WO2013030948A1 - Dc/dc converter - Google Patents

Dc/dc converter Download PDF

Info

Publication number
WO2013030948A1
WO2013030948A1 PCT/JP2011/069575 JP2011069575W WO2013030948A1 WO 2013030948 A1 WO2013030948 A1 WO 2013030948A1 JP 2011069575 W JP2011069575 W JP 2011069575W WO 2013030948 A1 WO2013030948 A1 WO 2013030948A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
voltage
current
circuit
input
Prior art date
Application number
PCT/JP2011/069575
Other languages
French (fr)
Japanese (ja)
Inventor
中瀬 泰伸
Original Assignee
ルネサスエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルネサスエレクトロニクス株式会社 filed Critical ルネサスエレクトロニクス株式会社
Priority to PCT/JP2011/069575 priority Critical patent/WO2013030948A1/en
Priority to JP2013530929A priority patent/JP5604596B2/en
Publication of WO2013030948A1 publication Critical patent/WO2013030948A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1563Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators without using an external clock
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0022Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations

Definitions

  • the present invention relates to a DC / DC converter that converts a DC voltage into another DC voltage.
  • the PWM (Pulse Width Modulation) method using a feedback function is widely used as a DC / DC converter control method.
  • the ratio between the on time and the off time of the switching element is automatically determined according to the value of the input voltage, and the output voltage can be made to exactly match the expected value.
  • Another problem is that since the output voltage is set by feedback, it takes time until the ratio of the on time to the off time becomes the optimum value. For this reason, it takes time to become stable when the input voltage or the output voltage fluctuates.
  • Feed-forward control of DC / DC converters is widely used to improve reactivity.
  • M. K. Kazimierczuk et al. Disclose a feedforward control circuit applied to a PWM boost converter (Patent Document 1 (US Pat. No. 5,982,156) and Non-Patent Document 1 (M. K. Kazimierczuk). and A. Massarini, "Feedforward control of DC / DC PWM boost converter," IEEE Transactions on Circuits and Systems, Part I, vol. 44, no. 2, pp. 143-148, February 1997)).
  • a triangular wave with a constant peak voltage and a constant period is input to the non-inverting input terminal of the comparator.
  • a divided voltage obtained by dividing the input voltage of the boost converter is input to the inverting input terminal of the comparator.
  • the output voltage of the comparator is input to the gate of the switching element. At this time, when the output voltage of the comparator is at a high level, the switching element is turned on.
  • Non-Patent Document 2 M. K. Kazimierczuk and A. J. Edstrom, “Open -loop peak voltage feedforward control of a PWM buck converter, "IEEE Transactions on Circuits and Systems, Part I, Vol. 47, pp.740-746, May 2000)
  • a constant voltage is input to the inverting input terminal of the comparator, and the peak voltage is proportional to the input voltage of the step-down converter and the cycle is constant at the inverting input terminal of the comparator.
  • the triangle wave is input.
  • the output voltage of the comparator is input to the gate of the switching element. At this time, when the output voltage of the comparator is at a high level, the switching element is turned on.
  • Ton / Toff ratio the ratio of the on time Ton and the off time Toff of the switching element
  • An object of the present invention is to increase the setting accuracy of the Ton / Toff ratio in a DC / DC converter using feedforward control.
  • a DC / DC converter includes a conversion circuit and a control circuit.
  • the conversion circuit includes a switching element, and converts the input DC voltage into a DC voltage having a magnitude corresponding to the ratio between the ON time and the OFF time of the switching element and outputs the converted DC voltage.
  • the switching element is turned off when the on signal is deactivated, and is turned on when the off signal is deactivated.
  • the control circuit controls on / off of the switching element.
  • the control circuit includes an on signal generation unit that generates an on signal and an off signal generation unit that generates an off signal.
  • the on signal generation unit activates the on signal from the time when the off signal is deactivated until the time corresponding to the on time determined according to the magnitude of the input DC voltage elapses. .
  • the off signal generation unit activates the off signal from when the on signal is deactivated until a time corresponding to the off time determined according to the magnitude of the input DC voltage elapses. .
  • the on time and the off time are individually set by the on signal generation circuit and the off signal generation circuit. For this reason, since ON time and OFF time can be adjusted according to an input voltage level, the setting precision of Ton / Toff ratio can be raised.
  • FIG. 1 is a circuit diagram showing a configuration of a DC / DC converter 1 according to a first embodiment of the present invention. It is a circuit diagram which shows the structure of the pulse generator PG of FIG.
  • FIG. 3 is a circuit diagram showing an example of the configuration of one-shot pulse generators 50A and 50B in FIG.
  • FIG. 4 is a circuit diagram illustrating an example of a configuration of a delay circuit 51 in FIG. 3.
  • FIG. 4 is a timing diagram showing voltage waveforms at various parts in FIG. 3.
  • FIG. 3 is a timing diagram showing voltage waveforms at various parts in FIG. 2.
  • FIG. 2 is a waveform diagram of a clock signal clk when the Ton / Toff ratio is fixed in the DC / DC converter 1 of FIG. 1.
  • FIG. 12 is a circuit diagram illustrating an example of the configuration of the non-overlap circuit 100 of FIG. 11.
  • FIG. 13 is a timing chart showing voltage waveforms of respective parts of the circuit of FIG. 12.
  • FIG. 18 is a diagram for explaining the operation of the control circuit of FIG. 17. It is a circuit diagram which shows the structure of the pulse generator PGB of FIG. It is a circuit diagram which shows the structure of the DC / DC converter 3 by Embodiment 4 of this invention.
  • FIG. 22 is a waveform diagram of a clock signal when the Ton / Toff ratio is fixed in the DC / DC converter 3 of FIG. 21. It is a figure for demonstrating the inductor current in the case of a step-down converter. It is a circuit diagram which shows the structure of the pulse generator PGD applied to the DC / DC converter by Embodiment 5 of this invention.
  • FIG. 1 is a circuit diagram showing a configuration of a DC / DC converter 1 according to Embodiment 1 of the present invention.
  • the DC / DC converter 1 is a boost converter that boosts the voltage Vin (for example, 1V to 2V) input to the input node 15 and outputs the boosted voltage Vout (for example, 3V) from the output node 16.
  • Vin for example, 1V to 2V
  • Vout for example, 3V
  • the DC / DC converter 1 includes a conversion circuit (boost chopper) 10, a control circuit 20, a current sensor 30, and a voltage divider that divides the voltage Vout of the output node 16 by resistance elements 31A and 31B. Circuit 31.
  • the input node 15 is connected to a DC power source 9 such as a solar battery cell, and the output node 16 is connected to a load (load current Iload) via a PMOS (Positive-channel Metal Oxide Semiconductor) transistor pps as a power switch.
  • the power supply voltage of the control circuit 20 is supplied from the output node 16 (hereinafter also referred to as “power supply node VDD”).
  • the conversion circuit 10 includes an inductor 11, a diode 12, an NMOS (Negative-channel Metal Oxide Semiconductor) transistor n_dr as a switching element, and a capacitor 13.
  • Inductor 11 and diode 12 are connected in series between input node 15 and output node 16 in this order.
  • NMOS transistor n_dr is connected between connection node 14 of inductor 11 and diode 12 and ground node GND.
  • Capacitor 13 is connected between output node 16 and ground node GND.
  • FIG. 1 shows a configuration example of a diode rectification method.
  • the diode 12 is connected so that the direction from the connection node 14 to the output node 16 is the forward direction, thereby preventing a reverse current flow.
  • the synchronous rectification method will be described with reference to FIG.
  • Boosting is performed as follows.
  • a current flows through the inductor 11.
  • the NMOS transistor n_dr is turned off.
  • this inductor current is supplied to the output node 16 via the diode 12.
  • the NMOS transistor n_dr is turned on / off repeatedly.
  • the control circuit 20 is a circuit for controlling the on-time and off-time of the NMOS transistor n_dr, and has a circuit configuration that automatically sets the Ton / Toff ratio from the input voltage Vin by feedforward control. As a result, power efficiency can be improved without generating unnecessary current.
  • the control circuit 20 further has a function of stopping switching of the NMOS transistor n_dr when the inductor current is an overcurrent and when the output voltage Vout exceeds the expected value Vout *.
  • control circuit 20 includes a pulse generator PG, comparators CMP 1 and CMP 2, an overcurrent protection circuit 22, and an AND gate 21.
  • the pulse generator PG determines the on time Ton and the off time Toff based on the input voltage Vin so that the output voltage Vout is substantially equal to the expected value Vout *. Then, the pulse generator PG outputs a clock signal clk that becomes a high level (H level) and a low level (L level) during the determined on time Ton and off time Toff. Details of the pulse generator PG will be described later with reference to FIG.
  • the comparator CMP1 compares the reference voltage Vref with the divided voltage Vout2 output from the voltage dividing circuit 31, and outputs a signal that becomes L level when the divided voltage Vout2 exceeds the reference voltage Vref.
  • the reference voltage Vref is given by ⁇ ⁇ Vout * using the voltage division ratio ⁇ of the voltage dividing circuit 31 and the expected value Vout * of the output voltage.
  • the voltage dividing ratio of the voltage dividing circuit 31 is expressed by using the resistance values R1 and R2 of the resistance elements 31A and 31B constituting the voltage dividing circuit 31.
  • the partial pressure ratio ⁇ is equal to R1 / (R1 + R2).
  • the overcurrent protection circuit 22 includes a current detection circuit 23, PMOS transistors 24 and 25, and a resistance element 26.
  • the current detection circuit 23 detects a current (inductor current IL) flowing through the NMOS transistor n_dr using the current sensor 30.
  • the output current Id of the current detection circuit 23 is copied by a current mirror composed of PMOS transistors 24 and 25 and supplied to the resistance element 26.
  • the comparator CMP2 compares the reference voltage Vref with the voltage applied to the resistance element 26 of the overcurrent protection circuit 22, and outputs a signal that becomes L level when the voltage of the resistance element 26 exceeds the reference voltage Vref.
  • the voltage applied to the resistance element 26 is given by Id ⁇ Rmx using the output current Id of the current detection circuit 23 and the resistance value Rmx of the resistance element 26.
  • the reference voltage Vref input to the comparator CMP1 and the reference voltage Vref input to the comparator CMP2 are the same, but they may be different. It is necessary to adjust the voltage dividing ratio ⁇ of the voltage dividing circuit 31 (that is, the ratio between the resistance values R1 and R2 of the resistance elements 31A and 31B) according to the value of the reference voltage Vref input to the comparator CMP1. Similarly, it is necessary to adjust the resistance value Rmx of the resistance element 26 in accordance with the value of the reference voltage Vref input to the comparator CMP2.
  • the AND gate 21 outputs the logical product of the clock signal clk output from the pulse generator PG, the output of the comparator CMP1, and the output of the comparator CMP2 to the gate of the NMOS transistor n_dr as the clock signal clk_dr.
  • FIG. 2 is a circuit diagram showing a configuration of the pulse generator PG of FIG.
  • pulse generator PG includes voltage / current converter 60, current signal generator 70, on signal generator 40A, off signal generator 40B, inverters 91 and 92, and RS latch. Circuit 90.
  • the voltage / current converter 60 generates a conversion current Ia having a current value proportional to the input voltage Vin.
  • the voltage / current conversion unit 60 includes a differential amplifier 61, an NMOS transistor 62, and a resistance element 63.
  • the NMOS transistor 62 and the resistance element 63 are connected in series between the output node 64 of the voltage / current conversion unit 60 and the ground node GND in this order.
  • the input voltage Vin is input to the non-inverting input terminal of the differential amplifier 61.
  • An inverting input terminal of the differential amplifier 61 is connected to a connection node between the NMOS transistor 62 and the resistance element 63.
  • the current signal generation unit 70 Based on the constant current Ics having a constant current value and the conversion current Ia, the current signal generation unit 70 is configured to determine whether the first current signal I1 and the first current signal I1 increase in current value as the input voltage Vin increases. A second current signal I2 having different dependency on the input voltage Vin is generated. The first current signal I1 is supplied to the on signal generator 40A, and the second current signal I2 is supplied to the off signal generator 40B.
  • the current signal generation unit 70 includes PMOS transistors 71, 72, and 73 that form a current mirror, NMOS transistors 74 and 75 that form a current mirror, a constant current generation unit 80, and the like. including.
  • the conversion current Ia flowing through the output node 64 of the voltage / current conversion unit 60 is copied as the first current signal I1 which is the drain current of the PMOS transistor 72 by the current mirror circuit. Further, the conversion current Ia is copied as the drain current of the NMOS transistor 75 connected to the output node 84 of the constant current generator 80.
  • the constant current generator 80 includes a constant current source 81 that generates a constant current Ics, and PMOS transistors 82 and 83.
  • the constant current Ics is copied by a current mirror circuit configured by the PMOS transistors 82 and 83 and output from the constant current generation unit 80.
  • the second current signal I2 that is finally supplied from the output node 84 to the off signal generation unit 40B is given by the above-described equation (6).
  • the on signal generation unit 40A generates an on signal Son based on the first current signal I1.
  • the off signal generation unit 40B generates an off signal Soff based on the second current signal I2.
  • the ON signal Son and the OFF signal Soff are L active signals that are activated when they are at the L level.
  • the ON signal generation unit 40A is determined according to the magnitude of the input voltage Vin from when the OFF signal Soff is received and the OFF signal Soff is deactivated (switched to the H level). Until the time (corresponding to the ON time Ton) elapses, the ON signal Son is set in the active state (L level).
  • the off signal generation unit 40B receives the on signal Son, and the time determined according to the magnitude of the input voltage Vin (off time Toff from when the on signal Son is deactivated (switched to the H level)). The off signal Soff is kept in an active state (L level) until the time elapses).
  • the NMOS transistor n_dr constituting the conversion circuit 10 of FIG. 1 is turned off when the on signal Son is deactivated (switched to H level), and the off signal Soff is deactivated (switched to H level). ) To turn it on.
  • the ON signal generation unit 40A includes a charging circuit 41A and a comparison circuit 45A.
  • the charging circuit 41A is charged by the first current signal I1, and the charging voltage is reset when the off signal Soff is deactivated (switched to the H level). More specifically, the charging circuit 41A includes a one-shot pulse generator 50A that receives an off signal Soff, a capacitor 44A that is charged by the first current signal I1, and an NMOS transistor that is connected in parallel with the capacitor 44A. n1.
  • the one-shot pulse generator 50A generates a pulse that is at the H level for a predetermined time when the off signal Soff is switched to the H level.
  • the pulse generated by the one-shot pulse generator 50A is input to the gate of the NMOS transistor n1, and the NMOS transistor n1 is turned on for a predetermined time. When the NMOS transistor n1 is turned on, the voltage of the capacitor 44A is discharged (reset).
  • the comparison circuit 45A includes a comparator 42A and an inverter 43A that inverts the output of the comparator 42A and outputs it as an ON signal Son.
  • the comparator 42A compares the reference voltage Vref with the charging voltage of the capacitor 44A, and outputs an L level signal when the charging voltage of the capacitor 44A exceeds the reference voltage Vref.
  • the ON signal Son is inactivated (H level).
  • the configuration of the off signal generation unit 40B is the same as the configuration of the on signal generation unit 40A. That is, the off signal generation unit 40B includes a charging circuit 41B and a comparison circuit 45B.
  • the charging circuit 41B is charged by the second current signal I2, and the charging voltage is reset when the ON signal Son is deactivated (switched to H level). More specifically, the charging circuit 41B includes a one-shot pulse generator 50B that receives the ON signal Son, a capacitor 44B that is charged by the second current signal I2, and an NMOS transistor n2 that is connected in parallel with the capacitor 44B.
  • the one-shot pulse generator 50B generates a pulse that is at the H level for a predetermined time when the ON signal Son is switched to the H level.
  • the pulse generated by the one-shot pulse generator 50B is input to the gate of the NMOS transistor n2, and the NMOS transistor n2 is turned on for a predetermined time. When the NMOS transistor n2 is turned on, the voltage of the capacitor 44B is discharged (reset).
  • the comparison circuit 45B includes a comparator 42B and an inverter 43B that inverts the output of the comparator 42B and outputs it as an off signal Soff.
  • the comparator 42B compares the reference voltage Vref and the charging voltage of the capacitor 44B, and outputs an L level signal when the charging voltage of the capacitor 44B exceeds the reference voltage Vref. When the output of the comparison circuit 45B becomes L level, the off signal Soff is deactivated (becomes H level).
  • the reference voltage Vref input to the comparators 42A and 42B is the same as the reference voltage Vref input to the comparators CMP1 and CMP2 in FIG. 1 for simplicity, but may be different.
  • the reference voltage Vref input to the comparator 42A and the reference voltage Vref input to the comparator 42B may differ in principle, but they are equal to increase the setting accuracy of the on time Ton and the off time Toff. It is desirable to set.
  • FIG. 3 is a circuit diagram showing an example of the configuration of the one-shot pulse generators 50A and 50B in FIG.
  • each of one-shot pulse generators 50 ⁇ / b> A and 50 ⁇ / b> B includes a delay circuit 51, an inverter 52, and an AND gate 53.
  • a signal from the input node IN1 is input to the first input terminal of the AND gate 53, and sequentially passes through the delay circuit 51 and the inverter 52 and is input to the second input terminal of the AND gate 52.
  • FIG. 4 is a circuit diagram showing an example of the configuration of the delay circuit 51 of FIG.
  • delay circuit 51 includes inverters 54A, 54B, 54C, 54D connected in series between input node IN2 and output node OUT2, and each connection node of these inverters and ground node GND. And capacitors 55A, 55B, and 55C connected therebetween.
  • FIG. 5 is a timing diagram showing voltage waveforms at various parts in FIG.
  • the timing diagram of FIG. 5 shows, in order from the top, the voltage waveform of the input node IN1 of the one-shot pulse generator, the voltage waveform of the output node IN_d of the inverter 52, and the voltage waveform of the output node OUT1 of the one-shot pulse generator. Yes.
  • the voltage at the output node IN_d of the inverter 52 falls at time t2 delayed by the delay time of the delay circuit 51 from the rise time t1 of the voltage at the input node IN1.
  • the voltage at the output node IN_d of the inverter 52 rises at time t4 delayed by the delay time of the delay circuit 51 from the time t3 when the voltage at the input node IN1 falls.
  • a pulse that becomes H level between time t1 and time t2 is generated at the output node OUT1 of the one-shot pulse generator.
  • the pulse width of the pulses generated by the one-shot pulse generators 50A and 50B can be determined by the delay value of the delay circuit 51.
  • the ON signal Son is inverted and input to the set terminal S of the RS latch circuit 90 by the inverter 91, and the OFF signal is input to the reset terminal R of the RS latch circuit 90 by the inverter 92. Inverted and input.
  • the clock signal clk which becomes H level when the ON signal Son is in the active state (L level) and L level when the OFF signal Soff is in the active state (L level). Is output.
  • Ton / Toff C1 ⁇ (Ics ⁇ Rs / Vin -1) / C2 (9) Is obtained.
  • FIG. 6 is a timing diagram showing voltage waveforms at various parts in FIG.
  • the timing chart of FIG. 6 shows, in order from the top, the voltage Von of the capacitor 44A, the on signal Son, the gate voltage VG (n2) of the transistor n2, the voltage Voff of the capacitor 44B, the off signal Soff, and the gate voltage VG (n1) of the transistor n1. ).
  • the on signal Son changes to a high level.
  • the pulse generated from the one-shot pulse generator 50B causes the gate voltage VG (n2) of the NMOS transistor n2 to rise for a predetermined time until time t2.
  • the voltage Voff of the capacitor 44B is discharged to the ground voltage level.
  • the off signal Soff changes to a high level.
  • the pulse generated from the one-shot pulse generator 50A causes the gate voltage VG (n1) of the NMOS transistor n1 to rise for a predetermined time until time t4.
  • the voltage Von of the capacitor 44A is discharged to the ground voltage level.
  • time t5 the operation from time t1 is repeated.
  • the on time Ton corresponds to the L level period of the on signal Son
  • the off time Toff corresponds to the L level period of the off signal Soff.
  • Ton / Toff ratio When the Ton / Toff ratio is fixed, it is necessary to set the Ton / Toff ratio to the largest value so that the voltage can be boosted under the lowest input voltage Vin.
  • FIG. 7 is a waveform diagram of the clock signal clk when the Ton / Toff ratio is fixed in the DC / DC converter 1 of FIG.
  • the graph of FIG. 7 shows the clock signal clk_dr, the output voltage Vout of the DC / DC converter, and the inductor current IL in order from the top.
  • the clock signal clk_dr is stopped by the output of the comparator CMP2 in FIG. 1 (time t3 in FIG. 7).
  • the Ton period is set to be long, so that more current than necessary flows through the inductor. Therefore, the stop period of the clock signal clk_dr in this case (from time t3 to time t4) also gets longer.
  • FIG. 8 is a diagram for explaining the inductor current in the case of the boost converter.
  • the inductor current increases by ⁇ Ion during the on period Ton, and the inductor current decreases by ⁇ Iff during the off period Toff.
  • the Ton / Toff ratio is set according to the input voltage Vin, so that the power conversion efficiency can be improved.
  • the step-up DC / DC converter 1 according to the first embodiment has a feature that the setting accuracy of the Ton / Toff ratio is higher than that of the step-up converter described in Non-Patent Document 1 described above. This will be specifically described below.
  • Non-Patent Document 1 the feedforward control for determining the Ton / Toff ratio from the input voltage VI is the same as in this embodiment, but the method for determining Ton / Toff is the same as that of this embodiment. Very different from the case.
  • the PWM control determines the on time Ton and the off time Toff using a triangular wave.
  • FIG. 9 is a diagram for explaining a method of determining the on time Ton and the off time Toff using a triangular wave.
  • determination voltage VREF obtained by dividing input voltage VI by resistance elements having resistance values R1 and R2 is input and compared with triangular wave voltage VT.
  • a period of VT> VREF is set as an on period (Ton), and a period of VT ⁇ VREF is set as an off period (Toff) period.
  • a triangular wave is usually made up of a constant current source and a capacitor.
  • FIG. 10 is a circuit diagram showing a configuration of a general triangular wave generation circuit 900.
  • the triangular wave generation circuit includes a capacitor 901, an NMOS transistor 902, a one-shot pulse generator 903, a comparator 904, and a constant current source 905.
  • the capacitor 901 is charged by the current from the constant current source 905.
  • Comparator 904 switches the output to L level when the charging voltage of capacitor 901 exceeds reference voltage VR.
  • the one-shot pulse generator 903 outputs a pulse that is at the H level for a predetermined time when the output signal of the comparator 904 is switched from the H level to the L level.
  • the NMOS transistor 902 conducts in response to the pulse output from the one-shot pulse generator 903, whereby the voltage of the capacitor 901 is discharged.
  • the method for setting the Ton / Toff ratio of Non-Patent Document 1 as described above has the following problems.
  • the accuracy of the Ton / Toff ratio deteriorates.
  • the input voltage VI is 0.5 V
  • the output voltage VO is 5 V
  • the maximum value VTm of the triangular wave voltage is 1 V
  • R1 / R2 4 from Equation (16)
  • ⁇ V 50 mV
  • the Ton / Toff ratio varies greatly from 6.7 to 19. This is because the offset voltage increases relatively as the determination voltage VREF decreases.
  • the capacitor 901 shown in FIG. 10 has a double-poly capacitor (double-poly capacitor).
  • the like are indispensable elements. Since such an element generally has a large area and increases the number of process steps, it cannot be used in a low-cost semiconductor process.
  • the input voltage Vin itself is not used for setting the Ton time.
  • a conversion current Ia proportional to the input voltage Vin is generated, and the capacitor 44A is charged with the conversion current Ia.
  • the time when the terminal voltage Von of the capacitor 44A reaches the constant value Vref is defined as Ton time.
  • the input voltages Von and Voff to the comparators 42A and 42B in FIG. 2 are 0.5 V or more, and the reference voltage Vref is 0.8 V to 1.2 V.
  • the delay time required for resetting the voltages Von and Voff in FIG. 6 affects the on-time Ton and the off-time Toff, respectively.
  • the on-time Ton becomes longer, so the influence on the Ton / Toff ratio is great.
  • the on time Ton is set by the time during which the capacitor 44A is charged with the conversion current Ia proportional to the input voltage Vin.
  • the off time Toff is set by the time for charging the capacitor 44B with the current I2 obtained by subtracting the conversion current Ia from the constant current Ics.
  • the on-time Ton and the off-time Toff are such that the charging voltages Von and Voff of the capacitors 44A and 44B in FIG. 2 reach the reference voltage Vref. It is set as the time until. For this reason, the capacitors C1 and C2 of the capacitors 44A and 44B do not need to be linear capacitors. For example, a low-cost MOS transistor capacitor can be used.
  • the on-time Ton and the off-time Toff can be individually set, when the Ton / Toff ratio deviates from the design value, the on-time Ton and the off-time It is possible to easily set to the design value by individually adjusting the length of Toff.
  • FIG. 11 is a circuit diagram showing a configuration of a DC / DC converter 2 as a modification of the DC / DC converter 1 of FIG. 11 is different from the conversion circuit 10 in FIG. 1 in that the diode 12 is replaced with a PMOS transistor p_sw.
  • the boosting operation of the input voltage Vin by the DC / DC converter 2 is the same as that of the DC / DC converter 1 of FIG. That is, when the NMOS transistor n_dr is turned on, a current flows through the inductor 11. Next, the NMOS transistor n_dr is turned off. In the synchronous rectification method shown in FIG. 11, the PMOS transistor p_sw is turned on to supply current to the output.
  • a non-overlap circuit 100 is further provided in the control circuit 20A of FIG. 12 so that the on period of the NMOS transistor n_dr and the on period of the PMOS transistor p_sw do not overlap. Based on the clock signal clk_dr received from the AND gate 21, the non-overlap circuit 100 outputs the clock signal ncnt to the gate of the NMOS transistor n_dr and outputs the clock signal pcnt to the gate of the PMOS transistor p_sw.
  • FIG. 12 is a circuit diagram showing an example of the configuration of the non-overlap circuit 100 of FIG.
  • non-overlap circuit 100 includes inverters 107, 108A to 108C, 109A to 109C, PMOS transistors 101 to 103, and NMOS transistors 104 to 106.
  • the PMOS transistor 101 and the NMOS transistors 104 and 105 are connected in series between the power supply node VDD and the ground node GND in this order.
  • PMOS transistors 102 and 103 and NMOS transistor 106 are connected in series between power supply node VDD and ground node GND in this order.
  • the clock signal clk_dr is input to the gates of the transistors 101, 105, 102, and 106 via the inverter 107.
  • the voltage at the connection node 110 of the transistors 101 and 104 is output as the clock signal pcnt and input to the gate of the transistor 103 via the inverters 109A to 109C.
  • the voltage at the connection node 111 of the transistors 103 and 106 is output as the clock signal ncnt and also input to the gate of the transistor 104 through the inverters 108A to 108C.
  • FIG. 13 is a timing chart showing voltage waveforms of respective parts of the circuit of FIG.
  • the operation of the non-overlap circuit 100 will be described with reference to FIGS.
  • the NMOS transistor 104 is turned on and the PMOS transistor 103 is turned off.
  • the clock signal pcnt is switched from the H level to the L level.
  • the optimum value of the Ton / Toff ratio is set first, and thereafter, the value of the Ton / Toff ratio is not changed. Therefore, when the input voltage Vin is considerably smaller than the expected value Vout * of the output voltage (when the optimum value of Ton / Toff ratio is relatively large), the output voltage Vout reaches the expected value Vout *. There is a problem that it takes time. If the Ton / Toff ratio can be set larger than the optimum value during the period when the output voltage Vout is lower than the expected value Vout *, the time until the output voltage Vout reaches the expected value Vout * can be shortened. In the second embodiment, a circuit configuration for that purpose is disclosed.
  • FIG. 14 is a circuit diagram showing a configuration of a pulse generator PGA applied to the DC / DC converter according to Embodiment 2 of the present invention.
  • the pulse generator PG is replaced with the pulse generator PGA of FIG.
  • the configuration other than the pulse generator PGA is the same as that of the first embodiment shown in FIG.
  • current signal generation unit 70A is different from current signal generation unit 70 of FIG. 2 in that it further includes an operational transconductance amplifier (OTA) 120.
  • the reference voltage Vref is input to the non-inverting input terminal of the OTA 120, and the output voltage Vout2 of the voltage dividing circuit 31 in FIG. 1 is input to the inverting input terminal of the OTA 120.
  • the reference voltage Vref is set according to the expected value Vout * of the output voltage Vout. If the voltage dividing ratio of the voltage dividing circuit 31 is ⁇ , the reference voltage Vref is given by ⁇ ⁇ Vout *. Note that the reference voltage input to the OTA 120 need not be the same as the reference voltage input to the comparators CMP1, CMP2, 42A, and 42B described so far.
  • the OTA 120 outputs a correction current Imd corresponding to the voltage difference between the reference voltage Vref and the output voltage Vout2 of the voltage dividing circuit 31 to the output node 84 of the constant current generator 80.
  • Vref the correction current Imd
  • Vref ⁇ Vout2 the correction current Imd is negative.
  • the transfer conductance of the OTA 120 G
  • the current signal output from the current signal generator 70A to the off signal generator 40B is corrected to a value I2 ′ obtained by adding the correction current Imd to the second current signal I2 of the first embodiment.
  • the off period Toff is set short. That is, since the Ton / Toff ratio is set to be large, the increase in the inductor current during the on-period Ton becomes large, which is used to increase the output voltage.
  • the correction current Imd output from the OTA 120 becomes zero and is set to the Ton / Toff ratio during steady operation.
  • the OTA 120 draws out the correction current Imd (Imd ⁇ 0), so the off period Toff is set to be long. Since the amount of current supplied from the inductor 11 is smaller than the current Iout consumed by the load, the output voltage Vout approaches the expected value Vout * more quickly.
  • FIG. 15 is a circuit diagram showing an example of the configuration of the OTA 120 in FIG.
  • OTA 120 includes PMOS transistors 121 to 124, NMOS transistors 125 to 128, and a current source 130.
  • Transistors 121 and 125 are connected in series in this order between power supply node VDD and ground node GND, and transistors 122 and 128 are connected in series in this order between power supply node VDD and ground node GND.
  • Transistors 123 and 126 are connected in series in this order between node 129 and ground node GND, and transistors 124 and 127 are connected in series in this order between node 129 and ground node GND.
  • Constant current source 120 is connected between power supply node VDD and node 129.
  • the gate of the PMOS transistor 121 is connected to its drain and to the gate of the PMOS transistor 122. That is, the PMOS transistors 121 and 122 constitute a current mirror.
  • the gate of the NMOS transistor 126 is connected to the drain thereof and to the gate of the NMOS transistor 125. That is, the NMOS transistors 125 and 126 constitute a current mirror.
  • the gate of the NMOS transistor 127 is connected to the drain thereof and to the gate of the NMOS transistor 128. That is, the NMOS transistors 127 and 128 constitute a current mirror.
  • the gate of the PMOS transistor 124 is used as the non-inverting input terminal INp of the OTA 120, and the gate of the PMOS transistor 123 is used as the inverting input terminal INn of the OTA 120.
  • a connection node 131 of the transistors 122 and 128 is used as the output node OUT3 of the OTA 120. Therefore, if the voltage of the non-inverting input terminal INp increases more than the voltage of the inverting input terminal INn, the current flowing through the transistors 124, 127, 128 decreases according to the increase amount, and the transistors 123, 126, 125, 121, The current flowing through 122 increases.
  • FIG. 16 is a circuit diagram showing a configuration of a DC / DC converter 200 according to Embodiment 3 of the present invention.
  • the DC / DC converter 200 of FIG. 16 is a configuration example in the case of two systems of outputs by the synchronous rectification method.
  • the DC / DC converter 200 can be applied to a power generation system using sunlight or indoor lighting. For example, the voltage (0.5 V to 3 V) of the solar cell 201 is boosted to 4 V to 5 V and output.
  • the DC / DC converter 200 charges the secondary battery 202 from the first output 206 of the two outputs, and supplies power to the microcomputer 203, the RF transceiver 204, and the sensor 205 from the second output 207.
  • the microcomputer 203, the RF transceiver 204, and the sensor 205 are prepared for automatically measuring, for example, temperature, atmospheric pressure, sunlight, illuminance of indoor lighting, and the like, and automatically transmitting the results to the counting system periodically.
  • the DC / DC converter 200 includes a conversion circuit 210, a control circuit 220, voltage dividing circuits 217 and 218, and power switch PMOS transistors psx and psy.
  • the conversion circuit 210 has two outputs on the output side of the conversion circuit 10A shown in FIG. 11, and includes an inductor 211, an NMOS transistor n_dr as a switching element, PMOS transistors prx and play as synchronous rectification elements, and a capacitor 212. , 213.
  • the inductor 211 and the NMOS transistor n_dr are connected in series between the input node 208 and the ground node GND in this order.
  • a solar cell 201 is connected to the input node 208.
  • the PMOS transistor prx is connected between the connection node 214 of the inductor 211 and the NMOS transistor n_dr and the first output node 215.
  • the PMOS transistor play is connected between the connection node 214 and the second output node 216.
  • Capacitor 212 is connected between output node 215 and ground node GND, and capacitor 213 is connected between output node 216 and ground node GND.
  • Clock signals clk_dr, clkx, and clky are output from the control circuit 220 to the gates of the transistors n_dr, prx, and pry, respectively.
  • the voltage dividing circuit 217 divides the voltage dvoutx of the output node 215 by the resistance elements (resistance values Rx0, Rx1), and outputs the divided voltage fbx to the control circuit 220.
  • the voltage dividing circuit 218 divides the voltage dvouty of the output node 216 by the resistance elements (resistance values Ry0 and Ry1), and outputs the divided voltage fby to the control circuit 220.
  • the power switch PMOS transistor psx is provided between the output node 215 of the conversion circuit 210 and the first output 206 of the DC / DC converter 200.
  • the power switch PMOS transistor psy is provided between the output node 216 of the conversion circuit 210 and the second output 207 of the DC / DC converter 200.
  • control circuit 220 the NMOS transistor n_dr, the PMOS transistors prx, pri, psx, psi, and the voltage dividing circuits 217, 218 are configured as a semiconductor device 209 integrated on a semiconductor substrate.
  • FIG. 17 is a circuit diagram showing a configuration of the control circuit 220 of FIG. Referring to FIGS. 16 and 17, control circuit 220 includes comparators CMPX and CMPY, level shifters 231, 232 and 233, pulse generator PGB, non-overlap circuit 230, and logic circuit 228. .
  • the control circuit 220 uses the voltage dvouty of the output node 216 in FIG. 16 as the power supply voltage.
  • the expected value of the voltage dvoutx at the output node 215 is 5V
  • the expected value of the voltage dvouty at the output node 216 is 3V. It is assumed that the power switch PMOS transistors psx and psy are both turned on.
  • the comparator CMPX compares the output voltage fbx of the voltage dividing circuit 217 of FIG. 16 with the reference voltage Vref, and outputs an H level signal when the output voltage fbx is higher than the reference voltage Vref.
  • the comparator CMPY compares the output voltage fby of the voltage dividing circuit 218 with the reference voltage Vref, and outputs an H level signal when the output voltage fby is higher than the reference voltage Vref.
  • the reference voltage Vref is set to 0.8 V, for example.
  • the output voltage fbx of the voltage dividing circuit 217 is a voltage monitor signal of the voltage dvoutx of the output node 215.
  • Level shifters (LS) 231, 232, and 233 convert the voltage level of the input signal from the voltage dvouty of the output node 216 to vmax.
  • vmax is a higher one of the voltage dvoutx at the output node 215 and the voltage dvouty at the output node 216.
  • the voltage vmax is determined by a maximum voltage selection circuit provided in the control circuit 220.
  • FIG. 18 is a circuit diagram showing a configuration example of the maximum voltage selection circuit 240.
  • maximum voltage selection circuit 240 operates with comparator 241 that operates at voltage dvouty, level shifter 242 that converts the voltage level of the output signal of comparator 241 from voltage dvouty to vmax, and voltage vmax.
  • Inverter 243 and PMOS transistors 224 and 245 are included.
  • the voltage dvouty is input to the source of the PMOS transistor 244, and the drain is connected to the output node 246 (voltage vmax) of the maximum voltage selection circuit 240.
  • the output signal of the level shifter 242 is input to the gate of the PMOS transistor 244.
  • the voltage dvoutx is input to the source of the PMOS transistor 245, and the drain is connected to the output node 246 of the maximum voltage selection circuit 240.
  • a signal obtained by inverting the output signal of the level shifter 242 by the inverter 243 is input to the gate of the PMOS transistor 245.
  • the non-overlap circuit 230 receives the clock signal clk output from the pulse generator PCB, and outputs a clock signal pcnt for driving the PMOS transistors prx and pry, and an NMOS transistor n_dr. A clock signal ncnt for driving is generated.
  • the configuration of the non-overlap circuit 230 is the same as that of the non-overlap circuit 100 shown in FIG. However, in FIG. 12, a clock signal clk is input as an input signal.
  • the non-overlap circuit 230 is provided to prevent such a period since a through current flows when the clock signal pcnt is at the L level during the period when the clock signal ncnt is at the H level.
  • the clock signal ncnt is level-converted by the level shifter 233 and input to the gate of the NMOS transistor n_dr as the clock signal clk_dr.
  • the clock signal pcnt is input to the OR gates 223 and 224.
  • the logic circuit 228 includes an AND gate 221, OR gates 222 to 224, and inverters 225 to 227.
  • the output signal of the comparator CMPX is supplied to the first input terminal of the AND gate 221 and to the first input terminal of the OR gate 222.
  • the output signal of the comparator CMPY is supplied to the second input terminal of the AND gate 221, inverted by the inverter 225, and then supplied to the second input terminal of the OR gate 222.
  • the output signal of the AND gate 221 is used as a non-operation signal nop.
  • a signal obtained by inverting the output signal of the OR gate 222 by the inverter 226 is used as the selection signal sctx.
  • a signal obtained by inverting the output signal of the comparator CMPY by the inverter 227 is used as the selection signal scty.
  • the OR gate 223 calculates the logical sum of the output signal of the OR gate 222 and the clock signal pcnt.
  • the output signal of the OR gate 223 is level-converted by the level shifter 231 and input to the gate of the PMOS transistor prx as the clock signal clkx.
  • the OR gate 224 calculates the logical sum of the output signal of the comparator CMPY and the clock signal pcnt.
  • the output signal of the OR gate 224 is level-converted by the level shifter 232 and input to the gate of the PMOS transistor play as the clock signal clky.
  • FIG. 19 is a diagram for explaining the operation of the control circuit of FIG.
  • the table shown in FIG. 19 shows how the logic levels of the selection signals sctx and scty and the non-operation signal nop change according to the logic levels of the output signals of the comparators CMPX and CMPY in FIG. .
  • the table shown in FIG. 19 indicates whether each clock signal clkx, clky, clk_dr is enabled or disabled according to the logic level of the output signals of the comparators CMPX, CMPY. When the clock signal is invalid, the clock signal becomes a signal of a certain logic level.
  • control circuit 220 uses voltage dvouty at output node 216 as a drive voltage, and therefore charges voltage dvouty at output node 216 with priority over voltage dvoutx at output node 215.
  • the comparators CMPX and CMPY both output the L level.
  • the selection signal scty becomes H level. Charging of the output node 215 (voltage dvoutx) is blocked, and the selection signal sctx becomes L level. The non-operation signal nop becomes L level. Since the clock signal clk_dr that drives the NMOS transistor n_dr and the clock signal clky that drives the PMOS transistor pry for synchronous rectification become valid, the output node 216 is charged.
  • the comparator CMPX outputs an L level and the comparator CMPY outputs an H level.
  • the selection signal sctx becomes H level and the selection signal scty becomes L level.
  • the non-operation signal nop becomes L level. Since the clock signal clk_dr for driving the NMOS transistor n_dr and the clock signal clkx for driving the PMOS transistor prx for synchronous rectification become valid, the output node 215 is charged.
  • the clock signal “clky” for driving the synchronous rectification PMOS transistor “ply” becomes invalid.
  • the comparators CMPX and CMPY both output the H level.
  • both the selection signals sctx and scty are at the L level, and the non-operation signal nop is at the H level.
  • the output signal from pulse generator PGB is fixed at the L level, and the boosting operation is not performed.
  • FIG. 20 is a circuit diagram showing a configuration of the pulse generator PGB of FIG.
  • the power supply node VDD in FIG. 20 corresponds to the output node 216 in FIG.
  • pulse generator PGB differs from pulse generator PG of FIG. 2 in that it further includes an AND gate 93 and an inverter 94.
  • An output signal of the RS latch circuit 90 is input to the first input terminal of the AND gate 93, and a signal obtained by inverting the non-operation signal nop by the inverter 94 is input to the second input terminal of the AND gate 93.
  • the AND gate 93 outputs a valid clock signal clk.
  • the AND gate 93 outputs an L level signal.
  • the configuration of the voltage / current converter 60A is further different from that of the voltage / current converter 60 of FIG.
  • the voltage / current conversion unit 60A includes resistance elements 63x and 63y and an NMOS transistor 65 in place of the resistance element 63 of FIG. Resistance elements 63x and 63y are connected in this order between ground node GND and the source of NMOS transistor 62.
  • the NMOS transistor 65 is connected in parallel with the resistance element 63x.
  • the selection signal scty is input to the gate of the NMOS transistor 65.
  • the pulse generator PGB needs to determine an optimum Ton / Toff ratio without delay in accordance with switching of the voltages dvoutx and dvouty to be charged. Therefore, the NMOS transistor 65 is switched on / off according to the selection signal scty. As a result, the resistance value between the source of the NMOS transistor 62 and the ground node GND is switched, so that the magnitude of the conversion current Ia changes.
  • Ton / Toff Ics ⁇ (Rx + Ry) / Vin ⁇ 1 (22) Is set.
  • the resistance value of the resistance element 63x is Rx
  • the resistance value of the resistance element 63y is Ry.
  • the selection signal scty is at a high level, so that the NMOS transistor 65 is turned on.
  • the pulse generator PGB when there are a plurality of output destinations of the DC / DC converter, when the output destination to be charged is switched, the optimum Ton / Toff ratio is switched without delay. be able to. Therefore, the output voltage can be obtained stably.
  • FIG. 21 is a circuit diagram showing a configuration of DC / DC converter 3 according to the fourth embodiment of the present invention.
  • the DC / DC converter 3 is a step-down converter that steps down the voltage Vin (for example, 4V to 5V) input to the input node 15 and outputs the stepped-down voltage Vout (for example, 2V) from the output node 16.
  • Vin for example, 4V to 5V
  • Vout for example, 2V
  • the DC / DC converter 3 includes a conversion circuit (step-down chopper) 10B, a control circuit 20B, and a voltage divided by the resistive elements 31A and 31B (resistance values R1 and R2). Pressure circuit 31.
  • a DC power supply 9 such as a solar battery cell is connected to the input node 15, and an output node 16 is connected to a load (load current Iout).
  • the power supply voltage of the control circuit 20B is supplied from the output node 16 (referred to as “power supply node VDD”).
  • the conversion circuit 10B includes an inductor 11, a PMOS transistor p_dr as a switching element, an NMOS transistor n_sw as a synchronous rectification element, and a capacitor 13.
  • the PMOS transistor p_dr and the inductor 11 are connected in series between the input node 15 and the output node 16 in this order.
  • NMOS transistor n_sw is connected between connection node 14 of PMOS transistor p_dr and inductor 11 and ground node GND.
  • Capacitor 13 is connected between output node 16 and ground node GND.
  • the period in which the PMOS transistor p_dr is on is Ton and the period in which the PMOS transistor p_dr is off is Toff. If Ton is set longer, the output voltage Vout increases, and if the Toff period is set longer, the output voltage Vout decreases. If there is an overlap period in which the NMOS transistor n_sw is turned on before the PMOS transistor p_dr is turned off, a large through current flows.
  • the non-overlap circuit 29 provided in the control circuit 20B is controlled so that the ON period of the PMOS transistor p_dr and the ON period of the NMOS transistor n_sw do not overlap.
  • the inductance of the inductor 11 is L
  • the control circuit 20B is a circuit for controlling the on-time and off-time of the PMOS transistor p_dr, and has a circuit configuration that automatically sets the Ton / Toff ratio from the input voltage Vin by feedforward control. As a result, power efficiency can be improved without generating unnecessary current.
  • the control circuit 20B further has a function of stopping the switching of the PMOS transistor p_dr when the output voltage Vout exceeds the expected value Vout *.
  • control circuit 20B includes a pulse generator PGC, a comparator CMP1, an AND gate 27, and an inverter.
  • the pulse generator PG determines the on time Ton and the off time Toff based on the input voltage Vin so that the output voltage Vout is substantially equal to the expected value Vout *. Then, the pulse generator PG outputs a clock signal clk that becomes H level and L level during the determined on time Ton and off time Toff.
  • the comparator CMP1 compares the reference voltage Vref with the divided voltage Vout2 output from the voltage dividing circuit 31, and outputs a signal that becomes L level when the divided voltage Vout2 exceeds the reference voltage Vref.
  • the reference voltage Vref is given by ⁇ ⁇ Vout *.
  • the AND gate 21 outputs a signal obtained by inverting the logical product of the clock signal clk output from the pulse generator PGC and the output of the comparator CMP1 by the inverter 28 to the gate of the PMOS transistor p_dr as the clock signal clk_dr.
  • FIG. 22 is a circuit diagram showing a configuration of the pulse generator PGC of FIG.
  • pulse generator PGC includes voltage / current converter 60, current signal generator 70B, on signal generator 40A, off signal generator 40B, inverters 91 and 92, and RS latch. Circuit 90.
  • the configuration of the current signal generator 70B is different from that of the current signal generator 70 of FIG. Since the other components of pulse generator PGC are the same as those of pulse generator PG in FIG. 2, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
  • the current signal generation unit 70B increases as the input voltage Vin increases based on the constant current Ics and the conversion current Ia having a constant current value.
  • the first current signal I1 and the first current signal I1 generate a second current signal I2 having different dependency on the input voltage Vin.
  • the first current signal I1 is supplied to the on signal generator 40A, and the second current signal I2 is supplied to the off signal generator 40B.
  • the current signal generation unit 70B includes PMOS transistors 71 and 72 constituting a current mirror, NMOS transistors 74 and 75 constituting a current mirror, and a constant current generation unit 80A. .
  • the conversion current Ia flowing through the output node 64 of the voltage / current conversion unit 60 is copied as the drain current of the PMOS transistor 72 by the current mirror circuit. Further, the output signal Ics of the constant current generator 80A is copied as the drain current of the NMOS transistor 75.
  • the first current signal I1 supplied from the current signal generator 70B to the on signal generator 40A is obtained by subtracting the drain current of the NMOS transistor 75 from the drain current of the PMOS transistor 72, and is given by the above equation (27). It is done.
  • the constant current generator 80 includes a constant current source 81 that generates a constant current Ics, and PMOS transistors 82, 83, and 85.
  • the constant current Ics is copied by a current mirror circuit constituted by the PMOS transistors 82 and 83, and is output from the constant current generator 80 as the second current signal I2 (see the above equation (28)). Further, the constant current Ics is copied by a current mirror circuit composed of PMOS transistors 82 and 85 and supplied to the NMOS transistor 74.
  • the DC / DC converter 3 it is possible to shorten the transition time to the stable state with respect to the change of the input / output voltage and to obtain the maximum power efficiency corresponding to the input voltage Vin.
  • Ton / Toff ratio is fixed without being adjusted according to the input voltage Vin.
  • Ton / Toff ratio When the Ton / Toff ratio is fixed, it is necessary to set the Ton / Toff ratio to the largest value so that the voltage can be stepped down even when the input voltage is the lowest.
  • Ton 0.5 ⁇ s
  • Toff 0.5 ⁇ s are set.
  • FIG. 23 is a waveform diagram of a clock signal when the Ton / Toff ratio is fixed in the DC / DC converter 3 of FIG.
  • the graph of FIG. 23 shows the clock signal clk_dr and the output voltage Vout in order from the top.
  • the Ton / Toff ratio When the Ton / Toff ratio is fixed, it is necessary to set the Ton / Toff ratio to the largest value, so the period during which the clock signal clk_dr is stopped (from time t1 to time t2 in FIG. 23) becomes longer.
  • the Ton / Toff ratio is set according to the input voltage Vin, the stop period of the clock signal clk_dr can be shortened.
  • the influence on the power conversion efficiency during the stop period of the clock signal will be quantitatively described.
  • FIG. 24 is a diagram for explaining the inductor current in the case of the step-down converter.
  • FIG. 24 is a diagram for describing an average current flowing through inductor 11 in FIG. 21 with reference to FIG.
  • the inductor current increases by ⁇ Ion during the on period Ton, and the inductor current decreases by ⁇ Iff during the off period Toff. These values are expressed by the aforementioned equations (24) and (25).
  • the Ton / Toff ratio is fixed at 4 V where the input voltage is minimum.
  • the Ton / Toff ratio is set to 1.
  • the maximum current ILmax of the inductor can be calculated using the equations (24) and (33).
  • the optimum value of the Ton / Toff ratio is set first, and thereafter, the value of the Ton / Toff ratio is not changed. If the Ton / Toff ratio can be set larger than the optimal value during the period when the output voltage Vout is lower than the expected value, the time until the expected value is reached can be shortened.
  • a circuit configuration for that purpose is disclosed.
  • FIG. 25 is a circuit diagram showing a configuration of a pulse generator PGD applied to a DC / DC converter according to Embodiment 5 of the present invention.
  • the pulse generator PGC is replaced with the pulse generator PGD of FIG.
  • the configuration other than the pulse generator PGD is the same as that of the fourth embodiment shown in FIG.
  • current signal generation unit 70 ⁇ / b> C is different from current signal generation unit 70 ⁇ / b> B in FIG. 22 in that OTA 120 is further included.
  • the configuration of the OTA 120 is the same as that described with reference to FIGS.
  • the reference voltage Vref is input to the non-inverting input terminal of the OTA 120, and the output voltage Vout2 of the voltage dividing circuit 31 in FIG. 21 is input to the inverting input terminal of the OTA 120.
  • the reference voltage Vref is set according to the expected value Vout * of the output voltage Vout. If the voltage dividing ratio of the voltage dividing circuit 31 is ⁇ , the reference voltage Vref is given by ⁇ ⁇ Vout *.
  • the current signal output from the current signal generator 70C to the off signal generator 40B is corrected to a value I2 ′ obtained by adding the correction current Imd to the second current signal I2 of the fourth embodiment.
  • the off period Toff is set short. That is, since the Ton / Toff ratio is set to be large, the increase in the inductor current during the on-period Ton becomes large, which is used to increase the output voltage.
  • the correction current Imd output from the OTA 120 becomes zero and is set to the Ton / Toff ratio during steady operation.
  • the OTA 120 draws out the correction current Imd (Imd ⁇ 0), so the off period Toff is set to be long. Since the amount of current supplied from the inductor 11 is smaller than the current Iout consumed by the load, the output voltage Vout approaches the expected value Vout * more quickly.

Abstract

A DC/DC converter (1), wherein a switching element (n_dr) of a conversion circuit (10) enters the off state by the inactivation of an on signal (Son), and enters the on state by the inactivation of an off signal (Soff). A control circuit (20) includes an on signal generation unit (40A) for generating the on signal (Son), and an off signal generation unit (40B) for generating the off signal (Soff). The on signal generation unit (40A) places the on signal (Son) in an active state for the period from the time the off signal (Soff) is inactivated until a time elapses that is determined according to the size of an input direct-current voltage (Vin). The on signal generation unit (40B) places the off signal (Soff) in an active state for the period from the time the on signal (Son) is inactivated until a time elapses that is determined according to the size of the input direct-current voltage (Vin).

Description

DC/DCコンバータDC / DC converter
 この発明は、直流電圧を別の直流電圧に変換するDC/DCコンバータに関する。 The present invention relates to a DC / DC converter that converts a DC voltage into another DC voltage.
 DC/DCコンバータの制御方式としてフィードバック機能を活用したPWM(Pulse Width Modulation)方式が広く使われている。フィードバック機能を活用することで入力電圧の値に応じて自動的にスイッチング素子のオン時間とオフ時間の比を決定し、正確に出力電圧を期待値に一致させることができる。 The PWM (Pulse Width Modulation) method using a feedback function is widely used as a DC / DC converter control method. By utilizing the feedback function, the ratio between the on time and the off time of the switching element is automatically determined according to the value of the input voltage, and the output voltage can be made to exactly match the expected value.
 しかしながら、フィードバック制御では、ゲインの高いアンプを用いる必要があるので発振の可能性が出てくる。発振の条件は出力負荷電流や出力負荷容量などによって変化するので、使用状況に応じて注意深く発振防止回路を付加する必要がある。発振防止に不慣れなユーザにとって非常に使い難い。 However, in feedback control, it is necessary to use an amplifier with a high gain, so that oscillation may occur. Since the oscillation conditions vary depending on the output load current, output load capacity, etc., it is necessary to carefully add an oscillation prevention circuit according to the usage conditions. It is very difficult for users who are unfamiliar with oscillation prevention.
 他の問題点として、フィードバックによって出力電圧を設定するため、オン時間とオフ時間の比が最適値になるまでに時間を要するという点がある。このため、入力電圧や出力電圧が変動したとき安定状態になるまでに時間がかかる。 Another problem is that since the output voltage is set by feedback, it takes time until the ratio of the on time to the off time becomes the optimum value. For this reason, it takes time to become stable when the input voltage or the output voltage fluctuates.
 反応性の向上のため、DC/DCコンバータをフィードフォワード制御する方式も広く使われている。たとえば、M. K. Kazimierczuk等は、PWM昇圧コンバータに適用されるフィードフォワード制御回路について開示している(特許文献1(米国特許第5982156号明細書)および非特許文献1(M. K. Kazimierczuk and A. Massarini, "Feedforward control of DC/DC PWM boost converter," IEEE Transactions on Circuits and Systems, Part I, vol. 44, no. 2, pp.143-148, February 1997)参照)。 ∙ Feed-forward control of DC / DC converters is widely used to improve reactivity. For example, M. K. Kazimierczuk et al. Disclose a feedforward control circuit applied to a PWM boost converter (Patent Document 1 (US Pat. No. 5,982,156) and Non-Patent Document 1 (M. K. Kazimierczuk). and A. Massarini, "Feedforward control of DC / DC PWM boost converter," IEEE Transactions on Circuits and Systems, Part I, vol. 44, no. 2, pp. 143-148, February 1997)).
 M. K. Kazimierczuk等によって提案されたフィードフォワード制御回路では、比較器の非反転入力端子にピーク電圧が一定でありかつ周期一定の三角波が入力される。比較器の反転入力端子に昇圧コンバータの入力電圧を分圧した分圧電圧が入力される。比較器の出力電圧は、スイッチング素子のゲートに入力される。このとき、比較器の出力電圧がハイレベルのときに、スイッチング素子はオンする。 In the feedforward control circuit proposed by M. K. Kazimierczuk et al., A triangular wave with a constant peak voltage and a constant period is input to the non-inverting input terminal of the comparator. A divided voltage obtained by dividing the input voltage of the boost converter is input to the inverting input terminal of the comparator. The output voltage of the comparator is input to the gate of the switching element. At this time, when the output voltage of the comparator is at a high level, the switching element is turned on.
 M. K. Kazimierczuk等は、さらに、類似のフィードフォワード制御回路をPWM降圧コンバータに適用した場合についても開示している(非特許文献2(M. K. Kazimierczuk and A. J. Edstrom, “Open-loop peak voltage feedforward control of a PWM buck converter,” IEEE Transactions on Circuits and Systems, Part I, Vol. 47, pp.740-746, May 2000)参照)。非特許文献2に記載されたフィードフォワード制御回路では、比較器の反転入力端子に定電圧が入力され、比較器の反転入力端子に、ピーク電圧が降圧コンバータの入力電圧に比例するとともに周期が一定の三角波が入力される。比較器の出力電圧は、スイッチング素子のゲートに入力される。このとき、比較器の出力電圧がハイレベルのときに、スイッチング素子はオンする。 M. K. Kazimierczuk et al. Also discloses a case where a similar feedforward control circuit is applied to a PWM step-down converter (Non-Patent Document 2 (M. K. Kazimierczuk and A. J. Edstrom, “Open -loop peak voltage feedforward control of a PWM buck converter, "IEEE Transactions on Circuits and Systems, Part I, Vol. 47, pp.740-746, May 2000)). In the feedforward control circuit described in Non-Patent Document 2, a constant voltage is input to the inverting input terminal of the comparator, and the peak voltage is proportional to the input voltage of the step-down converter and the cycle is constant at the inverting input terminal of the comparator. The triangle wave is input. The output voltage of the comparator is input to the gate of the switching element. At this time, when the output voltage of the comparator is at a high level, the switching element is turned on.
米国特許第5982156号明細書US Pat. No. 5,982,156
 ところで、太陽電池や燃料電池の出力のような低電圧をDC/DCコンバータで昇圧する場合には、スイッチング素子のオン時間Tonとオフ時間Toffの比(以下、「Ton/Toff比」と称する)が大きくなる。このような場合に、上記の文献に記載されたPWM方式を用いると、オフ時間Toff自体が短くなるために、設定されたTon/Toff比のばらつきが大きくなるという問題がある。 By the way, when a low voltage such as the output of a solar cell or a fuel cell is boosted by a DC / DC converter, the ratio of the on time Ton and the off time Toff of the switching element (hereinafter referred to as “Ton / Toff ratio”). Becomes larger. In such a case, when the PWM method described in the above-mentioned document is used, the OFF time Toff itself is shortened, so that there is a problem that the variation of the set Ton / Toff ratio becomes large.
 この発明の目的は、フィードフォワード制御を利用したDC/DCコンバータにおいて、Ton/Toff比の設定精度を高めることである。 An object of the present invention is to increase the setting accuracy of the Ton / Toff ratio in a DC / DC converter using feedforward control.
 この発明の実施の一形態によるDC/DCコンバータは、変換回路と制御回路とを備える。変換回路は、スイッチング素子を含み、入力直流電圧を、スイッチング素子のオン時間とオフ時間との比に応じた大きさの直流電圧に変換して出力する。ここで、スイッチング素子は、オン信号が非活性化することによってオフ状態になり、オフ信号が非活性化することによってオン状態になる。制御回路は、スイッチング素子のオン・オフを制御する。具体的に制御回路は、オン信号を生成するオン信号生成部と、オフ信号を生成するオフ信号生成部とを含む。オン信号生成部は、オフ信号が非活性化したときから、入力直流電圧の大きさに応じて決定される上記のオン時間に対応する時間が経過するまでの間、オン信号を活性状態にする。オフ信号生成部は、オン信号が非活性化したときから、入力直流電圧の大きさに応じて決定される上記のオフ時間に対応する時間が経過するまでの間、オフ信号を活性状態にする。 A DC / DC converter according to an embodiment of the present invention includes a conversion circuit and a control circuit. The conversion circuit includes a switching element, and converts the input DC voltage into a DC voltage having a magnitude corresponding to the ratio between the ON time and the OFF time of the switching element and outputs the converted DC voltage. Here, the switching element is turned off when the on signal is deactivated, and is turned on when the off signal is deactivated. The control circuit controls on / off of the switching element. Specifically, the control circuit includes an on signal generation unit that generates an on signal and an off signal generation unit that generates an off signal. The on signal generation unit activates the on signal from the time when the off signal is deactivated until the time corresponding to the on time determined according to the magnitude of the input DC voltage elapses. . The off signal generation unit activates the off signal from when the on signal is deactivated until a time corresponding to the off time determined according to the magnitude of the input DC voltage elapses. .
 上記の実施の形態によれば、オン時間とオフ時間とは、オン信号生成回路およびオフ信号生成回路によってそれぞれ個別に設定される。このため、入力電圧レベルに応じてオン時間およびオフ時間を調整することができるので、Ton/Toff比の設定精度を高めることができる。 According to the above embodiment, the on time and the off time are individually set by the on signal generation circuit and the off signal generation circuit. For this reason, since ON time and OFF time can be adjusted according to an input voltage level, the setting precision of Ton / Toff ratio can be raised.
この発明の実施の形態1によるDC/DCコンバータ1の構成を示す回路図である。1 is a circuit diagram showing a configuration of a DC / DC converter 1 according to a first embodiment of the present invention. 図1のパルス発生器PGの構成を示す回路図である。It is a circuit diagram which shows the structure of the pulse generator PG of FIG. 図2のワンショットパルス発生器50A,50Bの構成の一例を示す回路図である。FIG. 3 is a circuit diagram showing an example of the configuration of one- shot pulse generators 50A and 50B in FIG. 図3の遅延回路51の構成の一例を示す回路図である。FIG. 4 is a circuit diagram illustrating an example of a configuration of a delay circuit 51 in FIG. 3. 図3の各部の電圧波形を示したタイミング図である。FIG. 4 is a timing diagram showing voltage waveforms at various parts in FIG. 3. 図2の各部の電圧波形を示したタイミング図である。FIG. 3 is a timing diagram showing voltage waveforms at various parts in FIG. 2. 図1のDC/DCコンバータ1で、Ton/Toff比を固定した場合におけるクロック信号clkの波形図である。FIG. 2 is a waveform diagram of a clock signal clk when the Ton / Toff ratio is fixed in the DC / DC converter 1 of FIG. 1. 昇圧コンバータの場合のインダクタ電流について説明するための図である。It is a figure for demonstrating the inductor current in the case of a boost converter. 三角波を用いてオン時間Tonおよびオフ時間Toffを決定する方法について説明するための図である。It is a figure for demonstrating the method to determine ON time Ton and OFF time Toff using a triangular wave. 一般的な三角波発生回路900の構成を示す回路図である。2 is a circuit diagram showing a configuration of a general triangular wave generation circuit 900. FIG. 図1のDC/DCコンバータ1の変形例としてのDC/DCコンバータ2の構成を示す回路図である。It is a circuit diagram which shows the structure of the DC / DC converter 2 as a modification of the DC / DC converter 1 of FIG. 図11のノン・オーバラップ回路100の構成の一例を示す回路図である。FIG. 12 is a circuit diagram illustrating an example of the configuration of the non-overlap circuit 100 of FIG. 11. 図12の回路の各部の電圧波形を示すタイミング図である。FIG. 13 is a timing chart showing voltage waveforms of respective parts of the circuit of FIG. 12. この発明の実施の形態2によるDC/DCコンバータに適用されるパルス発生器PGAの構成を示す回路図である。It is a circuit diagram which shows the structure of the pulse generator PGA applied to the DC / DC converter by Embodiment 2 of this invention. 図14のOTA120の構成の一例を示す回路図である。It is a circuit diagram which shows an example of a structure of OTA120 of FIG. この発明の実施の形態3によるDC/DCコンバータ200の構成を示す回路図である。It is a circuit diagram which shows the structure of the DC / DC converter 200 by Embodiment 3 of this invention. 図16の制御回路220の構成を示す回路図である。It is a circuit diagram which shows the structure of the control circuit 220 of FIG. 最大電圧選択回路240の構成例を示す回路図である。3 is a circuit diagram showing a configuration example of a maximum voltage selection circuit 240. FIG. 図17の制御回路の動作を説明するための図である。FIG. 18 is a diagram for explaining the operation of the control circuit of FIG. 17. 図18のパルス発生器PGBの構成を示す回路図である。It is a circuit diagram which shows the structure of the pulse generator PGB of FIG. この発明の実施の形態4によるDC/DCコンバータ3の構成を示す回路図である。It is a circuit diagram which shows the structure of the DC / DC converter 3 by Embodiment 4 of this invention. 図21のパルス発生器PGCの構成を示す回路図である。It is a circuit diagram which shows the structure of the pulse generator PGC of FIG. 図21のDC/DCコンバータ3で、Ton/Toff比を固定した場合におけるクロック信号の波形図である。FIG. 22 is a waveform diagram of a clock signal when the Ton / Toff ratio is fixed in the DC / DC converter 3 of FIG. 21. 降圧コンバータの場合のインダクタ電流について説明するための図である。It is a figure for demonstrating the inductor current in the case of a step-down converter. この発明の実施の形態5によるDC/DCコンバータに適用されるパルス発生器PGDの構成を示す回路図である。It is a circuit diagram which shows the structure of the pulse generator PGD applied to the DC / DC converter by Embodiment 5 of this invention.
 以下、この発明の実施の形態について図面を参照して詳しく説明する。なお、同一または相当する部分には同一の参照符号を付して、その説明を繰返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 <実施の形態1>
 [DC/DCコンバータ1の構成]
 図1は、この発明の実施の形態1によるDC/DCコンバータ1の構成を示す回路図である。DC/DCコンバータ1は、入力ノード15に入力された電圧Vin(たとえば1V~2V)を昇圧し、昇圧された電圧Vout(たとえば3V)を出力ノード16から出力する昇圧コンバータである。
<Embodiment 1>
[Configuration of DC / DC Converter 1]
FIG. 1 is a circuit diagram showing a configuration of a DC / DC converter 1 according to Embodiment 1 of the present invention. The DC / DC converter 1 is a boost converter that boosts the voltage Vin (for example, 1V to 2V) input to the input node 15 and outputs the boosted voltage Vout (for example, 3V) from the output node 16.
 図1に示すように、DC/DCコンバータ1は、変換回路(昇圧チョッパ)10と、制御回路20と、電流センサ30と、出力ノード16の電圧Voutを抵抗素子31A,31Bで分圧する分圧回路31とを含む。入力ノード15には太陽電池セルなどの直流電源9が接続され、出力ノード16はパワースイッチとしてのPMOS(Positive-channel Metal Oxide Semiconductor)トランジスタppsを介して負荷(負荷電流Iload)に接続される。制御回路20の電源電圧は出力ノード16(以下、「電源ノードVDD」とも称する)から供給される。 As shown in FIG. 1, the DC / DC converter 1 includes a conversion circuit (boost chopper) 10, a control circuit 20, a current sensor 30, and a voltage divider that divides the voltage Vout of the output node 16 by resistance elements 31A and 31B. Circuit 31. The input node 15 is connected to a DC power source 9 such as a solar battery cell, and the output node 16 is connected to a load (load current Iload) via a PMOS (Positive-channel Metal Oxide Semiconductor) transistor pps as a power switch. The power supply voltage of the control circuit 20 is supplied from the output node 16 (hereinafter also referred to as “power supply node VDD”).
 (変換回路10の構成および動作)
 変換回路10は、インダクタ11と、ダイオード12と、スイッチング素子としてのNMOS(Negative-channel Metal Oxide Semiconductor)トランジスタn_drと、コンデンサ13とを含む。インダクタ11およびダイオード12は、入力ノード15と出力ノード16との間にこの順で直列に接続される。NMOSトランジスタn_drは、インダクタ11およびダイオード12の接続ノード14と、接地ノードGNDとの間に接続される。コンデンサ13は、出力ノード16と接地ノードGNDとの間に接続される。
(Configuration and operation of conversion circuit 10)
The conversion circuit 10 includes an inductor 11, a diode 12, an NMOS (Negative-channel Metal Oxide Semiconductor) transistor n_dr as a switching element, and a capacitor 13. Inductor 11 and diode 12 are connected in series between input node 15 and output node 16 in this order. NMOS transistor n_dr is connected between connection node 14 of inductor 11 and diode 12 and ground node GND. Capacitor 13 is connected between output node 16 and ground node GND.
 出力電圧Voutを入力電圧Vinより高くするには、インダクタ11の電流を出力ノード16に供給する一方で、出力ノード16からインダクタ11への逆流を防止する必要がある。その整流方式に、ダイオード整流と同期整流の2方式がある。図1にはダイオード整流方式の構成例が示されている。ダイオード12は、接続ノード14から出力ノード16の方向が順方向となるように接続され、これによって電流の逆流が防止される。なお、同期整流方式については図11で説明する。 In order to make the output voltage Vout higher than the input voltage Vin, it is necessary to prevent the backflow from the output node 16 to the inductor 11 while supplying the current of the inductor 11 to the output node 16. There are two rectification methods: diode rectification and synchronous rectification. FIG. 1 shows a configuration example of a diode rectification method. The diode 12 is connected so that the direction from the connection node 14 to the output node 16 is the forward direction, thereby preventing a reverse current flow. The synchronous rectification method will be described with reference to FIG.
 昇圧は以下のように行われる。NMOSトランジスタn_drをオンするとインダクタ11に電流が流れる。次にNMOSトランジスタn_drをオフにする。ダイオード整流方式では、ダイオード12を介してこのインダクタ電流が出力ノード16に供給される。NMOSトランジスタn_drのオン・オフは、繰返し行なわれる。 Boosting is performed as follows. When the NMOS transistor n_dr is turned on, a current flows through the inductor 11. Next, the NMOS transistor n_dr is turned off. In the diode rectification method, this inductor current is supplied to the output node 16 via the diode 12. The NMOS transistor n_dr is turned on / off repeatedly.
 オン時間をTonとし、オフ時間をToffとし、インダクタ11のインダクタンスをLとすれば、NMOSトランジスタn_drがオンの期間にインダクタ11に流れる電流の増加分ΔIonは、
 ΔIon=Vin・Ton/L   …(1)
と表わされる。NMOSトランジスタn_drがオフの期間にインダクタ11に流れる電流の減少分ΔIoffは、
 ΔIoff=(Vout-Vin)・Toff/L   …(2)
と表わされる。ただし、上記の式(1)、(2)において、ダイオード12の順方向電圧降下および寄生抵抗による電圧降下を無視した。定常状態では、オン期間に増加したインダクタ電流△Ionはオフ期間の減少分△Ioffと相殺する。すなわち、△Ion=△Ioffとなるので、オン時間とオフ時間の比(Ton/Toff)は、
 Ton/Toff=Vout/Vin -1   …(3)
の比率で安定する。
When the on time is Ton, the off time is Toff, and the inductance of the inductor 11 is L, the increase ΔIon of the current flowing through the inductor 11 during the NMOS transistor n_dr is on is:
ΔIon = Vin ・ Ton / L… (1)
It is expressed as The decrease ΔIoff of the current flowing through the inductor 11 during the period when the NMOS transistor n_dr is off is:
ΔIoff = (Vout−Vin) ・ Toff / L (2)
It is expressed as However, in the above formulas (1) and (2), the forward voltage drop of the diode 12 and the voltage drop due to parasitic resistance were ignored. In the steady state, the inductor current ΔIon increased during the ON period cancels out the decrease ΔIoff during the OFF period. That is, since ΔIon = ΔIoff, the ratio of on time to off time (Ton / Toff) is
Ton / Toff = Vout / Vin -1 (3)
Stable at a ratio of.
 (制御回路20の概略構成)
 制御回路20は、上記のNMOSトランジスタn_drのオン時間およびオフ時間を制御するための回路であり、フィードフォワード制御によって、入力電圧VinからTon/Toff比を自動で設定する回路構成となっている。これによって、無駄な電流を発生させることなく、電力効率を向上させることができる。制御回路20は、さらに、インダクタ電流が過電流の場合と、出力電圧Voutがその期待値Vout*を超えた場合とにNMOSトランジスタn_drのスイッチングを停止させる機能を有している。
(Schematic configuration of the control circuit 20)
The control circuit 20 is a circuit for controlling the on-time and off-time of the NMOS transistor n_dr, and has a circuit configuration that automatically sets the Ton / Toff ratio from the input voltage Vin by feedforward control. As a result, power efficiency can be improved without generating unnecessary current. The control circuit 20 further has a function of stopping switching of the NMOS transistor n_dr when the inductor current is an overcurrent and when the output voltage Vout exceeds the expected value Vout *.
 具体的には図1に示すように、制御回路20は、パルス発生器PGと、比較器CMP1,CMP2と、過電流保護回路22と、ANDゲート21とを含む。 Specifically, as shown in FIG. 1, the control circuit 20 includes a pulse generator PG, comparators CMP 1 and CMP 2, an overcurrent protection circuit 22, and an AND gate 21.
 パルス発生器PGは、出力電圧Voutがその期待値Vout*にほぼ等しくなるように、入力電圧Vinに基づいてオン時間Tonおよびオフ時間Toffを決定する。そして、パルス発生器PGは、決定したオン時間Tonおよびオフ時間Toffの間、ハイレベル(Hレベル)およびロウレベル(Lレベル)となるクロック信号clkを出力する。パルス発生器PGの詳細は、図2を参照して後述する。 The pulse generator PG determines the on time Ton and the off time Toff based on the input voltage Vin so that the output voltage Vout is substantially equal to the expected value Vout *. Then, the pulse generator PG outputs a clock signal clk that becomes a high level (H level) and a low level (L level) during the determined on time Ton and off time Toff. Details of the pulse generator PG will be described later with reference to FIG.
 比較器CMP1は、参照電圧Vrefと、分圧回路31から出力された分圧電圧Vout2とを比較し、分圧電圧Vout2が参照電圧Vrefを超えているときLレベルとなる信号を出力する。分圧回路31の分圧比αと出力電圧の期待値Vout*とを用いて、参照電圧Vrefはα×Vout*で与えられる。 The comparator CMP1 compares the reference voltage Vref with the divided voltage Vout2 output from the voltage dividing circuit 31, and outputs a signal that becomes L level when the divided voltage Vout2 exceeds the reference voltage Vref. The reference voltage Vref is given by α × Vout * using the voltage division ratio α of the voltage dividing circuit 31 and the expected value Vout * of the output voltage.
 なお、分圧回路31の分圧比は、分圧回路31を構成する抵抗素子31A,31Bの抵抗値R1,R2を用いて表わされる。分圧比αは、R1/(R1+R2)に等しい。 Note that the voltage dividing ratio of the voltage dividing circuit 31 is expressed by using the resistance values R1 and R2 of the resistance elements 31A and 31B constituting the voltage dividing circuit 31. The partial pressure ratio α is equal to R1 / (R1 + R2).
 過電流保護回路22は、電流検出回路23と、PMOSトランジスタ24,25と、抵抗素子26とを含む。電流検出回路23は、電流センサ30を用いてNMOSトランジスタn_drを流れる電流(インダクタ電流IL)を検出する。電流検出回路23の出力電流Idは、PMOSトランジスタ24,25によって構成されるカレントミラーによってコピーされて抵抗素子26に供給される。 The overcurrent protection circuit 22 includes a current detection circuit 23, PMOS transistors 24 and 25, and a resistance element 26. The current detection circuit 23 detects a current (inductor current IL) flowing through the NMOS transistor n_dr using the current sensor 30. The output current Id of the current detection circuit 23 is copied by a current mirror composed of PMOS transistors 24 and 25 and supplied to the resistance element 26.
 比較器CMP2は、参照電圧Vrefと、過電流保護回路22の抵抗素子26にかかる電圧とを比較し、抵抗素子26の電圧が参照電圧Vrefを超えているときLレベルとなる信号を出力する。抵抗素子26にかかる電圧は、電流検出回路23の出力電流Idと抵抗素子26の抵抗値Rmxを用いて、Id×Rmxで与えられる。 The comparator CMP2 compares the reference voltage Vref with the voltage applied to the resistance element 26 of the overcurrent protection circuit 22, and outputs a signal that becomes L level when the voltage of the resistance element 26 exceeds the reference voltage Vref. The voltage applied to the resistance element 26 is given by Id × Rmx using the output current Id of the current detection circuit 23 and the resistance value Rmx of the resistance element 26.
 なお、図1では、簡単のために比較器CMP1に入力される参照電圧Vrefと、比較器CMP2に入力される参照電圧Vrefとを同じにしているが、これらは異なっていても構わない。比較器CMP1に入力される参照電圧Vrefの値に応じて分圧回路31の分圧比α(すなわち、抵抗素子31A,31Bの抵抗値R1,R2の比)を調整する必要がある。同様に、比較器CMP2に入力される参照電圧Vrefの値に応じて抵抗素子26の抵抗値Rmxを調整する必要がある。 In FIG. 1, for simplicity, the reference voltage Vref input to the comparator CMP1 and the reference voltage Vref input to the comparator CMP2 are the same, but they may be different. It is necessary to adjust the voltage dividing ratio α of the voltage dividing circuit 31 (that is, the ratio between the resistance values R1 and R2 of the resistance elements 31A and 31B) according to the value of the reference voltage Vref input to the comparator CMP1. Similarly, it is necessary to adjust the resistance value Rmx of the resistance element 26 in accordance with the value of the reference voltage Vref input to the comparator CMP2.
 ANDゲート21は、パルス発生器PGから出力されるクロック信号clk、比較器CMP1の出力、および比較器CMP2の出力の論理積を、クロック信号clk_drとしてNMOSトランジスタn_drのゲートに出力する。 The AND gate 21 outputs the logical product of the clock signal clk output from the pulse generator PG, the output of the comparator CMP1, and the output of the comparator CMP2 to the gate of the NMOS transistor n_dr as the clock signal clk_dr.
 [パルス発生器PGの詳細な構成]
 図2は、図1のパルス発生器PGの構成を示す回路図である。図2を参照して、パルス発生器PGは、電圧・電流変換部60と、電流信号生成部70と、オン信号生成部40Aと、オフ信号生成部40Bと、インバータ91,92と、RSラッチ回路90とを含む。
[Detailed configuration of pulse generator PG]
FIG. 2 is a circuit diagram showing a configuration of the pulse generator PG of FIG. Referring to FIG. 2, pulse generator PG includes voltage / current converter 60, current signal generator 70, on signal generator 40A, off signal generator 40B, inverters 91 and 92, and RS latch. Circuit 90.
 (電圧・電流変換部60の構成)
 電圧・電流変換部60は、入力電圧Vinに比例した電流値を有する変換電流Iaを生成する。
(Configuration of voltage / current converter 60)
The voltage / current converter 60 generates a conversion current Ia having a current value proportional to the input voltage Vin.
 具体的には図2に示すように、電圧・電流変換部60は、差動増幅器61と、NMOSトランジスタ62と、抵抗素子63とを含む。NMOSトランジスタ62および抵抗素子63は、この順で電圧・電流変換部60の出力ノード64と接地ノードGNDとの間に直列に接続される。差動増幅器61の非反転入力端子には入力電圧Vinが入力される。差動増幅器61の反転入力端子は、NMOSトランジスタ62と抵抗素子63の接続ノードに接続される。 Specifically, as shown in FIG. 2, the voltage / current conversion unit 60 includes a differential amplifier 61, an NMOS transistor 62, and a resistance element 63. The NMOS transistor 62 and the resistance element 63 are connected in series between the output node 64 of the voltage / current conversion unit 60 and the ground node GND in this order. The input voltage Vin is input to the non-inverting input terminal of the differential amplifier 61. An inverting input terminal of the differential amplifier 61 is connected to a connection node between the NMOS transistor 62 and the resistance element 63.
 上記の電圧・電流変換部60の構成によれば、抵抗素子63の抵抗値をRsとすると、変換電流Iaは、
 Ia=Vin/Rs   …(4)
で決まる。
According to the configuration of the voltage / current converter 60 described above, when the resistance value of the resistance element 63 is Rs, the conversion current Ia is
Ia = Vin / Rs… (4)
Determined by.
 (電流信号生成部70の構成)
 電流信号生成部70は、電流値が一定の定電流Icsと変換電流Iaとに基づいて、入力電圧Vinが増加するほど電流値が増加する第1電流信号I1と、第1電流信号I1とは入力電圧Vinに対する依存性が異なる第2電流信号I2とを生成する。第1電流信号I1はオン信号生成部40Aに供給され、第2電流信号I2はオフ信号生成部40Bに供給される。
(Configuration of current signal generator 70)
Based on the constant current Ics having a constant current value and the conversion current Ia, the current signal generation unit 70 is configured to determine whether the first current signal I1 and the first current signal I1 increase in current value as the input voltage Vin increases. A second current signal I2 having different dependency on the input voltage Vin is generated. The first current signal I1 is supplied to the on signal generator 40A, and the second current signal I2 is supplied to the off signal generator 40B.
 昇圧コンバータ用の制御回路の場合、第1電流信号I1は、
 I1=Ia   …(5)
で与えられ、第2電流信号I2は、
 I2=Ics-Ia   …(6)
で与えられる。
In the case of a control circuit for a boost converter, the first current signal I1 is
I1 = Ia (5)
The second current signal I2 is given by
I2 = Ics-Ia (6)
Given in.
 具体的には図2に示すように、電流信号生成部70は、カレントミラーを構成するPMOSトランジスタ71,72,73と、カレントミラーを構成するNMOSトランジスタ74,75と、定電流生成部80とを含む。 Specifically, as shown in FIG. 2, the current signal generation unit 70 includes PMOS transistors 71, 72, and 73 that form a current mirror, NMOS transistors 74 and 75 that form a current mirror, a constant current generation unit 80, and the like. including.
 カレントミラー回路によって、電圧・電流変換部60の出力ノード64を流れる変換電流Iaは、PMOSトランジスタ72のドレイン電流である第1電流信号I1としてコピーされる。さらに、変換電流Iaは、定電流生成部80の出力ノード84に接続されたNMOSトランジスタ75のドレイン電流としてコピーされる。 The conversion current Ia flowing through the output node 64 of the voltage / current conversion unit 60 is copied as the first current signal I1 which is the drain current of the PMOS transistor 72 by the current mirror circuit. Further, the conversion current Ia is copied as the drain current of the NMOS transistor 75 connected to the output node 84 of the constant current generator 80.
 定電流生成部80は、定電流Icsを生成する定電流源81と、PMOSトランジスタ82,83とを含む。定電流Icsは、PMOSトランジスタ82,83によって構成されるカレントミラー回路によってコピーされて、定電流生成部80から出力される。最終的に出力ノード84からオフ信号生成部40Bに供給される第2電流信号I2は、前述の式(6)で与えられる。 The constant current generator 80 includes a constant current source 81 that generates a constant current Ics, and PMOS transistors 82 and 83. The constant current Ics is copied by a current mirror circuit configured by the PMOS transistors 82 and 83 and output from the constant current generation unit 80. The second current signal I2 that is finally supplied from the output node 84 to the off signal generation unit 40B is given by the above-described equation (6).
 (オン信号生成部40Aおよびオフ信号生成部40Bの概略的な構成)
 オン信号生成部40Aは、第1電流信号I1に基づいてオン信号Sonを生成する。オフ信号生成部40Bは、第2電流信号I2に基づいてオフ信号Soffを生成する。図1の場合、オン信号Sonおよびオフ信号Soffは、Lレベルのとき活性状態になるLアクティブの信号である。
(Schematic configuration of the ON signal generator 40A and the OFF signal generator 40B)
The on signal generation unit 40A generates an on signal Son based on the first current signal I1. The off signal generation unit 40B generates an off signal Soff based on the second current signal I2. In the case of FIG. 1, the ON signal Son and the OFF signal Soff are L active signals that are activated when they are at the L level.
 より詳細には、オン信号生成部40Aは、オフ信号Soffを受けて、オフ信号Soffが非活性化した(Hレベルに切替わった)ときから、入力電圧Vinの大きさに応じて決定される時間(オン時間Tonに対応する)が経過するまでの間、オン信号Sonを活性状態(Lレベル)にする。オフ信号生成部40Bは、オン信号Sonを受けて、オン信号Sonが非活性化した(Hレベルに切替わった)ときから、入力電圧Vinの大きさに応じて決定される時間(オフ時間Toffに対応する)が経過するまでの間、オフ信号Soffを活性状態(Lレベル)にする。図1の変換回路10を構成するNMOSトランジスタn_drは、オン信号Sonが非活性化する(Hレベルに切替わる)ことによってオフ状態になり、オフ信号Soffが非活性化する(Hレベルに切替わる)ことによってオン状態になる。 More specifically, the ON signal generation unit 40A is determined according to the magnitude of the input voltage Vin from when the OFF signal Soff is received and the OFF signal Soff is deactivated (switched to the H level). Until the time (corresponding to the ON time Ton) elapses, the ON signal Son is set in the active state (L level). The off signal generation unit 40B receives the on signal Son, and the time determined according to the magnitude of the input voltage Vin (off time Toff from when the on signal Son is deactivated (switched to the H level)). The off signal Soff is kept in an active state (L level) until the time elapses). The NMOS transistor n_dr constituting the conversion circuit 10 of FIG. 1 is turned off when the on signal Son is deactivated (switched to H level), and the off signal Soff is deactivated (switched to H level). ) To turn it on.
 (オン信号生成部40Aの詳細な構成)
 具体的には図2に示すように、オン信号生成部40Aは、充電回路41Aと比較回路45Aとを含む。
(Detailed configuration of ON signal generation unit 40A)
Specifically, as illustrated in FIG. 2, the ON signal generation unit 40A includes a charging circuit 41A and a comparison circuit 45A.
 充電回路41Aは、第1電流信号I1によって充電され、オフ信号Soffが非活性化した(Hレベルに切替わった)とき充電電圧がリセットされる。より詳細には、充電回路41Aは、オフ信号Soffを受けるワンショットパルス(one shot pulse)発生器50Aと、第1電流信号I1によって充電されるコンデンサ44Aと、コンデンサ44Aと並列接続されたNMOSトランジスタn1とを含む。ワンショットパルス発生器50Aは、オフ信号SoffがHレベルに切替わったときに所定の時間Hレベルになるパルスを発生する。ワンショットパルス発生器50Aで発生したパルスは、NMOSトランジスタn1のゲートに入力され、NMOSトランジスタn1を所定時間オン状態にする。NMOSトランジスタn1がオン状態になることによって、コンデンサ44Aの電圧が放電(リセット)される。 The charging circuit 41A is charged by the first current signal I1, and the charging voltage is reset when the off signal Soff is deactivated (switched to the H level). More specifically, the charging circuit 41A includes a one-shot pulse generator 50A that receives an off signal Soff, a capacitor 44A that is charged by the first current signal I1, and an NMOS transistor that is connected in parallel with the capacitor 44A. n1. The one-shot pulse generator 50A generates a pulse that is at the H level for a predetermined time when the off signal Soff is switched to the H level. The pulse generated by the one-shot pulse generator 50A is input to the gate of the NMOS transistor n1, and the NMOS transistor n1 is turned on for a predetermined time. When the NMOS transistor n1 is turned on, the voltage of the capacitor 44A is discharged (reset).
 比較回路45Aは、比較器42Aと、比較器42Aの出力を反転してオン信号Sonとして出力するインバータ43Aとを含む。比較器42Aは、参照電圧Vrefとコンデンサ44Aの充電電圧とを比較し、コンデンサ44Aの充電電圧が参照電圧Vrefを超えているときにLレベルの信号を出力する。比較回路45Aの出力がLレベルとなることによって、オン信号Sonが非活性化される(Hレベルになる)。 The comparison circuit 45A includes a comparator 42A and an inverter 43A that inverts the output of the comparator 42A and outputs it as an ON signal Son. The comparator 42A compares the reference voltage Vref with the charging voltage of the capacitor 44A, and outputs an L level signal when the charging voltage of the capacitor 44A exceeds the reference voltage Vref. When the output of the comparison circuit 45A becomes L level, the ON signal Son is inactivated (H level).
 (オフ信号生成部40Bの詳細な構成)
 オフ信号生成部40Bの構成は、オン信号生成部40Aの構成と同じである。すなわち、オフ信号生成部40Bは、充電回路41Bと比較回路45Bとを含む。
(Detailed configuration of the off signal generation unit 40B)
The configuration of the off signal generation unit 40B is the same as the configuration of the on signal generation unit 40A. That is, the off signal generation unit 40B includes a charging circuit 41B and a comparison circuit 45B.
 充電回路41Bは、第2電流信号I2によって充電され、オン信号Sonが非活性化した(Hレベルに切替わった)とき充電電圧がリセットされる。より詳細には、充電回路41Bは、オン信号Sonを受けるワンショットパルス発生器50Bと、第2電流信号I2によって充電されるコンデンサ44Bと、コンデンサ44Bと並列接続されたNMOSトランジスタn2とを含む。ワンショットパルス発生器50Bは、オン信号SonがHレベルに切替わったときに所定の時間Hレベルになるパルスを発生する。ワンショットパルス発生器50Bで発生したパルスは、NMOSトランジスタn2のゲートに入力され、NMOSトランジスタn2を所定時間オン状態にする。NMOSトランジスタn2がオン状態になることによって、コンデンサ44Bの電圧が放電(リセット)される。 The charging circuit 41B is charged by the second current signal I2, and the charging voltage is reset when the ON signal Son is deactivated (switched to H level). More specifically, the charging circuit 41B includes a one-shot pulse generator 50B that receives the ON signal Son, a capacitor 44B that is charged by the second current signal I2, and an NMOS transistor n2 that is connected in parallel with the capacitor 44B. The one-shot pulse generator 50B generates a pulse that is at the H level for a predetermined time when the ON signal Son is switched to the H level. The pulse generated by the one-shot pulse generator 50B is input to the gate of the NMOS transistor n2, and the NMOS transistor n2 is turned on for a predetermined time. When the NMOS transistor n2 is turned on, the voltage of the capacitor 44B is discharged (reset).
 比較回路45Bは、比較器42Bと、比較器42Bの出力を反転してオフ信号Soffとして出力するインバータ43Bとを含む。比較器42Bは、参照電圧Vrefとコンデンサ44Bの充電電圧とを比較し、コンデンサ44Bの充電電圧が参照電圧Vrefを超えているときにLレベルの信号を出力する。比較回路45Bの出力がLレベルとなることによって、オフ信号Soffが非活性化される(Hレベルになる)。 The comparison circuit 45B includes a comparator 42B and an inverter 43B that inverts the output of the comparator 42B and outputs it as an off signal Soff. The comparator 42B compares the reference voltage Vref and the charging voltage of the capacitor 44B, and outputs an L level signal when the charging voltage of the capacitor 44B exceeds the reference voltage Vref. When the output of the comparison circuit 45B becomes L level, the off signal Soff is deactivated (becomes H level).
 なお、比較器42A,42Bに入力される参照電圧Vrefは、簡単のために、図1の比較器CMP1,CMP2に入力される参照電圧Vrefと同じにしているが異なっていても構わない。比較器42Aに入力される参照電圧Vrefと、比較器42Bに入力される参照電圧Vrefとは原理的には異なってもよいが、オン時間Tonおよびオフ時間Toffの設定精度を高めるためには等しく設定したほうが望ましい。 The reference voltage Vref input to the comparators 42A and 42B is the same as the reference voltage Vref input to the comparators CMP1 and CMP2 in FIG. 1 for simplicity, but may be different. The reference voltage Vref input to the comparator 42A and the reference voltage Vref input to the comparator 42B may differ in principle, but they are equal to increase the setting accuracy of the on time Ton and the off time Toff. It is desirable to set.
 (ワンショットパルス発生器50A,50Bの構成の一例)
 図3は、図2のワンショットパルス発生器50A,50Bの構成の一例を示す回路図である。図3を参照して、ワンショットパルス発生器50A,50Bの各々は、遅延回路51と、インバータ52と、ANDゲート53とを含む。入力ノードIN1からの信号は、ANDゲート53の第1の入力端子に入力されるとともに、遅延回路51およびインバータ52を順に通過してANDゲート52の第2の入力端子に入力される。
(Example of the configuration of the one- shot pulse generators 50A and 50B)
FIG. 3 is a circuit diagram showing an example of the configuration of the one- shot pulse generators 50A and 50B in FIG. Referring to FIG. 3, each of one-shot pulse generators 50 </ b> A and 50 </ b> B includes a delay circuit 51, an inverter 52, and an AND gate 53. A signal from the input node IN1 is input to the first input terminal of the AND gate 53, and sequentially passes through the delay circuit 51 and the inverter 52 and is input to the second input terminal of the AND gate 52.
 図4は、図3の遅延回路51の構成の一例を示す回路図である。図4を参照して、遅延回路51は、入力ノードIN2と出力ノードOUT2との間に直列接続されたインバータ54A,54B,54C,54Dと、これらのインバータの各接続ノードと接地ノードGNDとの間に接続されたコンデンサ55A,55B,55Cとを含む。 FIG. 4 is a circuit diagram showing an example of the configuration of the delay circuit 51 of FIG. Referring to FIG. 4, delay circuit 51 includes inverters 54A, 54B, 54C, 54D connected in series between input node IN2 and output node OUT2, and each connection node of these inverters and ground node GND. And capacitors 55A, 55B, and 55C connected therebetween.
 図5は、図3の各部の電圧波形を示したタイミング図である。図5のタイミング図は、上から順に、ワンショットパルス発生器の入力ノードIN1の電圧波形、インバータ52の出力ノードIN_dの電圧波形、およびワンショットパルス発生器の出力ノードOUT1の電圧波形を示している。 FIG. 5 is a timing diagram showing voltage waveforms at various parts in FIG. The timing diagram of FIG. 5 shows, in order from the top, the voltage waveform of the input node IN1 of the one-shot pulse generator, the voltage waveform of the output node IN_d of the inverter 52, and the voltage waveform of the output node OUT1 of the one-shot pulse generator. Yes.
 図5に示すように、入力ノードIN1の電圧の立上がり時刻t1よりも遅延回路51の遅延時間の分遅れた時刻t2に、インバータ52の出力ノードIN_dの電圧が立下がる。入力ノードIN1の電圧の立下がり時刻t3よりも遅延回路51の遅延時間の分遅れた時刻t4に、インバータ52の出力ノードIN_dの電圧が立上がる。この結果、ワンショットパルス発生器の出力ノードOUT1には、時刻t1から時刻t2の間にHレベルとなるパルスが発生する。このように、ワンショットパルス発生器50A,50Bによって発生するパルスのパルス幅は遅延回路51の遅延値により決定できる。 As shown in FIG. 5, the voltage at the output node IN_d of the inverter 52 falls at time t2 delayed by the delay time of the delay circuit 51 from the rise time t1 of the voltage at the input node IN1. The voltage at the output node IN_d of the inverter 52 rises at time t4 delayed by the delay time of the delay circuit 51 from the time t3 when the voltage at the input node IN1 falls. As a result, a pulse that becomes H level between time t1 and time t2 is generated at the output node OUT1 of the one-shot pulse generator. Thus, the pulse width of the pulses generated by the one- shot pulse generators 50A and 50B can be determined by the delay value of the delay circuit 51.
 (RSラッチ回路90について)
 再び、図2を参照して、RSラッチ回路90のセット端子Sには、オン信号Sonがインバータ91によって反転されて入力され、RSラッチ回路90のリセット端子Rには、オフ信号がインバータ92によって反転されて入力される。この結果、RSラッチ回路の出力端子Qからは、オン信号Sonが活性状態(Lレベル)のときHレベルになり、オフ信号Soffが活性状態(Lレベル)のときLレベルになるクロック信号clkが出力される。
(Regarding the RS latch circuit 90)
Referring again to FIG. 2, the ON signal Son is inverted and input to the set terminal S of the RS latch circuit 90 by the inverter 91, and the OFF signal is input to the reset terminal R of the RS latch circuit 90 by the inverter 92. Inverted and input. As a result, from the output terminal Q of the RS latch circuit, the clock signal clk which becomes H level when the ON signal Son is in the active state (L level) and L level when the OFF signal Soff is in the active state (L level). Is output.
 [DC/DCコンバータ1の動作]
 次に、上記の構成のDC/DCコンバータ1の動作について説明する。図2を参照して、オン信号SonがLレベルの期間がNMOSトランジスタn_drのオン期間となるので、オン時間Tonは、コンデンサ44Aの容量値をC1として、
 Ton=C1・Vref/I1=C1・Vref/Ia=C1・Vref・Rs/Vin   …(7)
と表わされる。一方、オフ信号SoffがLレベルの期間がNMOSトランジスタn_drのオフ期間となるので、オフ時間Toffは、コンデンサ44Bの容量値をC2として、
 Toff=C2・Vref/I2=C2・Vref/(Ics-Ia)=C2・Vref・Rs/(Ics・Rs-Vin) …(8)
と表わせる。これらの式から
 Ton/Toff=C1・(Ics・Rs/Vin -1)/C2   …(9)
が得られる。したがって、
 C1=C2   …(10)
 Ics・Rs=Vout*(期待値)   …(11)
となるように、コンデンサ44A,44Bの容量値C1,C2、定電流源81から出力される定電流Ics、および抵抗素子63の抵抗値Rsを設定すれば、上式(9)の右辺が前述の式(3)の右辺に等しくなるので、所望のTon/Toff比が得られることになる。
[Operation of DC / DC Converter 1]
Next, the operation of the DC / DC converter 1 having the above configuration will be described. Referring to FIG. 2, the period in which the ON signal Son is at the L level is the ON period of the NMOS transistor n_dr. Therefore, the ON time Ton is defined by the capacitance value of the capacitor 44A as C1
Ton = C1 / Vref / I1 = C1 / Vref / Ia = C1 / Vref / Rs / Vin (7)
It is expressed as On the other hand, the period during which the off signal Soff is at the L level is the off period of the NMOS transistor n_dr.
Toff = C2 / Vref / I2 = C2 / Vref / (Ics-Ia) = C2 / Vref / Rs / (Ics / Rs-Vin) (8)
It can be expressed as From these equations, Ton / Toff = C1 · (Ics · Rs / Vin -1) / C2 (9)
Is obtained. Therefore,
C1 = C2 (10)
Ics ・ Rs = Vout * (expected value)… (11)
If the capacitance values C1 and C2 of the capacitors 44A and 44B, the constant current Ics output from the constant current source 81, and the resistance value Rs of the resistance element 63 are set so that Therefore, the desired Ton / Toff ratio can be obtained.
 図6は、図2の各部の電圧波形を示したタイミング図である。図6のタイミング図は、上から順に、コンデンサ44Aの電圧Von、オン信号Son、トランジスタn2のゲート電圧VG(n2)、コンデンサ44Bの電圧Voff、オフ信号Soff、およびトランジスタn1のゲート電圧VG(n1)を示している。 FIG. 6 is a timing diagram showing voltage waveforms at various parts in FIG. The timing chart of FIG. 6 shows, in order from the top, the voltage Von of the capacitor 44A, the on signal Son, the gate voltage VG (n2) of the transistor n2, the voltage Voff of the capacitor 44B, the off signal Soff, and the gate voltage VG (n1) of the transistor n1. ).
 図2、図6を参照して、コンデンサ44Aは、第1電流信号I1(=Ia)で充電される。時刻t1でコンデンサ44Aの電圧Vonが参照電圧Vrefに達すると、オン信号Sonはハイレベルに変化する。同時にワンショットパルス発生器50Bから発生するパルスによって、NMOSトランジスタn2のゲート電圧VG(n2)が時刻t2まで所定時間立上がる。この結果、コンデンサ44Bの電圧Voffが接地電圧レベルに放電される。 2 and 6, the capacitor 44A is charged with the first current signal I1 (= Ia). When the voltage Von of the capacitor 44A reaches the reference voltage Vref at time t1, the on signal Son changes to a high level. At the same time, the pulse generated from the one-shot pulse generator 50B causes the gate voltage VG (n2) of the NMOS transistor n2 to rise for a predetermined time until time t2. As a result, the voltage Voff of the capacitor 44B is discharged to the ground voltage level.
 コンデンサ44Bは、第2電流信号I2(=Ics-Ia)で充電される。時刻t3でコンデンサ44Bの電圧Voffが参照電圧Vrefに達すると、オフ信号Soffはハイレベルに変化する。同時にワンショットパルス発生器50Aから発生するパルスによって、NMOSトランジスタn1のゲート電圧VG(n1)が時刻t4まで所定時間立上がる。この結果、コンデンサ44Aの電圧Vonが接地電圧レベルまで放電される。時刻t5以降は、時刻t1からの動作の繰返しになる。オン時間Tonはオン信号SonのLレベルの期間に対応し、オフ時間Toffはオフ信号SoffのLレベルの期間に対応する。 The capacitor 44B is charged with the second current signal I2 (= Ics−Ia). When the voltage Voff of the capacitor 44B reaches the reference voltage Vref at time t3, the off signal Soff changes to a high level. At the same time, the pulse generated from the one-shot pulse generator 50A causes the gate voltage VG (n1) of the NMOS transistor n1 to rise for a predetermined time until time t4. As a result, the voltage Von of the capacitor 44A is discharged to the ground voltage level. After time t5, the operation from time t1 is repeated. The on time Ton corresponds to the L level period of the on signal Son, and the off time Toff corresponds to the L level period of the off signal Soff.
 [実施の形態1の効果]
 (1.発振の虞がないこと)
 実施の形態1のDC/DCコンバータ1によれば、フィードバックなしに入力電圧VinからTon/Toff比を決めることができるため、発振の心配がない。発振防止用の容量や抵抗など外付け素子が不要となる。
[Effect of Embodiment 1]
(1. No risk of oscillation)
According to the DC / DC converter 1 of the first embodiment, since the Ton / Toff ratio can be determined from the input voltage Vin without feedback, there is no concern about oscillation. External elements such as oscillation prevention capacitors and resistors are not required.
 (2.高効率であること)
 さらに、DC/DCコンバータ1によれば、入出力電圧の変化に対して安定状態への遷移時間を短くできるとともに入力電圧Vinに対応して最大の電力効率を得ることが可能となる。以下、入力電圧Vinに応じてTon/Toff比を調整しないで固定した場合と対比して説明する。
(2. High efficiency)
Furthermore, according to the DC / DC converter 1, it is possible to shorten the transition time to the stable state with respect to the change of the input / output voltage and to obtain the maximum power efficiency corresponding to the input voltage Vin. Hereinafter, a description will be given in contrast to a case where the Ton / Toff ratio is fixed without being adjusted according to the input voltage Vin.
 Ton/Toff比を固定した場合には、入力電圧Vinが最も低い条件で昇圧が可能となるようにTon/Toff比を最も大きい値に設定する必要がある。入力電圧範囲が1V~2V、出力電圧が3VのときTon/Toff比の最も大きい条件は、
 Ton/Toff=3V/1V -1=2   …(12)
となる。クロック信号clkの周期が1μsのとき、Ton=0.67μs、Toff=0.33μsに設定される。
When the Ton / Toff ratio is fixed, it is necessary to set the Ton / Toff ratio to the largest value so that the voltage can be boosted under the lowest input voltage Vin. When the input voltage range is 1V to 2V and the output voltage is 3V, the condition with the largest Ton / Toff ratio is
Ton / Toff = 3V / 1V -1 = 2 (12)
It becomes. When the cycle of the clock signal clk is 1 μs, Ton = 0.67 μs and Toff = 0.33 μs are set.
 図7は、図1のDC/DCコンバータ1で、Ton/Toff比を固定した場合におけるクロック信号clkの波形図である。図7のグラフは、上から順にクロック信号clk_dr、DC/DCコンバータの出力電圧Voutおよびインダクタ電流ILを示している。 FIG. 7 is a waveform diagram of the clock signal clk when the Ton / Toff ratio is fixed in the DC / DC converter 1 of FIG. The graph of FIG. 7 shows the clock signal clk_dr, the output voltage Vout of the DC / DC converter, and the inductor current IL in order from the top.
 図7を参照して、出力電圧Voutが所望の目標電圧Vout*に到達した場合、図1の比較器CMP1の出力によってクロック信号clk_drが停止するので、DC/DCコンバータの昇圧動作が停止する(図7の時刻t1)。Ton/Toff比を固定した場合には、Ton/Toff比を最も大きな値に設定する必要があるため、このクロック信号clk_drが停止する期間(図7の時刻t1から時刻t2まで)が長くなる。これに対して、この実施の形態の場合には、入力電圧Vinに応じてTon/Toff比が設定されるので、クロック信号clk_drの停止期間が短くて済む。 Referring to FIG. 7, when output voltage Vout reaches desired target voltage Vout *, clock signal clk_dr is stopped by the output of comparator CMP1 in FIG. Time t1) in FIG. When the Ton / Toff ratio is fixed, it is necessary to set the Ton / Toff ratio to the largest value. Therefore, the period during which the clock signal clk_dr is stopped (from time t1 to time t2 in FIG. 7) becomes longer. On the other hand, in this embodiment, since the Ton / Toff ratio is set according to the input voltage Vin, the stop period of the clock signal clk_dr can be shortened.
 インダクタ電流ILが規定値ILmaxを超えた場合も同様である。この場合、スイッチング素子の破壊を防止するため、図1の比較器CMP2の出力によって、クロック信号clk_drが停止する(図7の時刻t3)。Ton/Toff比を固定した場合には、Ton期間が長く設定されるため、インダクタに必要以上の電流が流れことになるので、この場合のクロック信号clk_drの停止期間(時刻t3から時刻t4まで)も長くなる。 The same applies when the inductor current IL exceeds the specified value ILmax. In this case, in order to prevent destruction of the switching element, the clock signal clk_dr is stopped by the output of the comparator CMP2 in FIG. 1 (time t3 in FIG. 7). When the Ton / Toff ratio is fixed, the Ton period is set to be long, so that more current than necessary flows through the inductor. Therefore, the stop period of the clock signal clk_dr in this case (from time t3 to time t4) Also gets longer.
 次に、上記のクロック信号の停止期間の影響を定量的に説明する。
 図8は、昇圧コンバータの場合のインダクタ電流について説明するための図である。図8を参照して、オン期間Tonにインダクタ電流がΔIon増加し、オフ期間Toffにインダクタ電流がΔIff減少する。これらの値は、前述の式(1),(2)で表わされる。平均的なインダクタ電流Iavは、平均出力電流Ioutを用いて、
 Iav=(Ton/Toff +1)・Iout   …(13)
によって与えられる。
Next, the influence of the clock signal stop period will be quantitatively described.
FIG. 8 is a diagram for explaining the inductor current in the case of the boost converter. Referring to FIG. 8, the inductor current increases by ΔIon during the on period Ton, and the inductor current decreases by ΔIff during the off period Toff. These values are expressed by the aforementioned equations (1) and (2). The average inductor current Iav is obtained by using the average output current Iout.
Iav = (Ton / Toff +1) · Iout… (13)
Given by.
 DC/DCコンバータ1への入力電圧Vinが2Vのときは、Ton/Toff比は、3V/2V -1=0.5でよいはずである。しかし、Ton/Toff比を入力電圧が最小である1Vの場合に対応して固定しているので、Ton/Toff比は2に設定されている。この場合、インダクタ11のインダクタンスLを20uH、出力電流Ioutを20mAとすると、Tonは0.67μsであるので、インダクタの最大電流ILmaxは、式(1)、(13)を用いて、
 ILmax=(Ton/Toff +1)・Iout+ΔIon/2
    =(Ton/Toff +1)・Iout+Vin・Ton/(2・L)
    =3×20mA+2V×0.67μs/(2×20μH)=93mA   …(14)
となる。
When the input voltage Vin to the DC / DC converter 1 is 2V, the Ton / Toff ratio should be 3V / 2V −1 = 0.5. However, since the Ton / Toff ratio is fixed corresponding to the case where the input voltage is 1 V which is the minimum, the Ton / Toff ratio is set to 2. In this case, assuming that the inductance L of the inductor 11 is 20 uH and the output current Iout is 20 mA, Ton is 0.67 μs. Therefore, the maximum current ILmax of the inductor can be calculated using the equations (1) and (13).
ILmax = (Ton / Toff + 1) · Iout + ΔIon / 2
= (Ton / Toff +1) · Iout + Vin · Ton / (2 · L)
= 3 × 20mA + 2V × 0.67μs / (2 × 20μH) = 93mA (14)
It becomes.
 一方、本実施の形態の場合には、入力電圧Vinに対してTon/Toff比を最適化できるので、入力電圧Vinが2Vの場合には、Ton/Toff=0.5、オン時間Ton=0.33μs、オフ時間Toff=0.67μsとなる。したがって、インダクタの最大電流ILmaxは、
 ILmax=(Ton/Toff +1)・Iout+Vin・Ton/(2・L)
    =1.5×20mA+2V×0.33μs/(2×20μH)=46.5mA   …(15)
となる。
On the other hand, in the case of the present embodiment, the Ton / Toff ratio can be optimized with respect to the input voltage Vin. Therefore, when the input voltage Vin is 2 V, Ton / Toff = 0.5 and the on time Ton = 0. .33 μs, OFF time Toff = 0.67 μs. Therefore, the maximum current ILmax of the inductor is
ILmax = (Ton / Toff +1) · Iout + Vin · Ton / (2 · L)
= 1.5 × 20mA + 2V × 0.33μs / (2 × 20μH) = 46.5mA (15)
It becomes.
 このように、Ton/Toff比を固定した場合には、本来必要な電流の2倍の電流が流れることになる。不要な電流が多いほど、寄生抵抗で消費される熱量も増加するため、電力変換効率が低下する。これに対して、実施の形態1によるDC/DCコンバータ1の場合には、入力電圧Vinに応じてTon/Toff比が設定されるので、電力変換効率を向上させることができる。 In this way, when the Ton / Toff ratio is fixed, a current twice as much as originally required flows. As the unnecessary current increases, the amount of heat consumed by the parasitic resistance also increases, so that the power conversion efficiency decreases. On the other hand, in the case of the DC / DC converter 1 according to the first embodiment, the Ton / Toff ratio is set according to the input voltage Vin, so that the power conversion efficiency can be improved.
 (3.Ton/Toff比の設定精度が高いこと)
 実施の形態1による昇圧DC/DCコンバータ1は、前述の非特許文献1に記載された昇圧コンバータに比べて、Ton/Toff比の設定精度が高いという特徴がある。以下、具体的に説明する。
(3. Ton / Toff ratio setting accuracy is high)
The step-up DC / DC converter 1 according to the first embodiment has a feature that the setting accuracy of the Ton / Toff ratio is higher than that of the step-up converter described in Non-Patent Document 1 described above. This will be specifically described below.
 非特許文献1の場合、入力電圧VIからTon/Toff比を決めるフィードフォワード制御を用いている点はこの実施の形態の場合と同じであるが、Ton/Toffの決定方法はこの実施の形態の場合と大きく異なる。非特許文献1の場合には、三角波を用いてオン時間Tonおよびオフ時間Toffを決定するPWM制御である。 In the case of Non-Patent Document 1, the feedforward control for determining the Ton / Toff ratio from the input voltage VI is the same as in this embodiment, but the method for determining Ton / Toff is the same as that of this embodiment. Very different from the case. In the case of Non-Patent Document 1, the PWM control determines the on time Ton and the off time Toff using a triangular wave.
 図9は、三角波を用いてオン時間Tonおよびオフ時間Toffを決定する方法について説明するための図である。図9を参照して、非特許文献1の場合、入力電圧VIを抵抗値R1,R2の抵抗素子で分圧した判定電圧VREFが入力され、三角波電圧VTと比較される。そして、VT>VREFの期間がオン期間(Ton)、VT<VREFの期間がオフ期間(Toff)期間と設定される。三角波電圧の最大値をVTmとし、出力電圧をVOとすると、
 VO=(R1/R2+1)・VTm   …(16)
 VREF=R2・VI/(R1+R2)   …(17)
の関係がある。三角波は、通常、定電流源と容量で作られる。
FIG. 9 is a diagram for explaining a method of determining the on time Ton and the off time Toff using a triangular wave. Referring to FIG. 9, in the case of Non-Patent Document 1, determination voltage VREF obtained by dividing input voltage VI by resistance elements having resistance values R1 and R2 is input and compared with triangular wave voltage VT. A period of VT> VREF is set as an on period (Ton), and a period of VT <VREF is set as an off period (Toff) period. If the maximum value of the triangular wave voltage is VTm and the output voltage is VO,
VO = (R1 / R2 + 1) ・ VTm (16)
VREF = R2 ・ VI / (R1 + R2) (17)
There is a relationship. A triangular wave is usually made up of a constant current source and a capacitor.
 図10は、一般的な三角波発生回路900の構成を示す回路図である。図10を参照して、三角波発生回路は、コンデンサ901と、NMOSトランジスタ902と、ワンショットパルス発生器903と、比較器904と、定電流源905とを含む。コンデンサ901は、定電流源905からの電流によって充電される。比較器904は、コンデンサ901の充電電圧が参照電圧VRを超えると出力をLレベルに切替える。ワンショットパルス発生器903は、比較器904の出力信号がHレベルからLレベルに切替わったときに、所定時間Hレベルとなるパルスを出力する。NMOSトランジスタ902は、ワンショットパルス発生器903からのパルス出力を受けて導通し、これによってコンデンサ901の電圧が放電される。 FIG. 10 is a circuit diagram showing a configuration of a general triangular wave generation circuit 900. Referring to FIG. 10, the triangular wave generation circuit includes a capacitor 901, an NMOS transistor 902, a one-shot pulse generator 903, a comparator 904, and a constant current source 905. The capacitor 901 is charged by the current from the constant current source 905. Comparator 904 switches the output to L level when the charging voltage of capacitor 901 exceeds reference voltage VR. The one-shot pulse generator 903 outputs a pulse that is at the H level for a predetermined time when the output signal of the comparator 904 is switched from the H level to the L level. The NMOS transistor 902 conducts in response to the pulse output from the one-shot pulse generator 903, whereby the voltage of the capacitor 901 is discharged.
 以上のような非特許文献1のTon/Toff比の設定方法には次のような問題がある。 The method for setting the Ton / Toff ratio of Non-Patent Document 1 as described above has the following problems.
 第1に、入力電圧VIが低くなるにつれてTon/Toff比の精度が劣化する。入力電圧VIを0.5V、出力電圧VOを5V、三角波電圧の最大値VTmを1Vとすると、式(16)よりR1/R2=4となる。式(17)より、VREF=0.1Vとなる。したがって、PWM比較器の入力オフセットを△Vとすると、Ton/Toff比は
 Ton/Toff=[(VTm-VREF)±ΔV]/(VREF±ΔV)   …(18)
となる。△V=50mVの場合、Ton/Toff比は6.7~19まで大きくばらつく。この理由は、判定電圧VREFが低くなるにつれてオフセット電圧が相対的に大きくなるためである。
First, as the input voltage VI decreases, the accuracy of the Ton / Toff ratio deteriorates. When the input voltage VI is 0.5 V, the output voltage VO is 5 V, and the maximum value VTm of the triangular wave voltage is 1 V, R1 / R2 = 4 from Equation (16). From equation (17), VREF = 0.1V. Therefore, when the input offset of the PWM comparator is ΔV, the Ton / Toff ratio is Ton / Toff = [(VTm−VREF) ± ΔV] / (VREF ± ΔV) (18)
It becomes. When ΔV = 50 mV, the Ton / Toff ratio varies greatly from 6.7 to 19. This is because the offset voltage increases relatively as the determination voltage VREF decreases.
 さらに、図9に示す三角波をリセットする際の遅延時間△tの影響が、Ton/Toff比が大きくなる(すなわちVIが低くなる)につれて大きくなるという問題もある。 Furthermore, there is a problem that the influence of the delay time Δt when resetting the triangular wave shown in FIG. 9 increases as the Ton / Toff ratio increases (that is, VI decreases).
 第2に、非特許文献1の場合には、入力電圧VIの電圧レベルに応じてTon/Toff比を設定しなければならないので、図10に示すコンデンサ901は、ダブルポリキャパシタ(double-poly capacitor)などのように電圧依存のない素子が必須となる。このような素子は一般に面積が大きく、プロセス工数も増えるため、ローコストの半導体プロセスでは使用できない。 Secondly, in the case of Non-Patent Document 1, since the Ton / Toff ratio must be set according to the voltage level of the input voltage VI, the capacitor 901 shown in FIG. 10 has a double-poly capacitor (double-poly capacitor). ) And the like are indispensable elements. Since such an element generally has a large area and increases the number of process steps, it cannot be used in a low-cost semiconductor process.
 実施の形態1のDC/DCコンバータ1では上記の問題点が解消される。
 第1の問題点に関して、この実施の形態の場合には、Ton時間の設定に入力電圧Vinそのものを用いない。入力電圧Vinに比例する変換電流Iaを生成し、その変換電流Iaでコンデンサ44Aを充電する。そして、コンデンサ44Aの端子電圧Vonが一定値Vrefに達したときをTon時間とする。変換電流Iaの大きさおよびコンデンサ44Aの容量を調整することによって、比較器42Aへの入力電圧を比較的高く設定することができるので、比較器42Aのオフセット電圧の影響を小さくする。
In the DC / DC converter 1 of the first embodiment, the above problem is solved.
Regarding the first problem, in this embodiment, the input voltage Vin itself is not used for setting the Ton time. A conversion current Ia proportional to the input voltage Vin is generated, and the capacitor 44A is charged with the conversion current Ia. The time when the terminal voltage Von of the capacitor 44A reaches the constant value Vref is defined as Ton time. By adjusting the magnitude of the conversion current Ia and the capacitance of the capacitor 44A, the input voltage to the comparator 42A can be set relatively high, so that the influence of the offset voltage of the comparator 42A is reduced.
 具体的に図2の各比較器42A,42Bへの入力電圧Von,Voffは0.5V以上であり、参照電圧Vrefは0.8V~1.2Vである。非特許文献1の場合の判定電圧VREF=0.1Vに比べて、比較器の入力オフセットの影響が大幅に緩和される。 Specifically, the input voltages Von and Voff to the comparators 42A and 42B in FIG. 2 are 0.5 V or more, and the reference voltage Vref is 0.8 V to 1.2 V. Compared with the determination voltage VREF = 0.1 V in Non-Patent Document 1, the influence of the input offset of the comparator is greatly reduced.
 さらに、この実施の形態の場合、図6の電圧Von,Voffのリセットに要する遅延時間は、オン時間Tonおよびオフ時間Toffがそれぞれ長くなるように影響する。これに対して、非特許文献の場合にはオン時間Tonのみ長くなるため、Ton/Toff比への影響が大きい。 Furthermore, in the case of this embodiment, the delay time required for resetting the voltages Von and Voff in FIG. 6 affects the on-time Ton and the off-time Toff, respectively. On the other hand, in the case of a non-patent document, only the on-time Ton becomes longer, so the influence on the Ton / Toff ratio is great.
 さらに、この実施の形態の場合には、オン時間Tonは、入力電圧Vinに比例した変換電流Iaでコンデンサ44Aが充電される時間で設定される。オフ時間Toffは定電流Icsから変換電流Iaを差し引いた電流I2でコンデンサ44Bを充電する時間で設定される。このようにオン時間TonおよびToffを設定することによって、入力電圧Vinが低くなる(Ton/Toff比が大きくなる)につれて、周期Tcycle(=Ton+ Toff)が長くなる。このため、コンデンサ44A,44Bの充電電圧Von,Voffをリセットする際の遅延時間の影響を小さくできる。 Furthermore, in the case of this embodiment, the on time Ton is set by the time during which the capacitor 44A is charged with the conversion current Ia proportional to the input voltage Vin. The off time Toff is set by the time for charging the capacitor 44B with the current I2 obtained by subtracting the conversion current Ia from the constant current Ics. By setting the on times Ton and Toff in this way, the cycle Tcycle (= Ton + Toff) becomes longer as the input voltage Vin is lowered (Ton / Toff ratio is increased). For this reason, the influence of the delay time when resetting the charging voltages Von and Voff of the capacitors 44A and 44B can be reduced.
 第2の問題点に関して、この実施の形態のDC/DCコンバータ1の場合には、オン時間Tonおよびオフ時間Toffは、図2のコンデンサ44A,44Bの充電電圧VonおよびVoffが参照電圧Vrefに達するまでの時間として設定される。このため、コンデンサ44A,44Bの容量C1、C2は線型容量である必要がない。たとえば、ローコストのMOSトランジスタ・キャパシタを用いることができる。 Regarding the second problem, in the case of the DC / DC converter 1 of this embodiment, the on-time Ton and the off-time Toff are such that the charging voltages Von and Voff of the capacitors 44A and 44B in FIG. 2 reach the reference voltage Vref. It is set as the time until. For this reason, the capacitors C1 and C2 of the capacitors 44A and 44B do not need to be linear capacitors. For example, a low-cost MOS transistor capacitor can be used.
 その他のメリットとして、この実施の形態のDC/DCコンバータ1では、オン時間Tonおよびオフ時間Toffを個別に設定できるため、Ton/Toff比が設計値からずれた場合は、オン時間Tonおよびオフ時間Toffの長さを個別に調整することで容易に設計値に設定することが可能である。 As another advantage, in the DC / DC converter 1 of this embodiment, since the on-time Ton and the off-time Toff can be individually set, when the Ton / Toff ratio deviates from the design value, the on-time Ton and the off-time It is possible to easily set to the design value by individually adjusting the length of Toff.
 [実施の形態1の変形例]
 図11は、図1のDC/DCコンバータ1の変形例としてのDC/DCコンバータ2の構成を示す回路図である。図11の変換回路10Aは、ダイオード12がPMOSトランジスタp_swに置き換わっている点で、図1の変換回路10と異なる。
[Modification of Embodiment 1]
FIG. 11 is a circuit diagram showing a configuration of a DC / DC converter 2 as a modification of the DC / DC converter 1 of FIG. 11 is different from the conversion circuit 10 in FIG. 1 in that the diode 12 is replaced with a PMOS transistor p_sw.
 DC/DCコンバータ2による入力電圧Vinの昇圧動作は、図1のDC/DCコンバータ1と同様である。すなわち、NMOSトランジスタn_drをオンするとインダクタ11に電流が流れる。次にNMOSトランジスタn_drをオフにする。図11に示す同期整流方式では、PMOSトランジスタp_swをオンさせて出力に電流を供給する。 The boosting operation of the input voltage Vin by the DC / DC converter 2 is the same as that of the DC / DC converter 1 of FIG. That is, when the NMOS transistor n_dr is turned on, a current flows through the inductor 11. Next, the NMOS transistor n_dr is turned off. In the synchronous rectification method shown in FIG. 11, the PMOS transistor p_sw is turned on to supply current to the output.
 ここで、NMOSトランジスタn_drがオフする前にPMOSトランジスタp_swがオンするオーバラップ期間があると、大きな貫通電流が流れる。NMOSトランジスタn_drのオン期間とPMOSトランジスタp_swのオン期間が重ならないよう、図12の制御回路20Aにはノン・オーバラップ回路100がさらに設けられている。ノン・オーバラップ回路100は、ANDゲート21から受けたクロック信号clk_drに基づいて、NMOSトランジスタn_drのゲートにクロック信号ncntを出力し、PMOSトランジスタp_swのゲートにクロック信号pcntを出力する。 Here, if there is an overlap period in which the PMOS transistor p_sw is turned on before the NMOS transistor n_dr is turned off, a large through current flows. A non-overlap circuit 100 is further provided in the control circuit 20A of FIG. 12 so that the on period of the NMOS transistor n_dr and the on period of the PMOS transistor p_sw do not overlap. Based on the clock signal clk_dr received from the AND gate 21, the non-overlap circuit 100 outputs the clock signal ncnt to the gate of the NMOS transistor n_dr and outputs the clock signal pcnt to the gate of the PMOS transistor p_sw.
 図12は、図11のノン・オーバラップ回路100の構成の一例を示す回路図である。図12を参照して、ノン・オーバラップ回路100は、インバータ107,108A~108C,109A~109Cと、PMOSトランジスタ101~103と、NMOSトランジスタ104~106とを含む。 FIG. 12 is a circuit diagram showing an example of the configuration of the non-overlap circuit 100 of FIG. Referring to FIG. 12, non-overlap circuit 100 includes inverters 107, 108A to 108C, 109A to 109C, PMOS transistors 101 to 103, and NMOS transistors 104 to 106.
 PMOSトランジスタ101およびNMOSトランジスタ104,105は、この順で電源ノードVDDと接地ノードGNDとの間に直列に接続される。PMOSトランジスタ102,103およびNMOSトランジスタ106は、この順で電源ノードVDDと接地ノードGNDとの間に直列に接続される。クロック信号clk_drは、インバータ107を介して、トランジスタ101,105,102,106のゲートに入力される。トランジスタ101,104の接続ノード110の電圧は、クロック信号pcntとして出力されるとともに、インバータ109A~109Cを介してトランジスタ103のゲートに入力される。トランジスタ103,106の接続ノード111の電圧は、クロック信号ncntとして出力されるとともに、インバータ108A~108Cを介してトランジスタ104のゲートに入力される。 The PMOS transistor 101 and the NMOS transistors 104 and 105 are connected in series between the power supply node VDD and the ground node GND in this order. PMOS transistors 102 and 103 and NMOS transistor 106 are connected in series between power supply node VDD and ground node GND in this order. The clock signal clk_dr is input to the gates of the transistors 101, 105, 102, and 106 via the inverter 107. The voltage at the connection node 110 of the transistors 101 and 104 is output as the clock signal pcnt and input to the gate of the transistor 103 via the inverters 109A to 109C. The voltage at the connection node 111 of the transistors 103 and 106 is output as the clock signal ncnt and also input to the gate of the transistor 104 through the inverters 108A to 108C.
 図13は、図12の回路の各部の電圧波形を示すタイミング図である。以下、図12、図13を参照して、ノン・オーバラップ回路100の動作について説明する。 FIG. 13 is a timing chart showing voltage waveforms of respective parts of the circuit of FIG. Hereinafter, the operation of the non-overlap circuit 100 will be described with reference to FIGS.
 図13の時刻t1で、クロック信号clk_drがHレベルからLレベルに切替わると、PMOSトランジスタ101,102がオフし、NMOSトランジスタ105,106がオンする。これによって、クロック信号ncntがHレベルからLレベルに切替わる。 When the clock signal clk_dr is switched from the H level to the L level at time t1 in FIG. 13, the PMOS transistors 101 and 102 are turned off and the NMOS transistors 105 and 106 are turned on. As a result, the clock signal ncnt is switched from the H level to the L level.
 次に、直列接続されたインバータ108A~108C,109A~109Cに応じた遅延時間が経過した時刻t2に、NMOSトランジスタ104がオンし、PMOSトランジスタ103がオフする。これによって、クロック信号pcntがHレベルからLレベルに切替わる。 Next, at the time t2 when the delay time corresponding to the inverters 108A to 108C and 109A to 109C connected in series has elapsed, the NMOS transistor 104 is turned on and the PMOS transistor 103 is turned off. As a result, the clock signal pcnt is switched from the H level to the L level.
 次の時刻t3で、クロック信号clk_drがLレベルからHレベルに切替わると、PMOSトランジスタ101,102がオンし、NMOSトランジスタ105,106がオフする。これによって、クロック信号pcntがLレベルからHレベルに切替わる。 At the next time t3, when the clock signal clk_dr is switched from the L level to the H level, the PMOS transistors 101 and 102 are turned on and the NMOS transistors 105 and 106 are turned off. As a result, the clock signal pcnt is switched from the L level to the H level.
 次に、直列接続されたインバータ108A~108C,109A~109Cに応じた遅延時間が経過した時刻t4に、PMOSトランジスタ103がオンし、NMOSトランジスタ104がオフする。これによって、クロック信号ncntがLレベルからHレベルに切替わる。 Next, at time t4 when the delay time corresponding to the inverters 108A to 108C and 109A to 109C connected in series has elapsed, the PMOS transistor 103 is turned on and the NMOS transistor 104 is turned off. As a result, the clock signal ncnt is switched from the L level to the H level.
 <実施の形態2>
 実施の形態1の制御回路20では、Ton/Toff比の最適値が最初に設定され、その後はTon/Toff比の値に変更がない。このため、入力電圧Vinが出力電圧の期待値Vout*に比べてかなり小さい場合(Ton/Toff比の最適値が比較的大きい場合)には、出力電圧Voutが期待値Vout*に到達するまでに時間がかかるという問題がある。もし、出力電圧Voutが期待値Vout*より低い期間にTon/Toff比を最適値よりも大きく設定できれば、出力電圧Voutが期待値Vout*に到達するまでの時間を短縮できる。実施の形態2では、そのための回路構成が開示される。
<Embodiment 2>
In the control circuit 20 of the first embodiment, the optimum value of the Ton / Toff ratio is set first, and thereafter, the value of the Ton / Toff ratio is not changed. Therefore, when the input voltage Vin is considerably smaller than the expected value Vout * of the output voltage (when the optimum value of Ton / Toff ratio is relatively large), the output voltage Vout reaches the expected value Vout *. There is a problem that it takes time. If the Ton / Toff ratio can be set larger than the optimum value during the period when the output voltage Vout is lower than the expected value Vout *, the time until the output voltage Vout reaches the expected value Vout * can be shortened. In the second embodiment, a circuit configuration for that purpose is disclosed.
 図14は、この発明の実施の形態2によるDC/DCコンバータに適用されるパルス発生器PGAの構成を示す回路図である。図1のDC/DCコンバータ1において、パルス発生器PGが図14のパルス発生器PGAに置き換えられる。パルス発生器PGA以外の構成は、図1に示した実施の形態1の場合と同じである。 FIG. 14 is a circuit diagram showing a configuration of a pulse generator PGA applied to the DC / DC converter according to Embodiment 2 of the present invention. In the DC / DC converter 1 of FIG. 1, the pulse generator PG is replaced with the pulse generator PGA of FIG. The configuration other than the pulse generator PGA is the same as that of the first embodiment shown in FIG.
 図14を参照して、電流信号生成部70Aは、演算トランスコンダクタンス増幅器(OTA:Operational Transcondactance Amplifier)120をさらに含む点で、図2の電流信号生成部70と異なる。OTA120の非反転入力端子には参照電圧Vrefが入力され、OTA120の反転入力端子には図1の分圧回路31の出力電圧Vout2が入力される。参照電圧Vrefは、出力電圧Voutの期待値Vout*に応じて設定される。分圧回路31の分圧比をαとすれば、参照電圧Vrefはα×Vout*で与えられる。なお、OTA120に入力される参照電圧は、これまで説明した比較器CMP1,CMP2,42A,42Bに入力される参照電圧と同じにする必要はない。 Referring to FIG. 14, current signal generation unit 70A is different from current signal generation unit 70 of FIG. 2 in that it further includes an operational transconductance amplifier (OTA) 120. The reference voltage Vref is input to the non-inverting input terminal of the OTA 120, and the output voltage Vout2 of the voltage dividing circuit 31 in FIG. 1 is input to the inverting input terminal of the OTA 120. The reference voltage Vref is set according to the expected value Vout * of the output voltage Vout. If the voltage dividing ratio of the voltage dividing circuit 31 is α, the reference voltage Vref is given by α × Vout *. Note that the reference voltage input to the OTA 120 need not be the same as the reference voltage input to the comparators CMP1, CMP2, 42A, and 42B described so far.
 OTA120は、参照電圧Vrefと分圧回路31の出力電圧Vout2との電圧差に応じた補正電流Imdを定電流生成部80の出力ノード84に出力する。Vref>Vout2の場合には補正電流Imdは正になり、Vref<Vout2の場合には補正電流Imdは負になる。OTA120の伝達コンダクタンスをGとすれば、補正電流Imdは、
 Imd=G・(Vref-Vout2)   …(19)
と表わされる。図14のその他の構成は図2の場合と同じであるので、同一または相当する部分には同一の参照符号を付して説明を繰り返さない。
The OTA 120 outputs a correction current Imd corresponding to the voltage difference between the reference voltage Vref and the output voltage Vout2 of the voltage dividing circuit 31 to the output node 84 of the constant current generator 80. When Vref> Vout2, the correction current Imd is positive, and when Vref <Vout2, the correction current Imd is negative. If the transfer conductance of the OTA 120 is G, the correction current Imd is
Imd = G ・ (Vref−Vout2)… (19)
It is expressed as Other configurations in FIG. 14 are the same as those in FIG. 2, and therefore, the same or corresponding parts are denoted by the same reference numerals and description thereof is not repeated.
 図14の場合、電流信号生成部70Aからオフ信号生成部40Bに出力される電流信号は、実施の形態1の第2電流信号I2に補正電流Imdを加算した値I2’に修正され、
 I2'=I2+Imd=Ics+Imd-Ia   …(20)
となる。したがって、オフ時間Toffは、
 Toff=C2・Vref/I2'=C2・Vref/(Ics+Imd-Ia)
   =C2・Vref・R/[(Ics+Imd)・R-Vin]   …(21)
と表わされる。
In the case of FIG. 14, the current signal output from the current signal generator 70A to the off signal generator 40B is corrected to a value I2 ′ obtained by adding the correction current Imd to the second current signal I2 of the first embodiment.
I2 '= I2 + Imd = Ics + Imd-Ia (20)
It becomes. Therefore, the off time Toff is
Toff = C2 / Vref / I2 '= C2 / Vref / (Ics + Imd-Ia)
= C2, Vref, R / [(Ics + Imd), R-Vin] (21)
It is expressed as
 出力Voutが期待値Vout*より低い場合はOTA120から補正電流Imdが供給される(Imd>0)ので、オフ期間Toffが短く設定される。すなわち、Ton/Toff比が大きく設定されるため、オン期間Tonのインダクタ電流増加分が大きくなり、それが出力電圧の上昇に用いられる。出力電圧Voutが期待値Vout*に到達すれば、OTA120から出力される補正電流Imdはゼロとなり、定常動作時のTon/Toff比に設定される。 When the output Vout is lower than the expected value Vout *, since the correction current Imd is supplied from the OTA 120 (Imd> 0), the off period Toff is set short. That is, since the Ton / Toff ratio is set to be large, the increase in the inductor current during the on-period Ton becomes large, which is used to increase the output voltage. When the output voltage Vout reaches the expected value Vout *, the correction current Imd output from the OTA 120 becomes zero and is set to the Ton / Toff ratio during steady operation.
 一方、出力Voutが期待値Vout*より高い場合は、OTA120が補正電流Imdを引き抜くため(Imd<0)、オフ期間Toffが長く設定される。負荷で消費される電流Ioutよりもインダクタ11から供給される電流量が減少するため、より迅速に出力電圧Voutが期待値Vout*に近づく。 On the other hand, when the output Vout is higher than the expected value Vout *, the OTA 120 draws out the correction current Imd (Imd <0), so the off period Toff is set to be long. Since the amount of current supplied from the inductor 11 is smaller than the current Iout consumed by the load, the output voltage Vout approaches the expected value Vout * more quickly.
 図15は、図14のOTA120の構成の一例を示す回路図である。図15を参照して、OTA120は、PMOSトランジスタ121~124と、NMOSトランジスタ125~128と、電流源130とを含む。 FIG. 15 is a circuit diagram showing an example of the configuration of the OTA 120 in FIG. Referring to FIG. 15, OTA 120 includes PMOS transistors 121 to 124, NMOS transistors 125 to 128, and a current source 130.
 トランジスタ121,125は、この順で直列に電源ノードVDDおよび接地ノードGND間に接続され、トランジスタ122,128は、この順で直列に電源ノードVDDおよび接地ノードGND間に接続される。トランジスタ123,126は、この順で直列にノード129と接地ノードGNDとの間に接続され、トランジスタ124,127は、この順で直列にノード129と接地ノードGNDとの間に接続される。定電流源120は、電源ノードVDDとノード129との間に接続される。 Transistors 121 and 125 are connected in series in this order between power supply node VDD and ground node GND, and transistors 122 and 128 are connected in series in this order between power supply node VDD and ground node GND. Transistors 123 and 126 are connected in series in this order between node 129 and ground node GND, and transistors 124 and 127 are connected in series in this order between node 129 and ground node GND. Constant current source 120 is connected between power supply node VDD and node 129.
 PMOSトランジスタ121のゲートは、そのドレインに接続されるとともに、PMOSトランジスタ122のゲートに接続される。すなわち、PMOSトランジスタ121,122はカレントミラーを構成する。NMOSトランジスタ126のゲートは、そのドレインに接続されるとともに、NMOSトランジスタ125のゲートに接続される。すなわち、NMOSトランジスタ125,126はカレントミラーを構成する。NMOSトランジスタ127のゲートは、そのドレインに接続されるとともに、NMOSトランジスタ128のゲートに接続される。すなわち、NMOSトランジスタ127,128はカレントミラーを構成する。 The gate of the PMOS transistor 121 is connected to its drain and to the gate of the PMOS transistor 122. That is, the PMOS transistors 121 and 122 constitute a current mirror. The gate of the NMOS transistor 126 is connected to the drain thereof and to the gate of the NMOS transistor 125. That is, the NMOS transistors 125 and 126 constitute a current mirror. The gate of the NMOS transistor 127 is connected to the drain thereof and to the gate of the NMOS transistor 128. That is, the NMOS transistors 127 and 128 constitute a current mirror.
