WO2013031975A1 - Method for producing intermediate for biosynthesis of fusicoccin a, and synthase for use in said method - Google Patents

Method for producing intermediate for biosynthesis of fusicoccin a, and synthase for use in said method Download PDF

Info

Publication number
WO2013031975A1
WO2013031975A1 PCT/JP2012/072221 JP2012072221W WO2013031975A1 WO 2013031975 A1 WO2013031975 A1 WO 2013031975A1 JP 2012072221 W JP2012072221 W JP 2012072221W WO 2013031975 A1 WO2013031975 A1 WO 2013031975A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
amino acid
acid sequence
base sequence
sequence shown
Prior art date
Application number
PCT/JP2012/072221
Other languages
French (fr)
Japanese (ja)
Inventor
徹 大利
修雄 加藤
基義 野池
祐介 小野
雄介 樋口
Original Assignee
Dairi Tohru
Kato Nobuo
Noike Motoyoshi
Ono Yusuke
Higuchi Yusuke
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dairi Tohru, Kato Nobuo, Noike Motoyoshi, Ono Yusuke, Higuchi Yusuke filed Critical Dairi Tohru
Publication of WO2013031975A1 publication Critical patent/WO2013031975A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1007Methyltransferases (general) (2.1.1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P15/00Preparation of compounds containing at least three condensed carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides

Definitions

  • the present invention relates to a method for producing a biosynthetic intermediate of fusicoccin A, an enzyme that can be used in the method, and a product thereof.
  • FC A Fusicoccin (hereinafter, also simply referred to as “FC”) A is a diterpene glycoside produced by the phytopathogenic fungus Phomopsis amygdali .
  • FC A exhibits plant hormone-like activity through the activation of cell membrane H + -ATPase.
  • FC A and H + -ATPase FC A was found to be of 14-3-3 protein and phosphorylated peptide. The association state is stabilized by the formation of a ternary complex, resulting in continuous activation of H + -ATPase (Non-patent Document 1).
  • H + -ATPase plays an important role in plant growth regulation, and the activity of H + -ATPase is controlled by phosphorylation of threonine at the C-terminal, and when this threonine is phosphorylated, 14 Associates with 3-3 protein and activates H + -ATPase. When this complex of H + -ATPase and 14-3-3 protein is stabilized by FCA, it brings about physiological effects such as inducing germination of dormant seeds, opening of pores, and enlargement of cotyledons.
  • FC A is structurally similar to brassicene (hereinafter, also simply referred to as “BC”) C, etc., and other FC A structural analogs may be produced from the biosynthesis intermediate of FC A. It is considered possible.
  • the 14-3-3 protein is a protein that exists throughout eukaryotic organisms, and in mammals, it is known to be included in a part of a signal transduction pathway including a cancer-related factor. It is considered that FC A that binds to a 3-3 protein and its structural analogs have high utility value as pharmaceuticals.
  • the present invention elucidates the entire biosynthetic pathway of FC A, obtains an enzyme that produces fusicoccin A and its biosynthetic intermediate, and produces fusicoccin A and its biosynthetic intermediate using the obtained enzyme. It aims to provide a way to do.
  • FC A biosynthetic intermediate is a compound produced in the process of FC A biosynthesis. These compounds correspond to “manufacturing intermediate of FC A” in the manufacturing method of FC A of the present invention.
  • FC A biosynthetic intermediate is unified in this specification, but this also means “FC A production intermediate” and is not restricted by biosynthesis.
  • cytochrome P450 cytochrome P450
  • a gene cluster was found that contained genes encoding glycosyltransferase, two acetyltransferases, one methyltransferase, and one prenyltransferase, respectively.
  • the present inventors used four enzymes encoded in cluster 1 isolated earlier and nine enzymes identified this time, so that FCA was obtained using geranylgeranyl diphosphate as a starting material. Successfully synthesized.
  • P. In amygdali it was found that a compound serving as a substrate for the enzyme can be efficiently biosynthesized in the microbial cells by deleting a gene encoding a part of the enzyme and blocking the enzyme reaction.
  • the present invention has been completed on the basis of these series of findings, and includes the inventions of the embodiments listed below.
  • FC H fusicoccin H
  • ORF1 Cyclase (ORF1) is allowed to act on geranylgeranyl diphosphate (hereinafter also referred to as “GGDP”) to produce a compound represented by the following formula (II) (hereinafter referred to as “fusicocca-2,10 (14) -diene”).
  • GGDP geranylgeranyl diphosphate
  • P450-2 (ORF5) is allowed to act on the compound (II) obtained above in the presence of P450 reductase and nicotinamide adenine dinucleotide (NADH) or nicotinamide adenine dinucleotide phosphate (NADPH).
  • a step of obtaining a compound represented by (III) (hereinafter also referred to as “fusicocca-2,10 (14) -dien-8 ⁇ -ol”);
  • Steps (a) to (g) described in (1-1), step (h) described in (1-2), step (i) described in (1-3), and (1-4) A method for producing dideacetyl fusicoccin A represented by formula (XII) (hereinafter also referred to as “deacetylyl-FC A”), which further comprises step (k) in addition to the step (j) described. : (K).
  • step (J) The compound (XI) obtained in the step is allowed to act on P450-5 (ORF13) in the presence of P450 reductase and NADH or NADPH to give a compound represented by the following formula (XII) (deacetylyl-FC A )
  • P450-2 (ORF5) used in step (b) is an enzyme encoded by the base sequence described in any one of (1) to (3), or any one of (4) to (6) A method for producing FCA or a biosynthetic intermediate thereof according to any one of (1-1) to (1-6), which is an enzyme comprising an amino acid sequence: (1) the base sequence shown in SEQ ID NO: 1, (2) having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 1 under stringent conditions, and similar to the gene product encoded by the base sequence shown in SEQ ID NO: 1, P450 reductase and NADH or A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (b) in the presence of NADPH; (3)
  • P450 has a nucleotide sequence in which one or more bases are substituted, deleted, or added, and is the same as the gene product encoded by the nucleotide sequence shown in
  • the P450-3 (ORF7) used in the step (f) is an enzyme encoded by the base sequence described in any of (7) to (9) or the enzyme described in any of (10) to (12)
  • a base sequence encoding a protein or (10) an amino acid sequence shown in SEQ ID NO: 6, (11) In the presence of P450 reductase and NADH or NADPH, which is 85% or more identical to the amino acid sequence shown in SEQ ID NO: 6 and consists of the amino acid sequence shown in SEQ ID NO: 6, in the step (f)
  • An amino acid sequence encoding a protein having an enzyme action that catalyzes a reaction or (12) an amino acid sequence represented by SEQ ID NO: 6 having an amino acid sequence in which one or more amino acids are substituted, deleted, or added;
  • the glycosyltransferase (ORF6) used in the step (g) is an enzyme encoded by the base sequence according to any one of (13) to (15), or any one of (16) to (18) A method for producing FCA or a biosynthetic intermediate thereof according to any one of (1-1) to (1-6), which is an enzyme comprising an amino acid sequence: (13) the base sequence shown in SEQ ID NO: 3, (14) Presence of a glycosyl group donor having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 3 under stringent conditions, as in the gene product encoded by the base sequence shown in SEQ ID NO: 3.
  • P450-4 (ORF10) used in the step (h) is an enzyme encoded by the base sequence described in any one of (19) to (21), or any one of (22) to (24) A method for producing FCA or a biosynthetic intermediate thereof according to any one of (1-1) to (1-6), which is an enzyme comprising the amino acid sequence: (19) the base sequence shown in SEQ ID NO: 11, (20) having a base sequence that hybridizes under stringent conditions with a complementary strand of the base sequence shown in SEQ ID NO: 11 and, like the gene product encoded by the base sequence shown in SEQ ID NO: 11, P450 reductase and NADH or In the presence of NADPH, in the base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (h), or (21) one or more bases are substituted, deleted, or deleted in the base sequence shown in SEQ ID NO: 11, or A protein having an added base sequence and having an enzyme action that catalyzes the reaction of step (h) in the presence of P
  • the methyltransferase (ORF8) in step (i) is an enzyme encoded by the base sequence described in any one of (25) to (27) or the amino acid sequence described in any one of (28) to (30).
  • a base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (i), or (27) a base in which one or more bases are substituted, deleted, or added in the base sequence shown in SEQ ID NO: 7 A nucleotide sequence that encodes a protein having an enzyme action that catalyzes the reaction of step (i) in the
  • the prenyl transferase (ORF11) used in the step (j) is an enzyme encoded by the base sequence according to any of (31) to (33), or any of (34) to (36)
  • step (k) A method for producing FCA or a biosynthetic intermediate thereof according to any one of (1-1) to (1-6), which is an enzyme comprising: (37) the base sequence shown in SEQ ID NO: 17, (38) having a base sequence that hybridizes under stringent conditions with a complementary strand of the base sequence shown in SEQ ID NO: 17, and, like the gene product encoded by the base sequence shown in SEQ ID NO: 17, P450 reductase and NADH or In the presence of NADPH, in the base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (k), or (39) the base sequence shown in SEQ ID NO: 17, one or more bases are substituted, deleted, or A protein having an added base sequence and having an enzyme action that catalyzes the reaction of step (k) in the
  • step (l) A method for producing FCA or a biosynthetic intermediate thereof according to any one of (1-1) to (1-6): (43) the base sequence represented by SEQ ID NO: 15, (44) having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 15 under stringent conditions, and in the presence of an acetyl donor in the same manner as the gene product encoded by the base sequence shown in SEQ ID NO: 15 , A base sequence encoding a protein having an enzyme action that catalyzes acetylation of the 19th hydroxyl group of compound (XII), or (45) one or more bases substituted or deleted in the base sequence shown in SEQ ID NO: 15 Or an enzyme that catalyzes the acetylation of the hydroxyl group at
  • the acetyltransferase (ORF9) in step (l) is an enzyme encoded by the base sequence described in any of (49) to (51) or an enzyme consisting of the amino acid sequence described in (52) to (54)
  • an acetyl donor in the presence of an acetyl
  • a gene encoding P450-2 comprising the base sequence according to any one of (1) to (3): (1) the base sequence shown in SEQ ID NO: 1, (2) having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 1 under stringent conditions, and similar to the gene product encoded by the base sequence shown in SEQ ID NO: 1, P450 reductase and NADH or A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (b) in the presence of NADPH; (3)
  • P450 has a nucleotide sequence in which one or more bases are substituted, deleted, or added, and is the same as the gene product encoded by the nucleotide sequence shown in SEQ ID NO: 1.
  • a base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (ORF5) comprising the base sequence according to any one of (1) to (3): (1) the base sequence shown in SEQ ID NO: 1, (2) having a base sequence that hybridizes with
  • P450-2 comprising the amino acid sequence according to any one of (4) to (6): (4) the amino acid sequence shown in SEQ ID NO: 2, (5)
  • a gene encoding P450-3 comprising the base sequence according to any one of (7) to (9): (7) the base sequence shown in SEQ ID NO: 5, (8) having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 5 under stringent conditions, and, like the gene product encoded by the base sequence shown in SEQ ID NO: 5, P450 reductase and NADH or A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (f) in the presence of NADPH; (9)
  • the base sequence has one or more bases substituted, deleted, or added, and is the same as the gene product encoded by the base sequence shown in SEQ ID NO: 5,
  • P450-3 comprising the amino acid sequence according to any one of (10) to (12): (10) the amino acid sequence shown in SEQ ID NO: 6, (11) In the presence of P450 reductase and NADH or NADPH, which has 85% or more identity with the amino acid sequence shown in SEQ ID NO: 6 and consists of the amino acid sequence shown in SEQ ID NO: 6, An amino acid sequence encoding a protein having an enzymatic action to catalyze the reaction; (12) A P450 reductase having the same amino acid sequence as that shown in SEQ ID NO: 6, wherein the amino acid sequence shown in SEQ ID NO: 6 has an amino acid sequence in which one or more amino acids are substituted, deleted, or added. And an amino acid sequence encoding a protein having an enzyme action that catalyzes the reaction of step (f) in the presence of NADH or NADPH.
  • a gene encoding a glycosyltransferase comprising the base sequence according to any one of (13) to (15): (13) the base sequence shown in SEQ ID NO: 3, (14) Presence of a glycosyl group donor having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 3 under stringent conditions, as in the gene product encoded by the base sequence shown in SEQ ID NO: 3.
  • a base sequence encoding a protein having an enzyme action that catalyzes the reaction in the step (g) (15) In the base sequence shown in SEQ ID NO: 3, a glycosyl group having the base sequence in which one or more bases are substituted, deleted, or added, and the gene product encoded by the base sequence of SEQ ID NO: 3 A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (g) in the presence of a donor.
  • Glycosyltransferase comprising the amino acid sequence according to any one of (16) to (18): (16) the amino acid sequence shown in SEQ ID NO: 4, (17) Catalyzing the reaction of step (g) in the presence of a glycosyl group donor having the identity of 85% or more to the amino acid sequence shown in SEQ ID NO: 4 and the enzyme consisting of the amino acid sequence shown in SEQ ID NO: 4 An amino acid sequence encoding a protein having an enzyme action, (18) A glycosyl group donor having an amino acid sequence in which one or more amino acids are substituted, deleted, or added in the amino acid sequence shown in SEQ ID NO: 4 and consisting of the amino acid sequence shown in SEQ ID NO: 4 An amino acid sequence encoding a protein having an enzyme action that catalyzes the reaction of step (g) in the presence of.
  • a gene encoding P450-4 comprising the base sequence according to any one of (21): (19) the base sequence shown in SEQ ID NO: 11, (20) A P450 reductase and NADH or NADPH having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 11 under stringent conditions and the same as the gene product encoded by the base sequence of SEQ ID NO: 11.
  • the base sequence shown in SEQ ID NO: 11 has a base sequence in which one or more bases are substituted, deleted, or added, and is reduced by P450 as in the gene product encoded by the base sequence of SEQ ID NO: 11.
  • P450-4 comprising the amino acid sequence according to any one of (22) to (24): (22) the amino acid sequence shown in SEQ ID NO: 12, (23) In the presence of P450 reductase and NADH or NADPH, which has 85% or more identity with the amino acid sequence shown in SEQ ID NO: 12 and consists of the amino acid sequence shown in SEQ ID NO: 12, An amino acid sequence encoding a protein having an enzymatic action to catalyze the reaction; (24)
  • the amino acid sequence shown in SEQ ID NO: 12 has an amino acid sequence in which one or more amino acids are substituted, deleted, or added, and, like the enzyme consisting of the amino acid sequence shown in SEQ ID NO: 12, P450 reductase and An amino acid sequence encoding a protein having an enzyme action that catalyzes the reaction of step (h) in the presence of NADH or NADPH.
  • a gene encoding methyltransferase comprising the base sequence according to any of (25) to (27): (25) the base sequence shown in SEQ ID NO: 7, (26) Presence of a methyl group donor having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 7 under stringent conditions and the gene product encoded by the base sequence shown in SEQ ID NO: 7 below, a base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (i), (27) In the base sequence shown in SEQ ID NO: 7, a base sequence in which one or more bases are substituted, deleted, or added, and methyl as in the gene product encoded by the base sequence shown in SEQ ID NO: 7 A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (i) in the presence of a group donor.
  • Methyltransferase comprising the amino acid sequence according to any of (28) to (30): (28) the amino acid sequence shown in SEQ ID NO: 8, (29) Catalyzing the reaction of step (i) in the presence of a methyl donor, having 85% or more identity with the amino acid sequence shown in SEQ ID NO: 8 and the enzyme consisting of the amino acid sequence shown in SEQ ID NO: 8 An amino acid sequence encoding a protein having an enzyme action, (30) A methyl group donor having an amino acid sequence in which one or a plurality of amino acids are substituted, deleted, or added in the amino acid sequence shown in SEQ ID NO: 8 and comprising the amino acid sequence shown in SEQ ID NO: 8 An amino acid sequence encoding a protein having an enzyme action that catalyzes the reaction of step (i) in the presence of.
  • a gene encoding prenyltransferase (ORF11) comprising the base sequence according to any of (31) to (33): (31) the base sequence shown in SEQ ID NO: 13, (32) having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 13 under stringent conditions, and in the presence of a prenyl group donor in the same manner as the gene product encoded by the base sequence in SEQ ID NO: 13 , A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (j), (33)
  • a prenyl group has a base sequence in which one or more bases are substituted, deleted, or added, and is the same as the gene product encoded by the base sequence of SEQ ID NO: 13
  • prenyltransferase comprising the amino acid sequence according to any one of the above: (34) the amino acid sequence shown in SEQ ID NO: 14, (35) Catalyzing the reaction of the step (j) in the presence of a prenyl group donor having the identity of 85% or more to the amino acid sequence shown in SEQ ID NO: 14 and the enzyme consisting of the amino acid sequence shown in SEQ ID NO: 14 An amino acid sequence encoding a protein having an enzyme action, (36) A prenyl group donor having an amino acid sequence in which one or more amino acids are substituted, deleted, or added in the amino acid sequence shown in SEQ ID NO: 14, and the enzyme comprising the amino acid sequence shown in SEQ ID NO: 14 An amino acid sequence encoding a protein having an enzyme action that catalyzes the reaction of step (j) in the presence of.
  • (450) (ORF13) comprising the base sequence according to any of (37) to (39): (37) the base sequence shown in SEQ ID NO: 17, (38) having a base sequence that hybridizes under stringent conditions with a complementary strand of the base sequence shown in SEQ ID NO: 17, and, like the gene product encoded by the base sequence shown in SEQ ID NO: 17, P450 reductase and NADH or A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (k) in the presence of NADPH; (39)
  • the base sequence shown in SEQ ID NO: 17 has a base sequence in which one or more bases are substituted, deleted, or added, and is reduced by P450 as in the gene product encoded by the base sequence of SEQ ID NO: 17.
  • P450-5 comprising the amino acid sequence according to any one of (40) to (42): (40) the amino acid sequence shown in SEQ ID NO: 18, (41) In the presence of P450 reductase and NADH or NADPH in the presence of P450 reductase and NADH or NADPH having 85% or more identity with the amino acid sequence shown in SEQ ID NO: 18, An amino acid sequence encoding a protein having an enzymatic action to catalyze the reaction; (42) The amino acid sequence shown in SEQ ID NO: 18 has an amino acid sequence in which one or more amino acids are substituted, deleted, or added, and, like the enzyme consisting of the amino acid sequence shown in SEQ ID NO: 18, P450 reductase and An amino acid sequence encoding a protein having an enzyme action that catalyzes the reaction of step (k) in the presence of NADH or NADPH.
  • a gene encoding acetyltransferase comprising the base sequence according to any one of (45): (43) the base sequence represented by SEQ ID NO: 15, (44) having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 15 under stringent conditions, and in the presence of an acetyl donor in the same manner as the gene product encoded by the base sequence shown in SEQ ID NO: 15 , A base sequence encoding a protein having an enzyme action that catalyzes the acetylation of the 19th hydroxyl group of compound (XII), (45)
  • one or more bases have a base sequence substituted, deleted, or added, and acetylated like the gene product encoded by the base sequence shown in SEQ ID NO: 15.
  • a base sequence encoding a protein having an enzyme action that catalyzes the acetylation of the 19th hydroxyl group of compound (ORF12) comprising the base sequence according to any one of (45)
  • acetyltransferase comprising the amino acid sequence according to any one of: (46) the amino acid sequence shown in SEQ ID NO: 16, (47) having the identity of 85% or more with the amino acid sequence shown in SEQ ID NO: 16 and, like the enzyme encoded by SEQ ID NO: 16, in the presence of an acetyl group donor, the hydroxyl group at position 19 of compound (XII)
  • An amino acid sequence encoding a protein having an enzymatic action to catalyze acetylation (48) An acetyl group donor having the same amino acid sequence as that shown in SEQ ID NO: 14, wherein the amino acid sequence shown in SEQ ID NO: 16 has an amino acid sequence in which one or more amino acids are substituted, deleted, or added.
  • a gene encoding acetyltransferase comprising the base sequence according to any one of (51): (49) the base sequence represented by SEQ ID NO: 9, (50) having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 9 under stringent conditions, and in the presence of an acetyl group donor in the same manner as the gene product encoded by the base sequence of SEQ ID NO: 9
  • one or more bases have a base sequence substituted, deleted, or added, and the acetyl group is the same as the gene product encoded by the base sequence of SEQ ID NO: 9.
  • Acetyltransferase comprising the amino acid sequence according to any of (52) to (54): (52) the amino acid sequence shown in SEQ ID NO: 10, (53)
  • the compound of the formula (XII) has the identity of 85% or more to the amino acid sequence shown in SEQ ID NO: 10 and consists of the amino acid sequence shown in SEQ ID NO: 10
  • An amino acid sequence encoding a protein having an enzymatic action to catalyze acetylation of the hydroxyl group at the 3 ′ position (54)
  • the amino acid sequence shown in SEQ ID NO: 10 has an amino acid sequence in which one or more amino acids are substituted, deleted, or added, and provides an acetyl group as in the enzyme consisting of the amino acid sequence shown in SEQ ID NO: 10
  • An amino acid sequence encoding a protein having an enzyme action that catalyzes the acetylation of the 3′-position hydroxyl group of a compound of the formula (ORF9) comprising the amino acid sequence according to any
  • FC A is structurally similar to BC C and the like, it is also possible to produce an analog such as BC C from a biosynthetic intermediate of FC A.
  • FC J is more useful than FC A
  • FC H is useful.
  • P450-2 glycosyltransferase (ORF6), P450-3 (ORF7), methyltransferase (ORF8), acetyltransferase (ORF9), P450-4 (ORF10), prenyltransferase (ORF11), acetyltransferase ( Filamentous fungi lacking any one of the enzyme-producing ability selected from the group consisting of ORF12) and P450-5 (ORF13) are useful for obtaining a biosynthesis intermediate of FC A.
  • filamentous fungi lacking the enzyme producing ability of P450-4 (ORF10) or P450-5 (ORF13) are useful because they produce FC H or FC J efficiently.
  • P450-2 glycosyltransferase (ORF6), P450-3 (ORF7), methyltransferase (ORF8), acetyltransferase (ORF9), P450-4 (ORF10), prenyltransferase (ORF11), acetyltransferase (ORF12) And P450-5 (ORF13) can be expressed in yeast or obtained as a recombinant protein, and can also be used in an in vitro reaction system.
  • FIG. 2 shows a fusicoccin A biosynthetic gene cluster isolated from amygdali .
  • Cluster 1 includes four genes: a cyclase gene: orf1, a dioxygenase gene: orf2, a P450-1 gene: orf3, and a short chain dehydrogenase / reductase gene: orf4
  • Cluster 2 includes P450-2 gene (orf5), glycosyltransferase gene: orf6, P450-3 gene: orf7, methyltransferase gene: orf8, acetyltransferase gene : Orf9, P450-4 gene: o f10, prenyl transferases (prenyltransferase) gene (orf11), acetyltransferase (acetyltransferase) gene: orf12 and P450-5 gene: contains nine genes ORF13.
  • the GC / MS spectrum (lower part) of a dien-8 ⁇ -ol standard is shown.
  • S. The HPLC chromatogram of the reaction product (lower stage) obtained using the microsome of cerevisiae (control) is shown.
  • A Reaction product (upper) synthesized by in vitro glycosyltransferase reaction in which His tag-binding ORF6 recombinant protein is reacted with FC H aglycon and UDP-glucose in vitro and FC H aglycon preparation (lower) as a substrate HPLC chromatogram of (B) LC-MS spectrum (upper) of the product produced by in vitro glycosyltransferase reaction and LC-MS spectrum (lower) of FC H standard.
  • A Reaction product synthesized by in vitro methyltransferase reaction in which MBP tag-binding ORF8 recombinant protein is reacted with FC H aglycon and S-adenosyl methionine in vitro (upper) and FC H aglycon preparation as substrate (lower) HPLC chromatogram of (B) LC-MS spectrum (upper) of the product synthesized by in vitro methyltransferase reaction and LC-MS spectrum (lower) of 16- O- methyl-FC H alycon preparation.
  • A HPLC chromatogram of a product synthesized by an in vitro prenyltransferase reaction (upper) and a substrate of FC P standard (lower), in which a His tag-binding ORF11 recombinant protein is reacted in vitro with FC P and dimethylallyl diphosphate.
  • B LC / MS spectrum of the product synthesized from FC P and dimethylallyl diphosphate (upper) and LC / MS spectrum of FC J standard (lower).
  • TF (trigger factor) -tagged ORF12 recombinant protein in vitro reacts with diethylacetyl-FC A and acetyl CoA.
  • the reaction product (upper) obtained by in vitro acetyltransferase reaction and the substrate, 3 ′, 19-deacetylyl-FC HPLC chromatogram of A standard (bottom).
  • (B) 3'-deacetyl-FC A standard LC / MS spectrum (upper) and reaction product LC / MS spectrum (lower).
  • “Stringent conditions” for hybridizing with a complementary strand of a base sequence are, for example, hybridization in a 5 ⁇ SSC solution at 65 ° C. (composition of a 1-fold concentration SSC solution is 150 mM sodium chloride, 15 mM sodium citrate). It means the condition of making soybeans and further washing at 65 ° C. with 0.5 ⁇ SSC solution containing 0.1% SDS.
  • Each operation of hybridization under stringent conditions is described in “Molecular Cloning (Third Edition)” (J. Sambrook & D. W. Russell, Cold Spring Harbor Press, 2001), etc. It can be performed by a known method. Generally, the higher the temperature and the lower the salt concentration, the higher the stringency.
  • a DNA having a base sequence showing a homology of 85% or more, preferably 90% or more, more preferably 95% or more with a specific base sequence described in the sequence listing is described in the sequence listing. It can hybridize with a complementary strand of DNA represented by the base sequence.
  • base sequence in which one or more bases are substituted, deleted, or added means 1 or 2 to 50, preferably 1 or 2 to 20, more preferably in the specific base sequence described in the sequence listing.
  • substitution, deletion, or addition of these base sequences may occur continuously or discontinuously in the base sequences described in the sequence listing.
  • 85% or more identity with an amino acid means 85% to 99%, preferably 90% to 99%, more preferably 95% to 99% identity with a specific amino acid sequence described in the sequence listing.
  • An amino acid sequence having Substitution, deletion, or addition in these amino acid sequences may occur continuously or discontinuously in the amino acid sequences described in the sequence listing.
  • amino acid sequence in which one or more amino acids are substituted, deleted or added means, for example, 1 or 2 to 40, preferably 1 or 2 to 20 in the specific amino acid sequence described in the sequence listing. More preferably, it refers to an amino acid sequence in which 1 or 2 to 12, more preferably 1 or 2 to 9, particularly preferably 1 or 2 to 5 amino acids are substituted, deleted or added. Furthermore, in the substitution of amino acids, substitution with a similar amino acid is preferable because it is predicted that it does not change the phenotype of the polypeptide, that is, it is a conservative amino acid substitution. For example, similar amino acids can be grouped as follows, and specific examples of conservative amino acid substitution are well known in the art (see Science, 247: p1306-1310 (1990)).
  • Aromatic amino acids Phe, Trp, Tyr Aliphatic amino acids: Ala, Leu, Ile, Val Polar amino acids: Gln, Asn Basic amino acids: Lys, Arg, His Acidic amino acids: Glu, Asp Amino acids having a hydroxyl group: Ser, Thr Amino acids with small side chains: Gly, Ala, Ser, Thr, Met “Heterologous expression” refers to P. In cells such as fungi, bacteria or mammals different from Amygdali , P. The expression of a protein derived from amygdali . In contrast, P. P. amygdali as a host. Expression of a protein derived from amygdali is called “homologous expression”.
  • cultured mammalian cells or cells derived from eukaryotes such as yeast can be used. Saccharomyces cerevisiae is more preferable, and Saccharomyces cerevisiae is more preferable. S. cerevisiae is preferably auxotrophic for amino acids such as lysine and nucleic acids such as adenine, and YPH500 or the like can be used.
  • a cDNA of a protein to be expressed is inserted into a vector containing a promoter sequence transcribed in the host so that the target gene is expressed under the control of the promoter, and the gene is introduced into the host. If necessary, a terminator effective in the host may be included downstream of the target gene cDNA.
  • the vector is not particularly limited as long as it has a promoter capable of inducing transcription in the host, and is preferably a plasmid.
  • the promoter is not limited as long as transcription is induced in yeast, but GAL1, GAL10, TEF1, and the like are preferable.
  • the vector encodes a gene that can synthesize amino acids and nucleic acids that cannot be synthesized by the host yeast, if necessary.
  • Preferred are the pESC series, pTEF1 series, pTEF1 series, pADH1 series, pTPI1 series, pHXT7, pTDH3, pPGK1, and pPYK1, and more preferred is the pESC series.
  • Recombinant protein refers to a protein that has been expressed in Escherichia coli and purified by transforming a cDNA encoding the target protein according to a conventional method.
  • Recombinant protein by incorporating the cDNA to be expressed into a vector such as pUC series, pBR322 series, etc., or into a commercially available vector such as pET series, pMAL series, pGEX series, pFLAG series, pCold TF series, etc.
  • An expression vector can be obtained.
  • protein expression can be controlled using isopropyl- ⁇ -D-galactopyranoside (IPTG).
  • JM109 strain As the Escherichia coli for transforming the constructed recombinant protein expression vector, JM109 strain, HB101 strain, DH5 ⁇ strain or BL21 strain can be used. When using a recombinant protein expression vector having a lac operator, it is preferable to use BL21-based E. coli.
  • Transformation into E. coli, selection with antibiotics, and culture can be performed according to conventional methods.
  • the ordinary method refers to the method described in the above-mentioned “Molecular Cloning (Third Edition)” or a method according to this.
  • E. coli transformed with the recombinant protein expression vector can be cultured on a large scale, and then the recombinant protein can be purified by a method according to each tag.
  • the lysis of E. coli and the purification of the recombinant protein can be performed according to a protocol attached to a commercially available recombinant protein purification kit.
  • microsome fraction is a fraction obtained by high-speed centrifugation after disrupting yeast or the like, and includes rough endoplasmic reticulum, smooth endoplasmic reticulum, free ribosome, cell membrane, Golgi apparatus and the like.
  • the microsomal fraction can be prepared according to a known method.
  • P450 catalyzes the monoatomic oxygenation reaction (monooxygenase reaction or hydroxylation reaction) of a fat-soluble substrate using two electrons and one oxygen molecule in the presence of P450 reductase and NADH or NADPH.
  • a glycosyltransferase is an enzyme that catalyzes a reaction of transferring a glycosyl group from a donor containing a glycosyl group to a substrate that is an acceptor.
  • a glycoside of nucleoside monophosphate or nucleoside diphosphate is used as the glycosyl group donor.
  • Acetyltransferase refers to an enzyme group that transfers an acetyl group to a substrate among acyltransferases that transfer an acyl group from acyl CoA to a substrate.
  • Methyltransferase refers to an enzyme that transfers a methyl group from a methyl group donor to an amino group, hydroxyl group, or thiol group of a substrate.
  • Prenyltransferase is a general term for enzymes that transfer a geranylgeranyl group to cysteine at the C-terminal part of a protein.
  • the present invention includes an enzyme that transfers a geranylgeranyl group to a sugar.
  • P450-2 (ORF5)
  • the enzyme uses fusicocca-2,10 (14) -diene represented by the formula (II) as a substrate.
  • fusicocca-2,10 (14) -diene represented by the formula (II) as a substrate.
  • it is characterized by having a catalytic action of synthesizing fusicocca-2,10 (14) -dien-8 ⁇ -ol represented by the formula (III) by hydroxylating the carbon at the 8-position of the compound.
  • ORF5 Specific examples of the enzyme (hereinafter also simply referred to as “ORF5”) include (4) a protein comprising the amino acid sequence shown in SEQ ID NO: 2.
  • the protein is not limited thereto, and may be a protein comprising any one of the following amino acid sequences (5) or (6) as long as it has the above catalytic action.
  • (5) an amino acid sequence having 85% or more, preferably 90%, more preferably 95%, and still more preferably 98% or more homology with the amino acid sequence shown in SEQ ID NO: 2;
  • the origin of such an enzyme is not particularly limited as long as it has the above catalytic action and falls under any of the above (4) to (6). It may be derived from any organism. It is preferably derived from a fungus, and particularly preferably derived from a filamentous fungus, in particular, a filamentous fungus belonging to the genus Phomopsis , and more preferably from Phomopsis amygdali .
  • the present invention also provides a gene for the enzyme (the ORF5 gene is also simply referred to as “orf5”).
  • ORF5 gene examples include those having (1) the base sequence shown in SEQ ID NO: 1 in the coding region (DNA, cDNA).
  • the present invention is not limited to this, and is a gene (DNA, cDNA) having the base sequence of either (2) or (3) below in the coding region, as long as it encodes the protein having the catalytic action described above. May be. (2) a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 1 under stringent conditions; (3) A base sequence in which one or more bases are substituted, deleted, or added in the base sequence shown in SEQ ID NO: 1.
  • the ORF5 of the present invention can be produced by conventional peptide synthesis based on the amino acid information of the ORF5 described above, particularly the amino acid sequence shown in SEQ ID NO: 2, and can be prepared by the same or different expression system using the orf5. Can be obtained according to. More preferably, budding yeast, particularly S. This is a production method using a heterologous expression system using cerevisiae .
  • P450-3 In the presence of P450 reductase and NADH or NADPH, the enzyme uses fusicocca-1,10 (14) -diene-8 ⁇ , 16-diol represented by the formula (VII) as a substrate, and the 9-position carbon of the compound is It is characterized by having a catalytic action of synthesizing FC H aglycon represented by the formula (VIII) by hydroxylation.
  • ORF7 Specific examples of the enzyme (hereinafter also simply referred to as “ORF7”) include (10) a protein consisting of the amino acid sequence shown in SEQ ID NO: 6.
  • the protein is not limited thereto, and may be a protein having any one of the following amino acid sequences (11) or (12) as long as it has the above catalytic action.
  • (11) an amino acid sequence having 85% or more, preferably 90%, more preferably 95%, more preferably 98% or more homology with the amino acid sequence shown in SEQ ID NO: 6,
  • the origin of such an enzyme is not particularly limited as long as it has the above catalytic action and falls under any of the above (10) to (12), and is a eukaryotic organism such as a plant, an animal, or a fungus, and an actinomycete. It may be derived from any prokaryotic organism such as a fungus. It is preferably derived from a fungus, and particularly preferably derived from a filamentous fungus, in particular, a filamentous fungus belonging to the genus Phomopsis , and more preferably from Phomopsis amygdali .
  • the present invention also provides a gene for the enzyme (the ORF7 gene is also simply referred to as “orf7”).
  • ORF7 gene examples include those having the base sequence represented by (7) SEQ ID NO: 5 in the coding region (DNA, cDNA).
  • the present invention is not limited to this, and is a gene (DNA, cDNA) having any one of the following base sequences (8) or (9) in the coding region, as long as it encodes the protein having the catalytic action described above. May be.
  • (8) a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 5 under stringent conditions;
  • 9 A base sequence in which one or more bases are substituted, deleted, or added in the base sequence shown in SEQ ID NO: 5.
  • the ORF7 of the present invention can be produced by conventional peptide synthesis based on the amino acid information of ORF7 described above, particularly the amino acid sequence shown in SEQ ID NO: 6, and can be prepared by the same or different expression system using the orf7. Can be obtained according to. More preferably, budding yeast, particularly S. This is a production method using a heterologous expression system using cerevisiae .
  • Glycosyltransferase In the presence of a glycosyl group donor, the enzyme transfers a glycosyl group to the hydroxyl group at the 9-position of the compound using FC H aglycon represented by the formula (VIII) as a substrate, for example, an FC represented by the formula (I) It has a catalytic action for synthesizing glycosides such as H.
  • ORF6 Specific examples of the enzyme (hereinafter also simply referred to as “ORF6”) include (16) a protein consisting of the amino acid sequence shown in SEQ ID NO: 4.
  • the protein is not limited thereto, and may be a protein comprising any one of the following amino acid sequences (17) or (18) as long as it has the above catalytic action.
  • Eukaryotic organisms such as plants, animals, fungi, and bacteria It may be derived from any prokaryotic organism such as It is preferably derived from a fungus, and particularly preferably derived from a filamentous fungus, in particular, a filamentous fungus belonging to the genus Phomopsis , and more preferably from Phomopsis amygdali .
  • Glycosyl group donors that can be used with ORF6 of the present invention include, but are not limited to, uridine diphosphate (UDP), guanosine diphosphate (GDP), cytidine monophosphate (CDP), and thymidine diphosphate.
  • examples include sugar sugar adducts (sugar nucleotides) such as phosphoric acid (TDP).
  • sugar addition products sucidine diphosphate (UDP) and thymidine diphosphate (TDP) are preferable, and sugar addition products (sugar nucleotides) of UDP are more preferable.
  • the sugar that is, the glycosyl group transferred from the glycosyl group donor is not particularly limited, and examples thereof include monosaccharides, disaccharides, and trisaccharides. Preferred are monosaccharides or disaccharides, and more preferred are monosaccharides.
  • the sugar may be a deoxy sugar such as fucose, or an amino sugar such as glucosamine or galactosamine. Examples of monosaccharides include tricarbon sugar, tetracarbon sugar, pentose sugar, and hexose sugar. Preferred are pentoses such as xylose and hexoses such as glucose, galactose or mannose, more preferred are hexoses, especially glucose.
  • ORF6 acts on FC H alycon represented by formula (VIII) in the presence of UDP-glucose or TDP-glucose as a glycosyl group donor to synthesize FC H represented by formula (I). Useful as an enzyme.
  • the present invention also provides a gene for the enzyme (the ORF6 gene is also simply referred to as “orf6”).
  • ORF6 gene include those having the base sequence shown in (13) SEQ ID NO: 3 in the coding region (DNA, cDNA).
  • the present invention is not limited to this, and is a gene (DNA, cDNA) having any one of the following base sequences (14) or (15) in the coding region, as long as it encodes the protein having the catalytic action described above. May be.
  • (14) a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 3 under stringent conditions; (15) A base sequence in which one or more bases are substituted, deleted, or added in the base sequence shown in SEQ ID NO: 3.
  • the ORF6 of the present invention can be produced by conventional peptide synthesis based on the amino acid information of the ORF6 described above, particularly the amino acid sequence shown in SEQ ID NO: 2, and can be produced by the same or different expression system using the orf6. Can be obtained according to. More preferably, budding yeast, particularly S. This is a production method using a heterologous expression system using cerevisiae .
  • ORF6 can be obtained as a recombinant protein.
  • the obtained recombinant protein can be reacted with a glycosyl group donor and FC H aglycon in the range of pH 6.5 to pH 8.5 using, for example, a Tris-HCl buffer or the like. Preferably, it is about pH 7 to pH 8.
  • the glycosyltransferase reaction can be performed, for example, at 25 ° C. to 35 ° C. for about 3 hours to 24 hours, preferably 28 ° C. to 33 ° C. for about 12 hours to 24 hours.
  • sugar can be transferred from the glycosyl group donor to the hydroxyl group at the 9-position of the compound represented by the formula (VIII).
  • P450-4 (ORF10)
  • the enzyme hydroxylates the carbon at the 12-position of the compound using FCH represented by formula (I) as a substrate to produce FC represented by formula (IX). It has a catalytic action to synthesize Q.
  • ORF10 Specific examples of the enzyme (hereinafter also simply referred to as “ORF10”) include (22) a protein consisting of the amino acid sequence shown in SEQ ID NO: 12.
  • the protein is not limited thereto, and may be a protein having any one of the following amino acid sequences (23) or (24) as long as it has the above catalytic action.
  • (23) an amino acid sequence having 85% or more, preferably 90%, more preferably 95%, and still more preferably 98% or more homology with the amino acid sequence shown in SEQ ID NO: 12,
  • the origin of such an enzyme is not particularly limited as long as it has the above catalytic action and falls under any of the above (22) to (24), and eukaryotic organisms such as plants, animals, fungi, and the like It may be derived from any prokaryotic organism such as a fungus. It is preferably derived from a fungus, and particularly preferably derived from a filamentous fungus, in particular, a filamentous fungus belonging to the genus Phomopsis , and more preferably from Phomopsis amygdali .
  • the present invention also provides a gene for the enzyme (the ORF10 gene is also simply referred to as “orf10”).
  • ORF10 gene include those having the base sequence shown in (19) SEQ ID NO: 11 in the coding region (DNA, cDNA).
  • the present invention is not limited to this, and is a gene (DNA, cDNA) having the base sequence of any of (20) or (21) below in the coding region, as long as it encodes the protein having the catalytic action described above. May be.
  • (20) a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 11 under stringent conditions;
  • (21) A base sequence in which one or more bases are substituted, deleted, or added in the base sequence shown in SEQ ID NO: 11.
  • the ORF10 of the present invention can be produced by conventional peptide synthesis based on the amino acid information of the ORF10 described above, particularly the amino acid sequence shown in SEQ ID NO: 12, and can be produced by the same or different expression system using the above orf10. Can get according to. More preferably, budding yeast, particularly S. This is a production method using a heterologous expression system using cerevisiae .
  • Methyltransferase (ORF8) The enzyme transfers FCP represented by the formula (X) by transferring the methyl group to the hydroxyl group at the 16-position of the compound using FCQ represented by the formula (IX) as a substrate in the presence of a methyl group donor. It has a catalytic action to synthesize.
  • the enzyme can recognize the three-dimensional structures of FC H aglycon represented by the formula (VIII), FC H represented by the formula (I), and FC Q represented by the formula (IX). It does not react with an epimer formed by epimerization at the 3-position of the compound.
  • ORF8 Specific examples of the enzyme (hereinafter also simply referred to as “ORF8”) include (28) a protein comprising the amino acid sequence shown in SEQ ID NO: 8.
  • the protein is not limited thereto, and may be a protein comprising any one of the following amino acid sequences (29) or (30) as long as it has the above catalytic action.
  • (29) an amino acid sequence having 85% or more, preferably 90%, more preferably 95%, and still more preferably 98% or more homology with the amino acid sequence shown in SEQ ID NO: 8;
  • Eukaryotic organisms such as plants, animals, fungi, and bacteria It may be derived from any prokaryotic organism such as It is preferably derived from a fungus, and particularly preferably derived from a filamentous fungus, in particular, a filamentous fungus belonging to the genus Phomopsis , and more preferably from Phomopsis amygdali .
  • Examples of the methyl group donor that can be used with ORF8 of the present invention include N-methyl compounds such as choline, betaine, 5-methyltetrahydrofolic acid, dimethyltetin, S-adenosyl methionine, and the like. S-adenosyl methionine is more preferable.
  • ORF8 acts on FC Q represented by formula (IX) in the presence of S-adenosyl methionine as a methyl group donor, and is useful as an enzyme for synthesizing FC P represented by formula (X). is there.
  • the present invention also provides a gene for the enzyme (the ORF8 gene is also simply referred to as “orf8”).
  • ORF8 gene examples include those having a base sequence represented by (25) SEQ ID NO: 7 in the coding region (DNA, cDNA).
  • the present invention is not limited to this, and is a gene (DNA, cDNA) having any one of the following base sequences (26) or (27) in the coding region, as long as it encodes the protein having the catalytic action described above. May be.
  • (26) a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 7 under stringent conditions;
  • the ORF8 of the present invention can be produced by conventional peptide synthesis based on the amino acid information of the ORF8 described above, particularly the amino acid sequence shown in SEQ ID NO: 8, and can be prepared by the same or different expression system using the above orf8. Can be obtained according to. More preferably, budding yeast, particularly S. This is a production method using a heterologous expression system using cerevisiae .
  • ORF8 can be obtained as a recombinant protein, and the obtained recombinant protein is in the range of pH 6.5 to pH 8.5 using, for example, a Tris-HCl buffer, preferably at a pH of about 7 to pH 8, and a methyl group donor.
  • the methyltransferase reaction can be performed, for example, at 25 ° C. to 35 ° C. for about 3 hours to 24 hours, and preferably at 28 ° C. to 33 ° C. for about 12 hours to 24 hours.
  • a methyl group can be transferred to the hydroxyl group at the 16-position of the compound represented by the formula (VIII), (I) or (IX).
  • Prenyltransferase (ORF11) The enzyme synthesizes FC J represented by the formula (XI) by transferring the prenyl group to the hydroxyl group of the sugar of the compound using the FCP represented by the formula (X) as a substrate in the presence of a prenyl group donor. It has a catalytic action.
  • ORF11 Specific examples of the enzyme (hereinafter also simply referred to as “ORF11”) include (34) a protein consisting of the amino acid sequence shown in SEQ ID NO: 14.
  • the protein is not limited thereto, and may be a protein comprising any one of the following amino acid sequences (35) or (36) as long as it has the above catalytic action.
  • (35) an amino acid sequence having 85% or more, preferably 90%, more preferably 95%, and still more preferably 98% or more homology with the amino acid sequence shown in SEQ ID NO: 14; (36)
  • the origin of such an enzyme is not particularly limited as long as it has the above catalytic action and falls under any of the above (34) to (36). It may be derived from any prokaryotic organism such as It is preferably derived from a fungus, and particularly preferably derived from a filamentous fungus, in particular, a filamentous fungus belonging to the genus Phomopsis , and more preferably from Phomopsis amygdali .
  • Examples of the prenyl group donor that can be used with ORF11 of the present invention include dimethylallyl diphosphate, geranyl diphosphate, farnesyl diphosphate, geranygeryl diphosphate, and the like. Preferred are dimethylallyl diphosphate and geranyl diphosphate, more preferably dimethylallyl diphosphate.
  • ORF11 is useful as an enzyme that synthesizes FCJ represented by formula (XI) by acting on the 6'-position hydroxyl group of FH P represented by formula (X) using dimethylallyl diphosphate as a prenyl group donor. It is.
  • the present invention also provides a gene for the enzyme (the ORF11 gene is also simply referred to as “orf11”).
  • ORF11 gene examples include those having the base sequence shown in (31) SEQ ID NO: 13 in the coding region (DNA, cDNA).
  • the present invention is not limited to this, and is a gene (DNA, cDNA) having the base sequence of any one of (32) and (33) below in the coding region, as long as it encodes the protein having the above catalytic action. May be.
  • (32) a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 13 under stringent conditions; (33) A base sequence in which one or more bases are substituted, deleted, or added in the base sequence shown in SEQ ID NO: 13.
  • the ORF11 of the present invention can be produced by conventional peptide synthesis based on the amino acid information of the ORF11 described above, particularly the amino acid sequence shown in SEQ ID NO: 14, and can be prepared by the same or different expression system using the orf11. Can be obtained according to. More preferably, budding yeast, particularly S. This is a production method using a heterologous expression system using cerevisiae .
  • ORF11 can be obtained as a recombinant protein, and the obtained recombinant protein is in the range of pH 6.5 to pH 8.5, preferably pH 7.2 to pH 7.8, using, for example, a Tris-HCl buffer or the like.
  • the prenyl group donor can be reacted with the compound represented by the formula (I) or (X).
  • the prenyltransferase reaction can be performed, for example, at 25 ° C. to 35 ° C. for about 0.5 hours to 12 hours, and preferably at 28 ° C. to 33 ° C. for about 0.5 hours to 4 hours. be able to.
  • the prenyl group can be transferred to the 6′-position hydroxyl group of the compound represented by the formula (I) or (X).
  • P450-5 (ORF13)
  • the enzyme is represented by the formula (XII) by hydroxylating the 19th carbon of the compound using FC J represented by the formula (XI) as a substrate. It has a catalytic action for synthesizing dideacetyl-FC A.
  • ORF13 Specific examples of the enzyme (hereinafter also simply referred to as “ORF13”) include (40) a protein consisting of the amino acid sequence shown in SEQ ID NO: 18.
  • the protein is not limited thereto, and may be a protein comprising any one of the following amino acid sequences (41) or (42) as long as it has the above catalytic action.
  • (41) an amino acid sequence having 85% or more, preferably 90%, more preferably 95%, and still more preferably 98% or more homology with the amino acid sequence shown in SEQ ID NO: 18;
  • the origin of such an enzyme is not particularly limited as long as it has the above catalytic action and falls under any of the above (40) to (42), and eukaryotic organisms such as plants, animals, fungi and actinomycetes. It may be derived from any prokaryotic organism such as a fungus. It is preferably derived from a fungus, and particularly preferably derived from a filamentous fungus, in particular, a filamentous fungus belonging to the genus Phomopsis , and more preferably from Phomopsis amygdali .
  • the present invention also provides a gene for the enzyme (the ORF13 gene is also simply referred to as “orf13”).
  • ORF13 gene examples include those having the base sequence represented by (37) SEQ ID NO: 17 in the coding region (DNA, cDNA).
  • the present invention is not limited to this, and is a gene (DNA, cDNA) having the base sequence of any of the following (38) or (39) in the coding region, as long as it encodes the protein having the above catalytic action. May be. (37) a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 17 under stringent conditions; (38) A base sequence in which one or more bases are substituted, deleted, or added in the base sequence shown in SEQ ID NO: 17.
  • the ORF13 of the present invention can be produced by conventional peptide synthesis based on the amino acid information of the ORF13 described above, particularly the amino acid sequence shown in SEQ ID NO: 18, and can be prepared by the same or different expression system using the orf13. Can be obtained according to. More preferably, budding yeast, particularly S. This is a production method using a heterologous expression system using cerevisiae . In the case of heterologous expression of ORF13, it is desirable to coexpress it with a cDNA encoding a P450 reductase having the amino acid sequence of SEQ ID NO: 20, for example, a cDNA having the base sequence of SEQ ID NO: 19.
  • Acetyltransferase (ORF12) The enzyme is characterized by having a catalytic action of transferring an acetyl group to the 19-position hydroxyl group of the compound, using dideacetyl-FC A represented by the formula (XII) as a substrate in the presence of an acetyl group donor.
  • ORF12 Specific examples of the enzyme (hereinafter also simply referred to as “ORF12”) include (46) a protein consisting of the amino acid sequence shown in SEQ ID NO: 16.
  • the protein is not limited thereto, and may be a protein comprising any one of the following amino acid sequences (47) or (48) as long as it has the above catalytic action.
  • (47) an amino acid sequence having 85% or more, preferably 90%, more preferably 95%, and still more preferably 98% or more homology with the amino acid sequence shown in SEQ ID NO: 16;
  • 48 An amino acid sequence obtained by substituting, deleting, or adding one or more amino acids in the amino acid sequence shown in SEQ ID NO: 16.
  • the origin of the enzyme is not particularly limited as long as it has the above catalytic action and falls under any of the above (46) to (48), and prokaryotic organisms such as plants, animals, fungi, bacteria, etc. From any prokaryotic organism. It is preferably derived from a fungus, and particularly preferably derived from a filamentous fungus, in particular, a filamentous fungus belonging to the genus Phomopsis , and more preferably from Phomopsis amygdali .
  • Acetyl-coenzyme A is mentioned as an acetyl group donor which can be used with ORF12 of this invention.
  • ORF12 acts on the hydroxyl group at the 19-position of dideacetyl-FC A represented by the formula (XII) using acyl-coenzyme A as an acetyl group donor, and the compound (3′- It is useful as an enzyme for synthesizing O 2 -deacetyl-FC A).
  • the present invention also provides a gene for the enzyme (the ORF12 gene is also simply referred to as “orf12”).
  • ORF12 gene examples include those having the base sequence represented by (43) SEQ ID NO: 15 in the coding region (DNA, cDNA).
  • the present invention is not limited to this, and it is a gene (DNA, cDNA) having the base sequence of either (44) or (45) below in the coding region, as long as it encodes the protein having the above catalytic action. May be.
  • (44) a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 15 under stringent conditions;
  • (45) A base sequence in which one or more bases are substituted, deleted, or added in the base sequence shown in SEQ ID NO: 15.
  • the ORF12 of the present invention can be produced by conventional peptide synthesis based on the amino acid information of the ORF12 described above, particularly the amino acid sequence shown in SEQ ID NO: 16, and can be prepared by the same or different expression system using the orf12. Can be obtained according to. More preferably, budding yeast, particularly S. This is a production method using a heterologous expression system using cerevisiae .
  • ORF13 can be obtained as a recombinant protein, and the obtained recombinant protein is in the range of pH 6.5 to pH 8.5, preferably about pH 7.2 to pH 7.8 using a phosphate buffer, for example.
  • the acetyl group donor can be reacted with the compound represented by the formula (XII).
  • the acetyltransferase reaction can be performed, for example, at 25 ° C. to 35 ° C. for about 3 hours to 24 hours, and preferably at 28 ° C. to 33 ° C. for about 12 hours to 24 hours.
  • the acetyl group can be transferred to the 19-position hydroxyl group of the compound represented by the formula (XII).
  • a compound represented by the formula (XV) described later can be used instead of the compound represented by the formula (XII).
  • Acetyltransferase (ORF9)
  • the enzyme uses dideacetyl-FC A represented by formula (XII) or a compound represented by formula (XIV) (3′- O- deacetyl FC A) as a substrate. It has a catalytic action of transferring an acetyl group to the hydroxyl group at the 'position.
  • ORF9 Specific examples of the enzyme (hereinafter also simply referred to as “ORF9”) include (52) a protein consisting of the amino acid sequence shown in SEQ ID NO: 10.
  • the protein is not limited thereto, and may be a protein comprising any one of the following amino acid sequences (53) or (54) as long as it has the above catalytic action.
  • (53) an amino acid sequence having 85% or more, preferably 90%, more preferably 95%, more preferably 98% or more homology with the amino acid sequence shown in SEQ ID NO: 10;
  • the origin of such an enzyme is not particularly limited as long as it has the above catalytic action and falls under any of the above (52) to (54). It may be derived from any prokaryotic organism such as It is preferably derived from a fungus, and particularly preferably derived from a filamentous fungus, in particular, a filamentous fungus belonging to the genus Phomopsis , and more preferably from Phomopsis amygdali .
  • Examples of the acetyl group donor that can be used with ORF9 of the present invention include acetyl-coenzyme A.
  • ORF9 acts on the 3′-position hydroxyl group of dideacetyl-FC A represented by the formula (XII) by using acyl-coenzyme A as an acetyl group donor, and the compound (19) represented by the following formula (XV) - or to produce O -deacetyl FC a), also act on the hydroxyl group of the 3'-position of the compound represented by the formula (XIV) (3'- O -deacetyl FC a), represented by the above formula (XIII) It is useful as an enzyme for producing a compound (FCA).
  • the present invention also provides a gene for the enzyme (the ORF9 gene is also simply referred to as “orf9”).
  • ORF9 gene examples include those having the base sequence represented by SEQ ID NO: 9 in the coding region (49) (DNA, cDNA).
  • the present invention is not limited to this, and is a gene (DNA, cDNA) having any one of the following base sequences (50) or (51) in the coding region, as long as it encodes a protein having the above catalytic action. May be.
  • (50) a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 9 under stringent conditions; (51) A base sequence in which one or more bases are substituted, deleted, or added in the base sequence shown in SEQ ID NO: 9.
  • ORF9 of the present invention can be produced by conventional peptide synthesis based on the amino acid information of ORF9 described above, particularly the amino acid sequence shown in SEQ ID NO: 10, and can be prepared by the same or different expression system using orf9. Can be obtained according to. More preferably, budding yeast, particularly S. This is a production method using a heterologous expression system using cerevisiae .
  • ORF13 can be obtained as a recombinant protein, and the obtained recombinant protein is in the range of pH 6.5 to pH 8.5, preferably about pH 7.2 to pH 7.8 using a phosphate buffer, for example.
  • the acetyl group donor can be reacted with the compound represented by the formula (XII).
  • the acetyltransferase reaction can be performed, for example, at 25 ° C. to 35 ° C. for about 3 hours to 24 hours, and preferably at 28 ° C. to 33 ° C. for about 12 hours to 24 hours.
  • the acetyl group can be transferred to the 3′-position hydroxyl group of the compound represented by the formula (XII).
  • the compound represented by the formula (XIV) can be used instead of the compound represented by the formula (XII).
  • FC A FC A
  • FC A a compound represented by formula (XIII) (fusicoccin A: FC A), and its biosynthetic intermediate.
  • a compound represented by formula (I) (fusicoccin H: FCH), a compound represented by formula (IX) (fusicoccin Q: FC Q), represented by formula (X)
  • a compound represented by formula (XI) (fusicoccin J: FC J)
  • a compound represented by formula (XII) (dideacetyl fusicoccin A: deacetylacetyl-FC A)can be mentioned.
  • FC H represented by the formula (I) is prepared from 7 of steps (a) to (g) using geranylgeranyl diphosphate (GGDP) as a starting compound. It can be manufactured through steps. Each step will be described below.
  • GGDP geranylgeranyl diphosphate
  • cyclase (ORF1) is a known enzyme described in Non-Patent Document 2, which catalyzes the generation of geranygeranyl diphosphate from Isopentenyl diphosphate and the subsequent cyclization reaction, fusicocca-2, It is a bifunctional enzyme that produces 10 (14) -diene.
  • the reaction with cyclase is carried out, for example, in the presence of dimethylallyl diphosphate, isopentenyl diphosphate, and magnesium ions at 25 ° C. to 35 ° C., preferably 28 ° C. to 32 ° C. for 0.5 hour to
  • the reaction can be carried out by reacting for about 3 hours, more preferably for about 1 hour.
  • reaction of the said process (a) and (b) can be performed using the enzyme obtained by heterogeneous expression or the enzyme producer which carries out heterogeneous expression, for example.
  • ORF5 cDNA encoding ORF5
  • cDNA encoding P450 reductase cDNA encoding P450 reductase
  • ORF1 cDNA encoding cyclase
  • the transformant produces compound (II) using GGDP in the bacterial body as a substrate by the action of cyclase (ORF1) expressed from the gene-transfected Orf1. Furthermore, compound (III) is produced
  • the produced compound (III) can be extracted and isolated from the cells of the transformant using a solvent such as pentane.
  • P450-1 (ORF3) is characterized by having a catalytic activity for hydroxylating the methyl group at the 16-position of the compound represented by the formula (III).
  • This reaction may be carried out by, for example, S. cerevisiae into which cDNA encoding ORF3 (SEQ ID NO: 49) or cDNA encoding P450 reductase was introduced. It is also possible to prepare a microsomal fraction from C. cerevisiae and react the compound (IV) with the compound (III) obtained in step (b) in the presence of NADH and NADPH in vitro. Obtainable.
  • the reaction buffer and reaction conditions to be used are not particularly limited as long as P450-1 (ORF3) can exhibit the activity of catalyzing the above reaction.
  • BC-ORF7 represented by SEQ ID NO: 56 can be used in place of P450-1.
  • BC-ORF7 is a known enzyme reported by Hashimoto M et al. (Bioorg. Med. Chem. Lett., Vol. 19, p5640-5543, 2009) and acts on the compound represented by the formula (III).
  • a compound represented by formula (IV) (fusicocca-2,10 (14) -diene-8 ⁇ , 16-diol) can be obtained.
  • the cDNAs of cyclase (ORF1), P450-2 (ORF5), P450 reductase represented by SEQ ID NO: 20 and P450-1 (ORF3: SEQ ID NO: 50) or BC-ORF7 (SEQ ID NO: 56) were obtained from S. cerevisiae. By culturing a transformant expressed in C. cerevisiae or the like using an expression vector in an appropriate medium, fusicocca-2,10 (14) -diene-8 ⁇ , 16- Diol can be stored.
  • the cyclase (ORF1) cDNA is exemplified in SEQ ID NO: 47
  • the BC-ORF7 (SEQ ID NO: 56) cDNA is exemplified in SEQ ID NO: 55.
  • the compound represented by the formula (V) 8-hydroxyfusicocca-1,10 (14) -dien-16-al) which is a tautomer thereof is obtained.
  • dioxygenase (ORF2) is a known enzyme described in Non-Patent Document 2 and Non-Patent Document 3, and transfers diatomic oxygen from a diatomic oxygen donor such as ⁇ -ketoglutarate to a substrate. It is characterized by that.
  • ORF2 can be obtained as a recombinant protein using, for example, cDNA containing the base sequence shown in SEQ ID NO: 51.
  • the obtained recombinant protein is used in the presence of divalent iron ions such as glycerol and iron sulfate and ascorbic acid in the range of pH 6 to 8, preferably pH 6.8 to 7.1 using, for example, MOPS buffer or the like.
  • a diatomic oxygen donor such as ⁇ -ketoglutaric acid can be reacted with the compound represented by the formula (IV).
  • the reaction can be carried out between 25 ° C. and 35 ° C. for about 4 minutes to 30 minutes, preferably between 28 ° C. and 33 ° C. for less than 5 minutes.
  • ORF4 short-chain dehydrogenase reductase
  • a compound represented by the formula (VII) (fusicocca-1,10 (14) -diene-8 ⁇ , 16-diol) can be obtained.
  • short-chain dehydrogenase reductase (ORF4) is a known enzyme described in Non-Patent Document 2 and Non-Patent Document 3, and the 16-position aldehyde group of the compound represented by Formula (VI) is reduced to a hydroxyl group. Have catalytic activity.
  • ORF4 can be obtained as a recombinant protein using, for example, cDNA containing the base sequence shown in SEQ ID NO: 53.
  • the obtained recombinant protein is, for example, a TRIS-HCl buffer at pH 6.5 to 8.0 together with a dioxygenase such as the above recombinant protein of ORF2; glycerol; divalent iron ions such as iron sulfate; and salts such as potassium chloride
  • a diatomic oxygen donor such as ⁇ -ketoglutaric acid; ascorbic acid; reaction in the presence of an electron donor such as NADH and NADPH at 25 ° C. to 35 ° C.
  • the compound (VII) obtained in the above step (e) is subjected to the above-described step of the present invention.
  • P450-3 (ORF7) By allowing the enzyme P450-3 (ORF7) to act, a compound (FC H aglycone) represented by the formula (VIII) can be produced.
  • This reaction can be performed, for example, in vitro using a microsomal fraction containing P450-3 (ORF7) obtained by heterologous expression. Specifically, first, a cDNA encoding ORF7 is designated as S.
  • the reaction buffer and reaction conditions to be used are not particularly limited as long as P450-3 (ORF7) can exhibit the activity of catalyzing the above reaction.
  • compound (VIII) obtained in the above step (f) is subjected to the enzyme glycosyltransferase ( By allowing ORF6) to act, the compound (FCH) represented by the formula (I) can be produced.
  • This reaction may be performed using ORF6 itself or by using a recombinant protein of ORF6.
  • DNA containing a base sequence such as His tag or MBP tag and cDNA encoding ORF6 are combined to transform a host such as Escherichia coli to express a recombinant protein.
  • the tag binding protein thus prepared is purified according to a conventional method using a tag binding protein purification column or the like.
  • the purified ORF6 recombinant protein is reacted with compound (VIII) in the presence of a glucosyl group donor such as UDP-glucose.
  • the reaction buffer used at this time and the pH conditions thereof are not particularly limited as long as the glycosyltransferase (ORF6) can exhibit the activity of catalyzing the above reaction, and is not particularly limited, but is preferably a Tris-HCl buffer and has a pH of 7 It is about ⁇ 8.
  • the reaction temperature, reaction time, and the like are not particularly limited as long as the glycosyltransferase (ORF6) can exhibit the activity of catalyzing the above reaction, but are preferably 12 hours to 35 ° C. under a temperature condition of 25 ° C. to 35 ° C. A method of reacting for about 24 hours can be exemplified.
  • compound (I) is produced from P.I.
  • the gene (orf10) can also be obtained by destroying the gene (orf10) so as to lack the ability to produce ORF10 that catalyzes the reaction from compound (I) to the compound represented by formula (IX).
  • P obtained by deficient ORF10 gene by a technique such as homo logger Sri combination E.g., P obtained by deficient ORF10 gene by a technique such as homo logger Sri combination.
  • amygdali cannot block the reaction after step (h) because the reaction at step (h) is blocked.
  • the compound (I) is accumulated.
  • ORF10 gene deficient P In the production of compound (I) by amygdali , first, the deficient body is mass-cultured, and the culture solution obtained by filtering the cells is extracted with an appropriate solvent such as ethyl acetate or methanol-added ethyl acetate. After concentrating the extract to an appropriate amount, saturated aqueous sodium hydrogen carbonate and the like are added and the mixture is separated to obtain an organic phase. The organic phase is washed with saturated saline and the like, concentrated, added again with ethyl acetate and dissolved by heating, and then allowed to stand at room temperature, whereby compound (I) can be obtained as crystals.
  • the method for obtaining and purifying the compound (I) is merely an example, and is not limited to such a method, and can be appropriately changed according to technical common sense in the art.
  • Compound (I) can also be used as a starting compound for synthesizing other FC A-like compounds such as BC C. In this sense, an efficient method for producing compound (I) (FC H) by the method of the present invention is useful.
  • FC Q represented by the formula (IX) is obtained through the following step (h) in addition to the steps (a) to (g). Can be manufactured.
  • This reaction can be performed using, for example, a microsomal fraction containing P450-4 (ORF10) obtained by heterologous expression.
  • ORF10 a microsomal fraction containing P450-4 (ORF10) obtained by heterologous expression.
  • cDNA SEQ ID NO: 11
  • S. cerevisiae YPH500 his-, leu-, trp-, ura-, ade-, lys-
  • a microsomal fraction containing ORF10 is prepared from the transformant, and the microsomal fraction and the compound (I) obtained in the above step (g) are combined with each other in the presence of P450 reductase and NADH or NADPH.
  • a compound represented by the formula (IX) can be obtained.
  • reaction buffer, pH and salt concentration are not particularly limited as long as P450-4 (ORF10) can exhibit the activity of catalyzing the above reaction.
  • the reaction temperature, reaction time, etc. are not particularly limited as long as P450-4 (ORF10) can exhibit the activity of catalyzing the above reaction.
  • FC P represented by the formula (X) is added to the following steps (i) in addition to the steps (a) to (g) and the step (h). ) Can be manufactured.
  • This reaction can be performed using ORF8 itself, or can be performed using, for example, a recombinant protein of ORF8.
  • DNA containing a base sequence such as a His tag or MBP tag and a cDNA encoding ORF8 are combined, and a host such as E. coli is transformed to express a recombinant protein.
  • the tag binding protein thus prepared is purified according to a conventional method using a tag binding protein purification column or the like.
  • the purified ORF8 recombinant protein is reacted with compound (IX) in the presence of a methyl group donor such as S-adenosyl methionine.
  • the reaction buffer and its pH conditions are not particularly limited as long as methyltransferase (ORF8) can exhibit the activity of catalyzing the above reaction, but it is preferably a Tris-HCl buffer, and the pH is about 7-8. It is.
  • the reaction temperature, reaction time, etc. are not particularly limited as long as methyltransferase (ORF8) can exhibit the activity of catalyzing the above reaction, but it is preferably 25 ° C. to 35 ° C., preferably about 12 hours to 24 hours. It is a reaction.
  • FC J represented by the formula (XI) is added to the above steps (a) to (g), step (h), and step (i). And it can manufacture by passing through the following process (j).
  • This reaction can be performed using ORF11 itself, or can be performed using, for example, a recombinant protein of ORF11.
  • DNA containing a base sequence such as a His tag or MBP tag and a cDNA encoding ORF11 are combined, and a host such as Escherichia coli is transformed to express a recombinant protein.
  • the tag binding protein thus prepared is purified according to a conventional method using a tag binding protein purification column or the like.
  • the purified ORF11 recombinant protein is reacted with compound (X) in the presence of a prenyl group donor such as dimethylallyl diphosphate.
  • the reaction buffer and its pH used here are not particularly limited as long as prenyl transferase (ORF11) can exhibit the activity of catalyzing the above reaction, but is preferably a Tris-HCl buffer, and has a pH of 7 It is about ⁇ 8.
  • the reaction temperature, reaction time, etc. are not particularly limited as long as prenyl transferase (ORF11) can exhibit the activity of catalyzing the above reaction, but is preferably about 25 ° C. to 35 ° C. for 0.5 hour to 4 hours. The reaction is about an hour.
  • compound (XI) is a compound of P.sub.1 that produces compound (XI).
  • the gene (orf13) can also be obtained by destroying the gene (orf13) so as to lack the ability to produce ORF13 that catalyzes the reaction from compound (XI) to the compound represented by formula (XII).
  • the reaction of step (k) is blocked by amygdali , so that the reaction after step (k) cannot be performed.
  • compound (XI) accumulates in the culture medium.
  • ORF13 gene deficient P In the production of compound (XI) by amygdali , first, the deficient body is mass-cultured, and a culture solution obtained by filtering the cells is extracted with an appropriate solvent such as ethyl acetate or methanol-added ethyl acetate. After the extract is concentrated to an appropriate amount, saturated aqueous sodium hydrogen carbonate and the like are added and the mixture is separated to obtain an organic phase. The organic phase is washed with saturated brine and the like, concentrated, and again added with ethyl acetate and dissolved by heating, and then left at room temperature to give compound (XI) as crystals.
  • the method for obtaining and purifying the compound (XI) is an example, and is not limited to such a method, and can be appropriately changed based on the common general technical knowledge in the art.
  • the compound (XI) can also be used as a starting compound for synthesizing other FC A-like compounds such as BC C. In this sense, an efficient method for producing compound (XI) by the method of the present invention is useful.
  • FC A represented by the formula (XIII) is produced by the steps (a) to (g), step (h), step (i) and step ( In addition to j), it can be produced through the following steps (k) and (l).
  • Compound (XI) obtained by the above step (j) is subjected to P450-5 (ORF13) in the presence of P450 reductase and NADH or NADPH. Is allowed to act to produce a compound represented by formula (XII) (dideacetyl-FC A).
  • This reaction can be performed, for example, using a microsomal fraction containing ORF13 obtained by heterologous expression.
  • a cDNA encoding ORF13 is obtained from S. cerevisiae . cerevisiae YPH500 (his-, leu-, trp-, ura-, ade-, lys-) is introduced to express the ORF13 gene.
  • a microsomal fraction containing ORF13 is prepared from the transformant, and the microsomal fraction and the compound (XI) obtained in the step (j) are subjected to in vitro in the presence of P450 reductase and NADH or NADPH. To give compound (XII).
  • reaction buffer and its pH and salt concentration are not particularly limited as long as P450-5 (ORF13) can exhibit the activity of catalyzing the above reaction.
  • the reaction temperature, reaction time, etc. are not particularly limited as long as P450-5 (ORF13) can exhibit the activity of catalyzing the above reaction.
  • the compound (FC A) represented by the formula (XIII) can be produced.
  • This reaction may be performed using ORFs 9 and 12 themselves, or by using, for example, recombinant proteins of ORFs 9 and 12. Specifically, a DNA containing a base sequence such as a His tag or an MBP tag and a cDNA encoding ORF9 and a cDNA encoding ORF12 are respectively combined, and a host such as Escherichia coli is transformed with the recombinant protein. To express. Each tag binding protein of ORF 9 and 12 is purified according to a conventional method using a tag binding protein purification column or the like.
  • the purified ORF9 recombinant protein and ORF12 recombinant protein are reacted with compound (XII) in the presence of an acetyl group donor such as acyl-coenzyme A.
  • the reaction buffer used here is not particularly limited as long as the acetyltransferase (ORF 9 and 12) can exhibit the catalytic activity of the above reaction, but is preferably a phosphate buffer and has a pH of about 7 to 8. is there.
  • the reaction temperature, reaction time, and the like are not particularly limited as long as the acetyltransferase (ORF 9 and 12) can exhibit the activity of catalyzing the above reaction, but it is preferably about 25 ° C. to 35 ° C. for 12 hours to 24 hours. The reaction is about an hour.
  • FC A biosynthetic intermediate amygdali
  • the present invention relates to P450-2 (ORF5), glycosyltransferase (ORF6), P450-3 (ORF7), methyltransferase (ORF8), acetyltransferase (ORF9), P450-4 (ORF10), prenyltransferase (ORF11), acetyl
  • ORF5 P450-2
  • ORF6 glycosyltransferase
  • P450-3 ORF7
  • methyltransferase ORF8
  • acetyltransferase ORF9
  • P450-4 ORF10
  • prenyltransferase ORF11
  • acetyl Provided is a filamentous fungus that lacks the ability to produce any one enzyme selected from the group consisting of transferase (ORF12) and P450-13 (ORF13).
  • preferred filamentous fungi are P450-4 (ORF10) that catalyzes the reaction from compound (I) to compound (IX), or P450 that catalyzes the reaction from compound (XI) to compound (XII).
  • ORF10 P450-4
  • -5 ORF13
  • ORF13 is lacking in the ability to produce the enzyme, and the former filamentous fungus can efficiently produce and accumulate compound (I) in the body, and the latter filamentous fungus.
  • compound (XI) can be efficiently produced and accumulated in the body.
  • a series of compounds shown in FIG. 1 can be biosynthesized, and as such a filamentous fungus, a bacterium belonging to Phomopsis is preferable, and Phomopsis amygdali is more preferable.
  • Amygdali is deposited with the ATCC (American Type Culture Collection: USA), ATCC 42412 strain, ATCC 42610 strain; MAFF numbers 62040, 625041, 625042, 625043, 625044 deposited with the Agricultural Bioresource Genebank (Japan). Etc. can be used.
  • a filamentous fungus lacking the ability to produce any one of the above-mentioned enzymes does not express the gene encoding any one of the above-mentioned enzymes, or the translation product does not exhibit the desired catalytic activity even if expressed.
  • the gene is disrupted, and such a bacterium is designated as a gene-deficient strain or a gene-deficient P. It is called amygdali .
  • a gene-deficient strain or a gene-deficient P It is called amygdali .
  • amygdali Specifically, lacking genes encoding ORF10 P. In the case of amygdali , ORF10 gene-deficient P. It is called amygdali .
  • Amygdali includes natural mutants, mutants in which gene mutations are induced by mutagenic agents such as ethidium bromide, and mutants artificially produced by gene recombination.
  • Amygdali can be produced by homologous recombination or the like. Specifically, P. A hygromycin resistance gene, a puromycin resistance gene, etc. are ligated downstream of the promoter expressed in Amygdali , and P. coli is further downstream of the drug resistance gene. In Amygdali , a terminator that exhibits a function is bound and inserted into a vector.
  • P. The promoter expressed in amygdali is not particularly limited, but the trpC promoter is preferable.
  • P. The terminator that exhibits the function in amygdali is not particularly limited, but a trpC terminator is preferable.
  • the vector is not particularly limited, but a plasmid of about 3 to 10 kb is preferable, it can be transformed with E. coli, and preferably has an antibiotic resistance gene such as ampicillin.
  • a gene having a base sequence of 2 to 5 kb upstream of the gene to be deleted is incorporated upstream of the promoter-drug resistance gene-terminator binding DNA, and the gene to be deleted downstream of the promoter-drug resistance gene-terminator binding DNA
  • a DNA having a base sequence of 2 to 5 kb in the downstream region is incorporated.
  • DNA containing the base sequence of the upstream region and the downstream region of the gene to be deleted is P.I. It can be obtained by PCR reaction using amygdali genomic DNA as a template.
  • DNA can be integrated according to a conventional method combining cleavage with a restriction enzyme and ligation.
  • the vector obtained by this operation is called a homologous recombination vector.
  • the obtained homologous recombination vector is transformed into Escherichia coli and cultured in large quantities, and then a large-scale plasmid is prepared according to a conventional method.
  • the homologous recombination vector thus obtained was designated as P. Introduced into amygdali by the protoplast / polyethylene glycol method or the like.
  • Amygdali was cultured in a medium containing a drug suitable for the drug resistance gene contained in the homologous combination vector to delete the target gene.
  • the concentration of the drug contained in the medium is preferably 5 to 100 ⁇ g / ml, more preferably 30 to 70 ⁇ g / ml.
  • gene-deficient P 2 . amygdali can be obtained.
  • the gene deficiency may be such that the target gene cannot be expressed or has been modified so that it does not exert the desired enzyme activity even if expressed, and as long as it is expressed, it may occur throughout the target gene. It may happen only to a part.
  • the strain was shaken in 100 ml medium containing 5% sucrose, 0.7% soy flour, 0.5% KH 2 PO 4 and 0.1% MgSO 4 .7H 2 O at 25 ° C. for 4 days. Cultured (120 strokes / min). Thereafter, 6 ml of the preculture solution was inoculated into 100 ml of medium containing 0.5% Yeast Extra (oriental yeast), 5% sucrose, 0.5% KH 2 PO 4 and 0.1% MgSO 4 .7H 2 O. Then, shaking culture (120 strokes / min) was carried out at 25 ° C. for 6 days.
  • Genomic DNA was extracted as follows.
  • the DNA solution was deproteinized by the phenol-chloroform method and then precipitated and collected with isopropanol.
  • the precipitated DNA was washed with 70% ethanol, redissolved in TE buffer and stored at -20 ° C.
  • Total RNA was prepared as follows.
  • RNA from the strain was performed using TRIzol (registered trademark) reagent (Invitrogen, US) according to the attached protocol.
  • a cDNA fragment containing the 5 ′ end or 3 ′ end was obtained using SMART TM RACE cDNA Amplification Kit (Clontech, US) and GeneRacer® Kit (Invitrogen).
  • Plasmids from E. coli were prepared using Qiagen (registered trademark) plasmid kit. All restriction enzymes, T4 ligase, and calf intestinal alkaline phosphatase were from Toyobo (Japan), and were used according to the protocol attached to the product. Introduction of the plasmid into E. coli by electroporation was carried out under standard conditions using a BTX ECM 600 electroporation system (Biotechnologies and Experimental Research).
  • Example 1 Determination of draft genome sequence of amygdali > P.
  • the sequence of the base sequence of the Amygdali genome was analyzed by whole genome sequencing using GS FLX (Roche Diagnostics Japan, Tokyo). Actual analysis was performed by Takara Bio Inc. (Shiga, Japan).
  • Amygdali is also considered to have the ortholog of BC-Orf1. So, we P. This ortholog is searched from the genome of Amygdali . The corresponding specific gene P450-2 (orf5) was isolated from 12716 (length 2.9 kb). This gene product (hereinafter referred to as “P450-2 (ORF5)”) showed 62% identity with the amino acid sequence of the BC-Orf1 gene product.
  • P.I. 9 gene from the genome of amygdali (4 one cytochrome P450 [P450-2 (orf5), P450-3 (orf7), P450-4 (orf10), and P450-5 (orf13)], 2 two acetyltransferase [acetyltransferase ( orf9), and acetyltransferase (orf12)], methyltransferase (orf8), glycosyltransferase (orf6) and prenyltransferase (orf11)) were identified as a gene cluster (21 kb) (FIG. 2 (B)).
  • the nucleotide sequence of the cytochrome P450-2 gene (P450-2 (orf5)) and the amino acid sequence of the gene product (P450-2 (ORF5)) are shown in SEQ ID NOs: 1 and 2, respectively; glycosyltransferase gene (glycosyltransferase (orf6)) And the amino acid sequence of its gene product (glycosyltransferase (ORF6)) in SEQ ID NOs: 3 and 4, respectively; the nucleotide sequence of the P450-3 gene (P450-3 (orf7)) and its gene product (P450-3 ( The amino acid sequences of ORF7)) are shown in SEQ ID NOs: 5 and 6, respectively.
  • the nucleotide sequence of the methyltransferase gene (methyltransferase (orf8)) and the amino acid sequence of the gene product (methyltransferase (ORF8)) are respectively shown.
  • the P450-4 gene (P450- 4 (orf10)) and the amino acid sequence of its gene product (P450-4 (ORF10)) are shown in SEQ ID NOs: 11 and 12, respectively;
  • the nucleotide sequence of the prenyltransferase gene (prenyltransferase (orf11)) and its gene product is SEQ ID NO: 13 and 14, respectively; the nucleotide sequence of the prenyltransferas
  • Coding region of the P450-2 is, P. 5'-CATGGATCCGATGAGCACGCTACAGGGGGCTCTTGG-3 '(SEQ ID NO: 21) and 5'-GGACTCGAGTATAGCTTCCCACCGATAACACGAGATAC-3' (SEQ ID NO: 22) primer set using the cDNA obtained from the genomic DNA of amygdali by the SMART TM RACE method as a template A .6 kb full length cDNA fragment was amplified.
  • the amplified fragment was subcloned into a plasmid, and after confirming the sequence, the BamHI-XhoI digested fragment was inserted into a pESC-URA vector (Agilent Technology) to construct pESC-URA-R450-2.
  • cytochrome P450 reductase is essential.
  • P450 reductase SEQ ID NO: 20
  • P From the database of amygdali , contig no.
  • the cytochrome P450 reductase in 00872 was searched and the candidate gene was amplified by PCR.
  • About 2.1 kb of full-length cDNA SEQ ID NO: 19 was obtained by using the cDNA obtained by the SMART TM RACE method as a template. ) was used for amplification.
  • the amplified fragment was subcloned into a plasmid and the cytochrome P450 reductase sequence was confirmed, the EcoRI-BglII-digested fragment was inserted into the same enzyme-treated pESC-URA-R450-2.
  • the S. cerevisiae is then combined with the plasmid pESC-TRP-orf8-ADH carrying the fusicocca-2,10 (14) -diene synthase gene (cyclase (orf1)).
  • cerevisiae YPH500 (his ⁇ , leu ⁇ , trp ⁇ , ura ⁇ , ade ⁇ , lys ⁇ ) (Agilent Technology) (Hashimoto M et al., Bioorg. Med. Chem. lett., Vol. 19, p5640- 5643, 2009).
  • P450-2 acts on fusicocca-2,10 (14) -diene in FIG. 1 to produce fusicocca-2,10 (14) -dien-8 ⁇ -ol.
  • P450-2 ORF5 generates fusicocca-2,10 (14) -dien-8 ⁇ -ol from fusicocca-2,10 (14) -diene in the series of reactions shown in FIG. It was confirmed to be useful as an enzyme.
  • ORF2 dioxygenase
  • ORF4 short chain dehydrogenase reductase
  • the nucleotide sequence of the cyclase (ORF1) gene and the amino acid sequence of its gene product are shown in SEQ ID NOs: 47 and 48, respectively.
  • the nucleotide sequence of the gene of P450-1 (ORF3) and the amino acid sequence of its gene product are shown in SEQ ID NOs: 49 and 50, respectively.
  • -Diene-8 ⁇ , 16-diol can be produced.
  • fusicocca-2,10 (14) -diene-8 ⁇ , 16-diol is produced by causing P450-1 (ORF3) to act on fusicocca-2,10 (14) -dien-8 ⁇ -ol.
  • ORF2 dioxygenase
  • ORF4 short chain dehydrogenase reductase
  • Example 3 ⁇ Isolation of P450-1 (ORF3)> P.
  • the cDNA of P450-1 was excised by restriction enzyme treatment and ligated to pESC-HIS (Agilent Technology).
  • pESC-450-3 which was constructed S. cerevisiae YPH500 (his ⁇ , leu ⁇ ⁇ , trp ⁇ , ura ⁇ , ade ⁇ and lys ⁇ ) (Agilent Technology).
  • P450-1 is highly homologous to BC-ORF7 reported by Hashimoto M et al. (Bioorg. Med. Chem. Lett., Vol. 19, p5640-5543, 2009), and therefore has the same activity as BC-ORF7. Presumed to have.
  • Example 4 ⁇ Determining properties of P450-3 (ORF7)> P.
  • P450-3 (orf7) A 1.5 kb fragment containing the P450-3 gene (P450-3 (orf7)) as a template using cDNA obtained from the genome of amygdali by the SMART TM RACE method as 5′-ATGCTCTCCCACCATGACACCGTGG-3 ′ (SEQ ID NO: 25) and 5 ′ -TCAACCTGGTACTACTACTACTTCCTCTGC-3 '(SEQ ID NO: 26) was used for amplification and insertion into pGEMT-Easy vector (Promega).
  • the microsomal fraction was prepared and incubated with the substrate fusicocca-1,10 (14) -diene-8 ⁇ , 16-diol at 30 ° C. for 48 hours ( Microsome fraction extract 87 ⁇ l, 100 mM NADH 5 ⁇ l, 100 mM NADPH 5 ⁇ l, and substrate, total volume 100 ⁇ l). Then, the reaction product was analyzed by HPLC under the following conditions (Bioorg. Med. Chem. Lett., Vol. 19, p5640-5643, 2009).
  • P450-3 acts on fusicocca-1,10 (14) -diene-8 ⁇ , 16-diol in FIG. 1, and fusicocca-1,10 (14) -diene-8 ⁇ , 9 , 16-triol (FC-H aglycon), that is, in the series of reactions shown in FIG. 1, P450-3 (ORF7) is fusicocca-1, 10 (14) -diene- It was confirmed that the enzyme is useful as an enzyme for producing FC H aglycon from 8 ⁇ , 16-diol.
  • Example 5 Determination of properties of glycosyltransferase (ORF6)> P.
  • ORF6 Using cDNA obtained from the genome of amygdali by SMART TM RACE method as a template, 5′-AGTATTTTGAACTCATATTCCCCCCCCTCACAAATCAAACC-3 ′ (SEQ ID NO: 27) and 5′-CTGCAGAGGATCCTCAATTGGTGGAGAGAAATGGTTC-3 ′ (SEQ ID NO: 28)
  • a glycosyltransferase (orf6) cDNA was obtained.
  • pET15-GLY After confirming the sequence of glycosyltransferase (orf6), a PCR fragment digested with NdeI-BamHI was inserted into pET15b (Merck) to construct pET15-GLY. Escherichia coli incorporating pET15-GLY and Escherichia coli incorporating pET15b as a control were separately cultured in an LC liquid medium supplemented with 100 ⁇ g / ml of ampicillin. Specifically, at 37 ° C., O.D. D. After culturing until 600 reached 0.5, 0.5 mM isopropyl ⁇ -D-1-thiogalactopyranoside was added, followed by further culturing at 25 ° C. for 18 hours.
  • the collected cells are crushed by ultrasonic waves, the crushed material is centrifuged, the supernatant is adsorbed to HisTrap column (GE Healthcare) at 4 ° C., and His-tagged enzyme is used according to a standard protocol to elute and Desalted. After confirming the purity of the recombinant enzyme produced from Escherichia coli incorporating pET15-GLY by SDS-PAGE, the enzyme was used for in vitro analysis using FC H aglycon as a substrate.
  • HisTrap column GE Healthcare
  • glycosyltransferase is an enzyme having an action of adding FC to FCH aglycon to produce FC-H in FIG. 1, that is, in the series of reactions shown in FIG. It was confirmed that glycosyltransferase (ORF6) is useful as an enzyme that generates FC H from FC H aglycon.
  • Example 6 Determining the properties of methyltransferase (ORF8)> P.
  • ORF8 Using cDNA obtained from the genome of amygdali by the SMART TM RACE method as a template, 5′-ATACTGTGAATTCATGGATGACAGCAAGACAAAAGGCC-3 ′ (SEQ ID NO: 29) and 5′-TGCAGTCGTCGAACTTAGGCGTTTGAAGACTACTTCATC-3 ′ (SEQ ID NO: 30)
  • the cDNA for methyltransferase (orf8) was obtained.
  • the PCR fragment digested with EcoRI-SalI was inserted into the EcoRI-SalI site of pMAL-p2X (N-terminal MBP-fused, New England Biolabs).
  • the maltose binding protein fusion enzyme thus prepared was purified by elution and desalting according to a standard protocol. After confirming the purity of the recombinant enzyme by SDS-PAGE, it was used for in vitro analysis using FC-H aglycon as a substrate.
  • reaction products were analyzed by HPLC under the same conditions as described in Example 4.
  • methyltransferase acts on FC H aglycon having a hydroxyl group at position 16 in FIG. 1 or its glycoside, FC H or FC Q, etc., specifically, and the hydroxyl group at position 16 is specifically detected. It was confirmed that the enzyme is a methylating enzyme, that is, methyltransferase (ORF8) is useful as an enzyme that generates FCP from FCQ in the series of reactions shown in FIG.
  • Example 7 ⁇ Determining the properties of prenyltransferase (ORF11)> P.
  • cDNA obtained from the genome of amygdali by SMART TM RACE method as a template
  • the cDNA of prenyltransferase (orf11) was obtained by amplification. After confirming the sequence of prenyltransferase (orf11), this PCR fragment was incorporated into the NheI-XhoI site of pET21b (Merck). Expression and purification of the recombinant enzyme were performed in the same manner as described in Example 4.
  • prenyltransferase can use not only the above-mentioned FCP but also FCH as a prenyl group acceptor, thus 6′- O 2-(1,1-dimethyl) allylated ( t-pentenylated) FC H can be generated (see FIG. 10).
  • prenyltransferase can use geranyl diphosphate as a prenyl donor, and 6′- O- linylated-FC P was obtained by using FCP as a prenyl group acceptor (FIG. 11). And 12).
  • this enzyme is the first enzyme to prenylate sugars.
  • prenyltransferase is an enzyme that acts on glycosides such as FC Q or FCP to prenylate sugar chains in FIG. 1, that is, the series shown in FIG. In this reaction, it was confirmed that prenyltransferase (ORF11) is useful as an enzyme that generates 16- O- demethyl-FC J from FC Q and an enzyme that generates FC J from FC P.
  • Example 8 Determining the properties of acetyltransferase-1 (ORF9) and acetyltransferase-2 (ORF12)> P.
  • the cDNA obtained from the genome of amygdali in SMART TM RACE method as a template, 5'-GGCGGTACCGGCATGTCTCAAACAACCGTCCCTGTC-3 '(SEQ ID NO: 33) and 5'-CCGCTGCAGGCCTCAAGGCAGCTTTTGCATCTCC-3' PCR using gene-specific primers (SEQ ID NO: 34) Amplification gave acetyltransferase-2 (orf12) cDNA.
  • the fragment digested with KpnI-PstI was ligated to pCold TF vector (TaKaRa, Japan) digested with the same restriction enzymes to construct pCold-AT-2.
  • the purified recombinant enzyme was used in an in vitro assay using dideacetyl-FC A as a substrate.
  • the HPLC result is shown in FIG.
  • the peak derived from the reaction product shown in the above figure was further subjected to LC / MS analysis, and it was found that the reaction product was 3′- O- deacetyl-FC A (FIG. 13B). . That is, from this, it was confirmed that acetyltransferase-2 (ORF12) acetylates the hydroxyl group at position 19 of dideacetyl-FC A.
  • acetyltransferase-1 (ORF9) and acetyltransferase-2 (ORF12) are enzymes that act on dideacetyl-FC A in FIG. 1 to acetylate the hydroxyl groups at positions 3 ′ and 19 respectively.
  • ORF9 and ORF12 were confirmed to be useful as enzymes that produce FCA from dideacetyl-FCA.
  • Example 9 ⁇ Production and Properties of P450-4 (orf10) Disrupted Strain and P450-5 (orf13) Disrupted Strain>
  • P450-4 (orf10) -disrupted strain A hygromycin resistance gene expressed under the control of trpC promoter and trpC terminator was used as a template for 5′-ATCAGTATTCTGAGATGCCAGTTGTTCCAGTGAT-3 ′ (SEQ ID NO: 35) and 5 ′.
  • -Two oligonucleotides of TGCAGAGGCTCGAGAATTAAGTCTAGAAAAGAAGG-3 '(SEQ ID NO: 36) were used as primers and amplified by PCR.
  • This fragment was ligated into pGEM-T (Promega) to construct pGEM-Hyg.
  • a fragment having a 3.0 kb SphI site including the upstream region of P450-4 (orf10) and a fragment having a 3.0 kb NotI site including the downstream region of P450-4 (orf10) were obtained by PCR amplification.
  • Primer set used for PCR respectively, 5'- GCATGC ATGGCGGCACGCAGGAGCCGCTTG-3 '(SEQ ID NO: 37) and 5'- GCATGC GAAGACTGCCGCGCACTATGGTAG-3' (SEQ ID NO: 38); and 5'- GCGGCCGCC TCTGAGTGCCTTCAGATAACAATTTC-3 '(SEQ ID NO: 39) and 5′- GCGGCCCGCG CAAGCTCATCTACCCTCCGGCTAG-3 ′ (SEQ ID NO: 40).
  • a fragment having a 2.0 kb NotI site including the upstream region of P450-5 (orf13) and a fragment having a 2.0 kb SphI site including the downstream region of P450-5 (orf13) were obtained by PCR amplification.
  • the primer sets used for PCR were 5′- GCGGCCGCC GATCGACGCACCGTATGTGC-3 ′ (SEQ ID NO: 43) and 5′- GCGGCCGC GTGACCTCCAAATGGTGGCGT- 3CG (SEQ ID NO: 44); and 5′- GCATGCCATGCGCG sequence 45) and 5′- GCATGC AGACAGCCCGTACTGTTACGC-3 ′ (SEQ ID NO: 46).
  • the constructed plasmid was transformed into P. p. Used to introduce into amygdali .
  • the method for selecting the P450-5 (orf13) deletion strain is the same as the construction of the P450-4 (orf10) Orf10 deletion strain.
  • P450-5 (orf13) The function of P450-5 (orf13) was also confirmed by the same method as that for the P450-4 (orf10) deletion.
  • the main product of the deletion product in which P450-5 (orf13) was replaced with the hygromycin resistance gene was FC J, and dideacetyl-FC A and FC A shown in FIG. 1 were not produced.
  • the production amount of FCJ was almost the same as the sum of a series of FC compounds containing FCA produced by the parent strain ( P. amygdali ) (FIG. 6). From this result, it was found that P450-5 (ORF13) has a function of hydroxylating the 19th position of FC J to produce dideacetyl-FC A.
  • Example 10 Manufacture of FC H and FC J on a large scale> (1) P450-4 (orf10) deficient P.
  • Production of FC H by amygdali sucrose 3 g, Pharmamedia 1.5 g, KH 2 PO 4 0.5 g, Na 2 HPO 4 ⁇ 12H 2 O 0.3 g, MgSO 4 ⁇
  • a solution of 0.1 g of 7H 2 O and 100 ml of purified water was added and sterilized under high pressure (121 ° C., 20 minutes). In this flask, P.I.
  • An amygdali ORF10-deficient strain (growing bacteria on slant, 5 mm square piece) was inoculated and cultured with shaking (150 strokes / min) in the dark at room temperature for 72 hours.
  • Two Sakaguchi flasks were used for seed culture for production culture of the following scale.
  • the treatment after shaking culture was divided into two parts. First, half of the culture solution was filtered, and the cell residue was washed with about 1 L of purified water. The mixture was extracted twice with the same amount of ethyl acetate as the filtrate (1% methanol added to about 2 L) and concentrated under reduced pressure. The remaining culture solution was treated in the same manner, and the two treatment solutions were combined and concentrated under reduced pressure until the remaining amount reached 200 ml. This concentrated solution was diluted with ethyl acetate, saturated aqueous sodium hydrogen carbonate (100 ml) was added, and the mixture was separated. The organic phase was washed with saturated brine, and dried over anhydrous magnesium sulfate.
  • FC H crystals had sufficient purity as a raw material for semi-synthesis. Yield 1.45 g (0.48 g / L).

