WO2013030934A1 - Communication system, subscriber side optical communication device, station side optical communication device, control device and power-saving control method - Google Patents

Communication system, subscriber side optical communication device, station side optical communication device, control device and power-saving control method Download PDF

Info

Publication number
WO2013030934A1
WO2013030934A1 PCT/JP2011/069486 JP2011069486W WO2013030934A1 WO 2013030934 A1 WO2013030934 A1 WO 2013030934A1 JP 2011069486 W JP2011069486 W JP 2011069486W WO 2013030934 A1 WO2013030934 A1 WO 2013030934A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
optical communication
side optical
communication device
sleep
Prior art date
Application number
PCT/JP2011/069486
Other languages
French (fr)
Japanese (ja)
Inventor
文彦 田野
潤 水口
平野 幸男
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2011/069486 priority Critical patent/WO2013030934A1/en
Priority to TW100147667A priority patent/TW201310929A/en
Publication of WO2013030934A1 publication Critical patent/WO2013030934A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/12Arrangements for remote connection or disconnection of substations or of equipment thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0667Bidirectional timestamps, e.g. NTP or PTP for compensation of clock drift and for compensation of propagation delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1301Optical transmission, optical switches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • the present invention relates to a communication system, a subscriber-side optical communication device, a station-side optical communication device, a control device, and a power saving control method.
  • a plurality of sleep modes such as a Tx sleep mode in which the transmission function is intermittently stopped and a TRx sleep mode in which the transmission / reception function is intermittently stopped are used.
  • negotiation is performed between the OLT and the ONU for exchanging compatible sleep modes and parameters related to power saving control, and power saving control is performed based on parameters agreed upon by this negotiation. Is implemented.
  • ITU-T Telecommunication Standardization Sector of International Telecommunication Union
  • the ONU Between the OLT and each ONU, in a normal state in which the ONU receives a signal transmitted from the OLT, the ONU performs clock synchronization based on the received signal.
  • the ONU uses the built-in clock source. Therefore, there is a problem that a clock deviation between the OLT and the ONU occurs when returning from the stop state, and link breakage may occur due to time stamp drift.
  • the time stamp drift is a state in which the clock deviation between the OLT and the ONU exceeds a threshold value. In the PON system, when the time stamp drift occurs, it is determined that the ONU and the OLT cannot be synchronized, and a process of disconnecting the PON link is performed. Done.
  • the present invention has been made in view of the above, and obtains a communication system, a subscriber side optical communication apparatus, a station side optical communication apparatus, a control apparatus, and a power saving control method capable of avoiding time stamp drift. With the goal.
  • the present invention is capable of transitioning to a transmission / reception sleep mode in which a station-side optical communication device, a transmitter, and a receiver are intermittently stopped.
  • a subscriber-side optical communication device that operates using a clock extracted from the optical signal received from the station-side optical communication device and operates using a free-running clock while the receiver is in a stopped state.
  • a time error calculating unit for measuring an error between the clock of the optical communication apparatus on the station side and the free-running clock of the optical communication apparatus on the subscriber side, and determining whether a time stamp drift has occurred
  • a sleep time calculation unit for calculating a sleep time of the transmitter and the receiver based on a threshold value and the error so as not to cause a time stamp drift, and Device uses a sleep time during which the sleep time calculating unit has calculated as the sleep time of the transceiver sleep mode, characterized in that.
  • the subscriber-side optical communication device, the station-side optical communication device, the control device, and the power saving control method according to the present invention have the effect that time stamp drift can be avoided.
  • FIG. 1 is a diagram illustrating a configuration example of a communication system according to the first embodiment.
  • FIG. 2 is a diagram illustrating an operation example of the Tx sleep mode.
  • FIG. 3 is a diagram illustrating an operation example of the TRx sleep mode.
  • FIG. 4 is a diagram illustrating an example of a conventional procedure for negotiation at the time of initialization.
  • FIG. 5 is a diagram showing an example of a transition sequence to a conventional power save mode.
  • FIG. 6 is a diagram illustrating an example of a sleep time and an aware time in the Tx sleep mode and the TRx sleep mode according to the first embodiment.
  • FIG. 7 is a chart diagram illustrating an example of a procedure for measuring time lag according to the first embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of a communication system according to the first embodiment.
  • FIG. 2 is a diagram illustrating an operation example of the Tx sleep mode.
  • FIG. 3 is a diagram illustrating an operation example of the TRx sleep mode
  • FIG. 8 is a chart diagram illustrating an example of a negotiation procedure according to the first embodiment.
  • FIG. 9 is a diagram illustrating an example of a data format when the sleep time and the aware time are notified.
  • FIG. 10 is a diagram illustrating a configuration example of a communication system according to the second embodiment.
  • FIG. 11 is a chart illustrating an example of a procedure for measuring the time lag according to the second embodiment.
  • FIG. 12 is a diagram illustrating a configuration example of a communication system according to the third embodiment.
  • FIG. 13 is a chart diagram illustrating an example of a procedure for measuring time lag according to the third embodiment.
  • FIG. 14 is a diagram illustrating a configuration example of a communication system according to the fourth embodiment.
  • FIG. 15 is a chart diagram illustrating an example of a procedure for measuring time lag according to the fourth embodiment.
  • FIG. 16 is a flowchart illustrating an example of a mode selection procedure according to the fifth embodiment.
  • Embodiments of a subscriber-side optical communication device, a station-side optical communication device, a control device, and a power saving control method according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
  • FIG. 1 is a diagram showing a configuration example of a first embodiment of a communication system according to the present invention.
  • the communication system according to the present embodiment includes ONUs (subscriber side optical communication apparatuses) 1-1 to 1-n (n is an integer of 1 or more) and OLT (station side optical communication apparatus) 2. .
  • the ONU 1-1 is a WDM (Wavelength Division Multiplexing) 11 that wavelength-multiplexes upstream and downstream data, a transmitter 12 that converts an electrical signal into an optical signal, and a receiver that converts the received optical signal into an electrical signal.
  • the control unit 15 includes a selector 151, an MPCP control unit 152, a power save (power saving) control unit 153, a free-running clock control unit 154, and a time shift calculation unit (clock error calculation unit) 155.
  • the PHY unit 17 includes a receiver 171 and a transmitter 172.
  • the configuration of the ONUs 1-2 to 1-n is the same as that of the ONU 1-1.
  • the OLT 2 includes a WDM 21, a transmitter 22 that converts an electrical signal into an optical signal and transmits it, a receiver 23 that converts the received optical signal into an electrical signal, a transmission buffer 24, and a control unit (control device) 25.
  • the control unit 25 includes a free-running clock control unit 251, an MPCP control unit 252, a power save control unit 253, and a sleep time calculation unit 254.
  • the PHY unit 27 includes a receiver 271 and a transmitter 272.
  • the PHY 17 of the ONU 1-1 is connected to a user terminal or the like.
  • the receiver 171 of the PHY 17 passes the data received from the user terminal or the like to the control unit 15, and the control unit 15 stores the received data in the transmission buffer 14 as uplink data.
  • the MPCP control unit 152 performs transmission / reception processing of the MPCP message exchanged with the OLT 2.
  • the MPCP control unit 152 reads the uplink data from the transmission buffer 14 within the time period permitted for transmission based on the bandwidth allocation notification transmitted from the OLT 2 as an MPCP message, and transmits the uplink data as an optical signal via the transmitter 12 and the WDM 11. Send to.
  • the receiver 13 converts the electrical signal received from the ONU 1-1 via the WDM 21 and outputs it to the MPCP control unit 252.
  • the MPCP control unit 152 stores the data in the reception buffer 26 and receives the data. If the data input from the device 23 is an MPCP message, processing based on the message is performed.