 上記構成のOTA120において、PMOSトランジスタ124のゲートがOTA120の非反転入力端子INpとして用いられ、PMOSトランジスタ123のゲートがOTA120の反転入力端子INnとして用いられる。トランジスタ122,128の接続ノード131が、OTA120の出力ノードOUT3として用いられる。したがって、非反転入力端子INpの電圧が反転入力端子INnの電圧よりも増加すれば、その増加量に応じてトランジスタ124,127,128を流れる電流が減少し、トランジスタ123,126,125,121,122を流れる電流が増加する。この結果、出力ノードからOUT3から外部に流出する電流が増加する。逆に、非反転入力端子INpの電圧が反転入力端子INnの電圧よりも減少すれば、その減少量に応じてトランジスタ124,127,128を流れる電流が増加し、トランジスタ123,126,125,121,122を流れる電流が減少する。この結果、外部から出力ノードOUT3に流入する電流が増加する。 In the OTA 120 configured as described above, the gate of the PMOS transistor 124 is used as the non-inverting input terminal INp of the OTA 120, and the gate of the PMOS transistor 123 is used as the inverting input terminal INn of the OTA 120. A connection node 131 of the transistors 122 and 128 is used as the output node OUT3 of the OTA 120. Therefore, if the voltage of the non-inverting input terminal INp increases more than the voltage of the inverting input terminal INn, the current flowing through the transistors 124, 127, 128 decreases according to the increase amount, and the transistors 123, 126, 125, 121, The current flowing through 122 increases. As a result, the current flowing out from the output node to the outside from OUT3 increases. Conversely, if the voltage at the non-inverting input terminal INp is lower than the voltage at the inverting input terminal INn, the current flowing through the transistors 124, 127, 128 increases according to the amount of decrease, and the transistors 123, 126, 125, 121 are increased. , 122 decreases in current. As a result, the current flowing from the outside into the output node OUT3 increases.
 <実施の形態3>
 入力が1系統、出力が複数系統あるDC/DCコンバータ200の昇圧制御に対して、実施の形態1で説明したパルス発生器PGを適用した例について説明する。
<Embodiment 3>
An example in which the pulse generator PG described in the first embodiment is applied to the boost control of the DC / DC converter 200 having one input and multiple outputs will be described.
 図16は、この発明の実施の形態3によるDC/DCコンバータ200の構成を示す回路図である。図16のDC/DCコンバータ200は、同期整流方式で出力が2系統の場合の構成例である。DC/DCコンバータ200は、太陽光や屋内照明を利用した発電システムに適用でき、たとえば、ソーラセル201の電圧(0.5V~3V)を4V~5Vまで昇圧して出力する。DC/DCコンバータ200は、2系統の出力のうち第1の出力206から2次電池202を充電し、第2の出力207からマイコン203、RF送受信機204、およびセンサ205の電源を供給する。マイコン203、RF送受信機204、センサ205は、たとえば気温、気圧、太陽光や屋内照明の照度などを自動測定し、その結果を定期的に集計システムに自動送信するために準備される。 FIG. 16 is a circuit diagram showing a configuration of a DC / DC converter 200 according to Embodiment 3 of the present invention. The DC / DC converter 200 of FIG. 16 is a configuration example in the case of two systems of outputs by the synchronous rectification method. The DC / DC converter 200 can be applied to a power generation system using sunlight or indoor lighting. For example, the voltage (0.5 V to 3 V) of the solar cell 201 is boosted to 4 V to 5 V and output. The DC / DC converter 200 charges the secondary battery 202 from the first output 206 of the two outputs, and supplies power to the microcomputer 203, the RF transceiver 204, and the sensor 205 from the second output 207. The microcomputer 203, the RF transceiver 204, and the sensor 205 are prepared for automatically measuring, for example, temperature, atmospheric pressure, sunlight, illuminance of indoor lighting, and the like, and automatically transmitting the results to the counting system periodically.
 具体的な回路構成について説明する。DC/DCコンバータ200は、変換回路210と、制御回路220と、分圧回路217,218と、パワースイッチ用のPMOSトランジスタpsx,psyを含む。 A specific circuit configuration will be described. The DC / DC converter 200 includes a conversion circuit 210, a control circuit 220, voltage dividing circuits 217 and 218, and power switch PMOS transistors psx and psy.
 変換回路210は、図11の変換回路10Aの出力側を2系統にしたものであり、インダクタ211と、スイッチ素子としてのNMOSトランジスタn_drと、同期整流素子としてのPMOSトランジスタprx,pryと、コンデンサ212,213とを含む。 The conversion circuit 210 has two outputs on the output side of the conversion circuit 10A shown in FIG. 11, and includes an inductor 211, an NMOS transistor n_dr as a switching element, PMOS transistors prx and play as synchronous rectification elements, and a capacitor 212. , 213.
 インダクタ211およびNMOSトランジスタn_drはこの順で入力ノード208と接地ノードGNDとの間に直列に接続される。入力ノード208には、たとえば、ソーラセル201が接続される。PMOSトランジスタprxは、インダクタ211およびNMOSトランジスタn_drの接続ノード214と、第1の出力ノード215との間に接続される。PMOSトランジスタpryは、接続ノード214と第2の出力ノード216との間に接続される。コンデンサ212は出力ノード215と接地ノードGNDとの間に接続され、コンデンサ213は出力ノード216と接地ノードGNDとの間に接続される。トランジスタn_dr,prx,pryの各ゲートには、制御回路220からクロック信号clk_dr,clkx,clkyがそれぞれ出力される。 The inductor 211 and the NMOS transistor n_dr are connected in series between the input node 208 and the ground node GND in this order. For example, a solar cell 201 is connected to the input node 208. The PMOS transistor prx is connected between the connection node 214 of the inductor 211 and the NMOS transistor n_dr and the first output node 215. The PMOS transistor play is connected between the connection node 214 and the second output node 216. Capacitor 212 is connected between output node 215 and ground node GND, and capacitor 213 is connected between output node 216 and ground node GND. Clock signals clk_dr, clkx, and clky are output from the control circuit 220 to the gates of the transistors n_dr, prx, and pry, respectively.
 分圧回路217は、出力ノード215の電圧dvoutxを抵抗素子(抵抗値Rx0,Rx1)によって分圧し、分圧電圧fbxを制御回路220に出力する。分圧回路218は、出力ノード216の電圧dvoutyを抵抗素子(抵抗値Ry0,Ry1)によって分圧し、分圧電圧fbyを制御回路220に出力する。 The voltage dividing circuit 217 divides the voltage dvoutx of the output node 215 by the resistance elements (resistance values Rx0, Rx1), and outputs the divided voltage fbx to the control circuit 220. The voltage dividing circuit 218 divides the voltage dvouty of the output node 216 by the resistance elements (resistance values Ry0 and Ry1), and outputs the divided voltage fby to the control circuit 220.
 パワースイッチ用のPMOSトランジスタpsxは、変換回路210の出力ノード215とDC/DCコンバータ200の第1の出力206との間に設けられる。パワースイッチ用のPMOSトランジスタpsyは、変換回路210の出力ノード216とDC/DCコンバータ200の第2の出力207との間に設けられる。 The power switch PMOS transistor psx is provided between the output node 215 of the conversion circuit 210 and the first output 206 of the DC / DC converter 200. The power switch PMOS transistor psy is provided between the output node 216 of the conversion circuit 210 and the second output 207 of the DC / DC converter 200.
 上記の構成のうち、制御回路220、NMOSトランジスタn_dr、PMOSトランジスタprx,pry,psx,psy、分圧回路217,218が、半導体基板上に集積された半導体装置209として構成される。 Among the above-described configurations, the control circuit 220, the NMOS transistor n_dr, the PMOS transistors prx, pri, psx, psi, and the voltage dividing circuits 217, 218 are configured as a semiconductor device 209 integrated on a semiconductor substrate.
 図17は、図16の制御回路220の構成を示す回路図である。図16、図17を参照して、制御回路220は、比較器CMPX,CMPYと、レベルシフタ231,232,233と、パルス発生器PGBと、ノン・オーバラップ回路230と、論理回路228とを含む。 FIG. 17 is a circuit diagram showing a configuration of the control circuit 220 of FIG. Referring to FIGS. 16 and 17, control circuit 220 includes comparators CMPX and CMPY, level shifters 231, 232 and 233, pulse generator PGB, non-overlap circuit 230, and logic circuit 228. .
 制御回路220は、図16の出力ノード216の電圧dvoutyを電源電圧として用いる。以下では、出力ノード215の電圧dvoutxの期待値を5Vとし、出力ノード216の電圧dvoutyの期待値を3Vとする。パワースイッチ用のPMOSトランジスタpsxおよびpsyはともにオンしているとする。 The control circuit 220 uses the voltage dvouty of the output node 216 in FIG. 16 as the power supply voltage. Hereinafter, the expected value of the voltage dvoutx at the output node 215 is 5V, and the expected value of the voltage dvouty at the output node 216 is 3V. It is assumed that the power switch PMOS transistors psx and psy are both turned on.
 比較器CMPXは、図16の分圧回路217の出力電圧fbxと参照電圧Vrefとを比較し、出力電圧fbxが参照電圧Vrefより高い場合にHレベルの信号を出力する。。比較器CMPYは、分圧回路218の出力電圧fbyと参照電圧Vrefとを比較し、出力電圧fbyが参照電圧Vrefより高い場合にHレベルの信号を出力する。 The comparator CMPX compares the output voltage fbx of the voltage dividing circuit 217 of FIG. 16 with the reference voltage Vref, and outputs an H level signal when the output voltage fbx is higher than the reference voltage Vref. . The comparator CMPY compares the output voltage fby of the voltage dividing circuit 218 with the reference voltage Vref, and outputs an H level signal when the output voltage fby is higher than the reference voltage Vref.
 参照電圧Vrefは、たとえば0.8Vに設定される。分圧回路217の出力電圧fbxは、出力ノード215の電圧dvoutxの電圧モニタ信号である。図16においてRx0:Rx1=5.25:1に設定すると、dvoutx=5Vのときfbx=0.8Vになる。すなわち、出力ノード215の電圧dvoutxが期待値(5V)より高ければ比較器CMPXはHレベルを出力し、そうでなければLレベルを出力する。 The reference voltage Vref is set to 0.8 V, for example. The output voltage fbx of the voltage dividing circuit 217 is a voltage monitor signal of the voltage dvoutx of the output node 215. In FIG. 16, when Rx0: Rx1 = 5.25: 1 is set, fbx = 0.8V when dvoutx = 5V. That is, the comparator CMPX outputs the H level if the voltage dvoutx of the output node 215 is higher than the expected value (5 V), and otherwise outputs the L level.
 出力ノード216の電圧dvoutyについても同様である。Ry0:Ry1=2.75:1に設定すると、電圧dvoutyが期待値(3V)より高ければ比較器CMPYはHレベルを出力し、そうでなければLレベルを出力する。 The same applies to the voltage dvouty of the output node 216. When Ry0: Ry1 = 2.75: 1 is set, the comparator CMPY outputs an H level if the voltage dvouty is higher than the expected value (3V), and otherwise outputs an L level.
 レベルシフタ(LS:Level Shifter)231,232,233は、入力信号の電圧レベルを出力ノード216の電圧dvoutyからvmaxに変換を行う。vmaxは、出力ノード215の電圧dvoutxと出力ノード216の電圧dvoutyのうち高い方の電圧である。電圧vmaxは、制御回路220に設けられた最大電圧選択回路によって決定される。 Level shifters (LS) 231, 232, and 233 convert the voltage level of the input signal from the voltage dvouty of the output node 216 to vmax. vmax is a higher one of the voltage dvoutx at the output node 215 and the voltage dvouty at the output node 216. The voltage vmax is determined by a maximum voltage selection circuit provided in the control circuit 220.
 図18は、最大電圧選択回路240の構成例を示す回路図である。図18を参照して、最大電圧選択回路240は、電圧dvoutyで動作する比較器241と、比較器241の出力信号の電圧レベルを電圧dvoutyからvmaxに変換するレベルシフタ242と、電圧vmaxで動作するインバータ243と、PMOSトランジスタ224,245とを含む。PMOSトランジスタ244のソースには電圧dvoutyが入力され、ドレインは最大電圧選択回路240の出力ノード246(電圧vmax)に接続される。PMOSトランジスタ244のゲートにはレベルシフタ242の出力信号が入力される。PMOSトランジスタ245のソースには電圧dvoutxが入力され、ドレインは最大電圧選択回路240の出力ノード246に接続される。PMOSトランジスタ245のゲートには、レベルシフタ242の出力信号をインバータ243によって反転した信号が入力される。 FIG. 18 is a circuit diagram showing a configuration example of the maximum voltage selection circuit 240. Referring to FIG. 18, maximum voltage selection circuit 240 operates with comparator 241 that operates at voltage dvouty, level shifter 242 that converts the voltage level of the output signal of comparator 241 from voltage dvouty to vmax, and voltage vmax. Inverter 243 and PMOS transistors 224 and 245 are included. The voltage dvouty is input to the source of the PMOS transistor 244, and the drain is connected to the output node 246 (voltage vmax) of the maximum voltage selection circuit 240. The output signal of the level shifter 242 is input to the gate of the PMOS transistor 244. The voltage dvoutx is input to the source of the PMOS transistor 245, and the drain is connected to the output node 246 of the maximum voltage selection circuit 240. A signal obtained by inverting the output signal of the level shifter 242 by the inverter 243 is input to the gate of the PMOS transistor 245.
 再び図17を参照して、ノン・オーバラップ回路230は、パルス発生器PCBから出力されたクロック信号clkを受けて、PMOSトランジスタprx,pryを駆動するためのクロック信号pcntと、NMOSトランジスタn_drを駆動するためのクロック信号ncntとを生成する。ノン・オーバラップ回路230の構成は、図12に示したノン・オーバラップ回路100と同じである。ただし、図12において入力信号としてクロック信号clkが入力される。ノン・オーバラップ回路230は、クロック信号ncntがHレベルの期間にクロック信号pcntがLレベルになる期間があると貫通電流が流れるため、そのような期間を防止するために設けられている。クロック信号ncntは、レベルシフタ233によってレベル変換され、クロック信号clk_drとしてNMOSトランジスタn_drのゲートに入力される。クロック信号pcntは、ORゲート223,224に入力される。 Referring to FIG. 17 again, the non-overlap circuit 230 receives the clock signal clk output from the pulse generator PCB, and outputs a clock signal pcnt for driving the PMOS transistors prx and pry, and an NMOS transistor n_dr. A clock signal ncnt for driving is generated. The configuration of the non-overlap circuit 230 is the same as that of the non-overlap circuit 100 shown in FIG. However, in FIG. 12, a clock signal clk is input as an input signal. The non-overlap circuit 230 is provided to prevent such a period since a through current flows when the clock signal pcnt is at the L level during the period when the clock signal ncnt is at the H level. The clock signal ncnt is level-converted by the level shifter 233 and input to the gate of the NMOS transistor n_dr as the clock signal clk_dr. The clock signal pcnt is input to the OR gates 223 and 224.
 論理回路228は、ANDゲート221と、ORゲート222~224と、インバータ225~227とを含む。 The logic circuit 228 includes an AND gate 221, OR gates 222 to 224, and inverters 225 to 227.
 比較器CMPXの出力信号は、ANDゲート221の第1の入力端子に与えられるとともに、ORゲート222の第1の入力端子に与えられる。比較器CMPYの出力信号は、ANDゲート221の第2の入力端子に与えられるとともに、インバータ225によって反転された後、ORゲート222の第2の入力端子に与えられる。ANDゲート221の出力信号はノン・オペレーション信号nopとして用いられる。ORゲート222の出力信号をインバータ226によって反転した信号は、選択信号sctxとして用いられる。比較器CMPYの出力信号をインバータ227によって反転した信号は、選択信号sctyとして用いられる。 The output signal of the comparator CMPX is supplied to the first input terminal of the AND gate 221 and to the first input terminal of the OR gate 222. The output signal of the comparator CMPY is supplied to the second input terminal of the AND gate 221, inverted by the inverter 225, and then supplied to the second input terminal of the OR gate 222. The output signal of the AND gate 221 is used as a non-operation signal nop. A signal obtained by inverting the output signal of the OR gate 222 by the inverter 226 is used as the selection signal sctx. A signal obtained by inverting the output signal of the comparator CMPY by the inverter 227 is used as the selection signal scty.
 ORゲート223は、ORゲート222の出力信号とクロック信号pcntの論理和を演算する。ORゲート223の出力信号は、レベルシフタ231によってレベル変換され、クロック信号clkxとしてPMOSトランジスタprxのゲートに入力される。ORゲート224は、比較器CMPYの出力信号とクロック信号pcntの論理和を演算する。ORゲート224の出力信号は、レベルシフタ232によってレベル変換され、クロック信号clkyとしてPMOSトランジスタpryのゲートに入力される。 The OR gate 223 calculates the logical sum of the output signal of the OR gate 222 and the clock signal pcnt. The output signal of the OR gate 223 is level-converted by the level shifter 231 and input to the gate of the PMOS transistor prx as the clock signal clkx. The OR gate 224 calculates the logical sum of the output signal of the comparator CMPY and the clock signal pcnt. The output signal of the OR gate 224 is level-converted by the level shifter 232 and input to the gate of the PMOS transistor play as the clock signal clky.
 図19は、図17の制御回路の動作を説明するための図である。図19に示す表は、図17の比較器CMPX,CMPYの出力信号の論理レベルに応じて、選択信号sctx,sctyおよびノン・オペレーション信号nopの論理レベルがどのように変化するかを示している。さらに、図19に示す表は、比較器CMPX,CMPYの出力信号の論理レベルに応じて、各クロック信号clkx,clky,clk_drが有効になるか無効になるかを示している。クロック信号が無効の場合、クロック信号は一定の論理レベルの信号になる。 FIG. 19 is a diagram for explaining the operation of the control circuit of FIG. The table shown in FIG. 19 shows how the logic levels of the selection signals sctx and scty and the non-operation signal nop change according to the logic levels of the output signals of the comparators CMPX and CMPY in FIG. . Furthermore, the table shown in FIG. 19 indicates whether each clock signal clkx, clky, clk_dr is enabled or disabled according to the logic level of the output signals of the comparators CMPX, CMPY. When the clock signal is invalid, the clock signal becomes a signal of a certain logic level.
 図17、図19を参照して、制御回路220は、出力ノード216の電圧dvoutyを駆動電圧として用いるため、出力ノード215の電圧dvoutxよりも出力ノード216の電圧dvoutyを優先して充電する。 Referring to FIGS. 17 and 19, control circuit 220 uses voltage dvouty at output node 216 as a drive voltage, and therefore charges voltage dvouty at output node 216 with priority over voltage dvoutx at output node 215.
 まず、出力ノード215,216の電圧dvoutxおよびdvoutyが、ともに期待値よりも低い場合、比較器CMPXおよびCMPYはともにLレベルを出力する。しかし、出力ノード216の電圧dvoutyの充電を優先するため、選択信号sctyはHレベルとなる。出力ノード215(電圧dvoutx)の充電は阻止され、選択信号sctxはLレベルになる。ノン・オペレーション信号nopはLレベルになる。NMOSトランジスタn_drを駆動するクロック信号clk_drと、同期整流用のPMOSトランジスタpryを駆動するクロック信号clkyとが有効になるので、出力ノード216の充電が行なわれる。 First, when the voltages dvoutx and dvouty at the output nodes 215 and 216 are both lower than the expected value, the comparators CMPX and CMPY both output the L level. However, since priority is given to the charging of the voltage dvouty of the output node 216, the selection signal scty becomes H level. Charging of the output node 215 (voltage dvoutx) is blocked, and the selection signal sctx becomes L level. The non-operation signal nop becomes L level. Since the clock signal clk_dr that drives the NMOS transistor n_dr and the clock signal clky that drives the PMOS transistor pry for synchronous rectification become valid, the output node 216 is charged.
 次に、出力ノード216の電圧dvoutyが期待値に達し、出力ノード215の電圧dvoutxが期待値に達していないときは、比較器CMPXがLレベルを出力し、比較器CMPYがHレベルを出力する。このとき、選択信号sctxがHレベルになり、選択信号sctyがLレベルになる。ノン・オペレーション信号nopはLレベルになる。NMOSトランジスタn_drを駆動するクロック信号clk_drと、同期整流用のPMOSトランジスタprxを駆動するクロック信号clkxとが有効になるので、出力ノード215の充電が行なわれる。同期整流用のPMOSトランジスタpryを駆動するクロック信号clkyは無効になる。 Next, when the voltage dvouty of the output node 216 reaches the expected value and the voltage dvoutx of the output node 215 does not reach the expected value, the comparator CMPX outputs an L level and the comparator CMPY outputs an H level. . At this time, the selection signal sctx becomes H level and the selection signal scty becomes L level. The non-operation signal nop becomes L level. Since the clock signal clk_dr for driving the NMOS transistor n_dr and the clock signal clkx for driving the PMOS transistor prx for synchronous rectification become valid, the output node 215 is charged. The clock signal “clky” for driving the synchronous rectification PMOS transistor “ply” becomes invalid.
 次に、出力ノード215,216の電圧dvoutxおよびdvoutyが、ともに期待値に達した場合、比較器CMPXおよびCMPYはともにHレベルを出力する。このとき、選択信号sctx,sctyがともにLレベルになり、ノン・オペレーション信号nopがHレベルになる。この場合、パルス発生器PGBからの出力信号がLレベルに固定され、昇圧動作が行なわれない。 Next, when the voltages dvoutx and dvouty at the output nodes 215 and 216 reach the expected values, the comparators CMPX and CMPY both output the H level. At this time, both the selection signals sctx and scty are at the L level, and the non-operation signal nop is at the H level. In this case, the output signal from pulse generator PGB is fixed at the L level, and the boosting operation is not performed.
 図20は、図17のパルス発生器PGBの構成を示す回路図である。図20の電源ノードVDDは、図16の出力ノード216に相当する。 FIG. 20 is a circuit diagram showing a configuration of the pulse generator PGB of FIG. The power supply node VDD in FIG. 20 corresponds to the output node 216 in FIG.
 図20を参照して、パルス発生器PGBは、ANDゲート93とインバータ94とをさらに含む点で図2のパルス発生器PGと異なる。ANDゲート93の第1の入力端子には、RSラッチ回路90の出力信号が入力され、ANDゲート93の第2の入力端子には、ノン・オペレーション信号nopをインバータ94によって反転した信号が入力される。ノン・オペレーション信号がLレベルのときは、ANDゲート93は、有効なクロック信号clkを出力する。ノン・オペレーション信号がHレベルのときは、ANDゲート93は、Lレベルの信号を出力する。 Referring to FIG. 20, pulse generator PGB differs from pulse generator PG of FIG. 2 in that it further includes an AND gate 93 and an inverter 94. An output signal of the RS latch circuit 90 is input to the first input terminal of the AND gate 93, and a signal obtained by inverting the non-operation signal nop by the inverter 94 is input to the second input terminal of the AND gate 93. The When the non-operation signal is at L level, the AND gate 93 outputs a valid clock signal clk. When the non-operation signal is at the H level, the AND gate 93 outputs an L level signal.
 図20のパルス発生器PGBでは、さらに、電圧・電流変換部60Aの構成が図2の電圧・電流変換部60と異なる。電圧・電流変換部60Aは、図2の抵抗素子63に代えて抵抗素子63x,63yおよびNMOSトランジスタ65を含む。抵抗素子63x,63yは、この順で接地ノードGNDとNMOSトランジスタ62のソースとの間に接続される。NMOSトランジスタ65は、抵抗素子63xと並列に接続される。NMOSトランジスタ65のゲートには、選択信号sctyが入力される。 In the pulse generator PGB of FIG. 20, the configuration of the voltage / current converter 60A is further different from that of the voltage / current converter 60 of FIG. The voltage / current conversion unit 60A includes resistance elements 63x and 63y and an NMOS transistor 65 in place of the resistance element 63 of FIG. Resistance elements 63x and 63y are connected in this order between ground node GND and the source of NMOS transistor 62. The NMOS transistor 65 is connected in parallel with the resistance element 63x. The selection signal scty is input to the gate of the NMOS transistor 65.
 図20において、パルス発生器PGBは、充電すべき電圧dvoutx、dvoutyの切り替えに伴って、遅延無く最適なTon/Toff比を決定する必要がある。このため、選択信号sctyに応じて、NMOSトランジスタ65のオン・オフを切替える。これによって、NMOSトランジスタ62のソースと接地ノードGNDとの間の抵抗値が切替わるので、変換電流Iaの大きさが変化する。 In FIG. 20, the pulse generator PGB needs to determine an optimum Ton / Toff ratio without delay in accordance with switching of the voltages dvoutx and dvouty to be charged. Therefore, the NMOS transistor 65 is switched on / off according to the selection signal scty. As a result, the resistance value between the source of the NMOS transistor 62 and the ground node GND is switched, so that the magnitude of the conversion current Ia changes.
 図16の出力ノード215の電圧dvoutxを充電するときは、選択信号sctyはLのため、NMOSトランジスタ65がオフ状態になる。この場合のTon/Toff比は、式(9)および式(10)から、
 Ton/Toff=Ics・(Rx+Ry)/Vin -1   …(22)
と設定される。ただし、抵抗素子63xの抵抗値をRxとし、抵抗素子63yの抵抗値をRyとした。一方、出力ノード216の電圧dvoutyを充電するときは、選択信号sctyはハイレベルのため、NMOSトランジスタ65がオン状態になる。この場合のTon/Toff比は、式(9)および式(10)から、
 Ton/Toff=Ics・Ry/Vin -1   …(23)
となる。したがって、Ics×(Rx+Ry)=5V、Ics×Ry=3Vとなるように、Ics、Rx、およびRyを設定することで、DC/DCコンバータ200の第1および第2出力の充電切替え時に、入力電圧Vinから変換電流Iaへの変換率が切替わり、この結果、遅延なく最適なTon/Toff比が得られる。
When the voltage dvoutx of the output node 215 in FIG. 16 is charged, the selection signal scty is L, so that the NMOS transistor 65 is turned off. The Ton / Toff ratio in this case is obtained from the equations (9) and (10).
Ton / Toff = Ics · (Rx + Ry) / Vin −1 (22)
Is set. However, the resistance value of the resistance element 63x is Rx, and the resistance value of the resistance element 63y is Ry. On the other hand, when charging the voltage dvouty of the output node 216, the selection signal scty is at a high level, so that the NMOS transistor 65 is turned on. The Ton / Toff ratio in this case is obtained from the equations (9) and (10).
Ton / Toff = Ics · Ry / Vin -1 (23)
It becomes. Therefore, by setting Ics, Rx, and Ry so that Ics × (Rx + Ry) = 5V and Ics × Ry = 3V, the input of the first and second outputs of the DC / DC converter 200 can be changed. The conversion rate from the voltage Vin to the conversion current Ia is switched, and as a result, an optimum Ton / Toff ratio can be obtained without delay.
 以上のとおり、上記のパルス発生器PGBの構成によれば、DC/DCコンバータの出力先が複数の場合において、充電すべき出力先が切替わるときに遅延に無く最適なTon/Toff比に切り替えることができる。したがって、出力電圧が安定して得られる。 As described above, according to the configuration of the pulse generator PGB described above, when there are a plurality of output destinations of the DC / DC converter, when the output destination to be charged is switched, the optimum Ton / Toff ratio is switched without delay. be able to. Therefore, the output voltage can be obtained stably.
 図20のその他の点は図2の場合と同じであるので、同一または相当する部分には同一の参照符号を付して説明を繰返さない。 Since other points in FIG. 20 are the same as those in FIG. 2, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 <実施の形態4>
 [DC/DCコンバータ3の構成]
 図21は、この発明の実施の形態4によるDC/DCコンバータ3の構成を示す回路図である。DC/DCコンバータ3は、入力ノード15に入力された電圧Vin(たとえば4V~5V)を降圧し、降圧された電圧Vout(たとえば2V)に出力ノード16から出力する降圧コンバータである。
<Embodiment 4>
[Configuration of DC / DC Converter 3]
FIG. 21 is a circuit diagram showing a configuration of DC / DC converter 3 according to the fourth embodiment of the present invention. The DC / DC converter 3 is a step-down converter that steps down the voltage Vin (for example, 4V to 5V) input to the input node 15 and outputs the stepped-down voltage Vout (for example, 2V) from the output node 16.
 図21に示すように、DC/DCコンバータ3は、変換回路(降圧チョッパ)10Bと、制御回路20Bと、出力ノード16の電圧を抵抗素子31A,31B(抵抗値R1,R2)で分圧する分圧回路31とを含む。入力ノード15には太陽電池セルなどの直流電源9が接続され、出力ノード16は負荷(負荷電流Iout)に接続される。制御回路20Bの電源電圧は出力ノード16(「電源ノードVDD」と称する)から供給される。 As shown in FIG. 21, the DC / DC converter 3 includes a conversion circuit (step-down chopper) 10B, a control circuit 20B, and a voltage divided by the resistive elements 31A and 31B (resistance values R1 and R2). Pressure circuit 31. A DC power supply 9 such as a solar battery cell is connected to the input node 15, and an output node 16 is connected to a load (load current Iout). The power supply voltage of the control circuit 20B is supplied from the output node 16 (referred to as “power supply node VDD”).
 (変換回路10Bの構成および動作)
 変換回路10Bは、インダクタ11と、スイッチング素子としてのPMOSトランジスタp_drと、同期整流素子としてNMOSトランジスタn_swと、コンデンサ13とを含む。PMOSトランジスタp_drおよびインダクタ11は、入力ノード15と出力ノード16との間にこの順で直列に接続される。NMOSトランジスタn_swは、PMOSトランジスタp_drおよびインダクタ11の接続ノード14と、接地ノードGNDとの間に接続される。コンデンサ13は出力ノード16と接地ノードGNDとの間に接続される。
(Configuration and operation of conversion circuit 10B)
The conversion circuit 10B includes an inductor 11, a PMOS transistor p_dr as a switching element, an NMOS transistor n_sw as a synchronous rectification element, and a capacitor 13. The PMOS transistor p_dr and the inductor 11 are connected in series between the input node 15 and the output node 16 in this order. NMOS transistor n_sw is connected between connection node 14 of PMOS transistor p_dr and inductor 11 and ground node GND. Capacitor 13 is connected between output node 16 and ground node GND.
 PMOSトランジスタp_drがオンしている期間をTon、オフしている期間をToffとする。Tonを長く設定すれば出力電圧Voutは上昇し、Toff期間を長く設定すれば出力電圧Voutは降下する。PMOSトランジスタp_drがオフする前にNMOSトランジスタn_swがオンするオーバラップ期間があると、大きな貫通電流が流れる。PMOSトランジスタp_drのオン期間とNMOSトランジスタn_swのオン期間が重ならないように、制御回路20Bに設けられたノン・オーバラップ回路29で制御する。 Suppose that the period in which the PMOS transistor p_dr is on is Ton and the period in which the PMOS transistor p_dr is off is Toff. If Ton is set longer, the output voltage Vout increases, and if the Toff period is set longer, the output voltage Vout decreases. If there is an overlap period in which the NMOS transistor n_sw is turned on before the PMOS transistor p_dr is turned off, a large through current flows. The non-overlap circuit 29 provided in the control circuit 20B is controlled so that the ON period of the PMOS transistor p_dr and the ON period of the NMOS transistor n_sw do not overlap.
 インダクタ11のインダクタンスをLとすれば、PMOSトランジスタp_drがオンの期間にインダクタ11に流れる電流の増加分ΔIonは、
 ΔIon=(Vin-Vout)・Ton/L   …(24)
と表わされる。PMOSトランジスタp_drがオフの期間にインダクタ11に流れる電流の減少分ΔIoffは、
 ΔIoff=Vout・Toff/L   …(25)
と表わされる。ただし、上記の式(24)、(25)において、寄生抵抗による電圧降下を無視した。定常状態では、オン期間に増加したインダクタ電流△Ionはオフ期間の減少分△Ioffと相殺する。すなわち、△Ion=△Ioffより、Ton/Toff比は、
 Ton/Toff=Vout/(Vin-Vout)   …(26)
の比率で安定する。
If the inductance of the inductor 11 is L, the increase ΔIon of the current flowing through the inductor 11 during the period when the PMOS transistor p_dr is on is
ΔIon = (Vin-Vout) ・ Ton / L… (24)
It is expressed as The decrease ΔIoff of the current flowing through the inductor 11 during the period when the PMOS transistor p_dr is off is
ΔIoff = Vout ・ Toff / L… (25)
It is expressed as However, in the above formulas (24) and (25), the voltage drop due to the parasitic resistance was ignored. In the steady state, the inductor current ΔIon increased during the ON period cancels out the decrease ΔIoff during the OFF period. That is, from ΔIon = ΔIoff, the Ton / Toff ratio is
Ton / Toff = Vout / (Vin-Vout) (26)
Stable at a ratio of.
 (制御回路20Bの概略構成)
 制御回路20Bは、上記のPMOSトランジスタp_drのオン時間およびオフ時間を制御するための回路であり、フィードフォワード制御によって、入力電圧VinからTon/Toff比を自動で設定する回路構成となっている。これによって、無駄な電流を発生させることなく、電力効率を向上させることができる。制御回路20Bは、さらに、出力電圧Voutが期待値Vout*を超えた場合にPMOSトランジスタp_drのスイッチングを停止させる機能を有している。
(Schematic configuration of the control circuit 20B)
The control circuit 20B is a circuit for controlling the on-time and off-time of the PMOS transistor p_dr, and has a circuit configuration that automatically sets the Ton / Toff ratio from the input voltage Vin by feedforward control. As a result, power efficiency can be improved without generating unnecessary current. The control circuit 20B further has a function of stopping the switching of the PMOS transistor p_dr when the output voltage Vout exceeds the expected value Vout *.
 具体的には図21に示すように、制御回路20Bは、パルス発生器PGCと、比較器CMP1と、ANDゲート27と、インバータ28とを含む。 Specifically, as shown in FIG. 21, the control circuit 20B includes a pulse generator PGC, a comparator CMP1, an AND gate 27, and an inverter.
 パルス発生器PGは、出力電圧Voutがその期待値Vout*にほぼ等しくなるように、入力電圧Vinに基づいてオン時間Tonおよびオフ時間Toffを決定する。そして、パルス発生器PGは、決定したオン時間Tonおよびオフ時間Toffの間、HレベルおよびLレベルとなるクロック信号clkを出力する。 The pulse generator PG determines the on time Ton and the off time Toff based on the input voltage Vin so that the output voltage Vout is substantially equal to the expected value Vout *. Then, the pulse generator PG outputs a clock signal clk that becomes H level and L level during the determined on time Ton and off time Toff.
 比較器CMP1は、参照電圧Vrefと、分圧回路31から出力された分圧電圧Vout2とを比較し、分圧電圧Vout2が参照電圧Vrefを超えているときLレベルとなる信号を出力する。分圧回路31の分圧比α(=R1/(R1+R2))と出力電圧の期待値Vout*とを用いて、参照電圧Vrefはα×Vout*で与えられる。 The comparator CMP1 compares the reference voltage Vref with the divided voltage Vout2 output from the voltage dividing circuit 31, and outputs a signal that becomes L level when the divided voltage Vout2 exceeds the reference voltage Vref. Using the voltage division ratio α (= R1 / (R1 + R2)) of the voltage dividing circuit 31 and the expected value Vout * of the output voltage, the reference voltage Vref is given by α × Vout *.
 ANDゲート21は、パルス発生器PGCから出力されるクロック信号clkと、比較器CMP1出力の論理積をインバータ28によって反転させた信号を、クロック信号clk_drとしてPMOSトランジスタp_drのゲートに出力する。 The AND gate 21 outputs a signal obtained by inverting the logical product of the clock signal clk output from the pulse generator PGC and the output of the comparator CMP1 by the inverter 28 to the gate of the PMOS transistor p_dr as the clock signal clk_dr.
 [パルス発生器PGの詳細な構成]
 図22は、図21のパルス発生器PGCの構成を示す回路図である。図22を参照して、パルス発生器PGCは、電圧・電流変換部60と、電流信号生成部70Bと、オン信号生成部40Aと、オフ信号生成部40Bと、インバータ91,92と、RSラッチ回路90とを含む。
[Detailed configuration of pulse generator PG]
FIG. 22 is a circuit diagram showing a configuration of the pulse generator PGC of FIG. Referring to FIG. 22, pulse generator PGC includes voltage / current converter 60, current signal generator 70B, on signal generator 40A, off signal generator 40B, inverters 91 and 92, and RS latch. Circuit 90.
 図22のパルス発生器PGCでは、電流信号生成部70Bの構成が図2の電流信号生成部70と異なる。パルス発生器PGCのその他の構成要素は図2のパルス発生器PGと同じであるので、同一または相当する部分には同一の参照符号を付して説明を繰り返さない。 In the pulse generator PGC of FIG. 22, the configuration of the current signal generator 70B is different from that of the current signal generator 70 of FIG. Since the other components of pulse generator PGC are the same as those of pulse generator PG in FIG. 2, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 電流信号生成部70Bは、図2の電流信号生成部70の場合と同様に、電流値が一定の定電流Icsと変換電流Iaとに基づいて、入力電圧Vinが増加するほど電流値が増加する第1電流信号I1と、第1電流信号I1とは入力電圧Vinに対する依存性が異なる第2電流信号I2とを生成する。第1電流信号I1はオン信号生成部40Aに供給され、第2電流信号I2はオフ信号生成部40Bに供給される。 As in the case of the current signal generation unit 70 in FIG. 2, the current signal generation unit 70B increases as the input voltage Vin increases based on the constant current Ics and the conversion current Ia having a constant current value. The first current signal I1 and the first current signal I1 generate a second current signal I2 having different dependency on the input voltage Vin. The first current signal I1 is supplied to the on signal generator 40A, and the second current signal I2 is supplied to the off signal generator 40B.
 ただし、降圧コンバータ用の制御回路の場合、第1電流信号I1は、
 I1=Ia-Ics   …(27)
で与えられ、第2電流信号I2は、
 I2=Ics   …(28)
で与えられる。
However, in the case of a control circuit for a step-down converter, the first current signal I1 is
I1 = Ia-Ics (27)
The second current signal I2 is given by
I2 = Ics (28)
Given in.
 具体的には図22に示すように、電流信号生成部70Bは、カレントミラーを構成するPMOSトランジスタ71,72と、カレントミラーを構成するNMOSトランジスタ74,75と、定電流生成部80Aとを含む。 Specifically, as shown in FIG. 22, the current signal generation unit 70B includes PMOS transistors 71 and 72 constituting a current mirror, NMOS transistors 74 and 75 constituting a current mirror, and a constant current generation unit 80A. .
 カレントミラー回路によって、電圧・電流変換部60の出力ノード64を流れる変換電流Iaは、PMOSトランジスタ72のドレイン電流としてコピーされる。さらに、定電流生成部80Aの出力信号Icsが、NMOSトランジスタ75のドレイン電流としてコピーされる。電流信号生成部70Bからオン信号生成部40Aに供給される第1電流信号I1は、PMOSトランジスタ72のドレイン電流からNMOSトランジスタ75のドレイン電流を差し引いたものになるので、上式(27)で与えられる。 The conversion current Ia flowing through the output node 64 of the voltage / current conversion unit 60 is copied as the drain current of the PMOS transistor 72 by the current mirror circuit. Further, the output signal Ics of the constant current generator 80A is copied as the drain current of the NMOS transistor 75. The first current signal I1 supplied from the current signal generator 70B to the on signal generator 40A is obtained by subtracting the drain current of the NMOS transistor 75 from the drain current of the PMOS transistor 72, and is given by the above equation (27). It is done.
 定電流生成部80は、定電流Icsを生成する定電流源81と、PMOSトランジスタ82,83,85とを含む。定電流Icsは、PMOSトランジスタ82,83によって構成されるカレントミラー回路によってコピーされて、定電流生成部80から第2電流信号I2として出力される(上式(28)参照)。さらに、定電流Icsは、PMOSトランジスタ82,85で構成されるカレントミラー回路によってコピーされてNMOSトランジスタ74に供給される。 The constant current generator 80 includes a constant current source 81 that generates a constant current Ics, and PMOS transistors 82, 83, and 85. The constant current Ics is copied by a current mirror circuit constituted by the PMOS transistors 82 and 83, and is output from the constant current generator 80 as the second current signal I2 (see the above equation (28)). Further, the constant current Ics is copied by a current mirror circuit composed of PMOS transistors 82 and 85 and supplied to the NMOS transistor 74.
 [DC/DCコンバータ3の動作]
 次に、上記の構成のDC/DCコンバータ3の動作について説明する。図22を参照して、オン信号SonがLレベルの期間がPMOSトランジスタp_drのオン期間となるので、オン時間Tonは、Ics=Vout/Rsとなるように決めると、
 Ton=C1・Vref/(Ia-Ics)=C1・Vref・Rs/(Vin-Vout)   …(29)
と表わされる。一方、信号SoffがLレベルの期間がPMOSトランジスタp_drのオフ期間となるので、オフ時間Toffは、
 Toff=C2・Vref/Ics=C2・Vref・Rs/Vout   …(30)
と表わせる。これらの式から
 Ton/Toff=C1・Vin/[C2・(Vin-Vout)]   …(31)
が得られる。したがって、C1=C2となるよう設定すれば、所望のTon/Toff比が得られる。
[Operation of DC / DC converter 3]
Next, the operation of the DC / DC converter 3 configured as described above will be described. Referring to FIG. 22, the period during which the ON signal Son is at the L level is the ON period of the PMOS transistor p_dr, and therefore the ON time Ton is determined to be Ics = Vout / Rs.
Ton = C1 / Vref / (Ia-Ics) = C1 / Vref / Rs / (Vin-Vout) (29)
It is expressed as On the other hand, since the period during which the signal Soff is at the L level is the off period of the PMOS transistor p_dr, the off time Toff is:
Toff = C2 / Vref / Ics = C2 / Vref / Rs / Vout (30)
It can be expressed as From these equations, Ton / Toff = C1 · Vin / [C2 · (Vin−Vout)] (31)
Is obtained. Therefore, when setting so that C1 = C2, a desired Ton / Toff ratio can be obtained.
 [実施の形態4の効果]
 実施の形態4のDC/DCコンバータ3によれば、フィードバックなしに入力電圧VinからTon/Toff比を決めることができるため、発振の心配がない。発振防止用の容量や抵抗など外付け素子が不要となる。
[Effect of Embodiment 4]
According to the DC / DC converter 3 of the fourth embodiment, since the Ton / Toff ratio can be determined from the input voltage Vin without feedback, there is no concern about oscillation. External elements such as oscillation prevention capacitors and resistors are not required.
 さらに、DC/DCコンバータ3によれば、入出力電圧の変化に対して安定状態への遷移時間を短くできるとともに入力電圧Vinに対応して最大の電力効率を得ることが可能となる。以下、入力電圧Vinに応じてTon/Toff比を調整しないで固定した場合と対比して説明する。 Furthermore, according to the DC / DC converter 3, it is possible to shorten the transition time to the stable state with respect to the change of the input / output voltage and to obtain the maximum power efficiency corresponding to the input voltage Vin. Hereinafter, a description will be given in contrast to a case where the Ton / Toff ratio is fixed without being adjusted according to the input voltage Vin.
 Ton/Toff比を固定した場合には、入力電圧が最も低い場合でも降圧が可能となるようにTon/Toff比を最も大きい値に設定する必要がある。入力電圧範囲が4V~5V、出力電圧が2VのときTon/Toff比の最も大きい条件は、
 Ton/Toff=Vout/(Vin-Vout)=2V/(4V-2V)=1   …(32)
となる。クロック信号clkの周期が1μsのとき、Ton=0.5μs、Toff=0.5μsに設定される。
When the Ton / Toff ratio is fixed, it is necessary to set the Ton / Toff ratio to the largest value so that the voltage can be stepped down even when the input voltage is the lowest. When the input voltage range is 4V to 5V and the output voltage is 2V, the condition with the largest Ton / Toff ratio is
Ton / Toff = Vout / (Vin-Vout) = 2V / (4V-2V) = 1 (32)
It becomes. When the cycle of the clock signal clk is 1 μs, Ton = 0.5 μs and Toff = 0.5 μs are set.
 図23は、図21のDC/DCコンバータ3で、Ton/Toff比を固定した場合におけるクロック信号の波形図である。図23のグラフは、上から順にクロック信号clk_drおよび出力電圧Voutを示している。 FIG. 23 is a waveform diagram of a clock signal when the Ton / Toff ratio is fixed in the DC / DC converter 3 of FIG. The graph of FIG. 23 shows the clock signal clk_dr and the output voltage Vout in order from the top.
 図23を参照して、時刻t1でオン期間からオフ期間に切替わったあと、オフ時間Toffが経過する前に、出力電圧Voutが期待値Vout*を超えるため、比較器CMP1の出力によってクロック信号clk_drが停止する。時刻t2で、出力電圧Voutが期待値Vout*以下になるとクロック信号clk_drの出力が開始する。 Referring to FIG. 23, after switching from the ON period to the OFF period at time t1, before the OFF time Toff elapses, the output voltage Vout exceeds the expected value Vout *, so that the clock signal is output by the output of the comparator CMP1. clk_dr stops. When the output voltage Vout becomes equal to or lower than the expected value Vout * at time t2, the output of the clock signal clk_dr is started.
 Ton/Toff比を固定した場合には、Ton/Toff比を最も大きな値に設定する必要があるため、このクロック信号clk_drが停止する期間(図23の時刻t1から時刻t2まで)が長くなる。これに対して、この実施の形態の場合には、入力電圧Vinに応じてTon/Toff比が設定されるので、クロック信号clk_drの停止期間が短くて済む。以下、クロック信号の停止期間の電力変換効率への影響を定量的に説明する。 When the Ton / Toff ratio is fixed, it is necessary to set the Ton / Toff ratio to the largest value, so the period during which the clock signal clk_dr is stopped (from time t1 to time t2 in FIG. 23) becomes longer. On the other hand, in this embodiment, since the Ton / Toff ratio is set according to the input voltage Vin, the stop period of the clock signal clk_dr can be shortened. Hereinafter, the influence on the power conversion efficiency during the stop period of the clock signal will be quantitatively described.
 図24は、降圧コンバータの場合のインダクタ電流について説明するための図である。図24を参照して、図21のインダクタ11を流れる平均電流について説明するための図である。オン期間Tonにインダクタ電流がΔIon増加し、オフ期間Toffにインダクタ電流がΔIff減少する。これらの値は、前述の式(24),(25)で表わされる。平均的なインダクタ電流Iavは、平均出力電流Ioutを用いて、
 Iav=Iout   …(33)
によって与えられる。
FIG. 24 is a diagram for explaining the inductor current in the case of the step-down converter. FIG. 24 is a diagram for describing an average current flowing through inductor 11 in FIG. 21 with reference to FIG. The inductor current increases by ΔIon during the on period Ton, and the inductor current decreases by ΔIff during the off period Toff. These values are expressed by the aforementioned equations (24) and (25). The average inductor current Iav is obtained by using the average output current Iout.
Iav = Iout… (33)
Given by.
 DC/DCコンバータ3への入力電圧が5Vのときは、Ton/Toff比は2V/(5V-2V)=0.67でよいはずである。しかし、Ton/Toff比を入力電圧が最小である4Vの場合に固定しているので、Ton/Toff比は1に設定されている。この場合、インダクタ11のインダクタンスLを20μH、出力電流Ioutを20mAとすると、Tonは0.5μsであるので、インダクタの最大電流ILmaxは、式(24)、(33)を用いて、
 ILmax=Iout+(Vin-Vout)・Ton/(2・L)
    =20mA+3V×0.5μs/(2×20μH)=57.5mA   …(34)
となる。
When the input voltage to the DC / DC converter 3 is 5V, the Ton / Toff ratio should be 2V / (5V-2V) = 0.67. However, since the Ton / Toff ratio is fixed at 4 V where the input voltage is minimum, the Ton / Toff ratio is set to 1. In this case, assuming that the inductance L of the inductor 11 is 20 μH and the output current Iout is 20 mA, Ton is 0.5 μs. Therefore, the maximum current ILmax of the inductor can be calculated using the equations (24) and (33).
ILmax = Iout + (Vin-Vout) ・ Ton / (2 ・ L)
= 20mA + 3V × 0.5μs / (2 × 20μH) = 57.5mA (34)
It becomes.
 一方、本実施の形態の場合には、入力電圧の変化に対してTon/Toff比を最適化できるので、入力電圧Vinが5Vの場合には、Ton/Toff=0.67、Ton=0.33μs、Toff=0.67μsとなる。したがって、インダクタの最大電流ILmaxは、
 ILmax=Iout+(Vin-Vout)・Ton/(2・L)
    =20mA+3V×0.33μs/(2×20μH)=44.8mA   …(35)
となる。
On the other hand, in the case of the present embodiment, the Ton / Toff ratio can be optimized with respect to the change of the input voltage. Therefore, when the input voltage Vin is 5 V, Ton / Toff = 0.67, Ton = 0. 33 μs and Toff = 0.67 μs. Therefore, the maximum current ILmax of the inductor is
ILmax = Iout + (Vin-Vout) ・ Ton / (2 ・ L)
= 20mA + 3V × 0.33μs / (2 × 20μH) = 44.8mA (35)
It becomes.
 このように、Ton/Toff比を固定した場合には、本来必要な電流より13mA多くの電流が流れることになる。余分な電流は寄生抵抗で熱として消費され、電力変換効率を低下させる。これに対して、この実施の形態のDC/DCコンバータ3の場合には、入力電圧Vinに応じてTon/Toff比が設定されるので、電力変換効率を向上させることができる。 Thus, when the Ton / Toff ratio is fixed, a current of 13 mA more than the originally required current flows. Excess current is consumed as heat by the parasitic resistance, reducing power conversion efficiency. On the other hand, in the case of the DC / DC converter 3 of this embodiment, since the Ton / Toff ratio is set according to the input voltage Vin, the power conversion efficiency can be improved.
 <実施の形態5>
 実施の形態4の制御回路20Bでは、Ton/Toff比の最適値が最初に設定され、その後はTon/Toff比の値に変更がない。もし、出力電圧Voutが期待値より低い期間にTon/Toff比を最適値よりも大きく設定できれば、期待値に到達するまでの時間を短縮できる。実施の形態5では、そのための回路構成が開示される。
<Embodiment 5>
In the control circuit 20B of the fourth embodiment, the optimum value of the Ton / Toff ratio is set first, and thereafter, the value of the Ton / Toff ratio is not changed. If the Ton / Toff ratio can be set larger than the optimal value during the period when the output voltage Vout is lower than the expected value, the time until the expected value is reached can be shortened. In the fifth embodiment, a circuit configuration for that purpose is disclosed.
 図25は、この発明の実施の形態5によるDC/DCコンバータに適用されるパルス発生器PGDの構成を示す回路図である。図21のDC/DCコンバータ3において、パルス発生器PGCが図25のパルス発生器PGDに置き換えられる。パルス発生器PGD以外の構成は、図21に示した実施の形態4の場合と同じである。 FIG. 25 is a circuit diagram showing a configuration of a pulse generator PGD applied to a DC / DC converter according to Embodiment 5 of the present invention. In the DC / DC converter 3 of FIG. 21, the pulse generator PGC is replaced with the pulse generator PGD of FIG. The configuration other than the pulse generator PGD is the same as that of the fourth embodiment shown in FIG.
 図25を参照して、電流信号生成部70Cは、OTA120をさらに含む点で、図22の電流信号生成部70Bと異なる。OTA120の構成は、図14、図15で説明したものと同じである。OTA120の非反転入力端子には参照電圧Vrefが入力され、OTA120の反転入力端子には図21の分圧回路31の出力電圧Vout2が入力される。参照電圧Vrefは、出力電圧Voutの期待値Vout*に応じて設定される。分圧回路31の分圧比をαとすれば、参照電圧Vrefはα×Vout*で与えられる
 OTA120は、参照電圧Vrefと分圧回路31の出力電圧Vout2との電圧差に応じた補正電流Imdを定電流生成部80Aの出力ノード84に出力する。OTA120の伝達コンダクタンスをGとすれば、補正電流Imdは、
 Imd=G・(Vref-Vout2)   …(36)
と表わされる。図25のその他の構成は図22の場合と同じであるので、同一または相当する部分には同一の参照符号を付して説明を繰り返さない。
Referring to FIG. 25, current signal generation unit 70 </ b> C is different from current signal generation unit 70 </ b> B in FIG. 22 in that OTA 120 is further included. The configuration of the OTA 120 is the same as that described with reference to FIGS. The reference voltage Vref is input to the non-inverting input terminal of the OTA 120, and the output voltage Vout2 of the voltage dividing circuit 31 in FIG. 21 is input to the inverting input terminal of the OTA 120. The reference voltage Vref is set according to the expected value Vout * of the output voltage Vout. If the voltage dividing ratio of the voltage dividing circuit 31 is α, the reference voltage Vref is given by α × Vout *. The OTA 120 generates a correction current Imd corresponding to the voltage difference between the reference voltage Vref and the output voltage Vout2 of the voltage dividing circuit 31. Output to the output node 84 of the constant current generator 80A. If the transfer conductance of the OTA 120 is G, the correction current Imd is
Imd = G ・ (Vref-Vout2)… (36)
It is expressed as Other configurations in FIG. 25 are the same as those in FIG. 22, and therefore, the same or corresponding parts are denoted by the same reference numerals and description thereof is not repeated.
 図25の場合、電流信号生成部70Cからオフ信号生成部40Bに出力される電流信号は、実施の形態4の第2電流信号I2に補正電流Imdを加算した値I2’に修正され、
 I2'=I2+Imd=Ics+Imd   …(37)
となる。したがって、オフ時間Toffは、
 Toff=C2・Vref/I2'=C2・Vref/(Ics+Imd)   …(38)
と表わされる。
In the case of FIG. 25, the current signal output from the current signal generator 70C to the off signal generator 40B is corrected to a value I2 ′ obtained by adding the correction current Imd to the second current signal I2 of the fourth embodiment.
I2 '= I2 + Imd = Ics + Imd (37)
It becomes. Therefore, the off time Toff is
Toff = C2 / Vref / I2 '= C2 / Vref / (Ics + Imd) (38)
It is expressed as
 出力Voutが期待値Vout*より低い場合はOTA120から補正電流Imdが供給される(Imd>0)ので、オフ期間Toffが短く設定される。すなわち、Ton/Toff比が大きく設定されるため、オン期間Tonのインダクタ電流増加分が大きくなり、それが出力電圧の上昇に用いられる。出力電圧Voutが期待値Vout*に到達すれば、OTA120から出力される補正電流Imdはゼロとなり、定常動作時のTon/Toff比に設定される。 When the output Vout is lower than the expected value Vout *, since the correction current Imd is supplied from the OTA 120 (Imd> 0), the off period Toff is set short. That is, since the Ton / Toff ratio is set to be large, the increase in the inductor current during the on-period Ton becomes large, which is used to increase the output voltage. When the output voltage Vout reaches the expected value Vout *, the correction current Imd output from the OTA 120 becomes zero and is set to the Ton / Toff ratio during steady operation.
 一方、出力Voutが期待値Vout*より高い場合は、OTA120が補正電流Imdを引き抜くため(Imd<0)、オフ期間Toffが長く設定される。負荷で消費される電流Ioutよりもインダクタ11から供給される電流量が減少するため、より迅速に出力電圧Voutが期待値Vout*に近づく。 On the other hand, when the output Vout is higher than the expected value Vout *, the OTA 120 draws out the correction current Imd (Imd <0), so the off period Toff is set to be long. Since the amount of current supplied from the inductor 11 is smaller than the current Iout consumed by the load, the output voltage Vout approaches the expected value Vout * more quickly.
 今回開示された実施の形態はすべての点で例示であって制限的なものでないと考えられるべきである。この発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1~3,200 DC/DCコンバータ、9 直流電源、10,10A,10B,210 変換回路、11,211 インダクタ、12 ダイオード、20,20A,20B,220 制御回路、n_dr NMOSトランジスタ(スイッチング素子)、p_dr PMOSトランジスタ(スイッチング素子)、40A オン信号生成部、40B オフ信号生成部、41A,41B 充電回路、42A,42B 比較器、45A,45B 比較回路、50A ワンショットパルス発生器、60,60A 電圧・電流変換部、70,70A,70B,70C 電流信号生成部、80,80A 定電流生成部、90 RSラッチ回路、120 OTA、I1 第1電流信号、I2 第2電流信号、Ia 変換電流、Ics 定電流、Imd 補正電流、PG,PGA,PCB,PGC,PGD パルス発生器、Soff オフ信号、Son オン信号、Toff オフ時間、Ton オン時間、Vin 入力電圧。 1 to 3,200 DC / DC converter, 9 DC power supply, 10, 10A, 10B, 210 conversion circuit, 11, 211 inductor, 12 diode, 20, 20A, 20B, 220 control circuit, n_dr NMOS transistor (switching element), p_dr PMOS transistor (switching element), 40A on signal generator, 40B off signal generator, 41A, 41B charging circuit, 42A, 42B comparator, 45A, 45B comparison circuit, 50A one-shot pulse generator, 60, 60A voltage Current converter, 70, 70A, 70B, 70C Current signal generator, 80, 80A constant current generator, 90 RS latch circuit, 120 OTA, I1 first current signal, I2 second current signal, Ia conversion current, Ics constant Current, Imd supplement Current, PG, PGA, PCB, PGC, PGD pulse generator, Soff off signal, Son-on signal, Toff off time, Ton on time, Vin input voltage.

Claims (9)

  1.  スイッチング素子を含み、入力直流電圧を、前記スイッチング素子のオン時間とオフ時間との比に応じた大きさの直流電圧に変換して出力する変換回路を備え、
     前記スイッチング素子は、オン信号が非活性化することによってオフ状態になり、オフ信号が非活性化することによってオン状態になり、
     前記スイッチング素子のオン・オフを制御する制御回路をさらに備え、
     前記制御回路は、
     前記オン信号を生成するオン信号生成部と、
     前記オフ信号を生成するオフ信号生成部とを含み、
     前記オン信号生成部は、前記オフ信号が非活性化したときから、前記入力直流電圧の大きさに応じて決定される前記オン時間に対応する時間が経過するまでの間、前記オン信号を活性状態にし、
     前記オフ信号生成部は、前記オン信号が非活性化したときから、前記入力直流電圧の大きさに応じて決定される前記オフ時間に対応する時間が経過するまでの間、前記オフ信号を活性状態にする、DC/DCコンバータ。
    Including a switching element, comprising a conversion circuit that converts an input DC voltage into a DC voltage having a magnitude corresponding to a ratio between an on time and an off time of the switching element and outputs the converted DC voltage;
    The switching element is turned off when the on signal is deactivated, and is turned on when the off signal is deactivated,
    A control circuit for controlling on / off of the switching element;
    The control circuit includes:
    An on signal generation unit for generating the on signal;
    An off signal generation unit for generating the off signal,
    The on signal generation unit activates the on signal from the time when the off signal is deactivated until the time corresponding to the on time determined according to the magnitude of the input DC voltage elapses. State
    The off signal generation unit activates the off signal from the time when the on signal is deactivated until the time corresponding to the off time determined according to the magnitude of the input DC voltage elapses. DC / DC converter to put into a state.
  2.  前記制御回路は、さらに、
     前記入力直流電圧に比例した電流値の変換電流を生成する電圧・電流変換部と、
     電流値が一定の定電流と前記変換電流とに基づいて、前記入力直流電圧が増加するほど電流値が増加する第1電流信号と、前記第1電流信号とは前記入力直流電圧に対する依存性が異なる第2電流信号とを生成する電流信号生成部とを含み、
     前記オン信号生成部は、前記第1電流信号に基づいて前記オン信号を生成し、
     前記オフ信号生成部は、前記第2電流信号に基づいて前記オフ信号を生成する、請求項1に記載のDC/DCコンバータ。
    The control circuit further includes:
    A voltage / current converter for generating a conversion current having a current value proportional to the input DC voltage;
    Based on the constant current having a constant current value and the conversion current, the first current signal whose current value increases as the input DC voltage increases, and the first current signal has dependency on the input DC voltage. A current signal generator that generates a different second current signal;
    The on signal generation unit generates the on signal based on the first current signal,
    The DC / DC converter according to claim 1, wherein the off signal generation unit generates the off signal based on the second current signal.
  3.  前記オン信号生成部は、
     前記第1電流信号によって充電され、前記オフ信号が非活性化したとき充電電圧がリセットされる第1充電回路と、
     前記第1充電回路の充電電圧と所定の第1参照電圧とを比較し、前記第1充電回路の充電電圧が前記第1参照電圧を超えたときに非活性化する前記オン信号を生成する第1の比較回路とを含み、
     前記オフ信号生成部は、
     前記第2電流信号によって充電され、前記オン信号が非活性化したとき充電電圧がリセットされる第2充電回路と、
     前記第2充電回路の充電電圧と所定の第2参照電圧とを比較し、前記第2充電回路の充電電圧が前記第2参照電圧を超えたときに非活性化する前記オフ信号を生成する第2の比較回路とを含む、請求項2に記載のDC/DCコンバータ。
    The on-signal generator is
    A first charging circuit that is charged by the first current signal and that resets a charging voltage when the off signal is deactivated;
    The first charging circuit compares the charging voltage of the first charging circuit with a predetermined first reference voltage, and generates the on signal that is deactivated when the charging voltage of the first charging circuit exceeds the first reference voltage. 1 comparison circuit,
    The off-signal generator is
    A second charging circuit that is charged by the second current signal and whose charging voltage is reset when the ON signal is deactivated;
    The second charging circuit compares a charging voltage of the second charging circuit with a predetermined second reference voltage, and generates the off signal that is deactivated when the charging voltage of the second charging circuit exceeds the second reference voltage. The DC / DC converter according to claim 2, comprising two comparison circuits.
  4.  前記電流信号生成部は、所定の第3参照電圧から前記入力直流電圧を減算した電圧に比例した第3電流信号を生成する演算トランスコンダクタンス増幅器を含み、
     前記電流信号生成部は、前記第2電流信号と前記第3電流信号とを加算した信号に基づいて、前記オフ信号を生成する請求項2に記載のDC/DCコンバータ。
    The current signal generation unit includes an operational transconductance amplifier that generates a third current signal proportional to a voltage obtained by subtracting the input DC voltage from a predetermined third reference voltage,
    The DC / DC converter according to claim 2, wherein the current signal generation unit generates the off signal based on a signal obtained by adding the second current signal and the third current signal.
  5.  前記オン信号生成部は、
     前記第1電流信号によって充電され、前記オフ信号が非活性化したとき充電電圧がリセットされる第1充電回路と、
     前記第1充電回路の充電電圧と所定の第1参照電圧とを比較し、前記第1充電回路の充電電圧が前記第1参照電圧を超えたときに非活性化する前記オン信号を生成する第1の比較回路とを含み、
     前記オフ信号生成部は、
     前記第2電流信号および前記第3電流信号を加算した信号によって充電され、前記オン信号が非活性化したとき充電電圧がリセットされる第2充電回路と、
     前記第2充電回路の充電電圧と所定の第2参照電圧とを比較し、前記第2充電回路の充電電圧が前記第2参照電圧を超えたときに非活性化する前記オフ信号を生成する第2の比較回路とを含む、請求項4に記載のDC/DCコンバータ。
    The on-signal generator is
    A first charging circuit that is charged by the first current signal and that resets a charging voltage when the off signal is deactivated;
    The first charging circuit compares the charging voltage of the first charging circuit with a predetermined first reference voltage, and generates the on signal that is deactivated when the charging voltage of the first charging circuit exceeds the first reference voltage. 1 comparison circuit,
    The off-signal generator is
    A second charging circuit that is charged by a signal obtained by adding the second current signal and the third current signal, and a charging voltage is reset when the ON signal is deactivated;
    The second charging circuit compares a charging voltage of the second charging circuit with a predetermined second reference voltage, and generates the off signal that is deactivated when the charging voltage of the second charging circuit exceeds the second reference voltage. The DC / DC converter according to claim 4, comprising two comparison circuits.
  6.  前記DC/DCコンバータは、前記入力直流電圧を昇圧する昇圧コンバータであり、
     前記電流信号生成部は、前記変換電流を前記第1電流信号として生成し、前記定電流から前記変換電流を減算することによって得られた電流を前記第2電流信号として生成する、請求項2~5のいずれか1項に記載のDC/DCコンバータ。
    The DC / DC converter is a boost converter that boosts the input DC voltage.
    The current signal generation unit generates the conversion current as the first current signal, and generates a current obtained by subtracting the conversion current from the constant current as the second current signal. The DC / DC converter according to any one of 5.
  7.  前記DC/DCコンバータは、前記入力直流電圧を降圧する降圧コンバータであり、
     前記電流信号生成部は、前記変換電流から前記定電流を減算することによって得られた信号を前記第1電流信号として生成し、前記定電流を前記第2電流信号として生成する、請求項2~5のいずれか1項に記載のDC/DCコンバータ。
    The DC / DC converter is a step-down converter that steps down the input DC voltage,
    The current signal generation unit generates a signal obtained by subtracting the constant current from the converted current as the first current signal, and generates the constant current as the second current signal. The DC / DC converter according to any one of 5.
  8.  前記電圧・電流変換部は、前記変換回路から出力する直流電圧の目標値に応じて、前記入力直流電圧を前記変換電流に変換するときの変換率を切替える、請求項2に記載のDC/DCコンバータ。 3. The DC / DC according to claim 2, wherein the voltage / current conversion unit switches a conversion rate when converting the input DC voltage into the conversion current according to a target value of the DC voltage output from the conversion circuit. converter.
  9.  前記変換回路から出力される直流電圧を検出する出力電圧検出部をさらに備え、
     前記制御回路は、さらに、
     前記出力電圧検出部によって検出された直流電圧と所定の第4参照電圧とを比較し、比較結果を出力する比較回路と、
     前記オン信号が活性化されたときにセット状態になり、前記オフ信号が活性化されたときにリセット状態になるラッチ回路と、
     前記比較回路による比較結果と前記ラッチ回路の出力信号とを受け、前記出力電圧検出部によって検出された直流電圧が前記第4参照電圧以下のときに前記ラッチ回路の出力信号を前記スイッチング素子のオン・オフを制御する制御信号として通過させるゲート回路とを含む、請求項1に記載のDC/DCコンバータ。
    An output voltage detector that detects a DC voltage output from the converter circuit;
    The control circuit further includes:
    A comparison circuit that compares the DC voltage detected by the output voltage detector with a predetermined fourth reference voltage and outputs a comparison result;
    A latch circuit that is in a set state when the on signal is activated and is in a reset state when the off signal is activated;
    The comparison result by the comparison circuit and the output signal of the latch circuit are received, and when the DC voltage detected by the output voltage detector is equal to or lower than the fourth reference voltage, the output signal of the latch circuit is turned on of the switching element. The DC / DC converter according to claim 1, further comprising a gate circuit that is passed as a control signal for controlling OFF.
PCT/JP2011/069575 2011-08-30 2011-08-30 Dc/dc converter WO2013030948A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/069575 WO2013030948A1 (en) 2011-08-30 2011-08-30 Dc/dc converter
JP2013530929A JP5604596B2 (en) 2011-08-30 2011-08-30 DC / DC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/069575 WO2013030948A1 (en) 2011-08-30 2011-08-30 Dc/dc converter

Publications (1)

Publication Number Publication Date
WO2013030948A1 true WO2013030948A1 (en) 2013-03-07

Family

ID=47755501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069575 WO2013030948A1 (en) 2011-08-30 2011-08-30 Dc/dc converter

Country Status (2)

Country Link
JP (1) JP5604596B2 (en)
WO (1) WO2013030948A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102502208B1 (en) * 2015-07-28 2023-02-22 삼성디스플레이 주식회사 Dc-dc converter and driving method thereof
DE102016215147A1 (en) * 2016-08-15 2018-02-15 Robert Bosch Gmbh DC-DC converter and method for controlling a DC-DC converter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5982156A (en) * 1997-04-15 1999-11-09 The United States Of America As Represented By The Secretary Of The Air Force Feed-forward control of aircraft bus dc boost converter
JP2011151911A (en) * 2010-01-20 2011-08-04 Toyota Central R&D Labs Inc Voltage converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5982156A (en) * 1997-04-15 1999-11-09 The United States Of America As Represented By The Secretary Of The Air Force Feed-forward control of aircraft bus dc boost converter
JP2011151911A (en) * 2010-01-20 2011-08-04 Toyota Central R&D Labs Inc Voltage converter

Also Published As

Publication number Publication date
JP5604596B2 (en) 2014-10-08
JPWO2013030948A1 (en) 2015-03-23

Similar Documents

Publication Publication Date Title
JP5852380B2 (en) DC / DC converter
US9035632B2 (en) DC-DC converter, control circuit, and power supply control method
TWI479790B (en) Switching-mode power supply with ripple mode control and associated methods
US10554127B2 (en) Control circuit and control method for multi-output DC-DC converter
US9013165B2 (en) Switching regulator including a configurable multi-mode PWM controller implementing multiple control schemes
US7538526B2 (en) Switching regulator, and a circuit and method for controlling the switching regulator
US8803500B2 (en) PFM SMPS with quick sudden load change response
US7598715B1 (en) Apparatus and method for reverse current correction for a switching regulator
US8878504B2 (en) Switching regulator
US7772904B1 (en) Voltage level converter with mixed signal controller
US20160204704A1 (en) Switching regulator and control method thereof
US20080150508A1 (en) Current-mode controlled switching regulator and control method therefor
US8373395B2 (en) Power source apparatus, control circuit, and method of controlling power source apparatus
TW201635689A (en) Switching converter and its controller and mode control circuit
TWI491150B (en) Dc-dc converter controller
US9570992B2 (en) Regulated multiple output isolated DC to DC converter
JP2012100376A (en) Switching power supply device
US20120306466A1 (en) Step-up dc-dc converter
CN114981747B (en) Current mode DC-DC converter
JP5098760B2 (en) DC-DC converter and power supply control semiconductor integrated circuit
JP6745672B2 (en) Switching control circuit, switching power supply, electronic equipment
US20140340066A1 (en) Timing generator and timing signal generation method for power converter
US10193448B1 (en) Method of forming a power supply control circuit and structure therefor
JP2010183723A (en) Dc-dc converter and switching control circuit
JP5604596B2 (en) DC / DC converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871750

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013530929

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871750

Country of ref document: EP

Kind code of ref document: A1