Abstract

The present invention relates to: a method for producing an intermediate for the biosynthesis of fusicoccin A; an enzyme which can be used in the production method; and a product of the enzyme. According to the present invention, it becomes possible to obtain an enzyme capable of biosynthesizing fusicoccin A and an intermediate for the biosynthesis of fusicoccin A, and it also becomes possible to produce fusicoccin A and an intermediate for the biosynthesis of fusicoccin A using the obtained enzyme. Further, it also becomes possible to produce an intermediate for the biosynthesis of fusicoccin A with high efficiency using a filamentous fungus in which the enzyme is deleted.

Description

フシコクシンAの生合成中間体の製造方法、およびその合成酵素Method for producing biosynthetic intermediate of fusicoccin A and its synthase
 本発明は、フシコクシンAの生合成中間体の製造方法、並びにその製造方法に利用可能な酵素及びその産生体に関する。 The present invention relates to a method for producing a biosynthetic intermediate of fusicoccin A, an enzyme that can be used in the method, and a product thereof.
 フシコクシン(以下、単に「FC」ともいう。)Aは、植物病原真菌Phomopsis amygdaliによって産生されるジテルペングリコシドである。FC Aは、細胞膜H-ATPaseの活性化を介して、植物ホルモン様活性を示す。植物14-3-3タンパク質、FC A及びH-ATPaseのC端末に由来するリン酸化ペプチドの三者複合体の結晶構造解析により、FC Aが、14-3-3タンパク質とリン酸化ペプチドの会合状態を三者複合体の形成によって安定化し、継続的なH-ATPaseの活性化をもたらす(非特許文献1)。H-ATPaseは植物の生長調節に重要な役割を担っており、H-ATPaseの活性は、C端部のスレオニンのリン酸化によって制御されており、このスレオニンがリン酸化されると、14-3-3タンパク質と会合し、H-ATPaseが活性化する。このH-ATPaseと14-3-3タンパク質の複合体が、FC Aにより安定化されると、休眠種子の発芽誘起、気孔の開口、子葉の肥大化等の生理作用をもたらす。 Fusicoccin (hereinafter, also simply referred to as “FC”) A is a diterpene glycoside produced by the phytopathogenic fungus Phomopsis amygdali . FC A exhibits plant hormone-like activity through the activation of cell membrane H + -ATPase. By analyzing the crystal structure of a ternary complex of a phosphorylated peptide derived from the C terminal of plant 14-3-3 protein, FC A and H + -ATPase, FC A was found to be of 14-3-3 protein and phosphorylated peptide. The association state is stabilized by the formation of a ternary complex, resulting in continuous activation of H + -ATPase (Non-patent Document 1). H + -ATPase plays an important role in plant growth regulation, and the activity of H + -ATPase is controlled by phosphorylation of threonine at the C-terminal, and when this threonine is phosphorylated, 14 Associates with 3-3 protein and activates H + -ATPase. When this complex of H + -ATPase and 14-3-3 protein is stabilized by FCA, it brings about physiological effects such as inducing germination of dormant seeds, opening of pores, and enlargement of cotyledons.
 従って、FC Aの合成を担う酵素、及びその遺伝子は、植物の意図的な生長調節上でも重要である。また、FC Aは、ブラッシシセン(以下、単に「BC」ともいう)C等と構造的に類似するため、FC Aの生合成中間体から他のFC Aの構造的な類縁体を製造することも可能であると考えられる。 Therefore, the enzyme responsible for the synthesis of FC A and its gene are also important in the intentional growth regulation of plants. In addition, FC A is structurally similar to brassicene (hereinafter, also simply referred to as “BC”) C, etc., and other FC A structural analogs may be produced from the biosynthesis intermediate of FC A. It is considered possible.
 さらに、14-3-3タンパク質は、真核細胞生物全般にわたって存在しているタンパク質であり、ほ乳類では、がん関連因子を含む情報伝達経路の一部に含まれることが知られており、14-3-3タンパク質と結合するFC A及びその構造的な類縁体は、医薬品としての利用価値も高いと考えられる。 Furthermore, the 14-3-3 protein is a protein that exists throughout eukaryotic organisms, and in mammals, it is known to be included in a part of a signal transduction pathway including a cancer-related factor. It is considered that FC A that binds to a 3-3 protein and its structural analogs have high utility value as pharmaceuticals.
 FC Aの生合成には、少なくとも13種の酵素が必要であると考えられる。以前、本発明者らは、amygdaliから、FC Aの合成を担う酵素の遺伝子の一部、サイクラーゼ(ORF1)、ジオキシゲナーゼ(ORF2)、チトクロームP450-1(ORF3)および短鎖デヒドロゲナーゼ/レダクターゼ(ORF4)をコードする遺伝子を含む遺伝子クラスター(クラスター1)を同定したが(非特許文献2および非特許文献3)、残り9種の酵素をコードする遺伝子は、いまだ解明されていない。 It is believed that at least 13 enzymes are required for FCA biosynthesis. Previously, the inventors have described P.P. Genes including a part of genes of enzymes responsible for FCA synthesis from amygdali , genes encoding cyclase (ORF1), dioxygenase (ORF2), cytochrome P450-1 (ORF3) and short chain dehydrogenase / reductase (ORF4) Although the cluster (cluster 1) was identified (Non-patent document 2 and Non-patent document 3), the genes encoding the remaining nine enzymes have not yet been elucidated.
 本発明は、FC Aの生合成経路の全容を解明し、フシコクシンA及びその生合成中間体を製造する酵素を取得すること、取得した酵素を用いて、フシコクシンA及びその生合成中間体を製造する方法を提供することを目的とする。 The present invention elucidates the entire biosynthetic pathway of FC A, obtains an enzyme that produces fusicoccin A and its biosynthetic intermediate, and produces fusicoccin A and its biosynthetic intermediate using the obtained enzyme. It aims to provide a way to do.
 なお、ここで「FC A生合成中間体」とは、FC Aの生合成の過程で生じる化合物である。これらの化合物は、本発明のFC Aの製造方法において、「FC Aの製造中間体」に相当する。以下、本明細書において「FC A生合成中間体」として用語を統一するが、これは、「FC Aの製造中間体」をも意味するものであり、生合成に拘束されるものではない。 The “FC A biosynthetic intermediate” is a compound produced in the process of FC A biosynthesis. These compounds correspond to “manufacturing intermediate of FC A” in the manufacturing method of FC A of the present invention. Hereinafter, the term “FC A biosynthetic intermediate” is unified in this specification, but this also means “FC A production intermediate” and is not restricted by biosynthesis.
 本発明者らは、上記課題を解決すべく、鋭意研究をおこなったところ、amygdaliのゲノムから、FC Aの生合成経路に関与すると考えられる、新たな酵素群、具体的には4種のチトクロームP450(以下、単に「P450」と記載する場合がある。)、1種のグリコシルトランスフェラーゼ、2種のアセチルトランスフェラーゼ、1種のメチルトランスフェラーゼ、及び1種のプレニルトランスフェラーゼをそれぞれコードする遺伝子を含む遺伝子クラスター(クラスター2)を見いだした。 The present inventors have found that, in order to solve the above problems, was carried out extensive research, P. From the genome of amygdali , a new enzyme group considered to be involved in the biosynthesis pathway of FCA , specifically, four types of cytochrome P450 (hereinafter sometimes simply referred to as “P450”), one type. A gene cluster (cluster 2) was found that contained genes encoding glycosyltransferase, two acetyltransferases, one methyltransferase, and one prenyltransferase, respectively.
 これに基づき、本発明者らは、先に単離したクラスター1にコードされている4種の酵素と、今回同定した9つの酵素を用いることにより、ゲラニルゲラニル二リン酸を出発原料としてFC Aを合成することに成功した。また、これらの酵素を産生するamygdaliにおいて、一部の酵素をコードする遺伝子を欠損させて、その酵素反応を遮断することで、当該酵素の基質となる化合物を菌体内で効率的に生合成させることができることを見いだした。本発明は、これらの一連の知見に基づいて完成したものであり、下記に掲げる態様の発明を包含する。 Based on this, the present inventors used four enzymes encoded in cluster 1 isolated earlier and nine enzymes identified this time, so that FCA was obtained using geranylgeranyl diphosphate as a starting material. Successfully synthesized. In addition, P. In amygdali , it was found that a compound serving as a substrate for the enzyme can be efficiently biosynthesized in the microbial cells by deleting a gene encoding a part of the enzyme and blocking the enzyme reaction. The present invention has been completed on the basis of these series of findings, and includes the inventions of the embodiments listed below.
(1)フシコクシンA(FC A)、及びその生合成中間体の製造方法
 (1-1).下記の(a)~(g)工程を含む、式(I):
(1) Method for producing fusicoccin A (FC A) and its biosynthetic intermediate (1-1). Formula (I) comprising the following steps (a) to (g):
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
で表されるフシコクシンH(以下、これを「FC H」ともいう。)を製造する方法:
(a).ゲラニルゲラニル二リン酸(以下、「GGDP」ともいう。)にサイクラーゼ(ORF1)を作用させて、下式(II)で表される化合物(以下、「fusicocca-2,10(14)-diene」ともいう。)を得る工程、
A method for producing fusicoccin H (hereinafter also referred to as “FC H”) represented by:
(A). Cyclase (ORF1) is allowed to act on geranylgeranyl diphosphate (hereinafter also referred to as “GGDP”) to produce a compound represented by the following formula (II) (hereinafter referred to as “fusicocca-2,10 (14) -diene”). The process of obtaining
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(b).上記で得られる化合物(II)に、P450還元酵素およびニコチンアミドアデニンジヌクレオチド(NADH)またはニコチンアミドアデニンジヌクレオチドリン酸(NADPH)の存在下、P450-2(ORF5)を作用させて、下式(III)で表される化合物(以下、「fusicocca-2,10(14)-dien-8β-ol」ともいう。)を得る工程、 (B). P450-2 (ORF5) is allowed to act on the compound (II) obtained above in the presence of P450 reductase and nicotinamide adenine dinucleotide (NADH) or nicotinamide adenine dinucleotide phosphate (NADPH). A step of obtaining a compound represented by (III) (hereinafter also referred to as “fusicocca-2,10 (14) -dien-8β-ol”);
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(c).上記で得られる化合物(III)に、P450還元酵素およびNADHまたはNADPH、P450-1(ORF3)を作用させて、下式(IV)で表される化合物(以下、「fusicocca-2,10(14)-diene-8β,16-diol」ともいう。)を得る工程、 (C). The compound (III) obtained above is reacted with P450 reductase and NADH or NADPH, P450-1 (ORF3) to give a compound represented by the following formula (IV) (hereinafter referred to as “fusicocca-2,10 (14 ) -Diene-8β, 16-diol ”).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(d).上記で得られる化合物(IV)に鉄イオン、二原子酸素供与体、およびアスコルビン酸の存在下、ジオキシゲナーゼ(ORF2)を作用させて、下記式(V)又は(VI)で表される化合物(化合物(VI)を以下「8β-hydroxyfusicocca-1,10(14)-dien-16-al」ともいう。)を得る工程、 (D). Compound (IV) obtained above is reacted with dioxygenase (ORF2) in the presence of an iron ion, a diatomic oxygen donor, and ascorbic acid to give a compound represented by the following formula (V) or (VI) ( A step of obtaining the compound (VI) hereinafter also referred to as “8β-hydroxyfusicocca-1,10 (14) -dien-16-al”);
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(e).上記で得られる化合物(VI)に短鎖デヒドロゲナーゼレダクターゼ(ORF4)を作用させて、下記式(VII)で表される化合物(以下、「fusicocca-1,10(14)-diene-8β,16-diol」ともいう。)を得る工程、 (E). The compound (VI) obtained above is allowed to act on a short-chain dehydrogenase reductase (ORF4) to produce a compound represented by the following formula (VII) (hereinafter referred to as “fusicocca-1,10 (14) -diene-8β, 16- also referred to as “diol”),
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(f).上記で得られる化合物(VII)に、P450還元酵素およびNADHまたはNADPHの存在下、P450-3(ORF7)を作用させて、化合物(VIII)(以下、「FC H aglycon」ともいう。)を得る工程、 (F). The compound (VII) obtained above is allowed to act on P450-3 (ORF7) in the presence of P450 reductase and NADH or NADPH to obtain compound (VIII) (hereinafter also referred to as “FC H aglycon”). Process,
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
(g).上記で得られる化合物(VIII)に、グリコシル基供与体の存在下、グリコシルトランスフェラーゼ(ORF6)を作用させて、上記式(I)で表される化合物(FC H)を得る工程。 (G). A step of obtaining a compound (FC H) represented by the above formula (I) by allowing a glycosyltransferase (ORF6) to act on the compound (VIII) obtained above in the presence of a glycosyl group donor.
 (1-2).(1-1)に記載する(a)~(g)工程に加えて、さらに下記(h)工程を含む、式(IX)で表されるフシコクシンQ(以下、これを「FC Q」ともいう。)の製造方法:
(h).(g)工程で得られる化合物(I)に、P450還元酵素およびNADHまたはNADPHの存在下、P450-4(ORF10)を作用させて、下式(IX)で表される化合物(FC Q)を得る工程
(1-2). In addition to the steps (a) to (g) described in (1-1), the fusicoccin Q represented by the formula (IX) further including the following step (h) (hereinafter also referred to as “FC Q”) .) Manufacturing method:
(H). (G) P450-4 (ORF10) is allowed to act on the compound (I) obtained in the step in the presence of P450 reductase and NADH or NADPH to give the compound (FC Q) represented by the following formula (IX): Obtaining process
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
.
 (1-3).(1-1)に記載する(a)~(g)工程、及び(1-2)に記載する(h)工程に加えて、さらに(i)工程を含む、式(X)で表されるフシコクシンP(以下、これを「FC P」ともいう。)の製造方法:
(i).(h)工程で得られる化合物(IX)に、メチル基供与体の存在下、メチルトランスフェラーゼ(ORF8)を作用させて、下式(X)で表される化合物(FC P)を得る工程
(1-3). In addition to the steps (a) to (g) described in (1-1) and the step (h) described in (1-2), the method is further represented by the formula (X) including the step (i). Method for producing fusicoccin P (hereinafter also referred to as “FC P”):
(I). (H) A step of obtaining a compound (FCP) represented by the following formula (X) by allowing methyltransferase (ORF8) to act on the compound (IX) obtained in the step in the presence of a methyl group donor.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
.
 (1-4).(1-1)に記載する(a)~(g)工程、(1-2)に記載する(h)工程、及び(1-3)に記載する(i)工程に加えて、さらに(j)工程を含む、式(XI)で表されるフシコクシンJ(以下、これを「FC J」ともいう。)の製造方法:
(j).(i)工程で得られる化合物(X)に、プレニル基供与体の存在下、プレニルトランスフェラーゼ(ORF11)を作用させて、下式(XI)で表される化合物(FC J)を得る工程:
(1-4). In addition to steps (a) to (g) described in (1-1), step (h) described in (1-2), and step (i) described in (1-3), (j ) Process for producing fusicoccin J represented by formula (XI) (hereinafter also referred to as “FC J”):
(J). (I) A step of obtaining a compound (FC J) represented by the following formula (XI) by allowing prenyl transferase (ORF11) to act on the compound (X) obtained in the step in the presence of a prenyl group donor:
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
.
 (1-5).(1-1)に記載する(a)~(g)工程、(1-2)に記載する(h)工程、(1-3)に記載する(i)工程、及び(1-4)に記載する(j)工程に加えて、さらに(k)工程を含む、式(XII)で表されるジデアセチルフシコクシンA(以下、これを「dideacetyl-FC A」ともいう。)の製造方法:
(k).(j)工程で得られる化合物(XI)に、P450還元酵素およびNADHまたはNADPHの存在下、P450-5(ORF13)を作用させて、下式(XII)で表される化合物(dideacetyl-FC A)を得る工程:
(1-5). Steps (a) to (g) described in (1-1), step (h) described in (1-2), step (i) described in (1-3), and (1-4) A method for producing dideacetyl fusicoccin A represented by formula (XII) (hereinafter also referred to as “deacetylyl-FC A”), which further comprises step (k) in addition to the step (j) described. :
(K). (J) The compound (XI) obtained in the step is allowed to act on P450-5 (ORF13) in the presence of P450 reductase and NADH or NADPH to give a compound represented by the following formula (XII) (deacetylyl-FC A )
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
.
 (1-6).(1-1)に記載する(a)~(g)工程、(1-2)に記載する(h)工程、(1-3)に記載する(i)工程、(1-4)に記載する(j)工程、及び(1-5)に記載する(k)工程に加えて、さらに(l)工程を含む、式(XIII)で表されるフシコクシンA(以下、これを「FC A」ともいう。)の製造方法:
(l).(k)工程で得られる化合物(XII)に、アセチルCoA存在下、2種類のアセチルトランスフェラーゼORF9及びORF12を作用させて、下記式(XIII)で表される化合物(FC A)を得る工程:
(1-6). Steps (a) to (g) described in (1-1), Step (h) described in (1-2), Step (i) described in (1-3), Step (1-4) In addition to step (j) and step (k) described in (1-5), fusicoccine A represented by formula (XIII) (hereinafter referred to as “FC A”) Also known as :) Manufacturing method:
(L). (K) A step of obtaining a compound (FC A) represented by the following formula (XIII) by allowing two kinds of acetyltransferases ORF9 and ORF12 to act on the compound (XII) obtained in the step in the presence of acetyl CoA:
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
.
 (1-7).工程(b)で使用するP450-2(ORF5)が、(1)~(3)のいずれかに記載の塩基配列によりコードされる酵素、又は(4)~(6)のいずれかに記載のアミノ酸配列からなる酵素である、(1-1)乃至(1-6)のいずれかに記載するFC Aまたはその生合成中間体の製造方法:
(1)配列番号1に示す塩基配列、
(2)配列番号1に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を有し、配列番号1に示す塩基配列によりコードされる遺伝子産物と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(b)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列、
(3)配列番号1に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列を有し、配列番号1に示す塩基配列によりコードされる遺伝子産物と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(b)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列、又は
(4)配列番号2に示すアミノ酸配列、
(5)配列番号2に示すアミノ酸配列と85%以上の同一性を有し、配列番号2のアミノ酸配列からなる酵素と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(b)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列、若しくは
(6)配列番号2に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されたアミノ酸配列を有し、配列番号2のアミノ酸配列からなる酵素と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(b)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列。
(1-7). P450-2 (ORF5) used in step (b) is an enzyme encoded by the base sequence described in any one of (1) to (3), or any one of (4) to (6) A method for producing FCA or a biosynthetic intermediate thereof according to any one of (1-1) to (1-6), which is an enzyme comprising an amino acid sequence:
(1) the base sequence shown in SEQ ID NO: 1,
(2) having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 1 under stringent conditions, and similar to the gene product encoded by the base sequence shown in SEQ ID NO: 1, P450 reductase and NADH or A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (b) in the presence of NADPH;
(3) In the nucleotide sequence shown in SEQ ID NO: 1, P450 has a nucleotide sequence in which one or more bases are substituted, deleted, or added, and is the same as the gene product encoded by the nucleotide sequence shown in SEQ ID NO: 1. A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (b) in the presence of a reductase and NADH or NADPH, or (4) an amino acid sequence shown in SEQ ID NO: 2,
(5) The reaction of step (b) in the presence of P450 reductase and NADH or NADPH, which is 85% or more identical to the amino acid sequence shown in SEQ ID NO: 2 and consists of the amino acid sequence of SEQ ID NO: 2 An amino acid sequence encoding a protein having an enzyme action that catalyzes or (6) an amino acid sequence represented by SEQ ID NO: 2 having an amino acid sequence in which one or more amino acids are substituted, deleted, or added; The amino acid sequence which codes the protein which has the enzyme effect | action which catalyzes reaction of a process (b) in presence of P450 reductase and NADH or NADPH similarly to the enzyme which consists of an amino acid sequence of 2.
 (1-8).工程(f)で使用するP450-3(ORF7)が、(7)~(9)のいずれかに記載の塩基配列によりコードされる酵素、又は(10)~(12)のいずれかに記載のアミノ酸配列からなる酵素である、(1-1)乃至(1-6)のいずれかに記載するFC Aまたはその生合成中間体の製造方法:
(7)配列番号5に示す塩基配列、
(8)配列番号5に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を有し、配列番号5で示す塩基配列によりコードされる遺伝子産物と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(f)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列、若しくは
(9)配列番号5に示す塩基配列において、1つまたは複数の塩基が置換、欠失、若しくは付加された塩基配列を有し、配列番号5に示す塩基配列によりコードされる遺伝子産物と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(f)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列、又は
(10)配列番号6に示すアミノ酸配列、
(11)配列番号6に示すアミノ酸配列と85%以上の同一性を有し、配列番号6に示すアミノ酸配列からなる酵素と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(f)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列、若しくは
(12)配列番号6に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されたアミノ酸配列を有し、配列番号6に示されるアミノ酸配列からなる酵素と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(f)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列。
(1-8). The P450-3 (ORF7) used in the step (f) is an enzyme encoded by the base sequence described in any of (7) to (9) or the enzyme described in any of (10) to (12) A method for producing FCA or a biosynthetic intermediate thereof according to any one of (1-1) to (1-6), which is an enzyme comprising an amino acid sequence:
(7) the base sequence shown in SEQ ID NO: 5,
(8) having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 5 under stringent conditions, and similar to the gene product encoded by the base sequence shown in SEQ ID NO: 5, P450 reductase and NADH or In the presence of NADPH, a base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (f), or (9) one or more bases substituted or deleted in the base sequence shown in SEQ ID NO: 5, Alternatively, it has an added base sequence and has an enzyme action that catalyzes the reaction of step (f) in the presence of P450 reductase and NADH or NADPH, as in the gene product encoded by the base sequence shown in SEQ ID NO: 5. A base sequence encoding a protein, or (10) an amino acid sequence shown in SEQ ID NO: 6,
(11) In the presence of P450 reductase and NADH or NADPH, which is 85% or more identical to the amino acid sequence shown in SEQ ID NO: 6 and consists of the amino acid sequence shown in SEQ ID NO: 6, in the step (f) An amino acid sequence encoding a protein having an enzyme action that catalyzes a reaction, or (12) an amino acid sequence represented by SEQ ID NO: 6 having an amino acid sequence in which one or more amino acids are substituted, deleted, or added; The amino acid sequence which codes the protein which has the enzyme effect | action which catalyzes reaction of a process (f) in presence of P450 reductase and NADH or NADPH similarly to the enzyme which consists of an amino acid sequence shown by the number 6.
 (1-9).工程(g)で使用されるグリコシルトランスフェラーゼ(ORF6)が、(13)~(15)のいずれかに記載の塩基配列によりコードされる酵素、又は(16)~(18)のいずれかに記載のアミノ酸配列からなる酵素である、(1-1)乃至(1-6)のいずれかに記載するFC Aまたはその生合成中間体の製造方法:
(13)配列番号3に示す塩基配列、
(14)配列番号3に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を有し、配列番号3に示す塩基配列によりコードされる遺伝子産物と同じく、グリコシル基供与体の存在下、工程(g)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列、若しくは
(15)配列番号3に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列を有し、配列番号3に示す塩基配列によりコードされる遺伝子産物と同じく、グリコシル基供与体の存在下、工程(g)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列、又は
(16)配列番号4に示すアミノ酸配列、
(17)配列番号4に示すアミノ酸配列と85%以上の同一性を有し、配列番号4に示すアミノ酸配列からなる酵素と同じく、グリコシル基供与体の存在下、工程(g)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列、若しくは
(18)配列番号4に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されたアミノ酸配列を有し、配列番号4に示すアミノ酸配列からなる酵素と同じく、グリコシル基供与体の存在下、工程(g)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列。
(1-9). The glycosyltransferase (ORF6) used in the step (g) is an enzyme encoded by the base sequence according to any one of (13) to (15), or any one of (16) to (18) A method for producing FCA or a biosynthetic intermediate thereof according to any one of (1-1) to (1-6), which is an enzyme comprising an amino acid sequence:
(13) the base sequence shown in SEQ ID NO: 3,
(14) Presence of a glycosyl group donor having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 3 under stringent conditions, as in the gene product encoded by the base sequence shown in SEQ ID NO: 3. Below, in the base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (g), or (15) one or more bases are substituted, deleted, or added in the base sequence shown in SEQ ID NO: 3. A base sequence encoding a protein having a base sequence and having the enzyme action of catalyzing the reaction of step (g) in the presence of a glycosyl group donor, in the same manner as the gene product encoded by the base sequence shown in SEQ ID NO: 3; Or (16) the amino acid sequence shown in SEQ ID NO: 4,
(17) Catalyzing the reaction of step (g) in the presence of a glycosyl group donor having the identity of 85% or more to the amino acid sequence shown in SEQ ID NO: 4 and the enzyme consisting of the amino acid sequence shown in SEQ ID NO: 4 An amino acid sequence encoding a protein having an enzyme action, or (18) an amino acid sequence represented by SEQ ID NO: 4, wherein one or a plurality of amino acids are substituted, deleted, or added; The amino acid sequence which codes the protein which has the enzyme action which catalyzes reaction of a process (g) similarly to the enzyme which consists of an amino acid sequence shown in presence of a glycosyl group donor.
 (1-10).工程(h)で使用されるP450-4(ORF10)が、(19)~(21)のいずれかに記載の塩基配列によりコードされる酵素、又は(22)~(24)のいずれかに記載のアミノ酸配列からなる酵素である、(1-1)乃至(1-6)のいずれかに記載するFC Aまたはその生合成中間体の製造方法:
(19)配列番号11に示す塩基配列、
(20)配列番号11に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を有し、配列番号11に示す塩基配列によりコードされる遺伝子産物と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(h)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列、若しくは
(21)配列番号11に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列を有し、配列番号11に示す塩基配列によりコードされる遺伝子産物と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(h)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列、又は
(22)配列番号12に示すアミノ酸配列、
(23)配列番号12に示すアミノ酸配列と85%以上の同一性を有し、配列番号12に示すアミノ酸配列からなる酵素と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(h)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列、若しくは
(24)配列番号12に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されたアミノ酸配列を有し、配列番号12に示すアミノ酸配列からなる酵素と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(h)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列。
(1-10). P450-4 (ORF10) used in the step (h) is an enzyme encoded by the base sequence described in any one of (19) to (21), or any one of (22) to (24) A method for producing FCA or a biosynthetic intermediate thereof according to any one of (1-1) to (1-6), which is an enzyme comprising the amino acid sequence:
(19) the base sequence shown in SEQ ID NO: 11,
(20) having a base sequence that hybridizes under stringent conditions with a complementary strand of the base sequence shown in SEQ ID NO: 11 and, like the gene product encoded by the base sequence shown in SEQ ID NO: 11, P450 reductase and NADH or In the presence of NADPH, in the base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (h), or (21) one or more bases are substituted, deleted, or deleted in the base sequence shown in SEQ ID NO: 11, or A protein having an added base sequence and having an enzyme action that catalyzes the reaction of step (h) in the presence of P450 reductase and NADH or NADPH, as in the gene product encoded by the base sequence shown in SEQ ID NO: 11 (22) the amino acid sequence shown in SEQ ID NO: 12,
(23) In the presence of P450 reductase and NADH or NADPH, which has 85% or more identity with the amino acid sequence shown in SEQ ID NO: 12 and consists of the amino acid sequence shown in SEQ ID NO: 12, An amino acid sequence encoding a protein having an enzyme action that catalyzes a reaction, or (24) an amino acid sequence represented by SEQ ID NO: 12 having an amino acid sequence in which one or more amino acids are substituted, deleted, or added; The amino acid sequence which codes the protein which has the enzyme effect | action which catalyzes reaction of a process (h) in presence of P450 reductase and NADH or NADPH similarly to the enzyme which consists of an amino acid sequence shown in number 12.
 (1-11).工程(i)のメチルトランスフェラーゼ(ORF8)が、(25)~(27)のいずれかに記載の塩基配列によりコードされる酵素、又は(28)~(30)のいずれかに記載のアミノ酸配列からなる酵素である、(1-1)乃至(1-6)のいずれかに記載するFC Aまたはその生合成中間体の製造方法:
(25)配列番号7に示す塩基配列、
(26)配列番号7に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を有し、配列番号7の塩基配列によりコードされる遺伝子産物と同じく、メチル基供与体の存在下、工程(i)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列、若しくは
(27)配列番号7に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列を有し、配列番号7に示す塩基配列によりコードされる遺伝子産物と同じく、メチル基供与体の存在下、工程(i)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列、又は
(28)配列番号8に示すアミノ酸配列、
(29)配列番号8に示すアミノ酸配列と85%以上の同一性を有し、配列番号8に示すアミノ酸配列からなる酵素と同じく、メチル基供与体の存在下、工程(i)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列、若しくは
(30)配列番号8に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されたアミノ酸配列を有し、配列番号8に示すアミノ酸配列からなる酵素と同じく、メチル基供与体の存在下、工程(i)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列。
(1-11). The methyltransferase (ORF8) in step (i) is an enzyme encoded by the base sequence described in any one of (25) to (27) or the amino acid sequence described in any one of (28) to (30). A method for producing FCA or a biosynthetic intermediate thereof according to any one of (1-1) to (1-6):
(25) the base sequence shown in SEQ ID NO: 7,
(26) having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 7 under stringent conditions, and in the presence of a methyl group donor in the same manner as the gene product encoded by the base sequence of SEQ ID NO: 7 , A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (i), or (27) a base in which one or more bases are substituted, deleted, or added in the base sequence shown in SEQ ID NO: 7 A nucleotide sequence that encodes a protein having an enzyme action that catalyzes the reaction of step (i) in the presence of a methyl group donor, as in the gene product having the sequence and encoded by the nucleotide sequence shown in SEQ ID NO: 7; (28) the amino acid sequence shown in SEQ ID NO: 8,
(29) Catalyzing the reaction of step (i) in the presence of a methyl donor, having 85% or more identity with the amino acid sequence shown in SEQ ID NO: 8 and the enzyme consisting of the amino acid sequence shown in SEQ ID NO: 8 An amino acid sequence encoding a protein having an enzyme action, or (30) an amino acid sequence represented by SEQ ID NO: 8, wherein one or a plurality of amino acids are substituted, deleted, or added; The amino acid sequence which codes the protein which has the enzyme effect | action which catalyzes reaction of a process (i) similarly to the enzyme which consists of an amino acid sequence shown in presence of a methyl group donor.
 (1-12).工程(j)で使用されるプレニルトランスフェラーゼ(ORF11)が、(31)~(33)のいずれかに記載の塩基配列によりコードされる酵素、又は(34)~(36)のいずれかに記載のアミノ酸配列からなる酵素である、(1-1)乃至(1-6)のいずれかに記載するFC Aまたはその生合成中間体の製造方法:
(31)配列番号13に示す塩基配列、
(32)配列番号13に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を有し、配列番号13の塩基配列によりコードされる遺伝子産物と同じく、プレニル基供与体の存在下、工程(j)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列、若しくは
(33)配列番号13に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列を有し、配列番号13の塩基配列によりコードされる遺伝子産物と同じく、プレニル基供与体の存在下、工程(j)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列、又は
(34)配列番号14に示すアミノ酸配列、
(35)配列番号14に示すアミノ酸配列と85%以上の同一性を有し、配列番号14に示すアミノ酸配列からなる酵素と同じく、プレニル基供与体の存在下、工程(j)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列、(36)配列番号14に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されたアミノ酸配列を有し、配列番号14に示すアミノ酸配列からなる酵素と同じく、プレニル基供与体の存在下、工程(j)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列。
(1-12). The prenyl transferase (ORF11) used in the step (j) is an enzyme encoded by the base sequence according to any of (31) to (33), or any of (34) to (36) A method for producing FCA or a biosynthetic intermediate thereof according to any one of (1-1) to (1-6), which is an enzyme comprising an amino acid sequence:
(31) the base sequence shown in SEQ ID NO: 13,
(32) having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 13 under stringent conditions, and in the presence of a prenyl group donor in the same manner as the gene product encoded by the base sequence of SEQ ID NO: 13 , A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (j), or (33) a base in which one or more bases are substituted, deleted, or added in the base sequence shown in SEQ ID NO: 13 A nucleotide sequence encoding a protein having an enzyme action that catalyzes the reaction of the step (j) in the presence of a prenyl group donor, as in the gene product having the sequence and encoded by the nucleotide sequence of SEQ ID NO: 13; 34) the amino acid sequence shown in SEQ ID NO: 14,
(35) Catalyzing the reaction of the step (j) in the presence of a prenyl group donor having the identity of 85% or more to the amino acid sequence shown in SEQ ID NO: 14 and the enzyme consisting of the amino acid sequence shown in SEQ ID NO: 14 An amino acid sequence encoding a protein having an enzyme action, (36) having an amino acid sequence in which one or more amino acids are substituted, deleted, or added in the amino acid sequence shown in SEQ ID NO: 14, and shown in SEQ ID NO: 14 The amino acid sequence which codes the protein which has the enzyme effect | action which catalyzes reaction of a process (j) in presence of a prenyl group donor similarly to the enzyme which consists of an amino acid sequence.
 (1-13).工程(k)のP450-5(ORF13)が、(37)~(39)のいずれかに記載の塩基配列によりコードされる酵素、又は(40)~(42)のいずれかに記載のアミノ酸配列からなる酵素である、(1-1)乃至(1-6)のいずれかに記載するFC Aまたはその生合成中間体の製造方法:
(37)配列番号17に示す塩基配列、
(38)配列番号17に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を有し、配列番号17に示す塩基配列によりコードされる遺伝子産物と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(k)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列、若しくは
(39)配列番号17に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列を有し、配列番号17に示す塩基配列によりコードされる遺伝子産物と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(k)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列、又は
(40)配列番号18に示すアミノ酸配列、
(41)配列番号18に示すアミノ酸配列と85%以上の同一性を有し、配列番号18に示すアミノ酸配列からなる酵素と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(k)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列、若しくは
(42)配列番号18に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されたアミノ酸配列を有し、配列番号18に示すアミノ酸配列からなる酵素と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(k)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列。
(1-13). The enzyme encoded by the nucleotide sequence according to any of (37) to (39), or the amino acid sequence according to any of (40) to (42), wherein P450-5 (ORF13) in step (k) A method for producing FCA or a biosynthetic intermediate thereof according to any one of (1-1) to (1-6), which is an enzyme comprising:
(37) the base sequence shown in SEQ ID NO: 17,
(38) having a base sequence that hybridizes under stringent conditions with a complementary strand of the base sequence shown in SEQ ID NO: 17, and, like the gene product encoded by the base sequence shown in SEQ ID NO: 17, P450 reductase and NADH or In the presence of NADPH, in the base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (k), or (39) the base sequence shown in SEQ ID NO: 17, one or more bases are substituted, deleted, or A protein having an added base sequence and having an enzyme action that catalyzes the reaction of step (k) in the presence of P450 reductase and NADH or NADPH, in the same manner as the gene product encoded by the base sequence shown in SEQ ID NO: 17. (40) the amino acid sequence shown in SEQ ID NO: 18,
(41) In the presence of P450 reductase and NADH or NADPH in the presence of P450 reductase and NADH or NADPH having the identity of 85% or more to the amino acid sequence shown in SEQ ID NO: 18 and consisting of the amino acid sequence shown in SEQ ID NO: 18 An amino acid sequence encoding a protein having an enzyme action that catalyzes a reaction, or (42) an amino acid sequence represented by SEQ ID NO: 18 having an amino acid sequence in which one or more amino acids are substituted, deleted, or added; The amino acid sequence which codes the protein which has the enzyme action which catalyzes reaction of a process (k) in presence of P450 reductase and NADH or NADPH similarly to the enzyme which consists of an amino acid sequence shown in number 18.
 (1-14).工程(l)のアセチルトランスフェラーゼ(ORF12)が、(43)~(45)のいずれかに記載の塩基配列によりコードされる酵素、又は(46)~(48)のいずれかに記載のアミノ酸配列からなる酵素である、(1-1)乃至(1-6)のいずれかに記載するFC Aまたはその生合成中間体の製造方法:
(43)配列番号15に示す塩基配列、
(44)配列番号15に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を有し、配列番号15に示す塩基配列によりコードされる遺伝子産物と同じく、アセチル供与体の存在下、化合物(XII)の19位の水酸基のアセチル化を触媒する酵素作用を有するタンパク質をコードする塩基配列、若しくは
(45)配列番号15に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列を有し、配列番号15に示す塩基配列によりコードされる遺伝子産物と同じく、アセチル供与体の存在下、化合物(XII)の19位の水酸基のアセチル化を触媒する酵素作用を有するタンパク質をコードする塩基配列、又は
(46)配列番号16に示すアミノ酸配列、
(47)配列番号16に示すアミノ酸配列と85%以上の同一性を有し、配列番号16でコードされる酵素と同じく、アセチル供与体の存在下、化合物(XII)の19位の水酸基のアセチル化を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列、若しくは
(48)配列番号16に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されたアミノ酸配列を有し、配列番号14に示すアミノ酸配列からなる酵素と同じく、アセチル供与体の存在下、化合物(XII)の19位の水酸基のアセチル化を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列。
(1-14). From the enzyme encoded by the base sequence described in any of (43) to (45) or the amino acid sequence described in any of (46) to (48), the acetyltransferase (ORF12) in step (l) A method for producing FCA or a biosynthetic intermediate thereof according to any one of (1-1) to (1-6):
(43) the base sequence represented by SEQ ID NO: 15,
(44) having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 15 under stringent conditions, and in the presence of an acetyl donor in the same manner as the gene product encoded by the base sequence shown in SEQ ID NO: 15 , A base sequence encoding a protein having an enzyme action that catalyzes acetylation of the 19th hydroxyl group of compound (XII), or (45) one or more bases substituted or deleted in the base sequence shown in SEQ ID NO: 15 Or an enzyme that catalyzes the acetylation of the hydroxyl group at position 19 of compound (XII) in the presence of an acetyl donor in the same manner as the gene product encoded by the nucleotide sequence shown in SEQ ID NO: 15 A base sequence encoding a protein having an action, or (46) an amino acid sequence shown in SEQ ID NO: 16,
(47) Acetyl of the hydroxyl group at position 19 of compound (XII) in the presence of an acetyl donor having the identity of 85% or more to the amino acid sequence shown in SEQ ID NO: 16 and the same as the enzyme encoded by SEQ ID NO: 16 An amino acid sequence encoding a protein having an enzyme action that catalyzes oxidization, or (48) an amino acid sequence represented by SEQ ID NO: 16, wherein one or a plurality of amino acids are substituted, deleted, or added; The amino acid sequence which codes the protein which has the enzyme effect | action which catalyzes the acetylation of the 19th hydroxyl group of compound (XII) in presence of an acetyl donor similarly to the enzyme which consists of an amino acid sequence shown in number 14.
 (1-15).工程(l)のアセチルトランスフェラーゼ(ORF9)が、(49)~(51)のいずれかに記載の塩基配列によりコードされる酵素、又は(52)~(54)に記載のアミノ酸配列からなる酵素である、(1-1)乃至(1-6)のいずれかに記載するFC Aまたはその生合成中間体の製造方法:
(49)配列番号9に示す塩基配列、
(50)配列番号9に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を有し、配列番号9に示す塩基配列によりコードされる遺伝子産物と同じく、アセチル供与体の存在下、式(XII)の化合物の3’位の水酸基のアセチル化を触媒する酵素作用を有するタンパク質をコードする塩基配列、若しくは
(51)配列番号9に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列を有し、配列番号9に示す塩基配列によりコードされる遺伝子産物と同じく、アセチル供与体の存在下、式(XII)の化合物の3’位の水酸基のアセチル化を触媒する酵素作用を有するタンパク質をコードする塩基配列、又は
(52)配列番号10に示すアミノ酸配列、
(53)配列番号10に示すアミノ酸配列と85%以上の同一性を有し、配列番号10に示されるアミノ酸配列からなる酵素と同じく、アセチル供与体の存在下、式(XII)の化合物の3’位の水酸基のアセチル化を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列、若しくは
(54)配列番号10に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されたアミノ酸配列を有し、配列番号10に示されるアミノ酸配列からなる酵素と同じく、アセチル供与体の存在下、式(XII)の化合物の3’位の水酸基のアセチル化を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列。
(1-15). The acetyltransferase (ORF9) in step (l) is an enzyme encoded by the base sequence described in any of (49) to (51) or an enzyme consisting of the amino acid sequence described in (52) to (54) A method for producing FC A or a biosynthetic intermediate thereof according to any one of (1-1) to (1-6):
(49) the base sequence represented by SEQ ID NO: 9,
(50) having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 9 under stringent conditions, and in the presence of an acetyl donor in the same manner as the gene product encoded by the base sequence shown in SEQ ID NO: 9 Or a base sequence encoding a protein having an enzyme action that catalyzes the acetylation of the 3′-position hydroxyl group of the compound of formula (XII), or (51) one or more bases substituted in the base sequence shown in SEQ ID NO: 9 In the presence of an acetyl donor in the presence of an acetyl donor, the hydroxyl group at the 3 ′ position of the compound of formula (XII), which has a deleted or added base sequence and is encoded by the base sequence shown in SEQ ID NO: 9. A base sequence encoding a protein having an enzyme action that catalyzes acetylation, or (52) an amino acid sequence shown in SEQ ID NO: 10,
(53) 3 of the compound of formula (XII) in the presence of an acetyl donor in the same manner as the enzyme having 85% or more identity with the amino acid sequence shown in SEQ ID NO: 10 and consisting of the amino acid sequence shown in SEQ ID NO: 10 An amino acid sequence encoding a protein having an enzyme action that catalyzes acetylation of the hydroxyl group at the position, or (54) an amino acid in which one or more amino acids are substituted, deleted, or added in the amino acid sequence shown in SEQ ID NO: 10 A protein having an enzyme action that catalyzes the acetylation of the hydroxyl group at the 3 ′ position of the compound of formula (XII) in the presence of an acetyl donor in the same manner as the enzyme having the sequence and the amino acid sequence shown in SEQ ID NO: 10 Amino acid sequence to encode.
 (2)FC A及びその生合成中間体の製造に使用される酵素及びその遺伝子
(2-1).(1)~(3)のいずれかに記載の塩基配列を含む、P450-2(ORF5)をコードする遺伝子:
(1)配列番号1に示す塩基配列、
(2)配列番号1に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を有し、配列番号1に示す塩基配列によりコードされる遺伝子産物と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(b)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列、
(3)配列番号1に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列を有し、配列番号1に示す塩基配列によりコードされる遺伝子産物と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(b)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列。
(2) Enzymes and their genes used in the production of FC A and its biosynthetic intermediates (2-1). A gene encoding P450-2 (ORF5) comprising the base sequence according to any one of (1) to (3):
(1) the base sequence shown in SEQ ID NO: 1,
(2) having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 1 under stringent conditions, and similar to the gene product encoded by the base sequence shown in SEQ ID NO: 1, P450 reductase and NADH or A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (b) in the presence of NADPH;
(3) In the nucleotide sequence shown in SEQ ID NO: 1, P450 has a nucleotide sequence in which one or more bases are substituted, deleted, or added, and is the same as the gene product encoded by the nucleotide sequence shown in SEQ ID NO: 1. A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (b) in the presence of a reductase and NADH or NADPH.
 (2-2).(4)~(6)のいずれかに記載のアミノ酸配列からなるP450-2(ORF5): 
(4)配列番号2に示すアミノ酸配列、
(5)配列番号2に示すアミノ酸配列と85%以上の同一性を有し、配列番号2のアミノ酸配列からなる酵素と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(b)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列、若しくは
(6)配列番号2に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されたアミノ酸配列を有し、配列番号2のアミノ酸配列からなる酵素と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(b)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列。
(2-2). P450-2 (ORF5) comprising the amino acid sequence according to any one of (4) to (6):
(4) the amino acid sequence shown in SEQ ID NO: 2,
(5) The reaction of step (b) in the presence of P450 reductase and NADH or NADPH, which is 85% or more identical to the amino acid sequence shown in SEQ ID NO: 2 and consists of the amino acid sequence of SEQ ID NO: 2 An amino acid sequence encoding a protein having an enzyme action that catalyzes or (6) an amino acid sequence represented by SEQ ID NO: 2 having an amino acid sequence in which one or more amino acids are substituted, deleted, or added; The amino acid sequence which codes the protein which has the enzyme effect | action which catalyzes reaction of a process (b) in presence of P450 reductase and NADH or NADPH similarly to the enzyme which consists of an amino acid sequence of 2.
 (2-3).(7)~(9)のいずれかに記載の塩基配列を含む、P450-3(ORF7)をコードする遺伝子:
(7)配列番号5に示す塩基配列、
(8)配列番号5に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を有し、配列番号5に示す塩基配列によりコードされる遺伝子産物と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(f)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列、
(9)配列番号5に示す塩基配列において、1つまたは複数の塩基が置換、欠失、若しくは付加された塩基配列を有し、配列番号5に示す塩基配列によりコードされる遺伝子産物と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(f)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列。
(2-3). A gene encoding P450-3 (ORF7), comprising the base sequence according to any one of (7) to (9):
(7) the base sequence shown in SEQ ID NO: 5,
(8) having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 5 under stringent conditions, and, like the gene product encoded by the base sequence shown in SEQ ID NO: 5, P450 reductase and NADH or A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (f) in the presence of NADPH;
(9) In the base sequence shown in SEQ ID NO: 5, the base sequence has one or more bases substituted, deleted, or added, and is the same as the gene product encoded by the base sequence shown in SEQ ID NO: 5, A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (f) in the presence of P450 reductase and NADH or NADPH.
 (2-4).(10)~(12)のいずれかに記載のアミノ酸配列からなるP450-3(ORF7):
(10)配列番号6に示すアミノ酸配列、
(11)配列番号6に示すアミノ酸配列と85%以上の同一性を有し、配列番号6に示すアミノ酸配列からなる酵素と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(f)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列、
(12)配列番号6に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されたアミノ酸配列を有し、配列番号6に示されるアミノ酸配列からなる酵素と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(f)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列。
(2-4). P450-3 (ORF7) comprising the amino acid sequence according to any one of (10) to (12):
(10) the amino acid sequence shown in SEQ ID NO: 6,
(11) In the presence of P450 reductase and NADH or NADPH, which has 85% or more identity with the amino acid sequence shown in SEQ ID NO: 6 and consists of the amino acid sequence shown in SEQ ID NO: 6, An amino acid sequence encoding a protein having an enzymatic action to catalyze the reaction;
(12) A P450 reductase having the same amino acid sequence as that shown in SEQ ID NO: 6, wherein the amino acid sequence shown in SEQ ID NO: 6 has an amino acid sequence in which one or more amino acids are substituted, deleted, or added. And an amino acid sequence encoding a protein having an enzyme action that catalyzes the reaction of step (f) in the presence of NADH or NADPH.
 (2-5).(13)~(15)のいずれかに記載の塩基配列を含む、グリコシルトランスフェラーゼ(ORF6)をコードする遺伝子:
(13)配列番号3に示す塩基配列、
(14)配列番号3に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を有し、配列番号3に示す塩基配列によりコードされる遺伝子産物と同じく、グリコシル基供与体の存在下、工程(g)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列、
(15)配列番号3に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列を有し、配列番号3の塩基配列によりコードされる遺伝子産物と同じく、グリコシル基供与体の存在下、工程(g)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列。
(2-5). A gene encoding a glycosyltransferase (ORF6) comprising the base sequence according to any one of (13) to (15):
(13) the base sequence shown in SEQ ID NO: 3,
(14) Presence of a glycosyl group donor having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 3 under stringent conditions, as in the gene product encoded by the base sequence shown in SEQ ID NO: 3. A base sequence encoding a protein having an enzyme action that catalyzes the reaction in the step (g)
(15) In the base sequence shown in SEQ ID NO: 3, a glycosyl group having the base sequence in which one or more bases are substituted, deleted, or added, and the gene product encoded by the base sequence of SEQ ID NO: 3 A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (g) in the presence of a donor.
 (2-6).(16)~(18)のいずれかに記載のアミノ酸配列からなるグリコシルトランスフェラーゼ(ORF6):
(16)配列番号4に示すアミノ酸配列、
(17)配列番号4に示すアミノ酸配列と85%以上の同一性を有し、配列番号4に示すアミノ酸配列からなる酵素と同じく、グリコシル基供与体の存在下、工程(g)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列、
(18)配列番号4に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されたアミノ酸配列を有し、配列番号4に示すアミノ酸配列からなる酵素と同じく、グリコシル基供与体の存在下、工程(g)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列。
(2-6). Glycosyltransferase (ORF6) comprising the amino acid sequence according to any one of (16) to (18):
(16) the amino acid sequence shown in SEQ ID NO: 4,
(17) Catalyzing the reaction of step (g) in the presence of a glycosyl group donor having the identity of 85% or more to the amino acid sequence shown in SEQ ID NO: 4 and the enzyme consisting of the amino acid sequence shown in SEQ ID NO: 4 An amino acid sequence encoding a protein having an enzyme action,
(18) A glycosyl group donor having an amino acid sequence in which one or more amino acids are substituted, deleted, or added in the amino acid sequence shown in SEQ ID NO: 4 and consisting of the amino acid sequence shown in SEQ ID NO: 4 An amino acid sequence encoding a protein having an enzyme action that catalyzes the reaction of step (g) in the presence of.
 (2-7).(19)~(21)のいずれかに記載の塩基配列を含む、P450-4(ORF10)をコードする遺伝子:
(19)配列番号11に示す塩基配列、
(20)配列番号11に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を有し、配列番号11の塩基配列によりコードされる遺伝子産物と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(h)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列、
(21)配列番号11に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列を有し、配列番号11の塩基配列によりコードされる遺伝子産物と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(h)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列。
(2-7). (19) A gene encoding P450-4 (ORF10) comprising the base sequence according to any one of (21):
(19) the base sequence shown in SEQ ID NO: 11,
(20) A P450 reductase and NADH or NADPH having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 11 under stringent conditions and the same as the gene product encoded by the base sequence of SEQ ID NO: 11. A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (h) in the presence of
(21) The base sequence shown in SEQ ID NO: 11 has a base sequence in which one or more bases are substituted, deleted, or added, and is reduced by P450 as in the gene product encoded by the base sequence of SEQ ID NO: 11. A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (h) in the presence of an enzyme and NADH or NADPH.
 (2-8).(22)~(24)のいずれかに記載のアミノ酸配列からなるP450-4(ORF10):
(22)配列番号12に示すアミノ酸配列、
(23)配列番号12に示すアミノ酸配列と85%以上の同一性を有し、配列番号12に示すアミノ酸配列からなる酵素と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(h)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列、
(24)配列番号12に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されたアミノ酸配列を有し、配列番号12に示すアミノ酸配列からなる酵素と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(h)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列。
(2-8). P450-4 (ORF10) comprising the amino acid sequence according to any one of (22) to (24):
(22) the amino acid sequence shown in SEQ ID NO: 12,
(23) In the presence of P450 reductase and NADH or NADPH, which has 85% or more identity with the amino acid sequence shown in SEQ ID NO: 12 and consists of the amino acid sequence shown in SEQ ID NO: 12, An amino acid sequence encoding a protein having an enzymatic action to catalyze the reaction;
(24) The amino acid sequence shown in SEQ ID NO: 12 has an amino acid sequence in which one or more amino acids are substituted, deleted, or added, and, like the enzyme consisting of the amino acid sequence shown in SEQ ID NO: 12, P450 reductase and An amino acid sequence encoding a protein having an enzyme action that catalyzes the reaction of step (h) in the presence of NADH or NADPH.
 (2-9).(25)~(27)のいずれかに記載の塩基配列を含む、メチルトランスフェラーゼ(ORF8)をコードする遺伝子:
(25)配列番号7に示す塩基配列、
(26)配列番号7に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を有し、配列番号7に示す塩基配列によりコードされる遺伝子産物と同じく、メチル基供与体の存在下、工程(i)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列、
(27)配列番号7に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列を有し、配列番号7に示す塩基配列によりコードされる遺伝子産物と同じく、メチル基供与体の存在下、工程(i)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列。
(2-9). A gene encoding methyltransferase (ORF8) comprising the base sequence according to any of (25) to (27):
(25) the base sequence shown in SEQ ID NO: 7,
(26) Presence of a methyl group donor having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 7 under stringent conditions and the gene product encoded by the base sequence shown in SEQ ID NO: 7 Below, a base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (i),
(27) In the base sequence shown in SEQ ID NO: 7, a base sequence in which one or more bases are substituted, deleted, or added, and methyl as in the gene product encoded by the base sequence shown in SEQ ID NO: 7 A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (i) in the presence of a group donor.
 (2-10).(28)~(30)のいずれかに記載のアミノ酸配列からなるメチルトランスフェラーゼ(ORF8):
(28)配列番号8に示すアミノ酸配列、
(29)配列番号8に示すアミノ酸配列と85%以上の同一性を有し、配列番号8に示すアミノ酸配列からなる酵素と同じく、メチル基供与体の存在下、工程(i)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列、
(30)配列番号8に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されたアミノ酸配列を有し、配列番号8に示すアミノ酸配列からなる酵素と同じく、メチル基供与体の存在下、工程(i)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列。
(2-10). Methyltransferase (ORF8) comprising the amino acid sequence according to any of (28) to (30):
(28) the amino acid sequence shown in SEQ ID NO: 8,
(29) Catalyzing the reaction of step (i) in the presence of a methyl donor, having 85% or more identity with the amino acid sequence shown in SEQ ID NO: 8 and the enzyme consisting of the amino acid sequence shown in SEQ ID NO: 8 An amino acid sequence encoding a protein having an enzyme action,
(30) A methyl group donor having an amino acid sequence in which one or a plurality of amino acids are substituted, deleted, or added in the amino acid sequence shown in SEQ ID NO: 8 and comprising the amino acid sequence shown in SEQ ID NO: 8 An amino acid sequence encoding a protein having an enzyme action that catalyzes the reaction of step (i) in the presence of.
 (2-11).(31)~(33)のいずれかに記載の塩基配列を含む、プレニルトランスフェラーゼ(ORF11)をコードする遺伝子:
(31)配列番号13に示す塩基配列、
(32)配列番号13に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を有し、配列番号13に塩基配列によりコードされる遺伝子産物と同じく、プレニル基供与体の存在下、工程(j)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列、
(33)配列番号13に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列を有し、配列番号13の塩基配列によりコードされる遺伝子産物と同じく、プレニル基供与体の存在下、工程(j)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列。
(2-11). A gene encoding prenyltransferase (ORF11) comprising the base sequence according to any of (31) to (33):
(31) the base sequence shown in SEQ ID NO: 13,
(32) having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 13 under stringent conditions, and in the presence of a prenyl group donor in the same manner as the gene product encoded by the base sequence in SEQ ID NO: 13 , A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (j),
(33) In the base sequence shown in SEQ ID NO: 13, a prenyl group has a base sequence in which one or more bases are substituted, deleted, or added, and is the same as the gene product encoded by the base sequence of SEQ ID NO: 13 A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (j) in the presence of a donor.
 (2-12).(34)~(36)のいずれかに記載のアミノ酸配列からなるプレニルトランスフェラーゼ(ORF11):
(34)配列番号14に示すアミノ酸配列、
(35)配列番号14に示すアミノ酸配列と85%以上の同一性を有し、配列番号14に示すアミノ酸配列からなる酵素と同じく、プレニル基供与体の存在下、工程(j)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列、
(36)配列番号14に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されたアミノ酸配列を有し、配列番号14に示すアミノ酸配列からなる酵素と同じく、プレニル基供与体の存在下、工程(j)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列。
(2-12). (34) to (36) prenyltransferase (ORF11) comprising the amino acid sequence according to any one of the above:
(34) the amino acid sequence shown in SEQ ID NO: 14,
(35) Catalyzing the reaction of the step (j) in the presence of a prenyl group donor having the identity of 85% or more to the amino acid sequence shown in SEQ ID NO: 14 and the enzyme consisting of the amino acid sequence shown in SEQ ID NO: 14 An amino acid sequence encoding a protein having an enzyme action,
(36) A prenyl group donor having an amino acid sequence in which one or more amino acids are substituted, deleted, or added in the amino acid sequence shown in SEQ ID NO: 14, and the enzyme comprising the amino acid sequence shown in SEQ ID NO: 14 An amino acid sequence encoding a protein having an enzyme action that catalyzes the reaction of step (j) in the presence of.
 (2-13).(37)~(39)のいずれかに記載の塩基配列を含む、P450-5(ORF13):
(37)配列番号17に示す塩基配列、
(38)配列番号17に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を有し、配列番号17に示す塩基配列によりコードされる遺伝子産物と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(k)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列、
(39)配列番号17に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列を有し、配列番号17の塩基配列によりコードされる遺伝子産物と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(k)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列。
(2-13). (450) (ORF13) comprising the base sequence according to any of (37) to (39):
(37) the base sequence shown in SEQ ID NO: 17,
(38) having a base sequence that hybridizes under stringent conditions with a complementary strand of the base sequence shown in SEQ ID NO: 17, and, like the gene product encoded by the base sequence shown in SEQ ID NO: 17, P450 reductase and NADH or A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (k) in the presence of NADPH;
(39) The base sequence shown in SEQ ID NO: 17 has a base sequence in which one or more bases are substituted, deleted, or added, and is reduced by P450 as in the gene product encoded by the base sequence of SEQ ID NO: 17. A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (k) in the presence of an enzyme and NADH or NADPH.
 (2-14).(40)~(42)のいずれかに記載のアミノ酸配列からなるP450-5(ORF13):
(40)配列番号18に示すアミノ酸配列、
(41)配列番号18に示すアミノ酸配列と85%以上の同一性を有し、配列番号18に示すアミノ酸配列からなる酵素と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(k)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列、
(42)配列番号18に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されたアミノ酸配列を有し、配列番号18に示すアミノ酸配列からなる酵素と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(k)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列。
(2-14). P450-5 (ORF13) comprising the amino acid sequence according to any one of (40) to (42):
(40) the amino acid sequence shown in SEQ ID NO: 18,
(41) In the presence of P450 reductase and NADH or NADPH in the presence of P450 reductase and NADH or NADPH having 85% or more identity with the amino acid sequence shown in SEQ ID NO: 18, An amino acid sequence encoding a protein having an enzymatic action to catalyze the reaction;
(42) The amino acid sequence shown in SEQ ID NO: 18 has an amino acid sequence in which one or more amino acids are substituted, deleted, or added, and, like the enzyme consisting of the amino acid sequence shown in SEQ ID NO: 18, P450 reductase and An amino acid sequence encoding a protein having an enzyme action that catalyzes the reaction of step (k) in the presence of NADH or NADPH.
 (2-15).(43)~(45)のいずれかに記載の塩基配列を含む、アセチルトランスフェラーゼ(ORF12)をコードする遺伝子:
(43)配列番号15に示す塩基配列、
(44)配列番号15に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を有し、配列番号15に示す塩基配列によりコードされる遺伝子産物と同じく、アセチル供与体の存在下、化合物(XII)の19位の水酸基のアセチル化を触媒する酵素作用を有するタンパク質をコードする塩基配列、
(45)配列番号15に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列を有し、配列番号15に示す塩基配列によりコードされる遺伝子産物と同じく、アセチル供与体の存在下、化合物(XII)の19位の水酸基のアセチル化を触媒する酵素作用を有するタンパク質をコードする塩基配列。
(2-15). (43) A gene encoding acetyltransferase (ORF12) comprising the base sequence according to any one of (45):
(43) the base sequence represented by SEQ ID NO: 15,
(44) having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 15 under stringent conditions, and in the presence of an acetyl donor in the same manner as the gene product encoded by the base sequence shown in SEQ ID NO: 15 , A base sequence encoding a protein having an enzyme action that catalyzes the acetylation of the 19th hydroxyl group of compound (XII),
(45) In the base sequence shown in SEQ ID NO: 15, one or more bases have a base sequence substituted, deleted, or added, and acetylated like the gene product encoded by the base sequence shown in SEQ ID NO: 15. A base sequence encoding a protein having an enzyme action that catalyzes the acetylation of the 19th hydroxyl group of compound (XII) in the presence of a donor.
 (2-16).(46)~(48)のいずれかに記載のアミノ酸配列からなる、アセチルトランスフェラーゼ(ORF12):
(46)配列番号16に示すアミノ酸配列、
(47)配列番号16に示すアミノ酸配列と85%以上の同一性を有し、配列番号16でコードされる酵素と同じく、アセチル基供与体の存在下、化合物(XII)の19位の水酸基のアセチル化を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列、
(48)配列番号16に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されたアミノ酸配列を有し、配列番号14に示すアミノ酸配列からなる酵素と同じく、アセチル基供与体の存在下、化合物(XII)の19位の水酸基のアセチル化を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列。
(2-16). (46) to (48) acetyltransferase (ORF12) comprising the amino acid sequence according to any one of:
(46) the amino acid sequence shown in SEQ ID NO: 16,
(47) having the identity of 85% or more with the amino acid sequence shown in SEQ ID NO: 16 and, like the enzyme encoded by SEQ ID NO: 16, in the presence of an acetyl group donor, the hydroxyl group at position 19 of compound (XII) An amino acid sequence encoding a protein having an enzymatic action to catalyze acetylation,
(48) An acetyl group donor having the same amino acid sequence as that shown in SEQ ID NO: 14, wherein the amino acid sequence shown in SEQ ID NO: 16 has an amino acid sequence in which one or more amino acids are substituted, deleted, or added. An amino acid sequence encoding a protein having an enzyme action that catalyzes the acetylation of the 19th hydroxyl group of compound (XII) in the presence of
 (2-17).(49)~(51)のいずれかに記載の塩基配列を含む、アセチルトランスフェラーゼ(ORF9)をコードする遺伝子:
(49)配列番号9に示す塩基配列、
(50)配列番号9に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を有し、配列番号9の塩基配列によりコードされる遺伝子産物と同じく、アセチル基供与体の存在下、式(XII)の化合物の3’位の水酸基のアセチル化を触媒する酵素作用を有するタンパク質をコードする塩基配列、
(51)配列番号9に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列を有し、配列番号9の塩基配列によりコードされる遺伝子産物と同じく、アセチル基供与体の存在下、式(XII)の化合物の3’位の水酸基のアセチル化を触媒する酵素作用を有するタンパク質をコードする塩基配列。
(2-17). (49) A gene encoding acetyltransferase (ORF9) comprising the base sequence according to any one of (51):
(49) the base sequence represented by SEQ ID NO: 9,
(50) having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 9 under stringent conditions, and in the presence of an acetyl group donor in the same manner as the gene product encoded by the base sequence of SEQ ID NO: 9 A base sequence encoding a protein having an enzyme action that catalyzes the acetylation of the hydroxyl group at the 3′-position of the compound of formula (XII),
(51) In the base sequence shown in SEQ ID NO: 9, one or more bases have a base sequence substituted, deleted, or added, and the acetyl group is the same as the gene product encoded by the base sequence of SEQ ID NO: 9. A base sequence encoding a protein having an enzyme action that catalyzes the acetylation of the hydroxyl group at the 3'-position of a compound of formula (XII) in the presence of a donor.
 (2-18).(52)~(54)のいずれかに記載のアミノ酸配列からなるアセチルトランスフェラーゼ(ORF9):
(52)配列番号10に示すアミノ酸配列、
(53)配列番号10に示すアミノ酸配列と85%以上の同一性を有し、配列番号10に示されるアミノ酸配列からなる酵素と同じく、アセチル基供与体の存在下、式(XII)の化合物の3’位の水酸基のアセチル化を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列、
(54)配列番号10に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されたアミノ酸配列を有し、配列番号10に示されるアミノ酸配列からなる酵素と同じく、アセチル基供与体の存在下、式(XII)の化合物の3’位の水酸基のアセチル化を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列。
(2-18). Acetyltransferase (ORF9) comprising the amino acid sequence according to any of (52) to (54):
(52) the amino acid sequence shown in SEQ ID NO: 10,
(53) In the presence of an acetyl group donor, the compound of the formula (XII) has the identity of 85% or more to the amino acid sequence shown in SEQ ID NO: 10 and consists of the amino acid sequence shown in SEQ ID NO: 10 An amino acid sequence encoding a protein having an enzymatic action to catalyze acetylation of the hydroxyl group at the 3 ′ position,
(54) The amino acid sequence shown in SEQ ID NO: 10 has an amino acid sequence in which one or more amino acids are substituted, deleted, or added, and provides an acetyl group as in the enzyme consisting of the amino acid sequence shown in SEQ ID NO: 10 An amino acid sequence encoding a protein having an enzyme action that catalyzes the acetylation of the 3′-position hydroxyl group of a compound of the formula (XII) in the presence of a body.
 (3)FC Aの生合成中間体の製造に使用される真菌
(3-1).P450-2(ORF5)、グリコシルトランスフェラーゼ(ORF6)、P450-3(ORF7)、メチルトランスフェラーゼ(ORF8)、アセチルトランスフェラーゼ(ORF9)、P450-4(ORF10)、プレニルトランスフェラーゼ(ORF11)、アセチルトランスフェラーゼ(ORF12)及びP450-5(ORF13)からなる群から選択されるいずれか1の酵素産生能を欠失した糸状菌。
(3-2).ORF10又はORF13のいずれか1つの酵素産生能を欠失した糸状菌。
(3-3).上記糸状菌が、Phomopsis amygdaliに由来するものである(3-1)又は(3-2)に記載の糸状菌。
(3) fungi used in the preparation of biosynthetic intermediates of FC A (3-1). P450-2 (ORF5), glycosyltransferase (ORF6), P450-3 (ORF7), methyltransferase (ORF8), acetyltransferase (ORF9), P450-4 (ORF10), prenyltransferase (ORF11), acetyltransferase (ORF12) And a filamentous fungus that lacks any one of the enzyme-producing ability selected from the group consisting of P450-5 (ORF13).
(3-2). A filamentous fungus lacking the ability to produce any one of ORF10 or ORF13.
(3-3). The filamentous fungus according to (3-1) or (3-2), wherein the filamentous fungus is derived from Pomopsis amygdali .
 本発明によれば、フシコクシンA及びその生合成中間体を製造する酵素を取得すること、取得した酵素を用いて、フシコクシンA及びその生合成中間体を製造することができる。また、FC Aは、BC C等と構造的に類似するため、FC Aの生合成中間体からBC C等の類縁体を製造することも可能である。 According to the present invention, it is possible to obtain an enzyme that produces fusicoccin A and its biosynthetic intermediate, and to produce fusicoccin A and its biosynthetic intermediate using the obtained enzyme. In addition, since FC A is structurally similar to BC C and the like, it is also possible to produce an analog such as BC C from a biosynthetic intermediate of FC A.
 特に、19位に置換基を有しない化合物の構造展開によって有用化合物を得ようとする場合には、FC AよりもFC Jがより有用であるし、12位に水酸基を有しない化合物の構造展開にはFC Hが有用である。 In particular, when trying to obtain a useful compound by developing the structure of a compound having no substituent at the 19-position, FC J is more useful than FC A, and the structure of a compound having no hydroxyl group at the 12-position For this, FC H is useful.
 また、P450-2(ORF5)、グリコシルトランスフェラーゼ(ORF6)、P450-3(ORF7)、メチルトランスフェラーゼ(ORF8)、アセチルトランスフェラーゼ(ORF9)、P450-4(ORF10)、プレニルトランスフェラーゼ(ORF11)、アセチルトランスフェラーゼ(ORF12)及びP450-5(ORF13)からなる群から選択されるいずれか1の酵素産生能を欠失した糸状菌は、FC Aの生合成中間体を得る上で有用である。中でも、P450-4(ORF10)またはP450-5(ORF13)の酵素産生能を欠失した糸状菌は、FC HまたはFC Jを効率よく産生するため、有用である。 In addition, P450-2 (ORF5), glycosyltransferase (ORF6), P450-3 (ORF7), methyltransferase (ORF8), acetyltransferase (ORF9), P450-4 (ORF10), prenyltransferase (ORF11), acetyltransferase ( Filamentous fungi lacking any one of the enzyme-producing ability selected from the group consisting of ORF12) and P450-5 (ORF13) are useful for obtaining a biosynthesis intermediate of FC A. Among them, filamentous fungi lacking the enzyme producing ability of P450-4 (ORF10) or P450-5 (ORF13) are useful because they produce FC H or FC J efficiently.
 P450-2(ORF5)、グリコシルトランスフェラーゼ(ORF6)、P450-3(ORF7)、メチルトランスフェラーゼ(ORF8)、アセチルトランスフェラーゼ(ORF9)、P450-4(ORF10)、プレニルトランスフェラーゼ(ORF11)、アセチルトランスフェラーゼ(ORF12)及びP450-5(ORF13)は、酵母等に発現させて、またはリコンビナントタンパク質として得ることができ、in vitroの反応系でも利用することができる。 P450-2 (ORF5), glycosyltransferase (ORF6), P450-3 (ORF7), methyltransferase (ORF8), acetyltransferase (ORF9), P450-4 (ORF10), prenyltransferase (ORF11), acetyltransferase (ORF12) And P450-5 (ORF13) can be expressed in yeast or obtained as a recombinant protein, and can also be used in an in vitro reaction system.
GGDPを出発原料としてフシコクシンA(FC A)を製造する工程を、各反応で得られる化合物、及び各反応工程を触媒する酵素とともに示した図である。It is the figure which showed the process which manufactures fusicoccin A (FC A) using GGDP as a starting material with the compound obtained by each reaction, and the enzyme which catalyzes each reaction process. amygdaliから単離されたフシコクシンA生合成遺伝子クラスターを示す。(A)クラスター1にはサイクラーゼ(cyclase)遺伝子:orf1、ジオキシゲナーゼ(dioxygenase)遺伝子:orf2、P450-1遺伝子:orf3及び短鎖デヒドロゲナーゼレダクターゼ(Short chain dehydrogenase/reductase)遺伝子:orf4の4つの遺伝子が含まれる;(B)クラスター2には、P450-2遺伝子(orf5)、グリコシルトランスフェラーゼ(glycosyltransferase)遺伝子:orf6、P450-3遺伝子:orf7、メチルトランスフェラーゼ(methyltransferase)遺伝子:orf8、アセチルトランスフェラーゼ(acetyltransferase)遺伝子:orf9、P450-4遺伝子:orf10、プレニルトランスフェラーゼ(prenyltransferase)遺伝子(orf11)、アセチルトランスフェラーゼ(acetyltransferase)遺伝子:orf12およびP450-5遺伝子:orf13の9つの遺伝子が含まれる。 P. Fig. 2 shows a fusicoccin A biosynthetic gene cluster isolated from amygdali . (A) Cluster 1 includes four genes: a cyclase gene: orf1, a dioxygenase gene: orf2, a P450-1 gene: orf3, and a short chain dehydrogenase / reductase gene: orf4 (B) Cluster 2 includes P450-2 gene (orf5), glycosyltransferase gene: orf6, P450-3 gene: orf7, methyltransferase gene: orf8, acetyltransferase gene : Orf9, P450-4 gene: o f10, prenyl transferases (prenyltransferase) gene (orf11), acetyltransferase (acetyltransferase) gene: orf12 and P450-5 gene: contains nine genes ORF13. (A)Cyclase〔fusicocca-2,10(14)-diene合成酵素遺伝子〕(orf1)、P450還元酵素遺伝子及びP450-2遺伝子(orf5)を有するcerevisiae形質転換体のペンタン抽出液(上段[+P450-2])と、Cyclase〔fusicocca-2,10(14)-diene合成酵素遺伝子〕(orf1)を有し、P450還元酵素遺伝子及びP450-2遺伝子(orf5)を有しないcerevisiae形質転換体のペンタン抽出液(下段[-P450-2])のHPLCクロマトグラムを示す。(B)前記形質転換体[+P450-2]の培養液に特異的に検出されたピーク(図中、矢印で示す)のGC/MSスペクトル(上段)と、fusicocca-2,10(14)-dien-8β-ol標品のGC/MSスペクトル(下段)を示す。(A) Cyclase [fusicocca-2,10 (14) -diene synthase gene] (orf1), S with P450 reductase gene and P450-2 gene (orf5). cerevisiae transformant pentane extract (upper [+ P450-2]) and cyclase [fusicocca-2,10 (14) -diene synthase gene] (orf1), P450 reductase gene and P450-2 gene (Orf5) without S. The HPLC chromatogram of the pentane extract (bottom [-P450-2]) of the cerevisiae transformant is shown. (B) GC / MS spectrum (top) of a peak (indicated by an arrow in the figure) specifically detected in the culture solution of the transformant [+ P450-2] and fusicocca-2, 10 (14)- The GC / MS spectrum (lower part) of a dien-8β-ol standard is shown. (A)P450-3遺伝子を有するcerevisiae形質転換体から調製したミクロソームフラクションをNADHまたはNADPH存在下でfusicocca-1,10(14)-diene-8β,16-diolと反応させた反応産物(上段)と、P450-3遺伝子を有しないcerevisiae(コントロール)のミクロソームを用いて得られた反応産物(下段)のHPLCクロマトグラムを示す。(B)fusicocca-1,10(14)-diene-8β,9,16-triol標品のLC-MSスペクトル(上段)と前記形質転換体の反応産物に特異的に検出されたピーク(図中、「product」と表示)のLC-MSスペクトル(下段)。(A) S. A reaction product obtained by reacting a microsomal fraction prepared from a cerevisiae transformant with fusicocca-1,10 (14) -diene-8β, 16-diol in the presence of NADH or NADPH and the P450-3 gene is not present. S. The HPLC chromatogram of the reaction product (lower stage) obtained using the microsome of cerevisiae (control) is shown. (B) LC-MS spectrum (upper) of fusicocca-1,10 (14) -diene-8β, 9,16-triol sample and a peak specifically detected in the reaction product of the transformant (in the figure) , Labeled “product”) (lower column). (A)orf10欠損株及び(B)orf10非欠損株の培養液のHPLC解析結果を示す。(C)ホモロガスリコンビネーションによるorf10遺伝子の破壊:ホモロガスリコンビネーションにより遺伝子が欠損したことをPCR解析により確認した電気泳動像(C左)。orf10遺伝子の上流域と下流域の間にハイグロマイシン遺伝子を挿入したリコンビネーション用のプラスミドを構築し、amygdaliに導入し、ダブルクロスオーバーホモロガスリコンビネーションを行ったことを示す操作概要図(C右)。The results of HPLC analysis of culture solutions of (A) orf10-deficient strain and (B) orf10 non-deficient strain are shown. (C) Disruption of orf10 gene by homologous recombination: Electrophoretic image (C left) confirmed by PCR analysis that the gene was deleted by homologous recombination. to construct a plasmid for Recombination inserting the hygromycin gene between between the upstream and downstream regions of orf10 gene, P. Operation outline | summary figure (C right) which introduce | transduced into amygdali and showed having performed the double crossover homologous recombination. (A)orf13欠損株及び(B)orf13非欠損株の培養液のHPLCクロマトグラム。(C)ホモロガスリコンビネーションによるorf13遺伝子の破壊:遺伝子が欠損したことをPCR解析により確認した電気泳動像(C左)。orf13遺伝子の上流域と下流域の間にハイグロマイシン遺伝子を挿入したリコンビネーション用のプラスミドを構築し、. amygdaliに導入し、ダブルクロスオーバーホモロガスリコンビネーションを行ったことを示す操作概要図(C右)。(A) HPLC chromatogram of culture solution of orf13-deficient strain and (B) orf13 non-deficient strain. (C) Disruption of orf13 gene by homologous recombination: Electrophoretic image (C left) confirmed by PCR analysis that the gene was deleted. to construct a plasmid for Recombination inserting the hygromycin gene between between the upstream and downstream regions of orf13 gene, P. Operation outline | summary figure (C right) which introduce | transduced into amygdali and showed having performed the double crossover homologous recombination. (A)Hisタグ結合ORF6リコンビナントタンパク質をin vitroでFC H aglycon、UDP-グルコースと反応させる、in vitroグリコシルトランスフェラーゼ反応により合成された反応産物(上段)と基質であるFC H aglycon標品(下段)のHPLCクロマトグラム。(B)in vitroグリコシルトランスフェラーゼ反応により生成した産物のLC-MSスペクトル(上段)とFC H標品のLC-MSスペクトル(下段)。(A) Reaction product (upper) synthesized by in vitro glycosyltransferase reaction in which His tag-binding ORF6 recombinant protein is reacted with FC H aglycon and UDP-glucose in vitro and FC H aglycon preparation (lower) as a substrate HPLC chromatogram of (B) LC-MS spectrum (upper) of the product produced by in vitro glycosyltransferase reaction and LC-MS spectrum (lower) of FC H standard. (A)MBPタグ結合ORF8リコンビナントタンパク質をin vitroでFC H aglycon、S-adenosyl methionineと反応させるin vitroメチルトランスフェラーゼ反応により合成された反応産物(上段)と基質であるFC H aglycon標品(下段)のHPLCクロマトグラム。(B)in vitroメチルトランスフェラーゼ反応により合成された産物のLC-MSスペクトル(上段)と16--methyl-FC H aglycon標品のLC-MSスペクトル(下段)。(A) Reaction product synthesized by in vitro methyltransferase reaction in which MBP tag-binding ORF8 recombinant protein is reacted with FC H aglycon and S-adenosyl methionine in vitro (upper) and FC H aglycon preparation as substrate (lower) HPLC chromatogram of (B) LC-MS spectrum (upper) of the product synthesized by in vitro methyltransferase reaction and LC-MS spectrum (lower) of 16- O- methyl-FC H alycon preparation. (A)Hisタグ結合ORF11リコンビナントタンパク質をin vitroでFC P、dimethylallyl diphosphateと反応させるin vitroプレニルトランスフェラーゼ反応により合成された産物(上段)と基質であるFC P標品(下段)のHPLCクロマトグラム。(B)FC P及びdimethylallyl diphosphateから合成された産物のLC/MSスペクトル(上段)とFC J標品のLC/MSスペクトル(下段)。(A) HPLC chromatogram of a product synthesized by an in vitro prenyltransferase reaction (upper) and a substrate of FC P standard (lower), in which a His tag-binding ORF11 recombinant protein is reacted in vitro with FC P and dimethylallyl diphosphate. (B) LC / MS spectrum of the product synthesized from FC P and dimethylallyl diphosphate (upper) and LC / MS spectrum of FC J standard (lower). (A)Hisタグ結合ORF11リコンビナントタンパク質をin vitroでFC H、dimethylallyl diphosphateと反応させるin vitroプレニルトランスフェラーゼ反応により合成された産物(上段)と基質であるFC H標品(下段)のHPLCクロマトグラム。(B)6’--(1,1-dimethyl)allylated(-pentenylated)FC HのHおよび13CのNMR構造解析結果を示す。(A) HPLC chromatogram of the product synthesized by in vitro prenyl transferase reaction in which His-tag-binding ORF11 recombinant protein is reacted with FC H and dimethylallyl diphosphate in vitro (upper panel) and the FC H standard (lower panel) as a substrate. (B) 1 H and 13 C NMR structural analysis results of 6′- O 2-(1,1-dimethyl) allylated ( t -pentenylated) FC H are shown. (A)Hisタグ結合ORF11リコンビナントタンパク質をin vitroでFC Pとgeranyl diphosphateと反応させるin vitroプレニルトランスフェラーゼ反応により合成された産物のLC/MSスペクトル;総イオンクロマトグラム(上段)と紫外線検出(下段)。(B)前記産物の6’--linalylated-FC PのLC-MSスペクトル。(A) LC / MS spectrum of the product synthesized by in vitro prenyl transferase reaction in which His tag-bound ORF11 recombinant protein is reacted with FCP and geranyl diphosphate in vitro; total ion chromatogram (top) and UV detection (bottom) . (B) LC-MS spectrum of 6′- O- linearized-FC P of the product. 酵素としてプレニルトランスフェラーゼ(ORF11)を使用し、FC P及びgeranyl diphosphateを用いて製造された新しいFC関連化合物6’--linalylated FC PのHおよび13CのNMR構造解析を示す。1H and 13 C NMR structural analysis of a new FC-related compound 6′- O 1- linarylated FC P produced using FCP and geranyl diphosphate using prenyltransferase (ORF11) as an enzyme. TF(トリガーファクター)タグ結合ORF12リコンビナントタンパク質をin vitroでdideacetyl-FC AとアセチルCoAと反応させるin vitroアセチルトランスフェラーゼ反応により得られた反応産物(上段)と基質である3’,19-dideacetyl-FC A標品(下段)のHPLCクロマトグラム。(B)3’-deacetyl-FC A標品のLC/MSスペクトル(上段)と反応産物のLC/MSスペクトル(下段)。TF (trigger factor) -tagged ORF12 recombinant protein in vitro reacts with diethylacetyl-FC A and acetyl CoA. The reaction product (upper) obtained by in vitro acetyltransferase reaction and the substrate, 3 ′, 19-deacetylyl-FC HPLC chromatogram of A standard (bottom). (B) 3'-deacetyl-FC A standard LC / MS spectrum (upper) and reaction product LC / MS spectrum (lower).
(I)用語の説明
 まず、はじめに、本明細書中で使用する用語について説明する。 製造とは、in vivoでの生合成およびin vitroでの各化合物の製造を含むものとする。
(I) Explanation of Terms First, terms used in this specification will be explained. Production includes in vivo biosynthesis and production of each compound in vitro.
 塩基配列の相補鎖とハイブリダイズする「ストリンジェントな条件」とは、例えば、65℃で5×SSC溶液(1倍濃度のSSC溶液の組成は、150mM塩化ナトリウム、15mMクエン酸ナトリウム)中でハイブリダイズさせ、更に0.1%のSDSを含有する0.5×SSC溶液を用いて65℃で洗浄する条件を意味する。ストリンジェントな条件下でのハイブリダイゼーションの各操作は、「Molecular Cloning (Third Edition)」 (J.Sambrook & D. W.Russell,Cold Spring Harbor Laboratory Press,2001)に記載されている方法等、従来公知の方法で行うことができる。通常、温度が高いほど、塩濃度が低いほどストリンジェンシーは高くなる。 “Stringent conditions” for hybridizing with a complementary strand of a base sequence are, for example, hybridization in a 5 × SSC solution at 65 ° C. (composition of a 1-fold concentration SSC solution is 150 mM sodium chloride, 15 mM sodium citrate). It means the condition of making soybeans and further washing at 65 ° C. with 0.5 × SSC solution containing 0.1% SDS. Each operation of hybridization under stringent conditions is described in “Molecular Cloning (Third Edition)” (J. Sambrook & D. W. Russell, Cold Spring Harbor Press, 2001), etc. It can be performed by a known method. Generally, the higher the temperature and the lower the salt concentration, the higher the stringency.
 かかるストリンジェントな条件では、配列表に記載の特定の塩基配列と85%以上、好ましくは90%以上、より好ましくは95%以上の相同性を示す塩基配列を有するDNAが、当該配列表記載の塩基配列で示されるDNAの相補鎖とハイブリダイズすることができる。 Under such stringent conditions, a DNA having a base sequence showing a homology of 85% or more, preferably 90% or more, more preferably 95% or more with a specific base sequence described in the sequence listing is described in the sequence listing. It can hybridize with a complementary strand of DNA represented by the base sequence.
 「1または複数の塩基が置換、欠失、若しくは付加された塩基配列」とは、配列表に記載された特定の塩基配列において、1または2~50、好ましくは1または2~20、より好ましくは1または2~10、さらに好ましくは1または2~5程度の塩基が置換、欠失、若しくは付加されてなる塩基配列をいう。これらの塩基配列の置換、欠失、若しくは付加は、配列表に記載された塩基配列中に連続して起こっていてもよいし、不連続に起こっていてもよい。 The “base sequence in which one or more bases are substituted, deleted, or added” means 1 or 2 to 50, preferably 1 or 2 to 20, more preferably in the specific base sequence described in the sequence listing. Means a base sequence in which 1 or 2 to 10, more preferably about 1 or 2 to 5 bases are substituted, deleted or added. The substitution, deletion, or addition of these base sequences may occur continuously or discontinuously in the base sequences described in the sequence listing.
 「アミノ酸と85%以上の同一性」とは、配列表に記載された特定のアミノ酸配列と85%~99%、好ましくは90%~99%、より好ましくは95%~99%の同一性を有するアミノ酸配列をいう。これらのアミノ酸配列中の置換、欠失、若しくは付加は、配列表に記載されたアミノ酸配列中に連続して起こっていてもよいし、不連続に起こっていてもよい。 “85% or more identity with an amino acid” means 85% to 99%, preferably 90% to 99%, more preferably 95% to 99% identity with a specific amino acid sequence described in the sequence listing. An amino acid sequence having Substitution, deletion, or addition in these amino acid sequences may occur continuously or discontinuously in the amino acid sequences described in the sequence listing.
 「1または複数のアミノ酸が置換、欠失、若しくは付加されたアミノ酸配列」とは、配列表に記載された特定のアミノ酸配列において、例えば1または2~40個、好ましくは1または2~20個、より好ましくは1または2~12個、更に好ましくは1または2~9個、特に好ましくは1または2~5個のアミノ酸が、置換、欠失、若しくは付加されたアミノ酸配列をいう。さらに、アミノ酸の置換において、類似アミノ酸による置換は、ポリペプチドの表現型に変化をもたらさないこと、即ち保存的アミノ酸置換であることが予測されるため好適である。例えば、類似アミノ酸としては、以下のようにグループ分けができ、保存的アミノ酸置換の具体例は当該技術分野で周知である(Science、247:p1306-1310(1990)参照)。
芳香族アミノ酸:Phe、Trp、Tyr
脂肪族アミノ酸:Ala、Leu、Ile、Val
極性アミノ酸:Gln、Asn
塩基性アミノ酸:Lys、Arg、His
酸性アミノ酸:Glu、Asp
水酸基を有するアミノ酸:Ser、Thr
側鎖の小さいアミノ酸:Gly、Ala、Ser、Thr、Met
 「異種発現」とは、amygdaliとは異なる真菌、細菌またはほ乳類等の細胞に、amygdaliに由来するタンパク質を発現させることをいう。これに対して、amygdaliを宿主としてamygdaliに由来するタンパク質を発現させることを「同種発現」という。異種発現系の宿主としては、ほ乳類の培養細胞、または酵母等の真核生物に由来する細胞を用いることができる。好ましくは出芽酵母であり、より好ましくは、Saccharomyces cerevisiaeである。cerevisiaeは、リジン等のアミノ酸やアデニン等の核酸について栄養要求性のあるものが好ましく、YPH500等を用いることができる。宿主内で転写されるプロモーター配列を含むベクターに、発現させたいタンパク質のcDNAを、当該プロモーター制御下で目的遺伝子が発現するように挿入し、宿主に遺伝子導入する。また、必要に応じて、目的遺伝子cDNAの下流に、宿主内で有効なターミネーターを含んでいてもよい。
“Amino acid sequence in which one or more amino acids are substituted, deleted or added” means, for example, 1 or 2 to 40, preferably 1 or 2 to 20 in the specific amino acid sequence described in the sequence listing. More preferably, it refers to an amino acid sequence in which 1 or 2 to 12, more preferably 1 or 2 to 9, particularly preferably 1 or 2 to 5 amino acids are substituted, deleted or added. Furthermore, in the substitution of amino acids, substitution with a similar amino acid is preferable because it is predicted that it does not change the phenotype of the polypeptide, that is, it is a conservative amino acid substitution. For example, similar amino acids can be grouped as follows, and specific examples of conservative amino acid substitution are well known in the art (see Science, 247: p1306-1310 (1990)).
Aromatic amino acids: Phe, Trp, Tyr
Aliphatic amino acids: Ala, Leu, Ile, Val
Polar amino acids: Gln, Asn
Basic amino acids: Lys, Arg, His
Acidic amino acids: Glu, Asp
Amino acids having a hydroxyl group: Ser, Thr
Amino acids with small side chains: Gly, Ala, Ser, Thr, Met
“Heterologous expression” refers to P. In cells such as fungi, bacteria or mammals different from Amygdali , P. The expression of a protein derived from amygdali . In contrast, P. P. amygdali as a host. Expression of a protein derived from amygdali is called “homologous expression”. As the host for the heterologous expression system, cultured mammalian cells or cells derived from eukaryotes such as yeast can be used. Saccharomyces cerevisiae is more preferable, and Saccharomyces cerevisiae is more preferable. S. cerevisiae is preferably auxotrophic for amino acids such as lysine and nucleic acids such as adenine, and YPH500 or the like can be used. A cDNA of a protein to be expressed is inserted into a vector containing a promoter sequence transcribed in the host so that the target gene is expressed under the control of the promoter, and the gene is introduced into the host. If necessary, a terminator effective in the host may be included downstream of the target gene cDNA.
 ベクターは、宿主で転写が誘導されるプロモーターを有していればよく、特に制限されないが、好ましくは、プラスミドである。宿主として酵母を用いる場合、プロモーターは、酵母で転写が誘導されるものであれば制限されないが、GAL1、GAL10、TEF1などが好ましい。 The vector is not particularly limited as long as it has a promoter capable of inducing transcription in the host, and is preferably a plasmid. When yeast is used as the host, the promoter is not limited as long as transcription is induced in yeast, but GAL1, GAL10, TEF1, and the like are preferable.
 また、必要に応じてベクターには、宿主酵母が合成できないアミノ酸や核酸を合成できる遺伝子がコードされていることが好ましい。好ましくは、pESCシリーズ、pTEF1シリーズ、pTEF1シリーズ、pADH1シリーズ、pTPI1シリーズ、pHXT7、pTDH3、pPGK1、pPYK1であり、より好ましくは、pESCシリーズである。 In addition, it is preferable that the vector encodes a gene that can synthesize amino acids and nucleic acids that cannot be synthesized by the host yeast, if necessary. Preferred are the pESC series, pTEF1 series, pTEF1 series, pADH1 series, pTPI1 series, pHXT7, pTDH3, pPGK1, and pPYK1, and more preferred is the pESC series.
 「リコンビナントタンパク質」とは、目的タンパク質をコードするcDNAを常法に従った形質変換により、大腸菌に発現させ、精製したタンパク質をいう。発現させたいcDNAの上流または下流に、His、Myc、MBP、GST、TF,FLAG等のタグの塩基配列を含むDNAを結合させたものを合成し、T3、T7などの大腸菌で発現するプロモーターを有するpUC系、pBR322系等のプラスミドに組み込むか、市販のpETシリーズ、pMALシリーズ、pGEXシリーズ、pFLAGシリーズ、pCold TFシリーズ等のベクターに、発現させたいcDNAを常法にしたがって組み込むことで、リコンビナントタンパク質発現ベクターを得ることができる。また、lacオペレーターによりタンパク発現を制御できるプラスミドを使用することにより、イソプロピル-β-D-ガラクトピラノシド(IPTG)を使用したタンパク発現の制御が可能となる。 “Recombinant protein” refers to a protein that has been expressed in Escherichia coli and purified by transforming a cDNA encoding the target protein according to a conventional method. A promoter that synthesizes DNA containing a base sequence of a tag such as His, Myc, MBP, GST, TF, or FLAG, upstream or downstream of the cDNA to be expressed, and a promoter that is expressed in E. coli such as T3 or T7. Recombinant protein by incorporating the cDNA to be expressed into a vector such as pUC series, pBR322 series, etc., or into a commercially available vector such as pET series, pMAL series, pGEX series, pFLAG series, pCold TF series, etc. An expression vector can be obtained. In addition, by using a plasmid whose protein expression can be controlled by the lac operator, protein expression can be controlled using isopropyl-β-D-galactopyranoside (IPTG).
 構築したリコンビナントタンパク質発現ベクターを形質転換する大腸菌としては、JM109系、HB101系、DH5α系またはBL21系及の菌株を使用することができる。lacオペレーターを有するリコンビナントタンパク質発現ベクターを使用する場合には、BL21系の大腸菌を用いることが好ましい。 As the Escherichia coli for transforming the constructed recombinant protein expression vector, JM109 strain, HB101 strain, DH5α strain or BL21 strain can be used. When using a recombinant protein expression vector having a lac operator, it is preferable to use BL21-based E. coli.
 大腸菌への形質転換及び抗生物質による選択、培養は、常法にしたがって行うことができる。ここでいう、常法とは、上述の「Molecular Cloning (Third Edition)」に記載された方法または、これに準じた方法をいう。 Transformation into E. coli, selection with antibiotics, and culture can be performed according to conventional methods. Here, the ordinary method refers to the method described in the above-mentioned “Molecular Cloning (Third Edition)” or a method according to this.
 リコンビナントタンパク質発現ベクターを形質転換した大腸菌は、ラージスケールで培養した後、それぞれのタグに応じた方法により、リコンビナントタンパク質を精製することができる。大腸菌の溶解、及びリコンビナントタンパク質の精製は、市販されているリコンビナントタンパク質精製キットに添付されているプロトコールにしたがっておこなうことができる。 E. coli transformed with the recombinant protein expression vector can be cultured on a large scale, and then the recombinant protein can be purified by a method according to each tag. The lysis of E. coli and the purification of the recombinant protein can be performed according to a protocol attached to a commercially available recombinant protein purification kit.
 「ミクロソーム画分」とは、酵母等を破砕後、高速遠心分離を行うことにより得られる画分で、粗面小胞体、滑面小胞体、遊離リボゾーム、細胞膜、ゴルジ体などを含んでいる。ミクロソーム画分の調製は、公知の方法に準じて行うことができる。
(II)FC A及びその生合成中間体の製造に使用可能な酵素
 本発明が対象とする酵素は、amygdaliから単離された新規の4種のP450、1種のグリコシルトランスフェラーゼ、2種のアセチルトランスフェラーゼ及び1種のメチルトランスフェラーゼ及び1種のプレニルトランスフェラーゼである。
The “microsome fraction” is a fraction obtained by high-speed centrifugation after disrupting yeast or the like, and includes rough endoplasmic reticulum, smooth endoplasmic reticulum, free ribosome, cell membrane, Golgi apparatus and the like. The microsomal fraction can be prepared according to a known method.
(II) FC A and enzyme available enzymes present invention for the production of biosynthetic intermediates and target, P. 4 new P450s isolated from amygdali, 1 glycosyltransferase, 2 acetyltransferases and 1 methyltransferase and 1 prenyltransferase.
 P450とは、P450還元酵素及びNADHまたはNADPH存在下で、2個の電子と1個の酸素分子を用いて、脂溶性基質の一原子酸素添加反応(モノオキシゲナーゼ反応または水酸化反応)を触媒するヘムタンパク質からなる酵素をいう。 P450 catalyzes the monoatomic oxygenation reaction (monooxygenase reaction or hydroxylation reaction) of a fat-soluble substrate using two electrons and one oxygen molecule in the presence of P450 reductase and NADH or NADPH. An enzyme made of heme protein.
 グリコシルトランスフェラーゼとは、グリコシル基を含む供与体から、受容体である基質に、グリコシル基を転移する反応を触媒する酵素をいう。グリコシル基供与体としては、ヌクレオシド一リン酸、ヌクレオシド二リン酸の配糖体が用いられる。 A glycosyltransferase is an enzyme that catalyzes a reaction of transferring a glycosyl group from a donor containing a glycosyl group to a substrate that is an acceptor. As the glycosyl group donor, a glycoside of nucleoside monophosphate or nucleoside diphosphate is used.
 アセチルトランスフェラーゼとは、アシルCoAからアシル基を基質に転移するアシルトランスフェラーゼの中で、アセチル基を基質に転移する酵素群をいう。 Acetyltransferase refers to an enzyme group that transfers an acetyl group to a substrate among acyltransferases that transfer an acyl group from acyl CoA to a substrate.
 メチルトランスフェラーゼとは、基質のアミノ基、ヒドロキシル基、チオール基に、メチル基供与体から、メチル基を転移する酵素をいう。 Methyltransferase refers to an enzyme that transfers a methyl group from a methyl group donor to an amino group, hydroxyl group, or thiol group of a substrate.
 プレニルトランスフェラーゼとは、本来は、タンパク質のC末端部分のシステインにゲラニルゲラニル基を転移する酵素の総称である。しかしながら、本発明では、糖にゲラニルゲラニル基を転移する酵素を含む。 Prenyltransferase is a general term for enzymes that transfer a geranylgeranyl group to cysteine at the C-terminal part of a protein. However, the present invention includes an enzyme that transfers a geranylgeranyl group to a sugar.
 以下、これらの各酵素について具体的に説明する。
  1.P450-2(ORF5)
 当該酵素は、P450還元酵素及びニコチンアミドアデニンジヌクレオチド(NADH)またはニコチンアミドアデニンジヌクレオチドリン酸(NADPH)の存在下、式(II)で示されるfusicocca-2,10(14)-dieneを基質として、当該化合物の8位の炭素を水酸化して、式(III)で示されるfusicocca-2,10(14)-dien-8β-olを合成する触媒作用を有することを特徴とする。
Hereinafter, each of these enzymes will be specifically described.
1. P450-2 (ORF5)
In the presence of P450 reductase and nicotinamide adenine dinucleotide (NADH) or nicotinamide adenine dinucleotide phosphate (NADPH), the enzyme uses fusicocca-2,10 (14) -diene represented by the formula (II) as a substrate. As described above, it is characterized by having a catalytic action of synthesizing fusicocca-2,10 (14) -dien-8β-ol represented by the formula (III) by hydroxylating the carbon at the 8-position of the compound.
 当該酵素(以下、単に「ORF5」とも称する)としては、具体的には、(4)配列番号2に示すアミノ酸配列からなるタンパク質を例示することができる。但し、これに限定されず、上記の触媒作用を有することを限度に、下記(5)または(6)のいずれかのアミノ酸配列からなるタンパク質であってもよい。
(5)配列番号2に示すアミノ酸配列と85%以上、好ましくは90%、より好ましくは95%、さらに好ましくは98%以上の相同性を有するアミノ酸配列、
(6)配列番号2に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されてなるアミノ酸配列。
Specific examples of the enzyme (hereinafter also simply referred to as “ORF5”) include (4) a protein comprising the amino acid sequence shown in SEQ ID NO: 2. However, the protein is not limited thereto, and may be a protein comprising any one of the following amino acid sequences (5) or (6) as long as it has the above catalytic action.
(5) an amino acid sequence having 85% or more, preferably 90%, more preferably 95%, and still more preferably 98% or more homology with the amino acid sequence shown in SEQ ID NO: 2;
(6) An amino acid sequence obtained by substituting, deleting, or adding one or more amino acids in the amino acid sequence shown in SEQ ID NO: 2.
 かかる酵素の由来は、上記触媒作用を有し、上記(4)~(6)のいずれかに該当するものであれば、特に限定されず、植物、動物、真菌及び細菌(真核生物、原核生物)のいずれに由来するものであってもよい。好ましくは真菌由来であり、特に糸状菌、なかでもPhomopsis属に属する糸状菌、より好ましくはPhomopsis amygdaliに由来するものであることが好ましい。 The origin of such an enzyme is not particularly limited as long as it has the above catalytic action and falls under any of the above (4) to (6). It may be derived from any organism. It is preferably derived from a fungus, and particularly preferably derived from a filamentous fungus, in particular, a filamentous fungus belonging to the genus Phomopsis , and more preferably from Phomopsis amygdali .
 本発明は、当該酵素の遺伝子(ORF5の遺伝子を、単に「orf5」とも称する)をも提供するものである。 The present invention also provides a gene for the enzyme (the ORF5 gene is also simply referred to as “orf5”).
 当該ORF5遺伝子(orf5)としては、具体的には、コード領域に(1)配列番号1に示す塩基配列を有するもの(DNA、cDNA)を例示することができる。但し、これに限定されず、上記の触媒作用を有するタンパク質をコードすることを限度として、下記(2)または(3)のいずれかの塩基配列をコード領域に有する遺伝子(DNA、cDNA)であってもよい。
(2)配列番号1に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列、
(3)配列番号1に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列。
Specific examples of the ORF5 gene (orf5) include those having (1) the base sequence shown in SEQ ID NO: 1 in the coding region (DNA, cDNA). However, the present invention is not limited to this, and is a gene (DNA, cDNA) having the base sequence of either (2) or (3) below in the coding region, as long as it encodes the protein having the catalytic action described above. May be.
(2) a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 1 under stringent conditions;
(3) A base sequence in which one or more bases are substituted, deleted, or added in the base sequence shown in SEQ ID NO: 1.
 本発明のORF5は、前述するORF5のアミノ酸情報、特に配列番号2に示すアミノ酸配列に基づいて、定法のペプチド合成により製造することができるほか、上記orf5を用いて同種又は異種発現系により、定法に従って得ることができる。より好ましくは、前述するように出芽酵母、特にcerevisiaeを用いた異種発現系による製造方法である。 The ORF5 of the present invention can be produced by conventional peptide synthesis based on the amino acid information of the ORF5 described above, particularly the amino acid sequence shown in SEQ ID NO: 2, and can be prepared by the same or different expression system using the orf5. Can be obtained according to. More preferably, budding yeast, particularly S. This is a production method using a heterologous expression system using cerevisiae .
 ORF5を異種発現させる場合には、特に配列番号20のアミノ酸配列を有するP450還元酵素をコードするcDNA例えば、配列番号19の塩基配列を有するcDNAとともに共発現させることが望ましい。 When heterologously expressing ORF5, it is desirable to co-express with cDNA encoding P450 reductase having the amino acid sequence of SEQ ID NO: 20, for example, cDNA having the base sequence of SEQ ID NO: 19.
  2.P450-3(ORF7)
 当該酵素は、P450還元酵素及びNADHまたはNADPHの存在下、式(VII)で示されるfusicocca-1,10(14)-diene-8β,16-diolを基質として、当該化合物の9位の炭素を水酸化して、式(VIII)で示されるFC H aglyconを合成する触媒作用を有することを特徴とする。
2. P450-3 (ORF7)
In the presence of P450 reductase and NADH or NADPH, the enzyme uses fusicocca-1,10 (14) -diene-8β, 16-diol represented by the formula (VII) as a substrate, and the 9-position carbon of the compound is It is characterized by having a catalytic action of synthesizing FC H aglycon represented by the formula (VIII) by hydroxylation.
 当該酵素(以下、単に「ORF7」とも称する)としては、具体的には、(10)配列番号6に示すアミノ酸配列からなるタンパク質を例示することができる。但し、これに限定されず、上記の触媒作用を有することを限度に、下記(11)または(12)のいずれかのアミノ酸配列からなるタンパク質であってもよい。
(11)配列番号6に示すアミノ酸配列と85%以上、好ましくは90%、より好ましくは95%、さらに好ましくは98%以上の相同性を有するアミノ酸配列、
(12)配列番号6に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されてなるアミノ酸配列。
Specific examples of the enzyme (hereinafter also simply referred to as “ORF7”) include (10) a protein consisting of the amino acid sequence shown in SEQ ID NO: 6. However, the protein is not limited thereto, and may be a protein having any one of the following amino acid sequences (11) or (12) as long as it has the above catalytic action.
(11) an amino acid sequence having 85% or more, preferably 90%, more preferably 95%, more preferably 98% or more homology with the amino acid sequence shown in SEQ ID NO: 6,
(12) An amino acid sequence obtained by substituting, deleting, or adding one or more amino acids in the amino acid sequence shown in SEQ ID NO: 6.
 かかる酵素の由来は、上記触媒作用を有し、上記(10)~(12)のいずれかに該当するものであれば、特に限定されず、植物、動物、真菌等の真核細胞生物及び放線菌等の原核細胞生物のいずれに由来するものであってもよい。好ましくは真菌由来であり、特に糸状菌、なかでもPhomopsis属に属する糸状菌、より好ましくはPhomopsis amygdaliに由来するものであることが好ましい。 The origin of such an enzyme is not particularly limited as long as it has the above catalytic action and falls under any of the above (10) to (12), and is a eukaryotic organism such as a plant, an animal, or a fungus, and an actinomycete. It may be derived from any prokaryotic organism such as a fungus. It is preferably derived from a fungus, and particularly preferably derived from a filamentous fungus, in particular, a filamentous fungus belonging to the genus Phomopsis , and more preferably from Phomopsis amygdali .
 本発明は、当該酵素の遺伝子(ORF7の遺伝子を、単に「orf7」とも称する)をも提供するものである。 The present invention also provides a gene for the enzyme (the ORF7 gene is also simply referred to as “orf7”).
 当該ORF7遺伝子(orf7)としては、具体的には、コード領域に(7)配列番号5に示す塩基配列を有するもの(DNA、cDNA)を例示することができる。但し、これに限定されず、上記の触媒作用を有するタンパク質をコードすることを限度として、下記(8)または(9)のいずれかの塩基配列をコード領域に有する遺伝子(DNA、cDNA)であってもよい。
(8)配列番号5に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列、
(9)配列番号5に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列。
Specific examples of the ORF7 gene (orf7) include those having the base sequence represented by (7) SEQ ID NO: 5 in the coding region (DNA, cDNA). However, the present invention is not limited to this, and is a gene (DNA, cDNA) having any one of the following base sequences (8) or (9) in the coding region, as long as it encodes the protein having the catalytic action described above. May be.
(8) a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 5 under stringent conditions;
(9) A base sequence in which one or more bases are substituted, deleted, or added in the base sequence shown in SEQ ID NO: 5.
 本発明のORF7は、前述するORF7のアミノ酸情報、特に配列番号6に示すアミノ酸配列に基づいて、定法のペプチド合成により製造することができるほか、上記orf7を用いて同種又は異種発現系により、定法に従って得ることができる。より好ましくは、前述するように出芽酵母、特にcerevisiaeを用いた異種発現系による製造方法である。 The ORF7 of the present invention can be produced by conventional peptide synthesis based on the amino acid information of ORF7 described above, particularly the amino acid sequence shown in SEQ ID NO: 6, and can be prepared by the same or different expression system using the orf7. Can be obtained according to. More preferably, budding yeast, particularly S. This is a production method using a heterologous expression system using cerevisiae .
 ORF7を異種発現させる場合には、特に配列番号20のアミノ酸配列を有するP450還元酵素をコードするcDNA例えば、配列番号19の塩基配列を有するcDNAとともに共発現させることが望ましい。 When heterologously expressing ORF7, it is desirable to co-express with cDNA encoding a P450 reductase having the amino acid sequence of SEQ ID NO: 20, for example, cDNA having the base sequence of SEQ ID NO: 19.
  3.グリコシルトランスフェラーゼ(ORF6)
 当該酵素は、グリコシル基供与体の存在下、式(VIII)で示されるFC H aglyconを基質として、当該化合物の9位の水酸基にグリコシル基を転移して、例えば式(I)で示されるFC H等のように配糖体を合成する触媒作用を有することを特徴とする。
3. Glycosyltransferase (ORF6)
In the presence of a glycosyl group donor, the enzyme transfers a glycosyl group to the hydroxyl group at the 9-position of the compound using FC H aglycon represented by the formula (VIII) as a substrate, for example, an FC represented by the formula (I) It has a catalytic action for synthesizing glycosides such as H.
 当該酵素(以下、単に「ORF6」とも称する)としては、具体的には、(16)配列番号4に示すアミノ酸配列からなるタンパク質を例示することができる。但し、これに限定されず、上記の触媒作用を有することを限度に、下記(17)または(18)のいずれかのアミノ酸配列からなるタンパク質であってもよい。
(17)配列番号4に示すアミノ酸配列と85%以上、好ましくは90%、より好ましくは95%、さらに好ましくは98%以上の相同性を有するアミノ酸配列、
(18)配列番号4に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されてなるアミノ酸配列。
Specific examples of the enzyme (hereinafter also simply referred to as “ORF6”) include (16) a protein consisting of the amino acid sequence shown in SEQ ID NO: 4. However, the protein is not limited thereto, and may be a protein comprising any one of the following amino acid sequences (17) or (18) as long as it has the above catalytic action.
(17) Amino acid sequence having 85% or more, preferably 90%, more preferably 95%, more preferably 98% or more homology with the amino acid sequence shown in SEQ ID NO: 4,
(18) An amino acid sequence obtained by substituting, deleting, or adding one or more amino acids in the amino acid sequence shown in SEQ ID NO: 4.
 かかる酵素の由来は、上記触媒作用を有し、上記(16)~(18)のいずれかに該当するものであれば、特に限定されず、植物、動物、真菌等の真核細胞生物及び細菌等の原核細胞生物のいずれに由来するものであってもよい。好ましくは真菌由来であり、特に糸状菌、なかでもPhomopsis属に属する糸状菌、より好ましくはPhomopsis amygdaliに由来するものであることが好ましい。 The origin of the enzyme is not particularly limited as long as it has the above catalytic action and falls under any of the above (16) to (18). Eukaryotic organisms such as plants, animals, fungi, and bacteria It may be derived from any prokaryotic organism such as It is preferably derived from a fungus, and particularly preferably derived from a filamentous fungus, in particular, a filamentous fungus belonging to the genus Phomopsis , and more preferably from Phomopsis amygdali .
 本発明のORF6とともに用いることができるグリコシル基供与体としては、特に制限されることなく、ウリジン二リン酸(UDP)、グアノシン二リン酸(GDP)、シチジン一リン酸(CDP)、及びチミジン二リン酸(TDP)等のヌクレオチドの糖付加物(糖ヌクレオチド)を例示することができる。制限されないが、好ましくはウリジン二リン酸(UDP)およびチミジン二リン酸(TDP)の糖付加物(糖ヌクレオチド)、より好ましくはUDPの糖付加物(糖ヌクレオチド)である。ここで糖、つまりグリコシル基供与体から転移されるグリコシル基は、特に制限されないが、単糖類、二糖類又は三糖類を挙げることができる。好ましくは、単糖類、又は二糖類であり、より好ましくは単糖類である。なお、糖は、フコースなどのデオキシ糖、グルコサミンやガラクトサミン等のアミノ糖であってもよい。単糖類としては、三炭糖、四炭糖、五炭糖、及び六炭糖を挙げることができる。好ましくは、キシロースなどの五炭糖、及びグルコース、ガラクトースまたはマンノース等の六炭糖であり、より好ましくは六単糖、特にグルコースである。特に、ORF6は、式(VIII)で表されるFC H aglyconに、グリコシル基供与体としてUDP-グルコース又はTDP-グルコースの存在下で作用し、式(I)で表されるFC Hを合成する酵素として有用である。 Glycosyl group donors that can be used with ORF6 of the present invention include, but are not limited to, uridine diphosphate (UDP), guanosine diphosphate (GDP), cytidine monophosphate (CDP), and thymidine diphosphate. Examples include sugar sugar adducts (sugar nucleotides) such as phosphoric acid (TDP). Although not limited, sugar addition products (sugar nucleotides) of uridine diphosphate (UDP) and thymidine diphosphate (TDP) are preferable, and sugar addition products (sugar nucleotides) of UDP are more preferable. Here, the sugar, that is, the glycosyl group transferred from the glycosyl group donor is not particularly limited, and examples thereof include monosaccharides, disaccharides, and trisaccharides. Preferred are monosaccharides or disaccharides, and more preferred are monosaccharides. The sugar may be a deoxy sugar such as fucose, or an amino sugar such as glucosamine or galactosamine. Examples of monosaccharides include tricarbon sugar, tetracarbon sugar, pentose sugar, and hexose sugar. Preferred are pentoses such as xylose and hexoses such as glucose, galactose or mannose, more preferred are hexoses, especially glucose. In particular, ORF6 acts on FC H alycon represented by formula (VIII) in the presence of UDP-glucose or TDP-glucose as a glycosyl group donor to synthesize FC H represented by formula (I). Useful as an enzyme.
 本発明は、当該酵素の遺伝子(ORF6の遺伝子を、単に「orf6」とも称する)をも提供するものである。 The present invention also provides a gene for the enzyme (the ORF6 gene is also simply referred to as “orf6”).
 当該ORF6遺伝子(orf6)としては、具体的には、コード領域に(13)配列番号3に示す塩基配列を有するもの(DNA、cDNA)を例示することができる。但し、これに限定されず、上記の触媒作用を有するタンパク質をコードすることを限度として、下記(14)または(15)のいずれかの塩基配列をコード領域に有する遺伝子(DNA、cDNA)であってもよい。
(14)配列番号3に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列、
(15)配列番号3に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列。
Specific examples of the ORF6 gene (orf6) include those having the base sequence shown in (13) SEQ ID NO: 3 in the coding region (DNA, cDNA). However, the present invention is not limited to this, and is a gene (DNA, cDNA) having any one of the following base sequences (14) or (15) in the coding region, as long as it encodes the protein having the catalytic action described above. May be.
(14) a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 3 under stringent conditions;
(15) A base sequence in which one or more bases are substituted, deleted, or added in the base sequence shown in SEQ ID NO: 3.
 本発明のORF6は、前述するORF6のアミノ酸情報、特に配列番号2に示すアミノ酸配列に基づいて、定法のペプチド合成により製造することができるほか、上記orf6を用いて同種又は異種発現系により、定法に従って得ることができる。より好ましくは、前述するように出芽酵母、特に. cerevisiaeを用いた異種発現系による製造方法である。 The ORF6 of the present invention can be produced by conventional peptide synthesis based on the amino acid information of the ORF6 described above, particularly the amino acid sequence shown in SEQ ID NO: 2, and can be produced by the same or different expression system using the orf6. Can be obtained according to. More preferably, budding yeast, particularly S. This is a production method using a heterologous expression system using cerevisiae .
 ORF6は、リコンビナントタンパク質として得ることができる。得られたリコンビナントタンパク質は、例えばTris-HClバッファー等を用いて pH 6.5~pH8.5の範囲でグリコシル基供与体とFC H aglyconと反応させることができる。好ましくは、pH 7~pH8程度である。グリコシルトランスフェラーゼ反応は、例えば25℃~35℃の間で3時間~24時間程度行うことができ、好ましくは28℃~33℃の間で12時間~24時間程度の条件下で行うことができる。この反応によりグリコシル基供与体から前記式(VIII)で表される化合物の9位の水酸基に糖を転移することができる。 ORF6 can be obtained as a recombinant protein. The obtained recombinant protein can be reacted with a glycosyl group donor and FC H aglycon in the range of pH 6.5 to pH 8.5 using, for example, a Tris-HCl buffer or the like. Preferably, it is about pH 7 to pH 8. The glycosyltransferase reaction can be performed, for example, at 25 ° C. to 35 ° C. for about 3 hours to 24 hours, preferably 28 ° C. to 33 ° C. for about 12 hours to 24 hours. By this reaction, sugar can be transferred from the glycosyl group donor to the hydroxyl group at the 9-position of the compound represented by the formula (VIII).
  4.P450-4(ORF10)
 当該酵素は、P450還元酵素及びとNADHまたはNADPHの存在下、式(I)で示されるFC Hを基質として、当該化合物の12位の炭素を水酸化して、式(IX)で示されるFC Qを合成する触媒作用を有することを特徴とする。
4). P450-4 (ORF10)
In the presence of P450 reductase and NADH or NADPH, the enzyme hydroxylates the carbon at the 12-position of the compound using FCH represented by formula (I) as a substrate to produce FC represented by formula (IX). It has a catalytic action to synthesize Q.
 当該酵素(以下、単に「ORF10」とも称する)としては、具体的には、(22)配列番号12に示すアミノ酸配列からなるタンパク質を例示することができる。但し、これに限定されず、上記の触媒作用を有することを限度に、下記(23)または(24)のいずれかのアミノ酸配列からなるタンパク質であってもよい。
(23)配列番号12に示すアミノ酸配列と85%以上、好ましくは90%、より好ましくは95%、さらに好ましくは98%以上の相同性を有するアミノ酸配列、
(24)配列番号12に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されてなるアミノ酸配列。
Specific examples of the enzyme (hereinafter also simply referred to as “ORF10”) include (22) a protein consisting of the amino acid sequence shown in SEQ ID NO: 12. However, the protein is not limited thereto, and may be a protein having any one of the following amino acid sequences (23) or (24) as long as it has the above catalytic action.
(23) an amino acid sequence having 85% or more, preferably 90%, more preferably 95%, and still more preferably 98% or more homology with the amino acid sequence shown in SEQ ID NO: 12,
(24) An amino acid sequence obtained by substituting, deleting, or adding one or more amino acids in the amino acid sequence shown in SEQ ID NO: 12.
 かかる酵素の由来は、上記触媒作用を有し、上記(22)~(24)のいずれかに該当するものであれば、特に限定されず、植物、動物、真菌等の真核細胞生物及び放線菌等の原核細胞生物のいずれに由来するものであってもよい。好ましくは真菌由来であり、特に糸状菌、なかでもPhomopsis属に属する糸状菌、より好ましくはPhomopsis amygdaliに由来するものであることが好ましい。 The origin of such an enzyme is not particularly limited as long as it has the above catalytic action and falls under any of the above (22) to (24), and eukaryotic organisms such as plants, animals, fungi, and the like It may be derived from any prokaryotic organism such as a fungus. It is preferably derived from a fungus, and particularly preferably derived from a filamentous fungus, in particular, a filamentous fungus belonging to the genus Phomopsis , and more preferably from Phomopsis amygdali .
 本発明は、当該酵素の遺伝子(ORF10の遺伝子を、単に「orf10」とも称する)をも提供するものである。 The present invention also provides a gene for the enzyme (the ORF10 gene is also simply referred to as “orf10”).
 当該ORF10遺伝子(orf10)としては、具体的には、コード領域に(19)配列番号11に示す塩基配列を有するもの(DNA、cDNA)を例示することができる。但し、これに限定されず、上記の触媒作用を有するタンパク質をコードすることを限度として、下記(20)または(21)のいずれかの塩基配列をコード領域に有する遺伝子(DNA、cDNA)であってもよい。
(20)配列番号11に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列、
(21)配列番号11に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列。
Specific examples of the ORF10 gene (orf10) include those having the base sequence shown in (19) SEQ ID NO: 11 in the coding region (DNA, cDNA). However, the present invention is not limited to this, and is a gene (DNA, cDNA) having the base sequence of any of (20) or (21) below in the coding region, as long as it encodes the protein having the catalytic action described above. May be.
(20) a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 11 under stringent conditions;
(21) A base sequence in which one or more bases are substituted, deleted, or added in the base sequence shown in SEQ ID NO: 11.
 本発明のORF10は、前述するORF10のアミノ酸情報、特に配列番号12に示すアミノ酸配列に基づいて、定法のペプチド合成により製造することができるほか、上記orf10を用いて同種又は異種発現系により、定法に従って得ることができる。より好ましくは、前述するように出芽酵母、特にcerevisiaeを用いた異種発現系による製造方法である。 The ORF10 of the present invention can be produced by conventional peptide synthesis based on the amino acid information of the ORF10 described above, particularly the amino acid sequence shown in SEQ ID NO: 12, and can be produced by the same or different expression system using the above orf10. Can get according to. More preferably, budding yeast, particularly S. This is a production method using a heterologous expression system using cerevisiae .
 ORF10を異種発現させる場合には、特に配列番号20のアミノ酸配列を有するP450還元酵素をコードするcDNA、例えば配列番号19の塩基配列を有するcDNAとともに共発現させることが望ましい。 In the case of heterologous expression of ORF10, it is desirable to coexpress it with a cDNA encoding a P450 reductase having the amino acid sequence of SEQ ID NO: 20, for example, a cDNA having the base sequence of SEQ ID NO: 19.
  5.メチルトランスフェラーゼ(ORF8)
 当該酵素は、メチル基供与体の存在下、式(IX)で示されるFC Qを基質として、当該化合物の16位の水酸基にメチル基を転移して、式(X)で示されるFC Pを合成する触媒作用を有することを特徴とする。当該酵素は、式(VIII)で示されるFC H aglycon、式(I)で示されるFC H、及び式(IX)で示されるFC Qの3位の立体構造を認識することができ、これらの化合物の3位がエピメリ化してなるエピ体とは反応しない。
5). Methyltransferase (ORF8)
The enzyme transfers FCP represented by the formula (X) by transferring the methyl group to the hydroxyl group at the 16-position of the compound using FCQ represented by the formula (IX) as a substrate in the presence of a methyl group donor. It has a catalytic action to synthesize. The enzyme can recognize the three-dimensional structures of FC H aglycon represented by the formula (VIII), FC H represented by the formula (I), and FC Q represented by the formula (IX). It does not react with an epimer formed by epimerization at the 3-position of the compound.
 当該酵素(以下、単に「ORF8」とも称する)としては、具体的には、(28)配列番号8に示すアミノ酸配列からなるタンパク質を例示することができる。但し、これに限定されず、上記の触媒作用を有することを限度に、下記(29)または(30)のいずれかのアミノ酸配列からなるタンパク質であってもよい。
(29)配列番号8に示すアミノ酸配列と85%以上、好ましくは90%、より好ましくは95%、さらに好ましくは98%以上の相同性を有するアミノ酸配列、
(30)配列番号8に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されてなるアミノ酸配列。
Specific examples of the enzyme (hereinafter also simply referred to as “ORF8”) include (28) a protein comprising the amino acid sequence shown in SEQ ID NO: 8. However, the protein is not limited thereto, and may be a protein comprising any one of the following amino acid sequences (29) or (30) as long as it has the above catalytic action.
(29) an amino acid sequence having 85% or more, preferably 90%, more preferably 95%, and still more preferably 98% or more homology with the amino acid sequence shown in SEQ ID NO: 8;
(30) An amino acid sequence obtained by substituting, deleting, or adding one or more amino acids in the amino acid sequence shown in SEQ ID NO: 8.
 かかる酵素の由来は、上記触媒作用を有し、上記(28)~(30)のいずれかに該当するものであれば、特に限定されず、植物、動物、真菌等の真核細胞生物及び細菌等の原核細胞生物のいずれに由来するものであってもよい。好ましくは真菌由来であり、特に糸状菌、なかでもPhomopsis属に属する糸状菌、より好ましくはPhomopsis amygdaliに由来するものであることが好ましい。 The origin of the enzyme is not particularly limited as long as it has the above catalytic action and falls under any of the above (28) to (30). Eukaryotic organisms such as plants, animals, fungi, and bacteria It may be derived from any prokaryotic organism such as It is preferably derived from a fungus, and particularly preferably derived from a filamentous fungus, in particular, a filamentous fungus belonging to the genus Phomopsis , and more preferably from Phomopsis amygdali .
 本発明のORF8とともに用いることができるメチル基供与体としては、N-メチル化合物を挙げることができ、コリン、ベタイン、5-メチルテトラヒドロ葉酸、ジメチルテチン、S-adenosyl methionine等を用いることができる。より好ましくは、S-adenosyl methionineである。特に、ORF8は、式(IX)で表されるFC Qに、メチル基供与体としてS-adenosyl methionineの存在下で作用し、式(X)で表されるFC Pを合成する酵素として有用である。 Examples of the methyl group donor that can be used with ORF8 of the present invention include N-methyl compounds such as choline, betaine, 5-methyltetrahydrofolic acid, dimethyltetin, S-adenosyl methionine, and the like. S-adenosyl methionine is more preferable. In particular, ORF8 acts on FC Q represented by formula (IX) in the presence of S-adenosyl methionine as a methyl group donor, and is useful as an enzyme for synthesizing FC P represented by formula (X). is there.
 本発明は、当該酵素の遺伝子(ORF8の遺伝子を、単に「orf8」とも称する)をも提供するものである。 The present invention also provides a gene for the enzyme (the ORF8 gene is also simply referred to as “orf8”).
 当該ORF8遺伝子(orf8)としては、具体的には、コード領域に(25)配列番号7に示す塩基配列を有するもの(DNA、cDNA)を例示することができる。但し、これに限定されず、上記の触媒作用を有するタンパク質をコードすることを限度として、下記(26)または(27)のいずれかの塩基配列をコード領域に有する遺伝子(DNA、cDNA)であってもよい。
(26)配列番号7に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列、
(27)配列番号7に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列。
Specific examples of the ORF8 gene (orf8) include those having a base sequence represented by (25) SEQ ID NO: 7 in the coding region (DNA, cDNA). However, the present invention is not limited to this, and is a gene (DNA, cDNA) having any one of the following base sequences (26) or (27) in the coding region, as long as it encodes the protein having the catalytic action described above. May be.
(26) a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 7 under stringent conditions;
(27) A base sequence in which one or more bases are substituted, deleted, or added in the base sequence shown in SEQ ID NO: 7.
 本発明のORF8は、前述するORF8のアミノ酸情報、特に配列番号8に示すアミノ酸配列に基づいて、定法のペプチド合成により製造することができるほか、上記orf8を用いて同種又は異種発現系により、定法に従って得ることができる。より好ましくは、前述するように出芽酵母、特にcerevisiaeを用いた異種発現系による製造方法である。 ORF8は、リコンビナントタンパク質として得ることができ、得られたリコンビナントタンパク質は例えばTris-HClバッファー等を用いて pH 6.5~pH8.5の範囲で、好ましくは、pH7~pH8程度でメチル基供与体とで、前記式(VIII)、(I)または(IX)と反応させることができる。メチルトランスフェラーゼ反応は、例えば25℃~35℃の間で3時間~24時間程度行うことができ、好ましくは28℃~33℃の間で12時間~24時間程度の条件下で行うことができる。この反応により、前記式(VIII)、(I)または(IX)で表される化合物の16位の水酸基にメチル基を転移することができる。 The ORF8 of the present invention can be produced by conventional peptide synthesis based on the amino acid information of the ORF8 described above, particularly the amino acid sequence shown in SEQ ID NO: 8, and can be prepared by the same or different expression system using the above orf8. Can be obtained according to. More preferably, budding yeast, particularly S. This is a production method using a heterologous expression system using cerevisiae . ORF8 can be obtained as a recombinant protein, and the obtained recombinant protein is in the range of pH 6.5 to pH 8.5 using, for example, a Tris-HCl buffer, preferably at a pH of about 7 to pH 8, and a methyl group donor. Can be reacted with the formula (VIII), (I) or (IX). The methyltransferase reaction can be performed, for example, at 25 ° C. to 35 ° C. for about 3 hours to 24 hours, and preferably at 28 ° C. to 33 ° C. for about 12 hours to 24 hours. By this reaction, a methyl group can be transferred to the hydroxyl group at the 16-position of the compound represented by the formula (VIII), (I) or (IX).
  6.プレニルトランスフェラーゼ(ORF11)
 当該酵素は、プレニル基供与体の存在下、式(X)で示されるFC Pを基質として、当該化合物の糖の水酸基にプレニル基を転移して、式(XI)で示されるFC Jを合成する触媒作用を有することを特徴とする。
6). Prenyltransferase (ORF11)
The enzyme synthesizes FC J represented by the formula (XI) by transferring the prenyl group to the hydroxyl group of the sugar of the compound using the FCP represented by the formula (X) as a substrate in the presence of a prenyl group donor. It has a catalytic action.
 当該酵素(以下、単に「ORF11」とも称する)としては、具体的には、(34)配列番号14に示すアミノ酸配列からなるタンパク質を例示することができる。但し、これに限定されず、上記の触媒作用を有することを限度に、下記(35)または(36)のいずれかのアミノ酸配列からなるタンパク質であってもよい。
(35)配列番号14に示すアミノ酸配列と85%以上、好ましくは90%、より好ましくは95%、さらに好ましくは98%以上の相同性を有するアミノ酸配列、
(36)配列番号14に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されてなるアミノ酸配列。
Specific examples of the enzyme (hereinafter also simply referred to as “ORF11”) include (34) a protein consisting of the amino acid sequence shown in SEQ ID NO: 14. However, the protein is not limited thereto, and may be a protein comprising any one of the following amino acid sequences (35) or (36) as long as it has the above catalytic action.
(35) an amino acid sequence having 85% or more, preferably 90%, more preferably 95%, and still more preferably 98% or more homology with the amino acid sequence shown in SEQ ID NO: 14;
(36) An amino acid sequence obtained by substituting, deleting, or adding one or more amino acids in the amino acid sequence shown in SEQ ID NO: 14.
 かかる酵素の由来は、上記触媒作用を有し、上記(34)~(36)のいずれかに該当するものであれば、特に限定されず、植物、動物、真菌等の真核細胞生物及び細菌等の原核細胞生物のいずれに由来するものであってもよい。好ましくは真菌由来であり、特に糸状菌、なかでもPhomopsis属に属する糸状菌、より好ましくはPhomopsis amygdaliに由来するものであることが好ましい。 The origin of such an enzyme is not particularly limited as long as it has the above catalytic action and falls under any of the above (34) to (36). It may be derived from any prokaryotic organism such as It is preferably derived from a fungus, and particularly preferably derived from a filamentous fungus, in particular, a filamentous fungus belonging to the genus Phomopsis , and more preferably from Phomopsis amygdali .
 本発明のORF11とともに用いることができるプレニル基供与体としては、dimethylallyl diphosphate、geranyl diphosphate、farnesyl diphosphate、geranylgeranyl diphosphate等が挙げられる。好ましくは、dimethylallyl diphosphate、geranyl diphosphateであり、より好ましくは、dimethylallyl diphosphateである。特に、ORF11は、dimethylallyl diphosphateをプレニル基供与体として、式(X)で表されるFH Pの6’位の水酸基に作用し、式(XI)で表されるFC Jを合成する酵素として有用である。 Examples of the prenyl group donor that can be used with ORF11 of the present invention include dimethylallyl diphosphate, geranyl diphosphate, farnesyl diphosphate, geranygeryl diphosphate, and the like. Preferred are dimethylallyl diphosphate and geranyl diphosphate, more preferably dimethylallyl diphosphate. In particular, ORF11 is useful as an enzyme that synthesizes FCJ represented by formula (XI) by acting on the 6'-position hydroxyl group of FH P represented by formula (X) using dimethylallyl diphosphate as a prenyl group donor. It is.
 本発明は、当該酵素の遺伝子(ORF11の遺伝子を、単に「orf11」とも称する)をも提供するものである。 The present invention also provides a gene for the enzyme (the ORF11 gene is also simply referred to as “orf11”).
 当該ORF11遺伝子(orf11)としては、具体的には、コード領域に(31)配列番号13に示す塩基配列を有するもの(DNA、cDNA)を例示することができる。但し、これに限定されず、上記の触媒作用を有するタンパク質をコードすることを限度として、下記(32)または(33)のいずれかの塩基配列をコード領域に有する遺伝子(DNA、cDNA)であってもよい。
(32)配列番号13に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列、
(33)配列番号13に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列。
Specific examples of the ORF11 gene (orf11) include those having the base sequence shown in (31) SEQ ID NO: 13 in the coding region (DNA, cDNA). However, the present invention is not limited to this, and is a gene (DNA, cDNA) having the base sequence of any one of (32) and (33) below in the coding region, as long as it encodes the protein having the above catalytic action. May be.
(32) a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 13 under stringent conditions;
(33) A base sequence in which one or more bases are substituted, deleted, or added in the base sequence shown in SEQ ID NO: 13.
 本発明のORF11は、前述するORF11のアミノ酸情報、特に配列番号14に示すアミノ酸配列に基づいて、定法のペプチド合成により製造することができるほか、上記orf11を用いて同種又は異種発現系により、定法に従って得ることができる。より好ましくは、前述するように出芽酵母、特にcerevisiaeを用いた異種発現系による製造方法である。 ORF11は、リコンビナントタンパク質として得ることができ、得られたリコンビナントタンパク質は、例えばTris-HClバッファー等を用いて pH 6.5~pH8.5の範囲で、好ましくは、pH 7.2~pH7.8程度で、プレニル基供与体と前記式(I)または(X)で表される化合物と反応させることができる。プレニルトランスフェラーゼ反応は、例えば25℃~35℃の間で0.5時間~12時間程度行うことができ、好ましくは28℃~33℃の間で0.5時間~4時間程度の条件下で行うことができる。この反応により、前記式(I)または(X)で表される化合物の6’位の水酸基にプレニル基を転移することができる。 The ORF11 of the present invention can be produced by conventional peptide synthesis based on the amino acid information of the ORF11 described above, particularly the amino acid sequence shown in SEQ ID NO: 14, and can be prepared by the same or different expression system using the orf11. Can be obtained according to. More preferably, budding yeast, particularly S. This is a production method using a heterologous expression system using cerevisiae . ORF11 can be obtained as a recombinant protein, and the obtained recombinant protein is in the range of pH 6.5 to pH 8.5, preferably pH 7.2 to pH 7.8, using, for example, a Tris-HCl buffer or the like. To some extent, the prenyl group donor can be reacted with the compound represented by the formula (I) or (X). The prenyltransferase reaction can be performed, for example, at 25 ° C. to 35 ° C. for about 0.5 hours to 12 hours, and preferably at 28 ° C. to 33 ° C. for about 0.5 hours to 4 hours. be able to. By this reaction, the prenyl group can be transferred to the 6′-position hydroxyl group of the compound represented by the formula (I) or (X).
  7.P450-5(ORF13)
 当該酵素は、P450還元酵素及びおよびNADHまたはNADPHの存在下で、式(XI)で示されるFC Jを基質として、当該化合物の19位の炭素を水酸化して、式(XII)で示されるdideacetyl-FC Aを合成する触媒作用を有することを特徴とする。
7). P450-5 (ORF13)
In the presence of P450 reductase and NADH or NADPH, the enzyme is represented by the formula (XII) by hydroxylating the 19th carbon of the compound using FC J represented by the formula (XI) as a substrate. It has a catalytic action for synthesizing dideacetyl-FC A.
 当該酵素(以下、単に「ORF13」とも称する)としては、具体的には、(40)配列番号18に示すアミノ酸配列からなるタンパク質を例示することができる。但し、これに限定されず、上記の触媒作用を有することを限度に、下記(41)または(42)のいずれかのアミノ酸配列からなるタンパク質であってもよい。
(41)配列番号18に示すアミノ酸配列と85%以上、好ましくは90%、より好ましくは95%、さらに好ましくは98%以上の相同性を有するアミノ酸配列、
(42)配列番号18に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されてなるアミノ酸配列。
Specific examples of the enzyme (hereinafter also simply referred to as “ORF13”) include (40) a protein consisting of the amino acid sequence shown in SEQ ID NO: 18. However, the protein is not limited thereto, and may be a protein comprising any one of the following amino acid sequences (41) or (42) as long as it has the above catalytic action.
(41) an amino acid sequence having 85% or more, preferably 90%, more preferably 95%, and still more preferably 98% or more homology with the amino acid sequence shown in SEQ ID NO: 18;
(42) An amino acid sequence obtained by substituting, deleting, or adding one or more amino acids in the amino acid sequence shown in SEQ ID NO: 18.
 かかる酵素の由来は、上記触媒作用を有し、上記(40)~(42)のいずれかに該当するものであれば、特に限定されず、植物、動物、真菌等の真核細胞生物及び放線菌等の原核細胞生物のいずれに由来するものであってもよい。好ましくは真菌由来であり、特に糸状菌、なかでもPhomopsis属に属する糸状菌、より好ましくはPhomopsis amygdaliに由来するものであることが好ましい。 The origin of such an enzyme is not particularly limited as long as it has the above catalytic action and falls under any of the above (40) to (42), and eukaryotic organisms such as plants, animals, fungi and actinomycetes. It may be derived from any prokaryotic organism such as a fungus. It is preferably derived from a fungus, and particularly preferably derived from a filamentous fungus, in particular, a filamentous fungus belonging to the genus Phomopsis , and more preferably from Phomopsis amygdali .
 本発明は、当該酵素の遺伝子(ORF13の遺伝子を、単に「orf13」とも称する)をも提供するものである。 The present invention also provides a gene for the enzyme (the ORF13 gene is also simply referred to as “orf13”).
 当該ORF13遺伝子(orf13)としては、具体的には、コード領域に(37)配列番号17に示す塩基配列を有するもの(DNA、cDNA)を例示することができる。但し、これに限定されず、上記の触媒作用を有するタンパク質をコードすることを限度として、下記(38)または(39)のいずれかの塩基配列をコード領域に有する遺伝子(DNA、cDNA)であってもよい。
(37)配列番号17に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列、
(38)配列番号17に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列。
Specific examples of the ORF13 gene (orf13) include those having the base sequence represented by (37) SEQ ID NO: 17 in the coding region (DNA, cDNA). However, the present invention is not limited to this, and is a gene (DNA, cDNA) having the base sequence of any of the following (38) or (39) in the coding region, as long as it encodes the protein having the above catalytic action. May be.
(37) a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 17 under stringent conditions;
(38) A base sequence in which one or more bases are substituted, deleted, or added in the base sequence shown in SEQ ID NO: 17.
 本発明のORF13は、前述するORF13のアミノ酸情報、特に配列番号18に示すアミノ酸配列に基づいて、定法のペプチド合成により製造することができるほか、上記orf13を用いて同種又は異種発現系により、定法に従って得ることができる。より好ましくは、前述するように出芽酵母、特にcerevisiaeを用いた異種発現系による製造方法である。
 ORF13を異種発現させる場合には、特に配列番号20のアミノ酸配列を有するP450還元酵素をコードするcDNA、例えば配列番号19の塩基配列を有するcDNAとともに共発現させることが望ましい。
The ORF13 of the present invention can be produced by conventional peptide synthesis based on the amino acid information of the ORF13 described above, particularly the amino acid sequence shown in SEQ ID NO: 18, and can be prepared by the same or different expression system using the orf13. Can be obtained according to. More preferably, budding yeast, particularly S. This is a production method using a heterologous expression system using cerevisiae .
In the case of heterologous expression of ORF13, it is desirable to coexpress it with a cDNA encoding a P450 reductase having the amino acid sequence of SEQ ID NO: 20, for example, a cDNA having the base sequence of SEQ ID NO: 19.
  8.アセチルトランスフェラーゼ(ORF12)
 当該酵素は、アセチル基供与体の存在下、式(XII)で示されるdideacetyl-FC Aを基質として、当該化合物の19位の水酸基にアセチル基を転移する触媒作用を有することを特徴とする。
8). Acetyltransferase (ORF12)
The enzyme is characterized by having a catalytic action of transferring an acetyl group to the 19-position hydroxyl group of the compound, using dideacetyl-FC A represented by the formula (XII) as a substrate in the presence of an acetyl group donor.
 当該酵素(以下、単に「ORF12」とも称する)としては、具体的には、(46)配列番号16に示すアミノ酸配列からなるタンパク質を例示することができる。但し、これに限定されず、上記の触媒作用を有することを限度に、下記(47)または(48)のいずれかのアミノ酸配列からなるタンパク質であってもよい。
(47)配列番号16に示すアミノ酸配列と85%以上、好ましくは90%、より好ましくは95%、さらに好ましくは98%以上の相同性を有するアミノ酸配列、
(48)配列番号16に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されてなるアミノ酸配列。
Specific examples of the enzyme (hereinafter also simply referred to as “ORF12”) include (46) a protein consisting of the amino acid sequence shown in SEQ ID NO: 16. However, the protein is not limited thereto, and may be a protein comprising any one of the following amino acid sequences (47) or (48) as long as it has the above catalytic action.
(47) an amino acid sequence having 85% or more, preferably 90%, more preferably 95%, and still more preferably 98% or more homology with the amino acid sequence shown in SEQ ID NO: 16;
(48) An amino acid sequence obtained by substituting, deleting, or adding one or more amino acids in the amino acid sequence shown in SEQ ID NO: 16.
 かかる酵素の由来は、上記触媒作用を有し、上記(46)~(48)のいずれかに該当するものであれば、特に限定されず、植物、動物、真菌等の原核細胞生物及び細菌等の原核細胞生物のいずれに由来するものであってもよい。好ましくは真菌由来であり、特に糸状菌、なかでもPhomopsis属に属する糸状菌、より好ましくはPhomopsis amygdaliに由来するものであることが好ましい。 The origin of the enzyme is not particularly limited as long as it has the above catalytic action and falls under any of the above (46) to (48), and prokaryotic organisms such as plants, animals, fungi, bacteria, etc. From any prokaryotic organism. It is preferably derived from a fungus, and particularly preferably derived from a filamentous fungus, in particular, a filamentous fungus belonging to the genus Phomopsis , and more preferably from Phomopsis amygdali .
 本発明のORF12とともに用いることができるアセチル基供与体としては、acetyl-coenzyme Aが挙げられる。特に、ORF12は、acetyl-coenzyme Aをアセチル基供与体として、式(XII)で表されるdideacetyl-FC Aの19位の水酸基に作用し、下式(XIV)で示される化合物(3’--deacetyl-FC A)を合成する酵素として有用である。 Acetyl-coenzyme A is mentioned as an acetyl group donor which can be used with ORF12 of this invention. In particular, ORF12 acts on the hydroxyl group at the 19-position of dideacetyl-FC A represented by the formula (XII) using acyl-coenzyme A as an acetyl group donor, and the compound (3′- It is useful as an enzyme for synthesizing O 2 -deacetyl-FC A).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 本発明は、当該酵素の遺伝子(ORF12の遺伝子を、単に「orf12」とも称する)をも提供するものである。 The present invention also provides a gene for the enzyme (the ORF12 gene is also simply referred to as “orf12”).
 当該ORF12遺伝子(orf12)としては、具体的には、コード領域に(43)配列番号15に示す塩基配列を有するもの(DNA、cDNA)を例示することができる。但し、これに限定されず、上記の触媒作用を有するタンパク質をコードすることを限度として、下記(44)または(45)のいずれかの塩基配列をコード領域に有する遺伝子(DNA、cDNA)であってもよい。
(44)配列番号15に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列、
(45)配列番号15に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列。
Specific examples of the ORF12 gene (orf12) include those having the base sequence represented by (43) SEQ ID NO: 15 in the coding region (DNA, cDNA). However, the present invention is not limited to this, and it is a gene (DNA, cDNA) having the base sequence of either (44) or (45) below in the coding region, as long as it encodes the protein having the above catalytic action. May be.
(44) a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 15 under stringent conditions;
(45) A base sequence in which one or more bases are substituted, deleted, or added in the base sequence shown in SEQ ID NO: 15.
 本発明のORF12は、前述するORF12のアミノ酸情報、特に配列番号16に示すアミノ酸配列に基づいて、定法のペプチド合成により製造することができるほか、上記orf12を用いて同種又は異種発現系により、定法に従って得ることができる。より好ましくは、前述するように出芽酵母、特にcerevisiaeを用いた異種発現系による製造方法である。 ORF13は、リコンビナントタンパク質として得ることができ、得られたリコンビナントタンパク質は、例えばリン酸バッファー等を用いてpH 6.5~pH8.5の範囲で、好ましくは、pH 7.2~pH7.8程度で、アセチル基供与体と前記式(XII)で表される化合物と反応させることができる。アセチルトランスフェラーゼ反応は、例えば25℃~35℃の間で3時間~24時間程度行うことができ、好ましくは28℃~33℃の間で12時間~24時間程度の条件下で行うことができる。この反応により、前記式(XII)で表される化合物の19位の水酸基にアセチル基を転移することができる。また基質としては、式(XII)で表される化合物にかえて後述する式(XV)で表される化合物を用いることもできる。 The ORF12 of the present invention can be produced by conventional peptide synthesis based on the amino acid information of the ORF12 described above, particularly the amino acid sequence shown in SEQ ID NO: 16, and can be prepared by the same or different expression system using the orf12. Can be obtained according to. More preferably, budding yeast, particularly S. This is a production method using a heterologous expression system using cerevisiae . ORF13 can be obtained as a recombinant protein, and the obtained recombinant protein is in the range of pH 6.5 to pH 8.5, preferably about pH 7.2 to pH 7.8 using a phosphate buffer, for example. The acetyl group donor can be reacted with the compound represented by the formula (XII). The acetyltransferase reaction can be performed, for example, at 25 ° C. to 35 ° C. for about 3 hours to 24 hours, and preferably at 28 ° C. to 33 ° C. for about 12 hours to 24 hours. By this reaction, the acetyl group can be transferred to the 19-position hydroxyl group of the compound represented by the formula (XII). As the substrate, a compound represented by the formula (XV) described later can be used instead of the compound represented by the formula (XII).
  9.アセチルトランスフェラーゼ(ORF9)
 当該酵素は、アセチル基供与体の存在下、式(XII)で示されるdideacetyl-FC Aまたは式(XIV)で示される化合物(3’--deacetyl FC A)を基質として、当該化合物の3’位の水酸基にアセチル基を転移する触媒作用を有することを特徴とする。
9. Acetyltransferase (ORF9)
In the presence of an acetyl group donor, the enzyme uses dideacetyl-FC A represented by formula (XII) or a compound represented by formula (XIV) (3′- O- deacetyl FC A) as a substrate. It has a catalytic action of transferring an acetyl group to the hydroxyl group at the 'position.
 当該酵素(以下、単に「ORF9」とも称する)としては、具体的には、(52)配列番号10に示すアミノ酸配列からなるタンパク質を例示することができる。但し、これに限定されず、上記の触媒作用を有することを限度に、下記(53)または(54)のいずれかのアミノ酸配列からなるタンパク質であってもよい。
(53)配列番号10に示すアミノ酸配列と85%以上、好ましくは90%、より好ましくは95%、さらに好ましくは98%以上の相同性を有するアミノ酸配列、
(54)配列番号10に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されてなるアミノ酸配列。
Specific examples of the enzyme (hereinafter also simply referred to as “ORF9”) include (52) a protein consisting of the amino acid sequence shown in SEQ ID NO: 10. However, the protein is not limited thereto, and may be a protein comprising any one of the following amino acid sequences (53) or (54) as long as it has the above catalytic action.
(53) an amino acid sequence having 85% or more, preferably 90%, more preferably 95%, more preferably 98% or more homology with the amino acid sequence shown in SEQ ID NO: 10;
(54) An amino acid sequence obtained by substituting, deleting, or adding one or more amino acids in the amino acid sequence shown in SEQ ID NO: 10.
 かかる酵素の由来は、上記触媒作用を有し、上記(52)~(54)のいずれかに該当するものであれば、特に限定されず、植物、動物、真菌等の真核細胞生物及び細菌等の原核細胞生物のいずれに由来するものであってもよい。好ましくは真菌由来であり、特に糸状菌、なかでもPhomopsis属に属する糸状菌、より好ましくはPhomopsis amygdaliに由来するものであることが好ましい。 The origin of such an enzyme is not particularly limited as long as it has the above catalytic action and falls under any of the above (52) to (54). It may be derived from any prokaryotic organism such as It is preferably derived from a fungus, and particularly preferably derived from a filamentous fungus, in particular, a filamentous fungus belonging to the genus Phomopsis , and more preferably from Phomopsis amygdali .
 本発明のORF9とともに用いることができるアセチル基供与体としては、acetyl-coenzyme Aが挙げられる。特に、ORF9は、acetyl-coenzyme Aをアセチル基供与体として、式(XII)で表されるdideacetyl-FC Aの3’位の水酸基に作用し、下式(XV)で表される化合物(19--deacetyl FC A)を製造したり、また上記式(XIV)で示される化合物(3’--deacetyl FC A)の3’位の水酸基に作用し、上記式(XIII)で表される化合物(FC A)を製造する酵素として有用である。 Examples of the acetyl group donor that can be used with ORF9 of the present invention include acetyl-coenzyme A. In particular, ORF9 acts on the 3′-position hydroxyl group of dideacetyl-FC A represented by the formula (XII) by using acyl-coenzyme A as an acetyl group donor, and the compound (19) represented by the following formula (XV) - or to produce O -deacetyl FC a), also act on the hydroxyl group of the 3'-position of the compound represented by the formula (XIV) (3'- O -deacetyl FC a), represented by the above formula (XIII) It is useful as an enzyme for producing a compound (FCA).
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 本発明は、当該酵素の遺伝子(ORF9の遺伝子を、単に「orf9」とも称する)をも提供するものである。 The present invention also provides a gene for the enzyme (the ORF9 gene is also simply referred to as “orf9”).
 当該ORF9遺伝子(orf9)としては、具体的には、コード領域に(49)配列番号9に示す塩基配列を有するもの(DNA、cDNA)を例示することができる。但し、これに限定されず、上記の触媒作用を有するタンパク質をコードすることを限度として、下記(50)または(51)のいずれかの塩基配列をコード領域に有する遺伝子(DNA、cDNA)であってもよい。
(50)配列番号9に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列、
(51)配列番号9に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列。
Specific examples of the ORF9 gene (orf9) include those having the base sequence represented by SEQ ID NO: 9 in the coding region (49) (DNA, cDNA). However, the present invention is not limited to this, and is a gene (DNA, cDNA) having any one of the following base sequences (50) or (51) in the coding region, as long as it encodes a protein having the above catalytic action. May be.
(50) a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 9 under stringent conditions;
(51) A base sequence in which one or more bases are substituted, deleted, or added in the base sequence shown in SEQ ID NO: 9.
 本発明のORF9は、前述するORF9のアミノ酸情報、特に配列番号10に示すアミノ酸配列に基づいて、定法のペプチド合成により製造することができるほか、上記orf9を用いて同種又は異種発現系により、定法に従って得ることができる。より好ましくは、前述するように出芽酵母、特にcerevisiaeを用いた異種発現系による製造方法である。 ORF13は、リコンビナントタンパク質として得ることができ、得られたリコンビナントタンパク質は、例えばリン酸バッファー等を用いてpH 6.5~pH8.5の範囲で、好ましくは、pH 7.2~pH7.8程度で、アセチル基供与体と前記式(XII)で表される化合物と反応させることができる。アセチルトランスフェラーゼ反応は、例えば25℃~35℃の間で3時間~24時間程度行うことができ、好ましくは28℃~33℃の間で12時間~24時間程度の条件下で行うことができる。この反応により、前記式(XII)で表される化合物の3’位の水酸基にアセチル基を転移することができる。また基質としては、式(XII)で表される化合物にかえて前記式(XIV)で表される化合物を用いることもできる。 ORF9 of the present invention can be produced by conventional peptide synthesis based on the amino acid information of ORF9 described above, particularly the amino acid sequence shown in SEQ ID NO: 10, and can be prepared by the same or different expression system using orf9. Can be obtained according to. More preferably, budding yeast, particularly S. This is a production method using a heterologous expression system using cerevisiae . ORF13 can be obtained as a recombinant protein, and the obtained recombinant protein is in the range of pH 6.5 to pH 8.5, preferably about pH 7.2 to pH 7.8 using a phosphate buffer, for example. The acetyl group donor can be reacted with the compound represented by the formula (XII). The acetyltransferase reaction can be performed, for example, at 25 ° C. to 35 ° C. for about 3 hours to 24 hours, and preferably at 28 ° C. to 33 ° C. for about 12 hours to 24 hours. By this reaction, the acetyl group can be transferred to the 3′-position hydroxyl group of the compound represented by the formula (XII). As the substrate, the compound represented by the formula (XIV) can be used instead of the compound represented by the formula (XII).
  (3)FC A及びその生合成中間体の製造方法
 本発明は、前述する酵素の触媒作用を利用して、式(XIII)で示される化合物(フシコクシンA:FC A)、並びにその生合成中間体を製造する方法を提供する。ここで生合成中間体として、式(I)で表される化合物(フシコクシンH:FC H)、式(IX)で表される化合物(フシコクシンQ:FC Q)、式(X)で表される化合物(フシコクシンP:FC P)、式(XI)で表される化合物(フシコクシンJ:FC J)、及び式(XII)で表される化合物(ジデアセチルフシコクシンA:dideacethyl-FC A)を挙げることができる。
(3) Method for producing FC A and its biosynthetic intermediate The present invention utilizes the above-described enzyme catalytic action to produce a compound represented by formula (XIII) (fusicoccin A: FC A), and its biosynthetic intermediate. A method of manufacturing a body is provided. Here, as a biosynthetic intermediate, a compound represented by formula (I) (fusicoccin H: FCH), a compound represented by formula (IX) (fusicoccin Q: FC Q), represented by formula (X) A compound (fusicoccin P: FC P), a compound represented by formula (XI) (fusicoccin J: FC J), and a compound represented by formula (XII) (dideacetyl fusicoccin A: deacetylacetyl-FC A) Can be mentioned.
 以下、図1に示すスキームIに従って、これら一連の化合物の製造方法について説明する。 Hereinafter, a method for producing these series of compounds will be described according to Scheme I shown in FIG.
  (3-1)FC Hの製造方法
 図1に示すように、式(I)で示されるFC Hは、ゲラニルゲラニル二リン酸(GGDP)を出発化合物として、工程(a)~(g)の7ステップを経て製造することができる。以下に各工程について説明する。
(3-1) Method for Producing FC H As shown in FIG. 1, the FC H represented by the formula (I) is prepared from 7 of steps (a) to (g) using geranylgeranyl diphosphate (GGDP) as a starting compound. It can be manufactured through steps. Each step will be described below.
  1)工程(a):式(II)で表される化合物の製造工程
 ゲラニルゲラニル二リン酸(GGDP)に、サイクラーゼ(Orf1:配列番号48)を作用させることで、式(II)で表される化合物(fusicocca-2,10(14)-diene)を得ることができる。なお、ここでサイクラーゼ(ORF1)は非特許文献2に記載されている公知の酵素であり、Isopentenyl二リン酸からのgeranylgeranyl二リン酸の生成と、続く環化反応を触媒し、fusicocca-2,10(14)-dieneを生成するバイファンクショナルな酵素であることを特徴とする。
1) Step (a): Production step of compound represented by formula (II) : Cyclase (Orf1: SEQ ID NO: 48) is allowed to act on geranylgeranyl diphosphate (GGDP) to be represented by formula (II) A compound (fusicocca-2,10 (14) -diene) can be obtained. Here, cyclase (ORF1) is a known enzyme described in Non-Patent Document 2, which catalyzes the generation of geranygeranyl diphosphate from Isopentenyl diphosphate and the subsequent cyclization reaction, fusicocca-2, It is a bifunctional enzyme that produces 10 (14) -diene.
 工程(a)においてサイクラーゼによる反応は、例えばジメチルアリル二リン酸とイソペンテニル二リン酸、マグネシウムイオンの存在下、25℃~35℃、好ましくは、28℃~32℃で、0.5時間~3時間程度より好ましくは1時間程度反応させることにより行うことができる。 In the step (a), the reaction with cyclase is carried out, for example, in the presence of dimethylallyl diphosphate, isopentenyl diphosphate, and magnesium ions at 25 ° C. to 35 ° C., preferably 28 ° C. to 32 ° C. for 0.5 hour to The reaction can be carried out by reacting for about 3 hours, more preferably for about 1 hour.
  2)工程(b):式(III)で表される化合物の製造工程
 上記工程(a)で得られる化合物(II)(fusicocca-2,10(14)-diene)に、P450還元酵素およびNADHまたはNADPHの存在下、前述する本発明の酵素P450-2(ORF5)を作用させることにより、式(III)で表される化合物(fusicocca-2,10(14)-dien-8β-ol)を製造することができる。
2) Step (b): Process for producing compound represented by formula (III) Compound (II) (fusicocca-2,10 (14) -diene) obtained in the above step (a) is converted to P450 reductase and NADH. Alternatively, by reacting the aforementioned enzyme P450-2 (ORF5) of the present invention in the presence of NADPH, the compound represented by formula (III) (fusicocca-2,10 (14) -dien-8β-ol) is obtained. Can be manufactured.
 なお、上記工程(a)及び(b)の反応は、例えば、異種発現により得られる酵素または異種発現する酵素産生体を用いて行うことができる。具体的には、まず、ORF5をコードするcDNA、P450還元酵素をコードするcDNA、及びサイクラーゼ(ORF1)をコードするcDNA(配列番号48)をcerevisiae YPH500(his-、leu-、trp-、ura-、ade-、lys-)に導入し、これらの遺伝子を発現させる。なお、P450還元酵素のアミノ酸配列を配列番号20に、またそれをコードする塩基配列を配列番号19に示す。 In addition, reaction of the said process (a) and (b) can be performed using the enzyme obtained by heterogeneous expression or the enzyme producer which carries out heterogeneous expression, for example. Specifically, first, cDNA encoding ORF5, cDNA encoding P450 reductase, and cDNA encoding cyclase (ORF1) (SEQ ID NO: 48) were obtained from S. cerevisiae. cerevisiae YPH500 (his-, leu-, trp-, ura-, ade-, lys-) is introduced to express these genes. The amino acid sequence of P450 reductase is shown in SEQ ID NO: 20, and the base sequence encoding it is shown in SEQ ID NO: 19.
 当該形質転換体は、遺伝子導入されたOrf1から発現されたサイクラーゼ(ORF1)の作用により、菌体内にあるGGDPを基質として、化合物(II)を生成する。さらに、遺伝子導入されたORF5のcDNA及びP450還元酵素のcDNAから発現された産物(ORF5、P450還元酵素)の作用により、化合物(II)から化合物(III)を生成する。生成された化合物(III)は、ペンタン等の溶媒を使って、形質転換体の菌体内から抽出単離することができる。 The transformant produces compound (II) using GGDP in the bacterial body as a substrate by the action of cyclase (ORF1) expressed from the gene-transfected Orf1. Furthermore, compound (III) is produced | generated from compound (II) by the effect | action of the product (ORF5, P450 reductase) expressed from cDNA of ORF5 which introduce | transduced gene, and cDNA of P450 reductase. The produced compound (III) can be extracted and isolated from the cells of the transformant using a solvent such as pentane.
 また、ORF5をコードするcDNA(配列番号1)、P450還元酵素をコードするcDNA(配列番号19)を導入したcerevisiaeからミクロソーム画分を調製し、当該ミクロソーム画分と、工程(a)で得られた化合物(II)とを、NADH、NADPH存在下でin vitroで反応させることによっても、化合物(III)を得ることができる。使用する反応バッファーや反応条件は、P450-2(ORF5)が上記反応を触媒する活性を発揮できるものであればよく、特に制限されない。 Further, cDNA encoding ORF5 (SEQ ID NO: 1), S was introduced cDNA (SEQ ID NO: 19) encoding the P450 reductase. It is also possible to prepare a microsomal fraction from S. cerevisiae and react the compound (III) with the compound (II) obtained in step (a) in the presence of NADH and NADPH in vitro. Obtainable. The reaction buffer and reaction conditions to be used are not particularly limited as long as P450-2 (ORF5) can exhibit the activity of catalyzing the above reaction.
  3)工程(c):式(IV)で表される化合物の製造工程
 上記工程(b)で得られる化合物(III)に、P450-1(ORF3:配列番号50)を作用させることで、式(IV)で表される化合物(fusicocca-2,10(14)-diene-8β,16-diol)を得ることができる。なお、ここでP450-1(ORF3)は、式(III)で表される化合物の16位のメチル基を水酸化する触媒活性を有することを特徴とする。
3) Step (c): Step of producing compound represented by formula (IV) P450-1 (ORF3: SEQ ID NO: 50) is allowed to act on compound (III) obtained in the above step (b) to give the formula A compound represented by (IV) (fusicocca-2,10 (14) -diene-8β, 16-diol) can be obtained. Here, P450-1 (ORF3) is characterized by having a catalytic activity for hydroxylating the methyl group at the 16-position of the compound represented by the formula (III).
 この反応は、例えばORF3をコードするcDNA(配列番号49)、P450還元酵素をコードするcDNAを導入したcerevisiaeからミクロソーム画分を調製し、当該ミクロソーム画分と、工程(b)で得られた化合物(III)とを、NADH、NADPH存在下でin vitroで反応させることによっても、化合物(IV)を得ることができる。使用する反応バッファーや反応条件は、P450-1(ORF3)が上記反応を触媒する活性を発揮できるものであればよく、特に制限されない。 This reaction may be carried out by, for example, S. cerevisiae into which cDNA encoding ORF3 (SEQ ID NO: 49) or cDNA encoding P450 reductase was introduced. It is also possible to prepare a microsomal fraction from C. cerevisiae and react the compound (IV) with the compound (III) obtained in step (b) in the presence of NADH and NADPH in vitro. Obtainable. The reaction buffer and reaction conditions to be used are not particularly limited as long as P450-1 (ORF3) can exhibit the activity of catalyzing the above reaction.
 またP450-1に代えて、配列番号56で表されるBC-ORF7を用いることができる。BC-ORF7は、Hashimoto M他(Bioorg.Med.Chem.lett.、Vol.19、p5640-5643、2009)で報告された、公知の酵素であり、式(III)で表される化合物に作用させることにより、式(IV)で表される化合物(fusicocca-2,10(14)-diene-8β,16-diol)を得ることができる。 Alternatively, BC-ORF7 represented by SEQ ID NO: 56 can be used in place of P450-1. BC-ORF7 is a known enzyme reported by Hashimoto M et al. (Bioorg. Med. Chem. Lett., Vol. 19, p5640-5543, 2009) and acts on the compound represented by the formula (III). As a result, a compound represented by formula (IV) (fusicocca-2,10 (14) -diene-8β, 16-diol) can be obtained.
 サイクラーゼ(ORF1)、P450-2(ORF5)、配列番号20で表されるP450還元酵素およびP450-1(ORF3:配列番号50)またはBC-ORF7(配列番号56)のcDNAをcerevisiae等に発現ベクターを利用して発現させた形質転換株を適当な培地で培養することにより、培養液中に上記式(IV)のfusicocca-2,10(14)-diene-8β,16-diolを蓄積することが出来る。サイクラーゼ(ORF1)cDNAは配列番号47に、BC-ORF7(配列番号56)のcDNAは配列番号55に例示する。 The cDNAs of cyclase (ORF1), P450-2 (ORF5), P450 reductase represented by SEQ ID NO: 20 and P450-1 (ORF3: SEQ ID NO: 50) or BC-ORF7 (SEQ ID NO: 56) were obtained from S. cerevisiae. By culturing a transformant expressed in C. cerevisiae or the like using an expression vector in an appropriate medium, fusicocca-2,10 (14) -diene-8β, 16- Diol can be stored. The cyclase (ORF1) cDNA is exemplified in SEQ ID NO: 47, and the BC-ORF7 (SEQ ID NO: 56) cDNA is exemplified in SEQ ID NO: 55.
  4)工程(d):式(V)または式(VI)で表される化合物の製造工程
 上記工程(c)で得られる化合物(IV)に、ジオキシゲナーゼ(ORF2:配列番号52)を作用させることにより、式(V)で表される化合物を経て、その互変異性体である式(VI)で表される化合物(8-hydroxyfusicocca-1,10(14)-dien-16-al)を得ることができる。なお、ここでジオキシゲナーゼ(ORF2)は非特許文献2および非特許文献3に記載されている公知の酵素であり、α-ケトグルタル酸等の二原子酸素供与体から二原子酸素を基質に転移することを特徴とする。
4) Step (d): Process for producing compound represented by formula (V) or formula (VI) Dioxygenase (ORF2: SEQ ID NO: 52) is allowed to act on compound (IV) obtained in the above step (c). Through the compound represented by the formula (V), the compound represented by the formula (VI) (8-hydroxyfusicocca-1,10 (14) -dien-16-al) which is a tautomer thereof is obtained. Obtainable. Here, dioxygenase (ORF2) is a known enzyme described in Non-Patent Document 2 and Non-Patent Document 3, and transfers diatomic oxygen from a diatomic oxygen donor such as α-ketoglutarate to a substrate. It is characterized by that.
 ORF2は、例えば配列番号51に示す塩基配列を含むcDNAを用いて、リコンビナントタンパク質として得ることができる。得られたリコンビナントタンパク質は、例えばMOPSバッファー等を用いて、pH6から8、好ましくは、pH6.8~7.1の範囲で、glycerolおよび硫酸鉄等の2価の鉄イオンおよびアスコルビン酸の存在下で、α-ケトグルタル酸等の二原子酸素供与体と前記式(IV)で表される化合物と反応させることができる。反応は、25℃~35℃の間で4分~30分程度行うことができ、好ましくは28℃~33℃の間で5分未満の条件下で行うことができる。この反応により、式(IV)で表される化合物の16位の水酸基を二重結合の異性化を伴いながら酸化し、式(V)で表される化合物に変換し、最終的にはその互変異性体である式(VI)で表される化合物に変換する。 ORF2 can be obtained as a recombinant protein using, for example, cDNA containing the base sequence shown in SEQ ID NO: 51. The obtained recombinant protein is used in the presence of divalent iron ions such as glycerol and iron sulfate and ascorbic acid in the range of pH 6 to 8, preferably pH 6.8 to 7.1 using, for example, MOPS buffer or the like. Then, a diatomic oxygen donor such as α-ketoglutaric acid can be reacted with the compound represented by the formula (IV). The reaction can be carried out between 25 ° C. and 35 ° C. for about 4 minutes to 30 minutes, preferably between 28 ° C. and 33 ° C. for less than 5 minutes. By this reaction, the hydroxyl group at the 16-position of the compound represented by the formula (IV) is oxidized with isomerization of the double bond, and converted into the compound represented by the formula (V). The compound is converted to a compound represented by the formula (VI) which is a mutant.
  5)工程(e):式(VII)で表される化合物の製造工程
 上記工程(d)で得られる化合物(VI)に、短鎖デヒドロゲナーゼレダクターゼ(ORF4:配列番号54)を作用させることで、式(VII)で表される化合物(fusicocca-1,10(14)-diene-8β,16-diol)を得ることができる。なお、ここで短鎖デヒドロゲナーゼレダクターゼ(ORF4)は非特許文献2および非特許文献3に記載されている公知の酵素であり、式(VI)で表される化合物の16位アルデヒド基を水酸基に還元する触媒活性を有する。
5) Step (e): Production step of compound represented by formula (VII) By reacting short-chain dehydrogenase reductase (ORF4: SEQ ID NO: 54) with compound (VI) obtained in step (d) above, A compound represented by the formula (VII) (fusicocca-1,10 (14) -diene-8β, 16-diol) can be obtained. Here, short-chain dehydrogenase reductase (ORF4) is a known enzyme described in Non-Patent Document 2 and Non-Patent Document 3, and the 16-position aldehyde group of the compound represented by Formula (VI) is reduced to a hydroxyl group. Have catalytic activity.
 ORF4は、例えば配列番号53に示す塩基配列を含むcDNAを用いて、リコンビナントタンパク質として得ることができる。得られたリコンビナントタンパク質は、例えば上記ORF2のリコンビナントタンパク質等のジオキシゲナーゼとともにpH6.5~8.0のTRIS-HClバッファー等;グリセロール;硫酸鉄等の2価の鉄イオン;、塩化カリウム等の塩;α-ケトグルタル酸等の二原子酸素供与体;アスコルビン酸;NADHおよびNADPH等の電子供与体の存在下、25℃~35℃、0.5~2時間程度の反応で、式(IV)で表される化合物を式(VII)で表される化合物に変換することができる。この反応においては、まず、ジオキシゲナーゼが式(IV)で表される化合物を式(VI)で表される化合物に変換し、それを、ORF4が式(VII)で表される化合物に変換する。 ORF4 can be obtained as a recombinant protein using, for example, cDNA containing the base sequence shown in SEQ ID NO: 53. The obtained recombinant protein is, for example, a TRIS-HCl buffer at pH 6.5 to 8.0 together with a dioxygenase such as the above recombinant protein of ORF2; glycerol; divalent iron ions such as iron sulfate; and salts such as potassium chloride A diatomic oxygen donor such as α-ketoglutaric acid; ascorbic acid; reaction in the presence of an electron donor such as NADH and NADPH at 25 ° C. to 35 ° C. for about 0.5 to 2 hours, in formula (IV) The represented compound can be converted to a compound represented by the formula (VII). In this reaction, first, dioxygenase converts a compound represented by formula (IV) to a compound represented by formula (VI), and ORF4 converts it to a compound represented by formula (VII). .
  6)工程(f):式(VIII)で表される化合物の製造工程
 上記工程(e)で得られる化合物(VII)に、P450還元酵素およびNADHまたはNADPHの存在下で、前述する本発明の酵素P450-3(ORF7)を作用させることにより、式(VIII)で表される化合物(FC H アグリコン)を製造することができる。 この反応は、例えば、異種発現により得られたP450-3(ORF7)を含むミクロソーム画分を用いて、in vitroで行うことができる。具体的には、まず、ORF7をコードするcDNAをcerevisiae YPH500(his-、leu-、trp-、ura-、ade-、lys-)に導入し、ORF7遺伝子を発現させる。当該形質転換体からミクロソーム画分を調製し、ORF7を含むミクロソーム画分と、工程(e)で得られた化合物(VII)とを、NADH及びNADPHの存在下でin vitroで反応させることによって、化合物(VIII)を得ることができる。使用する反応バッファーや反応条件は、P450-3(ORF7)が上記反応を触媒する活性を発揮できるものであればよく、特に制限されない。
6) Step (f): Step of producing compound represented by formula (VIII) In the presence of P450 reductase and NADH or NADPH, the compound (VII) obtained in the above step (e) is subjected to the above-described step of the present invention. By allowing the enzyme P450-3 (ORF7) to act, a compound (FC H aglycone) represented by the formula (VIII) can be produced. This reaction can be performed, for example, in vitro using a microsomal fraction containing P450-3 (ORF7) obtained by heterologous expression. Specifically, first, a cDNA encoding ORF7 is designated as S. cerevisiae YPH500 (his-, leu-, trp-, ura-, ade-, lys-) is introduced to express the ORF7 gene. A microsomal fraction is prepared from the transformant, and the microsomal fraction containing ORF7 and the compound (VII) obtained in step (e) are reacted in vitro in the presence of NADH and NADPH. Compound (VIII) can be obtained. The reaction buffer and reaction conditions to be used are not particularly limited as long as P450-3 (ORF7) can exhibit the activity of catalyzing the above reaction.
  7)工程(g):式(I)で表される化合物の製造工程
 上記(f)工程で得られる化合物(VIII)に、グリコシル供与体の存在下で、前述する本発明の酵素グリコシルトランスフェラーゼ(ORF6)を作用させることにより、式(I)で表される化合物(FC H)を製造することができる。
7) Step (g): Step for producing compound represented by formula (I) In the presence of a glycosyl donor, compound (VIII) obtained in the above step (f) is subjected to the enzyme glycosyltransferase ( By allowing ORF6) to act, the compound (FCH) represented by the formula (I) can be produced.
 この反応は、ORF6そのものを用いてもよいし、またORF6のリコンビナントタンパク質を用いて行うこともできる。具体的には、HisタグやMBPタグ等の塩基配列を含むDNAとORF6をコードするcDNAを結合させて、大腸菌等の宿主を形質転換し、リコンビナントタンパク質を発現させる。斯くして調製したタグ結合タンパク質をタグ結合タンパク質精製カラム等を使用して、常法に従って精製する。精製したORF6リコンビナントタンパク質をUDP-グルコース等のグルコシル基供与体の存在下で、化合物(VIII)と反応させる。このとき用いる反応バッファーやそのpH条件は、グリコシルトランスフェラーゼ(ORF6)が上記反応を触媒する活性を発揮できるものであればよく、特に制限されないが、好ましくは、Tris-HClバッファーであり、pHは7~8程度である。反応温度や反応時間等も、グリコシルトランスフェラーゼ(ORF6)が上記反応を触媒する活性を発揮できるものであればよく、特に制限されないが、好ましくは25℃~35℃の温度条件下で、12時間~24時間程度反応する方法を例示することができる。 This reaction may be performed using ORF6 itself or by using a recombinant protein of ORF6. Specifically, DNA containing a base sequence such as His tag or MBP tag and cDNA encoding ORF6 are combined to transform a host such as Escherichia coli to express a recombinant protein. The tag binding protein thus prepared is purified according to a conventional method using a tag binding protein purification column or the like. The purified ORF6 recombinant protein is reacted with compound (VIII) in the presence of a glucosyl group donor such as UDP-glucose. The reaction buffer used at this time and the pH conditions thereof are not particularly limited as long as the glycosyltransferase (ORF6) can exhibit the activity of catalyzing the above reaction, and is not particularly limited, but is preferably a Tris-HCl buffer and has a pH of 7 It is about ~ 8. The reaction temperature, reaction time, and the like are not particularly limited as long as the glycosyltransferase (ORF6) can exhibit the activity of catalyzing the above reaction, but are preferably 12 hours to 35 ° C. under a temperature condition of 25 ° C. to 35 ° C. A method of reacting for about 24 hours can be exemplified.
 また、化合物(I)は、化合物(I)を生成するamygdaliにおいて、化合物(I)から、式(IX)で示される化合物への反応を触媒するORF10の産生能を欠失させるべく、当該遺伝子(orf10)を破壊することによっても得ることができる。例えば、ホモロガスリコンビネーション等の手法によってORF10遺伝子を欠損させたamygdaliは、図1に示すように工程(h)の反応が遮断されるため、工程(h)以後の反応を行うことができない。その結果、化合物(I)が蓄積するようになる。 In addition, compound (I) is produced from P.I. In amygdali , the gene (orf10) can also be obtained by destroying the gene (orf10) so as to lack the ability to produce ORF10 that catalyzes the reaction from compound (I) to the compound represented by formula (IX). E.g., P obtained by deficient ORF10 gene by a technique such as homo logger Sri combination. As shown in FIG. 1, amygdali cannot block the reaction after step (h) because the reaction at step (h) is blocked. As a result, the compound (I) is accumulated.
 ORF10遺伝子欠損amygdaliによる化合物(I)の製造は、まず、当該欠損体を大量培養し、菌体を濾別した培養液を、酢酸エチル、またはメタノール添加酢酸エチル等の適当な溶媒で抽出する。抽出液を適量まで濃縮した後、飽和重曹水等を加えて分液し有機相を得る。有機相を飽和食塩水等で洗浄後、濃縮し、再度酢酸エチル等を加えて加温溶解した後、室温放置することで、化合物(I)を結晶として得ることができる。なお、かかる化合物(I)の取得及び精製方法は一例であり、かかる方法に限定されるものではなく、当業界の技術常識により適宜変更することができる。 ORF10 gene deficient P. In the production of compound (I) by amygdali , first, the deficient body is mass-cultured, and the culture solution obtained by filtering the cells is extracted with an appropriate solvent such as ethyl acetate or methanol-added ethyl acetate. After concentrating the extract to an appropriate amount, saturated aqueous sodium hydrogen carbonate and the like are added and the mixture is separated to obtain an organic phase. The organic phase is washed with saturated saline and the like, concentrated, added again with ethyl acetate and dissolved by heating, and then allowed to stand at room temperature, whereby compound (I) can be obtained as crystals. The method for obtaining and purifying the compound (I) is merely an example, and is not limited to such a method, and can be appropriately changed according to technical common sense in the art.
 なお、化合物(I)は、BC Cなどの他のFC A類似化合物を合成するための出発化合物としても使用することができる。この意味で、本発明の方法による化合物(I)(FC H)の効率的な製造方法は有用である。 Compound (I) can also be used as a starting compound for synthesizing other FC A-like compounds such as BC C. In this sense, an efficient method for producing compound (I) (FC H) by the method of the present invention is useful.
  (3-2)FC Qの製造方法
 図1に示すように、式(IX)で示されるFC Qは、上記工程(a)~(g)に加えて、下記工程(h)を経ることで製造することができる。
(3-2) Method for Producing FC Q As shown in FIG. 1, FC Q represented by the formula (IX) is obtained through the following step (h) in addition to the steps (a) to (g). Can be manufactured.
 8)工程(h):式(IX)で表される化合物の製造工程
 上記工程(g)で得られる化合物(I)に、P450還元酵素およびNADHまたはNADPHの存在下で、前述する本発明の酵素P450-4(ORF10)を作用させることにより、式(IX)で表される化合物(FC Q)を製造することができる。
8) Step (h): Production process of the compound represented by the formula (IX) In the presence of P450 reductase and NADH or NADPH in the presence of P450 reductase and NADH or NADPH, the compound (I) obtained in the above step (g) By allowing the enzyme P450-4 (ORF10) to act, the compound (FC Q) represented by the formula (IX) can be produced.
 この反応は、例えば、異種発現により得られたP450-4(ORF10)を含むミクロソーム画分を用いて行うことができる。具体的には、まず、ORF10をコードするcDNA(配列番号11)をcerevisiae YPH500(his-、leu-、trp-、ura-、ade-、lys-)に導入し、ORF10遺伝子(orf10)を発現させる。当該形質転換体からORF10を含むミクロソーム画分を調製し、当該ミクロソーム画分と、上記工程(g)で得られた化合物(I)とを、P450還元酵素およびNADHまたはNADPHの存在下で、in vitroで反応させることによって、式(IX)で表される化合物を得ることができる。 This reaction can be performed using, for example, a microsomal fraction containing P450-4 (ORF10) obtained by heterologous expression. Specifically, first, cDNA (SEQ ID NO: 11) encoding ORF10 was transformed into S. cerevisiae YPH500 (his-, leu-, trp-, ura-, ade-, lys-) is introduced to express the ORF10 gene (orf10). A microsomal fraction containing ORF10 is prepared from the transformant, and the microsomal fraction and the compound (I) obtained in the above step (g) are combined with each other in the presence of P450 reductase and NADH or NADPH. By reacting in vitro, a compound represented by the formula (IX) can be obtained.
 ここで反応バッファーならびにpHおよび塩濃度は、P450-4(ORF10)が上記反応を触媒する活性を発揮できるものであればよく、特に制限されない。反応温度、反応時間等も、P450-4(ORF10)が上記反応を触媒する活性を発揮できるものであればよく、特に制限されない。 Here, the reaction buffer, pH and salt concentration are not particularly limited as long as P450-4 (ORF10) can exhibit the activity of catalyzing the above reaction. The reaction temperature, reaction time, etc. are not particularly limited as long as P450-4 (ORF10) can exhibit the activity of catalyzing the above reaction.
  (3-3)FC Pの製造方法
 図1に示すように、式(X)で示されるFC Pは、上記工程(a)~(g)及び工程(h)に加えて、下記工程(i)を経ることで製造することができる。
(3-3) Method for Producing FC P As shown in FIG. 1, FC P represented by the formula (X) is added to the following steps (i) in addition to the steps (a) to (g) and the step (h). ) Can be manufactured.
 9)工程(i):式(X)で表される化合物の製造工程
 上記工程(h)で得られる化合物(IX)に、メチル基供与体の存在下で、前述する本発明の酵素メチルトランスフェラーゼ(ORF8)を作用させることにより、式(X)で表される化合物(FC P)を製造することができる。
9) Step (i): Production process of the compound represented by formula (X) In the presence of a methyl group donor, the aforementioned enzyme methyltransferase of the present invention is added to the compound (IX) obtained in the above step (h). By allowing (ORF8) to act, the compound (FCP) represented by the formula (X) can be produced.
 この反応は、ORF8そのものを使用することもできるし、また例えばORF8のリコンビナントタンパク質を用いて行うこともできる。具体的には、HisタグやMBPタグ等の塩基配列を含むDNAとORF8をコードするcDNAを結合させて、大腸菌等の宿主を形質転換し、リコンビナントタンパク質を発現させる。斯くして調製されたタグ結合タンパク質をタグ結合タンパク質精製カラム等を使用して常法に従って精製する。精製した、ORF8リコンビナントタンパク質をS-adenosyl methionine等のメチル基供与体の存在下で、化合物(IX)と反応させる。反応バッファーやそのpH条件は、メチルトランスフェラーゼ(ORF8)が上記反応を触媒する活性を発揮できるものであればよく、特に制限されないが、好ましくは、Tris-HClバッファーであり、pHは7~8程度である。反応温度や反応時間等も、メチルトランスフェラーゼ(ORF8)が上記反応を触媒する活性を発揮できるものであればよく、特に制限されないが、好ましくは25℃~35℃で、12時間~24時間程度の反応である。 This reaction can be performed using ORF8 itself, or can be performed using, for example, a recombinant protein of ORF8. Specifically, DNA containing a base sequence such as a His tag or MBP tag and a cDNA encoding ORF8 are combined, and a host such as E. coli is transformed to express a recombinant protein. The tag binding protein thus prepared is purified according to a conventional method using a tag binding protein purification column or the like. The purified ORF8 recombinant protein is reacted with compound (IX) in the presence of a methyl group donor such as S-adenosyl methionine. The reaction buffer and its pH conditions are not particularly limited as long as methyltransferase (ORF8) can exhibit the activity of catalyzing the above reaction, but it is preferably a Tris-HCl buffer, and the pH is about 7-8. It is. The reaction temperature, reaction time, etc. are not particularly limited as long as methyltransferase (ORF8) can exhibit the activity of catalyzing the above reaction, but it is preferably 25 ° C. to 35 ° C., preferably about 12 hours to 24 hours. It is a reaction.
  (3-4)FC Jの製造方法
 図1に示すように、式(XI)で示されるFC Jは、上記工程(a)~(g)、工程(h)、及び工程(i)に加えて、下記工程(j)を経ることで製造することができる。
(3-4) Manufacturing Method of FC J As shown in FIG. 1, FC J represented by the formula (XI) is added to the above steps (a) to (g), step (h), and step (i). And it can manufacture by passing through the following process (j).
 10)工程(j):式(XI)で表される化合物の製造工程
 上記工程(i)で得られる化合物(X)に、プレニル基供与体の存在下で、前述する本発明のプレニルトランスフェラーゼ(ORF11)を作用させることにより、式(XI)で表される化合物(FC J)を製造することができる。
10) Step (j): Step of producing compound represented by formula (XI) In the presence of a prenyl group donor, the aforementioned prenyl transferase of the present invention (in the presence of a prenyl group donor) is added to the compound (X) obtained in the above step (i). By allowing ORF11) to act, the compound (FC J) represented by the formula (XI) can be produced.
 この反応は、ORF11そのものを用いて行うこともできるし、また例えばORF11のリコンビナントタンパク質を用いて行うこともできる。具体的には、HisタグやMBPタグ等の塩基配列を含むDNAとORF11をコードするcDNAを結合させて、大腸菌等の宿主を形質転換し、リコンビナントタンパク質を発現させる。斯くして調製したタグ結合タンパク質をタグ結合タンパク質精製カラム等を使用して、常法に従って精製する。精製した、ORF11リコンビナントタンパク質をdimethylallyl diphosphate等のプレニル基供与体の存在下で、化合物(X)と反応させる。 This reaction can be performed using ORF11 itself, or can be performed using, for example, a recombinant protein of ORF11. Specifically, DNA containing a base sequence such as a His tag or MBP tag and a cDNA encoding ORF11 are combined, and a host such as Escherichia coli is transformed to express a recombinant protein. The tag binding protein thus prepared is purified according to a conventional method using a tag binding protein purification column or the like. The purified ORF11 recombinant protein is reacted with compound (X) in the presence of a prenyl group donor such as dimethylallyl diphosphate.
 ここで使用する反応バッファーやそのpHは、プレニルトランスフェラーゼ(ORF11)が上記反応を触媒する活性を発揮できるものであればよく、特に制限されないが、好ましくは、Tris-HClバッファーであり、pHは7~8程度である。反応温度や反応時間等も、プレニルトランスフェラーゼ(ORF11)が上記反応を触媒する活性を発揮できるものであればよく、特に制限されないが、好ましくは25℃~35℃程度で、0.5時間~4時間程度の反応である。 The reaction buffer and its pH used here are not particularly limited as long as prenyl transferase (ORF11) can exhibit the activity of catalyzing the above reaction, but is preferably a Tris-HCl buffer, and has a pH of 7 It is about ~ 8. The reaction temperature, reaction time, etc. are not particularly limited as long as prenyl transferase (ORF11) can exhibit the activity of catalyzing the above reaction, but is preferably about 25 ° C. to 35 ° C. for 0.5 hour to 4 hours. The reaction is about an hour.
 また、化合物(XI)は、化合物(XI)を生成するamygdaliにおいて、化合物(XI)から式(XII)で示される化合物への反応を触媒するORF13の産生能を欠失させるべく、当該遺伝子(orf13)を破壊することによっても得ることができる。ホモロガスリコンビネーション等の手法によってORF13遺伝子を欠損させたamygdaliは、図1に示すように工程(k)の反応が遮断されるため、工程(k)以後の反応を行うことができない。その結果、化合物(XI)が培養液中に蓄積する。 In addition, compound (XI) is a compound of P.sub.1 that produces compound (XI). In Amygdali , the gene (orf13) can also be obtained by destroying the gene (orf13) so as to lack the ability to produce ORF13 that catalyzes the reaction from compound (XI) to the compound represented by formula (XII). P obtained by deficient ORF13 gene by a technique such as homo logger Sri combination. As shown in FIG. 1, the reaction of step (k) is blocked by amygdali , so that the reaction after step (k) cannot be performed. As a result, compound (XI) accumulates in the culture medium.
 ORF13遺伝子欠損amygdaliによる化合物(XI)の製造は、まず、当該欠損体を大量培養し、菌体を濾別した培養液を、酢酸エチル、またはメタノール添加酢酸エチル等の適当な溶媒で抽出する。抽出液を適量まで濃縮した後、飽和重曹水等を加えて分液し、有機相を得る。有機相を飽和食塩水等で洗浄後、濃縮し、再度酢酸エチル等を加えて加温溶解した後、室温放置することで、化合物(XI)を結晶として得ることができる。なお、かかる化合物(XI)の取得及び精製方法は一例であり、かかる方法に限定されるものではなく、当業界の技術常識に基づいて適宜変更することができる。 ORF13 gene deficient P. In the production of compound (XI) by amygdali , first, the deficient body is mass-cultured, and a culture solution obtained by filtering the cells is extracted with an appropriate solvent such as ethyl acetate or methanol-added ethyl acetate. After the extract is concentrated to an appropriate amount, saturated aqueous sodium hydrogen carbonate and the like are added and the mixture is separated to obtain an organic phase. The organic phase is washed with saturated brine and the like, concentrated, and again added with ethyl acetate and dissolved by heating, and then left at room temperature to give compound (XI) as crystals. The method for obtaining and purifying the compound (XI) is an example, and is not limited to such a method, and can be appropriately changed based on the common general technical knowledge in the art.
 なお、化合物(XI)は、BC Cなどの他のFC A類似化合物を合成するための出発化合物としても使用することができる。この意味で、本発明の方法による化合物(XI)の効率的な製造方法は有用である。 The compound (XI) can also be used as a starting compound for synthesizing other FC A-like compounds such as BC C. In this sense, an efficient method for producing compound (XI) by the method of the present invention is useful.
  (3-5)FC Aの製造方法
 図1に示すように、式(XIII)で示されるFC Aは、上記工程(a)~(g)、工程(h)、工程(i)及び工程(j)に加えて、下記工程(k)及び(l)を経ることで製造することができる。
(3-5) Method for Producing FC A As shown in FIG. 1, FC A represented by the formula (XIII) is produced by the steps (a) to (g), step (h), step (i) and step ( In addition to j), it can be produced through the following steps (k) and (l).
 11)工程(k):式(XII)で表される化合物の製造工程
 上記工程(j)により得られる化合物(XI)に、P450還元酵素およびNADHまたはNADPHの存在下、P450-5(ORF13)を作用させることにより、式(XII)で表される化合物(dideacetyl-FC A)を製造することができる。
11) Step (k): Step of producing compound represented by formula (XII) Compound (XI) obtained by the above step (j) is subjected to P450-5 (ORF13) in the presence of P450 reductase and NADH or NADPH. Is allowed to act to produce a compound represented by formula (XII) (dideacetyl-FC A).
 この反応は、例えば、異種発現により得られたORF13を含むミクロソーム画分を用いて行うことができる。具体的には、まず、ORF13をコードするcDNAをS. cerevisiae YPH500(his-、leu-、trp-、ura-、ade-、lys-)に導入し、ORF13遺伝子を発現させる。当該形質転換体からORF13を含むミクロソーム画分を調製し、当該ミクロソーム画分と、工程(j)で得られた化合物(XI)とを、P450還元酵素およびNADHまたはNADPHの存在下で、in vitroで反応させることによって、化合物(XII)を得ることができる。 This reaction can be performed, for example, using a microsomal fraction containing ORF13 obtained by heterologous expression. Specifically, first, a cDNA encoding ORF13 is obtained from S. cerevisiae . cerevisiae YPH500 (his-, leu-, trp-, ura-, ade-, lys-) is introduced to express the ORF13 gene. A microsomal fraction containing ORF13 is prepared from the transformant, and the microsomal fraction and the compound (XI) obtained in the step (j) are subjected to in vitro in the presence of P450 reductase and NADH or NADPH. To give compound (XII).
 ここで反応バッファーならびにそのpHおよび塩濃度は、P450-5(ORF13)が上記反応を触媒する活性を発揮できるものであればよく、特に制限されない。反応温度、反応時間等も、P450-5(ORF13)が上記反応を触媒する活性を発揮できるものであればよく、特に制限されない。 Here, the reaction buffer and its pH and salt concentration are not particularly limited as long as P450-5 (ORF13) can exhibit the activity of catalyzing the above reaction. The reaction temperature, reaction time, etc. are not particularly limited as long as P450-5 (ORF13) can exhibit the activity of catalyzing the above reaction.
  12)工程(l):式(XIII)で表される化合物の製造工程
 上記工程(k)で得られる化合物(XII)に、アセチル基供与体の存在下、アセチルトランスフェラーゼORF9及びORF12を作用させることにより、式(XIII)で表される化合物(FC A)を製造することができる。
12) Step (l): Production step of compound represented by formula (XIII): Acetyltransferase ORF9 and ORF12 are allowed to act on compound (XII) obtained in step (k) in the presence of an acetyl group donor. Thus, the compound (FC A) represented by the formula (XIII) can be produced.
 この反応は、ORF9及び12そのものを使用してもよいし、また例えばORF9及び12のリコンビナントタンパク質を用いて行うこともできる。具体的には、HisタグやMBPタグ等の塩基配列を含むDNAとORF9をコードするcDNA、及びORF12をコードするcDNAをそれぞれ結合させて、大腸菌等の宿主をそれぞれで形質転換し、リコンビナントタンパク質を発現させる。ORF9と12のそれぞれのタグ結合タンパク質をタグ結合タンパク質精製カラム等を使用して、常法に従って精製する。精製した、ORF9リコンビナントタンパク質及びORF12リコンビナントタンパク質をacetyl-coenzyme A等のアセチル基供与体の存在下で、化合物(XII)と反応させる。ここで用いる反応バッファーは、アセチルトランスフェラーゼ(ORF9及び12)が上記反応の触媒活性を発揮できるものであればよく、特に制限されないが、好ましくは、リン酸バッファーであり、pHは7~8程度である。反応温度や反応時間等も、アセチルトランスフェラーゼ(ORF9及び12)が上記反応を触媒する活性を発揮できるものであればよく、特に制限されないが、好ましくは25℃~35℃程度で、12時間~24時間程度の反応である。 This reaction may be performed using ORFs 9 and 12 themselves, or by using, for example, recombinant proteins of ORFs 9 and 12. Specifically, a DNA containing a base sequence such as a His tag or an MBP tag and a cDNA encoding ORF9 and a cDNA encoding ORF12 are respectively combined, and a host such as Escherichia coli is transformed with the recombinant protein. To express. Each tag binding protein of ORF 9 and 12 is purified according to a conventional method using a tag binding protein purification column or the like. The purified ORF9 recombinant protein and ORF12 recombinant protein are reacted with compound (XII) in the presence of an acetyl group donor such as acyl-coenzyme A. The reaction buffer used here is not particularly limited as long as the acetyltransferase (ORF 9 and 12) can exhibit the catalytic activity of the above reaction, but is preferably a phosphate buffer and has a pH of about 7 to 8. is there. The reaction temperature, reaction time, and the like are not particularly limited as long as the acetyltransferase (ORF 9 and 12) can exhibit the activity of catalyzing the above reaction, but it is preferably about 25 ° C. to 35 ° C. for 12 hours to 24 hours. The reaction is about an hour.
  (4)FC Aの生合成中間体の製造に使用する真菌:遺伝子欠損P. amygdali
 本発明は、P450-2(ORF5)、グリコシルトランスフェラーゼ(ORF6)、P450-3(ORF7)、メチルトランスフェラーゼ(ORF8)、アセチルトランスフェラーゼ(ORF9)、P450-4(ORF10)、プレニルトランスフェラーゼ(ORF11)、アセチルトランスフェラーゼ(ORF12)及びP450-13(ORF13)からなる群から選択されるいずれか1の酵素の産生能を欠失した糸状菌を提供する。
(4) Fungi used for the production of FC A biosynthetic intermediate: amygdali
The present invention relates to P450-2 (ORF5), glycosyltransferase (ORF6), P450-3 (ORF7), methyltransferase (ORF8), acetyltransferase (ORF9), P450-4 (ORF10), prenyltransferase (ORF11), acetyl Provided is a filamentous fungus that lacks the ability to produce any one enzyme selected from the group consisting of transferase (ORF12) and P450-13 (ORF13).
 好ましい糸状菌は、これらの酵素のうち、化合物(I)から化合物(IX)への反応を触媒するP450-4(ORF10)、または化合物(XI)から化合物(XII)への反応を触媒するP450-5(ORF13)の酵素の産生能が欠失したものであり、前者の糸状菌であれば、化合物(I)を体内で効率よく製造し蓄積することができ、また後者の糸状菌であれば、化合物(XI)を体内で効率よく製造し蓄積することができる。 Among these enzymes, preferred filamentous fungi are P450-4 (ORF10) that catalyzes the reaction from compound (I) to compound (IX), or P450 that catalyzes the reaction from compound (XI) to compound (XII). -5 (ORF13) is lacking in the ability to produce the enzyme, and the former filamentous fungus can efficiently produce and accumulate compound (I) in the body, and the latter filamentous fungus. Thus, compound (XI) can be efficiently produced and accumulated in the body.
 かかる糸状菌としては、図1に示す一連の化合物を生合成することのできるものであり、かかる糸状菌として、好ましくはPhomopsisに属する菌、より好ましくはPhomopsis amygdaliを挙げることができる。 As such a filamentous fungus, a series of compounds shown in FIG. 1 can be biosynthesized, and as such a filamentous fungus, a bacterium belonging to Phomopsis is preferable, and Phomopsis amygdali is more preferable.
 P. amygdaliは、ATCC(American Type Culture Collection:米国)に寄託されている、ATCC 42412株、ATCC 42610株;農業生物資源ジーンバンク(日本)に寄託されているMAFF番号625040、625041、625042、625043、625044等の株を用いることができる。 P. Amygdali is deposited with the ATCC (American Type Culture Collection: USA), ATCC 42412 strain, ATCC 42610 strain; MAFF numbers 62040, 625041, 625042, 625043, 625044 deposited with the Agricultural Bioresource Genebank (Japan). Etc. can be used.
 上記のいずれか1の酵素の産生能を欠失した糸状菌は、上記いずれか1の酵素をコードする遺伝子が発現しないか、または発現してもその翻訳産物が所望の触媒活性を発揮しないように、当該遺伝子が破壊されてなるものであり、かかる菌を、遺伝子欠損株若しくは遺伝子欠損amygdaliと称する。具体的には、ORF10をコードする遺伝子を欠損したamygdaliの場合、ORF10遺伝子欠損amygdaliという。 A filamentous fungus lacking the ability to produce any one of the above-mentioned enzymes does not express the gene encoding any one of the above-mentioned enzymes, or the translation product does not exhibit the desired catalytic activity even if expressed. The gene is disrupted, and such a bacterium is designated as a gene-deficient strain or a gene-deficient P. It is called amygdali . Specifically, lacking genes encoding ORF10 P. In the case of amygdali , ORF10 gene-deficient P. It is called amygdali .
 遺伝子欠損amygdaliには、自然突然変異体、エチジウムブロマイドのような変異原性剤等で遺伝子変異を誘導した変異体、遺伝子組換えにより人工的に作製した変異体が含まれる。 Gene deficient P. Amygdali includes natural mutants, mutants in which gene mutations are induced by mutagenic agents such as ethidium bromide, and mutants artificially produced by gene recombination.
 例えば、人工的に作製される遺伝子欠損amygdaliは、ホモロガスリコンビネーション等により製造することができる。具体的には、amygdaliの中で発現するプロモーターの下流にハイグロマイシン耐性遺伝子、ピューロマイシン耐性遺伝子等を結合させ、さらにその薬剤耐性遺伝子の下流にamygdaliの中で機能を発揮するターミネーターを結合させたものを、ベクターに挿入する。ここでamygdaliの中で発現するプロモーターとしては、特に制限されないがtrpCプロモーターが好ましい。. amygdaliの中で機能を発揮するターミネーターとしては、特に制限されないがtrpCターミネーターが好ましい。 For example, artificially prepared gene-deficient P 2 . Amygdali can be produced by homologous recombination or the like. Specifically, P. A hygromycin resistance gene, a puromycin resistance gene, etc. are ligated downstream of the promoter expressed in Amygdali , and P. coli is further downstream of the drug resistance gene. In Amygdali , a terminator that exhibits a function is bound and inserted into a vector. Here, P. The promoter expressed in amygdali is not particularly limited, but the trpC promoter is preferable. P. The terminator that exhibits the function in amygdali is not particularly limited, but a trpC terminator is preferable.
 ベクターは、特に制限されないが、3~10kb程度のプラスミドが好ましく、大腸菌で形質転換でき、アンピシリン等の抗生剤耐性遺伝子を有していることが好ましい。プロモーター-薬剤耐性遺伝子-ターミネーター結合DNAの上流に、欠損させたい遺伝子の上流域の塩基配列2~5kbを有するDNAを組み込み、プロモーター-薬剤耐性遺伝子-ターミネーター結合DNAの下流には、欠損させたい遺伝子の下流域の塩基配列2~5kbを有するDNAを組み込む。この欠損させたい遺伝子の上流域及び下流域の塩基配列を含むDNAは、amygdaliのゲノムDNAを鋳型としたPCR反応により取得することができる。DNAの組み込みは、制限酵素による切断、及びライゲーションを組み合わせる常法にしたがって行うことができる。この操作によって得られたベクターをホモロガスリコンビネーションベクターと呼ぶ。得られた、ホモロガスリコンビネーションベクターを、大腸菌に形質転換し、大量培養した後、常法にしたがってラージスケールのプラスミド調製を行う。 The vector is not particularly limited, but a plasmid of about 3 to 10 kb is preferable, it can be transformed with E. coli, and preferably has an antibiotic resistance gene such as ampicillin. A gene having a base sequence of 2 to 5 kb upstream of the gene to be deleted is incorporated upstream of the promoter-drug resistance gene-terminator binding DNA, and the gene to be deleted downstream of the promoter-drug resistance gene-terminator binding DNA A DNA having a base sequence of 2 to 5 kb in the downstream region is incorporated. DNA containing the base sequence of the upstream region and the downstream region of the gene to be deleted is P.I. It can be obtained by PCR reaction using amygdali genomic DNA as a template. DNA can be integrated according to a conventional method combining cleavage with a restriction enzyme and ligation. The vector obtained by this operation is called a homologous recombination vector. The obtained homologous recombination vector is transformed into Escherichia coli and cultured in large quantities, and then a large-scale plasmid is prepared according to a conventional method.
 斯くして得られた、ホモロガスリコンビネーションベクターを、amygdaliに、プロトプラスト/ポリエチレングリコール法等で導入する。遺伝子導入したamygdaliを、ホモロガスリオコンビネーションベクターに含まれる薬剤耐性遺伝子に適した薬剤を含む培地で培養し、標的遺伝子を欠損させた。培地に含まれる薬剤濃度は、5~100μg/mlが好ましく、より好ましくは、30~70μg/mlである。薬剤を含む培地で3~7日程度培養することにより、遺伝子欠損amygdaliを得ることができる。 The homologous recombination vector thus obtained was designated as P. Introduced into amygdali by the protoplast / polyethylene glycol method or the like. The gene-transferred P.I. Amygdali was cultured in a medium containing a drug suitable for the drug resistance gene contained in the homologous combination vector to delete the target gene. The concentration of the drug contained in the medium is preferably 5 to 100 μg / ml, more preferably 30 to 70 μg / ml. By culturing in a medium containing a drug for about 3 to 7 days, gene-deficient P 2 . amygdali can be obtained.
 遺伝子の欠損は、目的遺伝子の発現が不能か、若しくは発現しても所望の酵素活性を発揮しないように改変されていればよく、その限りにおいて、当該目的遺伝子の全体に起こってもよく、また一部だけに起こってもよい。 The gene deficiency may be such that the target gene cannot be expressed or has been modified so that it does not exert the desired enzyme activity even if expressed, and as long as it is expressed, it may occur throughout the target gene. It may happen only to a part.
 以下、実施例を用いて、本件発明の作用及び効果をより明確に説明する。但し、本件発明は、かかる実施例によって何ら制限されるものではない。
<一般操作>
 PCRフラグメントのシークエンス解析は、自動DNAシークエンサー(Li-Cor,model 4000L)を用いて、サンガーらによるダイデオキシターミネーター法で行った。細胞の破砕は、Ultrasonic Disruptor(TOMY,UD-200)を用いて行った。
Hereinafter, the operation and effect of the present invention will be described more clearly using examples. However, this invention is not restrict | limited at all by this Example.
<General operation>
Sequence analysis of PCR fragments was performed by the dideoxy terminator method by Sanger et al. Using an automatic DNA sequencer (Li-Cor, model 4000L). Cell disruption was performed using an Ultrasonic Distortor (TOMY, UD-200).
 タンパク精製過程における各試料の解析は、SDS-ポリアクリルアミド-ゲル電気泳動法(SDS-PAGE)により行い、クマシー染色によってタンパク質を検出した。タンパク質濃度は、牛血清アルブミンをスタンダードとして、ブラッドフォード法により決定した。 Analysis of each sample in the protein purification process was performed by SDS-polyacrylamide-gel electrophoresis (SDS-PAGE), and the protein was detected by Coomassie staining. The protein concentration was determined by the Bradford method using bovine serum albumin as a standard.
  <菌株、ゲノムDNA抽出、RNA抽出、プラスミド抽出および大腸菌への遺伝子導入>
 菌体としてP. amygdaliを用い、これからゲノムDNA及びcDNAを調製した。
<Bacterial strain, genomic DNA extraction, RNA extraction, plasmid extraction and gene transfer into E. coli>
As a microbial cell, P.I. Genomic DNA and cDNA were prepared from this using amygdali .
 まず当該菌株を、5%ショ糖、0.7%ソイフラワー、0.5% KHPOおよび0.1% MgSO・7HOを含む100mlの培地で、25℃で4日間、振盪培養(120 strokes/分)した。その後、前培養液6mlを0.5% Yeast Extra(オリエンタル酵母)、5%ショ糖、0.5% KHPOおよび0.1% MgSO・7HOを含む100mlの培地に接種して25℃で6日間、振盪培養(120 strokes/分)した。 First, the strain was shaken in 100 ml medium containing 5% sucrose, 0.7% soy flour, 0.5% KH 2 PO 4 and 0.1% MgSO 4 .7H 2 O at 25 ° C. for 4 days. Cultured (120 strokes / min). Thereafter, 6 ml of the preculture solution was inoculated into 100 ml of medium containing 0.5% Yeast Extra (oriental yeast), 5% sucrose, 0.5% KH 2 PO 4 and 0.1% MgSO 4 .7H 2 O. Then, shaking culture (120 strokes / min) was carried out at 25 ° C. for 6 days.
 ゲノムDNAの抽出は、次のように行った。 Genomic DNA was extracted as follows.
 まず、10mlの液体培地を液体窒素で直ちに凍らせ、乳鉢と乳棒で20分間すりつぶした。すりつぶした菌体を、50mlのプラスチックチューブに移し、20mlの溶解バッファー(50mM Tris-HCl pH 8.0、5mM EDTA、1% SDSおよび0.1% NaCl)と混合した。80℃で10分間インキュベートした後、冷却し、溶解液をプロティナーゼK(Sigma Aldrich、1mg/ml)及びRNase A(Takara Bio Inc.、0.1mg/ml)で30℃、1時間処理した。次いで、DNA溶液をフェノール-クロロホルム法で除タンパク後、イソプロパノールで沈殿回収した。沈殿DNAを70%エタノールで洗浄し、TEバッファーに再溶解して-20℃で保存した。 First, 10 ml of liquid medium was immediately frozen with liquid nitrogen and ground with a mortar and pestle for 20 minutes. The ground cells were transferred to a 50 ml plastic tube and mixed with 20 ml of lysis buffer (50 mM Tris-HCl pH 8.0, 5 mM EDTA, 1% SDS and 0.1% NaCl). After incubating at 80 ° C. for 10 minutes, the solution was cooled, and the lysate was treated with proteinase K (Sigma Aldrich, 1 mg / ml) and RNase A (Takara Bio Inc., 0.1 mg / ml) at 30 ° C. for 1 hour. Subsequently, the DNA solution was deproteinized by the phenol-chloroform method and then precipitated and collected with isopropanol. The precipitated DNA was washed with 70% ethanol, redissolved in TE buffer and stored at -20 ° C.
 Total RNAの調製は、次のように行った。 Total RNA was prepared as follows.
 まず、菌体をプラスチックフィルターでろ過した後、ペーパータオルの上で乾燥させ、次いで液体窒素で凍らせ、SK-mill (Tokken Inc.、 Japan)でホモジナイズした。菌株からのTotal RNAの抽出は、TRIzol(登録商標)reagent(Invitrogen,US)を用い、添付のプロトコールにしたがって行った。 First, the cells were filtered through a plastic filter, dried on a paper towel, then frozen in liquid nitrogen, and homogenized with SK-mill (Token Inc., Japan). Extraction of Total RNA from the strain was performed using TRIzol (registered trademark) reagent (Invitrogen, US) according to the attached protocol.
 5’末端又は3’末端を含むcDNAフラグメントは、SMARTTM(登録商標)RACE cDNA Amplification Kit(Clontech,US)とGeneRacer(登録商標)Kit(Invitrogen)を使って得た。 A cDNA fragment containing the 5 ′ end or 3 ′ end was obtained using SMART RACE cDNA Amplification Kit (Clontech, US) and GeneRacer® Kit (Invitrogen).
 大腸菌からのプラスミドは、Qiagen(登録商標) plasmid kitを用いて調製した。全ての制限酵素、T4リガーゼ、ウシ腸由来アルカリホスファターゼは、東洋紡(日本)のものを使用し、それぞれ製品に添付されているプロトコールにしたがって使用した。エレクトロポレーションによる大腸菌へのプラスミドの導入は、BTX ECM 600 electroporation system(Biotechnologies and Experimental Research)を用いて標準条件で行った。 Plasmids from E. coli were prepared using Qiagen (registered trademark) plasmid kit. All restriction enzymes, T4 ligase, and calf intestinal alkaline phosphatase were from Toyobo (Japan), and were used according to the protocol attached to the product. Introduction of the plasmid into E. coli by electroporation was carried out under standard conditions using a BTX ECM 600 electroporation system (Biotechnologies and Experimental Research).
  実施例1
  <P. amygdaliのドラフトゲノム配列の決定>
 P. amygdaliのゲノムの塩基配列のシークエンスは、GS FLX(Roche Diagnostics Japan, Tokyo)を使用したホールゲノムシークエンス法による解析により行った。実際の解析は、Takara Bio Inc.(Shiga、Japan)に委託した。
Example 1
< P. Determination of draft genome sequence of amygdali >
P. The sequence of the base sequence of the Amygdali genome was analyzed by whole genome sequencing using GS FLX (Roche Diagnostics Japan, Tokyo). Actual analysis was performed by Takara Bio Inc. (Shiga, Japan).
 はじめに、シングルエンド解析を行った(総解析塩基数225,673,483bp及び総コンティグ数35,997)。続いて、ペアエンド解析を行った(最終解析塩基数393,803,480bp及び最終コンティグ13,294)。 First, single-ended analysis was performed (total number of analyzed bases 225,673,483 bp and total number of contigs 35,997). Subsequently, paired-end analysis was performed (final analysis base number 393,803,480 bp and final contig 13,294).
 我々は、以前に、FC Aと構造的に類似するBCを産生する菌体から、チトクロームP450遺伝子(BC-Orf1)をクローニングし、性状決定を行い、図1に示すfusicocca-2,10(14)-dieneの8β位の水酸化を触媒することを確認した(Minami A他、Bioorg. Med. Chem. Lett.、Vol. 19、p870-874、2009;Hashimoto M他、Bioorg.Med.Chem.Lett.、Vol.19、p5640-5643、2009)。8β位が水酸化された化合物(fusicocca-2,10(14)-dien-8β-ol)は、BC及びFC Aの生合成に共通する中間体であると考えられることから、FC A産生体であるP. amygdaliも、上記BC-Orf1のオーソログを有していると考えられる。そこで、我々はP. amygdaliのゲノムからこのオーソログを検索し、コンティグNo.12716(長さ2.9kb)の中から、該当する特定の遺伝子P450-2(orf5)を単離した。この遺伝子産物(以下、これを「P450-2(ORF5)」という)は、上記BC-Orf1の遺伝子産物のアミノ酸配列と62%の同一性を示した。 We previously cloned cytochrome P450 gene (BC-Orf1) from cells producing BC structurally similar to FC A, performed characterization, and showed fusicocca-2, 10 (14 ) -Diene has been confirmed to catalyze hydroxylation of the 8β position (Minami A et al., Bioorg. Med. Chem. Lett., Vol. 19, p870-874, 2009; Hashimoto M et al., Bioorg. Med. Chem. Lett., Vol. 19, p5640-5643, 2009). The compound in which the 8β-position is hydroxylated (fusicocca-2,10 (14) -dien-8β-ol) is considered to be an intermediate common to the biosynthesis of BC and FC A. P. Amygdali is also considered to have the ortholog of BC-Orf1. So, we P. This ortholog is searched from the genome of Amygdali . The corresponding specific gene P450-2 (orf5) was isolated from 12716 (length 2.9 kb). This gene product (hereinafter referred to as “P450-2 (ORF5)”) showed 62% identity with the amino acid sequence of the BC-Orf1 gene product.
 このような検索を重ねることで、P. amygdaliのゲノムから9遺伝子(4つのチトクロームP450[P450-2(orf5)、P450-3(orf7)、P450-4(orf10)、及びP450-5(orf13)]、2つのアセチルトランスフェラーゼ[アセチルトランスフェラーゼ(orf9)、及びアセチルトランスフェラーゼ(orf12)]、メチルトランスフェラーゼ(orf8)、グリコシルトランスフェラーゼ(orf6)及びプレニルトランスフェラーゼ(orf11))を含む遺伝子クラスター(21kb)を同定した(図2(B))。 By repeating such searches, P.I. 9 gene from the genome of amygdali (4 one cytochrome P450 [P450-2 (orf5), P450-3 (orf7), P450-4 (orf10), and P450-5 (orf13)], 2 two acetyltransferase [acetyltransferase ( orf9), and acetyltransferase (orf12)], methyltransferase (orf8), glycosyltransferase (orf6) and prenyltransferase (orf11)) were identified as a gene cluster (21 kb) (FIG. 2 (B)).
 チトクロームP450-2遺伝子(P450-2(orf5))の塩基配列及びその遺伝子産物(P450-2(ORF5))のアミノ酸配列をそれぞれ配列番号1および2に;グリコシルトランスフェラーゼ遺伝子(グリコシルトランスフェラーゼ(orf6))の塩基配列及びその遺伝子産物(グリコシルトランスフェラーゼ(ORF6))のアミノ酸配列をそれぞれ配列番号3および4に;P450-3遺伝子(P450-3(orf7))の塩基配列及びその遺伝子産物(P450-3(ORF7))のアミノ酸配列をそれぞれ配列番号5および6に;メチルトランスフェラーゼ遺伝子(メチルトランスフェラーゼ(orf8))の塩基配列及びその遺伝子産物(メチルトランスフェラーゼ(ORF8))のアミノ酸配列をそれぞれ配列番号7および8に;アセチルトランスフェラーゼ遺伝子(アセチルトランスフェラーゼ(orf9))の塩基配列及びその遺伝子産物(アセチルトランスフェラーゼ(ORF9))のアミノ酸配列をそれぞれ配列番号9および10に;P450-4遺伝子(P450-4(orf10))の塩基配列及びその遺伝子産物(P450-4(ORF10))のアミノ酸配列をそれぞれ配列番号11および12に;プレニルトランスフェラーゼ遺伝子(プレニルトランスフェラーゼ(orf11))の塩基配列及びその遺伝子産物(プレニルトランスフェラーゼ(ORF11))のアミノ酸配列をそれぞれ配列番号13および14;アセチルトランスフェラーゼ(アセチルトランスフェラーゼ(orf12))の塩基配列及びその遺伝子産物(アセチルトランスフェラーゼ(ORF12))のアミノ酸配列をそれぞれ配列番号15および16;P450-5遺伝子(P450-5(orf13))の塩基配列及びその遺伝子産物(P450-5(ORF13))のアミノ酸配列をそれぞれ配列番号17および18に示す。 The nucleotide sequence of the cytochrome P450-2 gene (P450-2 (orf5)) and the amino acid sequence of the gene product (P450-2 (ORF5)) are shown in SEQ ID NOs: 1 and 2, respectively; glycosyltransferase gene (glycosyltransferase (orf6)) And the amino acid sequence of its gene product (glycosyltransferase (ORF6)) in SEQ ID NOs: 3 and 4, respectively; the nucleotide sequence of the P450-3 gene (P450-3 (orf7)) and its gene product (P450-3 ( The amino acid sequences of ORF7)) are shown in SEQ ID NOs: 5 and 6, respectively. The nucleotide sequence of the methyltransferase gene (methyltransferase (orf8)) and the amino acid sequence of the gene product (methyltransferase (ORF8)) are respectively shown. SEQ ID NOs: 7 and 8; the nucleotide sequence of the acetyltransferase gene (acetyltransferase (orf9)) and the amino acid sequence of the gene product (acetyltransferase (ORF9)) in SEQ ID NOs: 9 and 10, respectively; the P450-4 gene (P450- 4 (orf10)) and the amino acid sequence of its gene product (P450-4 (ORF10)) are shown in SEQ ID NOs: 11 and 12, respectively; the nucleotide sequence of the prenyltransferase gene (prenyltransferase (orf11)) and its gene product ( The amino acid sequence of prenyltransferase (ORF11)) is SEQ ID NO: 13 and 14, respectively; the nucleotide sequence of acetyltransferase (acetyltransferase (orf12)) and the gene product thereof The amino acid sequence of acetyltransferase (ORF12)) is SEQ ID NO: 15 and 16, respectively; the base sequence of the P450-5 gene (P450-5 (orf13)) and the amino acid sequence of its gene product (P450-5 (ORF13)) The numbers 17 and 18 are shown.
  実施例2
  <P450-2(ORF5)の性状決定>
 Hashimoto Mらの論文(Bioorg.Med.Chem.Lett.、Vol.19、p5640-5643、2009)に記載されている方法に従って、異種発現実験(heterologous expression experiment)によって、チトクロームP450-2(ORF5)の機能を確認した。
Example 2
<Determining the properties of P450-2 (ORF5)>
According to the method described in the paper of Hashimoto M et al. (Bioorg. Med. Chem. Lett., Vol. 19, p5640-5543, 2009), a heterologous expression experiment (cytochrome P450-2 (ORF5)) was performed. Confirmed the function of.
 P450-2のコード領域は、P. amygdaliのゲノムDNAからSMARTTM RACE法で得たcDNAを鋳型とし、5’-CATGGATCCGATGAGCACGCTACAGGGGCTCTTGG-3’(配列番号21)及び5’-GGACTCGAGTTAAGCTTCCACCGTAACACGGATAC-3’(配列番号22)のプライマーセットを用いて約1.6kbの全長cDNAフラグメントを増幅した。 Coding region of the P450-2 is, P. 5'-CATGGATCCGATGAGCACGCTACAGGGGGCTCTTGG-3 '(SEQ ID NO: 21) and 5'-GGACTCGAGTATAGCTTCCCACCGATAACACGAGATAC-3' (SEQ ID NO: 22) primer set using the cDNA obtained from the genomic DNA of amygdali by the SMART RACE method as a template A .6 kb full length cDNA fragment was amplified.
 増幅したフラグメントをプラスミドにサブクローニングし、シークエンスを確認した後、そのBamHI-XhoI消化フラグメントをpESC-URAベクター(アジレント・テクノロジー社)に挿入して、pESC-URA-R450-2を構築した。 The amplified fragment was subcloned into a plasmid, and after confirming the sequence, the BamHI-XhoI digested fragment was inserted into a pESC-URA vector (Agilent Technology) to construct pESC-URA-R450-2.
 チトクロームP450の機能解析には、チトクロームP450還元酵素が必須である。そこで、P450還元酵素(配列番号20)を単離するため、P. amygdaliのデータベースからコンティグNo.00872内のチトクロームP450還元酵素を検索し、PCRによって候補遺伝子を増幅した。約2.1kbの全長cDNA(配列番号19)を、SMARTTM RACE法で得たcDNAを鋳型として、5’-CCGGAATTCGGATCCCATGGCTGAACTCGACACTCTG-3’(配列番号23)及び5’-CCGAATTCGTCGACCTATGACCAGACATCCTCCTG-3’(配列番号24)のプライマーセットを用いて増幅した。 For functional analysis of cytochrome P450, cytochrome P450 reductase is essential. In order to isolate P450 reductase (SEQ ID NO: 20), P. From the database of amygdali , contig no. The cytochrome P450 reductase in 00872 was searched and the candidate gene was amplified by PCR. About 2.1 kb of full-length cDNA (SEQ ID NO: 19) was obtained by using the cDNA obtained by the SMART RACE method as a template. ) Was used for amplification.
 増幅したフラグメントをプラスミドにサブクローニングし、チトクロームP450還元酵素のシークエンスを確認した後、EcoRI-BglII-消化したフラグメントを同じ酵素処理したpESC-URA-R450-2に挿入した。次いで、fusicocca-2,10(14)-diene合成酵素遺伝子(サイクラーゼ(orf1))を有するプラスミドpESC-TRP-orf8-ADHと一緒にS.cerevisiae YPH500(his、leu、trp、ura、ade、lys)(アジレント・テクノロジー社)に導入した(Hashimoto M他、Bioorg.Med.Chem.lett.、Vol.19、p5640-5643、2009)。 After the amplified fragment was subcloned into a plasmid and the cytochrome P450 reductase sequence was confirmed, the EcoRI-BglII-digested fragment was inserted into the same enzyme-treated pESC-URA-R450-2. The S. cerevisiae is then combined with the plasmid pESC-TRP-orf8-ADH carrying the fusicocca-2,10 (14) -diene synthase gene (cyclase (orf1)). cerevisiae YPH500 (his , leu , trp , ura , ade , lys ) (Agilent Technology) (Hashimoto M et al., Bioorg. Med. Chem. lett., Vol. 19, p5640- 5643, 2009).
 GC/MS解析(分析条件は非特許文献2参照)によって、前記形質転換体により産生される化合物の構造解析を行った。 Structural analysis of the compound produced by the transformant was performed by GC / MS analysis (see Non-Patent Document 2 for analysis conditions).
 前記形質転換体を培養し、培養した形質転換体のペンタン抽出液をHPLCによって解析した(図3A)。その結果、図3Aの上図[+P450-2]に示すように、1つの特定のピークが検出され、その保持時間から、真正のfusicocca-2,10(14)-dien-8β-olが生成したことが確認された(図3(B))。 The transformant was cultured, and the pentane extract of the cultured transformant was analyzed by HPLC (FIG. 3A). As a result, as shown in the upper diagram [+ P450-2] of FIG. 3A, one specific peak is detected, and authentic fusicoca-2,10 (14) -dien-8β-ol is generated from the retention time. It was confirmed that (Figure 3 (B)).
 このことから、P450-2(ORF5)は、図1中、fusicocca-2,10(14)-dieneに作用してfusicocca-2,10(14)-dien-8β-olを生成する作用を有する酵素であること、つまり、図1に示す一連の反応において、P450-2(ORF5)はfusicocca-2,10(14)-dieneからfusicocca-2,10(14)-dien-8β-olを生成する酵素として有用であることが確認された。 Therefore, P450-2 (ORF5) acts on fusicocca-2,10 (14) -diene in FIG. 1 to produce fusicocca-2,10 (14) -dien-8β-ol. In other words, P450-2 (ORF5) generates fusicocca-2,10 (14) -dien-8β-ol from fusicocca-2,10 (14) -diene in the series of reactions shown in FIG. It was confirmed to be useful as an enzyme.
 なお、本発明者らは、既にP. amygdaliのゲノムから、上記サイクラーゼ(ORF1)の遺伝子とともに、ジオキシゲナーゼ(ORF2)、及び短鎖デヒドロゲナーゼレダクターゼ(ORF4)の遺伝子を単離同定している(非特許文献2および非特許文献3)。 Note that the present inventors have already described P.I. The gene of dioxygenase (ORF2) and short chain dehydrogenase reductase (ORF4) has been isolated and identified from the cyclase (ORF1) gene from the genome of amygdali (Non-patent document 2 and Non-patent document 3).
 サイクラーゼ(ORF1)の遺伝子の塩基配列とその遺伝子産物のアミノ酸配列をそれぞれ配列番号47及び48に;P450-1(ORF3)の遺伝子の塩基配列とその遺伝子産物のアミノ酸配列をそれぞれ配列番号49及び50に;ジオキシゲナーゼ(ORF2)の遺伝子の塩基配列とその遺伝子産物のアミノ酸配列をそれぞれ配列番号51及び52に;短鎖デヒドロゲナーゼレダクターゼ(ORF4)の遺伝子の塩基配列とその遺伝子産物のアミノ酸配列をそれぞれ配列番号53及び54に示す。 The nucleotide sequence of the cyclase (ORF1) gene and the amino acid sequence of its gene product are shown in SEQ ID NOs: 47 and 48, respectively. The nucleotide sequence of the gene of P450-1 (ORF3) and the amino acid sequence of its gene product are shown in SEQ ID NOs: 49 and 50, respectively. The nucleotide sequence of the gene for dioxygenase (ORF2) and the amino acid sequence of the gene product are respectively represented by SEQ ID NOs: 51 and 52; the nucleotide sequence of the gene for short-chain dehydrogenase reductase (ORF4) and the amino acid sequence of the gene product are respectively sequenced The numbers 53 and 54 are shown.
 図1に示すように、これらの遺伝子またはその遺伝子産物を用いることで、上記で得られたfusicocca-2,10(14)-dien-8β-olを基質として、fusicocca-1,10(14)-diene-8β,16-diolを製造することができる。具体的には、fusicocca-2,10(14)-dien-8β-olにP450-1(ORF3)を作用させることでfusicocca-2,10(14)-diene-8β,16-diolが生成し、これにジオキシゲナーゼ(ORF2)を作用させることで8β-hydroxyfusicocca-1,10(14)-diene-16-alが生成し、さらにこれに短鎖デヒドロゲナーゼレダクターゼ(ORF4)を作用させることでfusicocca-1,10(14)-diene-8β,16-diolを得ることができる。 As shown in FIG. 1, by using these genes or gene products thereof, fusicocca-1,10 (14) using fusicocca-2,10 (14) -dien-8β-ol obtained above as a substrate. -Diene-8β, 16-diol can be produced. Specifically, fusicocca-2,10 (14) -diene-8β, 16-diol is produced by causing P450-1 (ORF3) to act on fusicocca-2,10 (14) -dien-8β-ol. By reacting this with dioxygenase (ORF2), 8β-hydroxyfusicoccca-1,10 (14) -diene-16-al is produced, and further by reacting with short chain dehydrogenase reductase (ORF4), fusicoca- 1,10 (14) -diene-8β, 16-diol can be obtained.
  実施例3
 <P450-1(ORF3)の単離>
 P. amygdaliのゲノムからSMARTTM RACE法で得たcDNAを鋳型としP450-3遺伝子(P450-1(orf3))を有するフラグメントを5’-GTCGACATGATAGGGGTATGCGGATTCCAGTG-3’(配列番号57)及び5’-AAGCTTCTATTGTCCCTCACGACTTTTGAAG-3’(配列番号58)のプライマーセットを用いて増幅しpGEMT-Easy vector(プロメガ)に挿入した。P450-1(orf3)のシークエンスを確認した後、P450-1のcDNAを制限酵素処理により切り出し、pESC-HIS(アジレント・テクノロジー社)にライゲーションした。斯くして構築したpESC-450-3をS. cerevisiae YPH500(his、leu-、trp、ura、adeおよびlys)(アジレント・テクノロジー社)に導入した。
Example 3
<Isolation of P450-1 (ORF3)>
P. The cDNA obtained from the genome of amygdali in SMART TM RACE method fragments with P450-3 gene as a template (P450-1 (orf3)) 5'- GTCGACATGATAGGGGTATGCGGATTCCAGTG-3 '( SEQ ID NO: 57) and 5'-AAGCTTCTATTGTCCCTCACGACTTTTGAAG-3 It was amplified using the primer set of '(SEQ ID NO: 58) and inserted into pGEMT-Easy vector (Promega). After confirming the sequence of P450-1 (orf3), the cDNA of P450-1 was excised by restriction enzyme treatment and ligated to pESC-HIS (Agilent Technology). Thus the pESC-450-3, which was constructed S. cerevisiae YPH500 (his , leu − − , trp , ura , ade and lys ) (Agilent Technology).
 P450-1は、Hashimoto M他(Bioorg.Med.Chem.Lett.、Vol.19、p5640-5643、2009)で報告した、BC-ORF7と相同性が高いため、BC-ORF7と同様の活性を有することが推測される。 P450-1 is highly homologous to BC-ORF7 reported by Hashimoto M et al. (Bioorg. Med. Chem. Lett., Vol. 19, p5640-5543, 2009), and therefore has the same activity as BC-ORF7. Presumed to have.
  実施例4
 <P450-3(ORF7)の性状決定>
 P. amygdaliのゲノムからSMARTTM RACE法で得たcDNAを鋳型としP450-3遺伝子(P450-3(orf7))を有する1.5kbのフラグメントを5’-ATGCTCTCCACCATGGACACCGTGG-3’(配列番号25)及び5’-TCAACCTGGTAACTTAACTTCCTCTGC-3’(配列番号26)のプライマーセットを用いて増幅しpGEMT-Easy vector(プロメガ)に挿入した。P450-3(orf7)のシークエンスを確認した後、SpeI-EcoRIで消化したフラグメントを、同じ制限酵素で消化したpESC-HIS(アジレント・テクノロジー社)にライゲーションした。斯くして構築したpESC-450-3をS. cerevisiae YPH500(his、leu-、trp、ura、adeおよびlys)(アジレント・テクノロジー社)に導入した。
Example 4
<Determining properties of P450-3 (ORF7)>
P. A 1.5 kb fragment containing the P450-3 gene (P450-3 (orf7)) as a template using cDNA obtained from the genome of amygdali by the SMART RACE method as 5′-ATGCTCTCCCACCATGACACCGTGG-3 ′ (SEQ ID NO: 25) and 5 ′ -TCAACCTGGTACTACTACTACTTCCTCTGC-3 '(SEQ ID NO: 26) was used for amplification and insertion into pGEMT-Easy vector (Promega). After confirming the sequence of P450-3 (orf7), the fragment digested with SpeI-EcoRI was ligated to pESC-HIS (Agilent Technology) digested with the same restriction enzymes. Thus the pESC-450-3, which was constructed S. cerevisiae YPH500 (his , leu − − , trp , ura , ade and lys ) (Agilent Technology).
 ガラクトース存在下で前記形質転換体を培養した後、そのミクロソーム分画を調製し、基質であるfusicocca-1,10(14)-diene-8β,16-diolと、30℃で48時間インキュベーションした(ミクロソーム分画抽出液87μl、100mM NADH 5μl、100mM NADPH 5μl、及び基質、総量100μl)。次いで、反応生成物を下記条件のHPLCで分析した(Bioorg.Med.Chem.Lett.、Vol.19、p5640-5643、2009)
 <HPLC条件>
カラム:Meark Mightisil RP-18GP Aqua column(250×4.6mm;Kanto Chemicals、Japan)
移動相:水及びアセトニトリル
グラジェント:アセトニトリル濃度は、流しはじめ0~5分は40%、その後40分は40%~100%の直線上グラジェント;
流速:1.0ml/分
検出:205 nm。
After culturing the transformant in the presence of galactose, the microsomal fraction was prepared and incubated with the substrate fusicocca-1,10 (14) -diene-8β, 16-diol at 30 ° C. for 48 hours ( Microsome fraction extract 87 μl, 100 mM NADH 5 μl, 100 mM NADPH 5 μl, and substrate, total volume 100 μl). Then, the reaction product was analyzed by HPLC under the following conditions (Bioorg. Med. Chem. Lett., Vol. 19, p5640-5643, 2009).
<HPLC conditions>
Column: Mark Mightisil RP-18GP Aqua column (250 × 4.6 mm; Kanto Chemicals, Japan)
Mobile phase: water and acetonitrile gradient: acetonitrile concentration is 40% for 0-5 minutes at the beginning of the run, then 40% to 100% for a linear gradient for 40 minutes;
Flow rate: 1.0 ml / min Detection: 205 nm.
 HPLC分析の結果を図4(A)に示す。上図に示す反応生成物に由来するピークをさらにLC/MS解析に供することで、当該反応生成物がfusicocca-1,10(14)-diene-8β,9,16-triol(FC H aglycon)であると同定された(図4(B))。 The results of HPLC analysis are shown in FIG. The peak derived from the reaction product shown in the above figure is further subjected to LC / MS analysis, so that the reaction product is fusicocca-1,10 (14) -diene-8β, 9,16-triol (FC H aglycon). (FIG. 4B).
 このことから、P450-3(ORF7)は、図1中、fusicocca-1,10(14)-diene-8β,16-diolに作用してfusicocca-1,10(14)-diene-8β,9,16-triol(FC-H aglycon)を生成する作用を有する酵素であること、つまり、図1に示す一連の反応において、P450-3(ORF7)はfusicocca-1,10(14)-diene-8β,16-diolからFC H aglyconを生成する酵素として有用であることが確認された。 From this, P450-3 (ORF7) acts on fusicocca-1,10 (14) -diene-8β, 16-diol in FIG. 1, and fusicocca-1,10 (14) -diene-8β, 9 , 16-triol (FC-H aglycon), that is, in the series of reactions shown in FIG. 1, P450-3 (ORF7) is fusicocca-1, 10 (14) -diene- It was confirmed that the enzyme is useful as an enzyme for producing FC H aglycon from 8β, 16-diol.
  実施例5
 <グリコシルトランスフェラーゼ(ORF6)の性状決定>
 P. amygdaliのゲノムからSMARTTM RACE法で得たcDNAを鋳型とし、5’-AGTACTTTGACTCATATGTCCCCGCCTTCACAAATCAAACC-3’(配列番号27)及び5’-CTGCAGAGGATCCTCAATTGGTGGAAGGAAATGGTTC-3’(配列番号28)のプライマーセットを用いたPCR増幅によってグリコシルトランスフェラーゼ(orf6)のcDNAを得た。グリコシルトランスフェラーゼ(orf6)のシークエンスを確認した後、これをNdeI-BamHIで消化したPCRフラグメントをpET15b(Merck)に挿入して、pET15-GLYを構築した。pET15-GLYを組み込んだ大腸菌と、コントロールとしてpET15bを組み込んだ大腸菌を別々に、アンピシリンを100μg/mlを添加したLC液体培地で培養した。具体的には、37℃で、O.D.600が0.5になるまで培養した後、0.5mMのイソプロピル β-D-1-チオガラクトピラノシドを添加し、25℃でさらに18時間培養した。培養後、回収した菌体を超音波により破砕し、破砕物を遠心し、上清を4℃でHisTrap column(GEヘルスケア)に吸着させ、Hisタグ化酵素を標準プロトコールに従って用いて、溶出及び脱塩した。前記pET15-GLYを組み込んだ大腸菌から産生されるリコンビナント酵素の純度をSDS-PAGEにより確認した後、当該酵素をFC H aglyconを基質としたin vitro解析に使用した。
Example 5
<Determination of properties of glycosyltransferase (ORF6)>
P. Using cDNA obtained from the genome of amygdali by SMART RACE method as a template, 5′-AGTATTTTGAACTCATATTCCCCCCCCTCACAAATCAAACC-3 ′ (SEQ ID NO: 27) and 5′-CTGCAGAGGATCCTCAATTGGTGGAGAGAAATGGTTC-3 ′ (SEQ ID NO: 28) A glycosyltransferase (orf6) cDNA was obtained. After confirming the sequence of glycosyltransferase (orf6), a PCR fragment digested with NdeI-BamHI was inserted into pET15b (Merck) to construct pET15-GLY. Escherichia coli incorporating pET15-GLY and Escherichia coli incorporating pET15b as a control were separately cultured in an LC liquid medium supplemented with 100 μg / ml of ampicillin. Specifically, at 37 ° C., O.D. D. After culturing until 600 reached 0.5, 0.5 mM isopropyl β-D-1-thiogalactopyranoside was added, followed by further culturing at 25 ° C. for 18 hours. After culturing, the collected cells are crushed by ultrasonic waves, the crushed material is centrifuged, the supernatant is adsorbed to HisTrap column (GE Healthcare) at 4 ° C., and His-tagged enzyme is used according to a standard protocol to elute and Desalted. After confirming the purity of the recombinant enzyme produced from Escherichia coli incorporating pET15-GLY by SDS-PAGE, the enzyme was used for in vitro analysis using FC H aglycon as a substrate.
 具体的には、50mM Tris-HClバッファー(pH7.5)、FC H aglycon(0.5mM)、UDP-グルコース(2.5mM)、及び5μg/mlの前記精製酵素を含む反応液100μlを30℃で一晩インキュベーションした後、反応生成物を、下記条件のHPLCで分析した。<HPLC分析条件>
カラム:Meark Mightisil RP-18GP Aqua column(250×4.6mm;Kanto Chemicals、Japan)
移動相:水及びアセトニトリル
グラジェント:水中のアセトニトリル濃度は、流しはじめ0~20分は30%、20~30分は30~40%、30~50分は40~70%、50~60分は70~100%に上昇させた
流速:1.0ml/分
検出:205nm。
Specifically, 100 μl of a reaction solution containing 50 mM Tris-HCl buffer (pH 7.5), FC H aglycon (0.5 mM), UDP-glucose (2.5 mM), and 5 μg / ml of the purified enzyme was added at 30 ° C. The reaction product was analyzed by HPLC under the following conditions. <HPLC analysis conditions>
Column: Mark Mightisil RP-18GP Aqua column (250 × 4.6 mm; Kanto Chemicals, Japan)
Mobile phase: Water and acetonitrile Gradient: The acetonitrile concentration in the water is 30% for 0 to 20 minutes, 30 to 40% for 20 to 30 minutes, 40 to 70% for 30 to 50 minutes, and 50 to 60 minutes for 30 to 50 minutes. Flow rate increased to 70-100%: 1.0 ml / min Detection: 205 nm.
 HPLC結果を図7(A)に示す。上図に示す反応生成物に由来するピークをさらにLC/MS解析に供することで、当該反応生成物が、FC Hであることが確認された(図7(B))。なお、この酵素は、グルコースドナーとして、UDP-グルコースだけでなく、TDP-グルコースも利用可能である。 The HPLC result is shown in FIG. By further subjecting the peak derived from the reaction product shown in the above figure to LC / MS analysis, it was confirmed that the reaction product was FC H (FIG. 7B). Note that this enzyme can use not only UDP-glucose but also TDP-glucose as a glucose donor.
 このことから、グリコシルトランスフェラーゼ(ORF6)は、図1中、FC H aglyconに、グルコースを付加してFC-Hを生成する作用を有する酵素であること、つまり、図1に示す一連の反応において、グリコシルトランスフェラーゼ(ORF6)はFC H aglyconからFC Hを生成する酵素として有用であることが確認された。 From this, the glycosyltransferase (ORF6) is an enzyme having an action of adding FC to FCH aglycon to produce FC-H in FIG. 1, that is, in the series of reactions shown in FIG. It was confirmed that glycosyltransferase (ORF6) is useful as an enzyme that generates FC H from FC H aglycon.
  実施例6
 <メチルトランスフェラーゼ(ORF8)の性状決定>
 P. amygdaliのゲノムからSMARTTMRACE法で得たcDNAを鋳型とし、5’-ATACTGTGAATTCATGGATGACAGCAAGACAAACGGCC-3’(配列番号29)及び5’-TGCAGTCGTCGACTTAGGCGTTGAAGACTACTTCAATC-3’(配列番号30)のプライマーセットを用いて、PCR増幅によってメチルトランスフェラーゼ(orf8)のcDNAを得た。メチルトランスフェラーゼ(orf8)のシークエンスを確認した後、これをEcoRI-SalIで消化したPCRフラグメントを、pMAL-p2X(N-terminal MBP-fused、New England Biolabs)のEcoRI-SalIサイトへ挿入した。斯くして調製したマルトース結合タンパク融合酵素を、標準プロトコールに従って、溶出及び脱塩して精製した。かかるリコンビナント酵素の純度をSDS-PAGEにより確認した後、これをFC-H aglyconを基質としたin vitro解析に使用した。
Example 6
<Determining the properties of methyltransferase (ORF8)>
P. Using cDNA obtained from the genome of amygdali by the SMART RACE method as a template, 5′-ATACTGTGAATTCATGGATGACAGCAAGACAAAAGGCC-3 ′ (SEQ ID NO: 29) and 5′-TGCAGTCGTCGAACTTAGGCGTTTGAAGACTACTTCATC-3 ′ (SEQ ID NO: 30) The cDNA for methyltransferase (orf8) was obtained. After confirming the sequence of methyltransferase (orf8), the PCR fragment digested with EcoRI-SalI was inserted into the EcoRI-SalI site of pMAL-p2X (N-terminal MBP-fused, New England Biolabs). The maltose binding protein fusion enzyme thus prepared was purified by elution and desalting according to a standard protocol. After confirming the purity of the recombinant enzyme by SDS-PAGE, it was used for in vitro analysis using FC-H aglycon as a substrate.
 具体的には、50mM Tris-HClバッファー(pH7.5)、FC H aglycon(0.5mM)、S-adenosyl methionine(5mM)、及び5μg/mlの前記精製酵素を含む反応液100μlを30℃で一晩インキュベーションした後、反応生成物を実施例4に記載する同じ条件のHPLCで分析した。 Specifically, 100 μl of a reaction solution containing 50 mM Tris-HCl buffer (pH 7.5), FC H aglycon (0.5 mM), S-adenosyl methionine (5 mM), and 5 μg / ml of the purified enzyme at 30 ° C. After overnight incubation, the reaction products were analyzed by HPLC under the same conditions as described in Example 4.
 HPLC結果を図8(A)に示す。上図に示す反応生成物に由来するピークをさらにLC/MS解析に供することで、当該反応生成物が、16--methyl-FC H aglyconであると決定された(図8(B))。 The HPLC result is shown in FIG. By further subjecting the peak derived from the reaction product shown in the above figure to LC / MS analysis, the reaction product was determined to be 16- O- methyl-FC H aglycon (FIG. 8B). .
 なお、興味深いことに、基質として、FC Hと3-epi-FC Hを3.7:1で混合したものを用いた場合には、FC Hだけがメチル化されたことから、メチルトランスフェラーゼ(ORF8)は、基質の3位の立体化学構造を特異的に認識することが解った。 Interestingly, when a mixture of FC H and 3-epi-FC H in a ratio of 3.7: 1 was used as the substrate, only FC H was methylated, so methyltransferase (ORF8 ) Was found to specifically recognize the stereochemical structure at position 3 of the substrate.
 このことから、メチルトランスフェラーゼ(ORF8)は、図1中、16位の水酸基を有するFC H aglyconまたはその配糖体であるFC H若しくはFC Q等に作用して、16位の水酸基を特異的にメチル化する酵素であること、つまり、図1に示す一連の反応において、メチルトランスフェラーゼ(ORF8)はFC QからFC Pを生成する酵素として有用であることが確認された。 Therefore, methyltransferase (ORF8) acts on FC H aglycon having a hydroxyl group at position 16 in FIG. 1 or its glycoside, FC H or FC Q, etc., specifically, and the hydroxyl group at position 16 is specifically detected. It was confirmed that the enzyme is a methylating enzyme, that is, methyltransferase (ORF8) is useful as an enzyme that generates FCP from FCQ in the series of reactions shown in FIG.
  実施例7
 <プレニルトランスフェラーゼ(ORF11)の性状決定>
 P. amygdaliのゲノムからSMARTTM RACE法で得たcDNAを鋳型とし、5’-AGTACTTTGACTGCTAGCATGGCAAACGTGGTTCTGGATGGTAG-3’(配列番号31)及び5’-TGCAGACTGTCTCGAGGTATATCTGGTCTCTAGCCACAGCC-3’(配列番号32)の遺伝子特異的プライマーを用いてPCR増幅によってプレニルトランスフェラーゼ(orf11)のcDNAを得た。プレニルトランスフェラーゼ(orf11)のシークエンスを確認した後、このPCRフラグメントを、pET21b(Merck)のNheI-XhoI部位に組み込んだ。前記リコンビナント酵素の発現及び精製は、実施例4で述べた方法と同様に行った。
Example 7
<Determining the properties of prenyltransferase (ORF11)>
P. Using the cDNA obtained from the genome of amygdali by SMART RACE method as a template, 5′-AGTACTTTGACTGCTAGCATGGGCAACGTGGTTCTGGATGGGTAG-3 ′ (SEQ ID NO: 31) and 5′-TGCAGACTGTCTCGGAGTATATCTGCG-3 The cDNA of prenyltransferase (orf11) was obtained by amplification. After confirming the sequence of prenyltransferase (orf11), this PCR fragment was incorporated into the NheI-XhoI site of pET21b (Merck). Expression and purification of the recombinant enzyme were performed in the same manner as described in Example 4.
 50 mM Tris-HClバッファー(pH7.5)、FC P(0.5mM)、dimethylallyl diphosphate(0.5mM)及び5μg/mlの前記精製酵素を含む反応液100μlを30℃で2時間インキュベーションした後、反応生成物を、実施例4に記載する条件のHPLCで分析した。 After incubating 100 μl of a reaction solution containing 50 mM Tris-HCl buffer (pH 7.5), FC P (0.5 mM), dimethylallyl diphosphate (0.5 mM) and 5 μg / ml of the purified enzyme at 30 ° C. for 2 hours, The reaction product was analyzed by HPLC under the conditions described in Example 4.
 HPLC結果を図9(A)に示す。上図に示す反応生成物に由来するピークをさらにLC/MS解析に供することで、当該反応生成物が、FC-J(6’--(1,1-dimethyl)allylated(t-pentenylated)- FC P)であることが確認された(図9(B))。 The HPLC result is shown in FIG. The peak derived from the reaction product shown in the above figure is further subjected to LC / MS analysis, whereby the reaction product is converted to FC-J (6′- O 2-(1,1-dimethyl) allylated (t-pentenylated). -FCP) was confirmed (Figure 9 (B)).
 興味深いことに、プレニルトランスフェラーゼ(ORF11)は、プレニル基アクセプターとして、上記のFC Pだけでなく、FC Hを使用することができ、斯くして6’--(1,1-dimethyl)allylated(t-pentenylated)FC Hを生成することができる(図10参照)。また、プレニルトランスフェラーゼ(ORF11)は、プレニル供与体としてgeranyl diphosphateを利用することが可能であり、プレニル基アクセプターとしてFC Pを用いることで6’--linalylated-FC Pが得られた(図11及び12)。我々の知るかぎり、本酵素は糖をプレニル化する初めての酵素である。 Interestingly, prenyltransferase (ORF11) can use not only the above-mentioned FCP but also FCH as a prenyl group acceptor, thus 6′- O 2-(1,1-dimethyl) allylated ( t-pentenylated) FC H can be generated (see FIG. 10). In addition, prenyltransferase (ORF11) can use geranyl diphosphate as a prenyl donor, and 6′- O- linylated-FC P was obtained by using FCP as a prenyl group acceptor (FIG. 11). And 12). As far as we know, this enzyme is the first enzyme to prenylate sugars.
 以上のことから、プレニルトランスフェラーゼ(ORF11)は、図1中、配糖体であるFC QまたはFC P等に作用して、糖鎖をプレニル化する酵素であること、つまり、図1に示す一連の反応において、プレニルトランスフェラーゼ(ORF11)はFC Qから16--Demethyl-FC Jを生成する酵素として、FC PからFC Jを生成する酵素として有用であることが確認された。 From the above, prenyltransferase (ORF11) is an enzyme that acts on glycosides such as FC Q or FCP to prenylate sugar chains in FIG. 1, that is, the series shown in FIG. In this reaction, it was confirmed that prenyltransferase (ORF11) is useful as an enzyme that generates 16- O- demethyl-FC J from FC Q and an enzyme that generates FC J from FC P.
  実施例8
 <アセチルトランスフェラーゼ-1(ORF9)及びアセチルトランスフェラーゼ-2(ORF12)の性状決定>
 P. amygdaliのゲノムからSMARTTMRACE法で得たcDNAを鋳型とし、5’-GGCGGTACCGGCATGTCTCAAACAACCGTCCCTGTC-3’(配列番号33)及び5’-CCGCTGCAGGCCTCAAGGCAGCTTTTGCATCTCC-3’(配列番号34)の遺伝子特異的プライマーを用いてPCR増幅によってアセチルトランスフェラーゼ-2(orf12)のcDNAを得た。これをKpnI-PstIで消化したフラグメントを、同じ制限酵素で消化したpCold TF vector(TaKaRa、Japan)にライゲーションし、pCold-AT-2を構築した。
Example 8
<Determining the properties of acetyltransferase-1 (ORF9) and acetyltransferase-2 (ORF12)>
P. The cDNA obtained from the genome of amygdali in SMART TM RACE method as a template, 5'-GGCGGTACCGGCATGTCTCAAACAACCGTCCCTGTC-3 '(SEQ ID NO: 33) and 5'-CCGCTGCAGGCCTCAAGGCAGCTTTTGCATCTCC-3' PCR using gene-specific primers (SEQ ID NO: 34) Amplification gave acetyltransferase-2 (orf12) cDNA. The fragment digested with KpnI-PstI was ligated to pCold TF vector (TaKaRa, Japan) digested with the same restriction enzymes to construct pCold-AT-2.
 精製したリコンビナント酵素を、dideacetyl-FC Aを基質とするin vitroアッセイに使用した。 The purified recombinant enzyme was used in an in vitro assay using dideacetyl-FC A as a substrate.
 具体的には、12.4mMリン酸バッファー(pH7.4)、137mM NaCl、2.7mM KCl、3’,19-dideacetyl-FC A(50μM)、acetyl-coenzyme A(1mM)及び適量の前記精製酵素を含む反応液100μlを、30℃で一晩インキュベーションした後、反応生成物を、下記条件のHPLCで分析した。
<HPLC分析条件>
カラム:Meark Mightisil RP-18GP Aqua column(250×4.6mm)(Kanto Chemicals、Japan)
移動相:水及びアセトニトリル
グラジェント:水中のアセトニトリル濃度は、流しはじめ0~20分は30%、20~30分は30~40%、30~50分は40~70%、50~60分は70~100%に上昇させた
流速:1.0ml/分
検出:205 nm。
Specifically, 12.4 mM phosphate buffer (pH 7.4), 137 mM NaCl, 2.7 mM KCl, 3 ′, 19-deacetylyl-FC A (50 μM), acetyl-coenzyme A (1 mM) and an appropriate amount of the purification After 100 μl of the reaction solution containing the enzyme was incubated overnight at 30 ° C., the reaction product was analyzed by HPLC under the following conditions.
<HPLC analysis conditions>
Column: Mark Mightisil RP-18GP Aqua column (250 × 4.6 mm) (Kanto Chemicals, Japan)
Mobile phase: Water and acetonitrile Gradient: The acetonitrile concentration in the water is 30% for 0 to 20 minutes, 30 to 40% for 20 to 30 minutes, 40 to 70% for 30 to 50 minutes, and 50 to 60 minutes for 30 to 50 minutes. Flow rate increased to 70-100%: 1.0 ml / min Detection: 205 nm.
 HPLC結果を図13(A)に示す。上図に示す反応生成物に由来するピークをさらにLC/MS解析に供することで、当該反応生成物が、3’--deacetyl-FC Aであることが判明した(図13(B))。つまり、このことから、アセチルトランスフェラーゼ-2(ORF12)は、dideacetyl-FC Aの19位の水酸基をアセチル化することが確認された。 The HPLC result is shown in FIG. The peak derived from the reaction product shown in the above figure was further subjected to LC / MS analysis, and it was found that the reaction product was 3′- O- deacetyl-FC A (FIG. 13B). . That is, from this, it was confirmed that acetyltransferase-2 (ORF12) acetylates the hydroxyl group at position 19 of dideacetyl-FC A.
 一方、同様の方法で精製したアセチルトランスフェラーゼ-1(ORF9)を、dideacetyl FC-Aを基質とするin vitroアッセイに使用したところ、19--deacetyl-FC Aが生成することが判明した。このことから、アセチルトランスフェラーゼ-1(ORF9)は、dideacetyl-FC Aの3’位の水酸基をアセチル化することが確認された。 On the other hand, when acetyltransferase-1 (ORF9) purified by the same method was used in an in vitro assay using dideacetyl FC-A as a substrate, it was found that 19- O- deacetyl-FC A was produced. From this, it was confirmed that acetyltransferase-1 (ORF9) acetylates the hydroxyl group at the 3 ′ position of dideacetyl-FC A.
 以上のことから、アセチルトランスフェラーゼ-1(ORF9)及びアセチルトランスフェラーゼ-2(ORF12)は、図1中、dideacetyl-FC Aに作用して、それぞれ3’位及び19位の水酸基をアセチル化する酵素であること、つまり、図1に示す一連の反応において、アセチルトランスフェラーゼ-1(ORF9)及びアセチルトランスフェラーゼ-2(ORF12)はdideacetyl-FC AからFC Aを生成する酵素として有用であることが確認された。 Based on the above, acetyltransferase-1 (ORF9) and acetyltransferase-2 (ORF12) are enzymes that act on dideacetyl-FC A in FIG. 1 to acetylate the hydroxyl groups at positions 3 ′ and 19 respectively. In other words, in the series of reactions shown in FIG. 1, acetyltransferase-1 (ORF9) and acetyltransferase-2 (ORF12) were confirmed to be useful as enzymes that produce FCA from dideacetyl-FCA. .
  実施例9
 <P450-4(orf10)破壊株及びP450-5(orf13)破壊株の作製とその性状>
 (1)P450-4(orf10)破壊株の作製
 trpCプロモーターとtrpCターミネーターの制御下で発現するハイグロマイシン耐性遺伝子を、pSH75を鋳型として、5’-ATCAGTATCTCGAGATGCCAGTTGTTCCAGTGAT-3’(配列番号35)及び5’-TGCAGAGGCTCGAGAATTAAGTCTAGAAAGAAGG-3’(配列番号36)の2つのオリゴヌクレオチドをプライマーとして、PCRにより増幅した。このフラグメントを、pGEM-T(プロメガ)にラーゲーションしてpGEM-Hygを構築した。P450-4(orf10)の上流域を含む3.0kbのSphIサイトを有するフラグメントとP450-4(orf10)の下流域を含む3.0kbのNotIサイトを有するフラグメントをPCR増幅により得た。PCRに用いたプライマーセットは、それぞれ、5’-GCATGCATGGCGGCACGCAGGAGCCGCTTG-3’(配列番号37)及び5’-GCATGCGAAGACTGCCGCGCACTATGGTAG-3’(配列番号38);並びに5’-GCGGCCGCCTCTGAGTGCCTTCAGATAACAATTTC-3’(配列番号39)及び5’-GCGGCCGCGCAAGCTCATCTACCTCCCGGCTAG-3’(配列番号40)である。これらP450-4(orf10)の上流域と下流域を含む2つのDNAフラグメントは、P450-4(orf10)のみ欠失し、染色体上での上流域と下流域の向きがプラスミド上でも同じになる方向にpGEM-Hygに挿入した。構築したプラスミドを、P. amygdaliにプロトプラスト/ポリエチレングリコール法により導入し、50μg/mlのハイグロマイシンに耐性を示すコロニーを選択した。形質転換体の染色体DNAを鋳型に用い、P450-4(orf10)の上流域に特異的なプライマーとP450-4(orf10)の下流域に特異的なプライマーを用いてPCR解析により遺伝子欠損を確認した。目的破壊株では、P450-4(orf10)の遺伝子がハイグロマイシン遺伝子と置換され、P450-4由来のフラグメントよりも大きなフラグメントが増幅された(図5C)。
Example 9
<Production and Properties of P450-4 (orf10) Disrupted Strain and P450-5 (orf13) Disrupted Strain>
(1) Preparation of P450-4 (orf10) -disrupted strain A hygromycin resistance gene expressed under the control of trpC promoter and trpC terminator was used as a template for 5′-ATCAGTATTCTGAGATGCCAGTTGTTCCAGTGAT-3 ′ (SEQ ID NO: 35) and 5 ′. -Two oligonucleotides of TGCAGAGGCTCGAGAATTAAGTCTAGAAAAGAAGG-3 '(SEQ ID NO: 36) were used as primers and amplified by PCR. This fragment was ligated into pGEM-T (Promega) to construct pGEM-Hyg. A fragment having a 3.0 kb SphI site including the upstream region of P450-4 (orf10) and a fragment having a 3.0 kb NotI site including the downstream region of P450-4 (orf10) were obtained by PCR amplification. Primer set used for PCR, respectively, 5'- GCATGC ATGGCGGCACGCAGGAGCCGCTTG-3 '(SEQ ID NO: 37) and 5'- GCATGC GAAGACTGCCGCGCACTATGGTAG-3' (SEQ ID NO: 38); and 5'- GCGGCCGCC TCTGAGTGCCTTCAGATAACAATTTC-3 '(SEQ ID NO: 39) and 5′- GCGGCCCGCG CAAGCTCATCTACCCTCCGGCTAG-3 ′ (SEQ ID NO: 40). These two DNA fragments including the upstream region and the downstream region of P450-4 (orf10) are deleted only in P450-4 (orf10), and the orientation of the upstream region and the downstream region on the chromosome is the same on the plasmid. Inserted into pGEM-Hyg in the direction. The constructed plasmid was transformed into P. p. It was introduced into amygdali by the protoplast / polyethylene glycol method, and colonies showing resistance to 50 μg / ml hygromycin were selected. Confirmation of gene deletion by PCR analysis using chromosomal DNA of the transformant as a template and a primer specific to the upstream region of P450-4 (orf10) and a primer specific to the downstream region of P450-4 (orf10) did. In the target disruption strain, the gene of P450-4 (orf10) was replaced with the hygromycin gene, and a fragment larger than the fragment derived from P450-4 was amplified (FIG. 5C).
 (2)P450-5(orf13)破壊株の作製
 trpCプロモーターとtrpCターミネーターの制御下で発現するハイグロマイシン耐性遺伝子を、pSH75を鋳型として、5’-ATCAGTATCTCGAGATGCCAGTTGTTCCAGTGAT-3’(配列番号41)及び5′-TGCAGAGGCTCGAGAATTAAGTCTAGAAAGAAGG-3’(配列番号42)の2つのオリゴヌクレオチドをプライマーとして、PCRにより増幅した。このフラグメントを、pGEM-T(プロメガ)にラーゲーションして、pGEM-Hygを構築した。P450-5(orf13)の上流域を含む2.0kbのNotIサイトを有するフラグメントとP450-5(orf13)の下流域を含む2.0kbのSphIサイトを有するフラグメントをPCR増幅により得た。PCRに用いたプライマーセットは、それぞれ、5’-GCGGCCGCGATCGACGCACCGTATGTGC-3’(配列番号43)及び5’-GCGGCCGCGTGACCTTCAAATGGTGCGT-3’(配列番号44);並びに5’-GCATGCCAGTGCCGTTCAACAGGGGC-3’(配列番号45)及び5’-GCATGCAGACACGCCGTACTGTACGC-3’(配列番号46)である。構築したプラスミドを、P. amygdaliに導入するために使用した。P450-5(orf13)欠失株の選択方法は、前記P450-4(orf10)Orf10欠失株の構築と同じである。
(2) Preparation of P450-5 (orf13) -disrupted strain A hygromycin resistance gene expressed under the control of trpC promoter and trpC terminator was used as a template for 5′-ATCAGTATCTCGAGATGCCAGTGTTCCCAGTGAT-3 ′ (SEQ ID NO: 41) and 5 ′. -Two oligonucleotides of TGCAGAGGCTCGAGAATTAAGTCTAGAAAAGAAGG-3 '(SEQ ID NO: 42) were used as primers and amplified by PCR. This fragment was ligated into pGEM-T (Promega) to construct pGEM-Hyg. A fragment having a 2.0 kb NotI site including the upstream region of P450-5 (orf13) and a fragment having a 2.0 kb SphI site including the downstream region of P450-5 (orf13) were obtained by PCR amplification. The primer sets used for PCR were 5′- GCGGCCGCC GATCGACGCACCGTATGTGC-3 ′ (SEQ ID NO: 43) and 5′- GCGGCCGC GTGACCTCCAAATGGTGGCGT- 3CG (SEQ ID NO: 44); and 5′- GCATGCCATGCGCG sequence 45) and 5′- GCATGC AGACAGCCCGTACTGTTACGC-3 ′ (SEQ ID NO: 46). The constructed plasmid was transformed into P. p. Used to introduce into amygdali . The method for selecting the P450-5 (orf13) deletion strain is the same as the construction of the P450-4 (orf10) Orf10 deletion strain.
 (3)遺伝子破壊実験によるフシコクシンの12位の水酸化を触媒するP450の同定
<P450-4(ORF10)及びP450-5(ORF13)の性状決定>
 上述の方法により、P. amygdaliについて、P450-4(orf10)をハイグロマイシン耐性遺伝子と置換したいくつかの欠損体を得ることに成功した。前記欠損体の主な産生物は、フシコクシンH(FC H)であり、図1に示すFC Q、FC P、FC J、及びFC A等は産生しなかった。また、そのFC Hの産生量は、親株(P. amygdali)によって産生されるFC Aを含む一連のFC化合物の和とほぼ同じであった(図5)。この結果から、P450-4(ORF10)はFC Hの12位を水酸化し、FC Qを生成する作用を担っていることが判明した。
(3) Identification of P450 that catalyzes hydroxylation at position 12 of fusicoccin by gene disruption experiment <Determination of properties of P450-4 (ORF10) and P450-5 (ORF13)>
By the method described above, P. For amygdali, we succeeded in obtaining several deletions in which P450-4 (orf10) was replaced with a hygromycin resistance gene. The main product of the defect was fusicoccin H (FC H), and FC Q, FC P, FC J, FC A and the like shown in FIG. 1 were not produced. Moreover, the production amount of FCH was almost the same as the sum of a series of FC compounds including FCA produced by the parent strain ( P. amygdali ) (FIG. 5). From this result, it was found that P450-4 (ORF10) is responsible for hydroxylating the 12th position of FC H to generate FC Q.
 P450-5(orf13)の機能についても、上記P450-4(orf10)欠失体と同じ方法により確認した。その結果、P450-5(orf13)をハイグロマイシン耐性遺伝子と置換した欠失体の主な産生物はFC Jであり、図1に示すdideacetyl-FC A、及びFC Aは産生しなかった。また、そのFC Jの産生量は、親株(P. amygdali)によって産生されるFC Aを含む一連のFC化合物の和とほぼ同じであった(図6)。この結果から、P450-5(ORF13)はFC Jの19位を水酸化し、dideacetyl-FC Aを生成する作用を担っていることが判明した。 The function of P450-5 (orf13) was also confirmed by the same method as that for the P450-4 (orf10) deletion. As a result, the main product of the deletion product in which P450-5 (orf13) was replaced with the hygromycin resistance gene was FC J, and dideacetyl-FC A and FC A shown in FIG. 1 were not produced. Moreover, the production amount of FCJ was almost the same as the sum of a series of FC compounds containing FCA produced by the parent strain ( P. amygdali ) (FIG. 6). From this result, it was found that P450-5 (ORF13) has a function of hydroxylating the 19th position of FC J to produce dideacetyl-FC A.
  実施例10
 <FC H及びFC Jのラージスケールでの製造>
 (1)P450-4(orf10)欠損P. amygdaliによるFC Hの製造
 種培養として、坂口フラスコ(容量500ml)にショ糖3g、ファーマメディア1.5g、KHPO 0.5g、NaHPO・12HO 0.3g、MgSO・7HO 0.1g、精製水100mlの溶液を入れ、高圧滅菌(121℃、20分)した。このフラスコ中にP. amygdali ORF10欠損株(スラント上の生育菌、5mm角片)を稙菌し、暗所、室温で72時間振盪培養(150strokes/分)した。以下の規模の生産培養のための種培養には坂口フラスコ2本を使用した。
Example 10
<Manufacture of FC H and FC J on a large scale>
(1) P450-4 (orf10) deficient P. Production of FC H by amygdali As seed culture, sucrose 3 g, Pharmamedia 1.5 g, KH 2 PO 4 0.5 g, Na 2 HPO 4 · 12H 2 O 0.3 g, MgSO 4 · A solution of 0.1 g of 7H 2 O and 100 ml of purified water was added and sterilized under high pressure (121 ° C., 20 minutes). In this flask, P.I. An amygdali ORF10-deficient strain (growing bacteria on slant, 5 mm square piece) was inoculated and cultured with shaking (150 strokes / min) in the dark at room temperature for 72 hours. Two Sakaguchi flasks were used for seed culture for production culture of the following scale.
 次に生産培養として、坂口フラスコ(容量500ml)にショ糖5g、ソーヤフラワー0.7g、KHPO 0.75g、NaHPO・12HO 0.5g、MgSO・7HO 0.1g、精製水100mlの溶液を入れ、高圧滅菌(121℃、20分)後、種培養液(7ml)を加え暗所、室温で144時間振盪培養(160strokes/分)した。坂口フラスコ30本を使用したので、培養液総量は3Lであった。 Next, as production culture, 5 g of sucrose, 0.7 g of soya flour, 0.75 g of KH 2 PO 4 , 0.5 g of Na 2 HPO 4 · 12H 2 O, MgSO 4 · 7H 2 O 0 in a Sakaguchi flask (capacity 500 ml). 0.1 g of purified water (100 ml) was added, and after high-pressure sterilization (121 ° C., 20 minutes), a seed culture solution (7 ml) was added, followed by shaking culture (160 strokes / minute) for 144 hours at room temperature in the dark. Since 30 Sakaguchi flasks were used, the total amount of the culture solution was 3 L.
 振盪培養終了後の処理は二分割して行った。まず半量の培養液を濾過し、菌体残渣を精製水約1 Lで洗浄した。濾液と同量の酢酸エチル(約2Lに1%のメタノールを添加)で2回抽出し、減圧濃縮した。残りの培養液を同様に処理し、2つの処理溶液を合わせて、残量が200mlになるまで減圧濃縮した。この濃縮液を酢酸エチルで希釈し飽和重曹水(100ml)を加えて分液し、有機相を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を減圧濃縮後、残渣量の約10倍量の酢酸エチルを加え加温溶解し、室温放置することで析出した結晶を濾取した。得られたFC Hの結晶は半合成用原料として十分な純度を有していた。収量1.45g(0.48g/L)。 The treatment after shaking culture was divided into two parts. First, half of the culture solution was filtered, and the cell residue was washed with about 1 L of purified water. The mixture was extracted twice with the same amount of ethyl acetate as the filtrate (1% methanol added to about 2 L) and concentrated under reduced pressure. The remaining culture solution was treated in the same manner, and the two treatment solutions were combined and concentrated under reduced pressure until the remaining amount reached 200 ml. This concentrated solution was diluted with ethyl acetate, saturated aqueous sodium hydrogen carbonate (100 ml) was added, and the mixture was separated. The organic phase was washed with saturated brine, and dried over anhydrous magnesium sulfate. After concentrating the solvent under reduced pressure, about 10 times the amount of ethyl acetate as the residue was added, dissolved by heating, and allowed to stand at room temperature. The obtained FC H crystals had sufficient purity as a raw material for semi-synthesis. Yield 1.45 g (0.48 g / L).
 (2)P450-5(orf13)欠損P. amygdaliによるFC Jの製造
 上記orf10欠損株と全く同一の実験操作により、P. amygdali orf13欠損株を培養することで、半合成原料として十分な純度を有するFC Jを培養液総量3Lから、1.86g(0.62g/L)を得た。
(2) P450-5 (orf13) deficient P. aeruginosa Production of FC J by amygdali The same experimental procedure as that for the above orf10-deficient strain was carried out . By culturing an amygdali orf13-deficient strain, 1.86 g (0.62 g / L) of FCJ having sufficient purity as a semi-synthetic raw material was obtained from 3 L of the total culture solution.

Claims (26)

  1. 下記の(a)~(g)工程を含む、
    式(I)で表される化合物を製造する方法:
    Figure JPOXMLDOC01-appb-C000001
    (a).ゲラニルゲラニル二リン酸にサイクラーゼ(ORF1)を作用させて、下式(II)で表される化合物を得る工程、
    Figure JPOXMLDOC01-appb-C000002
    (b).上記で得られる化合物(II)に、P450還元酵素およびニコチンアミドアデニンジヌクレオチド(NADH)またはニコチンアミドアデニンジヌクレオチドリン酸(NADPH)の存在下、P450-2(ORF5)を作用させて、下式(III)で表される化合物を得る工程、
    Figure JPOXMLDOC01-appb-C000003
    (c).上記で得られる化合物(III)に、P450還元酵素およびNADHまたはNADPHの存在下、P450-1(ORF3)を作用させて、下式(IV)で表される化合物を得る工程、
    Figure JPOXMLDOC01-appb-C000004
    (d).上記で得られる化合物(IV)に鉄イオン、二原子酸素供与体およびアスコルビン酸の存在下、ジオキシゲナーゼ(ORF2)を作用させて、下式(V)又は(VI)で表される化合物を得る工程、
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    (e).上記で得られる化合物(VI)に短鎖デヒドロゲナーゼレダクターゼ(ORF4)を作用させて、下式(VII)で表される化合物を得る工程、
    Figure JPOXMLDOC01-appb-C000007
    (f).上記で得られる化合物(VII)に、P450還元酵素およびNADHまたはNADPHの存在下、P450-3(ORF7)を作用させて、下式(VIII)で表される化合物を得る工程、
    Figure JPOXMLDOC01-appb-C000008
    (g).上記で得られる化合物(VIII)に、グリコシル基供与体の存在下、グリコシルトランスフェラーゼ(ORF6)を作用させて、上記式(I)で表される化合物を得る工程。
    Including the following steps (a) to (g):
    Method for producing a compound represented by the formula (I):
    Figure JPOXMLDOC01-appb-C000001
    (A). A step of allowing a cyclase (ORF1) to act on geranylgeranyl diphosphate to obtain a compound represented by the following formula (II):
    Figure JPOXMLDOC01-appb-C000002
    (B). P450-2 (ORF5) is allowed to act on the compound (II) obtained above in the presence of P450 reductase and nicotinamide adenine dinucleotide (NADH) or nicotinamide adenine dinucleotide phosphate (NADPH). Obtaining a compound represented by (III),
    Figure JPOXMLDOC01-appb-C000003
    (C). A step of allowing P450-1 (ORF3) to act on compound (III) obtained above in the presence of P450 reductase and NADH or NADPH to obtain a compound represented by the following formula (IV):
    Figure JPOXMLDOC01-appb-C000004
    (D). The compound (IV) obtained above is reacted with dioxygenase (ORF2) in the presence of an iron ion, a diatomic oxygen donor and ascorbic acid to obtain a compound represented by the following formula (V) or (VI): Process,
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    (E). A step of allowing a short-chain dehydrogenase reductase (ORF4) to act on the compound (VI) obtained above to obtain a compound represented by the following formula (VII):
    Figure JPOXMLDOC01-appb-C000007
    (F). A step of allowing P450-3 (ORF7) to act on compound (VII) obtained above in the presence of P450 reductase and NADH or NADPH to obtain a compound represented by the following formula (VIII):
    Figure JPOXMLDOC01-appb-C000008
    (G). A step of obtaining a compound represented by the above formula (I) by allowing a glycosyltransferase (ORF6) to act on the compound (VIII) obtained above in the presence of a glycosyl group donor.
  2. 請求項1に記載する(a)~(g)工程に加えて、さらに下記(h)工程を含む、式(IX)で表される化合物の製造方法:
    (h).(g)工程で得られる化合物(I)に、P450還元酵素およびNADHまたはNADPHの存在下、P450-4(ORF10)を作用させて、下式(IX)で表される化合物を得る工程
    Figure JPOXMLDOC01-appb-C000009
    In addition to the steps (a) to (g) described in claim 1, the method for producing a compound represented by formula (IX) further comprising the following step (h):
    (H). (G) A step of obtaining a compound represented by the following formula (IX) by allowing P450-4 (ORF10) to act on the compound (I) obtained in the step in the presence of P450 reductase and NADH or NADPH.
    Figure JPOXMLDOC01-appb-C000009
    .
  3. 請求項1に記載する(a)~(g)工程、及び請求項2に記載する(h)工程に加えて、さらに(i)工程を含む、式(X)で表される化合物の製造方法:
    (i).(h)工程で得られる化合物(IX)に、メチル基供与体の存在下、メチルトランスフェラーゼ(ORF8)を作用させて、下式(X)で表される化合物を得る工程
    Figure JPOXMLDOC01-appb-C000010
    In addition to the steps (a) to (g) described in claim 1 and the step (h) described in claim 2, the method for producing a compound represented by formula (X), further comprising step (i) :
    (I). (H) A step of obtaining a compound represented by the following formula (X) by allowing methyltransferase (ORF8) to act on the compound (IX) obtained in the step in the presence of a methyl group donor.
    Figure JPOXMLDOC01-appb-C000010
    .
  4. 請求項1に記載する(a)~(g)工程、請求項2に記載する(h)工程、及び請求項3に記載する(i)工程に加えて、さらに(j)工程を含む、式(XI)で表される化合物の製造方法:
    (j).(i)工程で得られる化合物(X)に、プレニル基供与体の存在下、プレニルトランスフェラーゼ(ORF11)を作用させて、下式(XI)で表される化合物を得る工程:
    Figure JPOXMLDOC01-appb-C000011
    In addition to the steps (a) to (g) described in claim 1, the step (h) described in claim 2, and the step (i) described in claim 3, the method further includes a step (j). Method for producing compound represented by (XI):
    (J). (I) A step of obtaining a compound represented by the following formula (XI) by allowing prenyl transferase (ORF11) to act on compound (X) obtained in the step in the presence of a prenyl group donor:
    Figure JPOXMLDOC01-appb-C000011
    .
  5. 請求項1に記載する(a)~(g)工程、請求項2に記載する(h)工程、請求項3に記載する(i)工程、及び請求項4に記載する(j)工程に加えて、さらに(k)工程を含む、式(XII)で表される化合物の製造方法:
    (k).(j)工程で得られる化合物(XI)に、P450還元酵素およびNADHまたはNADPHの存在下、P450-5(ORF13)を作用させて、下式(XII)で表される化合物を得る工程:
    Figure JPOXMLDOC01-appb-C000012
    In addition to the steps (a) to (g) described in claim 1, the step (h) described in claim 2, the step (i) described in claim 3, and the step (j) described in claim 4. And a method for producing a compound represented by formula (XII), further comprising step (k):
    (K). (J) A step of obtaining a compound represented by the following formula (XII) by allowing P450-5 (ORF13) to act on the compound (XI) obtained in the step in the presence of P450 reductase and NADH or NADPH:
    Figure JPOXMLDOC01-appb-C000012
    .
  6. 請求項1に記載する(a)~(g)工程、請求項2に記載する(h)工程、請求項3に記載する(i)工程、請求項4に記載する(j)工程、及び請求項5に記載する(k)工程に加えて、さらに(l)工程を含む、式(XIII)で表される化合物の製造方法:
    (l).(k)工程で得られる化合物(XII)に、アセチル基供与体の存在下、2種類のアセチルトランスフェラーゼORF9及びORF12を作用させて、下記式(XIII)で表される化合物を得る工程:
    Figure JPOXMLDOC01-appb-C000013
     
    (A) to (g) described in claim 1, (h) process described in claim 2, (i) process described in claim 3, (j) process described in claim 4, and claim In addition to the step (k) described in item 5, the method for producing a compound represented by the formula (XIII) further including the step (l):
    (L). (K) A step of obtaining a compound represented by the following formula (XIII) by allowing two kinds of acetyltransferases ORF9 and ORF12 to act on the compound (XII) obtained in the step in the presence of an acetyl group donor:
    Figure JPOXMLDOC01-appb-C000013

    .
  7. (1)~(3)のいずれかに記載の塩基配列を含む、P450-2(ORF5)をコードする遺伝子:
    (1)配列番号1に示す塩基配列、
    (2)配列番号1に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を有し、配列番号1に示す塩基配列によりコードされる遺伝子産物と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(b)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列、
    (3)配列番号1に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列を有し、配列番号1に示す塩基配列によりコードされる遺伝子産物と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(b)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列。
    A gene encoding P450-2 (ORF5) comprising the base sequence according to any one of (1) to (3):
    (1) the base sequence shown in SEQ ID NO: 1,
    (2) having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 1 under stringent conditions, and similar to the gene product encoded by the base sequence shown in SEQ ID NO: 1, P450 reductase and NADH or A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (b) in the presence of NADPH;
    (3) In the nucleotide sequence shown in SEQ ID NO: 1, P450 has a nucleotide sequence in which one or more bases are substituted, deleted, or added, and is the same as the gene product encoded by the nucleotide sequence shown in SEQ ID NO: 1. A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (b) in the presence of a reductase and NADH or NADPH.
  8. (4)~(6)のいずれかに記載のアミノ酸配列からなるP450-2(ORF5): 
    (4)配列番号2に示すアミノ酸配列、
    (5)配列番号2に示すアミノ酸配列と85%以上の同一性を有し、配列番号2のアミノ酸配列からなる酵素と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(b)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列、若しくは
    (6)配列番号2に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されたアミノ酸配列を有し、配列番号2のアミノ酸配列からなる酵素と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(b)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列。
    P450-2 (ORF5) comprising the amino acid sequence according to any one of (4) to (6):
    (4) the amino acid sequence shown in SEQ ID NO: 2,
    (5) The reaction of step (b) in the presence of P450 reductase and NADH or NADPH, which is 85% or more identical to the amino acid sequence shown in SEQ ID NO: 2 and consists of the amino acid sequence of SEQ ID NO: 2 An amino acid sequence encoding a protein having an enzyme action that catalyzes or (6) an amino acid sequence represented by SEQ ID NO: 2 having an amino acid sequence in which one or more amino acids are substituted, deleted, or added; The amino acid sequence which codes the protein which has the enzyme effect | action which catalyzes reaction of a process (b) in presence of P450 reductase and NADH or NADPH similarly to the enzyme which consists of an amino acid sequence of 2.
  9. (7)~(9)のいずれかに記載の塩基配列を含む、P450-3(ORF7)をコードする遺伝子:
    (7)配列番号5に示す塩基配列、
    (8)配列番号5に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を有し、配列番号5に示す塩基配列によりコードされる遺伝子産物と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(f)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列、
    (9)配列番号5に示す塩基配列において、1つまたは複数の塩基が置換、欠失、若しくは付加された塩基配列を有し、配列番号5に示す塩基配列によりコードされる遺伝子産物と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(f)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列。
    A gene encoding P450-3 (ORF7), comprising the base sequence according to any one of (7) to (9):
    (7) the base sequence shown in SEQ ID NO: 5,
    (8) having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 5 under stringent conditions, and, like the gene product encoded by the base sequence shown in SEQ ID NO: 5, P450 reductase and NADH or A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (f) in the presence of NADPH;
    (9) In the base sequence shown in SEQ ID NO: 5, the base sequence has one or more bases substituted, deleted, or added, and is the same as the gene product encoded by the base sequence shown in SEQ ID NO: 5, A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (f) in the presence of P450 reductase and NADH or NADPH.
  10. (10)~(12)のいずれかに記載のアミノ酸配列からなるP450-3(ORF7):
    (10)配列番号6に示すアミノ酸配列、
    (11)配列番号6に示すアミノ酸配列と85%以上の同一性を有し、配列番号6に示すアミノ酸配列からなる酵素と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(f)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列、
    (12)配列番号6に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されたアミノ酸配列を有し、配列番号6に示されるアミノ酸配列からなる酵素と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(f)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列。
    P450-3 (ORF7) comprising the amino acid sequence according to any one of (10) to (12):
    (10) the amino acid sequence shown in SEQ ID NO: 6,
    (11) In the presence of P450 reductase and NADH or NADPH, which has 85% or more identity with the amino acid sequence shown in SEQ ID NO: 6 and consists of the amino acid sequence shown in SEQ ID NO: 6, An amino acid sequence encoding a protein having an enzymatic action to catalyze the reaction;
    (12) A P450 reductase having the same amino acid sequence as that shown in SEQ ID NO: 6, wherein the amino acid sequence shown in SEQ ID NO: 6 has an amino acid sequence in which one or more amino acids are substituted, deleted, or added. And an amino acid sequence encoding a protein having an enzyme action that catalyzes the reaction of step (f) in the presence of NADH or NADPH.
  11. (13)~(15)のいずれかに記載の塩基配列を含む、グリコシルトランスフェラーゼ(ORF6)をコードする遺伝子:
    (13)配列番号3に示す塩基配列、
    (14)配列番号3に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を有し、配列番号3に示す塩基配列によりコードされる遺伝子産物と同じく、グリコシル基供与体の存在下、工程(g)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列、
    (15)配列番号3に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列を有し、配列番号3の塩基配列によりコードされる遺伝子産物と同じく、グリコシル基供与体の存在下、工程(g)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列。
    A gene encoding a glycosyltransferase (ORF6) comprising the base sequence according to any one of (13) to (15):
    (13) the base sequence shown in SEQ ID NO: 3,
    (14) Presence of a glycosyl group donor having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 3 under stringent conditions, as in the gene product encoded by the base sequence shown in SEQ ID NO: 3. A base sequence encoding a protein having an enzyme action that catalyzes the reaction in the step (g)
    (15) In the base sequence shown in SEQ ID NO: 3, a glycosyl group having the base sequence in which one or more bases are substituted, deleted, or added, and the gene product encoded by the base sequence of SEQ ID NO: 3 A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (g) in the presence of a donor.
  12. (16)~(18)のいずれかに記載のアミノ酸配列からなるグリコシルトランスフェラーゼ(ORF6):
    (16)配列番号4に示すアミノ酸配列、
    (17)配列番号4に示すアミノ酸配列と85%以上の同一性を有し、配列番号4に示すアミノ酸配列からなる酵素と同じく、グリコシル基供与体の存在下、工程(g)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列、
    (18)配列番号4に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されたアミノ酸配列を有し、配列番号4に示すアミノ酸配列からなる酵素と同じく、グリコシル基供与体の存在下、工程(g)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列。
    Glycosyltransferase (ORF6) comprising the amino acid sequence according to any one of (16) to (18):
    (16) the amino acid sequence shown in SEQ ID NO: 4,
    (17) Catalyzing the reaction of step (g) in the presence of a glycosyl group donor having the identity of 85% or more to the amino acid sequence shown in SEQ ID NO: 4 and the enzyme consisting of the amino acid sequence shown in SEQ ID NO: 4 An amino acid sequence encoding a protein having an enzyme action,
    (18) A glycosyl group donor having an amino acid sequence in which one or more amino acids are substituted, deleted, or added in the amino acid sequence shown in SEQ ID NO: 4 and consisting of the amino acid sequence shown in SEQ ID NO: 4 An amino acid sequence encoding a protein having an enzyme action that catalyzes the reaction of step (g) in the presence of.
  13. (19)~(21)のいずれかに記載の塩基配列を含む、P450-4(ORF10)をコードする遺伝子:
    (19)配列番号11に示す塩基配列、
    (20)配列番号11に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を有し、配列番号11の塩基配列によりコードされる遺伝子産物と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(h)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列、
    (21)配列番号11に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列を有し、配列番号11の塩基配列によりコードされる遺伝子産物と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(h)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列。
    (19) A gene encoding P450-4 (ORF10) comprising the base sequence according to any one of (21):
    (19) the base sequence shown in SEQ ID NO: 11,
    (20) A P450 reductase and NADH or NADPH having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 11 under stringent conditions and the same as the gene product encoded by the base sequence of SEQ ID NO: 11. A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (h) in the presence of
    (21) The base sequence shown in SEQ ID NO: 11 has a base sequence in which one or more bases are substituted, deleted, or added, and is reduced by P450 as in the gene product encoded by the base sequence of SEQ ID NO: 11. A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (h) in the presence of an enzyme and NADH or NADPH.
  14. (22)~(24)のいずれかに記載のアミノ酸配列からなるP450-4(ORF10):
    (22)配列番号12に示すアミノ酸配列、
    (23)配列番号12に示すアミノ酸配列と85%以上の同一性を有し、配列番号12に示すアミノ酸配列からなる酵素と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(h)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列、
    (24)配列番号12に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されたアミノ酸配列を有し、配列番号12に示すアミノ酸配列からなる酵素と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(h)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列。
    P450-4 (ORF10) comprising the amino acid sequence according to any one of (22) to (24):
    (22) the amino acid sequence shown in SEQ ID NO: 12,
    (23) In the presence of P450 reductase and NADH or NADPH, which has 85% or more identity with the amino acid sequence shown in SEQ ID NO: 12 and consists of the amino acid sequence shown in SEQ ID NO: 12, An amino acid sequence encoding a protein having an enzymatic action to catalyze the reaction;
    (24) The amino acid sequence shown in SEQ ID NO: 12 has an amino acid sequence in which one or more amino acids are substituted, deleted, or added, and, like the enzyme consisting of the amino acid sequence shown in SEQ ID NO: 12, P450 reductase and An amino acid sequence encoding a protein having an enzyme action that catalyzes the reaction of step (h) in the presence of NADH or NADPH.
  15. (25)~(27)のいずれかに記載の塩基配列を含む、メチルトランスフェラーゼ(ORF8)をコードする遺伝子:
    (25)配列番号7に示す塩基配列、
    (26)配列番号7に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を有し、配列番号7に示す塩基配列によりコードされる遺伝子産物と同じく、メチル基供与体の存在下、工程(i)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列、
    (27)配列番号7に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列を有し、配列番号7に示す塩基配列によりコードされる遺伝子産物と同じく、メチル基供与体の存在下、工程(i)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列。
    A gene encoding methyltransferase (ORF8) comprising the base sequence according to any of (25) to (27):
    (25) the base sequence shown in SEQ ID NO: 7,
    (26) Presence of a methyl group donor having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 7 under stringent conditions and the gene product encoded by the base sequence shown in SEQ ID NO: 7 Below, a base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (i),
    (27) In the base sequence shown in SEQ ID NO: 7, a base sequence in which one or more bases are substituted, deleted, or added, and methyl as in the gene product encoded by the base sequence shown in SEQ ID NO: 7 A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (i) in the presence of a group donor.
  16. (28)~(30)のいずれかに記載のアミノ酸配列からなるメチルトランスフェラーゼ(ORF8):
    (28)配列番号8に示すアミノ酸配列、
    (29)配列番号8に示すアミノ酸配列と85%以上の同一性を有し、配列番号8に示すアミノ酸配列からなる酵素と同じく、メチル基供与体の存在下、工程(i)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列、
    (30)配列番号8に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されたアミノ酸配列を有し、配列番号8に示すアミノ酸配列からなる酵素と同じく、メチル基供与体の存在下、工程(i)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列。
    Methyltransferase (ORF8) comprising the amino acid sequence according to any of (28) to (30):
    (28) the amino acid sequence shown in SEQ ID NO: 8,
    (29) Catalyzing the reaction of step (i) in the presence of a methyl donor, having 85% or more identity with the amino acid sequence shown in SEQ ID NO: 8 and the enzyme consisting of the amino acid sequence shown in SEQ ID NO: 8 An amino acid sequence encoding a protein having an enzyme action,
    (30) A methyl group donor having an amino acid sequence in which one or a plurality of amino acids are substituted, deleted, or added in the amino acid sequence shown in SEQ ID NO: 8 and comprising the amino acid sequence shown in SEQ ID NO: 8 An amino acid sequence encoding a protein having an enzyme action that catalyzes the reaction of step (i) in the presence of.
  17. (31)~(33)のいずれかに記載の塩基配列を含む、プレニルトランスフェラーゼ(ORF11)をコードする遺伝子:
    (31)配列番号13に示す塩基配列、
    (32)配列番号13に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を有し、配列番号13に塩基配列によりコードされる遺伝子産物と同じく、プレニル基供与体の存在下、工程(j)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列、
    (33)配列番号13に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列を有し、配列番号13の塩基配列によりコードされる遺伝子産物と同じく、プレニル基供与体の存在下、工程(j)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列。
    A gene encoding prenyltransferase (ORF11) comprising the base sequence according to any of (31) to (33):
    (31) the base sequence shown in SEQ ID NO: 13,
    (32) having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 13 under stringent conditions, and in the presence of a prenyl group donor in the same manner as the gene product encoded by the base sequence in SEQ ID NO: 13 , A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (j),
    (33) In the base sequence shown in SEQ ID NO: 13, a prenyl group has a base sequence in which one or more bases are substituted, deleted, or added, and is the same as the gene product encoded by the base sequence of SEQ ID NO: 13 A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (j) in the presence of a donor.
  18. (34)~(36)のいずれかに記載のアミノ酸配列からなるプレニルトランスフェラーゼ(ORF11):
    (34)配列番号14に示すアミノ酸配列、
    (35)配列番号14に示すアミノ酸配列と85%以上の同一性を有し、配列番号14に示すアミノ酸配列からなる酵素と同じく、プレニル基供与体の存在下、工程(j)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列、
    (36)配列番号14に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されたアミノ酸配列を有し、配列番号14に示すアミノ酸配列からなる酵素と同じく、プレニル基供与体の存在下、工程(j)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列。
    (34) to (36) prenyltransferase (ORF11) comprising the amino acid sequence according to any one of the above:
    (34) the amino acid sequence shown in SEQ ID NO: 14,
    (35) Catalyzing the reaction of the step (j) in the presence of a prenyl group donor having the identity of 85% or more to the amino acid sequence shown in SEQ ID NO: 14 and the enzyme consisting of the amino acid sequence shown in SEQ ID NO: 14 An amino acid sequence encoding a protein having an enzyme action,
    (36) A prenyl group donor having an amino acid sequence in which one or more amino acids are substituted, deleted, or added in the amino acid sequence shown in SEQ ID NO: 14, and the enzyme comprising the amino acid sequence shown in SEQ ID NO: 14 An amino acid sequence encoding a protein having an enzyme action that catalyzes the reaction of step (j) in the presence of.
  19. (37)~(39)のいずれかに記載の塩基配列を含む、P450-5(ORF13):
    (37)配列番号17に示す塩基配列、
    (38)配列番号17に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を有し、配列番号17に示す塩基配列によりコードされる遺伝子産物と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(k)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列、
    (39)配列番号17に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列を有し、配列番号17の塩基配列によりコードされる遺伝子産物と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(k)の反応を触媒する酵素作用を有するタンパク質をコードする塩基配列。
    (450) (ORF13) comprising the base sequence according to any of (37) to (39):
    (37) the base sequence shown in SEQ ID NO: 17,
    (38) having a base sequence that hybridizes under stringent conditions with a complementary strand of the base sequence shown in SEQ ID NO: 17, and, like the gene product encoded by the base sequence shown in SEQ ID NO: 17, P450 reductase and NADH or A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (k) in the presence of NADPH;
    (39) The base sequence shown in SEQ ID NO: 17 has a base sequence in which one or more bases are substituted, deleted, or added, and is reduced by P450 as in the gene product encoded by the base sequence of SEQ ID NO: 17. A base sequence encoding a protein having an enzyme action that catalyzes the reaction of step (k) in the presence of an enzyme and NADH or NADPH.
  20. (40)~(42)のいずれかに記載のアミノ酸配列からなるP450-5(ORF13):
    (40)配列番号18に示すアミノ酸配列、
    (41)配列番号18に示すアミノ酸配列と85%以上の同一性を有し、配列番号18に示すアミノ酸配列からなる酵素と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(k)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列、
    (42)配列番号18に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されたアミノ酸配列を有し、配列番号18に示すアミノ酸配列からなる酵素と同じく、P450還元酵素およびNADHまたはNADPHの存在下、工程(k)の反応を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列。
    P450-5 (ORF13) comprising the amino acid sequence according to any one of (40) to (42):
    (40) the amino acid sequence shown in SEQ ID NO: 18,
    (41) In the presence of P450 reductase and NADH or NADPH in the presence of P450 reductase and NADH or NADPH having 85% or more identity with the amino acid sequence shown in SEQ ID NO: 18, An amino acid sequence encoding a protein having an enzymatic action to catalyze the reaction;
    (42) The amino acid sequence shown in SEQ ID NO: 18 has an amino acid sequence in which one or more amino acids are substituted, deleted, or added, and, like the enzyme consisting of the amino acid sequence shown in SEQ ID NO: 18, P450 reductase and An amino acid sequence encoding a protein having an enzyme action that catalyzes the reaction of step (k) in the presence of NADH or NADPH.
  21. (43)~(45)のいずれかに記載の塩基配列を含む、アセチルトランスフェラーゼ(ORF12)をコードする遺伝子:
    (43)配列番号15に示す塩基配列、
    (44)配列番号15に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を有し、配列番号15に示す塩基配列によりコードされる遺伝子産物と同じく、アセチル供与体の存在下、化合物(XII)の19位の水酸基のアセチル化を触媒する酵素作用を有するタンパク質をコードする塩基配列、
    (45)配列番号15に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列を有し、配列番号15に示す塩基配列によりコードされる遺伝子産物と同じく、アセチル供与体の存在下、化合物(XII)の19位の水酸基のアセチル化を触媒する酵素作用を有するタンパク質をコードする塩基配列。
    (43) A gene encoding acetyltransferase (ORF12) comprising the base sequence according to any one of (45):
    (43) the base sequence represented by SEQ ID NO: 15,
    (44) having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 15 under stringent conditions, and in the presence of an acetyl donor in the same manner as the gene product encoded by the base sequence shown in SEQ ID NO: 15 , A base sequence encoding a protein having an enzyme action that catalyzes the acetylation of the 19th hydroxyl group of compound (XII),
    (45) In the base sequence shown in SEQ ID NO: 15, one or more bases have a base sequence substituted, deleted, or added, and acetylated like the gene product encoded by the base sequence shown in SEQ ID NO: 15. A base sequence encoding a protein having an enzyme action that catalyzes the acetylation of the 19th hydroxyl group of compound (XII) in the presence of a donor.
  22. (46)~(48)のいずれかに記載のアミノ酸配列からなる、アセチルトランスフェラーゼ(ORF12):
    (46)配列番号16に示すアミノ酸配列、
    (47)配列番号16に示すアミノ酸配列と85%以上の同一性を有し、配列番号16でコードされる酵素と同じく、アセチル基供与体の存在下、化合物(XII)の19位の水酸基のアセチル化を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列、
    (48)配列番号16に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されたアミノ酸配列を有し、配列番号14に示すアミノ酸配列からなる酵素と同じく、アセチル基供与体の存在下、化合物(XII)の19位の水酸基のアセチル化を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列。
    (46) to (48) acetyltransferase (ORF12) comprising the amino acid sequence according to any one of:
    (46) the amino acid sequence shown in SEQ ID NO: 16,
    (47) having the identity of 85% or more with the amino acid sequence shown in SEQ ID NO: 16 and, like the enzyme encoded by SEQ ID NO: 16, in the presence of an acetyl group donor, the hydroxyl group at position 19 of compound (XII) An amino acid sequence encoding a protein having an enzymatic action to catalyze acetylation,
    (48) An acetyl group donor having the same amino acid sequence as that shown in SEQ ID NO: 14, wherein the amino acid sequence shown in SEQ ID NO: 16 has an amino acid sequence in which one or more amino acids are substituted, deleted, or added. An amino acid sequence encoding a protein having an enzyme action that catalyzes the acetylation of the 19th hydroxyl group of compound (XII) in the presence of
  23. (49)~(51)のいずれかに記載の塩基配列を含む、アセチルトランスフェラーゼ(ORF9)をコードする遺伝子:
    (49)配列番号9に示す塩基配列、
    (50)配列番号9に示す塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を有し、配列番号9の塩基配列によりコードされる遺伝子産物と同じく、アセチル基供与体の存在下、式(XII)の化合物の3’位の水酸基のアセチル化を触媒する酵素作用を有するタンパク質をコードする塩基配列、
    (51)配列番号9に示す塩基配列において、1または複数の塩基が置換、欠失、若しくは付加された塩基配列を有し、配列番号9の塩基配列によりコードされる遺伝子産物と同じく、アセチル基供与体の存在下、式(XII)の化合物の3’位の水酸基のアセチル化を触媒する酵素作用を有するタンパク質をコードする塩基配列。
    (49) A gene encoding acetyltransferase (ORF9) comprising the base sequence according to any one of (51):
    (49) the base sequence represented by SEQ ID NO: 9,
    (50) having a base sequence that hybridizes with a complementary strand of the base sequence shown in SEQ ID NO: 9 under stringent conditions, and in the presence of an acetyl group donor in the same manner as the gene product encoded by the base sequence of SEQ ID NO: 9 A base sequence encoding a protein having an enzyme action that catalyzes the acetylation of the hydroxyl group at the 3′-position of the compound of formula (XII),
    (51) In the base sequence shown in SEQ ID NO: 9, one or more bases have a base sequence substituted, deleted, or added, and the acetyl group is the same as the gene product encoded by the base sequence of SEQ ID NO: 9. A base sequence encoding a protein having an enzyme action that catalyzes the acetylation of the hydroxyl group at the 3'-position of a compound of formula (XII) in the presence of a donor.
  24. (52)~(54)のいずれかに記載のアミノ酸配列からなるアセチルトランスフェラーゼ(ORF9):
    (52)配列番号10に示すアミノ酸配列、
    (53)配列番号10に示すアミノ酸配列と85%以上の同一性を有し、配列番号10に示されるアミノ酸配列からなる酵素と同じく、アセチル基供与体の存在下、式(XII)の化合物の3’位の水酸基のアセチル化を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列、
    (54)配列番号10に示すアミノ酸配列において、1または複数のアミノ酸が置換、欠失、若しくは付加されたアミノ酸配列を有し、配列番号10に示されるアミノ酸配列からなる酵素と同じく、アセチル基供与体の存在下、式(XII)の化合物の3’位の水酸基のアセチル化を触媒する酵素作用を有するタンパク質をコードするアミノ酸配列。
    Acetyltransferase (ORF9) comprising the amino acid sequence according to any of (52) to (54):
    (52) the amino acid sequence shown in SEQ ID NO: 10,
    (53) In the presence of an acetyl group donor, the compound of the formula (XII) has the identity of 85% or more to the amino acid sequence shown in SEQ ID NO: 10 and consists of the amino acid sequence shown in SEQ ID NO: 10 An amino acid sequence encoding a protein having an enzymatic action to catalyze acetylation of the hydroxyl group at the 3 ′ position,
    (54) The amino acid sequence shown in SEQ ID NO: 10 has an amino acid sequence in which one or more amino acids are substituted, deleted, or added, and provides an acetyl group as in the enzyme consisting of the amino acid sequence shown in SEQ ID NO: 10 An amino acid sequence encoding a protein having an enzyme action that catalyzes the acetylation of the 3′-position hydroxyl group of a compound of the formula (XII) in the presence of a body.
  25. P450-2(ORF5)、グリコシルトランスフェラーゼ(ORF6)、P450-3(ORF7)、メチルトランスフェラーゼ(ORF8)、アセチルトランスフェラーゼ(ORF9)、P450-4(ORF10)、プレニルトランスフェラーゼ(ORF11)、アセチルトランスフェラーゼ(ORF12)及びP450-5(ORF13)からなる群から選択されるいずれか1の酵素産生能を欠失した糸状菌。 P450-2 (ORF5), glycosyltransferase (ORF6), P450-3 (ORF7), methyltransferase (ORF8), acetyltransferase (ORF9), P450-4 (ORF10), prenyltransferase (ORF11), acetyltransferase (ORF12) And a filamentous fungus that lacks any one of the enzyme-producing ability selected from the group consisting of P450-5 (ORF13).
  26. 上記糸状菌が、Phomopsis amygdaliに由来するものである請求項25に記載の糸状菌。
     
    The filamentous fungus according to claim 25, wherein the filamentous fungus is derived from Pomopsis amygdali .
PCT/JP2012/072221 2011-08-31 2012-08-31 Method for producing intermediate for biosynthesis of fusicoccin a, and synthase for use in said method WO2013031975A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161529392P 2011-08-31 2011-08-31
US61/529,392 2011-08-31
US201261593436P 2012-02-01 2012-02-01
US61/593,436 2012-02-01

Publications (1)

Publication Number Publication Date
WO2013031975A1 true WO2013031975A1 (en) 2013-03-07

Family

ID=47756449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072221 WO2013031975A1 (en) 2011-08-31 2012-08-31 Method for producing intermediate for biosynthesis of fusicoccin a, and synthase for use in said method

Country Status (1)

Country Link
WO (1) WO2013031975A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143140A1 (en) * 2017-01-31 2018-08-09 国立大学法人大阪大学 Fusicoccin compound

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK 2 March 2012 (2012-03-02), "DEFINITION: Phomopsis amygdali PAPT mRNA for O-glucose prenyltransferase, complete cds", retrieved from http://www.ncbi.nlm.nih.gov/ nuccore/AB669436 accession no. B669436 *
HASHIMOTO, M. ET AL.: "Functional analyses of cytochrome P450 genes responsible for the early steps of brassicicene C biosynthesis", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 19, 2009, pages 5640 - 5643, XP026624054, DOI: doi:10.1016/j.bmcl.2009.08.026 *
MOTOYOSHI NOIKE ET AL.: "Shijokin Phomopsis amygdali ga Seisan suru Diterpene Haitotai no Seigosei ni Kansuru Kenkyu", THE SOCIETY FOR BIOTECHNOLOGY, JAPAN 2010 NENDO SYMPOSIUM TENNEN SEIBUTSU SHIGEN NO BIO RIYO KOEN YOSHISHU, 2010, pages 32 *
MOTOYOSHI NOIKE ET AL.: "Shijokin Phomopsis amygdali ga Seisan suru Fusicoccin (FC) Seigosei Idenshigun no Kino Kaiseki", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY 2011 NENDO TAIKAI KOEN YOSHISHU, vol. 26, 5 March 2011 (2011-03-05), pages 2A07A11 *
MOTOYOSHI NOIKE ET AL.: "Shijokin Phomopsis amygdali ga Seisan suru Fusicoccin (FC) Zenseigosei Idenshi Cluster no Shutoku", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY 2011 NENDO TAIKAI KOEN YOSHISHU, vol. 26, 5 March 2011 (2011-03-05), pages 26 *
MOTOYOSHI NOIKE ET AL.: "Shijokin Phomopsis amygdali no Genome Kaiseki ni yoru Fusicoccin Seigosei Idenshi Cluster no Dotei, Kino Kaiseki to Oyo", DAI 6 KAI SOCIETY OF GENOME MICROBIOLOGY, JAPAN NENKAI YOSHISHU, 18 May 2012 (2012-05-18), pages 92 *
ONO, Y. ET AL.: "Dioxygenases, Key Enzymes to Determine the Aglycon Structures of Fusicoccin and Brassicicene, Diterpene Compounds Produced by Fungi", J. AM. CHEM. SOC., vol. 133, 7 February 2011 (2011-02-07), pages 2548 - 2555 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143140A1 (en) * 2017-01-31 2018-08-09 国立大学法人大阪大学 Fusicoccin compound

Similar Documents

Publication Publication Date Title
JP7061145B2 (en) Improved production method of rebaudioside D and rebaudioside M
Li et al. Production of plant-specific flavones baicalein and scutellarein in an engineered E. coli from available phenylalanine and tyrosine
US8664186B2 (en) Stambomycin and derivatives, their production and their uses as drugs
TWI374187B (en) Genetically modified strains producing anthracycline metabolites useful as cancer drugs
WO2006126723A1 (en) Genetically modified microorganism and process for production of macrolide compound using the microorganism
EP2192171B1 (en) Method for production of non-natural antibiotic
JP2022524214A (en) UDP-Rhamnose Biosynthetic Production
EP2573174B1 (en) Ketoreductase mutant
CN111943996B (en) Trachelospermi analogue, genetic engineering bacterium for producing same and application thereof
WO2013031975A1 (en) Method for producing intermediate for biosynthesis of fusicoccin a, and synthase for use in said method
CA2446130A1 (en) Methods and compositions for making emamectin
EP3034610A1 (en) Novel terpenoid compound and method for producing same
EP2316937B1 (en) Dna encoding polypeptide involved in biosynthesis of herboxidiene
JP2012501663A (en) Genetically modified strains for biotransformation in anthracycline production
CA2354030A1 (en) Micromonospora echinospora genes encoding for biosynthesis of calicheamicin and self-resistance thereto
KR20130097538A (en) Chejuenolide biosynthetic gene cluster from hahella chejuensis
KR20220165645A (en) Atranorin biosynthesis gene derived from lichens and uses thereof
McElroy et al. CYPArm2 is a CYP450 Monooxygenase with Protoilludene 13‐Hydroxylase Activity Involved in the Biosynthesis of Armillyl Orsellinate‐Type Sesquiterpenoids
JP2004089156A (en) Vicenistatin synthetase gene cluster, vicenisamine sugar transferase polypeptide and gene encoding the polypeptide
Chen et al. UGT76F1 glycosylates an isomer of the C7‐necic acid component of pyrrolizidine alkaloids in Arabidopsis thaliana
WO2000050605A1 (en) Avermectin aglycon synthase genes
JP2009502187A (en) Genes involved in thiocoralin biosynthesis and their heterologous production
EP3050971A1 (en) Process for the enzymatic production of 3,4-O-dimethylated cinnamic acids, 3,4-dimethoxyphenylethylamines and 4-O-methylated cinnamic acid amides
JP2004173537A (en) Biosynthesis gene for kanamycin
Shepherd Combinatorial Biosynthetic Derivatization of the Antitumoral Agent Gilvocarcin V

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12827437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP