WO2013031145A1 - 熱硬化性樹脂組成物、その硬化物及び成形体の製造方法、硬化物、成形体、並びに燃料電池用セパレータ - Google Patents

熱硬化性樹脂組成物、その硬化物及び成形体の製造方法、硬化物、成形体、並びに燃料電池用セパレータ Download PDF

Info

Publication number
WO2013031145A1
WO2013031145A1 PCT/JP2012/005263 JP2012005263W WO2013031145A1 WO 2013031145 A1 WO2013031145 A1 WO 2013031145A1 JP 2012005263 W JP2012005263 W JP 2012005263W WO 2013031145 A1 WO2013031145 A1 WO 2013031145A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
resin composition
thermosetting resin
carbon
fuel cell
Prior art date
Application number
PCT/JP2012/005263
Other languages
English (en)
French (fr)
Inventor
洋志 秋永
雅之 野口
善一郎 泉
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to KR1020147005157A priority Critical patent/KR20140043153A/ko
Priority to US14/240,792 priority patent/US20140193744A1/en
Priority to CN201280041460.8A priority patent/CN103748177A/zh
Priority to EP12827034.5A priority patent/EP2752463A4/en
Publication of WO2013031145A1 publication Critical patent/WO2013031145A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0221Organic resins; Organic polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/39Thiocarbamic acids; Derivatives thereof, e.g. dithiocarbamates
    • C08K5/40Thiurams, i.e. compounds containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0226Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a thermosetting resin composition that can be suitably used for conductive electronic parts such as fuel cell separators, and a cured product, a molded product, a cured product, and a molded product obtained from the thermosetting resin composition.
  • the present invention relates to a manufacturing method and a fuel cell separator.
  • materials such as metals and carbon materials have been used as materials for applications requiring high conductivity.
  • carbon materials are excellent in conductivity, are not corroded like metals, and are excellent in heat resistance, lubricity, thermal conductivity, durability, and the like.
  • the improvement in flexibility of molding processability due to the combination with a polymer material is one reason why carbon materials have been developed as conductive materials in various fields where conductivity is required.
  • one of the uses of the conductor formed by molding the carbon material combined with the polymer material is a fuel cell separator.
  • Fuel cells are classified into several types depending on the type of electrolyte. Among them, the polymer electrolyte fuel cell operates at a low temperature of about 80 ° C. to 90 ° C., and is therefore considered promising for automobiles and consumer use.
  • the polymer electrolyte fuel cell generates power by supplying oxygen and supplying hydrogen to the positive electrode and the negative electrode of a power generation unit composed of a solid polymer electrolyte, a gas diffusion electrode, and a catalyst, for example. In order to obtain a high voltage from such a fuel cell, it is necessary to stack a large number of the power generation units, and a fuel cell separator is used to partition the stacked power generation units.
  • a fuel cell separator using a thermosetting resin has the above-mentioned features, but has a problem that a molding cycle is long and mass production is difficult compared to a separator using a thermoplastic resin.
  • a radically polymerizable material such as 1,2-polybutadiene
  • it can be molded in a shorter cycle than other thermosetting materials, but a further reduction in molding cycle is required.
  • the molding temperature is increased to shorten the molding cycle, the desired dimensional accuracy cannot be obtained, and if an additive is added to improve the high temperature moldability, the mechanical properties deteriorate. was there.
  • thermosetting resin composition according to another embodiment of the present invention, the (D) curing retarder is tetrakis (2-ethylhexyl) thiuram disulfide.
  • the polymer compound contained in the binder (A) is a hydrocarbon.
  • a thermosetting resin composition according to another embodiment of the present invention further includes 5% by mass to 90% by mass of a thermoplastic elastomer in the binder (A).
  • thermosetting resin composition The thermosetting resin composition of the present embodiment comprises (A) 100 parts by weight of binder, (B) 150 parts by weight to 1,000 parts by weight of carbon material, (C) 1 part by weight to 10 parts by weight of a curing initiator, and (D) It contains at least 0.1 to 2 parts by mass of a curing retarder.
  • the binder of the component (A) is a polymer compound containing 60 mol% or more of monomer units having a carbon-carbon double bond in the side chain (hereinafter referred to as a side chain type C ⁇ C bond-containing polymer compound). Contains 50% by mass or more.
  • the monomer unit having a carbon-carbon double bond in the side chain in the side chain type C ⁇ C bond-containing polymer compound is present in an amount of 70 mol% or more based on the total number of monomer units constituting the polymer. It is preferable that it is present in an amount of 85 mol% or more.
  • the monomer unit refers to a portion corresponding to each of the monomers that are raw materials in the polymer.
  • the total number of monomer units is, for example, in the case of polybutadiene, the total of 1,2-bond, 1,4-cis bond and 1,4-trans bond counted as one monomer unit. If another monomer is copolymerized, one of the monomers is counted as one monomer unit.
  • a polymer compound containing a monomer unit having a carbon-carbon double bond in the side chain in the above ratio has good curability when cured by reacting a carbon-carbon double bond.
  • the above-mentioned side chain type C ⁇ C bond-containing polymer compound is a polymer having a carbon-carbon double bond in the side chain.
  • the polymer may be a homopolymer or a copolymer.
  • the homopolymer that is, the monomer is one kind of polymer, its microstructure may differ depending on the polymerization method (conditions such as catalyst and temperature).
  • the polymerization method conditions such as catalyst and temperature
  • the monomer unit having a carbon-carbon double bond in the side chain include those represented by the following formulas (1) to (3). From the viewpoint of hot water resistance and moldability, the following formula (1 Or a monomer unit represented by (2) is preferred.
  • the diene polymer may be a copolymer of a plurality of diene compound monomers. Further, a part of the carbon-carbon double bond in the side chain may be a saturated carbon-carbon bond by hydrogenation.
  • Specific examples of the diene polymer include 1,2-polybutadiene, 3,4-polypentadiene, 3,4-polyisoprene, and polycyclopentadiene, but are not limited thereto.
  • the diene polymer is preferably 1,2-polybutadiene or 3,4-polyisoprene, and more preferably 1,2-polybutadiene. These polymers may contain monomer units corresponding to 1,4-bonds of polybutadiene as a microstructure.
  • monomers other than the diene compound may be copolymerized.
  • examples of the monomer other than the diene compound include styrene, norbornadiene, maleic anhydride, and methacrylic acid.
  • the monomer units of 1,4-bond and other monomer units are preferably less than 40 mol%, more preferably less than 30 mol%, and even more preferably less than 15 mol% of the total number of monomer units.
  • the diene polymer is characterized by high hydrolysis resistance. Therefore, it is excellent in hot water resistance.
  • the method for synthesizing such a diene polymer is not particularly limited.
  • a specific example of the synthesis method is “Experimental Chemistry Course 4th Edition, May 6, 1992, published by the Chemical Society of Japan, Maruzen Co., Ltd. 4th Edition”, page 41 “Experimental Example 2.20 Cobalt. "Synthesis of 1,2-polybutadiene and cis-1,4-polybutadiene by catalyst” and "4th edition, Experimental Chemistry Course, Polymer Synthesis (Edited by The Chemical Society of Japan, Maruzen Co., Ltd., May 6, 1992, No.
  • any method may be used.
  • it can be performed by a nuclear magnetic resonance method (hereinafter referred to as “NMR method”), Fourier transform infrared spectroscopy (hereinafter referred to as “FT-IR method”), or the like.
  • NMR method nuclear magnetic resonance method
  • FT-IR method Fourier transform infrared spectroscopy
  • the diene polymer containing 60 mol% or more of a monomer unit having a carbon-carbon double bond in the side chain a commercially available product can be used.
  • Examples include JSR RB.
  • denaturation can also be used. Specific examples thereof include, but are not limited to, those having various structures such as acrylic modification, methacryl modification, carboxy modification, maleic anhydride modification, and epoxy modification.
  • the binder which is the component (A) of this embodiment may include a thermoplastic elastomer.
  • the binder of component (A) contains 5 to 40% by mass, preferably 20 to 30% by mass of a thermoplastic elastomer, the mechanical properties and moldability are improved.
  • the elastomer is not particularly limited as long as it is a polymer compound that exhibits elasticity at room temperature (around 25 ° C.), but mechanical strength, conductivity, durability, heat resistance, hot water resistance, processed surface, carbon-carbon
  • An appropriate elastomer is selected from the viewpoints of compatibility with a hydrocarbon compound having a plurality of double bonds, dispersibility in the composition, and high filling property of the conductive filler.
  • elastomer having a binding site that undergoes hydrolysis such as ester bond and urethane bond
  • the amount can be made small.
  • hydrogenated acrylonitrile butadiene rubber linear low density polyethylene, ethylene propylene rubber, fluorine rubber, isoprene rubber, silicone rubber, acrylic rubber, norbornene rubber, butyl rubber, styrene butadiene copolymer and hydrogenated styrene butadiene copolymer.
  • a combination of one or two or more types selected from the group consisting of polymers is preferable, and linear low-density polyethylene is more preferable, but is not limited thereto.
  • the linear low density polyethylene include an ethylene butene copolymer and an ethylene octene copolymer.
  • the “carbon material (hereinafter referred to as carbon material)” of the component (B) was selected from natural graphite, artificial graphite, expanded graphite, carbon black, carbon fiber, vapor grown carbon fiber, and carbon nanotube. One or two or more types of combinations can be mentioned. Among these, artificial graphite is preferable in the present embodiment.
  • the carbon material has a content of 150 parts by mass to 1,000 parts by mass, preferably 400 parts by mass to 800 parts by mass with respect to 100 parts by mass of the binder of the component (A). Both the moldability and the conductivity of the cured product are improved.
  • Coke raw material is petroleum pitch, coal pitch, or the like. These raw materials are carbonized into coke.
  • coke is converted into graphitized powder by pulverizing coke and then graphitizing, or by pulverizing coke itself and then pulverizing, or by adding a binder to coke and molding and firing (coke and this calcined product).
  • the expanded graphite powder is, for example, natural graphite, pyrolytic graphite, etc., which is a highly oxidative solution of a mixture of concentrated sulfuric acid and nitric acid, or a mixture of concentrated sulfuric acid and hydrogen peroxide.
  • Immersion treatment produces a graphite intercalation compound, which is washed with water and then rapidly heated to pulverize the powder obtained by expanding the C-axis direction of the graphite crystal and the one that has been rolled into a sheet. It is a powder.
  • the carbon nanotubes are produced, for example, by the arc discharge method, laser evaporation method, thermal decomposition method, etc. described in Saito / Panto “Basics of Carbon Nanotubes” (P23-P57, Corona Publishing, 1998) In order to increase the pH, it is obtained by purification by a hydrothermal method, a centrifugal separation method, an ultrafiltration method, an oxidation method or the like.
  • the carbon nanotube is more preferably treated at a high temperature in an inert gas atmosphere of about 2,500 ° C. to 3,200 ° C. in order to remove impurities.
  • the carbon material particularly artificial graphite or graphitized carbon fiber, has a high degree of graphitization when it contains 0.05 mass% to 10 mass% boron in the carbon material, based on the total mass of the carbon material, A graphite material having a small lattice spacing is obtained, which is preferable. Thereby, the electroconductivity of a carbon material can be improved.
  • the method for measuring the amount of boron contained in the carbon material is not particularly limited, and any measurement method can be used. In the present embodiment, values measured by induction plasma emission spectrometry (hereinafter referred to as “ICP”) or induction plasma emission spectrometry / mass spectrometry (hereinafter referred to as “ICP-MS”) are used.
  • sulfuric acid and nitric acid are added to the sample, decomposed by microwave heating (230 ° C.) (Digester method), and further decomposed by adding perchloric acid (HClO 4 ) and diluted with water.
  • the form of boron content is not particularly limited, but some of the carbon atoms forming the graphite crystal are present between the graphite crystal layers. Those substituted with boron atoms are also more preferred.
  • the bond between the boron atom and the carbon atom when a part of the carbon atom is substituted with the boron atom may be any bond mode such as a covalent bond or an ionic bond.
  • the curing initiator is preferably a compound that generates radicals by heat, such as an organic peroxide or an azo compound, and more preferably an organic peroxide.
  • organic peroxide known compounds such as dialkyl peroxides, acyl peroxides, hydroperoxides, peroxyketals, and peroxyesters can be used.
  • dialkyl peroxides such as t-butylcumyl peroxide, dicumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, , 5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3, etc.
  • acyl peroxides such as benzoyl peroxide, and 1,1-bis (t-butyl) as peroxyketals Peroxy) cyclohexane, 2,2-bis (4,4-dibutylperoxycyclohexyl) propane, etc.
  • peroxyesters include t-butylperoxy-2-ethylhexanate, 2,5-dimethyl-2, 5-bis (t-butylperoxy) hexane, 2,5-dimethyl-2,5-bis (benzo Rupaokishi) hexane, t- butyl
  • organic peroxides are preferably selected so that the storage stability and curability of the thermosetting resin composition are balanced.
  • t-butylcumyl peroxide Dicumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, 2,5-dimethyl-2,5-bis (t-butylperoxide) It is more preferable to select a dialkyl peroxide such as oxy) hexyne-3, and it is more preferable to select dicumyl peroxide or 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane. .
  • These curing initiators may be used alone or in combination of two or more.
  • the curing retarder is not particularly limited as long as it is a compound that captures radicals generated from an organic peroxide that is a curing initiator, and is appropriately selected according to the purpose.
  • diisopropenylbenzene and ⁇ - Examples include methylstyrene dimer and thiuram-based additive.
  • the said hardening retarder contains at least 1 sort (s) or 2 or more types chosen from these compounds.
  • thiuram-based additive examples include tetraethylthiuram disulfide, tetrabutylthiuram disulfide, tetrakis (2-ethylhexyl) thiuram disulfide, tetramethylthiuram disulfide and the like.
  • tetrakis (2-ethylhexyl) thiuram disulfide is preferably employed from the viewpoint of low odor and small curing inhibition.
  • the cured product of the present embodiment is obtained by heating the thermosetting resin composition.
  • an optimum temperature can be selected and searched according to the type of the thermosetting resin composition.
  • the temperature is appropriately determined in the temperature range of 200 ° C. to 300 ° C. and in the range of 5 seconds to 120 seconds. Can do.
  • it is preferable to evacuate the cavity during curing. If necessary, after curing, complete curing can be carried out by applying after-curing in a temperature range of 150 ° C. to 200 ° C. for 10 minutes to 600 minutes.
  • the bending strength, bending strain and bending elastic modulus of the cured product are measured in accordance with JIS K7171, except that the test piece size is 10 mm in width, the span interval is 64 mm, and the bending speed is 2 mm / min. Although the thickness of the test piece is 1 mm, when the test piece size of 1 mm cannot be obtained, the span interval is set to 64 times the thickness.
  • the cured product preferably has a resistivity in the penetration direction (representing a volume resistivity in the penetration direction) of 2 ⁇ 10 ⁇ 2 ⁇ cm or less, more preferably 15 ⁇ 10 ⁇ 3 ⁇ cm or less, and more preferably 10 ⁇ More preferably, it is 10 ⁇ 3 ⁇ cm or less.
  • the resistivity in the penetration direction is as follows: First, four test pieces (50 mm ⁇ 50 mm ⁇ 2 mm) are brought into contact with each other, sandwiched between copper-plated electrodes (100 mm ⁇ 50 mm ⁇ 0.3 mm), and a load of 2 MPa is applied. The resistance is measured (measured value: Ra) by passing a constant current in the penetration direction and measuring the voltage between the gold-plated electrodes.
  • the cured product is characterized in that the hot water resistance can be increased.
  • the hot water resistance include water absorption and mass change rate. These can be measured by a method based on JIS K7202. For example, put a test piece of a certain size in a pressure vessel, add a certain volume of distilled water, perform a test for a fixed time in an oven at a constant temperature, and measure the mass change of the test piece before and after the test. be able to.
  • the molded body of this embodiment can be obtained by thermosetting and molding the above-described thermosetting resin composition by a molding method such as compression molding, transfer molding, injection molding, or injection compression molding. That is, in the present embodiment, the “molded body” refers to a cured product that is cured in a state of being arranged in a desired shape. The preferable ranges of the mechanical properties, conductivity, and hot water resistance of the molded body are the same as those of the cured product.
  • the thermosetting resin composition may be pulverized or granulated for the purpose of facilitating material supply to a molding machine or a mold.
  • a homogenizer, a Willet pulverizer, a high-speed rotary pulverizer (hammer mill, pin mill, cage mill, blender) or the like can be used, and it is preferable to pulverize while cooling in order to prevent aggregation of materials.
  • a method of pelletizing using an extruder, a ruder, a kneader or the like, or a bread type granulator or the like is used.
  • a sheet having a predetermined thickness and width (hereinafter referred to as a green sheet) at a temperature at which curing does not start using an extruder, a roll, a calendar, or the like. May be formed once.
  • a green sheet a sheet having a predetermined thickness and width
  • ⁇ Molding process> Although it does not specifically limit as a shaping
  • the dimensional accuracy of the molded body is evaluated as follows. For each molded body, the thickness of the molded body is measured at 15 locations, and the absolute value of the difference (molding error) from the design value is calculated as a percentage of the design value. At this time, the locations where the thickness is measured are arranged as evenly as possible so as not to be biased to a part of the molded body. Finally, the 15 results are arithmetically averaged. In the present embodiment, it is preferable that the average molding error obtained by the above method is 10% or less of the design value.
  • the molded body of the present embodiment was developed especially for the purpose of producing a separator for a fuel cell, a current collector for a battery or an electrode, and is useful for a separator for a fuel cell, a current collector for a battery or an electrode. is there.
  • thermosetting resin composition is optimal as a composite material in the field where thickness accuracy is required because it is easy to mold. Moreover, the said hardened
  • the use of the thermosetting resin composition and the cured product and the molded body is not particularly limited. Specific examples of the use include a separator for a fuel cell, an electrode, an electromagnetic wave shield, a heat dissipation material, a current collector for a battery, and an electron. Examples include a circuit board, a resistor, a heater, a dust collecting filter element, a planar heating element, and an electromagnetic wave material.
  • thermosetting resin composition [Preparation of graphite]
  • Graphite was produced by the following method. LPC-S coke manufactured by Nippon Steel Chemical Co., Ltd., which is non-needle coke, was coarsely pulverized to a size of 2 mm to 3 mm or less with a pulverizer [manufactured by Hosokawa Micron Co., Ltd.]. The coarsely pulverized product was finely pulverized with a jet mill (IDS2UR, manufactured by Nippon Pneumatic Co., Ltd.). Then, it adjusted to the desired particle size by classification.
  • IDS2UR jet mill
  • liquid 1,2-polybutadiene manufactured by Nippon Soda Co., Ltd., trade name NISSO-PB B3000
  • NISSO-PB B3000 which is a polymer compound containing a side chain type C ⁇ C bond
  • thermosetting resin composition obtained in the above-mentioned “Preparation of thermosetting resin composition” step is pulverized with a wonder blender (model number WB-1 manufactured by Osaka Chemical Co., Ltd.) until it passes through a 2 mm sieve. (Grinding step).
  • the thermosetting resin composition pulverized in the above “pulverization step” is heated at 90 ° C. for 20 minutes, and is rolled to a width of 100 mm and a thickness of 1 mm with a 10-inch roll (manufactured by Daihan). A green sheet was obtained.
  • the green sheet obtained in the above-mentioned “green sheet production” step is cut into a size of 280 mm ⁇ 200 mm, and a groove having a size of 280 ⁇ 200 ⁇ 1.5 mm and a width of 1 mm and a depth of 0.5 mm on one side (see FIG. (Not shown) is cured using a mold capable of forming a flat plate fuel cell separator formed at 1 mm intervals using a 500 t hydraulic press at a mold temperature of 180 ° C. and a pressure of 60 MPa for 480 seconds. A separator for a fuel cell having a flat plate shape with a groove was obtained.
  • the separator of the reference example had excellent mechanical properties.
  • thermosetting resin composition ⁇ Preparation of thermosetting resin composition>
  • tetrakis (2-ethylhexyl) thiuram disulfide (Ouchi Shinsei Chemical Co., Ltd.) is used as a retarder in addition to the aforementioned boron-containing graphite fine powder, pellets, liquid 1,2-polybutadiene and curing initiator.
  • Noxeller TOT-N Manufactured under the trade name Noxeller TOT-N) and weighed the amount shown in Table 1 and added it to the Laboplast Mill as a “remaining material” together with liquid 1,2-polybutadiene and a curing initiator.
  • a thermosetting resin composition was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 高温短時間成形を行った場合でも、寸法精度及び機械特性に優れた成形体を与える熱硬化性樹脂組成物、その硬化物及び成形体の製造方法、硬化物、成形体、並びに燃料電池用セパレータを提供する。そのために、本発明のある実施形態の熱硬化性樹脂組成物は、下記(A)~(D)を含む。(A)側鎖に炭素-炭素二重結合を有するモノマー単位を60モル%以上含む高分子化合物を50質量%以上含むバインダー100質量部、(B)炭素材料150~1,000質量部、(C)硬化開始剤として、有機過酸化物1~10質量部、(D)硬化遅延剤0.1~2質量部

Description

熱硬化性樹脂組成物、その硬化物及び成形体の製造方法、硬化物、成形体、並びに燃料電池用セパレータ
 本発明は、燃料電池用セパレータなどの導電性電子部品に好適に使用可能な熱硬化性樹脂組成物、及びその熱硬化性樹脂組成物から得られる硬化物、成形体、硬化物及び成形体の製造方法、並びに燃料電池用セパレータに関する。
 従来より、高い導電性が求められる用途の材料としては、金属や炭素材料等の材料が用いられてきた。これらの材料の中でも、炭素材料は導電性に優れ、金属のように腐食されることがなく、耐熱性、潤滑性、熱伝導性、耐久性等にも優れた材料である。特に、高分子材料との複合化により成形加工性の自由度が向上したことは、導電性が要求される各分野で炭素材料が導電性材料として発展してきた一つの理由である。
 ここで、上記高分子材料と複合化された上記炭素材料を成形してなる導電体の用途の一つに、燃料電池用セパレータが挙げられる。燃料電池は、その電解質の種類に応じて数種類に分類される。中でも、固体高分子型燃料電池は80℃~90℃程度の低温で作動するため、自動車や民生用として有望視されている。上記固体高分子型燃料電池は、例えば、高分子固体電解質、ガス拡散電極、触媒からなる発電部の正極に酸素を、負極に水素を供給し、これらを反応させることによって発電している。こうした燃料電池から高い電圧を得るためには、上記発電部を多数積層する必要があり、積層された上記発電部間を仕切るために燃料電池用セパレータが用いられる。
 このため、上記燃料電池用セパレータには、上記発電部で発生した電力を損失なく取り出すための高い導電性と、気体が漏れないための高い寸法精度、さらには運転温度付近においてもその寸法精度を維持する耐熱性が求められる。また固体高分子型燃料電池は湿潤条件下で運転されるため、耐熱水性も求められる。さらに、自動車など、運転中に振動が加わる用途に用いられる燃料電池用セパレータにおいては、動的な機械特性が良好であることも求められる。
 燃料電池用セパレータにおいて、炭素材料と複合化される高分子材料としては、熱可塑性樹脂、熱硬化性樹脂のいずれも用いられる。熱硬化性樹脂を用いた燃料電池用セパレータは、熱可塑性樹脂を用いたものに比べて耐熱性、耐熱水性に優れる。セパレータに用いられる熱硬化性材料としては、フェノール樹脂(例えば、特許文献1参照)、1,2-ポリブタジエン(例えば、特許文献2参照)などが知られている。
特開平6-96777号公報 特開2004-250661号公報
 熱硬化性樹脂を用いた燃料電池用セパレータは、上記の特長をもつ反面、熱可塑性樹脂を用いたものに比べ、成形サイクルが長く、量産が難しいという問題があった。その点、1,2-ポリブタジエンのようなラジカル重合性材料を用いた場合には、他の熱硬化性材料に比べれば、短いサイクルで成形できるが、より一層の成形サイクル短縮が求められている。これに対し、成形サイクルを短縮するため、成形温度を高くすると、所望の寸法精度が得られず、高温成形性を改良するために添加剤を添加すると、機械特性が悪化してしまう、という問題があった。
 そこで、本発明は上記の問題点に着目してなされたものであり、その目的は、高温短時間成形を行った場合でも、寸法精度及び機械特性に優れた成形体を与える熱硬化性樹脂組成物、その硬化物及び成形体の製造方法、硬化物、成形体、並びに燃料電池用セパレータを提供することにある。
 上記課題を解決するため、本発明者らが鋭意検討を重ねた結果、熱硬化性樹脂組成物に含まれる硬化遅延剤の含有量によって、寸法精度及び機械特性に優れた影響が与えられることを知見した。
 本発明は、本発明者らによる上記知見に基づくものであり、上記課題を解決するための本発明のある実施形態に係る熱硬化性樹脂組成物は、下記(A)~(D)を含む。
 (A)側鎖に炭素-炭素二重結合を有するモノマー単位を60モル%以上含むバインダー100質量部
 (B)炭素材料150質量部~1,000質量部
 (C)硬化開始剤1質量部~10質量部
 (D)硬化遅延剤0.5質量部~2質量部
 また、本発明の他の実施形態に係る熱硬化性樹脂組成物は、上記(D)硬化遅延剤が、テトラキス(2-エチルヘキシル)チウラムジスルフィドである。
 また、本発明の他の実施形態に係る熱硬化性樹脂組成物は、上記(A)バインダー中に含まれる高分子化合物が、炭化水素である。
 また、本発明の他の実施形態に係る熱硬化性樹脂組成物は、(A)バインダー中に、熱可塑性エラストマー5質量%~90質量%を、さらに含む。
 また、本発明のある実施形態に係る硬化物は、上記熱硬化性樹脂組成物を加熱して得られる。
 また、本発明のある実施形態に係る成形体は、上記熱硬化性樹脂組成物を、加熱下で金型を用いて成形して得られる。
 また、本発明のある実施形態に係る硬化物の製造方法は、上記熱硬化性樹脂組成物を、200℃~300℃、かつ90秒以下で硬化する。
 また、本発明のある実施形態に係る燃料電池用セパレータは、上記熱硬化性樹脂組成物を、加熱下で金型を用いて成形して得られる。
 本発明のある実施形態に係る熱硬化性樹脂組成物を硬化して得られる硬化物は、高温かつ短時間で硬化を行った場合でも機械特性に優れる。本発明のある実施形態に係る熱硬化性樹脂組成物は、高温かつ短時間で成形を行った場合でも、寸法精度に優れた成形体を与える。本発明のある実施形態に係る硬化物や成形体は、導電性を必要とする電子部品に用いることができ、特に燃料電池用セパレータのような、高い寸法精度や優れた機械特性が要求される電子部品に好適に用いることができる。
本発明のある実施形態に係る成形体を製造する際に用いられる金型を示す平面図である。
 以下、本発明のある実施形態に係る熱硬化性樹脂組成物及びその硬化物、成形体、硬化物の製造方法、並びに燃料電池用セパレータの一実施形態について図面を参照して説明する。なお、以下の記載において、量比を表す「部」及び「%」は、特に断らない限り、それぞれ「質量部」及び「質量%」を意味する。
(熱硬化性樹脂組成物)
 本実施形態の熱硬化性樹脂組成物は、(A)バインダー100質量部、(B)炭素材料150質量部~1,000質量部、(C)硬化開始剤1質量部~10質量部、及び(D)硬化遅延剤0.1質量部~2質量部を少なくとも含む。
<バインダー>
[側鎖に炭素-炭素二重結合を有するモノマー単位を60モル%以上含む高分子化合物]
 上記(A)成分のバインダーは、側鎖に炭素-炭素二重結合を有するモノマー単位を60モル%以上含む高分子化合物(以下、側鎖型C=C結合含有高分子化合物と呼ぶ。)を50質量%以上含む。
 上記側鎖型C=C結合含有高分子化合物中の、側鎖に炭素-炭素二重結合を有するモノマー単位は、その重合体を構成する全モノマー単位数に対して、70モル%以上存在することが好ましく、85モル%以上存在することがより好ましい。ここでモノマー単位とは、重合体において原料となるモノマーの1つ1つに相当する部分をいう。また全モノマー単位数とは、例えば、ポリブタジエンの場合、1,2-結合、1,4-cis結合、1,4-trans結合を1つのモノマー単位としてカウントしたものの総和である。他のモノマーが共重合されていればそのモノマーの1つを1つのモノマー単位としてカウントする。側鎖に炭素-炭素二重結合を有するモノマー単位が上記の比率で含まれている高分子化合物は、炭素-炭素二重結合を反応させて硬化させた場合の硬化性が良好である。
 上記(A)成分のバインダー中の側鎖型C=C結合含有高分子化合物は、酸素原子、窒素原子を含んでもよいが、熱水による加水分解を避けるため、炭素と水素を基本の構成元素とし、エステル結合やウレタン結合、アミド結合を有する構造はモノマー単位の総数の5%以内であることが好ましく、炭化水素であることがより好ましい。
 上記側鎖型C=C結合含有高分子化合物は、側鎖に炭素-炭素二重結合を有する重合体である。当該重合体は単独重合体でも、共重合体であってもよい。また、単独重合体、即ちモノマーが一種類の重合体であっても、そのミクロ構造は重合方法(触媒、温度等の条件)によって異なる場合がある。例えば、ブタジエンの単独重合体の場合、そのモノマー単位には1,4-cis結合、1,4-trans結合、及び1,2-結合の3つの種類があり、これらモノマー単位の含まれる割合によって、重合体の性状が異なる。
 上記側鎖に炭素-炭素二重結合を有するモノマー単位の例としては、下記式(1)~(3)で表されるものが挙げられ、耐熱水性及び成形性の観点から、下記式(1)又は(2)で表されるモノマー単位が好ましい。
Figure JPOXMLDOC01-appb-C000001
 また、上記高分子化合物の例としては、ブタジエン、ペンタジエン、イソプレン等のジエン化合物を60モル%以上含む原料モノマーを重合して得られる重合体(以下ジエンポリマーという)のうち、1,2-結合のモノマー単位が60モル%以上であるものや、ノボラック系ビニルエステル樹脂などが挙げられ、耐熱水性及び成形性の観点から、ジエンポリマーが好ましい。
[ジエンポリマー]
 ジエンポリマーは複数のジエン化合物モノマーの共重合体であってもよい。また、側鎖の炭素-炭素二重結合の一部が、水素添加により飽和炭素-炭素結合とされていてもよい。
 上記ジエンポリマーの具体例としては、1,2-ポリブタジエン、3,4-ポリペンタジエン、3,4-ポリイソプレン、ポリシクロペンタジエン等を挙げることができるが、これに限定されるわけではない。また、上記ジエンポリマーは、1,2-ポリブタジエン、又は3,4-ポリイソプレンであることが好ましく、1,2-ポリブタジエンであることがより好ましい。これらの重合体はミクロ構造としてポリブタジエンの1,4-結合に相当するモノマー単位を含んでいても構わない。更にジエン化合物以外のモノマーが共重合されていてもよい。ジエン化合物以外のモノマーとしてはスチレン、ノルボルナジエン、無水マレイン酸、メタクリル酸などが挙げられる。1,4-結合のモノマー単位及び他のモノマーによるモノマー単位は、全モノマー単位数の40モル%未満が好ましく、30モル%未満が更に好ましく、15モル%未満がより好ましい。
 上記ジエンポリマーは、耐加水分解性が高いことが特徴である。そのため、耐熱水性に優れる。
 このようなジエンポリマーの合成方法は、特に制限されない。合成方法の具体例は、「第4版 実験化学講座 高分子合成(社団法人 日本化学会編 丸善株式会社発行平成4年5月6日第4版)」の41頁「実験例2・20 コバルト触媒による1,2-ポリブタジエンとcis-1,4-ポリブタジエンの合成」や、「第4版 実験化学講座 高分子合成(社団法人 日本化学会編 丸善株式会社発行平成4年5月6日第4版)」の48頁「実験例2・26 (Pr-O)Ti-有機アルミニウム系触媒による3,4-ポリイソプレンの合成」に記載されているものが挙げられるが、これに限定されるものではない。
 また、合成したジエンポリマーのミクロ構造の確認のためには、特に制限はなく、どのような方法を用いてもよい。例えば、核磁気共鳴法(以下、「NMR法」と呼ぶ。)や、フーリエ変換赤外分光法(以下、「FT-IR法」と呼ぶ。)等で行うことができる。これらの具体的例としては、「高分子合成の実験法(株式会社 化学同人発行1984年3月1日第8刷発行)」45頁「実験例223 赤外スペクトルによるポリブタジエンのミクロ構造の測定」の項や、「高分子合成の実験法(株式会社 化学同人発行1984年3月1日第8刷発行)」49頁「実験例225 NMRによるポリブタジエンのミクロ構造の測定」の項や、「高分子合成の実験法(株式会社 化学同人発行1984年3月1日第8刷発行)」51頁「実験例226 NMRによるポリイソプレンのミクロ構造の測定」の項に記載されている。本実施形態では上記のNMR法によってミクロ構造を測定する。
 側鎖に炭素-炭素二重結合を有するモノマー単位を60モル%以上含むジエンポリマーとしては、市販のものを用いることもでき、例えば、日本曹達社製商品名NISSO-PBや、JSR社商品名 JSR RBなどが挙げられる。
 上記ジエンポリマーの分岐構造、末端構造に特に制限はなく、種々の変性を加えたものも使用できる。それらの具体例としては、アクリル変性、メタクリル変性、カルボキシ変性、無水マレイン変性、エポキシ変性等種々の構造のものが挙げられるが、これに限定するものではない。
<熱可塑性エラストマー>
 本実施形態の(A)成分であるバインダーは、熱可塑性エラストマーを含んでもよい。(A)成分のバインダー中に、熱可塑性エラストマーを5質量%~40質量%、好ましくは20質量%~30質量%含むと、機械特性及び成形性が向上する。
 このエラストマーは、室温(25℃付近)で弾性を示す高分子化合物であれば特に限定されるものではないが、機械強度、導電性、耐久性、耐熱性、耐熱水性、加工面、炭素-炭素二重結合を複数個有する炭化水素化合物との相溶性、組成物中への分散性、導電性フィラーの高充填性の面から適当なエラストマーが選ばれる。特に、耐熱水性の面からでは、熱水による加水分解を避けるため、エステル結合、ウレタン結合等加水分解を受ける結合部位を有するエラストマーの使用量は少ないほうが好ましいが、他の物性とのバランスで適切な量とすることができる。
 具体的には、水素化アクリロニトリルブタジエンゴム、直鎖状低密度ポリエチレン、エチレンプロピレンゴム、フッ素ゴム、イソプレンゴム、シリコーンゴム、アクリルゴム、ノルボルネンゴム、ブチルゴム、スチレンブタジエン共重合体及び水素化スチレンブタジエン共重合体からなる群より選ばれた1種又は2種類以上の組み合わせによるものが好ましく、より好ましくは直鎖状低密度ポリエチレンであるが、これらに限定するものではない。直鎖状低密度ポリエチレンとしては、エチレンブテン共重合体、エチレンオクテン共重合体などが挙げられる。
<炭素材料>
 上記(B)成分の「炭素材料(以下、炭素材料と呼ぶ。)」としては、天然黒鉛、人造黒鉛、膨張黒鉛、カーボンブラック、炭素繊維、気相法炭素繊維、カーボンナノチューブ中から選ばれた1又は2種類以上の組み合わせが挙げられる。これらの中でも、本実施形態においては、人造黒鉛が好ましい。
 上記炭素材料は、その含有量が、上記(A)成分のバインダー100質量部に対し、150質量部~1,000質量部、好ましくは400質量部~800質量部であることにより、樹脂組成物の成形性と、硬化物の導電性とがともに良好になる。
 上記炭素材料は、その嵩密度が1g/cmとなるように加圧圧縮したときの、加圧方向に対して直角方向の粉末電気比抵抗ができるだけ低いことが好ましい。このような炭素材料の粉末電気比抵抗値は、0.1Ωcm以下であることが好ましく、0.07Ωcm以下であることがより好ましい。炭素材料の粉末電気比抵抗が0.1Ωcmを超えると、硬化して得られる硬化物の導電性が低くなり、所望の硬化物が得られ難くなる傾向がある。
[人造黒鉛]
 上記人造黒鉛を得るためには、通常は先ずコークスを製造する。コークスの原料は石油系ピッチ、石炭系のピッチ等が用いられる。これらの原料を炭化してコークスとする。コークスから黒鉛化粉末にするには一般的にコークスを粉砕後黒鉛化処理する方法、コークス自体を黒鉛化した後粉砕する方法、あるいはコークスにバインダーを加え成形、焼成した焼成品(コークス及びこの焼成品を合わせてコークス等という)を黒鉛化処理後粉砕して粉末とする方法等がある。
 コークス、人造黒鉛及び天然黒鉛等の粉砕の粉砕条件の選定、及び必要により粉末を分級し、平均粒径や粒度分布をコントロールすることができる。
[膨張黒鉛粉末]
 上記膨張黒鉛粉末は、例えば、天然黒鉛、熱分解黒鉛等高度に結晶構造が発達した黒鉛を、濃硫酸と硝酸との混液、濃硫酸と過酸化水素水との混液の強酸化性の溶液に浸漬処理して黒鉛層間化合物を生成させ、水洗してから急速加熱して、黒鉛結晶のC軸方向を膨張処理することによって得られた粉末や、それを一度シート状に圧延したものを粉砕した粉末である。
[炭素繊維]
 上記炭素繊維としては、重質油、副生油、コールタール等から作られるピッチ系と、ポリアクリロニトリルから作られるPAN系が挙げられる。
 気相法炭素繊維とは、例えばベンゼン、トルエン、天然ガス等の有機化合物を原料に、フェロセン等の遷移金属触媒の存在下で、水素ガスとともに800℃~1,300℃で熱分解反応させることによって得られる。さらに、その後約2,500℃~3,200℃で黒鉛化処理することが好ましい。
 上記炭素繊維は、繊維径が0.05μm~10μm、繊維長が1μm~500μmの気相法炭素繊維を用いることが好ましく、繊維径が0.1μm~5μm、繊維長が5μm~50μmの気相法炭素繊維を用いることがより好ましく、繊維径が0.1μm~0.5μm、繊維長が10μm~20μmの気相法炭素繊維を用いることがさらに好ましい。
[カーボンナノチューブ]
 カーボンナノチューブは、グラファイトウィスカー、フィラメンタスカーボン、グラファイトファイバー、極細炭素チューブ、カーボンチューブ、カーボンフィブリル、カーボンマイクロチューブ、カーボンナノファイバー等とも呼ばれている。カーボンナノチューブにはチューブを形成するグラファイト膜が一層である単層カーボンナノチューブと、多層である多層カーボンナノチューブがある。本実施形態では、単層及び多層カーボンナノチューブのいずれも使用可能であるが、単層カーボンナノチューブを用いた方が、より高い導電性や機械的強度の硬化物が得られる傾向があるため好ましい。
 上記カーボンナノチューブは、例えば、斉藤・板東「カーボンナノチューブの基礎」(P23~P57、コロナ社出版、1998年発行)に記載のアーク放電法、レーザ蒸発法及び熱分解法等により作製し、更に純度を高めるために水熱法、遠心分離法、限外ろ過法、及び酸化法等により精製することによって得られる。また、上記カーボンナノチューブは、不純物を取り除くために、約2,500℃~3,200℃の不活性ガス雰囲気中で高温処理されることがより好ましい。
 上記カーボンナノチューブは、繊維径が0.5nm~100nm、繊維長が0.01μm~10μmのカーボンナノチューブを用いることが好ましく、繊維径が1nm~10nm、繊維長が0.05μm~5μmのカーボンナノチューブを用いることがより好ましく、繊維径が1nm~5nm、繊維長が0.1μm~3μmのカーボンナノチューブを用いることがさらに好ましい。
 ここで、上記気相法炭素繊維、及び上記カーボンナノチューブのそれぞれの繊維径、及び繊維長は、走査型電子顕微鏡(SEM)により撮影した数百本分の各繊維の直径と長さを測定し、その数平均を示したものである。
[カーボンブラック]
 上記カーボンブラックとしては、天然ガス等の不完全燃焼、アセチレンの熱分解により得られるケッチェンブラック、アセチレンブラック、炭化水素油や天然ガスの不完全燃焼により得られるファーネスカーボン、天然ガスの熱分解により得られるサーマルカーボン等が挙げられる。
[ホウ素]
 上記炭素材料、特に人造黒鉛や黒鉛化された炭素繊維は、炭素材料の全質量を基準として、炭素材料中に0.05質量%~10質量%のホウ素を含むと、黒鉛化度が高く、格子間隔が小さい黒鉛材料が得られ、好ましい。これにより炭素材料の導電性が向上させることができる。炭素材料に含まれるホウ素の量の測定方法は特に制限はなく、どのような測定方法でも測定できる。本実施形態では誘導型プラズマ発光分光分析法(以下、「ICP」と呼ぶ。)又は誘導型プラズマ発光分光質量分析法(以下、「ICP-MS」と呼ぶ。)により測定した値を用いる。具体的には試料に硫酸及び硝酸を加え、マイクロ波加熱(230℃)して分解(ダイジェスター法)し、さらに過塩素酸(HClO)を加えて分解したものを水で希釈し、これをICP発光分析装置にかけて、ホウ素量を測定する。ホウ素を含有させる方法としては、特開2005-181690号公報に記載の方法などが挙げられる。また、炭素材料中にホウ素及び/又はホウ素化合物が混合されている限り、ホウ素の含有の形態は特に制限されないが、黒鉛結晶の層間に存在するもの、黒鉛結晶を形成する炭素原子の一部がホウ素原子に置換されたものも、より好適なものとして挙げられる。また、炭素原子の一部がホウ素原子に置換された場合のホウ素原子と炭素原子の結合は、共有結合、イオン結合等どのような結合様式であってもよい。
<硬化開始剤>
 上記硬化開始剤としては、有機過酸化物やアゾ化合物等熱によりラジカルを発生する化合物が好ましく、有機過酸化物であることがより好ましい。有機過酸化物としては、ジアルキルパーオキサイド、アシルパーオキサイド、ハイドロパーオキサイド、パーオキシケタール、パーオキシエステル等の公知のものが使用可能である。具体例としては、ジアルキルパーオキサイドとしてt-ブチルクミルパーオキサイド、ジクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3等が挙げられ、アシルパーオキサイドとしてベンゾイルパーオキサイド等が挙げられ、パーオキシケタールとして1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、2,2-ビス(4,4-ジブチルパーオキシシクロヘキシル)プロパン等が挙げられ、パーオキシエステルとしてt-ブチルパーオキシ-2-エチルヘキサネート、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシベンゾエート等が挙げられ、ハイドロパーオキサイドとしてp-メタンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等が挙げられる。これら有機過酸化物は、熱硬化性樹脂組成物の保存安定性と、硬化性がバランスするように選択することが好ましく、例えば200℃~300℃で硬化を行う場合、t-ブチルクミルパーオキサイド、ジクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3等のジアルキルパーオキサイドを選択することがより好ましく、ジクミルパーオキサイド、又は2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサンを選択することがさらに好ましい。これらの硬化開始剤は1種で用いてもよく、2種以上を混合して用いてもよい。
 本実施形態における硬化開始剤として選択された有機過酸化物の添加量は、上記成分(A)バインダーを100質量部としたとき、その100質量部に対して、1~10質量部が好ましく、3~7質量部がより好ましい。硬化開始剤としての有機過酸化物の添加量が上記の範囲であると、硬化物の気密性や強度、耐久性に優れる。
<硬化遅延剤>
 上記硬化遅延剤としては、硬化開始剤である有機過酸化物から生じるラジカルを補足する化合物であれば特に制限はなく、目的に応じて適宜選択されるが、例えば、ジイソプロペニルベンゼンやα-メチルスチレンダイマー、チウラム系添加剤が挙げられる。上記硬化遅延剤は、これらの化合物より選ばれた少なくとも1種又は2種以上を含む。上記チウラム系添加剤としては、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド、テトラキス(2-エチルヘキシル)チウラムジスルフィド、テトラメチルチウラムジスルフィド等が挙げられる。本実施形態においては、これらのチウラム系添加剤のうち、臭気が少なく、硬化阻害が小さい点で、テトラキス(2-エチルヘキシル)チウラムジスルフィドを採用することが好ましい。
 また、上記硬化遅延剤の添加量は、上記成分(A)バインダーを100質量部としたとき、その100質量部に対して、0.5~1.5質量部であることが好ましく、熱硬化性樹脂組成物を硬化して得られる硬化物の曲げ弾性率の観点から、1質量部~2質量部であることがより好ましい。
<添加剤>
 本実施形態の熱硬化性樹脂組成物は、硬度、強度、導電性、成形性、耐久性、耐候性、耐水性等を改良する目的で、滑剤、増粘剤、架橋剤、硬化促進剤、可塑剤、低収縮剤、チクソ剤、界面活性剤、溶剤、ガラスファイバー、無機繊維フィラー、有機繊維、紫外線安定剤、酸化防止剤、消泡剤、レベリング剤、離型剤、撥水剤、親水性付与剤等の添加剤を必要に応じて添加してもよい。
(熱硬化性樹脂組成物の製造方法)
 本実施形態の熱硬化性樹脂組成物の製造方法は、上述の各成分の混合工程を含む。
<混合工程>
 上記混合工程は、例えば、上記各成分(A)~(D)及び必要に応じて上述の添加剤を、一般的に用いられている混合機、又は混練機を使用し、硬化が開始しない温度で一定に保ちながら、なるべく均一に混合させる。上記混合機、又は混練機としては、ロール、押出機、ニーダー、BANBURY(登録商標)ミキサー、ヘンシエルミキサ(登録商標)、プラネタリーミキサー等が挙げられる。
(硬化物及びその製造方法)
 本実施形態の硬化物は、上記熱硬化性樹脂組成物を加熱して得られる。
[硬化]
 上記硬化の条件としては、上記熱硬化性樹脂組成物の種類に応じて最適温度を選定、探索することができる。例えば、熱硬化性樹脂組成物に含まれるバインダーの熱分解をおさえる一方、短時間で成形を行うには、200℃~300℃の温度範囲で、5秒間~120秒間という範囲で適宜決定することができる。硬化物を製造するにあたり、欠陥のない良品を得るためには、硬化の際にキャビティ内を真空にすることが好ましい。また必要があれば、硬化後、150℃~200℃の温度範囲で10分間~600分間アフターキュアーを施すことによって完全な硬化を実施し得る。
[硬化物の機械特性]
 上記硬化物は、曲げ強度(破断時)及び曲げ弾性率と、曲げひずみ(破断時)との良好なバランスを保つと、振動や衝撃に強くなり、好ましい。
 具体的には、曲げ強度は、36MPa以上であることが好ましく、37MPa以上であることがより好ましく、38MPa以上であることが更に好ましい。曲げ弾性率は7.5GPa以上であることが好ましく、8GPa以上であることがより好ましく、8.5GPa以上であることが更に好ましい。曲げひずみは、0.8%以上であることが好ましく、0.85GPa以上であることがより好ましい。曲げ強度が36MPa、曲げ弾性率が7.5GPa以上、曲げひずみが0.8%以上の全てを充たす場合に、「優れた機械特性を有する」と評価することができる。
 上記硬化物の曲げ強度、曲げひずみ及び曲げ弾性率は、試験片サイズを幅10mm、スパン間隔を64mm、曲げ速度を2mm/minとする他は、JIS K7171に準拠して測定する。なお試験片厚みは1mmとするが、1mmの試験片サイズがとれない場合は、スパン間隔が厚みの64倍となるようにする。
[硬化物の導電性]
 上記硬化物は、体積固有抵抗が2×10-2Ωcm以下であることが好ましく、8×10-3Ωcm以下であることがより好ましく、5×10-3Ωcm以下であることがさらに好ましい。体積固有抵抗は、例えば、JIS K7194に準拠した四探針法で測定される。
 上記硬化物は、接触抵抗が2×10-2Ωcm以下であることが好ましく、1×10-2Ωcm以下であることがより好ましく、7×10-3Ωcm以下であることがさらに好ましい。接触抵抗値は、試験片(20mm×20mm×2mm)と炭素板(1.5×10-3Ωcm、20mm×20mm×1mm)とを接触させ、それを二つの銅板ではさみ、98Nの荷重を加える。そして、1Aの定電流を貫通方向に流して、試験片と炭素板の界面にプラスとマイナスの端子を接触させて電圧を測定することによって抵抗値を計算し、その値に接触している断面積を積算して接触抵抗値とする。
 上記硬化物は、貫通方向の抵抗率(貫通方向の体積固有抵抗をあらわす)が2×10-2Ωcm以下であることが好ましく、15×10-3Ωcm以下であることがより好ましく、10×10-3Ωcm以下であることがさらに好ましい。貫通方向の抵抗率は、まず試験片(50mm×50mm×2mm)4枚を接触させ、それを銅板に金メッキした電極(100mm×50mm×0.3mm)で挟み、2MPaの荷重を加え、1Aの定電流を貫通方向に流して金メッキ電極間の電圧を測定することによって抵抗を測定(測定値:Raとする)する。次に同じ試験片を2枚として同様の操作で抵抗値を測定(測定値:Rbとする)する。これらから、次式により、貫通方向の抵抗率を算出する。
 貫通方向の抵抗率=(Ra-Rb)×(試験片の面積)/[(4-2)×(試験片の厚さ)]
 硬化物の体積固有抵抗、接触抵抗、及び貫通抵抗が上記の範囲であると、本実施形態の硬化物を部品として用いた、燃料電池などの装置の内部抵抗を小さくすることができる。
[硬化物の耐熱水性]
 上記硬化物は、耐熱水性を高くできることが特徴である。耐熱水性の指標としては、例えば吸水率や質量変化率が挙げられる。これらは、JIS K7202に準拠した方法で測定できる。
 例えば、一定の大きさの試験片を耐圧容器に入れ、一定容量の蒸留水を加え、一定温度のオーブン中で一定時間の試験を行い、試験前後の試験片の質量変化を測定することにより求めることができる。
(成形体)
 本実施形態の成形体は、上述した熱硬化性樹脂組成物を圧縮成形、トランスファー成形、射出成形又は射出圧縮成形等の成形法で熱硬化、成形することで得ることができる。すなわち、本実施形態において「成形体」とは、所望の形状で整えた状態で硬化された硬化物のことを言う。成形体の機械特性、導電性及び耐熱水性について、その好ましい範囲は、上記硬化物と同様である。
<粉砕(造粒)工程>
 上記熱硬化性樹脂組成物を成形するにあたっては、モールド成形機や金型への材料供給を容易にする目的で、熱硬化性樹脂組成物を粉砕あるいは造粒してもよい。粉砕には、ホモジナイザー、ウィレー粉砕機、高速回転粉砕機(ハンマーミル、ピンミル、ケージミル、ブレンダー)等が使用でき、材料同士の凝集を防ぐため冷却しながら粉砕することが好ましい。造粒には、押出機、ルーダー、コニーダー等を用いてペレット化する方法、あるいはパン型造粒機等を使用する。
<シート化工程>
 上記熱硬化性樹脂組成物から寸法精度の良い成形体を得るために、押出機、ロール、カレンダー等を用いて硬化が始まらない温度で所定の厚み、幅のシート(以下、グリーンシートということがある。)に一度成形してもよい。より厚みを精度良く成形するためには、押出機で成形後、ロールやカレンダーで圧延することが好ましい。グリーンシート中のボイドやエアーをなくすためには、真空状態で押出成形することが好ましい。
<成形工程>
 成形工程としては、特に限定されるものではないが、圧縮成形、トランスファー成形、射出成形又は射出圧縮成形等の方法が用いられる。例えば上記グリーンシートを圧縮成形により成形する場合、グリーンシートを目的の大きさにカット又は、打ち抜き、そのシートを両面溝付きの金型内に1枚、又は2枚以上並列に並べるか、重ねて挿入する。次いで圧縮成形機で熱硬化することによって、成形体を得る。熱硬化の条件は、上記硬化物の製造と同様である。成形後は製品の反りを矯正するために、10℃~50℃に制御された押さえ板で、3MPa以上で加圧して冷却することが好ましい。成形体をアフターキュアーする場合は、5MPa以上に加圧して行うことによって製品の反りを抑制できる。
[成形体の寸法精度]
 本実施の形態において、成形体の寸法精度は、以下のように評価する。
 成形体1つにつき、15箇所において成形体の厚みを測定し、設計値との差(成形誤差)の絶対値を、設計値に対する100分率で算出する。このとき、厚み測定を行う箇所は、成形体の一部に偏らないように、なるべくまんべんなく配置する。最後に、15箇所の結果を算術平均する。
 本実施の形態においては、上述の方法で求めた平均成形誤差が設計値の10%以下であることが好ましい。
 本実施形態の成形体は、特に、燃料電池用セパレータ、電池用集電体又は電極等の作製を目的として開発されたものであり、燃料電池用セパレータ、電池用集電体又は電極に有用である。
(燃料電池用セパレータ)
 上記燃料電池用セパレータは、上述した成形体からなり、両面又は片面にガスを流すための流路が形成されている。流通するガスとしては、空気、酸素、水素、窒素、水蒸気等が挙げられる。また、上記燃料電池用セパレータにおける流路の形状、サイズは、上記燃料電池用セパレータ自体のサイズ、形状、ガスの流量、上記成形体の用途や大きさ等により適宜設定することができる。一般的には、上記流路の断面形状は長方形であり、深さは0.5mm前後、幅は1.0mm前後であるが、これらに限定されるものではない。燃料電池用セパレータの機械特性、導電性、耐熱水性、寸法精度について、その好ましい範囲は上記成形体と同様である。
<燃料電池セパレータの製造方法>
 上記燃料電池セパレータの製造方法の具体例としては、圧縮成形法、トランスファー成形法、射出成形法、注型法、射出圧縮成形法が挙げられるが、これに限定されるわけではない。上記燃料電池セパレータの製造方法においては、成形加工時に金型内あるいは金型全体を真空状態にして成形することが好ましい。
 上記燃料電池用セパレータは、上述した熱硬化性組成物を、上述の成形体の製造方法に準じて成形することで得ることができる。なお、ガスを流すための流路は本実施形態の硬化性組成物を一旦硬化させた後、機械加工により、当該流路(溝等)を形成してもよい。また、ガス流路の反転形状を有する金型を使用し圧縮成形等によって、硬化性組成物の硬化とガス流路形成を同時に行ってもよい。
 上記熱硬化性樹脂組成物は、モールド成形が容易なため、厚み精度を要求される分野の複合材料として最適である。
 また、上記硬化物は、機械特性に優れる。
 上記熱硬化性樹脂組成物及び上記硬化物及び成形体の用途は特に制限されないが、該用途の具体例としては、燃料電池用セパレータ、電極、電磁波シールド、放熱材料、電池用集電体、電子回路基板、抵抗器、ヒーター、集塵フィルタエレメント、面状発熱体、電磁波材料等を挙げることができる。
 以下、本発明を実施例により更に詳細に説明するが、本発明は実施例になんら限定されるものではない。
(参考例)
 参考例として、従来の熱硬化性樹脂組成物を、下記の手順で、従来の低温かつ長時間の成形条件で成形した、従来の燃料電池用セパレータを作製し、寸法精度及び機械特性を調べた。
<熱硬化性樹脂組成物の調製>
[黒鉛の調製]
 黒鉛は以下の方法で製造した。非針状コークスである新日鉄化学(株)製LPC-S コークスをパルベライザー〔ホソカワミクロン(株)製〕で2mm~3mm以下の大きさに粗粉砕した。この粗粉砕品をジェットミル(IDS2UR、日本ニューマチック(株)製)で微粉砕した。その後、分級により所望の粒径に調整した。5μm以下の粒子除去は、ターボクラシファイアー(TC15N、日清エンジニアリング(株)製)を用い、気流分級を行った。この調整した微粉砕品の一部14.4kgに炭化ホウ素(B4C)0.6kgを加え、ヘンシエルミキサにて800rpmで5分間混合した。これを内径40cm、容積40リットルの蓋付き黒鉛ルツボに封入し、黒鉛ヒーターを用いた黒鉛化炉に入れてアルゴンガス雰囲気下2,900℃の温度で黒鉛化した。これを放冷後、粉末を取り出し、14kgの粉末を得た。得られた黒鉛微粉は平均粒径20.5μm、B含有量1.3質量%であった。
[バインダーの調製]
 次に、(A)成分のバインダーとして、あらかじめ側鎖型C=C結合含有高分子化合物である1,2-ポリブタジエン(JSR社製 商品名 JSR RB(登録商標) 810)と、エラストマーであるエチレンブテン共重合体(ダウケミカル社製、商品名ENR7380)とを同じ質量割合で、押出機で押出成形し、一体となったものをペレットとして得た。
 また、上記ペレットとは別に、側鎖型C=C結合含有高分子化合物である液状1,2-ポリブタジエン(日本曹達社製,商品名NISSO-PB B3000)を用意した。
[硬化開始剤]
 硬化開始剤として、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)へキサン(化薬アクゾ社製,商品名カヤヘキサAD)を用いた。
[混合]
 前述の「黒鉛の作製工程」で得たホウ素含有黒鉛微粉、「バインダーの調製」で得たペレット、液状1,2-ポリブタジエン及び硬化開始剤を、それぞれ表1に示す量秤量した。
 秤量した各材料のうち、上記ペレットを、100℃に設定したラボプラストミル(東洋精機社製,型式50C150)に投入して、40rpmで融かした後、残りの材料(液状の1,2-ポリブタジエン及び硬化開始剤)をラボプラストミルに投入し、5分間混練して熱硬化性樹脂組成物を得た。
<燃料電池用セパレータの作製>
[粉砕工程]
 上記「熱硬化性樹脂組成物の作製」工程で得られた熱硬化性樹脂組成物を、ワンダーブレンダー(大阪ケミカル社製 型式WB-1)を用いて2mmのふるいを通過するまで粉砕し、細かくした(粉砕工程)。
[グリーンシートの作製]
 上記「粉砕工程」で粉砕した熱硬化性樹脂組成物を、90℃で20分間加熱し、加熱されたままの状態で、10インチロール(ダイハン社製)で幅100mm、厚さ1mmに圧延し、グリーンシートを得た。
[燃料電池用セパレータの作製]
 上記「グリーンシートの作製」工程で得られたグリーンシートを、280mm×200mmのサイズにカットし、280×200×1.5mmのサイズで、片面に幅1mm、深さ0.5mmの溝(図示せず)が1mm間隔で形成された平板状の燃料電池用セパレータを成形できる金型を用いて、500t油圧プレスを用いて金型温度180℃、60MPaの加圧下で480秒間硬化して、片面溝付きの平板形状をなす燃料電池用セパレータを得た。
<成形誤差の測定>
 上記「燃料電池用セパレータの作製」得られた燃料電池セパレータについて、図1に示す各測定位置(No.1)~(No.15)の溝と溝との間の部分で厚みを測定した。次いで、15箇所それぞれでの厚みの設計値と、実測値の差(成形誤差)の絶対値を、設計値に対する100分率で算出し、これを算術平均した結果が10%以下である場合に、「優れた寸法精度を有する」と評価した。結果を表1に示す。表1を見ると、参考例の燃料電池用セパレータは優れた寸法精度を有していた。
<曲げ強度、曲げひずみ及び弾性率の測定>
 上記「燃料電池用セパレータの作製」で得られたセパレータを切削し、80mm×10mm×1mmの試験片を作製した。得られた試験片について、卓上電動試験機(JTトーシ社製 型式LSC-1/30)を用いて上述の方法で曲げ試験を行い、曲げ強度、曲げひずみ及び弾性率を測定した。測定結果を表1に示す。測定の結果得られた曲げ強度の測定値が36MPa以上、曲げひずみの測定値が0.8%以上で弾性率が7.5GPa以上であれば、「優れた機械特性を有する」と評価した。参考例のセパレータは優れた機械特性を有していた。
(実施例1~4)
<熱硬化性樹脂組成物の調製>
 上記「混合」工程において、前述のホウ素含有黒鉛微粉、ペレット、液状1,2-ポリブタジエン、硬化開始剤に加えて、硬化遅延剤としてテトラキス(2-エチルへキシル)チウラムジスルフィド(大内新興化学社製,商品名ノクセラーTOT-N)を表1に示す量秤量し、「残りの材料」として液状1,2-ポリブタジエン及び硬化開始剤とともに、ラボプラストミルに投入した他は、参考例と同様にして熱硬化性樹脂組成物を得た。
<燃料電池用セパレータの作製>
 金型温度を210℃、硬化時間を70秒間とした以外は、参考例と同様にして燃料電池用セパレータを作製した。
<成形誤差の測定>
 上記で得られた燃料電池用セパレータについて、参考例と同様に成形誤差を測定した。結果を表1に示す。表1より、実施例1~4の燃料電池用セパレータは、参考例の燃料電池用セパレータより高温かつ短時間で硬化されたにも関わらず、参考例の燃料電池用セパレータと同様に優れた寸法精度を有していた。
<曲げ強度、曲げひずみ、曲げ弾性率の測定>
 上記で得られた燃料電池用セパレータについて、参考例と同様に曲げ強度、曲げひずみ、曲げ弾性率を測定した。結果を表1に示す。表1より、実施例1~4の燃料電池用セパレータは、参考例の燃料電池用セパレータと同様に優れた機械特性を有していた。バインダー100質量部に対し、硬化遅延剤1~2質量部を添加した実施例2~4は、参考例と同様に曲げ弾性率が8MPa以上であり、曲げ弾性率の点で特に優れていた。
(比較例1)
 熱硬化性樹脂組成物として、参考例で調製した、硬化遅延剤を含まない熱硬化性樹脂組成物を用いた以外は、実施例1~4と同様にして燃料電池用セパレータを作製し、成形誤差及び曲げ強度、曲げひずみ、曲げ弾性率の測定を行った。結果を表1に示す。比較例1の燃料電池用セパレータは、実施例1~4の燃料電池用セパレータに比べ、成形誤差が非常に大きく、寸法精度の点で劣っていた。
(比較例2)
 実施例1~4の「熱硬化性樹脂組成物の作製」工程において、硬化遅延剤の秤量を、3質量部にした以外は、実施例1~4と同様にして燃料電池用セパレータを作製した。得られた燃料電池用セパレータの「曲げ強度」、「曲げひずみ」、及び「曲げ弾性率」について測定した。測定結果を表1に示す。表1に示すように、比較例2の硬化物は、「曲げ強度」が劣っているという評価が得られた。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~4の熱硬化性樹脂組成物は、高温かつ短時間で成形した場合にも、寸法精度に優れることがわかった。また、実施例1~4の燃料電池用セパレータは、機械特性に優れていることがわかった。特に、熱硬化性樹脂組成物に含まれる硬化遅延剤の含有量がバインダー100質量部あたり3質量部を超えると、曲げ強度が著しく低下することがわかった。
 以上、本発明の実施の形態について説明してきたが、本発明はこれに限定されずに、種々の変更、改良を行うことができる。

Claims (9)

  1.  下記(A)~(D)を含むことを特徴とする熱硬化性樹脂組成物。
     (A)側鎖に炭素-炭素二重結合を有するモノマー単位を60モル%以上含む高分子化合物を50質量%以上含むバインダー100質量部
     (B)炭素材料150質量部~1,000質量部
     (C)硬化開始剤1質量部~10質量部
     (D)硬化遅延剤0.1質量部~2質量部
  2.  前記(D)硬化遅延剤が、テトラキス(2-エチルヘキシル)チウラムジスルフィドであることを特徴とする請求項1に記載の熱硬化性樹脂組成物。
  3.  前記(A)バインダー中の、前記高分子化合物が、炭化水素であることを特徴とする請求項1又は2に記載の熱硬化性樹脂組成物。
  4.  前記(A)バインダー中に、熱可塑性エラストマー5質量%~40質量%を、さらに含むことを特徴とする請求項1~3のいずれか1項に記載の熱硬化性樹脂組成物。
  5.  請求項1~4のいずれか1項に記載の熱硬化性樹脂組成物を硬化して得られたことを特徴とする硬化物。
  6.  請求項1~4のいずれか1項に記載の熱硬化性樹脂組成物を、200℃~300℃、かつ90秒以下で硬化することを特徴とする硬化物の製造方法。
  7.  請求項1~4のいずれか1項に記載の熱硬化性樹脂組成物を、所望の形に整え、硬化して得られることを特徴とする成形体。
  8.  請求項1~4のいずれか1項に記載の熱硬化性樹脂組成物を、所望の形に整え、200℃~300℃、かつ90秒以下で硬化することによって成形体を得ることを特徴とする成形体の製造方法。
  9.  請求項7に記載の成形体からなる燃料電池用セパレータ。
PCT/JP2012/005263 2011-08-31 2012-08-22 熱硬化性樹脂組成物、その硬化物及び成形体の製造方法、硬化物、成形体、並びに燃料電池用セパレータ WO2013031145A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147005157A KR20140043153A (ko) 2011-08-31 2012-08-22 열경화성 수지 조성물, 그 경화물 및 성형체의 제조방법, 경화물, 성형체, 및 연료전지용 세퍼레이터
US14/240,792 US20140193744A1 (en) 2011-08-31 2012-08-22 Heat-curable resin composition, production method of cured article and molded article of the same, cured article, molded article, and separator for a fuel cell
CN201280041460.8A CN103748177A (zh) 2011-08-31 2012-08-22 热固化性树脂组合物、其固化物和成型体的制造方法、固化物、成型体以及燃料电池用隔板
EP12827034.5A EP2752463A4 (en) 2011-08-31 2012-08-22 HEAT-CURABLE RESIN COMPOSITION, METHOD FOR THE PRODUCTION OF CURED PRODUCTS AND ARTICLES THEREOF, HARDENED ARTICLES, MOLDED PRODUCTS AND FUEL CELL SAVOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-189743 2011-08-31
JP2011189743 2011-08-31

Publications (1)

Publication Number Publication Date
WO2013031145A1 true WO2013031145A1 (ja) 2013-03-07

Family

ID=47755675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005263 WO2013031145A1 (ja) 2011-08-31 2012-08-22 熱硬化性樹脂組成物、その硬化物及び成形体の製造方法、硬化物、成形体、並びに燃料電池用セパレータ

Country Status (6)

Country Link
US (1) US20140193744A1 (ja)
EP (1) EP2752463A4 (ja)
JP (1) JPWO2013031145A1 (ja)
KR (1) KR20140043153A (ja)
CN (1) CN103748177A (ja)
WO (1) WO2013031145A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10501645B2 (en) * 2015-10-07 2019-12-10 Union Carbide Chemicals & Plastics Technology Semiconductive shield composition
CN109651628B (zh) * 2018-11-12 2021-04-13 深圳烯湾科技有限公司 一种碳纳米管增强的聚碳酸酯复合材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696777A (ja) 1992-09-16 1994-04-08 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JP2004250661A (ja) 2002-12-24 2004-09-09 Showa Denko Kk 硬化性組成物、その硬化物およびその成形体
JP2005181690A (ja) 2003-12-19 2005-07-07 Nec Saitama Ltd 携帯機器
JP2006312726A (ja) * 2005-04-04 2006-11-16 Showa Denko Kk 導電性硬化性樹脂組成物、その硬化体およびその成形体
JP2009191199A (ja) * 2008-02-15 2009-08-27 Nof Corp 架橋ゴムの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6251308B1 (en) * 1999-03-19 2001-06-26 Premix Highly conductive molding compounds and fuel cell bipolar plates comprising these compounds
WO2005109553A2 (en) * 2004-05-07 2005-11-17 Showa Denko K.K. Curable composition, cured product thereof and molded product thereof
WO2006106609A1 (en) * 2005-04-04 2006-10-12 Showa Denko K.K. Electrically conducting curable resin composition, cured product thereof and molded article of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696777A (ja) 1992-09-16 1994-04-08 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JP2004250661A (ja) 2002-12-24 2004-09-09 Showa Denko Kk 硬化性組成物、その硬化物およびその成形体
JP2005181690A (ja) 2003-12-19 2005-07-07 Nec Saitama Ltd 携帯機器
JP2006312726A (ja) * 2005-04-04 2006-11-16 Showa Denko Kk 導電性硬化性樹脂組成物、その硬化体およびその成形体
JP2009191199A (ja) * 2008-02-15 2009-08-27 Nof Corp 架橋ゴムの製造方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"The experimental method of the polymer synthesis", 1 March 1984, KAGAKUDOJIN, article "Experimental example 225, the measurement of the microstructure of polybutadiene by NMR", pages: 49
"The experimental method of the polymer synthesis", 1 March 1984, KAGAKUDOJIN, article "Experimental example 226, the measurement of the microstructure of polyisoprene by NMR", pages: 51
"The experimental methods of the polymer synthesis", 1 March 1984, KAGAKUDOJ, article "Experimental example 223, the measurement of the microstructure of polybutadiene by infrared spectrum", pages: 45
"The fourth edition of experiment chemistry lecture, macromolecule composition", 6 May 1992, MARUZEN CO., LTD., article "Experimental example 2.26 synthesis of 3,4-polyisoprenes using (Pr-O)4Ti-organic aluminum system catalyst", pages: 48
"The fourth edition of experiment chemistry lecture, polymer synthesis", 6 May 1992, MARUZEN CO., LTD., article "Experimental example 2.20 synthesis of 1,2-polybutadiene and cis-1,4-polybutadienes using cobalt catalyst", pages: 41
SAITO; BANDO: "Fundamental carbon nanotube", 1998, CORONA PUBLISHING CO.,LTD., pages: 23,57
See also references of EP2752463A4

Also Published As

Publication number Publication date
EP2752463A1 (en) 2014-07-09
CN103748177A (zh) 2014-04-23
EP2752463A4 (en) 2015-06-03
US20140193744A1 (en) 2014-07-10
JPWO2013031145A1 (ja) 2015-03-23
KR20140043153A (ko) 2014-04-08

Similar Documents

Publication Publication Date Title
EP1869120B1 (en) Electrically conducting curable resin composition, cured product thereof and molded article of the same
US8053501B2 (en) Curable composition, cured product thereof, molded product thereof and use as fuel cell separator
JP5436505B2 (ja) 導電性樹脂組成物及びその成形体
US7329698B2 (en) Conductive curable resin composition and separator for fuel cell
JP5207596B2 (ja) 導電性硬化性樹脂組成物、その硬化体およびその成形体
JP5025079B2 (ja) 導電性樹脂組成物及びその成形体
WO2013031145A1 (ja) 熱硬化性樹脂組成物、その硬化物及び成形体の製造方法、硬化物、成形体、並びに燃料電池用セパレータ
JP5013680B2 (ja) 硬化性組成物、その硬化物およびその成形体
WO2005109553A2 (en) Curable composition, cured product thereof and molded product thereof
JP2005344110A (ja) 硬化性組成物、その硬化物およびその成形体
WO2015163253A1 (ja) カーボン集電体およびそれを備えた燃料電池
JP2011195618A (ja) 導電性樹脂組成物の調製方法およびその導電性樹脂組成物を用いた燃料電池用セパレータ
TW200538513A (en) The curable composition, cured product and molded product thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531058

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012827034

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14240792

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147005157

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE