WO2013031544A1 - Desalinization system and desalinization method - Google Patents

Desalinization system and desalinization method Download PDF

Info

Publication number
WO2013031544A1
WO2013031544A1 PCT/JP2012/070794 JP2012070794W WO2013031544A1 WO 2013031544 A1 WO2013031544 A1 WO 2013031544A1 JP 2012070794 W JP2012070794 W JP 2012070794W WO 2013031544 A1 WO2013031544 A1 WO 2013031544A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
membrane
sewage
water
seawater desalination
Prior art date
Application number
PCT/JP2012/070794
Other languages
French (fr)
Japanese (ja)
Inventor
暁 佐々木
能登 一彦
関根 康記
光太郎 北村
Original Assignee
株式会社日立プラントテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立プラントテクノロジー filed Critical 株式会社日立プラントテクノロジー
Priority to SG2014003578A priority Critical patent/SG2014003578A/en
Priority to IN1450CHN2014 priority patent/IN2014CN01450A/en
Publication of WO2013031544A1 publication Critical patent/WO2013031544A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/022Reject series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/025Permeate series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies

Definitions

  • the present invention relates to a seawater desalination system and a seawater desalination method for desalinating seawater and sewage.
  • seawater desalination system S100 shown in FIG. 6 as a system which desalinates seawater and sewage.
  • Production of production water s101 (industrial water) using sewage in the seawater desalination system S100 is performed as follows.
  • the salinity of sewage is about 0.1%.
  • MBR Membrane Bioreactor
  • MBR permeated water that has permeated MBR101 is sent to low-pressure RO membrane by pump p102.
  • Reverse Osmosis Membrane Reverse osmosis membrane
  • the MBR permeated water that has passed through the MBR 101 is low at a salinity of about 0.1%, so that the low pressure RO membrane 102 is a low pressure RO membrane of about 1 to 2 MPa (megapascal).
  • the MBR permeated water sent by the pump p102 is desalinated by permeating the low-pressure RO membrane 102, almost half is produced as production water s101 (industrial water), and the other half is concentrated water s104 containing impurities such as salt. As separated and removed.
  • Concentrated water s104 having a volume of about 1 ⁇ 2 of sewage concentrated to a salt concentration of about 0.2% containing impurities such as salt removed by the low-pressure RO membrane 102 is sent from the low-pressure RO membrane 102 to the agitation tank 104. .
  • Production of industrial water as production water s102 from seawater in the seawater desalination system S100 is performed as follows.
  • the salinity of seawater is about 3-4%.
  • Seawater is sent to a UF membrane (Ultrafiltration Membrane) 103 by a pump p103, and the particles are removed by the UF membrane 103 and sent to a stirring tank 104.
  • the UF membrane-permeated seawater that has passed through the UF membrane 103 and the concentrated water s104 having a volume of about 1 ⁇ 2 of the sewage concentrated from the sewage by the low-pressure RO membrane 102 are stirred, and then pumped. Water is sent to the medium pressure RO membrane 105 by p104.
  • the UF membrane permeated seawater that has passed through the UF membrane 103 has a salinity of 3-4%, but is diluted with concentrated water s104 having a salinity of about 0.2%.
  • An RO membrane (reverse osmosis membrane) of about 3-5 MPa is used.
  • the mixed water s103 fed from the agitation tank 104 to the intermediate pressure RO membrane 105 by the pump p104 is desalinated by passing through the intermediate pressure RO membrane 105, and about half of the production water s102 (industrial water) is desalinated. ) And the remaining half is separated and removed as brine s105 containing impurities such as salt. That is, the production water s102 (industrial water) is produced with a capacity of about 1/2 of seawater plus about 1/4 of sewage.
  • the brine s105 is removed and drained with a capacity of about 1/2 of seawater plus about 1/4 of sewage.
  • the pressure energy of the brine s105 is recovered as rotational energy by the power recovery device 106 and used as a power source (energy source) for sending pressure to the intermediate pressure RO membrane 105 of a part of the mixed water s103 that bypasses the pump p104. It is done.
  • seawater desalination system S200 shown in FIG.
  • the seawater desalination system S200 is configured such that the sewage concentrated water s104 in the seawater desalination system S100 of FIG. 6 is not sent to the agitation tank 204, and sewage desalination and seawater desalination are configured independently. .
  • seawater desalination system S200 particles of the seawater are removed by the UF membrane 203, but are not diluted with the water from the sewage (the concentrated water s104 of the sewage in FIG. 6) in the stirring tank 204, so the salinity is about 3 It is as high as 4%. Therefore, a high pressure RO membrane 205 which is a high pressure RO membrane (reverse osmosis membrane) of about 6 to 8 MPa is used.
  • sewage passes through the low-pressure RO membrane 202 to be desalinated, and about half of the sewage production water s201 (industrial water) is obtained.
  • the seawater has its particles removed by the UF membrane 203, passes through the high-pressure RO membrane 205, and is desalinated, so that production water s203 (drinking water) in half the amount of seawater is obtained. Since the other configuration is the same as that of the seawater desalination system S100 of FIG. 6, the components of the seawater desalination system S100 are denoted by reference numerals in the 200s and detailed description thereof is omitted.
  • the conventional seawater desalination system S100 (see FIG. 6) has the following advantages over the seawater desalination system S200 (see FIG. 7).
  • the waste water (concentrated water s104) separated and removed in the process of producing the production water s101 from the sewage is used in the process of producing the production water s102 from the seawater. Therefore, there is an advantage that the production amount of production water from seawater can be increased. Specifically, when wastewater from the sewage (concentrated water s104) is not used, the production water from seawater has a capacity of about 1/2 that of seawater, but the volume of the sewage is increased to about 1/2. Therefore, a large amount of industrial water can be taken from the production water s102.
  • seawater (salt concentration of about 3 to 4%) is added to the concentrated water s104 (salt concentration of about 0.2%) separated by the low-pressure RO membrane 102 of the sewage, so the seawater is diluted and the salinity is increased. descend. Therefore, when wastewater from the sewage (concentrated water s104) is not used, seawater has a high salinity, so the high-pressure RO membrane 205 was necessary, but the medium-pressure RO was diluted with the concentrated water s104. The membrane 105 is sufficient, and the power of the pump p104 can be reduced as compared with the case of the high-pressure RO membrane 205.
  • the conventional seawater desalination systems S100 and S200 have the following problems.
  • the permeability of the UF membrane or RO membrane is highly dependent on the temperature of the permeated liquid.
  • Seawater desalination systems S100 and S200 desalinate seawater, but the seawater may be cold in some countries and regions.
  • the seawater permeability of the UF membrane 103 and the medium pressure RO membrane 105 is reduced due to an increase in viscosity due to low temperature seawater. Therefore, extra power is required for the pumps p103 and p104 to allow low temperature seawater to permeate the UF membrane 103 and the medium pressure RO membrane 105, resulting in a problem that the power is increased.
  • the seawater permeability of the UF membrane 203 and the high-pressure RO membrane 205 decreases due to low-temperature seawater. Therefore, in order to permeate low-temperature seawater through the UF membrane 203 and the high-pressure RO membrane 205, the power of the pumps p203 and p204 is necessary and there is a problem that the power increases.
  • the concentrated water s104 separated by the low-pressure RO membrane 102 of the seawater desalination system S100 is pumped by the pump p102, but the pressure energy of the concentrated water s104 is not utilized.
  • the brine s202 separated by the low pressure RO membrane 202 of the seawater desalination system S200 is pressurized by the pump p202, but the pressure energy of the brine s202 is not utilized. Therefore, it cannot be said that energy is used effectively.
  • seawater desalination systems S100 and S200 have four pumps, which require pump manufacturing costs, installation costs, maintenance costs, etc., and may increase costs.
  • an object of the present invention is to provide a seawater desalination system and a seawater desalination method that can effectively use energy and have low energy costs.
  • a seawater desalination system is a seawater desalination system for desalinating seawater and sewage, wherein the heat exchanger exchanges heat between the sewage or its treated water and the seawater. It has.
  • the seawater desalination method of claim 6 is a method for realizing the seawater desalination system of claim 1.
  • the seawater desalination system according to claim 2 is a seawater desalination system for desalinating seawater and sewage, wherein the membrane separation activated sludge treatment apparatus treats the sewage by a membrane separation activated sludge method, and the membrane separation activated sludge.
  • the permeated water that has passed through the treatment device is permeated, and the salt content thereof is contained in the first concentrated water to be removed, and at the same time, the first RO membrane that generates industrial water and the seawater are permeated to remove particles in the seawater.
  • the seawater desalination method of claim 7 is a method for realizing the seawater desalination system of claim 2.
  • seawater desalination system and seawater desalination method of the present invention a seawater desalination system and seawater desalination method that can effectively use energy and have low energy costs can be realized.
  • FIG. 1 It is a notional block diagram of the seawater desalination system of Embodiment 1 which concerns on this invention. It is a conceptual diagram which shows the variation of the heat exchanger in the seawater desalination system of Embodiment 1, (a) is a conceptual diagram which shows the heat exchanger which sends seawater to the flow path of sewage, and heat-exchanges, (b) FIG. 2 is a conceptual diagram showing a heat exchanger that exchanges heat by sending sewage to a seawater channel, and (c) is a heat exchanger that exchanges heat by sending a heat medium to the sewage channel and seawater channel. FIG. It is a figure which shows the position which heat-exchanges sewage in the seawater desalination system of Embodiment 1. FIG.
  • FIG. 2 It is a notional block diagram which shows the seawater desalination system of Embodiment 2.
  • FIG. It is a notional block diagram which shows the seawater desalination system of Embodiment 3.
  • FIG. It is a notional block diagram which shows the conventional seawater desalination system. It is a notional block diagram which shows the other conventional seawater desalination system.
  • FIG. 1 is a conceptual configuration diagram of a seawater desalination system according to Embodiment 1 of the present invention.
  • the seawater desalination system S according to Embodiment 1 includes an MBR (Membrane Bioreactor) 1 that treats sewage by a membrane separation activated sludge method to produce industrial water s1 from sewage, and salt and ions contained in the sewage. And a low pressure RO membrane (Reverse Osmosis Membrane) 2 that removes impurities and desalinates the water.
  • MBR Membrane Bioreactor
  • RO membrane Reverse Osmosis Membrane
  • the MBR1 performs solid-liquid separation to separate and remove activated sludge from sewage.
  • the RO membrane reverse osmosis membrane
  • the low-pressure RO membrane 2 is a low-pressure RO membrane that removes the salinity and the like with a relatively low permeation pressure of about 1 to 2 MPa (megapascal) since the salinity of the sewage is as low as about 0.1%.
  • the seawater desalination system S has a UF membrane (Ultrafiltration Membrane) 3 that removes particles contained in seawater and a UF membrane 3 to remove particles in order to produce drinking water s2 from seawater.
  • a high-pressure RO membrane 5 that removes impurities such as salt and ions contained in the seawater agitated in the agitation tank 4 from which particles have been removed and desalinates the water. is doing.
  • the agitation tank 4 also has a role of storing the seawater supplied to the pump p4 to enable stable operation of the pump p4.
  • the UF membrane (ultrafiltration membrane) 3 allows the seawater to permeate and performs molecular level sieving according to the pore size of the membrane and the molecular size of the substance to be removed in the seawater, thereby removing particles in the seawater.
  • the high-pressure RO membrane 5 is a high-pressure RO membrane that removes salt and the like with a relatively high permeation pressure and about 6 to 8 MPa (megapascal) because the salt concentration of seawater is about 3 to 4%.
  • the sewage used for the seawater desalination system S flows in the ground, for example, in a temperate region, it is relatively warm and has a temperature of about 15 to 20 ° C.
  • the seawater used in the seawater desalination system S is exposed to the atmosphere, it is easily affected by climate change, that is, it is easily affected by temperature fluctuation, and it may be as low as about 10 ° C in the beginning of autumn. is there.
  • the UF membrane 3 and the high-pressure RO membrane 5 used for desalinating seawater have high temperature dependency of the permeated liquid, and the permeability is low when the temperature is low, while the permeability is high when the temperature is high. It tends to be high.
  • the seawater desalination system S includes a heat exchanger 6 that performs heat exchange to give the heat of sewage to the seawater.
  • the heat exchanger 6 separates sewage flowing through the flow path r11 upstream of the MBR1 in the path for desalinating sewage and seawater flowing through the flow path r2 upstream of the UF membrane 3 in the path for desalinating seawater. Heat exchange is performed, and the heat of sewage is given to seawater by heat exchange.
  • FIG. 2 is a conceptual diagram showing variations of the heat exchanger in the seawater desalination system.
  • FIG. 2A is a conceptual diagram showing a heat exchanger that exchanges heat by flowing seawater through a sewage flow path
  • FIG. 2B is a conceptual diagram that shows a heat exchanger that exchanges heat by flowing sewage through a flow path of seawater.
  • FIG. 2 (c) is a conceptual diagram showing a heat exchanger that exchanges heat by flowing a heat medium through a flow path of sewage and a flow path of seawater.
  • the heat exchanger 6A shown in FIG. 2 (a) causes the seawater in the flow path r2 upstream of the UF membrane 3 to flow in the sewage flow path r11 upstream of the MBR1, thereby exchanging the heat of the sewage by the heat exchange. It is the composition given to.
  • the heat exchanger 6B shown in FIG. 2 (b) causes the sewage heat to flow into the seawater by heat exchange by flowing the sewage of the flow path r11 upstream of the MBR1 into the flow path r2 of seawater upstream of the UF membrane 3. It is the structure which gives.
  • the heat exchanger 6C shown in FIG. 2 (c) pumps a liquid heat medium n that easily transfers heat into the sewage flow path r11 upstream of the MBR1 and the seawater flow path r2 upstream of the UF membrane 3. And the heat of the sewage in the flow path r11 upstream of the MBR1 is carried by the heat medium n and given to the seawater in the flow path r2 upstream of the UF membrane 3.
  • FIG. 1 illustrates the case where the heat exchanger 6 is disposed downstream of the pump p1 of the sewage flow path r11 and downstream of the pump p3 of the seawater flow path r2, but the heat exchanger 6 is Can be arranged regardless of the upstream and downstream of the pump p1 of the flow path r11, and can be arranged regardless of the upstream and downstream of the pump p3 of the seawater flow path r2.
  • the downstream side of the pump p3 of the seawater flow path r2 is the pressure feeding force to the seawater sewage flow path r11 (in the flow path r11). (Pumping force to a coil or the like placed) is more preferable.
  • the heat exchanger 6A may be disposed either upstream or downstream of the pump p1 of the sewage flow path r11.
  • the downstream of the pump p1 of the sewage flow path r11 provides a pumping force to the sewage seawater flow path r2.
  • the heat exchanger 6B may be disposed either upstream or downstream of the pump p3 in the seawater flow path r2.
  • any type of heat exchanger such as a counter flow heat exchanger, a parallel flow heat exchanger, or a cross flow heat exchanger, may be selected and used as the heat exchanger 6.
  • FIG. 3 is a diagram illustrating a position where the sewage exchanges heat with seawater in the seawater desalination system.
  • the position where sewage is heat-exchanged with seawater is the position A of the sewage flow path r11 upstream of the MBR1, the position B of the flow path r12 after permeating the MBR1, and the low pressure RO membrane 2.
  • the position C of the flow path r13 of the brine s6 or the position D of the flow path r14 after passing through the low-pressure RO membrane 2 may be used.
  • the upstream side of the sewage flow path is thermally preferable in the order of the position A, the position B, the position C, and the position D on the upstream side because the sewage has more heat.
  • the sewage is pumped into the seawater desalination system S by the pump p1, exchanges heat with the seawater flowing through the flow path r2 via the heat exchanger 6, gives heat to the seawater, and is sent to the MBR1. Sewage passes through MBR1 to remove activated sludge flocs and bacteria.
  • the MBR permeated water s5a that has passed through the MBR1 is sent to the low-pressure RO membrane 2 by the pump p2, and passes through the low-pressure RO membrane 2, thereby removing the brine s6 containing impurities such as salt and ions, and desalinating it.
  • Industrial water s1 is produced.
  • the industrial water s1 is obtained about 1/2 of the sewage, while the remainder of the sewage, that is, about 1/2 of the sewage, is removed as the brine s6 containing impurities such as salt and ions.
  • seawater desalination system S the process of making drinking water s2 which is production water from seawater will be described.
  • the seawater is pumped into the seawater desalination system S by the pump p 3, warmed by the heat of the sewage through the heat exchanger 6, and fed to the UF membrane 3.
  • Seawater warmed by the heat exchanger 6 passes through the UF membrane 3 and particles in the seawater are removed.
  • the UF membrane permeated seawater s5b which is seawater from which particles have been removed by the UF membrane 3, is stirred and made uniform in the stirring tank 4.
  • the stirred UF membrane permeated seawater s5b is sent to the high pressure RO membrane 5 by the pump p4.
  • the UF membrane-permeated seawater s5b is produced as a brine s7 containing almost half of the salt or impurities such as ions, and the other half is produced as desalinated drinking water s2.
  • seawater desalination system S of the first embodiment in the heat exchanger 6, low-temperature seawater recovers and heats the heat of sewage at a temperature higher than seawater.
  • Each RO membrane 5 can be easily and satisfactorily permeated.
  • each motive power of the pumps p3 and p4 for pumping seawater can be reduced. Therefore, energy saving of the seawater desalination system S can be realized.
  • FIG. 4 is a conceptual configuration diagram illustrating the seawater desalination system according to the second embodiment.
  • the seawater desalination system 2S according to the second embodiment is provided with an energy recovery device 21 that recovers pressure energy of the brine s6 of the seawater desalination system S according to the first embodiment. Since other configurations are the same as the seawater desalination system S of the first embodiment, the same components are denoted by the same reference numerals as those of the first embodiment, and detailed description thereof is omitted.
  • the seawater desalination system 2S includes an energy recovery device 21 that recovers the pressure energy of the brine s6 removed by the low-pressure RO membrane 2 as electrical energy or rotational energy (mechanical energy).
  • the energy recovery device 21 recovers mechanical energy as electrical energy (electric power) by, for example, generating small hydraulic power from the pressure energy of the brine s6 using a water wheel or a gear.
  • the electric power recovered by the energy recovery device 21 is used as electric power of a pump p3 that pumps seawater to the UF membrane 3 (indicated by a broken line in FIG. 4). In addition, you may divert not to use as electric power of pump p3 but to other electric power.
  • the energy recovery device 21 recovers the pressure energy of the brine s6 as rotational energy (mechanical energy), applies it to the seawater flowing through the UF membrane 3, and does not include the pump p3.
  • a pump p3 may be provided to reduce the power of the pump p3.
  • the rotational energy (mechanical energy) and pressure energy recovered by the energy recovery device 21 may be applied to other locations without being applied to the seawater flowing through the UF membrane 3.
  • the pressure energy of the brine s6 is recovered by the energy recovery device 21, so that energy saving can be realized. Therefore, energy cost can be reduced.
  • the seawater desalination system 2S of Embodiment 2 although the case where the heat exchanger 6 is provided is illustrated, you may comprise without providing the heat exchanger 6 in the area where the temperature of seawater is high.
  • FIG. 5 is a conceptual configuration diagram illustrating the seawater desalination system according to the third embodiment.
  • the seawater desalination system 3S according to the third embodiment is configured such that the brine s6 separated by the low-pressure RO membrane 2 of the seawater desalination system S according to the first embodiment is merged with the seawater flow path r2. Since other configurations are the same as the seawater desalination system S of the first embodiment, the same components are denoted by the same reference numerals as those of the first embodiment, and detailed description thereof is omitted.
  • the seawater desalination system 3S merges the brine s6 separated by the low-pressure RO membrane 2 into the seawater flow path r2, and uses the pressure energy of the brine s6 to obtain a pumping force of seawater to the UF membrane 3. . For this reason, the pump p3 is not provided.
  • the production water s9 obtained from seawater is industrial water.
  • the production water s9 may be used as drinking water.
  • the pump p3 since the pump p3 is not provided, the manufacturing cost, the installation cost, the maintenance management cost, etc. of the pump p3 are eliminated, and the cost can be reduced.
  • the pump p3 when the pressure energy of the brine s6 is not large and the pumping force of seawater to the UF membrane 3 is insufficient, the pump p3 may be provided. In this case, since the power of the pump p3 can be reduced, energy saving can be achieved. Therefore, energy cost can be reduced.
  • the seawater desalination system 3S of Embodiment 3 although the case where the heat exchanger 6 was provided was illustrated, you may comprise without providing the heat exchanger 6 in the area where the temperature of seawater is high.

Landscapes

  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Activated Sludge Processes (AREA)

Abstract

The desalinization system (S) in the first present invention, which converts seawater and wastewater to fresh water, is provided with a heat exchanger (6) that exchanges heat between wastewater or treated wastewater and seawater. The desalinization system (S) in the second present invention, which also converts seawater and wastewater to fresh water, is provided with the following: a membrane-separation activated-sludge treatment device (1) that treats wastewater using a membrane-separation activated-sludge method; a first RO membrane (2) that removes salt from the output (s5a) of the membrane-separation activated-sludge treatment device (1) by transferring said salt to first concentrated water (s6), thereby producing industrial-use water (s1); a UF membrane (3) that seawater passes through and that removes particulates from said seawater; a second RO membrane (5), to which treated water (s5b) that has passed through the UF membrane (3) is sent, whereby salt is removed from said treated water (s5b) and transferred to second concentrated water (s7), thereby producing drinking water (s2); and a heat exchanger (6) that exchanges heat between the wastewater or treated wastewater (s5a, s6, s1) and seawater.

Description

海水淡水化システムおよび海水淡水化方法Seawater desalination system and seawater desalination method
 本発明は、海水と下水とを淡水化する海水淡水化システムおよび海水淡水化方法に関する。 The present invention relates to a seawater desalination system and a seawater desalination method for desalinating seawater and sewage.
 近年、世界的な人口増や新興国を含む広域な産業の進展から、砂漠地域などでの飲料水や工業用水の造水需要が顕在化している。
 従来、海水、下水を淡水化するシステムとして、図6に示す海水淡水化システムS100がある。
 海水淡水化システムS100における下水を用いた生産水s101(工業用水)の生産は、以下のように遂行される。なお、下水の塩分濃度は、0.1%程度である。
In recent years, demand for drinking water and industrial water production in desert areas has become apparent due to global population growth and development of wide-area industries including emerging countries.
Conventionally, there exists seawater desalination system S100 shown in FIG. 6 as a system which desalinates seawater and sewage.
Production of production water s101 (industrial water) using sewage in the seawater desalination system S100 is performed as follows. The salinity of sewage is about 0.1%.
 下水は、ポンプp101により、膜分離活性汚泥法が適用されるMBR(Membrane Bioreactor)101に送水され、MBR101で活性汚泥などが除去され、MBR101を透過したMBR透過水が、ポンプp102により低圧RO膜(Reverse Osmosis Membrane:逆浸透膜)102に送水される。
 なお、MBR101を透過したMBR透過水は、塩分濃度0.1%程度で低いので、低圧RO膜102は、低圧の約1~2MPa(メガパスカル)のRO膜が使用される。
Sewage is sent to MBR (Membrane Bioreactor) 101 to which membrane separation activated sludge method is applied by pump p101, activated sludge is removed by MBR101, and MBR permeated water that has permeated MBR101 is sent to low-pressure RO membrane by pump p102. (Reverse Osmosis Membrane: Reverse osmosis membrane) 102.
The MBR permeated water that has passed through the MBR 101 is low at a salinity of about 0.1%, so that the low pressure RO membrane 102 is a low pressure RO membrane of about 1 to 2 MPa (megapascal).
 ポンプp102により送水されたMBR透過水は、低圧RO膜102を透過することで淡水化され、ほぼ半分が生産水s101(工業用水)として生産され、残り半分が塩分などの不純物を含む濃縮水s104として分離、除去される。 The MBR permeated water sent by the pump p102 is desalinated by permeating the low-pressure RO membrane 102, almost half is produced as production water s101 (industrial water), and the other half is concentrated water s104 containing impurities such as salt. As separated and removed.
 低圧RO膜102で除去された塩分などの不純物を含む塩分濃度0.2%程度に濃縮された下水の約1/2の容量の濃縮水s104は低圧RO膜102から攪拌槽104に送水される。 Concentrated water s104 having a volume of about ½ of sewage concentrated to a salt concentration of about 0.2% containing impurities such as salt removed by the low-pressure RO membrane 102 is sent from the low-pressure RO membrane 102 to the agitation tank 104. .
 海水淡水化システムS100における海水からの生産水s102である工業用水の生産は以下のように遂行される。なお、海水の塩分濃度は、3~4%程度である。
 海水は、ポンプp103により、UF膜(Ultrafiltration Membrane)103に送水され、UF膜103で粒子が除去され攪拌槽104に送水される。攪拌槽104では、このUF膜103を透過したUF膜透過海水と、前記した低圧RO膜102で下水から濃縮された下水の1/2程度の容量の濃縮水s104とが攪拌された後、ポンプp104により、中圧RO膜105に送水される。
Production of industrial water as production water s102 from seawater in the seawater desalination system S100 is performed as follows. The salinity of seawater is about 3-4%.
Seawater is sent to a UF membrane (Ultrafiltration Membrane) 103 by a pump p103, and the particles are removed by the UF membrane 103 and sent to a stirring tank 104. In the agitation tank 104, the UF membrane-permeated seawater that has passed through the UF membrane 103 and the concentrated water s104 having a volume of about ½ of the sewage concentrated from the sewage by the low-pressure RO membrane 102 are stirred, and then pumped. Water is sent to the medium pressure RO membrane 105 by p104.
 UF膜103を透過したUF膜透過海水は、3~4%の塩分濃度であるが、塩分濃度0.2%程度の濃縮水s104で希釈されるため、中圧RO膜105は、中圧の約3~5MPaのRO膜(逆浸透膜)が使用される。
 攪拌槽104からポンプp104により中圧RO膜105に送水された混合水s103は、中圧RO膜105を透過することで淡水化され、1/2程度が淡水化された生産水s102(工業用水)として生産され、残り1/2程度が塩分などの不純物を含むブラインs105として分離、除去される。つまり、生産水s102(工業用水)は、海水の1/2プラス下水の1/4程度の容量をもって生産される。
The UF membrane permeated seawater that has passed through the UF membrane 103 has a salinity of 3-4%, but is diluted with concentrated water s104 having a salinity of about 0.2%. An RO membrane (reverse osmosis membrane) of about 3-5 MPa is used.
The mixed water s103 fed from the agitation tank 104 to the intermediate pressure RO membrane 105 by the pump p104 is desalinated by passing through the intermediate pressure RO membrane 105, and about half of the production water s102 (industrial water) is desalinated. ) And the remaining half is separated and removed as brine s105 containing impurities such as salt. That is, the production water s102 (industrial water) is produced with a capacity of about 1/2 of seawater plus about 1/4 of sewage.
 つまり、ブラインs105は、海水の1/2プラス下水の1/4程度の容量をもって除去され排水される。
 なお、ブラインs105の圧力エネルギは、動力回収装置106で回転エネルギとして回収され、ポンプp104を迂回した一部の混合水s103の中圧RO膜105への送圧の動力源(エネルギ源)として用いられる。
That is, the brine s105 is removed and drained with a capacity of about 1/2 of seawater plus about 1/4 of sewage.
The pressure energy of the brine s105 is recovered as rotational energy by the power recovery device 106 and used as a power source (energy source) for sending pressure to the intermediate pressure RO membrane 105 of a part of the mixed water s103 that bypasses the pump p104. It is done.
 従来のその他の例として、図7に示す海水淡水化システムS200がある。
 海水淡水化システムS200は、図6の海水淡水化システムS100における下水の濃縮水s104を、攪拌槽204に送水せず、下水の淡水化と海水の淡水化とを独立して構成したものである。
As another conventional example, there is a seawater desalination system S200 shown in FIG.
The seawater desalination system S200 is configured such that the sewage concentrated water s104 in the seawater desalination system S100 of FIG. 6 is not sent to the agitation tank 204, and sewage desalination and seawater desalination are configured independently. .
 海水淡水化システムS200においては、海水は、UF膜203で粒子が除去されるが、攪拌槽204で下水からの送水(図6の下水の濃縮水s104)で希釈されないため、塩分濃度が約3~4%と高い。そのため、高圧の約6~8MPaのRO膜(逆浸透膜)である高圧RO膜205を用いている。
 海水淡水化システムS200は、下水が低圧RO膜202を透過して淡水化され、下水の約半分の生産水s201(工業用水)が得られる。一方、海水はUF膜203で粒子が除去され、高圧RO膜205を透過して淡水化され、海水の1/2の量の生産水s203(飲料水)が得られる。
 その他の構成は、図6の海水淡水化システムS100と同様であるから、海水淡水化システムS100の構成要素に200番台の符号を付して示し、詳細な説明は省略する。
In the seawater desalination system S200, particles of the seawater are removed by the UF membrane 203, but are not diluted with the water from the sewage (the concentrated water s104 of the sewage in FIG. 6) in the stirring tank 204, so the salinity is about 3 It is as high as 4%. Therefore, a high pressure RO membrane 205 which is a high pressure RO membrane (reverse osmosis membrane) of about 6 to 8 MPa is used.
In the seawater desalination system S200, sewage passes through the low-pressure RO membrane 202 to be desalinated, and about half of the sewage production water s201 (industrial water) is obtained. On the other hand, the seawater has its particles removed by the UF membrane 203, passes through the high-pressure RO membrane 205, and is desalinated, so that production water s203 (drinking water) in half the amount of seawater is obtained.
Since the other configuration is the same as that of the seawater desalination system S100 of FIG. 6, the components of the seawater desalination system S100 are denoted by reference numerals in the 200s and detailed description thereof is omitted.
 従来の海水淡水化システムS100(図6参照)は、海水淡水化システムS200(図7参照)に比較し、次のメリットがある。 The conventional seawater desalination system S100 (see FIG. 6) has the following advantages over the seawater desalination system S200 (see FIG. 7).
 第1に、図6の海水淡水化システムS100では、下水から生産水s101を造水する過程で分離し除去された排水(濃縮水s104)を、海水から生産水s102を造水する過程に用いるため、海水からの生産水の生産量が高められるメリットがある。
 具体的には、下水からの排水(濃縮水s104)を用いない場合には、海水からの生産水は海水の1/2程度の容量であったものが、下水の1/2程度の容量増水した分、生産水s102の工業用水を多く取水できる。
First, in the seawater desalination system S100 of FIG. 6, the waste water (concentrated water s104) separated and removed in the process of producing the production water s101 from the sewage is used in the process of producing the production water s102 from the seawater. Therefore, there is an advantage that the production amount of production water from seawater can be increased.
Specifically, when wastewater from the sewage (concentrated water s104) is not used, the production water from seawater has a capacity of about 1/2 that of seawater, but the volume of the sewage is increased to about 1/2. Therefore, a large amount of industrial water can be taken from the production water s102.
 第2に、海水(塩分濃度3~4%程度)が、下水の低圧RO膜102で分離された濃縮水s104(塩分濃度0.2%程度)が加えられるため、海水が希釈され塩分濃度が低下する。そのため、下水からの排水(濃縮水s104)を用いない場合には、海水は塩分濃度が高いため、高圧RO膜205が必要であったのが、濃縮水s104で希釈されるため、中圧RO膜105で済み、ポンプp104の動力を高圧RO膜205の場合に比較し低下させることができる。 Second, seawater (salt concentration of about 3 to 4%) is added to the concentrated water s104 (salt concentration of about 0.2%) separated by the low-pressure RO membrane 102 of the sewage, so the seawater is diluted and the salinity is increased. descend. Therefore, when wastewater from the sewage (concentrated water s104) is not used, seawater has a high salinity, so the high-pressure RO membrane 205 was necessary, but the medium-pressure RO was diluted with the concentrated water s104. The membrane 105 is sufficient, and the power of the pump p104 can be reduced as compared with the case of the high-pressure RO membrane 205.
 何故なら、中圧RO膜の透過圧力は、約3~5MPaであるのに対し、高圧RO膜の透過圧力は約6~8MPaであり、高圧RO膜を透過させるためには、中圧RO膜より大きな動力(エネルギ)を必要とする。
 なお、本願に係る先行技術文献として特許文献1がある。
This is because the permeation pressure of the medium pressure RO membrane is about 3 to 5 MPa, whereas the permeation pressure of the high pressure RO membrane is about 6 to 8 MPa. Requires more power (energy).
In addition, there exists patent document 1 as a prior art document which concerns on this application.
特許第4481345号公報Japanese Patent No. 4481345
 ところで、従来の海水淡水化システムS100、S200においては、以下の問題がある。
 第1に、UF膜やRO膜の透過度は透過液体の温度依存性が高い。
 海水淡水化システムS100、S200は海水を淡水化するが、国や地域によっては海水が低温である場合がある。この場合、海水淡水化システムS100において、低温の海水により、UF膜103や中圧RO膜105の海水の透過度が粘度の上昇などにより低下する。そのため、低温の海水をUF膜103や中圧RO膜105に透過させるのに、ポンプp103、p104の動力が余計に必要になり、動力が大きくなるという問題がある。
Incidentally, the conventional seawater desalination systems S100 and S200 have the following problems.
First, the permeability of the UF membrane or RO membrane is highly dependent on the temperature of the permeated liquid.
Seawater desalination systems S100 and S200 desalinate seawater, but the seawater may be cold in some countries and regions. In this case, in the seawater desalination system S100, the seawater permeability of the UF membrane 103 and the medium pressure RO membrane 105 is reduced due to an increase in viscosity due to low temperature seawater. Therefore, extra power is required for the pumps p103 and p104 to allow low temperature seawater to permeate the UF membrane 103 and the medium pressure RO membrane 105, resulting in a problem that the power is increased.
 同様に、海水淡水化システムS200において、低温の海水により、UF膜203や高圧RO膜205の海水の透過度が低下する。そのため、低温の海水をUF膜203や高圧RO膜205に透過させるのに、ポンプp203、p204の動力が余計に必要になり、動力が大きくなるという問題がある。 Similarly, in the seawater desalination system S200, the seawater permeability of the UF membrane 203 and the high-pressure RO membrane 205 decreases due to low-temperature seawater. Therefore, in order to permeate low-temperature seawater through the UF membrane 203 and the high-pressure RO membrane 205, the power of the pumps p203 and p204 is necessary and there is a problem that the power increases.
 第2に、海水淡水化システムS100の低圧RO膜102で分離される濃縮水s104は、ポンプp102により圧送されるが、濃縮水s104の圧力エネルギは利用されていない。同様に、海水淡水化システムS200の低圧RO膜202で分離されるブラインs202はポンプp202で加圧されるが、ブラインs202の圧力エネルギは利用されていない。
 従って、エネルギが有効に利用されているとは言い難い。
Secondly, the concentrated water s104 separated by the low-pressure RO membrane 102 of the seawater desalination system S100 is pumped by the pump p102, but the pressure energy of the concentrated water s104 is not utilized. Similarly, the brine s202 separated by the low pressure RO membrane 202 of the seawater desalination system S200 is pressurized by the pump p202, but the pressure energy of the brine s202 is not utilized.
Therefore, it cannot be said that energy is used effectively.
 第3に、海水淡水化システムS100、S200とも、ポンプを4つ設けており、ポンプの製造コスト、設置コスト、維持管理コストなどが必要で、コスト増を招来する怖れがある。 Third, the seawater desalination systems S100 and S200 have four pumps, which require pump manufacturing costs, installation costs, maintenance costs, etc., and may increase costs.
 本発明は上記実状に鑑み、エネルギを有効に活用でき、エネルギコストが低廉な海水淡水化システムおよび海水淡水化方法の提供を目的とする。 In view of the above circumstances, an object of the present invention is to provide a seawater desalination system and a seawater desalination method that can effectively use energy and have low energy costs.
 上記目的を達成すべく、請求項1の海水淡水化システムは、海水と下水とを淡水化する海水淡水化システムであって、前記下水またはその処理水と前記海水とで熱交換する熱交換器を具備している。
 請求項6の海水淡水化方法は、請求項1の海水淡水化システムを実現する方法である。
In order to achieve the above object, a seawater desalination system according to claim 1 is a seawater desalination system for desalinating seawater and sewage, wherein the heat exchanger exchanges heat between the sewage or its treated water and the seawater. It has.
The seawater desalination method of claim 6 is a method for realizing the seawater desalination system of claim 1.
 請求項2の海水淡水化システムは、海水と下水とを淡水化する海水淡水化システムであって、前記下水を膜分離活性汚泥法により処理する膜分離活性汚泥処理装置と、前記膜分離活性汚泥処理装置を透過した透過水を透過させ、その塩分が第1の濃縮水に含まれ除去されるとともに工業用水を生成する第1のRO膜と、前記海水を透過させて当該海水中の粒子を除去するUF膜と、前記UF膜を透過した処理水を透過させ、当該処理水の塩分が第2の濃縮水に含まれ除去されるとともに飲料水を生成する第2のRO膜と、前記下水またはその処理水と前記海水とで熱交換する熱交換器とを具備している。
 請求項7の海水淡水化方法は、請求項2の海水淡水化システムを実現する方法である。
The seawater desalination system according to claim 2 is a seawater desalination system for desalinating seawater and sewage, wherein the membrane separation activated sludge treatment apparatus treats the sewage by a membrane separation activated sludge method, and the membrane separation activated sludge. The permeated water that has passed through the treatment device is permeated, and the salt content thereof is contained in the first concentrated water to be removed, and at the same time, the first RO membrane that generates industrial water and the seawater are permeated to remove particles in the seawater. The UF membrane to be removed, the second RO membrane that allows the treated water that has passed through the UF membrane to pass through, the salt content of the treated water is contained and removed in the second concentrated water, and generates drinking water, and the sewage Or the heat exchanger which heat-exchanges with the treated water and the said seawater is comprised.
The seawater desalination method of claim 7 is a method for realizing the seawater desalination system of claim 2.
 本発明の海水淡水化システムおよび海水淡水化方法によれば、エネルギを有効に活用でき、エネルギコストが低廉な海水淡水化システムおよび海水淡水化方法を実現できる。 According to the seawater desalination system and seawater desalination method of the present invention, a seawater desalination system and seawater desalination method that can effectively use energy and have low energy costs can be realized.
本発明に係る実施形態1の海水淡水化システムの概念的構成図である。It is a notional block diagram of the seawater desalination system of Embodiment 1 which concerns on this invention. 実施形態1の海水淡水化システムにおける熱交換器のバリエーションを示す概念図であり、(a)は下水の流路に海水を送流し熱交換する熱交換器を示す概念図であり、(b)は海水の流路に下水を送流し熱交換する熱交換器を示す概念図であり、(c)は下水の流路と海水の流路とに熱媒体を送流して熱交換する熱交換器を示す概念図である。It is a conceptual diagram which shows the variation of the heat exchanger in the seawater desalination system of Embodiment 1, (a) is a conceptual diagram which shows the heat exchanger which sends seawater to the flow path of sewage, and heat-exchanges, (b) FIG. 2 is a conceptual diagram showing a heat exchanger that exchanges heat by sending sewage to a seawater channel, and (c) is a heat exchanger that exchanges heat by sending a heat medium to the sewage channel and seawater channel. FIG. 実施形態1の海水淡水化システムにおいて下水を熱交換する位置を示す図である。It is a figure which shows the position which heat-exchanges sewage in the seawater desalination system of Embodiment 1. FIG. 実施形態2の海水淡水化システムを示す概念的構成図である。It is a notional block diagram which shows the seawater desalination system of Embodiment 2. FIG. 実施形態3の海水淡水化システムを示す概念的構成図である。It is a notional block diagram which shows the seawater desalination system of Embodiment 3. FIG. 従来の海水淡水化システムを示す概念的構成図である。It is a notional block diagram which shows the conventional seawater desalination system. 従来のその他の海水淡水化システムを示す概念的構成図である。It is a notional block diagram which shows the other conventional seawater desalination system.
 以下、本発明の実施形態について添付図面を参照して説明する。
<<実施形態1>>
 図1は、本発明に係る実施形態1の海水淡水化システムの概念的構成図である。
 実施形態1の海水淡水化システムSは、下水から工業用水s1を造水するために、下水を膜分離活性汚泥法で処理するMBR(Membrane Bioreactor)1と、下水に含有される塩分やイオンなどの不純物を除去し淡水化する低圧RO膜(Reverse Osmosis Membrane)2とを具備している。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
<< Embodiment 1 >>
FIG. 1 is a conceptual configuration diagram of a seawater desalination system according to Embodiment 1 of the present invention.
The seawater desalination system S according to Embodiment 1 includes an MBR (Membrane Bioreactor) 1 that treats sewage by a membrane separation activated sludge method to produce industrial water s1 from sewage, and salt and ions contained in the sewage. And a low pressure RO membrane (Reverse Osmosis Membrane) 2 that removes impurities and desalinates the water.
 MBR1は、固液分離を行い、下水から活性汚泥を分離し除去する。
 RO膜(逆浸透膜)は、水は通すが塩分などの低分子物質やイオンを通しにくい半透膜である。低圧RO膜2は、下水の塩分濃度が0.1%程度と低いので、比較的低い透過圧約1~2MPa(メガパスカル)で塩分などを除去する低圧のRO膜である。
MBR1 performs solid-liquid separation to separate and remove activated sludge from sewage.
The RO membrane (reverse osmosis membrane) is a semipermeable membrane that allows water to pass through but does not allow low-molecular substances such as salt or ions to pass through. The low-pressure RO membrane 2 is a low-pressure RO membrane that removes the salinity and the like with a relatively low permeation pressure of about 1 to 2 MPa (megapascal) since the salinity of the sewage is as low as about 0.1%.
 また、海水淡水化システムSは、海水から飲料水s2を造水するために、海水に含有される粒子を除去するUF膜(Ultrafiltration Membrane)3と、UF膜3を透過して粒子が除去された海水を撹拌して一様にする撹拌槽4と、粒子が除去され撹拌槽4で撹拌された海水に含有される塩分やイオンなどの不純物を除去し淡水化する高圧RO膜5とを具備している。なお、撹拌槽4は、ポンプp4に供給される海水を貯留して安定的なポンプp4の作動を可能とする役割も有する。 In addition, the seawater desalination system S has a UF membrane (Ultrafiltration Membrane) 3 that removes particles contained in seawater and a UF membrane 3 to remove particles in order to produce drinking water s2 from seawater. And a high-pressure RO membrane 5 that removes impurities such as salt and ions contained in the seawater agitated in the agitation tank 4 from which particles have been removed and desalinates the water. is doing. The agitation tank 4 also has a role of storing the seawater supplied to the pump p4 to enable stable operation of the pump p4.
 UF膜(限外ろ過膜)3は、海水を透過させることで膜の孔径と海水中の除去対象物質の分子の大きさによって分子レベルのふるい分けを行い、海水中の粒子を除去する。
 高圧RO膜5は、海水の塩分濃度が3~4%程度であるので、比較的高い透過圧、約6~8MPa(メガパスカル)で塩分などを除去する高圧なRO膜である。
The UF membrane (ultrafiltration membrane) 3 allows the seawater to permeate and performs molecular level sieving according to the pore size of the membrane and the molecular size of the substance to be removed in the seawater, thereby removing particles in the seawater.
The high-pressure RO membrane 5 is a high-pressure RO membrane that removes salt and the like with a relatively high permeation pressure and about 6 to 8 MPa (megapascal) because the salt concentration of seawater is about 3 to 4%.
 ところで、海水淡水化システムSに用いる下水は地中を流れるために、例えば、温帯の地域の場合、比較的温かく約15~20℃の温度を有している。一方、海水淡水化システムSに用いる海水は大気に晒されているため、気候の変動の影響を受け易く、つまり気温の変動の影響を受け易く、秋口には10℃前後の低温になる場合がある。
 前記したように、海水を淡水化するために使用するUF膜3、高圧RO膜5は、透過液体の温度依存性が高く、低温の場合には透過度が低い一方、高温の場合には透過度が高い傾向にある。
By the way, since the sewage used for the seawater desalination system S flows in the ground, for example, in a temperate region, it is relatively warm and has a temperature of about 15 to 20 ° C. On the other hand, since the seawater used in the seawater desalination system S is exposed to the atmosphere, it is easily affected by climate change, that is, it is easily affected by temperature fluctuation, and it may be as low as about 10 ° C in the beginning of autumn. is there.
As described above, the UF membrane 3 and the high-pressure RO membrane 5 used for desalinating seawater have high temperature dependency of the permeated liquid, and the permeability is low when the temperature is low, while the permeability is high when the temperature is high. It tends to be high.
 そこで、海水淡水化システムSでは、下水のもつ熱を海水に与える熱交換を行う熱交換器6を備えている。具体的には、熱交換器6は下水を淡水化する経路のMBR1の上流の流路r11を流れる下水と、海水を淡水化する経路のUF膜3の上流の流路r2を流れる海水とを熱交換させ、下水の熱を熱交換により海水に付与する。 Therefore, the seawater desalination system S includes a heat exchanger 6 that performs heat exchange to give the heat of sewage to the seawater. Specifically, the heat exchanger 6 separates sewage flowing through the flow path r11 upstream of the MBR1 in the path for desalinating sewage and seawater flowing through the flow path r2 upstream of the UF membrane 3 in the path for desalinating seawater. Heat exchange is performed, and the heat of sewage is given to seawater by heat exchange.
 熱交換器6は、次のように種々の実施態様で構成される。
 図2は、海水淡水化システムにおける熱交換器のバリエーションを示す概念図である。図2(a)は下水の流路に海水を流し熱交換する熱交換器を示す概念図であり、図2(b)は海水の流路に下水を流し熱交換する熱交換器を示す概念図であり、図2(c)は下水の流路と海水の流路とに熱媒体を流して熱交換する熱交換器を示す概念図である。
 図2(a)に示す熱交換器6Aは、MBR1の上流の下水の流路r11内に、UF膜3の上流の流路r2内の海水を流すことで、下水の熱を熱交換で海水に与える構成としたものである。
The heat exchanger 6 is configured in various embodiments as follows.
FIG. 2 is a conceptual diagram showing variations of the heat exchanger in the seawater desalination system. FIG. 2A is a conceptual diagram showing a heat exchanger that exchanges heat by flowing seawater through a sewage flow path, and FIG. 2B is a conceptual diagram that shows a heat exchanger that exchanges heat by flowing sewage through a flow path of seawater. FIG. 2 (c) is a conceptual diagram showing a heat exchanger that exchanges heat by flowing a heat medium through a flow path of sewage and a flow path of seawater.
The heat exchanger 6A shown in FIG. 2 (a) causes the seawater in the flow path r2 upstream of the UF membrane 3 to flow in the sewage flow path r11 upstream of the MBR1, thereby exchanging the heat of the sewage by the heat exchange. It is the composition given to.
 図2(b)に示す熱交換器6Bは、MBR1の上流の流路r11の下水を、UF膜3の上流の海水の流路r2内に流すことで、下水の熱を熱交換で海水に与える構成としたものである。
 図2(c)に示す熱交換器6Cは、MBR1の上流の下水の流路r11内とUF膜3の上流の海水の流路r2内とに、伝熱し易い液体の熱媒体nをポンプp9で循環させ、MBR1の上流の流路r11内の下水の熱を、熱媒体nで運んでUF膜3の上流の流路r2内の海水に与える構成としたものである。
 これらは、シェル&コイル式やシェル&チューブ式と称される類の熱交換器6である。
The heat exchanger 6B shown in FIG. 2 (b) causes the sewage heat to flow into the seawater by heat exchange by flowing the sewage of the flow path r11 upstream of the MBR1 into the flow path r2 of seawater upstream of the UF membrane 3. It is the structure which gives.
The heat exchanger 6C shown in FIG. 2 (c) pumps a liquid heat medium n that easily transfers heat into the sewage flow path r11 upstream of the MBR1 and the seawater flow path r2 upstream of the UF membrane 3. And the heat of the sewage in the flow path r11 upstream of the MBR1 is carried by the heat medium n and given to the seawater in the flow path r2 upstream of the UF membrane 3.
These are the heat exchangers 6 of a kind called shell & coil type or shell & tube type.
 なお、図1では、熱交換器6を下水の流路r11のポンプp1の下流かつ海水の流路r2のポンプp3の下流に配置した場合を例示しているが、熱交換器6は、下水の流路r11のポンプp1の上下流に拘らず配置でき、また海水の流路r2のポンプp3の上下流に拘らず配置できる。
 また、図2(a)の熱交換器6Aの場合、海水の流路r2(図1参照)のポンプp3の下流の方が、海水の下水の流路r11への圧送力(流路r11中におかれたコイルなどへの圧送力)が得られるのでより好ましい。この場合、熱交換器6Aは下水の流路r11のポンプp1の上下流何れに配置してもよい。
FIG. 1 illustrates the case where the heat exchanger 6 is disposed downstream of the pump p1 of the sewage flow path r11 and downstream of the pump p3 of the seawater flow path r2, but the heat exchanger 6 is Can be arranged regardless of the upstream and downstream of the pump p1 of the flow path r11, and can be arranged regardless of the upstream and downstream of the pump p3 of the seawater flow path r2.
Further, in the case of the heat exchanger 6A of FIG. 2A, the downstream side of the pump p3 of the seawater flow path r2 (see FIG. 1) is the pressure feeding force to the seawater sewage flow path r11 (in the flow path r11). (Pumping force to a coil or the like placed) is more preferable. In this case, the heat exchanger 6A may be disposed either upstream or downstream of the pump p1 of the sewage flow path r11.
 同様に、図2(b)の熱交換器6Bの場合、下水の流路r11(図1参照)のポンプp1の下流の方が、下水の海水の流路r2への圧送力が得られるのでより好ましい。この場合、熱交換器6Bは、海水の流路r2のポンプp3の上下流何れに配置してもよい。
 なお、熱交換器6は、対向流熱交換器、並行流熱交換器、直交流熱交換器など何れのタイプの熱交換器を選択して用いてもよいのは勿論である。
Similarly, in the case of the heat exchanger 6B of FIG. 2B, the downstream of the pump p1 of the sewage flow path r11 (see FIG. 1) provides a pumping force to the sewage seawater flow path r2. More preferred. In this case, the heat exchanger 6B may be disposed either upstream or downstream of the pump p3 in the seawater flow path r2.
Of course, any type of heat exchanger, such as a counter flow heat exchanger, a parallel flow heat exchanger, or a cross flow heat exchanger, may be selected and used as the heat exchanger 6.
 図3は、海水淡水化システムにおいて下水を海水と熱交換する位置を示す図である。
 海水淡水化システムSにおいて、下水を海水と熱交換する位置としては、MBR1の上流の下水の流路r11の位置A、MBR1を透過後の流路r12の位置B、低圧RO膜2で除去されるブラインs6の流路r13の位置C、低圧RO膜2を透過後の流路r14の位置Dの何れでもよい。
 しかし、下水の流路の上流側の方が、下水が熱を多くもつので、熱的には、上流側の位置A、位置B、位置C、位置Dの順に好ましい。
FIG. 3 is a diagram illustrating a position where the sewage exchanges heat with seawater in the seawater desalination system.
In the seawater desalination system S, the position where sewage is heat-exchanged with seawater is the position A of the sewage flow path r11 upstream of the MBR1, the position B of the flow path r12 after permeating the MBR1, and the low pressure RO membrane 2. Either the position C of the flow path r13 of the brine s6 or the position D of the flow path r14 after passing through the low-pressure RO membrane 2 may be used.
However, the upstream side of the sewage flow path is thermally preferable in the order of the position A, the position B, the position C, and the position D on the upstream side because the sewage has more heat.
 次に、図1に示す海水淡水化システムSにおいて、下水から工業用水s1を造水する過程について説明する。
 下水は、ポンプp1により海水淡水化システムS内に圧送され、熱交換器6を経由して流路r2を流れる海水と熱交換され熱を海水に与え、MBR1に送水される。下水は、MBR1を透過することで活性汚泥フロックや細菌などが除去される。
Next, in the seawater desalination system S shown in FIG. 1, the process of making industrial water s1 from sewage will be described.
The sewage is pumped into the seawater desalination system S by the pump p1, exchanges heat with the seawater flowing through the flow path r2 via the heat exchanger 6, gives heat to the seawater, and is sent to the MBR1. Sewage passes through MBR1 to remove activated sludge flocs and bacteria.
 MBR1を透過した下水のMBR透過水s5aは、ポンプp2により、低圧RO膜2に送水され、低圧RO膜2を透過することで、塩分やイオンなどの不純物を含むブラインs6が除去され淡水化され、工業用水s1が生産される。
 工業用水s1は、下水の1/2程度得られる一方、下水の残余の分、すなわち下水の1/2程度が塩分やイオンなどの不純物を含むブラインs6として除去される。
The MBR permeated water s5a that has passed through the MBR1 is sent to the low-pressure RO membrane 2 by the pump p2, and passes through the low-pressure RO membrane 2, thereby removing the brine s6 containing impurities such as salt and ions, and desalinating it. Industrial water s1 is produced.
The industrial water s1 is obtained about 1/2 of the sewage, while the remainder of the sewage, that is, about 1/2 of the sewage, is removed as the brine s6 containing impurities such as salt and ions.
 次に、海水淡水化システムSにおいて、海水から生産水である飲料水s2を造水する過程について説明する。
 海水は、ポンプp3により海水淡水化システムS内に圧送され、熱交換器6を経由して下水の熱で温められ、UF膜3に送水される。熱交換器6で温められた海水は、UF膜3を透過して海水中の粒子が除去される。UF膜3で粒子が除去された海水であるUF膜透過海水s5bは、撹拌槽4で攪拌され一様にされる。
Next, in the seawater desalination system S, the process of making drinking water s2 which is production water from seawater will be described.
The seawater is pumped into the seawater desalination system S by the pump p 3, warmed by the heat of the sewage through the heat exchanger 6, and fed to the UF membrane 3. Seawater warmed by the heat exchanger 6 passes through the UF membrane 3 and particles in the seawater are removed. The UF membrane permeated seawater s5b, which is seawater from which particles have been removed by the UF membrane 3, is stirred and made uniform in the stirring tank 4.
 そして、攪拌されたUF膜透過海水s5bは、ポンプp4により、高圧RO膜5に送水される。UF膜透過海水s5bは、高圧RO膜5を透過することで、ほぼ半分が塩分やイオンなどの不純物を含むブラインs7として除去され、残り半分が淡水化された飲料水s2として生産される。 Then, the stirred UF membrane permeated seawater s5b is sent to the high pressure RO membrane 5 by the pump p4. By passing through the high-pressure RO membrane 5, the UF membrane-permeated seawater s5b is produced as a brine s7 containing almost half of the salt or impurities such as ions, and the other half is produced as desalinated drinking water s2.
 実施形態1の海水淡水化システムSによれば、熱交換器6において、低温の海水が海水より高い温度の下水の熱を回収して温められるので、温められた海水は、UF膜3、高圧RO膜5をそれぞれ容易かつ良好に透過することができる。
 これに伴い、海水を圧送させるためのポンプp3、p4のそれぞれの動力を削減することができる。そのため、海水淡水化システムSの省エネルギ化を実現できる。
According to the seawater desalination system S of the first embodiment, in the heat exchanger 6, low-temperature seawater recovers and heats the heat of sewage at a temperature higher than seawater. Each RO membrane 5 can be easily and satisfactorily permeated.
In connection with this, each motive power of the pumps p3 and p4 for pumping seawater can be reduced. Therefore, energy saving of the seawater desalination system S can be realized.
<<実施形態2>>
 図4は、実施形態2の海水淡水化システムを示す概念的構成図である。
 実施形態2の海水淡水化システム2Sは、実施形態1の海水淡水化システムSのブラインs6の圧力エネルギを回収するエネルギ回収装置21を設けたものである。
 その他の構成は、実施形態1の海水淡水化システムSと同様であるから、同一の構成要素には実施形態1と同一の符号を付して示し、詳細な説明は省略する。
<< Embodiment 2 >>
FIG. 4 is a conceptual configuration diagram illustrating the seawater desalination system according to the second embodiment.
The seawater desalination system 2S according to the second embodiment is provided with an energy recovery device 21 that recovers pressure energy of the brine s6 of the seawater desalination system S according to the first embodiment.
Since other configurations are the same as the seawater desalination system S of the first embodiment, the same components are denoted by the same reference numerals as those of the first embodiment, and detailed description thereof is omitted.
 海水淡水化システム2Sは、低圧RO膜2で除去されるブラインs6の圧力エネルギを電気エネルギまたは回転エネルギ(機械的エネルギ)として回収するエネルギ回収装置21を設けている。
 エネルギ回収装置21は、例えば、ブラインs6の圧力エネルギを水車や歯車などで小水力発電して、機械的エネルギを電気的エネルギ(電力)として回収している。エネルギ回収装置21で回収した電力は、海水をUF膜3に圧送するポンプp3の電力として用いる (図4中、破線で示す)。なお、ポンプp3の電力として用いず、他の電力に流用してもよい。
The seawater desalination system 2S includes an energy recovery device 21 that recovers the pressure energy of the brine s6 removed by the low-pressure RO membrane 2 as electrical energy or rotational energy (mechanical energy).
The energy recovery device 21 recovers mechanical energy as electrical energy (electric power) by, for example, generating small hydraulic power from the pressure energy of the brine s6 using a water wheel or a gear. The electric power recovered by the energy recovery device 21 is used as electric power of a pump p3 that pumps seawater to the UF membrane 3 (indicated by a broken line in FIG. 4). In addition, you may divert not to use as electric power of pump p3 but to other electric power.
 或いは、エネルギ回収装置21でブラインs6の圧力エネルギを回転エネルギ(機械的エネルギ)として回収してUF膜3に流れる海水に与え、ポンプp3を設けない構成とする。
 或いは、エネルギ回収装置21で回収した回転エネルギ(機械的エネルギ)が大きくない場合には、ポンプp3を設けてポンプp3の動力を減らすように構成してもよい。
 或いは、公知の圧力直接変換方式のエネルギ回収装置21として、ブラインs6の圧力を直接、UF膜3に流れる海水に与える構成としてもよい。
 なお、エネルギ回収装置21で回収した回転エネルギ(機械的エネルギ)や圧力エネルギをUF膜3に流れる海水に与えることなく、他の箇所に適用することとしてもよい。
Alternatively, the energy recovery device 21 recovers the pressure energy of the brine s6 as rotational energy (mechanical energy), applies it to the seawater flowing through the UF membrane 3, and does not include the pump p3.
Alternatively, when the rotational energy (mechanical energy) recovered by the energy recovery device 21 is not large, a pump p3 may be provided to reduce the power of the pump p3.
Or it is good also as a structure which gives the pressure of the brine s6 directly to the seawater which flows into the UF membrane 3 as the energy recovery apparatus 21 of a known pressure direct conversion system.
The rotational energy (mechanical energy) and pressure energy recovered by the energy recovery device 21 may be applied to other locations without being applied to the seawater flowing through the UF membrane 3.
 実施形態2によれば、ブラインs6の圧力エネルギをエネルギ回収装置21で回収するので、省エネルギ化を実現できる。そのため、エネルギコストを削減できる。
 なお、実施形態2の海水淡水化システム2Sでは、熱交換器6を設ける場合を例示しているが、海水の温度が高い地域では熱交換器6を設けないで構成してもよい。
According to the second embodiment, the pressure energy of the brine s6 is recovered by the energy recovery device 21, so that energy saving can be realized. Therefore, energy cost can be reduced.
In addition, in the seawater desalination system 2S of Embodiment 2, although the case where the heat exchanger 6 is provided is illustrated, you may comprise without providing the heat exchanger 6 in the area where the temperature of seawater is high.
<<実施形態3>>
 図5は、実施形態3の海水淡水化システムを示す概念的構成図である。
 実施形態3の海水淡水化システム3Sは、実施形態1の海水淡水化システムSの低圧RO膜2で分離されるブラインs6を、海水の流路r2に合流させる構成したものである。
 その他の構成は、実施形態1の海水淡水化システムSと同様であるから、同一の構成要素には実施形態1と同一の符号を付して示し、詳細な説明は省略する。
<< Embodiment 3 >>
FIG. 5 is a conceptual configuration diagram illustrating the seawater desalination system according to the third embodiment.
The seawater desalination system 3S according to the third embodiment is configured such that the brine s6 separated by the low-pressure RO membrane 2 of the seawater desalination system S according to the first embodiment is merged with the seawater flow path r2.
Since other configurations are the same as the seawater desalination system S of the first embodiment, the same components are denoted by the same reference numerals as those of the first embodiment, and detailed description thereof is omitted.
 海水淡水化システム3Sは、低圧RO膜2で分離されるブラインs6を、海水の流路r2に合流させ、ブラインs6の圧力エネルギを用いて、海水のUF膜3への圧送力を得ている。そのため、ポンプp3を設けない構成としている。
 この場合、海水から得られる生産水s9は、工業用水となる。なお、生産水s9を飲料水として用いてもよい。
The seawater desalination system 3S merges the brine s6 separated by the low-pressure RO membrane 2 into the seawater flow path r2, and uses the pressure energy of the brine s6 to obtain a pumping force of seawater to the UF membrane 3. . For this reason, the pump p3 is not provided.
In this case, the production water s9 obtained from seawater is industrial water. The production water s9 may be used as drinking water.
 実施形態3の海水淡水化システム3Sによれば、ポンプp3を設けがないので、ポンプp3の製造コスト、設置コスト、維持管理コストなどが解消し、低コスト化を図れる。
 なお、ブラインs6の圧力エネルギが大きくなく海水のUF膜3への圧送力が不足する場合には、ポンプp3を設ける構成としてもよい。この場合、ポンプp3の動力を削減できるため、省エネルギ化を図ることが可能である。そのため、エネルギコストを削減できる。
 なお、実施形態3の海水淡水化システム3Sでは、熱交換器6を設ける場合を例示したが、海水の温度が高い地域では熱交換器6を設けないで構成してもよい。
According to the seawater desalination system 3S of the third embodiment, since the pump p3 is not provided, the manufacturing cost, the installation cost, the maintenance management cost, etc. of the pump p3 are eliminated, and the cost can be reduced.
In addition, when the pressure energy of the brine s6 is not large and the pumping force of seawater to the UF membrane 3 is insufficient, the pump p3 may be provided. In this case, since the power of the pump p3 can be reduced, energy saving can be achieved. Therefore, energy cost can be reduced.
In addition, in the seawater desalination system 3S of Embodiment 3, although the case where the heat exchanger 6 was provided was illustrated, you may comprise without providing the heat exchanger 6 in the area where the temperature of seawater is high.
<<その他の実施形態>>
 なお、実施形態1~3では、下水と海水をそれぞれ淡水化して、工業用水と飲料水とを造水する場合を例示したが、本発明は、下水と海水をそれぞれ淡水化して飲料水を造水することなく工業用水を造水する場合にも適用可能である。例えば、図7の下水の一部を、海水を淡水化する経路に流入させ、工業用水を造水する場合にも適用可能である。
 このように、本発明は、下水と海水をそれぞれ淡水化するシステムであれば、幅広く適用可能である。
<< Other Embodiments >>
In the first to third embodiments, the case where sewage and seawater are desalinated to produce industrial water and drinking water has been exemplified, but the present invention desalinates sewage and seawater to produce drinking water. The present invention is also applicable when industrial water is produced without water. For example, the present invention is also applicable to the case where a part of the sewage in FIG. 7 is introduced into a path for desalinating seawater to produce industrial water.
As described above, the present invention can be widely applied to any system that desalinates sewage and seawater.
 1   MBR(膜分離活性汚泥処理装置)
 2   低圧RO膜(第1のRO膜)
 3   UF膜
 5   高圧RO膜(第2のO膜)
 6、6A、6B、6C 熱交換器
 21  エネルギ回収装置
 S、2S、3S 海水淡水化システム
 s1  工業用水(下水の処理水)
 s2  飲料水
 s5a MBR透過水(透過水、下水の処理水)
 s5b UF膜透過海水(処理水)
 s6  ブライン(第1の濃縮水、下水の処理水)
 s7  ブライン (第2の濃縮水)
1 MBR (Membrane separation activated sludge treatment equipment)
2 Low pressure RO membrane (first RO membrane)
3 UF membrane 5 High-pressure RO membrane (second O membrane)
6, 6A, 6B, 6C Heat exchanger 21 Energy recovery device S, 2S, 3S Seawater desalination system s1 Industrial water (treated water for sewage)
s2 Drinking water s5a MBR permeated water (permeated water, treated sewage water)
s5b UF membrane permeated seawater (treated water)
s6 brine (first concentrated water, treated sewage)
s7 brine (second concentrated water)

Claims (9)

  1.  海水と下水とを淡水化する海水淡水化システムであって、
     前記下水またはその処理水と前記海水とで熱交換する熱交換器を
     具備することを特徴とする海水淡水化システム。
    A seawater desalination system that desalinates seawater and sewage,
    A seawater desalination system comprising a heat exchanger for exchanging heat between the sewage or its treated water and the seawater.
  2.  海水と下水とを淡水化する海水淡水化システムであって、
     前記下水を膜分離活性汚泥法により処理する膜分離活性汚泥処理装置と、
     前記膜分離活性汚泥処理装置を透過した透過水を透過させ、その塩分が第1の濃縮水に含まれ除去されるとともに工業用水を生成する第1のRO膜と、
     前記海水を透過させて当該海水中の粒子を除去するUF膜と、
     前記UF膜を透過した処理水を透過させ、当該処理水の塩分が第2の濃縮水に含まれ除去されるとともに飲料水を生成する第2のRO膜と、
     前記下水またはその処理水と前記海水とで熱交換する熱交換器とを
     具備することを特徴とする海水淡水化システム。
    A seawater desalination system that desalinates seawater and sewage,
    A membrane separation activated sludge treatment apparatus for treating the sewage by a membrane separation activated sludge method;
    A first RO membrane that permeates the permeated water that has passed through the membrane-separated activated sludge treatment device, the salt content of which is contained and removed in the first concentrated water, and generates industrial water;
    A UF membrane that permeates the seawater to remove particles in the seawater;
    A second RO membrane that allows the treated water that has permeated through the UF membrane to pass through, the salt content of the treated water is contained and removed in the second concentrated water, and generates drinking water;
    A seawater desalination system comprising a heat exchanger for exchanging heat between the sewage or treated water thereof and the seawater.
  3.  前記熱交換器は、
     前記UF膜より上流の前記海水と、前記膜分離活性汚泥処理装置の上流の下水または前記膜分離活性汚泥処理装置を透過した透過水または前記第1の濃縮水または前記生成された工業用水のうちの何れかとで、熱交換する
     ことを特徴とする請求項2に記載の海水淡水化システム。
    The heat exchanger is
    Of the seawater upstream of the UF membrane, sewage upstream of the membrane separation activated sludge treatment device, permeated water that has passed through the membrane separation activated sludge treatment device, the first concentrated water, or the generated industrial water The seawater desalination system according to claim 2, wherein heat exchange is performed with any of the above.
  4.  前記第1の濃縮水の圧力エネルギを回収するエネルギ回収装置を
     具備することを特徴とする請求項2または請求項3に記載の海水淡水化システム。
    The seawater desalination system according to claim 2, further comprising an energy recovery device that recovers pressure energy of the first concentrated water.
  5.  前記第1の濃縮水を、前記UF膜の上流の前記海水に合流させる
     ことを特徴とする請求項2または請求項3に記載の海水淡水化システム。
    The seawater desalination system according to claim 2 or 3, wherein the first concentrated water is merged with the seawater upstream of the UF membrane.
  6.  海水と下水とを淡水化する海水淡水化方法であって、
     前記下水またはそれを淡水化する過程での処理水と前記海水とで熱交換する
     ことを特徴とする海水淡水化方法。
    A seawater desalination method for desalinating seawater and sewage,
    Heat exchange is performed between the sewage or treated water in the process of desalinating the seawater and the seawater.
  7.  海水と下水とを淡水化する海水淡水化方法であって、
     前記下水またはそれを淡水化する過程での処理水と、前記海水とで熱交換し、
     前記下水を、膜分離活性汚泥処理装置と第1のRO膜とを透過させて工業用水を生成し、
     前記海水を、UF膜と第2のRO膜とを透過させて飲料水を生成する
     ことを特徴とする海水淡水化方法。
    A seawater desalination method for desalinating seawater and sewage,
    Heat exchange between the sewage or treated water in the process of desalinating it and the seawater;
    The sewage is passed through the membrane separation activated sludge treatment device and the first RO membrane to produce industrial water,
    A seawater desalination method, wherein the seawater is passed through a UF membrane and a second RO membrane to produce drinking water.
  8.  前記第1のRO膜で除去された第1の濃縮水の圧力エネルギを回収する
     ことを特徴とする請求項7に記載の海水淡水化方法。
    The seawater desalination method according to claim 7, wherein pressure energy of the first concentrated water removed by the first RO membrane is recovered.
  9.  前記第1のRO膜で除去された第1の濃縮水を、前記UF膜の上流の前記海水に合流させる
     ことを特徴とする請求項7に記載の海水淡水化方法。
    The seawater desalination method according to claim 7, wherein the first concentrated water removed by the first RO membrane is joined to the seawater upstream of the UF membrane.
PCT/JP2012/070794 2011-08-26 2012-08-16 Desalinization system and desalinization method WO2013031544A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG2014003578A SG2014003578A (en) 2011-08-26 2012-08-16 Desalinization system and desalinization method
IN1450CHN2014 IN2014CN01450A (en) 2011-08-26 2012-08-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-184562 2011-08-26
JP2011184562A JP2013043153A (en) 2011-08-26 2011-08-26 Seawater desalination system and seawater desalination method

Publications (1)

Publication Number Publication Date
WO2013031544A1 true WO2013031544A1 (en) 2013-03-07

Family

ID=47756038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070794 WO2013031544A1 (en) 2011-08-26 2012-08-16 Desalinization system and desalinization method

Country Status (5)

Country Link
JP (1) JP2013043153A (en)
IN (1) IN2014CN01450A (en)
SG (1) SG2014003578A (en)
TW (1) TW201309597A (en)
WO (1) WO2013031544A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5512032B1 (en) 2013-12-05 2014-06-04 三菱重工業株式会社 Circulating water usage system charging device, circulating water usage system
JP5606615B1 (en) * 2013-12-05 2014-10-15 三菱重工業株式会社 Membrane separator, circulating water utilization system
JP5563142B1 (en) 2013-12-05 2014-07-30 三菱重工業株式会社 Circulating water utilization system
JP5567199B1 (en) 2013-12-05 2014-08-06 三菱重工業株式会社 Circulating water utilization system
JP5518245B1 (en) 2013-12-05 2014-06-11 三菱重工業株式会社 Remote monitoring method and system for circulating water utilization system group
JP2015160174A (en) * 2014-02-27 2015-09-07 三菱レイヨン株式会社 water treatment system
WO2020148961A1 (en) * 2019-01-16 2020-07-23 オルガノ株式会社 Pure water production apparatus, and method for operating same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06254553A (en) * 1993-03-08 1994-09-13 Shinko Electric Co Ltd Apparatus for producing pure water
JPH0821673A (en) * 1994-07-07 1996-01-23 Toshiba Corp Sewage heat recovering apparatus
JPH09189066A (en) * 1996-01-12 1997-07-22 Kubota Corp Water take-in pipe of sewage intake facility for heat source
JP4481345B1 (en) * 2008-11-28 2010-06-16 株式会社神鋼環境ソリューション Seawater desalination method and seawater desalination apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06254553A (en) * 1993-03-08 1994-09-13 Shinko Electric Co Ltd Apparatus for producing pure water
JPH0821673A (en) * 1994-07-07 1996-01-23 Toshiba Corp Sewage heat recovering apparatus
JPH09189066A (en) * 1996-01-12 1997-07-22 Kubota Corp Water take-in pipe of sewage intake facility for heat source
JP4481345B1 (en) * 2008-11-28 2010-06-16 株式会社神鋼環境ソリューション Seawater desalination method and seawater desalination apparatus

Also Published As

Publication number Publication date
SG2014003578A (en) 2014-04-28
JP2013043153A (en) 2013-03-04
TW201309597A (en) 2013-03-01
IN2014CN01450A (en) 2015-05-08

Similar Documents

Publication Publication Date Title
WO2013031544A1 (en) Desalinization system and desalinization method
US10071929B2 (en) Desalination system and desalination method
JP5929195B2 (en) Fresh water production apparatus and operation method thereof
Cath Osmotically and thermally driven membrane processes for enhancement of water recovery in desalination processes
US10758869B2 (en) Fluid purification by forward osmosis, ion exchange and re-concentration
Maddah et al. Evaluation of various membrane filtration modules for the treatment of seawater
WO2020049579A1 (en) Combinatorial membrane-based systems and methods for dewatering and concentrating applications
KR102423788B1 (en) Complex desalination system using pressure-retarded osmosis for sea water desalination
AU2013229839A1 (en) Methods for osmotic concentration of hyper saline streams
JP2008100220A (en) Method for producing freshwater
Hung et al. Membrane processes and their potential applications for fresh water provision in Vietnam.
JP4973823B1 (en) Seawater desalination system
Darwish et al. Needed seawater reverse osmosis pilot plant in Qatar
WO2013031545A1 (en) Desalination system and desalination method
Tiraferri Forward osmosis for water treatment and desalination
EP2135846A2 (en) Reverse osmosis freshwater plant (variants)
JP4973822B1 (en) Seawater desalination system
JP4941613B1 (en) Seawater desalination system
Nave et al. Introductory chapter: Osmotically driven membrane processes
Tan et al. Membrane processes for desalination: overview
WO2016193855A1 (en) Reverse osmosis based potable water system with improved yield
JP2017074532A (en) Water treatment device and water treatment method
Kapoor et al. Reverse Osmosis Desalination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12827394

Country of ref document: EP

Kind code of ref document: A1