WO2013032092A1 - Metal paste for forming a solar cell electrode - Google Patents

Metal paste for forming a solar cell electrode Download PDF

Info

Publication number
WO2013032092A1
WO2013032092A1 PCT/KR2012/002410 KR2012002410W WO2013032092A1 WO 2013032092 A1 WO2013032092 A1 WO 2013032092A1 KR 2012002410 W KR2012002410 W KR 2012002410W WO 2013032092 A1 WO2013032092 A1 WO 2013032092A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal paste
electrode
viscosity
paste
solar cell
Prior art date
Application number
PCT/KR2012/002410
Other languages
French (fr)
Korean (ko)
Inventor
공병선
김대진
조후
홍준의
김상호
Original Assignee
공주대학교 산학협력단
주식회사 케이씨씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 공주대학교 산학협력단, 주식회사 케이씨씨 filed Critical 공주대학교 산학협력단
Publication of WO2013032092A1 publication Critical patent/WO2013032092A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a metal paste for forming an electrode of a solar cell. More particularly, the present invention relates to a metal paste in which an electrode having excellent electrical conductivity while minimizing shading loss by the electrode is minimized. .
  • the solar cell refers to a battery that generates current-voltage using a photovoltaic effect of absorbing light energy from sunlight and generating electrons and holes.
  • np diode-type silicon (Si) single crystal-based solar cells capable of producing photovoltaic energy conversion efficiency of more than 20% are used for photovoltaic power generation, and compound semiconductors such as gallium arsenide (GaAs), which are more efficient than this, are used.
  • GaAs gallium arsenide
  • the light absorption loss covers the incident light because the front electrode is printed on the surface of the solar cell, and thus, electrons and holes are not generated at the bottom of the electrode (the electrode is printed), thereby reducing the efficiency of the solar cell.
  • the front electrode formed on the light receiving surface of the solar cell includes a bus bar electrode extending in a band shape in one direction and a finger electrode connected to the bus bar electrode and extending in a direction orthogonal to the extending direction of the bus bar electrode. do. Furthermore, in general, the bus bar electrode occupies a 20 times larger area than the finger electrode, and serves as a large cause of efficiency reduction along with the finger electrode.
  • the electrode In order to reduce the loss of the light receiving area by the electrode, the electrode must be thinned to reduce the area occupied by the electrode. However, making the electrode thinner also lowers the conductivity of the electrode, which causes another efficiency reduction.
  • the electrode must be made thin while maintaining the constant cross-sectional area of the electrode, which increases the aspect ratio of the electrode. Therefore, in order to increase the efficiency of solar cells by reducing light absorption loss, development of front silver electrode material technology capable of realizing a high aspect ratio is urgently needed.
  • Korean Patent Laid-Open Publication No. 2011-0023776 provides a conductive composition comprising a conductive metal powder, a non-aqueous solvent, and a polymer coating enhancer, but Korean Patent Laid-Open Publication No. 2011-0023776 describes two or more non-aqueous materials having different volatile properties.
  • Korean Patent Laid-Open Publication No. 2010-0127619 discloses a metal paste composition for forming an electrode further comprising a glass-based powder, silver powder, and a carbon-based material powder with an organic binder
  • the Republic of Korea Patent Publication No. 2010-0127619 provides a composition that minimizes the consumption of expensive silver and does not substantially reduce the electrical properties of the electrode.
  • the present invention provides a metal paste for forming a solar cell electrode that minimizes the light loss (shadowing loss), and in particular, the rheological properties are controlled to provide a metal paste in which a high aspect ratio electrode is formed using a printing process will be.
  • the metal paste according to the present invention is characterized in that it is a paste for forming a solar cell electrode, and more particularly, is a paste for forming a solar cell electrode by printing, and more particularly screen printing.
  • the metal paste according to the present invention is characterized by containing conductive metal particles, glass frits, binders, thixotropy-imparting agents, and organic solvents, and is a metal paste that satisfies Equations 1 and 2 below. There is this.
  • TI 10 is the viscosity at shear rate 1s- 1 divided by the viscosity at shear rate 10s- 1
  • TI 100 is viscosity at shear rate 1s- 1 divided by shear rate 100s It is the value divided by the viscosity at -1 .
  • the metal paste satisfies Equation 1 and Equation 2, it is possible to manufacture an electrode having a high aspect ratio by a printing method, thereby having excellent electrical conductivity and minimizing the reduction of the light receiving area by the electrode, thereby providing a solar cell. It is characterized by increasing the efficiency of.
  • the electrode is formed with excellent precision without printing the line width of the designed electrode pattern by printing, more specifically screen printing, and when printing through the screen mesh It is possible to prevent clogging of dots after printing, to print a large area at high speed, and to prevent breakage of a printing pattern including a pinhole.
  • the thixotropic agent is a material that controls the rheological properties of the metal paste, and is a material that forms a hydrogen bonding network.
  • Paste according to the present invention is characterized by containing ethyl cellulose (ethyl cellulose) as a binder, it is characterized by containing hydroxypropyl cellulose (hydroxypropyl cellulose) as a thixotropic imparting agent.
  • the paste according to the present invention satisfies relations 1 and 2 above and contains hydroxypropyl cellulose as a thixotropic agent, thereby preventing clogging of dots, high-speed large-area printing, and breaking of print patterns.
  • the rate of change of the viscosity of the paste due to the change of the shear force is very fast, so that the spreading of the paste is prevented, and the electrode can be manufactured in which the aspect ratio (electrode height / electrode line width) of the electrode is 0.3 or more, more specifically 0.35 or more. At this time, the aspect ratio of the electrode is substantially 0.45 or less.
  • the conductive particles may be used as long as the conductive material is commonly used as an electrode material of an optical device including a solar cell.
  • the conductive material for example, silver, gold, platinum, copper, aluminum, nickel, iron, cobalt, palladium, tin, and alloys thereof One or two or more selected materials from the material.
  • the conductive particles When used as a front electrode of a solar cell, in view of low specific resistance, the conductive particles preferably contain silver. It is preferable that the average particle diameter of the said electroconductive particle is 0.1 micrometer-5 micrometers.
  • the glass frit may be used as long as it is a glass frit commonly used in manufacturing a solar cell front electrode, and includes a lead-containing or lead-free (lead-free) glass frit.
  • the glass frit include SiO 2 -PbO glass frit, SiO 2 -PbO-B 2 O 3 glass frit, Bi 2 O 3 -B 2 O 3 -SiO 2 glass frit, or a mixture thereof. have.
  • the glass frit has Li 2 O, Na 2 O, K 2 O, MgO, CaO, BaO, SrO, ZnO, Al 2 O 3 , TiO 2 , ZrO 2 , Ta 2 O 5 , Sb 2 O 5 , HfO 2 , In 2 O 3 , Ga 2 O 3 , Y 2 O 3 and Yb 2 O 3 It may contain one or more selected materials, the average particle diameter of the glass frit is preferably 0.5 ⁇ m to 3 ⁇ m. .
  • the organic solvent may be a hydrocarbon, an alcohol, an ether, an ester, a ketone, or a glycol solvent.
  • the organic solvent includes toluene, benzene, octanol, decanol, terpineol or carbitol.
  • the organic solvent is preferably carbitol.
  • the metal paste may contain 3 to 7 parts by weight of glass frit, 0.5 to 3 parts by weight of binder, 0.5 to 3 parts by weight of thixotropic agent and 10 to 20 parts by weight of an organic solvent based on 100 parts by weight of conductive metal particles. It is preferable to contain.
  • the content of the glass frit, the binder, the thixotropic agent and the organic solvent is that the front electrode formed by the printing of the metal paste has excellent interfacial bonding properties, and the rheological properties satisfying the above Equation 1 and Equation 2 are very 0.3 or more. It is a content in which a front electrode having a high aspect ratio and a very low resistivity and excellent interface bonding is produced.
  • the present invention includes a solar cell having the front electrode formed by printing the above-described metal paste, and preferably by screen printing.
  • the solar cell is characterized by having a high aspect ratio of the front electrode has a high electrical conductivity while minimizing the reduction in the light receiving area by the electrode, and has a high photoelectric efficiency.
  • the metal paste according to the present invention is capable of manufacturing a front electrode of a solar cell having a high aspect ratio by a printing method, so that the efficiency of the solar cell can be improved by minimizing the reduction of the light receiving area by the electrode while having excellent electrical conductivity. There is a characteristic to increase.
  • Example 1 illustrates the results of rheology measurement of the organic vehicle prepared in Example 1 of the present invention
  • Figure 2 shows the rheological measurement results of the organic vehicle prepared in Example 2 of the present invention
  • Figure 4 shows the rheological measurement results of the metal paste according to Example 1 of the present invention
  • Example 5 is a view illustrating a rheological measurement result of a metal paste according to Example 2 of the present invention.
  • Example 7 is a scanning electron microscope photograph of the electrode formed by screen printing a metal paste according to Example 1 of the present invention.
  • FIG. 8 is a scanning electron microscope photograph of the electrode formed by screen printing a metal paste according to Comparative Example 1.
  • FIG. 8 is a scanning electron microscope photograph of the electrode formed by screen printing a metal paste according to Comparative Example 1.
  • a metal paste was prepared in the same manner as in Example 1, except that 0.3 g of ethyl cellulose and 0.45 g of hydroxypropyl cellulose were dissolved in 6.75 g of carbitol to prepare an organic vehicle.
  • a metal paste was prepared in the same manner as in Example 1, except that 1.125 g of ethyl cellulose was dissolved in 6.375 g of carbitol to prepare an organic vehicle.
  • the rheological properties of the organic vehicles and metal pastes prepared in Examples 1, 2 and Comparative Example 1 were measured using a Physica MCR 301 rheometer from Anton Paar. Viscosity, thixotropy index (TI), loss modulus (G ”) and storage modulus (G ') were measured according to ASTM D4065, D4440, D5279, and shear rate with rheometer ) And the viscosity of the organic vehicle and paste prepared by changing 1 s ⁇ 1 , 10 s ⁇ 1 , and 100 s ⁇ 1 , respectively, and loss coefficients of the organic vehicles and pastes of Examples 1 to 2 and Comparative Example 1, respectively. (loss modulus) and storage modulus were measured before and after applying a shear rate of 1000 s -1 using a rheometer.
  • FIG. 1 shows the storage coefficient and the loss coefficient according to the viscosity according to the shear rate of the organic vehicle prepared in Example 1 and the time before and after applying the shear rate of 1000 s ⁇ 1
  • FIG. Viscosity according to the shear rate of the prepared organic vehicle and the storage coefficient and loss coefficient with time before and after applying the shear rate of 1000 s -1 is shown
  • Figure 3 is a shear rate of the organic vehicle prepared in Comparative Example 1
  • the storage coefficient and loss coefficient according to the viscosity and the time before and after applying the shear rate of 1000 s -1 are shown.
  • Figure 4 shows the storage coefficient and the loss coefficient according to the viscosity of the metal paste prepared in Example 1 according to the shear rate and the time before and after applying the shear rate of 1000 s -1
  • Figure 5 is in Example 2
  • Figure 6 is a shear rate of the metal paste prepared in Comparative Example 1
  • the storage coefficient ( ⁇ G ′) and loss coefficient ( ⁇ G ′′) according to the viscosity and the time before and after applying the shear rate of 1000 s ⁇ 1 are shown.
  • Table 1 summarizes the rheological properties measured in FIGS. 1 to 6.
  • T.I. thixotropic coefficient
  • FIG. 7 is a scanning electron microscope observing the electrode formed by screen printing the paste prepared in Example 1, the paste prepared in Comparative Example 1, as can be seen in Figures 7 to 8, according to the present invention
  • the electrode is manufactured by using a paste, an electrode having an aspect ratio of 0.35 or more is manufactured, whereas an electrode having an aspect ratio of 0.17 is prepared when an electrode is manufactured using the paste of Comparative Example 1.
  • the metal paste according to the present invention satisfy the relations 1 and 2, it can be seen that through the printing process to form a fine metal pattern with a narrow line width with high accuracy and high productivity Can be.

Abstract

The present invention relates to a metal paste for forming a solar cell electrode. More particularly, the metal paste according to the present invention contains: conductive metal particles; glass frit; a binder; a thixotropic agent; and an organic solvent, and is characterized in that TI10, which is the value obtained by dividing the viscosity at a shear velocity of 1s-1 by the viscosity at a shear velocity of 10s-1, is within the range of 4 to 7, and TI100, which is the value obtained by dividing the viscosity at a shear velocity of 1s-1 by the viscosity at a shear velocity of 100s-1, is within the range of 20 to 30.

Description

태양전지 전극 형성용 금속 페이스트Metal Paste for Solar Cell Electrode Formation
본 발명은 태양전지의 전극을 형성하기 위한 금속 페이스트에 관한 것으로, 상세하게, 전극에 의해 수광면적이 작아지는 손실(shading loss)이 최소화되면서도 우수한 전기전도도를 갖는 전극이 제조되는 금속 페이스트에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal paste for forming an electrode of a solar cell. More particularly, the present invention relates to a metal paste in which an electrode having excellent electrical conductivity while minimizing shading loss by the electrode is minimized. .
화석 에너지의 고갈과 이의 사용에 의한 지구 환경적인 문제를 해결하기 위해 태양에너지, 풍력, 수력과 같은 재생 가능하며, 청정한 대체 에너지원에 대한 연구가 활발히 진행되고 있다. In order to solve the global environmental problems caused by the depletion of fossil energy and its use, research on renewable and clean alternative energy sources such as solar energy, wind power and hydropower is being actively conducted.
이 중에서 태양 빛으로부터 직접 전기적 에너지를 변화시키는 태양전지에 대한 관심이 크게 증가하고 있다. 여기서 태양전지란 태양빛으로부터 광 에너지를 흡수하여 전자와 정공을 발생하는 광기전 효과를 이용하여 전류-전압을 생성하는 전지를 의미한다. Among these, interest in solar cells that directly change electrical energy from sunlight is increasing. Here, the solar cell refers to a battery that generates current-voltage using a photovoltaic effect of absorbing light energy from sunlight and generating electrons and holes.
현재 광에너지 변환효율이 20%가 넘는 n-p 다이오드형 실리콘(Si) 단결정 기반 태양전지의 제조가 가능하여 실제 태양광 발전에 사용되고 있으며, 이보다 더 변환효율이 우수한 갈륨아세나이드(GaAs)와 같은 화합물 반도체를 이용한 태양전지도 있다. Currently, np diode-type silicon (Si) single crystal-based solar cells capable of producing photovoltaic energy conversion efficiency of more than 20% are used for photovoltaic power generation, and compound semiconductors such as gallium arsenide (GaAs), which are more efficient than this, are used. There is also a solar cell using.
태양전지의 효율감소의 여러 가지 원인 중 빛 흡수 손실(shadowing loss)을 줄이고자 하는 연구가 활발히 진행되고 있다. 빛 흡수 손실은 전면 전극이 태양전지 표면에 인쇄되기 때문에 입사되는 빛을 가리게 되고 이로 인하여 전극의 밑 부분(전극이 인쇄되는 부분)에서는 전자와 정공이 생성되지 못하여, 태양전지의 효율을 감소시킨다. Among various causes of efficiency reduction of solar cells, researches to reduce the shadowing loss have been actively conducted. The light absorption loss covers the incident light because the front electrode is printed on the surface of the solar cell, and thus, electrons and holes are not generated at the bottom of the electrode (the electrode is printed), thereby reducing the efficiency of the solar cell.
태양전지의 수광면에 형성되는 전면 전극은 일 방향으로 띠 형상으로 신장되는 버스 바 전극과 상기 버스 바 전극과 접속되고, 버스 바 전극의 신장 방향과 직교하는 방향으로 신장되는 핑거 전극을 포함하여 구성된다. 나아가, 일반적으로 버스 바 전극은 핑거 전극에 비해 20 배 이상의 넓은 면적을 차지하여 핑거 전극과 함께 효율 감소의 큰 원인으로 작용하고 있다.The front electrode formed on the light receiving surface of the solar cell includes a bus bar electrode extending in a band shape in one direction and a finger electrode connected to the bus bar electrode and extending in a direction orthogonal to the extending direction of the bus bar electrode. do. Furthermore, in general, the bus bar electrode occupies a 20 times larger area than the finger electrode, and serves as a large cause of efficiency reduction along with the finger electrode.
전극에 의해 수광면적이 작아지는 손실을 줄이기 위해서는 전극을 가늘게 만들어 전극이 차지하는 면적을 줄여야 한다. 하지만 전극을 가늘게만 만들면 전극의 전기전도도가 낮아지기 때문에 또 다른 효율 감소의 원인이 된다. In order to reduce the loss of the light receiving area by the electrode, the electrode must be thinned to reduce the area occupied by the electrode. However, making the electrode thinner also lowers the conductivity of the electrode, which causes another efficiency reduction.
이를 해결하기 위해서는 전극의 단면적을 일정하게 유지하면서 전극을 가늘게 만들어야 하는데 이는 결국 전극의 종횡비를 높이는 것이다. 따라서, 빛 흡수 손실을 낮춰 태양전지의 효율을 높이기 위해서는 고 종횡비 (High aspect ratio)를 구현할 수 있는 은 전면 전극 (front silver electrode) 소재 기술 개발이 절실한 실정이다.To solve this problem, the electrode must be made thin while maintaining the constant cross-sectional area of the electrode, which increases the aspect ratio of the electrode. Therefore, in order to increase the efficiency of solar cells by reducing light absorption loss, development of front silver electrode material technology capable of realizing a high aspect ratio is urgently needed.
대한민국 공개특허공보 제2011-0023776호는 전도성 금속 분말, 비수용매, 고분자 코팅성 향상제를 포함하는 전도성 조성물을 제공하나, 상기 대한민국 공개특허공보 제2011-0023776호는 서로 다른 휘발특성을 갖는 둘 이상의 비수 용매를 혼합하여 전도성 조성물을 점도를 조절하는 것이며, 대한민국 공개특허공보 제2010-0127619호는 유리 프릿 분말, 은 분말, 및 유기 바인더와 함께 탄소계 물질 분말을 더 포함하는 전극형성용 금속 페이스트 조성물을 제공하나, 상기 대한민국 공개특허공보 제2010-0127619호는 고가의 은의 소모를 최소화하며 전극의 전기적 특성이 실질적으로 감소되지 않는 조성물을 제공할 뿐이다.Korean Patent Laid-Open Publication No. 2011-0023776 provides a conductive composition comprising a conductive metal powder, a non-aqueous solvent, and a polymer coating enhancer, but Korean Patent Laid-Open Publication No. 2011-0023776 describes two or more non-aqueous materials having different volatile properties. To adjust the viscosity of the conductive composition by mixing a solvent, Korean Patent Laid-Open Publication No. 2010-0127619 discloses a metal paste composition for forming an electrode further comprising a glass-based powder, silver powder, and a carbon-based material powder with an organic binder However, the Republic of Korea Patent Publication No. 2010-0127619 provides a composition that minimizes the consumption of expensive silver and does not substantially reduce the electrical properties of the electrode.
본 발명은 빛 흡수 손실(shadowing loss)이 최소화되는 태양전지 전극 형성용 금속 페이스트를 제공하는 것이며, 상세하게는 유변학 특성이 제어되어 인쇄 공정을 이용하여 고 종횡비의 전극이 형성되는 금속 페이스트를 제공하는 것이다. The present invention provides a metal paste for forming a solar cell electrode that minimizes the light loss (shadowing loss), and in particular, the rheological properties are controlled to provide a metal paste in which a high aspect ratio electrode is formed using a printing process will be.
이하 본 발명의 금속 페이스트를 상세히 설명한다. 이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다. Hereinafter, the metal paste of the present invention will be described in detail. At this time, if there is no other definition in the technical terms and scientific terms used, it has a meaning commonly understood by those of ordinary skill in the art to which the present invention belongs, the gist of the present invention in the following description and the accompanying drawings Descriptions of well-known functions and configurations that may be unnecessarily blurred are omitted.
본 발명에 따른 금속 페이스트는 태양전지 전극 형성용 페이스트인 특징이 있으며, 보다 특징적으로 인쇄, 보다 더 특징적으로 스크린 인쇄에 의해 태양전지 전극을 형성하기 위한 페이스트인 특징이 있다.The metal paste according to the present invention is characterized in that it is a paste for forming a solar cell electrode, and more particularly, is a paste for forming a solar cell electrode by printing, and more particularly screen printing.
본 발명에 따른 금속 페이스트는 도전성 금속 입자, 유리 프릿(frit), 바인더, 요변성(thixotropy) 부여제 및 유기 용매를 함유하는 특징이 있으며, 하기의 관계식 1 및 관계식 2를 만족하는 금속 페이스트인 특징이 있다.The metal paste according to the present invention is characterized by containing conductive metal particles, glass frits, binders, thixotropy-imparting agents, and organic solvents, and is a metal paste that satisfies Equations 1 and 2 below. There is this.
(관계식 1)(Relationship 1)
4 ≤ TI10 ≤ 74 ≤ TI 10 ≤ 7
(관계식 2)(Relationship 2)
20 ≤ TI100 ≤ 4020 ≤ TI 100 ≤ 40
상기 관계식 1에서 TI10은 전단 속도 1s-1에서의 점도를 전단 속도 10s-1에서의 점도로 나눈 값이며, 상기 관계식 2에서 TI100은 전단 속도 전단 속도 1s-1에서의 점도를 전단 속도 100s-1에서의 점도로 나눈 값이다.In relationship 1, TI 10 is the viscosity at shear rate 1s- 1 divided by the viscosity at shear rate 10s- 1 , and in relationship 2, TI 100 is viscosity at shear rate 1s- 1 divided by shear rate 100s It is the value divided by the viscosity at -1 .
상기 금속 페이스트가 상기 관계식 1 및 관계식 2를 만족함으로써, 인쇄법에 의해 높은 종횡비(aspect ratio)를 갖는 전극의 제조가 가능하여 우수한 전기전도도를 가지면서도 전극에 의한 수광 면적의 감소를 최소화하여 태양전지의 효율을 증가시키는 특징이 있다.Since the metal paste satisfies Equation 1 and Equation 2, it is possible to manufacture an electrode having a high aspect ratio by a printing method, thereby having excellent electrical conductivity and minimizing the reduction of the light receiving area by the electrode, thereby providing a solar cell. It is characterized by increasing the efficiency of.
상기 금속 페이스트가 상기 관계식 1 및 관계식 2를 만족함으로써, 인쇄, 보다 특징적으로는 스크린 인쇄에 의해, 설계된 전극 패턴의 선폭 확대 없이 우수한 정밀도로 전극이 형성되는 특징이 있으며, 상기 스크린 메쉬를 통한 인쇄시 인쇄 후 망점 막힘 현상을 방지할 수 있으며, 고속으로 대면적의 인쇄가 가능하며, 핀홀을 포함한 인쇄 패턴의 끊김 현상이 방지되는 특징이 있다.When the metal paste satisfies Equation 1 and Equation 2, the electrode is formed with excellent precision without printing the line width of the designed electrode pattern by printing, more specifically screen printing, and when printing through the screen mesh It is possible to prevent clogging of dots after printing, to print a large area at high speed, and to prevent breakage of a printing pattern including a pinhole.
상기 요변성 부여제는 금속 페이스트의 유변학 특성을 제어하는 물질로, 수소 결합 네트워크를 형성하는 물질이다. The thixotropic agent is a material that controls the rheological properties of the metal paste, and is a material that forms a hydrogen bonding network.
스크린 인쇄를 이용하여 전극을 형성하는 경우, 페이스트가 일단 스크린 위로 도포되면 높은 점도 상태가 되며, 스퀴즈(Squeegee)로 100/s 이상의 높은 전단력(shear)이 가해지면 저점도 상태로 변화하게 된다. 저점도 상태가 되면 스크린 메쉬를 통과하여 기재(substrate)에 인쇄가 이루어지는데, 이 때 원형상태(고점도 상태)로 복원되는 시간이 결국 페이스트의 퍼짐성을 결정하여 인쇄된 전극의 종횡비를 결정하게 된다. In the case of forming an electrode using screen printing, once the paste is applied onto the screen, it is in a high viscosity state, and when a high shear force of 100 / s or more is applied to the squeeze, it is changed into a low viscosity state. In the low viscosity state, printing is performed on the substrate through the screen mesh. At this time, the time of restoring to the circular state (high viscosity state) determines the spreadability of the paste to determine the aspect ratio of the printed electrode.
페이스트의 유변학적 특성을 제어하기 위해서는 바인더들 간의 수소결합, 전단응력이 가해졌을 때 상기 수소 결합의 깨짐 정도, 및 요변성 부여제와 바인더간의 상호 결합을 조절하는 것이 중요하다. 본 발명에 따른 페이스트는 에틸셀룰로스(ethyl cellulose)를 바인더로 함유하는 특징이 있으며, 하이드록시프로필셀룰로스(hydroxypropyl cellulose)를 요변성 부여제로 함유하는 특징이 있다.In order to control the rheological properties of the paste, it is important to control the hydrogen bonding between the binders, the degree of breakage of the hydrogen bonds when a shear stress is applied, and the mutual bonding between the thixotropic agent and the binder. Paste according to the present invention is characterized by containing ethyl cellulose (ethyl cellulose) as a binder, it is characterized by containing hydroxypropyl cellulose (hydroxypropyl cellulose) as a thixotropic imparting agent.
본 발명에 따른 페이스트는 상기 관계식 1 및 관계식 2를 만족함과 동시에 하이드록시프로필셀룰로스(hydroxypropyl cellulose)를 요변성 부여제로 함유함으로써, 망점 막힘 현상, 고속 대면적 인쇄, 인쇄 패턴의 끊김 현상 방지와 함께, 전단력의 변화에 따른 페이스트의 점성 변화 속도가 매우 빨라 페이스트의 퍼짐성이 방지되어, 전극의 종횡비(전극의 선고/전극의 선폭)가 0.3이상, 보다 특징적으로 0.35 이상인 전극의 제조가 가능한 특징이 있다. 이때, 상기 전극의 종횡비는 실질적으로 0.45이하이다.The paste according to the present invention satisfies relations 1 and 2 above and contains hydroxypropyl cellulose as a thixotropic agent, thereby preventing clogging of dots, high-speed large-area printing, and breaking of print patterns. The rate of change of the viscosity of the paste due to the change of the shear force is very fast, so that the spreading of the paste is prevented, and the electrode can be manufactured in which the aspect ratio (electrode height / electrode line width) of the electrode is 0.3 or more, more specifically 0.35 or more. At this time, the aspect ratio of the electrode is substantially 0.45 or less.
상기 도전성 입자는 태양전지를 포함한 광소자의 전극물질로 통상적으로 사용되는 도전성 물질이면 사용가능하며, 일 예로, 은, 금, 백금, 구리, 알루미늄, 니켈, 철, 코발트, 팔라듐, 주석 및 이들의 합금 물질에서 하나 또는 둘 이상 선택된 물질이다. 태양전지의 전면 전극으로 사용되는 경우, 낮은 비저항 측면에서, 상기 도전성 입자는 은을 포함하는 것이 바람직하다. 상기 도전성 입자의 평균 입경은 0.1㎛ 내지 5㎛인 것이 바람직하다. The conductive particles may be used as long as the conductive material is commonly used as an electrode material of an optical device including a solar cell. For example, silver, gold, platinum, copper, aluminum, nickel, iron, cobalt, palladium, tin, and alloys thereof One or two or more selected materials from the material. When used as a front electrode of a solar cell, in view of low specific resistance, the conductive particles preferably contain silver. It is preferable that the average particle diameter of the said electroconductive particle is 0.1 micrometer-5 micrometers.
상기 유리 프릿은 태양전지 전면전극 제조시 통상적으로 사용되는 유리 프릿이면 사용 가능하며, 납 함유 또는 납 무함유(무연) 유리 프릿을 포함한다. 상기 유리 프릿의 일 예로, SiO2-PbO계 유리 프릿, SiO2-PbO-B2O3계 유리 프릿, Bi2O3-B2O3-SiO2계 유리 프릿 또는 이들의 혼합물을 들 수 있다. 상기 유리 프릿은 첨가제로 Li2O, Na2O, K2O, MgO, CaO, BaO, SrO, ZnO, Al2O3, TiO2, ZrO2, Ta2O5, Sb2O5, HfO2, In2O3, Ga2O3, Y2O3 및 Yb2O3에서 하나 또는 둘 이상 선택된 물질을 함유할 수 있으며, 상기 유리 프릿의 평균 입경은 0.5㎛ 내지 3㎛인 것이 바람직하다.The glass frit may be used as long as it is a glass frit commonly used in manufacturing a solar cell front electrode, and includes a lead-containing or lead-free (lead-free) glass frit. Examples of the glass frit include SiO 2 -PbO glass frit, SiO 2 -PbO-B 2 O 3 glass frit, Bi 2 O 3 -B 2 O 3 -SiO 2 glass frit, or a mixture thereof. have. The glass frit has Li 2 O, Na 2 O, K 2 O, MgO, CaO, BaO, SrO, ZnO, Al 2 O 3 , TiO 2 , ZrO 2 , Ta 2 O 5 , Sb 2 O 5 , HfO 2 , In 2 O 3 , Ga 2 O 3 , Y 2 O 3 and Yb 2 O 3 It may contain one or more selected materials, the average particle diameter of the glass frit is preferably 0.5㎛ to 3㎛. .
상기 유기 용매는 탄화수소류, 알코올류, 에테르류, 에스테르류, 케톤류 또는 글리콜 용매일 수 있으며, 일 예로, 상기 유기 용매는 톨루엔, 벤젠, 옥탄올, 데칸올, 테르피네올 또는 카르비톨을 포함한다. 상기 바인더 및 요변성 부여제와의 혼화성 및 인쇄시 빠른 건조 측면에서 상기 유기 용매는 카르비톨인 것이 바람직하다.The organic solvent may be a hydrocarbon, an alcohol, an ether, an ester, a ketone, or a glycol solvent. For example, the organic solvent includes toluene, benzene, octanol, decanol, terpineol or carbitol. . In view of miscibility with the binder and thixotropic agent and rapid drying in printing, the organic solvent is preferably carbitol.
보다 특징적으로, 상기 금속 페이스트는 도전성 금속 입자 100 중량부에 대해, 3 내지 7 중량부의 유리 프릿, 0.5 내지 3 중량부의 바인더, 0.5 내지 3 중량부의 요변성 부여제 및 10 내지 20 중량부의 유기 용매를 함유하는 것이 바람직하다.More specifically, the metal paste may contain 3 to 7 parts by weight of glass frit, 0.5 to 3 parts by weight of binder, 0.5 to 3 parts by weight of thixotropic agent and 10 to 20 parts by weight of an organic solvent based on 100 parts by weight of conductive metal particles. It is preferable to contain.
상기 유리 프릿, 바인더, 요변성 부여제 및 유기용매의 함량은 금속 페이스트의 인쇄에 의해 형성되는 전면 전극이 우수한 계면 접합 특성을 가지며, 유변학적 특성이 상기 관계식 1 및 관계식 2를 만족하여 0.3 이상의 매우 큰 종횡비를 갖는 동시에 매우 낮은 비저항을 가지며 계면 접합성이 우수한 전면 전극이 제조되는 함량이다. The content of the glass frit, the binder, the thixotropic agent and the organic solvent is that the front electrode formed by the printing of the metal paste has excellent interfacial bonding properties, and the rheological properties satisfying the above Equation 1 and Equation 2 are very 0.3 or more. It is a content in which a front electrode having a high aspect ratio and a very low resistivity and excellent interface bonding is produced.
본 발명은 상술한 금속 페이스트가 인쇄되어, 바람직하게는 스크린 인쇄되어 형성된 전면 전극이 구비된 태양전지를 포함한다. 상기 태양전지는 전면 전극은 0.3 이상의 높은 종횡비를 가져 전극에 의한 수광 면적 감소가 최소화되면서도 높은 전기 전도도를 가지는 특징이 있으며, 우수한 광전효율을 갖는 태양전지인 특징이 있다. The present invention includes a solar cell having the front electrode formed by printing the above-described metal paste, and preferably by screen printing. The solar cell is characterized by having a high aspect ratio of the front electrode has a high electrical conductivity while minimizing the reduction in the light receiving area by the electrode, and has a high photoelectric efficiency.
본 발명에 따른 금속 페이스트는 인쇄법에 의해 높은 종횡비(aspect ratio)를 갖는 태양전지의 전면 전극의 제조가 가능하여 우수한 전기전도도를 가지면서도 전극에 의한 수광 면적의 감소를 최소화하여 태양전지의 효율을 증가시키는 특징이 있다.The metal paste according to the present invention is capable of manufacturing a front electrode of a solar cell having a high aspect ratio by a printing method, so that the efficiency of the solar cell can be improved by minimizing the reduction of the light receiving area by the electrode while having excellent electrical conductivity. There is a characteristic to increase.
도 1은 본 발명의 실시예 1에서 제조된 유기 비이클의 유변학 측정결과를 도시한 것이며, 1 illustrates the results of rheology measurement of the organic vehicle prepared in Example 1 of the present invention,
도 2는 본 발명의 실시예 2에서 제조된 유기 비이클의 유변학 측정결과를 도시한 것이며, Figure 2 shows the rheological measurement results of the organic vehicle prepared in Example 2 of the present invention,
도 3은 비교예 1에서 제조된 유기 비이클의 유변학 측정결과를 도시한 것이며, 3 illustrates the rheological measurement results of the organic vehicle prepared in Comparative Example 1,
도 4는 본 발명의 실시예 1에 따른 금속 페이스트의 유변학 측정결과를 도시한 것이며, Figure 4 shows the rheological measurement results of the metal paste according to Example 1 of the present invention,
도 5는 본 발명의 실시예 2에 따른 금속 페이스트의 유변학 측정결과를 도시한 것이며, 5 is a view illustrating a rheological measurement result of a metal paste according to Example 2 of the present invention.
도 6은 비교예 1에 따른 금속 페이스트의 유변학 측정결과를 도시한 것이며,6 shows the rheological measurement results of the metal paste according to Comparative Example 1,
도 7은 본 발명의 실시예1에 따른 금속 페이스트를 스크린 인쇄하여 형성된 전극을 관찰한 주사전자현미경 사진이며,7 is a scanning electron microscope photograph of the electrode formed by screen printing a metal paste according to Example 1 of the present invention.
도 8은 비교예1에 따른 금속 페이스트를 스크린 인쇄하여 형성된 전극을 관찰한 주사전자현미경 사진이다.8 is a scanning electron microscope photograph of the electrode formed by screen printing a metal paste according to Comparative Example 1. FIG.
실시예를 통하여 본 발명을 구체적으로 설명한다. 단, 하기 실시예는 본 발명의 예시에 불과한 것으로서 본 발명의 특허 청구 범위가 이에 따라 한정되는 것은 아니다. The present invention will be described in detail through examples. However, the following examples are merely examples of the present invention, and the claims of the present invention are not limited thereto.
(실시예 1) (Example 1)
에틸셀룰로스 0.675g 및 하이드록시프로필셀룰로스 0.45g을 카르비톨 6.375g에 혼합하여 80℃에서 2시간 동안 교반하여 바인더 및 요변성 부여제가 용해된 유기 비이클(vehicle)을 제조하였다. 0.675 g of ethyl cellulose and 0.45 g of hydroxypropyl cellulose were mixed with 6.375 g of carbitol and stirred at 80 ° C. for 2 hours to prepare an organic vehicle in which a binder and a thixotropic agent were dissolved.
평균 입경이 2㎛인 Ag 입자 40g 및 평균 입경이 0.9㎛인 Bi-Si-Al-Pb-B 계 유리 프릿 2g을 제조된 유기 비이클과 혼합하고 30분 동안 교반하였으며, 교반 후, 3-롤 밀(3-roll mill)을 이용하여 30분 동안 밀링하여 금속 페이스트를 제조하였다.40 g of Ag particles having an average particle diameter of 2 μm and 2 g of Bi-Si-Al-Pb-B based glass frit having an average particle diameter of 0.9 μm were mixed with the prepared organic vehicle, stirred for 30 minutes, and after stirring, a 3-roll mill A metal paste was prepared by milling for 30 minutes using a (3-roll mill).
(실시예 2)(Example 2)
에틸셀룰로스 0.3g 및 하이드록시프로필셀룰로스 0.45g을 카르비톨 6.75g에 용해하여 유기 비이클을 제조한 것을 제외하고, 실시예1과 동일하게 금속 페이스트를 제조하였다. A metal paste was prepared in the same manner as in Example 1, except that 0.3 g of ethyl cellulose and 0.45 g of hydroxypropyl cellulose were dissolved in 6.75 g of carbitol to prepare an organic vehicle.
(비교예 1)(Comparative Example 1)
에틸셀룰로스 1.125g을 카르비톨 6.375g에 용해하여 유기 비이클을 제조한 것을 제외하고, 실시예 1과 동일하게 금속 페이스트를 제조하였다.A metal paste was prepared in the same manner as in Example 1, except that 1.125 g of ethyl cellulose was dissolved in 6.375 g of carbitol to prepare an organic vehicle.
실시예 1, 2 및 비교예 1에서 제조된 유기 비이클과 금속 페이스트에 대한 유변학 특성은 Anton Paar 사의 Physica MCR 301 rheometer를 사용하여 측정하였다. 점도, 요변성 계수(thixotropy index, TI), 손실계수(loss modulus, G") 및 저장계수(storage modulus, G')는 ASTM D4065, D4440, D5279에 따라 측정되었으며, rheometer로 전단 속도(shear rate)를 각각 1 s-1, 10 s-1, 100 s-1으로 변화시키면서 제조된 유기 비이클 및 페이스트의 점도를 측정하였다. 실시예 1 내지 2 및 비교예 1의 유기 비이클과 페이스트 각각의 손실계수(loss modulus) 및 저장계수(storage modulus)는 Rheometer를 사용하여 1000 s-1의 전단 속도를 가하기 전후에 측정하였다. The rheological properties of the organic vehicles and metal pastes prepared in Examples 1, 2 and Comparative Example 1 were measured using a Physica MCR 301 rheometer from Anton Paar. Viscosity, thixotropy index (TI), loss modulus (G ") and storage modulus (G ') were measured according to ASTM D4065, D4440, D5279, and shear rate with rheometer ) And the viscosity of the organic vehicle and paste prepared by changing 1 s −1 , 10 s −1 , and 100 s −1 , respectively, and loss coefficients of the organic vehicles and pastes of Examples 1 to 2 and Comparative Example 1, respectively. (loss modulus) and storage modulus were measured before and after applying a shear rate of 1000 s -1 using a rheometer.
도 1은 실시예 1에서 제조된 유기 비이클의 전단 속도에 따른 점도 및 1000 s-1의 전단 속도 인가 전/후의 시간에 따른 저장계수 및 손실계수를 측정 도시한 것이며, 도 2는 실시예 2에서 제조된 유기 비이클의 전단 속도에 따른 점도 및 1000 s-1의 전단 속도 인가 전/후의 시간에 따른 저장계수 및 손실계수를 측정 도시한 것이며, 도 3은 비교예 1에서 제조된 유기 비이클의 전단 속도에 따른 점도 및 1000 s-1의 전단 속도 인가 전/후의 시간에 따른 저장계수 및 손실계수를 측정 도시한 것이다.FIG. 1 shows the storage coefficient and the loss coefficient according to the viscosity according to the shear rate of the organic vehicle prepared in Example 1 and the time before and after applying the shear rate of 1000 s −1 , and FIG. Viscosity according to the shear rate of the prepared organic vehicle and the storage coefficient and loss coefficient with time before and after applying the shear rate of 1000 s -1 is shown, Figure 3 is a shear rate of the organic vehicle prepared in Comparative Example 1 The storage coefficient and loss coefficient according to the viscosity and the time before and after applying the shear rate of 1000 s -1 are shown.
도 4는 실시예 1에서 제조된 금속 페이스트의 전단 속도에 따른 점도 및 1000 s-1의 전단 속도 인가 전/후의 시간에 따른 저장계수 및 손실계수를 측정 도시한 것이며, 도 5는 실시예 2에서 제조된 금속 페이스트의 전단 속도에 따른 점도 및 1000 s-1의 전단 속도 인가 전/후의 시간에 따른 저장계수 및 손실계수를 측정 도시한 것이며, 도 6은 비교예 1에서 제조된 금속 페이스트의 전단 속도에 따른 점도 및 1000 s-1의 전단 속도 인가 전/후의 시간에 따른 저장계수(△G') 및 손실계수(△G")를 측정 도시한 것이다. Figure 4 shows the storage coefficient and the loss coefficient according to the viscosity of the metal paste prepared in Example 1 according to the shear rate and the time before and after applying the shear rate of 1000 s -1 , Figure 5 is in Example 2 Viscosity according to the shear rate of the prepared metal paste and the storage coefficient and the loss coefficient according to the time before and after applying the shear rate of 1000 s -1 , Figure 6 is a shear rate of the metal paste prepared in Comparative Example 1 The storage coefficient (ΔG ′) and loss coefficient (ΔG ″) according to the viscosity and the time before and after applying the shear rate of 1000 s −1 are shown.
하기의 표 1은 도 1 내지 도 6에서 측정된 유변학적 특성을 정리한 것이다.Table 1 below summarizes the rheological properties measured in FIGS. 1 to 6.
(표 1)Table 1
Figure PCTKR2012002410-appb-I000001
Figure PCTKR2012002410-appb-I000001
상기 표 1에서 알 수 있듯이 요변성 부여제인 하이드록시프로필셀룰로스가 첨가됨에 따라, 유기 비이클 및 페이스트에서 모두 요변성 계수(T.I.)가 증가함을 알 수 있다. As can be seen in Table 1, as the thixotropic agent hydroxypropyl cellulose is added, it can be seen that the thixotropic coefficient (T.I.) increases in both the organic vehicle and the paste.
이는 하이드록시프로필셀룰로스가 첨가되면서 페이스트에 수소결합의 비중이 높아지고, 정지상에서 페이스트는 수소결합을 통해 부분적인 네트워크를 형성하나, 일정한 전단응력이 가해지는 경우 이들 수소결합 네트워크는 깨어지고 점도가 낮아져, 결국 페이스트의 유변학 특성이 개선되는 것이다.This is due to the addition of hydroxypropyl cellulose to the specific gravity of the hydrogen bond in the paste, the paste forms a partial network through the hydrogen bond in the stationary phase, but when a certain shear stress is applied, these hydrogen bond networks are broken and the viscosity is lowered, As a result, the rheological properties of the paste are improved.
도 7은 실시예 1에서 제조된 페이스트를, 도 8은 비교예 1에서 제조된 페이스트를 스크린 인쇄하여 형성된 전극을 관찰한 주사전자현미경으로, 도 7 내지 도 8에서 알 수 있듯이, 본 발명에 따른 페이스트를 이용하여 전극을 제조하는 경우, 종횡비가 0.35 이상의 전극이 제조되는 반면, 비교예1의 페이스트를 이용하여 전극을 제조하는 경우, 종횡비가 0.17인 전극이 제조됨을 알 수 있다. 7 is a scanning electron microscope observing the electrode formed by screen printing the paste prepared in Example 1, the paste prepared in Comparative Example 1, as can be seen in Figures 7 to 8, according to the present invention When the electrode is manufactured by using a paste, an electrode having an aspect ratio of 0.35 or more is manufactured, whereas an electrode having an aspect ratio of 0.17 is prepared when an electrode is manufactured using the paste of Comparative Example 1.
상기 표 1 및 도 7에서 알 수 있듯이, 본 발명에 따른 금속 페이스트는 관계식 1 및 2를 만족하여, 인쇄 공정을 통해 선 폭이 좁은 미세 금속 패턴을 높은 정확성과 높은 생산성으로 형성할 수 있음을 알 수 있다. As can be seen in Table 1 and Figure 7, the metal paste according to the present invention satisfy the relations 1 and 2, it can be seen that through the printing process to form a fine metal pattern with a narrow line width with high accuracy and high productivity Can be.
이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. In the present invention as described above has been described by specific embodiments and limited embodiments and drawings, but this is only provided to help a more general understanding of the present invention, the present invention is not limited to the above embodiments, the present invention Those skilled in the art can make various modifications and variations from this description.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Therefore, the spirit of the present invention should not be limited to the described embodiments, and all the things that are equivalent to or equivalent to the claims as well as the following claims will belong to the scope of the present invention. .

Claims (7)

  1. 도전성 금속 입자, 유리 프릿(frit), 바인더, 요변성(thixotropy) 부여제 및 유기 용매를 함유하며, 하기의 관계식 1 및 관계식 2를 만족하는 태양전지 전극 형성용 금속 페이스트.A metal paste for forming a solar cell electrode containing conductive metal particles, a glass frit, a binder, a thixotropy-imparting agent, and an organic solvent, and satisfying the following Expressions 1 and 2.
    (관계식 1)(Relationship 1)
    4 ≤ TI10 ≤ 74 ≤ TI 10 ≤ 7
    (관계식 2)(Relationship 2)
    20 ≤ TI100 ≤ 3020 ≤ TI 100 ≤ 30
    (상기 관계식 1에서 TI10은 전단 속도 1s-1에서의 점도를 전단 속도 10s-1에서의 점도로 나눈 값이며, 상기 관계식 2에서 TI100은 전단 속도 전단 속도 1s-1에서의 점도를 전단 속도 100s-1에서의 점도로 나눈 값이다)(In relation 1, TI 10 is the viscosity at shear rate 1s- 1 divided by the viscosity at shear rate 10s- 1 , and in relationship 2, TI 100 is shear rate at shear rate 1s- 1 . Divided by the viscosity at 100 s -1 )
  2. 제 1항에 있어서,The method of claim 1,
    상기 요변성 부여제는 하이드록시프로필셀룰로스(hydroxypropyl cellulose)인 것을 특징으로 하는 금속 페이스트.The thixotropic imparting agent is hydroxypropyl cellulose (hydroxypropyl cellulose), characterized in that the metal paste.
  3. 제 2항에 있어서,The method of claim 2,
    상기 금속 페이스트는 도전성 금속 입자 100 중량부에 대해, 3 내지 7 중량부의 유리 프릿, 0.5 내지 3 중량부의 바인더, 0.5 내지 3 중량부의 요변성 부여제 및 10 내지 20 중량부의 유기 용매를 함유하는 것을 특징으로 하는 금속 페이스트.The metal paste contains 3 to 7 parts by weight of glass frit, 0.5 to 3 parts by weight of binder, 0.5 to 3 parts by weight of thixotropic agent and 10 to 20 parts by weight of an organic solvent based on 100 parts by weight of conductive metal particles. Metal paste.
  4. 제 2항에 있어서,The method of claim 2,
    상기 바인더는 에틸셀룰로스(ethyl cellulose)인 것을 특징으로 하는 금속 페이스트.The binder is a metal paste, characterized in that ethyl cellulose (ethyl cellulose).
  5. 제 1항에 있어서,The method of claim 1,
    상기 도전성 금속 입자는 입경이 0.1㎛ 내지 5㎛인 은 입자인 것을 특징으로 하는 금속 페이스트.The conductive metal particles are metal pastes, characterized in that the silver particles having a particle diameter of 0.1㎛ 5㎛.
  6. 제 2항에 있어서,The method of claim 2,
    상기 금속 페이스트는 스크린 인쇄용 페이스트인 것을 특징으로 하는 금속 페이스트.The metal paste is a metal paste, characterized in that the paste for screen printing.
  7. 제 1항 내지 제 6항에서 선택된 어느 한 항의 금속 페이스트가 인쇄되어 형성된 전면 전극을 포함하는 태양전지.The solar cell comprising a front electrode formed by printing the metal paste of any one of claims 1 to 6.
PCT/KR2012/002410 2011-08-31 2012-03-30 Metal paste for forming a solar cell electrode WO2013032092A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0087817 2011-08-31
KR1020110087817A KR101285551B1 (en) 2011-08-31 2011-08-31 Metal Paste for Electrode of Solar Cell

Publications (1)

Publication Number Publication Date
WO2013032092A1 true WO2013032092A1 (en) 2013-03-07

Family

ID=47756536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002410 WO2013032092A1 (en) 2011-08-31 2012-03-30 Metal paste for forming a solar cell electrode

Country Status (2)

Country Link
KR (1) KR101285551B1 (en)
WO (1) WO2013032092A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171359A1 (en) * 2015-04-22 2016-10-27 삼성에스디아이 주식회사 Composition for forming solar cell electrode and electrode manufactured therefrom
WO2018084464A1 (en) * 2016-11-01 2018-05-11 엘에스니꼬동제련 주식회사 Conductive paste for solar cell electrode and solar cell manufactured using same
CN112525771A (en) * 2020-11-30 2021-03-19 湖北亿纬动力有限公司 Battery slurry storage performance evaluation method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101882525B1 (en) 2013-04-11 2018-07-26 삼성에스디아이 주식회사 Composition for forming solar cell and electrode prepared using the same
KR102269870B1 (en) * 2015-04-22 2021-06-30 창저우 퓨전 뉴 머티리얼 씨오. 엘티디. Composition for forming solar cell and electrode prepared using the same
KR102040302B1 (en) * 2017-08-24 2019-11-04 삼성에스디아이 주식회사 Composition for forming solar cell and electrode prepared using the same
KR102340931B1 (en) * 2019-12-31 2021-12-17 엘에스니꼬동제련 주식회사 Parameters for improving the printing characteristics of the conductive paste satisfying the parameters

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040083071A (en) * 2001-12-27 2004-09-30 가부시키가이샤후지쿠라 Electroconductive composition, electroconductive coating and method for forming electroconductive coating
KR20100000685A (en) * 2008-06-25 2010-01-06 에스에스씨피 주식회사 Conductive paste composition and preparation of electrode using same
WO2010024625A2 (en) * 2008-08-29 2010-03-04 에스에스씨피 주식회사 Conductive paste composition
KR100955496B1 (en) * 2009-07-09 2010-04-30 주식회사 동진쎄미켐 Conductive composition for forming electrode of solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040083071A (en) * 2001-12-27 2004-09-30 가부시키가이샤후지쿠라 Electroconductive composition, electroconductive coating and method for forming electroconductive coating
KR20100000685A (en) * 2008-06-25 2010-01-06 에스에스씨피 주식회사 Conductive paste composition and preparation of electrode using same
WO2010024625A2 (en) * 2008-08-29 2010-03-04 에스에스씨피 주식회사 Conductive paste composition
KR100955496B1 (en) * 2009-07-09 2010-04-30 주식회사 동진쎄미켐 Conductive composition for forming electrode of solar cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171359A1 (en) * 2015-04-22 2016-10-27 삼성에스디아이 주식회사 Composition for forming solar cell electrode and electrode manufactured therefrom
US10115845B2 (en) 2015-04-22 2018-10-30 Samsung Sdi Co., Ltd. Composition for forming solar cell electrodes and electrodes fabricated using the same
WO2018084464A1 (en) * 2016-11-01 2018-05-11 엘에스니꼬동제련 주식회사 Conductive paste for solar cell electrode and solar cell manufactured using same
KR101930284B1 (en) 2016-11-01 2018-12-19 엘에스니꼬동제련 주식회사 Electrode Paste For Solar Cell's Electrode And Solar Cell using the same
CN110337727A (en) * 2016-11-01 2019-10-15 LS-Nikko铜制炼株式会社 Electrode of solar battery conductive paste and the solar battery manufactured using above-mentioned slurry
CN112525771A (en) * 2020-11-30 2021-03-19 湖北亿纬动力有限公司 Battery slurry storage performance evaluation method
CN112525771B (en) * 2020-11-30 2023-03-24 湖北亿纬动力有限公司 Battery slurry storage performance evaluation method

Also Published As

Publication number Publication date
KR20130024390A (en) 2013-03-08
KR101285551B1 (en) 2013-07-18

Similar Documents

Publication Publication Date Title
WO2013032092A1 (en) Metal paste for forming a solar cell electrode
KR100837994B1 (en) Conductive compositions and processes for use in the manufacture of semiconductor devices
WO2012067327A1 (en) Back contact composition for solar cell
CN102804389A (en) Process of forming a grid cathode on the front-side of a silicon wafer
CN106477897A (en) Glass dust and apply this glass dust be obtained anelectrode silver paste, solaode
WO2015037933A1 (en) Composition for forming solar cell electrode and electrode manufactured therefrom
US20220153627A1 (en) Glass powder and silver-aluminum paste for use on front of n-type double-sided solar cell comprising same
TWI585781B (en) Thick film conductive composition and use thereof
KR101736773B1 (en) Rear electrode paste for solar cell
JP2011521401A (en) Aluminum paste and its use in the manufacture of silicon solar cells
CN107408586B (en) Conductive paste for forming solar cell electrode
KR20100000685A (en) Conductive paste composition and preparation of electrode using same
WO2018080094A1 (en) Conductive paste for solar cell electrode and solar cell manufactured by using same
EP2696352A2 (en) Silver paste composition for forming an electrode, and method for preparing same
KR20110040713A (en) Silver paste composition and solar cell using the same
KR101339845B1 (en) Metal Paste Including Metal Nanowires for Electrode of Solar Cell
JP2014533432A (en) Manufacturing method of LFC-PERC silicon solar cell
WO2019088526A1 (en) Conductive paste for solar cell electrode, and solar cell manufactured using same
JP2007128872A (en) Aluminum thick film composition, electrode, semiconductor device, and their manufacturing methods
WO2016137059A1 (en) Silver paste composition, front electrode for solar cell formed using it, and solar cell employing it
US20180268954A1 (en) Back surface field aluminum paste for point contacts of efficient bifacial crystalline silicon solar cells and preparation method thereof
WO2017160074A1 (en) Lead-free electroconductive paste for solar cell
WO2011138998A1 (en) Composition for manufacturing a back contact for a crystalline solar cell
WO2020111901A1 (en) Conductive paste for solar cell electrode and solar cell manufactured using same
WO2019088520A2 (en) Conductive paste for solar cell electrode, glass frit contained therein, and solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12827848

Country of ref document: EP

Kind code of ref document: A1