is particularly sensitive when there is a reduction of the tube diameter, e.g., for allowing access to thinner cavities.
- a tube reduction connector is used to connect two hoses of different diameter, as can be found, e.g. , in http: / /www.x- floc.com/en/zubehoer/schlaueche-zub.html. Clogging often occurs at such reduction connectors when the spraying is resumed after an interruption.
- Clogging is to be avoided, not only because it is time consuming for the operator to stop the spraying, disconnect the hoses and clean them, before connecting them again and resuming the spraying, but also because the filling of a cavity with insulating material to a homogeneous density is better achieved if the spraying of material is continuous, and becomes very difficult to achieve if made in several spraying shots.
- the test carried out intends to simulate a blowing situation wherein, at the end of cavity filling, the operator gives a last extra shot of material to prevent settling. At that moment, pressure continues to build up in the hose while there is hardly any material flowing out anymore and material density builds up in the hose. After 20 seconds, the operator finally switches off the machine and inserts the hose into another, empty cavity. At that moment, the flow in the connecting part between the 2 hoses is very critical, and if not sufficiently high, clogging occurs.
- COMPARATIVE one of the major cellulose brands available on the Belgian market with an average particle length of about 4 mm.
- Tests were performed 5 times with each material by filling a first cavity of dimensions 1 000 X 400 X 1 00 mm, continuing blowing for 20 s after filling of the cavity to build up the pressure within the hose and switching off the pump. After 30 s, the pump was activated again with the hose introduced into a new, empty cavity.
- the present invention therefore not only offers an economically and ecologically viable solution to the recycling of release coated liners, which are particularly difficult to recycle, but also provides an alternative insulating material with enhanced properties over the conventional insulating materials available in the market.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Architecture (AREA)
- Physics & Mathematics (AREA)
- Environmental Sciences (AREA)
- Mechanical Engineering (AREA)
- Structural Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Acoustics & Sound (AREA)
- Wood Science & Technology (AREA)
- Food Science & Technology (AREA)
- Sustainable Development (AREA)
- Health & Medical Sciences (AREA)
- Mycology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
A method for treating a plastic and/or paper waste material comprising the following steps: (a) Collecting a plastic and/or paper waste material, preferably paper, highly preferably a release coated cellulose or polymeric sheet material, said material already comprising selected new-use additive preferably selected from flame retardant, hydrophobic material, pesticide, herbicides, minerals, nutrients and/or mixtures thereof (b) Preparing the collected material by mixing, separating foreign bodies like metals, etc., and feeding it to a grinding station; (c) In one or several grinding stations shredding and grinding the materials into small pieces.
Description
Pre-engineered recyclable products
Technical Field
The present invention relates to pre-engineered recyclable products (pre-engineered waste material) such as plastic products and paper products whereby specific tailored additives are already incorporated into to the product formulations, such that the resulting treated waste material of said products can be more easily transformed into a new use or application without having the need to add such specific tailored additives for the new application upon manufacturing the product for its new use.
Background for the invention
Waste material is everywhere and numerous efforts have been taken to find ecologically and economically jusitified solutions to address this challenge.
A typical example of waste material are paper related products, among others, finding its origin in the label manufacturing. Self adhesive labels, films, and tapes have become very popular for their versatility and ease of use, since no extra glue is required to make them adhere to a substrate. They are used extensively in offices and by school children of course, but also large volumes are used by industries for labelling their products. The self-adhesive labels are provided attached to a release liner made of paper or a polymeric carrier and usually coated at least on one side with a release agent, most often consisting of a silicone release layer, which provides a release effect against the adhesive of the label. Other release agents are sometimes used, such as wax, paraffin, low surface energy fluorinated compounds, etc. Examples of silicone coated liners are given in US5275855, JP07279099, and US6036234. Silicone or other release agent coated liners are also used more generally as backing in the production of films, such as PVC films. The total global consumption of release liners in 2008 is believed to be around 32 Billion square meter of coated product,
which is equal to 75% of the surface area of Switzerland. Approximately 85% of this material is paper based and 1 5% is plastic based (cf. http:/ /en.wikipedia.org/wiki/Release_liner).
After use of the labels, films or tapes supported on said carriers, the liners are pure waste and must be disposed of. Considering the volumes mentioned above, there is a great source of waste, which is coming under the scrutiny of several governments which intend to tax the disposal thereof as packaging material. The building and transportation industries are making more and more use of cellulose materials coming from old newspaper, cardboard, etc. to manufacture heat and acoustic insulating materials in the form of loose fibrous materials, fibrous mats with or without skins, panels of varying stiffness, and even hollow blocks; the manufacture of blocks and panels may require the use of a binder, a glue or a cement.
Next to paper waste material, products made from or incorporating plastic and or rubber materials are part of almost any aspect of daily life. Some of the prevalent primary polymer types in the waste plastic materials are ABS, HIPS, PP, PET and PC. Generally, the plastic or rubber materials that are used to create these products are formed from virgin plastic materials that are produced from petroleum and are not made from existing stock. Literally millions of tons of plastic and rubber are produced and consumed each year. Recycling plastic materials obviates the need for disposing of the plastic materials or product. Further, in an era of reduced and more expensive petroleum material cost, the expense of production of the plastic is reduced as less further petroleum is necessary for the production. When plastic materials are sent to be recycled, the feed streams rich in plastics may be separated into multiple product and by product streams. Generally, the recycling processes can be applied to a variety of plastics-rich streams derived from post-industrial and post- consumer sources. For example, these streams may include plastics from office automation equipment (printers, computers, copiers, etc.), white goods (refrigerators, washing machines, etc.), consumer electronics (televisions, video cassette recorders, stereos, etc.), consumables (diapers, plastic utensils, plastic cups, etc.), automotive shredder residue, packaging waste, household waste, building waste and industrial scrap (molding, non-woven, fiber, extrusions, etc.).There continues to be a need for systems and methods that will further improve the
efficiency with which waste plastic and rubber materials are reclaimed and the quality of the resultant reclaimed plastic. In particular, there is a continuing need for systems and methods that are useful for processing waste plastic material from any prospective plastic waste stream into reclaimed polymeric materials. Many variations exist, depending on at least the nature of the shredding operation. Plastics from more than one source of durable goods may be including in the mix of materials fed to a plastics recycling plant, which means that a very broad range of plastics may be included as potential sources of waste plastic material.
From the above it is clear that there remains in the art a need for finding and stimulating routes to recycle waste material. In parallel, there remains a lot to do in the fields of recycled waste material such as paper and of insulation materials for the building, transportation, and other industries to provide a new application/new product, via an environmentally, economically viable and sustainable route, thereby providing acceptable properties such as meeting specifications required for a given application.
The present invention now proposes a solution to these and other problems in the art of recycling.
Summary of the invention
According to one specific embodiment, the present invention concerns a method for treating a plastic and/or paper waste material comprising the following steps:
(a) Collecting a plastic and /or paper waste material, preferably paper, highly preferably a release coated cellulose or polymeric sheet material, said material already comprising selected new-use additive preferably selected from flame retardant, hydrophobic material, pesticides, minerals, nutrients and/or mixtures thereof
(b) Optionally preparing the collected material by mixing, separating foreign bodies like metals, etc., and feeding it to a grinding station;
(c) In one or several grinding stations shredding and grinding the materials into small pieces
The present invention can be understood more readily by reference to the following detailed description, examples, drawing, and claims, and their previous and following description. However, it is to be understood that this invention is not limited to the specific devices, systems, and/or methods disclosed unless otherwise specified, as such can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting. The following description of the invention is provided as an enabling teaching of the invention in its best, currently known embodiment. To this end, those skilled in the relevant art will recognize and appreciate that many changes can be made to the various aspects of the invention described herein, while still obtaining the beneficial results of the present invention. It will also be apparent that some of the desired benefits of the present invention can be obtained by selecting some of the features of the present invention without utilizing other features. Accordingly, those who work in the art will recognize that many modifications and adaptations to the present invention are possible and can even be desirable in certain circumstances and are a part of the present invention. Thus, the following description is provided as illustrative of the principles of the present invention and not in limitation thereof.
According to one embodiment of the present invention, the present invention is directed to pre-engineered recyclable products such as plastic products and paper products whereby specific tailored additives are added to the product formulations, such that the treated waste material of said products can be transformed into a readily available second product without having the need to add such specific tailored additives upon the making of the second product. In general terms, the present invention is directed to recycling of a recyclable product said recyclable product already formulated with a selected additive whereby said selected additive has a functional characteristic in support of the new application of the recycled product referred to as "new-use additive". Said additive may also have a
functionality within the recyclable product but aims at providing the functionality needed in support of the new application. Examples of this have been described in US371 8536A, EP2363544A1 , WO201 1 / 1 07476A2 and others. The functionality needed in support of the new application will in most cases differ from the functionality of the additive present within the recyclable product composition. It can be understood that if said additive interferes with the recyclable product properties that necessary precautions may be taken such as protection in a specific form like encapsulation or absorption within porous structures.
In a number of specific cases, the recyclable product may be formulated with a "dormant additive" , the definition of this "dormant additive" being that the physical properties of the recyclable product either containing the dormant additive or not, and this in relation to its intended application are not substantially different, and both types of recyclable materials with an without dormant additive are interchangeable. As a result of this, a dormant additive will in most cases be present in a homogeneous mixture with the original product formulation and components rather than as a physically distinct part or layer in the recyclable product.
According to one specific embodiment of the present invention, the key difference of the present invention with previous attempts to recycle plastic and/or paper waste material such as release coated sheet material, is that the recyclable release coated sheet material composition is already formulated with an additive being key to the functionality needed for a given new use of the recycled product. A preferred additive for paper waste material are fire retardants.
In case of paper waste material, such as release coated sheet material, the efficacy of the method of the present invention is further enhanced if the release coated cellulose or polymeric sheet material is collected from producers and end-users thereof in the form of dense, bulky masses, such as rolls and stacks, which are pre-shredded into smaller, less dense masses in preparation to step (b).
Great advantages in the fields of insulation materials and filling for upholstery which will be discussed more in detail below can be reached if said collected material already comprises a flame retardant, such as boric acid or any salt thereof. The flame retardant would be added to the sheet carrier by the sheet manufacturer, thus anticipating, driving and promoting the recycling of the produced material.
The present method is highly advantageous as it is possible for certain release agent coated sheets to mechanically separate, during the primary and /or secondary dry-grinding operations, a substantial fraction of the release coating from the sheet carrier, in the absence of any chemical treatment. The two fractions may then be separated in a separating station, separating the incoming stream into a first, carrier rich fraction and a second, release agent rich fraction. The separating station may comprise one or more of a cyclone, a filter, and an ultrasonic or an electrostatic separation means. This embodiment is very advantageous as it permits the use of the carrier rich fraction to be further processed to produce either insulation materials, e.g., in the form of insulation batts or sheets; or to incorporate a conventional repulping process in an aqueous medium for producing recycled paper. Note that insulation materials need not necessarily be formed from a carrier rich fraction, and are advantageously obtained directly from the comminuted release coated cellulose or polymeric sheet material, possibly blended with e.g., comminuted waste paper such as newspaper, to yield insulation materials of different grades, qualities, and prices. Alternatively, the cellulose and/or the release agent rich fractions may further be treated to become suitable for use as a filler, a binding agent or a viscosity modifier in concrete, cementitious, asphalteous, clay or lime mixtures and coatings, paints and other building materials
At any stage of the method, the collected or treated material may be blended with cellulose or polymeric sheet waste material from other origins, or with a release agent, for example from the release agent rich fraction obtainable from the separation discussed supra. Alternatively, the second, release agent rich fraction separated from the carrier material can be blended with ground cellulose or polymeric sheet waste material from other origins in order to control the content in release agent of the final material.
In case of a carrier comprising essentially cellulose which can be separated from the release coating by dry-grinding as discussed above, the cellulose rich fraction thus obtained may be further processed in a wet shaping station to form sheets of paper.
Some applications, such as in the building industry or upholstery, require the use of a flame retardant. In case the collected material does not comprise a sufficient amount of flame retardant for one such application, a flame retardant, preferably boric acid or any salt thereof may be added to, and mixed with the recycled material before, during or after the grinding steps (c).
A preferred source of release coated cellulose or polymeric sheet material is liners for holding self-adhesive labels or films. They can conveniently be collected at the liner manufacturers, the self-adhesive label base material manufacturers, the label printers, the producers of goods on which are applied self-adhesive labels, and so on, all of them generating large volumes of such liners. The release agent is generally one of silicone, wax, paraffin, polyurethane, fluorinated or acrylic based material.
Recycled material obtained from the method discussed above can be used in various applications facilitated by the new-use additive which was already incorporated into the formulation of the waste material composition. First, the thermal and acoustic insulating properties thereof can advantageously be used for insulating thermally and/or acoustically any of:
• a wall, panel or roof in the field of buildings,
· a panel in the field of transportation,
• a sound dampening wall along roads;
• a quilted piece of garment or blanket, or for filling
• a mattress, or upholstery,
• a package in the field of packaging and storage and transportation of goods.
Alternatively the recycled release coated cellulose material may be used for the production of recycled paper in a conventional wet process, provided a sufficient fraction of the release agent was removed during the dry-grinding process. Similarly, thermoplastic carriers, if sufficiently separated from their release coating, may be used in any thermoplastic recycling process well known in the art.
Another field of applications of release coated cellulose sheet material is casing soil or growing medium used for growing some vegetables and mushrooms, or as additive to earth to enhance the water balance and water flow in said soil or earth. Preliminary results have shown that the treated material offered an optimal water buffering effect for the growth, e.g., of mushrooms. Furthermore, the material seems to act as a heat capacitor, absorbing heat, which it gradually releases in time. This property may also partly explain the excellent growth of mushrooms observed with the present material. This property makes the material suitable for other applications such as hot pillows, or hot compresses to be applied onto the skin. Similarly, if a packaged good must be maintained at a high temperature, such as food, the heat capacitive properties of the material can be used to this effect, by e.g., lining the walls of the packaging with the present material, preferably sandwiched between two walls of the packaging. Hydromulching / hydroseeding is another application wherein the present material shows excellent potential. Hydromulching is applying a slurry of water, wood fibre mulch, and often a tackifier, to prevent soil erosion. Hydroseeding, often used as synonym of hydromulching, is a method for planting seeds, e.g., in the field of grass planting, comprising the steps of mixing mulch, seed, fertilizer, and water in the tank of a hydromulching machine. The mixed material is then pumped from the tank and sprayed onto the ground. The material is often referred to as a slurry, much like a soupy batch of green papier-mache. Once applied to the soil, the material enhances initial growth by providing a microenvironment beneficial to seed germination. The use of traditional recycled paper cellulose fibre material in hydromulching/hydroseeding applications is known. The use of recycled release coated cellulose sheet material treated according to the present invention instead of traditional
recycled paper cellulose fibre seems advantageous in that the present material has a significantly lower tendency to create a dry crust as wel l as clogging together. Without wishing to be bound by any theory, it is believed that the release coating material present in the material contributes to this effect.
The present invention also concerns an insulation material comprising shredded recycled material obtainable by a method as discussed supra. In particular, it is preferred that the paper or thermoplastic sheet material is a liner for adhesive labels, tapes, or films, and is preferably coated with sil icone as release agent and the carrier is as follows:
(a) the cellulose sheet material is paper, preferably glassine paper or kraft paper, or, alternatively,
(b) the polymeric sheet material is a thermoplastic fi lm, preferably selected from PE, PP, or PET. The insulation material of the present invention is preferably in a form suitable for blowing it dry into a cavity, as loose fill onto a surface, or wet against a surface. Alternatively, it can be in the form of a batt or a sheet.
Brief description of the Figures
For a fuller understanding of the nature of the present invention, reference is made to the following detailed description taken in conjunction with the accompanying drawings in which :
Figure 1 : shows a transversal cut of a release coated carrier, typically used as liner for adhesive labels and the l ike.
Figure 2A: shows a schematic representation of a first embodi ment of the method of the present invention.
Figure 2B: shows a schematic representation of a second embodi ment of the method of the present invention.
Figure 3: shows three embodiments for the appl ication of an insulating material in a building or means of transportation ;
Figure 4: is a flowchart illustrating the complete life cycle of a release coated sheet material form production, use thereof as l iner, to recycli ng thereof, with the original sheet carrier comprising flame retardant.
Detailed description of the invention
According to one specific embodi ment, the present invention offers a new and advantageous solution to the difficult problem of recycling release coated sheet carriers (1 ), in particular silicone coated carriers which are widely used e.g., as liners for self adhesive labels, tapes, films and the like. As illustrated in Figure 1 , such liners comprise a carrier (2) which is often a cellulose material, such as glassine paper or kraft paper, or alternatively, the carrier (2) can be a thermoplastic film, made of a polyolefin like PE or PP, or of a polyester such as PET, PEN, etc. In the present context, the term "sheet" is used to designate "a wide expanse or thin piece of something" (The Chambers Dictionary (2000)), which can be continuous or in discreet pieces of regular or irregular geometry, presented in any form such as rolled, stacked, or even crumpled. The carrier (2) is coated on one or two sides with a release agent (3), which provides a release effect against any type of sticky material such as the adhesive on a label. The release agents (3) most widely used on liners for adhesive labels, tapes, films, and the like, are crossli nkable silicones, but other release agents such as wax, paraffin, polyurethane, fluorinated or acrylic based material may also be found. Depending on the type of release agent and the intended use of the coated sheet material, the release agent is generally applied in an amount of the order 0.2 to 1 0.0 g / m2, which is enough to degrade the quality of paper recycled with such cellulose based liners by traditional wet paper repulping processes, because the disintegration of the fibres is insufficient and the resin particles tend to stick on the rolls and felts. This is a major inconvenience because unlike newspapers and the like, paper used for liners is generally produced from virgin material , which has never gone through any recycling cycle and has therefore a high ecological value. As reviewed above, solutions exist to overcome this drawback associated with conventional
wet re pul ping processes, but they require additional treatment steps and chemicals. The problem is even more acute when the carrier is a thermoplastic film since the generally crosslinked release coating cannot be easily separated from the carrier and may not be melted and reprocessed therewith.
According to one specific embodiment, the present invention provides a particularly advantageous alternative method for recycling both cellulose and thermoplastic based release coated carriers (1 ) such as liners. In the present invention, the release coated carrier may be processed to form a novel and advantageous insulating material (1 0) suitable for the sound and thermal insulation of buildings and of sou nd barriers along the roads, as well as of means of transportation such as automotive vehicles, trains, ai rplanes, and the like. It can also be used to fill quilted garments and blankets, or upholstery. Other applications are possible, such as growing medium for mushrooms, vegetables, plants, etc. , or as heat capacitor in heated pillows or compresses to be applied on the skin.
In some cases of cellulose sheets coated with a release agent, it is possi ble to mechanically separate a sufficient amount of release agent from the cellulose carrier during a mechanical g rinding step (23), (24). In this case, a cellulose rich fraction may be separated from a release agent rich fraction. Each fraction can be treated separately in conventional recycling processes, or combined with other sources of materials for further processing.
The waste material can be collected from the producers and end users of for example adhesive labels, etc. like offices and administrations, but it is preferably collected from industries generating large amounts of waste liners. In particular, the waste material can be collected from liner manufacturers, self-adhesive labels manufacturers, label printers, producers of goods on which are applied self-adhesive labels, and the like. These represent a particularly advantageous source of "clean" waste release coated carriers, available in large quantities. Another group are the producers and /or users of cast polymeric sheet materials or self-adhesive tapes whereby the liner is being used as a support during the cast or coating process and is optionally being removed prior to selling the material to the end
users. Liner manufacturers will of course generate some waste, be it for insufficient quality of a particular product batch or at start or end of a roll. The manufacturers of self-adhesive label base material combine large rolls of release coated material with corresponding rolls of label base material to form a 4-layer laminate comprising the carrier, the release coating, the adhesive, and the label support. The thus produced laminate is then slit to the desired width of the labels, thus generating large amounts of waste. The same applies with label printers, if different from the former, as they may be in charge of the final cutting of the labels. Finally, the producers of goods on which are applied self-adhesive labels will generate as much liner waste as self-adhesive labels are applied on their goods. The amount of waste liner material thus generated can be huge and these industries are usually equipped with automated collecting means for collecting the waste liners, as described e.g., in WO20051 1 0902. In most cases, the huge amounts of waste liners thus collected are in the form of dense, bulky masses, usually rolls or stacks. As illustrated in Figures 2(a) and 2(b), the collected release coated sheet waste material may be conveyed with supplying means (21 0), such as a conveying belt, to a supply station (21 ). If the collected material is in the form of dense, bulky masses (29a), such as rolls or stacks of liners, which cannot be ground as such in conventional dry-grinding lines, the material is first supplied from supply station (21 ) to a pre-shredding station (22), breaking the dense masses of sheet material into looser chunks and lumps of smaller sizes suitable for being ground in dry conventional grinding stations. Pre-shredding stations suitable for the purpose of the present invention can be found, as illustrative purpose and in no way being restricted thereto, in the catalogue of the company SSI Shredding Systems (cf. e.g., www.ssiworld.com/watch/industrial_paper.htm and www.ssiworld.com/watch/printers- waste.htm). At this stage, the thus pre-shredded chunks of waste material are comparable in size and texture with more traditional sources of household waste sheet material comprising newspapers, magazines, packaging, etc., and may from here on be blended with other such sources of waste material. The release coated waste material, blended or not with other sources of waste material, can be prepared for primary grinding by mixing it and
removing all foreign bodies such as metal clips, staples, plastic sheets in case of cellulose waste material, and the like.
At this stage, the material can be shredded and dry-ground into particulate material in a grinding station (23), (24). It is often preferred to use several grinders, which can be grouped as a primary, coarser grinder (23) and a secondary, finer grinder (24). In the primary grinder (23), which may itself be composed of a cascade of several grinders (23a), (23b), (23c), the thus prepared waste material is shredded into small pieces, preferably into stripes of an average length comprised between 5 and 30 mm, more preferably, between 7 and 20 mm, most preferably between 1 0 and 1 5 mm. For some applications, this size is sufficiently small and the material needs no further comminution steps. The primary grinding station (23) may be connected to an additive supply means (28a) to add further additives such as flame retardants, hydrophobic materials, pest repellents, and the like. The material may also be blended with other sources of waste material in the primary grinding station (23). The stripes thus obtained may also undergo a crimping process to yield an insulating material with higher specific volume. For many applications, however, it is necessary to further reduce the size of the particles to lower than 1 0 mm.
In these cases, the stripes of waste material may be transferred to a secondary grinding station (24). Like the primary grinding station (23) the secondary grinding station (24) may be composed of a cascade of several grinders (24a), (24b), (24c). In the secondary grinding station (24), the size of the stripes is further reduced to an average particle size smaller than 4 mm, preferably smaller than 2 mm; more preferably smaller than 1 mm. Here again, the secondary grinding station (24) may be connected to an additive supply means (28b) to add additives. Suitable primary and secondary grinding stations may be found, for example, in
WO2005 /0281 1 1 and in www.scribd.com/full/27498804?access_key=key-
2ed7qzqp8lal u l hgo86i.
Grinding includes spraying of a limited amount of liquid onto the material as well as the formation of a suspension of the treated material in a liquid as in conventional paper
repulping processes. Preferably , at all time during the shredding and processing the treated material is in a solid form.
As illustrated in Figure 2(a), from the end of the primary grinding station (23c) or, if it applies, of the secondary grinding station (24c), the particulate material 26(b) is transferred to a treating station (26c) for e.g., shaping the material into sheets, panels, batts, etc. and/or for packaging. The treating station (26c) may be connected to an additive supply means (28c) to supply e.g., water, an organic or mineral binder (e.g., cement), flame retardant, a dye, or the like. Treating station (26c) may comprise any means for shaping the recycled particles in any desired form, such as a press to form e.g., panels, means for dewatering the slurry to form sheets, in case water was added after dry-grinding the material, curing means, such as convection, induction or IR-ovens, UV-station, etc, in case a binder is used, and the like. The recycled material (1 0) can then be removed with conveying means (21 1 ) and is ready for commercialisation as insulating material as dry particulate, sheets, panels, batts, and the like, as is discussed below. Alternatively, the comminuted material may be advantageously used as filler in concrete, cementitious mixtures and other building materials.
Another possible application for the thus recycled material (1 0) is in hydromulching or hydroseeding applications, with enhanced results compared with similar applications with conventional paper, in particular, with respect to dry crust formation and clogging observed with conventional paper.
The comminuted release coated material can also be used as casing soil in replacement of, or complement to peat casing soil used for growing some vegetables and mushrooms. A study has been carried out with general waste paper with some encouraging, though not concluding results (cf. Sassine et a/., J. App. Sci. Res., 1 , (3): 277 (2005)). Some preliminary tests suggest that some of the problems mentioned in Sassine's paper could be solved with the material (1 0) produced from the present method thanks to the presence of the release agent, which yields a proper degree of hydrophobicity without affecting the moisture
buffering effect of cellulose. For such end-applications, the treating station (26c) could include composting means and the additive supply means (28c) may further include a source of nitrogen and possibly a source of a hydrophobic material. Composting and nitrogenation are preferably carried out off-line from the grinding line, as illustrated by the broken line (26b). It can also be taken profit of the advantageous behaviour of the materials produced with the method of the present invention by using it as additive to earth, to enhance the water balance and water flow in said earth and soil.
The treated material shows a relatively high heat capacity, storing energy that it releases gradually to ambient. This property could partly explain the excellent results obtained with mushrooms. The compost layer is the layer containing fermented manure, straw and some different additives, and acts as feeding stock for the growth of the mushrooms. This compost layer is covered by casing soil onto which the mushrooms start growing. The current problem with this system is the initial rising of the temperature of the compost in the first days of the process. This leads to too fast and uncontrolled mycelium growth. The traditional way of solving this problem is to cool down the whole atmosphere in the room. Besides costing a lot of energy, the negative effect of the cooling is a slowing down of the entire growth cycle by several days. In the recent years, techniques have been developed to only cool down the compost layer and not the entire atmosphere of the room anymore. This necessitates cooling tubes to be integrated in the mushroom beds which is a costly exercise investment wise. The relatively high specific heat of the present material allows to reduce the temperature increase of the compost in the first days, thus replacing the use of a cooling system. The thermal energy accumulated by the present material during the first days of growth is released to the system in the following days thus enhancing growth of the mushrooms. Additional benefit of the cellulose fibres added to the compost would be the increase of water content so that the nutrients become more easily available for the mushroom growth.
The property of the present material to act as a heat capacitance, absorbing thermal energy that it releases gradually in time can advantageously be used in heated pillows and
compresses to be applied on the skin, or to not only passively insulate a piece of good contained in a package, but actually actively heating it.
In some cases it is possible that a substantial fraction of the release coating is mechanically released from the carrier during the primary or secondary grinding stages (23), (24). This may happen in particular during the dry-grinding stage, which generates intense shear stresses that may provoke cohesive failure in the carrier material, close and parallel to the interface between carrier and release coating. This phenomenon is observed in particular with cellulose carrier material of rather low density, wherein the hydrogen bonds between not so closely packed cellulose fibres are weaker than the interfacial bond between the release agent and the cellulose carrier. Cohesive failure is less likely to happen with thermoplastic carriers, but some separation of the release coating was observed nonetheless with some particular materials combinations, in particular when low surface energy thermoplastic carriers were used, such as polyolefins. In this case, however, the failure was more interfacial. Regardless of the nature of the failure, if a substantial fraction of the release agent may be separated from the carrier material, it may be interesting, as illustrated in Figure 2(b), to profit of this debonding to actually separate the material stream in two fractions: a carrier rich fraction (26) and a release agent rich fraction (27) in a separating station (25). The separating station may comprise any known means for separating two bodies having differing physical and chemical properties, such as, for example, a cyclone, a floatation station, a filter, and ultrasonic or electrostatic separation means, and any combinations thereof. The release agent rich fraction (27) may further be processed in a treating station (27a) to to be suitable for use as a filler or a binding agent in concrete, cementitious, asphalteous, clay or lime mixtures and coatings. Alternatively, the release agent rich fraction (27) may be added to a stream of cellulose insulation material based on waste paper other than release coated, such as newspapers, magazines, packaging material, and the like, to enhance the properties thereof.
The carrier rich fraction (26) may further be processed in a treating station (26a) to produce, as discussed above in respect of station (26c) in Figure 2(a), an insulating material of more accurately controlled composition or, alternatively, to produce recycled paper by methods well known in the art in case of cellulose carriers. The recycled product (1 0a) can then be removed with conveying means (21 1 ). The further treatment of both fractions in treating stations (26a), (27a), in particular if it concerns producing recycled paper with the cellulose rich fraction, needs not necessarily be carried out continuously in the same production apparatus but, as illustrated by the broken lines (26), (27), it may be carried out in another plant.
As illustrated schematically in Figure 3, the treated material can be used as insulating material (1 0) to be applied in different forms and different ways to a surface; As shown in Figure 3(a) the insulating material (1 0) may be blown in a dry form with a gun (20) into a cavity (1 3) formed by two panels or walls or any retainer (1 ). In old houses, the material can be blown through a hole drilled on top of the outer panel of a wall. The insulation material (1 0) must be blown until it reaches the appropriate density. With this form of application settling is observed and may reach as much as 20% with state of the art cellulose insulation materials. It is usually observed that a lower degree of settling occurs with higher initial densities. The level of settling is very much reduced with the insulation material of the present invention since the silicone acts somewhat like a loose binder that stabilizes the structure. After settling of the material, the front panel may be withdrawn if desired as, depending on the degree of compaction thereof, the material will remain in place. The application of the insulating material (1 0) by dry blowing has the advantages of minimizing air gaps especially around inserts or intricate regions. It is, however, recommended to call an experienced installer for dry blowing the insulation material as the control of the density, settling, and pressure applied on the panels must all be controlled carefully.
The insulating material (1 0) in a particulate form may also be sprayed in place with a gun (20) against a wall (1 ) or even a horizontal ceiling by mixing it with a fluid like water. Upon
drying the material will remain in place thanks to the hydrogen bonds between cellulose hydroxyl groups created by the fluid such as water. In some cases, in particular—albeit not exclusively— when the carrier (2) is a thermoplastic material, the use of a binder may be necessary in this type of applications. This technique of wet spraying is schematically illustrated in Figure 3(b) and it has the advantage over dry blowing of requiring no cavity (1 3) to fill, of generating substantially less dust upon application, and of settling much less. Air gaps are minimized with this technique, thus enhancing the insulation properties of the material. Here again, calling an experienced installer is highly recommended. As an alternative to supplying the insulation material (1 0) in a particulate form for blowing/spraying, it can be supplied as preforms (1 0A) such as batts, sheets, mats, tiles, or even bricks. Here again, the use of a binder may be necessary, but not mandatory, as with cellulose materials sufficient integrity of the preforms may be obtained through a wet process. If a binder is used, it can be organic, like a glue or a resin, or mineral like cement, gypsum, etc. Fillers like sand, talc, etc. may be used too. Alternatively, the preforms (1 0A) may have a sandwich structure with two skins holding a central core made of the insulating material (1 0). In some instances, a single skin may be sufficient. The role of the skins is not restricted to mechanical integrity of the preforms (1 0A), but may advantageously act as a barrier against moisture, gas, radiations, etc. and can therefore be useful when a binder is used too.
As illustrated in Figure 3(c), such preforms can then simply be applied and fixed to a wall by means well known in the art. This solution has the advantage of being very simple and of requiring no particular expertise for its implementation, and it also generates virtually no dust in situ. On the other hand, air gaps are more difficult to avoid then with blowing/spraying techniques.
Figure 3 illustrates embodiments of applications in the insulation of a building. The insulation material of the present invention can be used in other fields such as the transportation industry, e.g., in applications as disclosed e.g., in DE202005501 1 581 and
US200202542 1 for the automotive industry and in DE4331 567 for the aircraft industry. It can also be used on sound dampening wall along roads. Other applications can be found in the textile industry, as fill for quilted garments and blankets or even for upholstery and mattresses.
When cellulose insulation material has a lower "embodied energy" than e.g., glass fibres or rockwool insulation materials, the insulation material of the present invention has an even lower embodied energy than most traditional cellulose insu lation materials for the following reasons. Traditional cellu lose material is generally made of recycled paper of various origins, including newspapers, printed matter, wrapping papers, etc., which may need an additional treatment to eliminate inks and volatile components before being reprocessed into insulation material. This additional treatment usually involves a thermal treatment with chemicals, which is not necessary with waste liners collected from industrial end users, as the material is homogeneous and devoid of any printed matter. Another advantage of the insulation material of the present invention is that packaging volume can be reduced with respect to most traditional cellulose insulation materials on the market. Particulate cellulose insulation material is generally su pplied in 1 0- 1 5 kg packages with a degree of compaction which is lim ited by the ability of the compacted material to fluff up to the desired density upon dry blowing thereof. Generally, the degree of compaction of the packaged materiel is about double of the desired density of the insulation material in place when applied d ry, i.e., with one package of volu me Vi , a cavity of volume of the order of 2 x Vi can be filled . It has been found that insulation material according to the present invention could be dry blown to a desired density even when the material was packaged with a degree of compaction of three or four (i.e., down to a volume of the order of ½ Vi). Without being bound by any theory, it is believed that this is explained by the fact that cellu lose liners being produced from virgin material, the cellulose fi bres are longer and stiffer than the ones of recycled newspapers and the like. Hence the particulate material obtained by grinding used l iners has a higher spring force than most traditional cellulose insulation materials which allows it to recover a high degree of fluffiness after compaction to at least 400% in a package. The higher degree of compaction is, of course, highly advantageous for storage and distribution of the products.
These two advantages: no thermal and chemical deinking stage required and higher degree of compaction of the packaged material lowers substantially the embodied energy of the insulation material of the present invention in both the energy required to manufacture the material and in the energy to deliver it.
Beside providing a cheap and easy recycling option for the problematic release coated sheet carriers, the insulation material obtained with the method of the present invention is advantageous over other similar materials of the prior art, even without separation of the release coating from the carrier, because the presence of the generally crosslinked release agent such as silicone gives the particulate material a cohesion which cannot be found in the prior art materials without the addition of a separate binder. This cohesion is advantageous in dry blow applications (cf. Figure 3(a)) because it reduces substantially the amount of dust upon blowing, and it especially reduces substantially the level of settling of the material, yielding an insulation layer stable in time and homogeneous throughout the height of the insulated wall. In wet spraying applications (cf. Figure 3(b)), a higher mechanical integrity of the sprayed layer is reached thanks to the release agent. For the manufacture of preforms (1 0A) such as batts, sheets, etc. (cf. Figure 3(c)), less to no binder is needed to yield self supporting preforms. In all cases, the presence of silicone particles dispersed within the bulk of the insulating material confers a degree of water repellence, which contributes to preserving the material from moisture. Furthermore, traditional insulation materials are made of recycled paper, of different origins (landfills) and of unknown nature (newspaper, packaging, etc.). For this reason and in spite of any thermal treatments discussed above, such insulation materials may still contain an undesired amount of VOC (volatile organic compounds) which contribute to indoor air pollution; and may be responsible for the development of allergies (cf. e.g., http:/ /www.healthyhouseinstitute.com/a_688- Cellulosejnsulation). With the present invention, it is possible to obtain an insulation material which, apart from the flame retardants, is virtually free of any VOC. In particular, since large volumes of release coated sheet material can be recovered directly from companies, a control on the quality of the waste material to be recycled never afforded to date is possible, thus allowing to provide a "premium version" of VOC-free insulation
material. In some cases it also provides a very efficient solution to the production of recycled paper from waste release coated sheet material.
In applications requiring the use of a flame retardant, as in the fields of building, transportation, and filled furniture, the addition of a flame retardant, such as boric acid is added into the formulation upon making the recyclable product. This step increases substantially the overall drive towards reuse of waste material and is further triggered by the fact that the recyclable material is acting as a vehicle for hosting an additive and whereby said additive will find its use into a recycled product and drives the recycle chain towards new uses of recyclable products. It is believed that, for example, an additional flame retardant dosing station with metering means must be provided in the material treatment apparatus, prior to packing and shipping the recycled product, represents an additional investment.
The addition of a flame retardant, such as boric acid, added into the formulation upon making the recyclable product also dramatically simplifies the production of the recycled product thus requiring much less process control and vigilance, thereby making the production process of the recycled product extremely simple and in the majority of cases even possible with less complex and less costly production equipment.
In accordance with the present invention, it is proposed that the liner producers (1 00) treat their liners with flame retardant to yield flame retarded liners (FR-liners (1 01 b) (cf. Figure 4). The amount of flame retardant for treating a given amount of liner material is less if applied directly to the pulp by the liner producer, upstream of the life cycle of the material, than if added at any stage after collection of the liner waste material. Furthermore, since the flame retardant is more homogeneously distributed at the level of the cellulose fibres, it is likely that higher fire resistance classes can be reached by the paper producer with the same amount of flame retardant. These FR-liners would be sold at a higher cost to the printer (1 02 b) who would sell their labels applied on flame treated liners to the end users (1 03b) to an overall higher cost, comprising the non refundable price of a label applied on a non flame treated liner + a refundable, recycling deposit for recycling the liner. After use of the labels (1 07) the waste FR-liners are collected as described above, and the recycling deposit is
refunded to the end user, by the recycling operator, who can save money in flame retardant, and transportation. The material needs only be, preferably, dry-ground to the desired particle size prior to being used as insulating material in the building, transportation, furniture, or apparel industries (1 08) without the need of adding any additional flame retardant.
Even if the recycling deposit amounted exactly to the costs saved by the absence of a flame treatment step during the recycling process, this operation would be beneficial to environment, because less flame retardant would be needed, less lorries would be needed to transport the same weight of material, but with a reduced volume, and it would guarantee that the quasi totality of the liners would be recycled. This approach is unique in the involvement of the liner manufacturer, totally upstream of the life cycle of the produced liners, anticipating the second life of the liner as insulating material or filler in a piece of furniture or apparel. It also offers a new approach to the blowing/spraying method of insulating material in that fine comminuting and blowing/spraying could be operated in situ by the same operator, with a small transportable grinder coupled to a blowing/spraying gun, thus reducing substantially the cost of the material.
An insulating material according to the present invention is particularly advantageous because, on the one hand, it offers a solution for recycling huge volumes of release coated sheet material such as liners, which is otherwise very difficult to recycle and, on the other hand, because the properties of this material, in particular volumetric stability in time, are superior to most existing comparable products in the market, obtained from other sources of sheet materials.
The insulating material (1 0) of the present invention comprises shredded and ground particles of recycled release coated sheet material possibly admixed with further additives to control the resistance to flame, moisture, and pests, such as insects, bugs, rodents, etc. as discussed supra. For example, boric acid or any salt thereof is the most commonly used flame retardant and is particularly advantageous, since not only does it provide the required
resistance to flame but it also provides moisture, mould, and microbial resistance and acts as a repellent against pests of different kinds. Salts of boric acid that can be used are for example, borax with different levels of hydratation, such as borax penthahydrate and borax decahydrate. Boric acid or salts thereof may be applied in an amount comprised between 1 and 50 wt%, preferably between 1 0 and 45 wt%, more preferably between 25 and 40 wt%. It can be added to the recycled material as dry powder but is in some cases mixed with water and wet sprayed into the recycled material. Other flame retardants, however, may be used instead of or additionally with the boric acid or salt thereof, such as mono- or d iammonium sulphate, aluminium sulphate, aluminium hydroxide, soda ash, an hydrous silica gel, diammoniu m phosphate, sodium tetraborate, ferrous sulfate, zinc sulfate, and mixtures thereof, as disclosed, e.g ., in US41 82681 .
The mixture of recycled material and additives (e.g., flame retardant) can then be used as such for blowing /spraying dry or with addition of some water to enhance adhesion to non horizontal walls (cf. Figure 3(a)&(b)) or, alternatively, can be formed into a sheet, batt, or the like by pressing optionally with admixture of a binder and /or sandwiched between two sheets. Other additives or fillers may of course be added as well known by the persons skilled in the art. EXPERIMENTAL TESTS
In order to demonstrate some of the superior properties of insulating material obtained by treating release coated sheet material, the following tests were carried out. (a) Clogging test
Material clogging in a hose is a major issue when spraying the insulation material in place. This is particularly sensitive when there is a reduction of the tube diameter, e.g., for allowing access to thinner cavities. In this case, a tube reduction connector is used to connect two hoses of different diameter, as can be found, e.g. , in http: / /www.x-
floc.com/en/zubehoer/schlaueche-zub.html. Clogging often occurs at such reduction connectors when the spraying is resumed after an interruption. Clogging is to be avoided, not only because it is time consuming for the operator to stop the spraying, disconnect the hoses and clean them, before connecting them again and resuming the spraying, but also because the filling of a cavity with insulating material to a homogeneous density is better achieved if the spraying of material is continuous, and becomes very difficult to achieve if made in several spraying shots.
In order to assess the flowing properties of the insulating material according to the present invention, two 1 5 m long hoses were connected with a reduction connector with an inlet diameter of 65 mm and an outlet diameter of 40 mm, corresponding to the diameters of the two hoses. The hose system was then linked to a blowing machine (Zellofant M95 from X-Floc)
The test carried out intends to simulate a blowing situation wherein, at the end of cavity filling, the operator gives a last extra shot of material to prevent settling. At that moment, pressure continues to build up in the hose while there is hardly any material flowing out anymore and material density builds up in the hose. After 20 seconds, the operator finally switches off the machine and inserts the hose into another, empty cavity. At that moment, the flow in the connecting part between the 2 hoses is very critical, and if not sufficiently high, clogging occurs.
Two materials were tested:
• INVENTION: silicone coated cellulose liners ground to an average particle length of about 4 mm.
• COMPARATIVE: one of the major cellulose brands available on the Belgian market with an average particle length of about 4 mm.
Tests were performed 5 times with each material by filling a first cavity of dimensions 1 000 X 400 X 1 00 mm, continuing blowing for 20 s after filling of the cavity to build up the
pressure within the hose and switching off the pump. After 30 s, the pump was activated again with the hose introduced into a new, empty cavity.
The comparative cellulose material clogged 4 times out of 5 when started again, requiring the manual unclogging of the reduction connector, whilst the silicone coated cellulose material according to the present invention started flowing again immediately in all five repetitions of the test.
(b) Settling test
The same insulation materials as described in point (a) supra were used for testing the settling properties according to ISO/CD 1 8393, method B, wherein insulation material filling a cavity as described in point (a) supra is vibrated and the density of the material before and after vibrating is determined. At initial densities > 60 kg / m3, no settling was observed neither for the inventive, nor the comparative cellulose insulating materials. At a lower initial density of 45 kg / m3, however, the level of the comparative material dropped by a height comprised between 4 and 6 cm, yielding a degree of settling of 4 to 6 vol.%, which is acceptable yet detrimental, whilst the inventive cellulose material did not settle.
These two examples illustrate two major advantages of the insulating material according to the present invention over conventional insulating material. The enhanced flowability of the material resulting in substantially less clogging during dispensing of the material is clearly attributable to the presence of the release coating which reduces the frictions between particles during flow. The dimensional stability of the blown material, even at low degrees of compaction such as 45 kg / m3, can also be attributed, at least partly, to the presence of the release coating.
The present invention therefore not only offers an economically and ecologically viable solution to the recycling of release coated liners, which are particularly difficult to recycle,
but also provides an alternative insulating material with enhanced properties over the conventional insulating materials available in the market.
Claims
1 . A method for treating a plastic and/or paper waste material comprising the following steps:
(a) Collecting a plastic and /or paper waste material, preferably paper, highly preferably a release coated cellulose or polymeric sheet material, said material already comprising selected new-use additive preferably selected from flame retardant, hydrophobic material, pesticides, minerals, nutrients, herbicides and/or mixtures thereof
(b) Optionally preparing the collected material possibly mixing, separating foreign bodies like metals, etc., and feeding it to a grinding station;
(c) In one or several grinding stations shredding and grinding the materials into small pieces
2. A method for treating waste material comprising the following steps:
(a) Collecting release coated cellulose or polymeric sheet material from producers and end-users thereof , said material composition said material already comprising selected new-use additive preferably selected formulated from flame retardant, hydrophobic material, herbicides, pesticides, minerals, nutrients and/or mixtures thereof
(b) Optionally preparing the collected material by mixing, separating foreign bodies like metals, etc., and feeding it to a dry-grinding station (23), (24);
(c) In one or several grinding stations (23), (24) shredding and grinding the material
3. Method according to claim 2, wherein the one or several grinding operations allow, in the absence of any chemical treatment, the separation of a substantial fraction of the release coating from the sheet carrier and the two fractions are separated in a separating station (25), separating the incoming stream into a first, carrier rich fraction (26) and a second, release agent rich fraction (27).
4. Method according to any of the preceding claims, wherein, in case the collected material does not comprise a sufficient amount of additive for a given new use application, an additive is added to, and mixed with the recycled material before, during or after the grinding steps (c).
5. Use of recycled material obtained from the method of any of the preceding claims either:
(a) for insulating thermally and/or acoustically any of:
• a wall, panel or roof in the field of buildings,
• a panel in the field of transportation,
• a sound dampening wall along roads;
• a quilted piece of garment or blanket, or for filling
• a mattress, or upholstery,
• a package in the field of packaging and storage and transportation of goods, or
(b) as casing soil or growing medium used for growing some vegetables and mushrooms, or as additive to earth to enhance the water balance and water flow in said soil or earth;
(c) hydromulching applications; or
(d) as a filler, a binding agent or a viscosity modifier in concrete, cementitious, asphalteous, clay or lime mixtures and coatings, paints and other building materials
(e) as heat storage means in applications such as hot pillows, or hot compresses to be applied onto the skin, heat capacitor for storage of goods and food, heat sink and capacitor for the culture of mushrooms.
6. Insulation material comprising plastic and/or paper recycled material obtainable by a method according to any of the preceding claims.
7. Insulation material according to the preceding claim, wherein
(a) the cellulose sheet material is paper, preferably glassine paper or kraft paper, and
(b) the polymeric sheet material is a thermoplastic film, preferably selected from PE, PP, or PET,
the paper or thermoplastic sheet material being preferably a liner for adhesive labels, tapes, or films, and is preferably coated with silicone as release agent.
8. Insulation material according to claim 6 or 7, wherein it is in a form suitable for blowing it dry into a cavity, as loose fill onto a surface, or wet against a surface.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12754036.7A EP2756032A1 (en) | 2011-09-07 | 2012-09-07 | Pre-engineered recyclable products |
US14/343,828 US10328435B2 (en) | 2011-09-07 | 2012-09-07 | Pre-engineered recyclable products |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11180476.1 | 2011-09-07 | ||
EP20110180476 EP2568001A1 (en) | 2011-09-07 | 2011-09-07 | Pre-engineered recyclable product |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013034727A1 true WO2013034727A1 (en) | 2013-03-14 |
Family
ID=46796649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2012/067562 WO2013034727A1 (en) | 2011-09-07 | 2012-09-07 | Pre-engineered recyclable products |
Country Status (3)
Country | Link |
---|---|
US (1) | US10328435B2 (en) |
EP (2) | EP2568001A1 (en) |
WO (1) | WO2013034727A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2899256A1 (en) * | 2013-02-01 | 2014-08-07 | University Of Guelph | Soilless pre-vegetated mat and process for production thereof |
WO2015126336A1 (en) * | 2014-02-24 | 2015-08-27 | Çam Caner | A panel based on the waste remaining from the waste paper recycling process and the method for the manufacture of the same |
EP3362235B1 (en) * | 2015-10-16 | 2021-05-26 | Ultracell Insulation, LLC | Cellulose-based insulation and methods of making the same |
CN108541560B (en) * | 2018-02-13 | 2024-03-15 | 湖南农业大学 | Culture soil compression molding device |
US20210298486A1 (en) * | 2020-03-25 | 2021-09-30 | L&P Property Management Company | Pocketed Spring Assembly |
CN112934927A (en) * | 2021-04-02 | 2021-06-11 | 福建东森节能环保科技股份有限公司 | Waste paper dry pulp production line |
CN113426559B (en) * | 2021-05-14 | 2022-11-18 | 北新集团建材股份有限公司 | Sheet material feed arrangement and gypsum board waste disposal system |
CN113348979B (en) * | 2021-06-29 | 2022-08-23 | 甘肃省农业工程技术研究院 | Soilless culture matrix recovery device |
WO2023133610A1 (en) * | 2022-01-13 | 2023-07-20 | Supacell Pty Ltd | Resource recovery system & method |
WO2024006659A1 (en) * | 2022-06-29 | 2024-01-04 | Locus Solutions Ipco, Llc | Grinding aid compositions and methods of use |
WO2024187233A1 (en) * | 2023-03-14 | 2024-09-19 | The University Of Sydney | Methods of processing cellulosic materials, composites derived therefrom and use thereof |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3718536A (en) | 1970-04-22 | 1973-02-27 | Thilmany Pulp & Paper Co | Composite board and method of manufacture |
US4123489A (en) * | 1977-05-17 | 1978-10-31 | Flett Development Company | Method for converting waste paper products into useful forms |
US4182681A (en) | 1978-07-10 | 1980-01-08 | Gumbert Daniel L | Fire-retardant agent for treating cellulose insulation, method of preparing the agent, and method of fabricating fire-retardant cellulose insulation |
US5275855A (en) | 1990-05-17 | 1994-01-04 | Ko-Pack Kabushiki Kaisha | Stripping paper and adhesive sheet with stripping paper |
DE4331567A1 (en) | 1993-07-23 | 1995-02-09 | Heinz B Mader | Fireproof material made of paper |
JPH07279099A (en) | 1994-03-29 | 1995-10-24 | Nitto Denko Corp | Release paper, pressure-sensitive adhesive tape or sheet |
US6036234A (en) | 1997-09-30 | 2000-03-14 | Moore U.S.A., Inc. | Construction of a business form with patterned silicone liner |
US20020025421A1 (en) | 2000-08-25 | 2002-02-28 | Nissan Motor Co., Ltd. | Sound absorbing-insulating structure for vehicles |
WO2005028111A1 (en) | 2003-09-25 | 2005-03-31 | Jouko Kiviaho | Method and apparatus for fiberizing particularly paper and/or paperboard based material |
WO2005110902A1 (en) | 2004-05-14 | 2005-11-24 | Impresstik Machinery Pty Ltd | Feeding webs for processing and removing webs |
DE202005014581U1 (en) | 2005-09-14 | 2007-02-01 | Heinrich Gillet Gmbh | Housing for exhaust system for combustion engine, has thick, temperature-resistant insulating layer of cardboard or paper provided around jacket formed of temperature-, oxygenation-, and/or condensation-resistant material |
EP2363544A1 (en) | 2010-03-02 | 2011-09-07 | RecuLiner BVBA | Insulating material made of recycled sheet material coated with a release agent |
WO2011107476A2 (en) | 2010-03-02 | 2011-09-09 | Reculiner Bvba | Method for recycling sheet material coated with a release agent and uses of the thus recycled material |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2020055A1 (en) | 1970-04-24 | 1971-12-02 | Mueller Ernst Kg | Method and device for covering objects with powdery substances |
US4133490A (en) * | 1977-07-13 | 1979-01-09 | Lewis E. Jones | Machine for making cellulose insulation |
US5122228A (en) * | 1990-12-10 | 1992-06-16 | Stake Technology Limited | Method of treatment of waste paper with steam |
US5534301A (en) * | 1995-05-10 | 1996-07-09 | Echochem International, Inc. | Method for producing cellulose insulation materials using liquid fire retardant compositions |
JP3082736B2 (en) * | 1998-02-18 | 2000-08-28 | 日本電気株式会社 | Waste recycling method and apparatus |
GB2377900B (en) * | 2002-05-03 | 2003-06-18 | John Alan Porter | Treatment of municipal solid waste |
US7927703B2 (en) * | 2003-04-11 | 2011-04-19 | 3M Innovative Properties Company | Adhesive blends, articles, and methods |
CA2625343A1 (en) * | 2005-10-19 | 2007-04-26 | Toray Industries, Inc. | Crimped yarn, method for manufacture thereof, and fiber structure |
-
2011
- 2011-09-07 EP EP20110180476 patent/EP2568001A1/en not_active Withdrawn
-
2012
- 2012-09-07 EP EP12754036.7A patent/EP2756032A1/en not_active Withdrawn
- 2012-09-07 US US14/343,828 patent/US10328435B2/en active Active
- 2012-09-07 WO PCT/EP2012/067562 patent/WO2013034727A1/en active Application Filing
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3718536A (en) | 1970-04-22 | 1973-02-27 | Thilmany Pulp & Paper Co | Composite board and method of manufacture |
US4123489A (en) * | 1977-05-17 | 1978-10-31 | Flett Development Company | Method for converting waste paper products into useful forms |
US4182681A (en) | 1978-07-10 | 1980-01-08 | Gumbert Daniel L | Fire-retardant agent for treating cellulose insulation, method of preparing the agent, and method of fabricating fire-retardant cellulose insulation |
US5275855A (en) | 1990-05-17 | 1994-01-04 | Ko-Pack Kabushiki Kaisha | Stripping paper and adhesive sheet with stripping paper |
DE4331567A1 (en) | 1993-07-23 | 1995-02-09 | Heinz B Mader | Fireproof material made of paper |
JPH07279099A (en) | 1994-03-29 | 1995-10-24 | Nitto Denko Corp | Release paper, pressure-sensitive adhesive tape or sheet |
US6036234A (en) | 1997-09-30 | 2000-03-14 | Moore U.S.A., Inc. | Construction of a business form with patterned silicone liner |
US20020025421A1 (en) | 2000-08-25 | 2002-02-28 | Nissan Motor Co., Ltd. | Sound absorbing-insulating structure for vehicles |
WO2005028111A1 (en) | 2003-09-25 | 2005-03-31 | Jouko Kiviaho | Method and apparatus for fiberizing particularly paper and/or paperboard based material |
WO2005110902A1 (en) | 2004-05-14 | 2005-11-24 | Impresstik Machinery Pty Ltd | Feeding webs for processing and removing webs |
DE202005014581U1 (en) | 2005-09-14 | 2007-02-01 | Heinrich Gillet Gmbh | Housing for exhaust system for combustion engine, has thick, temperature-resistant insulating layer of cardboard or paper provided around jacket formed of temperature-, oxygenation-, and/or condensation-resistant material |
EP2363544A1 (en) | 2010-03-02 | 2011-09-07 | RecuLiner BVBA | Insulating material made of recycled sheet material coated with a release agent |
WO2011107476A2 (en) | 2010-03-02 | 2011-09-09 | Reculiner Bvba | Method for recycling sheet material coated with a release agent and uses of the thus recycled material |
AU2011223044A1 (en) * | 2010-03-02 | 2012-09-13 | Labelmakers Group Pty Ltd | Method for recycling sheet material coated with a release agent and uses of the thus recycled material |
Non-Patent Citations (5)
Title |
---|
"Release-Liner Waste Management - More than a Burning Issue", PACKAGE PRINT. CONVERTING,, vol. 39, no. 7, 1 July 1992 (1992-07-01), pages 25 - 27, XP009146986 * |
SASSINE ET AL., J. APP. SCI. RES., vol. 1, no. 3, 2005, pages 277 |
See also references of EP2756032A1 |
SKANEM: "Skanem turns waste liner paper into hand towels", INTERNET CITATION, 12 December 2006 (2006-12-12), pages 1, XP002658361, Retrieved from the Internet <URL:http://www.skanem.com/index.html?infoPage=oppslag.html&id=925&siteID=28&languageCode=NO&scrollMenuID=984> [retrieved on 20110819] * |
THE CHAMBERS DICTIONARY, 2000 |
Also Published As
Publication number | Publication date |
---|---|
US10328435B2 (en) | 2019-06-25 |
EP2756032A1 (en) | 2014-07-23 |
EP2568001A1 (en) | 2013-03-13 |
US20140306039A1 (en) | 2014-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10328435B2 (en) | Pre-engineered recyclable products | |
US9194120B2 (en) | Method for recycling sheet material coated with a release agent and uses of the thus recycled material | |
US5631052A (en) | Coated cementitious packaging containers | |
CN102639619B (en) | Interconnected cell porous body and manufacturing method thereof | |
US20160280595A1 (en) | Graphite-Mediated Control of Static Electricity on Fiberglass | |
CN102888787B (en) | Technology for preparing composite packaging material from waste paper and bamboos | |
AU2016340155A1 (en) | Cellulose-based insulation and methods of making the same | |
WO2014015614A1 (en) | Method of using papermaking scraps to make formed plate | |
UA110785C2 (en) | Method of disposal of sheet covered with a tool that is separated, and the use of such material | |
WO2013034712A1 (en) | New uses of recycled sheet material | |
EP2383089A1 (en) | Method for recycling sheet material coated with a release agent and uses of the thus recycled material | |
RU2575461C2 (en) | Processing of sheet material coated with antiadhesive and application of material thus processed | |
JP3362926B2 (en) | Molded product with reused ears of adhesive tape | |
KR20230087242A (en) | Radonfree recycled article using waste polyurethane foam and waste polystyrene foam, and preparation method thereof | |
KR20190049035A (en) | Eco type interior and exterior material and its manufacture facility and method | |
GB2294926A (en) | Structural material from waste | |
JP3187105B2 (en) | Recycled paper molded article having buffering property and method for producing the same | |
CN101337374A (en) | Manufacture method of pure plant fiber puffing foaming package material | |
EP2534196A1 (en) | Wood fibre insulating material and method of producing the same | |
JP2009067008A (en) | Waterproof board | |
JPH0672466A (en) | Paper-made heat insulative shock absorber and manufacture of the same | |
WO2000055050A2 (en) | Packaging elements | |
JP2004067218A (en) | Buffer | |
WO2008019425A1 (en) | Composite structure and method of forming same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12754036 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14343828 Country of ref document: US |