  • the data stored in the reception buffer 26 is transmitted to the upper network or the like via the control unit 25 and the transmitter 272.
  • the free-running clock control unit 251 of the OLT 2 has an internal clock source such as an oscillator / resonator and supplies a clock from the internal clock source to the MPCP control unit 252.
  • the MPCP control unit 252 operates based on the clock supplied from the free-running clock control unit 251.
  • the MPCP control unit 252 allocates a band to each of the ONUs 1-1 to 1-n based on the band allocation request transmitted as the MPCP message of the ONUs 1-1 to 1-n, and uses the allocation result as a band allocation notification. Transmit to the ONUs 1-1 to 1-n via the transmitter 22.
  • the receiver 271 of the OLT 2 passes the data received from the upper network or the like to the control unit 25, and the control unit 25 stores the data in the transmission buffer 24.
  • the MPCP control unit 252 transmits the data stored in the transmission buffer 24 as an optical signal to the ONUs 1-1 to 1-n via the transmitter 22 and the WDM 21.
  • the receiver 13 of the ONU 1-1 receives the optical signal transmitted from the OLT 2 via the WDM 11 and converts it into an electrical signal.
  • the receiver 13 also has a CDR (Clock Data Recovery) function, extracts the clock and downlink data transmitted from the OLT 2 from the signal converted into an electrical signal, and extracts the extracted downlink data to the MPCP control unit 152. And the extracted clock is output to the selector 15.
  • a clock extracted by the receiver 13 that is, a clock regenerated based on an optical signal from the OLT 2 is referred to as a reference clock.
  • the receiver 13 has the CDR function, but the CDR may be provided as a component independent of the receiver 13.
  • the MPCP control unit 152 stores the data in the reception buffer 16 and receives the data from the receiver 13. If the input downlink data is an MPCP message, processing based on the message is performed. Data stored in the reception buffer 16 is transmitted to the user terminal or the like via the control unit 15 and the transmitter 172.
  • the free-running clock control unit 154 has an internal clock source such as an oscillator / resonator and outputs a clock (free-running clock) from the internal clock source to the selector 151.
  • the selector 151 supplies the clock from the receiver 13 to the MPCP control unit 152 when the clock (reference clock) is input from the receiver 13, and the selector 151 when the clock (reference clock) is not input from the receiver 13.
  • the clock (self-running clock) from the running clock control unit 154 is supplied to the MPCP control unit 152.
  • the MPCP control unit 152 operates based on the clock supplied from the selector 151.
  • the MPCP control unit 152 manages time, extracts a time stamp indicating the time managed by the OLT 2 stored in the MPCP message such as a bandwidth allocation notification, and sets the time managed by itself to the time stamp. Synchronize (time stamp synchronization). Also, the time managed by itself is incremented by one count based on the input clock.
  • the receiver 13 may output an idle signal or the like to the selector 151 instead of the reference clock regenerated based on the optical signal from the OLT 2. In such a case, the receiver 13 generates a control signal for identifying whether the signal output to the selector 151 is a reference clock or an idle signal, and outputs the control signal to the selector 151.
  • the selector 151 outputs a reference clock or a free-running clock based on this control signal.
  • the ONU 1-1 has two power save modes as a power saving mode, a Tx sleep mode in which the transmission function is intermittently stopped and a TRx sleep mode in which the transmission / reception function is intermittently stopped.
  • the MPCP control unit 152 receives a message related to power saving control
  • the MPCP control unit 152 notifies the power save control unit 153 of information related to power saving control (such as a sleep mode type and a sleep time) based on the message.
  • the power save control unit 153 performs power save control such as stop and start on the transmitter 12 and the receiver 13 based on these pieces of information.
  • FIG. 2 is a diagram illustrating an operation example in the Tx sleep mode
  • FIG. 3 is a diagram illustrating an operation example in the TRx sleep mode.
  • a stop period in which Tx (transmitter 12) is stopped and a start time in which Tx is in a start state are alternately repeated.
  • a stop period in which TRx (transmitter 12 and receiver 13) is stopped and a start-up time in which TRx is started are alternately repeated.
  • the length of the stop period is called sleep time
  • the length of activation time is called aware time.
  • the transmitter 12 In the Tx sleep mode, not only the transmitter 12 but also other functional units that perform processing related to transmission from the ONU 1-1 to the OLT 2 may be stopped during the stop time period. Similarly, in the TRx sleep mode, not only the transmitter 12 and the receiver 13 but also other functional units that perform processing related to reception from the OLT 2 may be stopped during the stop time period.
  • power save control of OLT 2 is performed by the power save control unit 253, but since this is the same as the conventional one, description thereof is omitted.
  • FIG. 4 is a diagram illustrating an example of a conventional procedure for negotiation at the time of initialization.
  • a discovery sequence for exchanging information necessary for communication is performed between the OLT and the ONU, and then negotiation is performed.
  • FIG. 4 shows an example of the conventional procedure of this negotiation.
  • a request for transmitter initialization time and transmitter / receiver initialization time is transmitted from the OLT to the ONU (step S101).
  • the ONU Upon receiving this request, the ONU transmits its own transmitter initialization time and transmitter / receiver initialization time (step S102).
  • the transmitter initialization time and the transmitter / receiver initialization time are times until the transmitter (or the transmitter and the receiver) are actually operable when the transmitter (or the transmitter and the receiver) is turned on. .
  • the OLT sets the sleep time and the aware time in the power save mode and notifies the ONU (step S103).
  • the ONU transmits a response to the notified sleep time and aware time (step S104).
  • the sleep time and the aware time are agreed between the OLT and the ONU.
  • a common value is set for the sleep time and the aware time regardless of the type of power save mode (Tx sleep mode, TRx sleep mode, etc.).
  • FIG. 5 is a diagram showing an example of a transition sequence to a conventional power save mode (Tx sleep mode or TRx sleep mode).
  • Tx sleep mode When power mode transition permission is transmitted from the OLT (step S201), the ONU notifies the OLT of the power save transition and transitions to the power save mode (step S202).
  • the Tx stop state and activation state are alternately performed, and when transitioning to the TRx sleep mode, the TRx halt state and activation state are alternately performed.
  • the OLT periodically transmits a bandwidth allocation notification to the ONU, for example (step S203), and transmits a bandwidth request when the bandwidth allocation notification is received (step S204).
  • a bandwidth allocation notification is periodically transmitted even after the ONU transitions to the power save mode.
  • the ONU performs time stamp synchronization with the OLT based on the OLT time stamp stored in the MPCP message received from the OLT, and further operates using the clock extracted from the signal received from the OLT.
  • clock synchronization can be performed, and synchronization with the time managed by the OLT is realized.
  • the clock cannot be extracted if the receiver 13 stops in the TRx sleep mode. Therefore, during this time, the ONU uses a free-running clock, and due to the frequency deviation between the OLT and the internal clock of the ONU, the deviation from the time managed by the OLT increases as the sleep time increases.
  • the sleep time of the TRx sleep mode is adjusted in order to prevent the occurrence of time stamp drift in the above-described conventional power saving control.
  • the following description will be given assuming that the sleep times of the Tx sleep mode and the TRx sleep mode are set independently, but the sleep times of the Tx sleep mode and the TRx sleep mode may be common.
  • the aware time may be set independently in the Tx sleep mode and the TRx sleep mode or may be common.
  • the OLT 2 does not consider whether or not the ONU 1-1 is in the power save mode when transmitting the bandwidth allocation notification (for example, periodically transmits the bandwidth allocation notification regardless of whether the power save mode is stopped or activated) If), the aware time may be determined in any way. Further, the aware time may be lengthened as the sleep time is shortened.
  • FIG. 6 is a diagram illustrating an example of the sleep time and the aware time in the Tx sleep mode and the TRx sleep mode according to the present embodiment.
  • the upper part shows the sleep time and the aware time in the Tx sleep mode
  • the lower part shows the sleep time and the aware time of the present embodiment in the TRx sleep mode.
  • the sleep time in the TRx sleep mode is shorter than that in the Tx sleep mode, and the amount of time in the TRx sleep mode is increased as much as the sleep time in the TRx sleep mode is shortened.
  • the setting method of the awareness time is not limited to this.
  • a time lag (clock error) with respect to the time of OLT 2 when operating with a free-running clock for a certain time is calculated, and the time stamp drift is calculated based on the calculated time lag as the sleep time in TRx sleep mode.
  • the sleep time is set as follows. When the clock frequency of OLT2 is f [Hz] and the relative error of the clock frequency of ONU1-1 with respect to the clock frequency of OLT2 is e, the clock frequency of ONU1-1 is (1 + e) f [Hz].
  • the sleep time in the TRx sleep mode is t s [s]
  • the time shift t d [s] of the ONU 1-1 with respect to the OLT 2 when the sleep time expires and the power is turned on is It can be shown by (1). It is assumed that the ONU 1-1 time is synchronized with the OLT 2 time at the start of the sleep time.
  • t d ⁇ e / (1 + e) ⁇ t s (1)
  • time stamp drift occurs when t d > t th . Therefore, since the time stamp drift does not occur if the following expression (2) is satisfied, the sleep time t s [s] is determined so as to satisfy the following expression (2). t d ⁇ t th (2)
  • the relative error e a fixed value based on a specification value or a measurement result measured in advance may be used. However, since the relative error e may change depending on the environment or the like, it is more accurately obtained by actual measurement. Therefore, in the present embodiment, the time lag is measured as follows, and the relative error e is obtained based on this measured value. After obtaining the relative error e, the above equation (1) is substituted into the equation (2), and t s [s] is determined so as to satisfy the following equation (3). For example, since the longer the sleep time, the higher the power saving effect, t s [s] can be determined as the maximum value in a range that satisfies the following (3). ⁇ E / (1 + e) ⁇ t s ⁇ t th (3)
  • FIG. 7 is a chart showing an example of a procedure for measuring the time lag according to the present embodiment.
  • information necessary for power saving including sleep time and aware time for each power saving mode
  • This negotiation will be described later.
  • the TRx sleep mode sleep time set at the time of negotiation is not measured at this time, so a sufficiently short value is set as an initial value in order to prevent time stamp drift. For example, even if the assumed maximum relative error is assumed, a short value is set so that time stamp drift does not occur.
  • the OLT 2 transmits a bandwidth allocation notification frame A including a time stamp (step S2). Specifically, the MPCP control unit 252 of the OLT 2 generates a bandwidth allocation notification frame A and transmits it to the OLT 1-1 via the transmitter 22 and the WDM 21.
  • the ONU 1-1 When the ONU 1-1 receives the frame A, the ONU 1-1 synchronizes the time managed by the time stamp stored in the frame A (time stamp synchronization) (step S3). Specifically, in the ONU 1-1, the frame A is input to the MPCP control unit 152 via the WDM 11 and the receiver 13, and the MPCP control unit 152 synchronizes the time managed by itself with the time stamp stored in the frame A. . At this time, since the receiver 13 is activated, the reference clock is supplied to the MPCP control unit 152, and the OLT 2 and the ONU 1-1 are synchronized.
  • the power save control unit 153 turns off the power of the receiver 13 and enters a sleep (stop) state (step S4).
  • the self-running clock is supplied to the MPCP control unit 152 from the time when the power of the receiver 13 is turned off, and the MPCP control unit 152 starts from the TRx sleep mode after t1 [s] from the time when the power of the receiver 13 is turned off.
  • t1 [s] is the initial value of the sleep time in the TRx sleep mode set by negotiation in the first step S5.
  • the ONU 1-1 receives the bandwidth allocation notification frame B transmitted from the OLT 2 (step S6). Then, the ONU 1-1 calculates a time lag between the time stamp stored in the frame B and the time managed by the own device (that is, the free-running clock) (step S7). Specifically, the ONU 1-1 that has received the frame B is input to the MPCP control unit 152 via the WDM 11 and the receiver 13, and the MPCP control unit 152 manages the time stamp stored in the frame B and the own device. Is transferred to the time lag calculation unit 155. The time lag calculation unit 155 calculates the difference between the time stamp stored in the frame B and the time managed by the own device (time stamp of the ONU 1-1).
  • the ONU 1-1 transmits the calculated time lag to the OLT 2 using the frame C (step S8). Specifically, the data is transferred to the MPCP control unit 152, and the MPCP control unit 152 stores the time lag in the MPCP message and transmits it to the OLT 2.
  • Steps S2 to S8 are repeated M (M is an integer equal to or greater than 1) times.
  • OLT2 receives the frame C, holds the time shift that has been stored in the frame C, determine the relative error on the basis of the M time shift between t1 [s] and, t s which satisfies the above (3) [S] is obtained (step S9).
  • the frame C is input to the MPCP control unit 252 via the WDM 21 and the receiver 23, and the MPCP control unit 252 passes M time lags and t1 [s] to the sleep time calculation unit 254.
  • the sleep time calculation unit 254 obtains an actual measurement value of the time shift by statistical processing or the like based on the M time shifts.
  • the ONU 1-1 and the OLT 2 negotiate and set the sleep time of the TRx sleep mode to t s [s] obtained in step S9 (step S10).
  • the awareness time is also negotiated in step S10. Reset it.
  • the ONU 1-1 transitions to the TRx sleep mode, it operates using the sleep time and the aware time set in step S10.
  • t1 [s] is described as a constant value in the process of M iterations, but t1 [s], that is, the sleep time may be gradually increased in the process of repetition.
  • the obtained t s [s] is used as t1 [s].
  • step S9 a method for determining the actual measurement value of the time lag using the M time errors (time lag or relative error) in step S9 will be described.
  • a method of determining the actual measurement value (1) a method of selecting the maximum value from the measured M time errors, and (2) a method of taking a weighted average of the measured M time errors are considered. It is not limited to.
  • the method of taking the weighted average of the measured M time errors is specifically calculated as follows, for example. It is assumed that when M measurements are taken, the error increases or decreases with each measurement. For example, when t1 [s] is extended for each repetition as described above, the Mth measurement result is more reliable than the first measurement result. Therefore, a highly reliable measured value can be obtained by increasing the weight when taking the average from the first time to the Mth time.
  • measured values x 1 , x 2 ,..., X M of M time errors from the first to M times in M measurements. Is obtained.
  • the actual measurement value y determined by the weighted average is obtained by the following equation (4).
  • y x 1 w 1 + x 2 w 2 +... + x M w M (4)
  • w 1 + w 2 + ... + w M 1 w 1 ⁇ w 2 ⁇ ... ⁇ w M
  • the number of repetitions (number of measurements) M is a parameter and can be changed according to the situation. If M is small, the accuracy of error measurement is high, but the measurement time is reduced. If M is large, the accuracy of error measurement is small and the measurement time is long. The reason why the accuracy decreases when M is small is that the number of digits for recording time is finite.
  • threshold value t th for determining the occurrence of the time stamp drift can also be changed depending on the application.
  • the measurement of the time lag described with reference to FIG. 7 may be performed as one operation in the TRx sleep mode of the ONU 1-1, and is not an operation in the TRx sleep mode. You may define and implement as another mode (measurement mode etc.).
  • the time lag calculation unit 155 is provided separately from the MPCP control unit 152, but the MPCP control unit 152 may have the function of the time lag calculation unit 155. Similarly, the MPCP control unit 252 may have the function of the sleep time calculation unit 254.
  • FIG. 8 is a chart showing an example of the negotiation procedure of the present embodiment.
  • Steps S101 and S102 in FIG. 8 are the same as the conventional procedure described in FIG.
  • the OLT 2 of the present embodiment sets the sleep time and the aware time in the power save mode for each mode and notifies the ONU (step S103a).
  • the sleep time and the aware time in the Tx sleep mode may be set in any manner.
  • the sleep time in the TRx sleep mode is set to a short value so that time drift does not occur as described above.
  • the ONU 1-1 transmits a response to the notified sleep time and aware time (step S104a).
  • the sleep time and the aware time for each mode are agreed between the OLT 2 and the ONU 1-1.
  • FIG. 9 is a diagram showing an example of a data format when notifying the sleep time and the aware time from the OLT 2 to the ONU 1-1 at the time of negotiation.
  • FIG. 9 shows an example of a data format based on IEEE P1904.1 TM .
  • the data format when the sleep time and the aware time are notified by negotiation is not limited to this, and for example, ITU-T G.
  • the sleep time and the aware time for each mode may be notified in a data format based on 988.
  • the ONU 1-1 sets the predetermined time TRx to the stop state, and after the stop state ends, the time stamp received from the OLT 2 is updated based on the free-running clock. Find the difference from the time you manage. Then, a relative error between the OLT 2 and the ONU 1-1 is obtained based on the obtained difference (time lag), and a sleep time within a range in which the time stamp drift does not occur is obtained based on the relative error and the time stamp drift threshold. Thus, the sleep time is set as the TRx sleep mode. For this reason, time stamp drift can be avoided.
  • FIG. FIG. 10 is a diagram illustrating a configuration example of the communication system according to the second embodiment of the present invention.
  • the communication system according to the present embodiment includes ONUs 1a-1 to 1a-n and an OLT 2a.
  • the ONU 1a-1 of the present embodiment is the same as the ONU 1-1 of the first embodiment, except that it includes a time lag calculation unit 155a instead of the time lag calculation unit 155 of the ONU 1-1 of the embodiment.
  • the OLT 2a of the present embodiment is the same as the OLT 2 of the first embodiment except that the sleep time calculation unit 254 is deleted from the OLT 2 of the embodiment.
  • Components having the same functions as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant description is omitted.
  • the OLT 2 obtains the sleep time in the TRx sleep mode in which the time stamp drift does not occur based on the actually measured value of the time lag, and then obtains the sleep time obtained by the negotiation as the OLT 2 and the ONU 1 Agreed with -1.
  • the ONU 1-1 obtains the sleep time in the TRx sleep mode in which the time stamp drift does not occur based on the actually measured value of the time lag.
  • FIG. 11 is a chart showing an example of a procedure for measuring time lag according to the present embodiment. Steps S1 to S7 in FIG. 11 are the same as those in the first embodiment. Then, after step S2 to step S7 are repeated M times, the time lag calculating unit 155a of the ONU 1-1 is based on the measured values of M time lags as in the sleep time calculating unit 254 of the OLT 2 of the first embodiment. Then, the measured value of the time lag is obtained by statistical processing or the like (step S11), and the sleep time is obtained using the measured value of the time lag so that the time stamp drift does not occur as in the sleep time calculation unit 254 of the OLT 2 of the embodiment. (Step S12). That is, in this embodiment, the time lag calculation unit 155a also has a function as a sleep time calculation unit. As in the first embodiment, t1 [s] may be increased for each repetition.
  • the ONU 1-1 retains the sleep time determined to prevent the occurrence of the time stamp drift as the sleep time of the TRx sleep mode by the above processing, and the TRx sleep mode is used by using the sleep time. Perform the operation.
  • the OLT 2 operates on the assumption that the sleep time has not been changed (the sleep time agreed by the negotiation in step S1 remains). Therefore, when the OLT 2 transmits the bandwidth allocation notification, it is considered whether the ONU 1-1 is in the stopped state or the activated state (the transmission timing is controlled so that the bandwidth allocation notification is transmitted during the activated state). ), It is desirable to lengthen the awareness time by increasing the sleep time so that the bandwidth allocation notification can be received during the activation state known by the OLT 2 as in the example of FIG. 6 of the first embodiment.
  • the aware time may be set in any way.
  • the operations of the present embodiment other than those described above are the same as those of the first embodiment.
  • the ONU 1-1 obtains the relative error between the clocks of the OLT 2 and the ONU 1-1 based on the measurement value of the time difference obtained in the same manner as in the first embodiment. Based on the stamp drift threshold value, the sleep time within a range where the time stamp drift does not occur is obtained and set as the sleep time of the TRx sleep mode. For this reason, time stamp drift can be avoided as in the first embodiment. Further, in the first embodiment, it is necessary to execute a transmission operation that is not in the conventional procedure of transmitting the frame C. However, in this embodiment, there is no need for this transmission operation, and the OLT 2 side performs the same operation as the conventional one. It's okay.
  • FIG. 12 is a diagram illustrating a configuration example of the communication system according to the third embodiment of the present invention.
  • the communication system according to the present embodiment includes ONUs 1b-1 to 1b-n and an OLT 2a.
  • the ONU 1b-1 according to the present embodiment includes a time shift calculation unit b instead of the time shift calculation unit 155a, and connects the free-running clock control unit 154 and the time shift calculation unit 155b to extract the reference clock extracted by the receiver 13.
  • Components having the same functions as those in the second embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant description is omitted.
  • the time lag was measured by setting TRx to the stop state during t1 [s].
  • the time lag is measured in the normal state without stopping TRx. Since it is a normal state, the reception of the optical signal from the OLT 2 is continued, and the time lag can be measured while the clock synchronization with the OLT 2 is maintained. Therefore, even if t1 [s], which is the time difference measurement time, is increased, time stamp drift does not occur.
  • FIG. 13 is a chart showing an example of the procedure for measuring the time lag according to the present embodiment. Steps S1 to S3 in FIG. 13 are the same as those in the first embodiment.
  • the MPCP control unit 152 measures t1 [s] using the reference clock, and operates the free-running clock during that time (step S13).
  • the time lag calculation unit 155b obtains a measurement time based on the free-running clock from the start time to the end time of t1 [s] (for example, by incrementing the counter). Then, the difference between the time measured by the free-running clock and t1 [s] is obtained as a time lag (step S14).
  • steps S2, S3, S13, and S14 are repeated M times, and thereafter, steps S11 and S12 are performed in the same manner as in the second embodiment to obtain the sleep time. Then, the obtained sleep time is held as the sleep time of the TRx sleep mode, and the operation of the TRx sleep mode is performed using the sleep time.
  • steps S2, S3, S13, and S14 are repeated M times, and thereafter, steps S11 and S12 are performed in the same manner as in the second embodiment to obtain the sleep time. Then, the obtained sleep time is held as the sleep time of the TRx sleep mode, and the operation of the TRx sleep mode is performed using the sleep time.
  • the operations of the present embodiment other than those described above are the same as those of the second embodiment.
  • the ONU 1-1 obtains the sleep time in the TRx sleep mode and holds only the ONU 1-1, and the OLT 2 does not grasp the obtained sleep time.
  • the ONU 1-1 obtains the sleep time after step S12.
  • the sleep time may be notified to the OLT 2 and the negotiation may be performed again using the sleep time for which the OLT 2 has been notified.
  • the time difference between the OLT 2 clock and the free-running clock is measured in the normal state. For this reason, the same effects as those of the first embodiment can be obtained, and the synchronization with the reference clock is maintained, so that time stamp drift does not occur. Therefore, t1 [s] can be set long, and the measurement accuracy of the time lag can be improved.
  • FIG. 14 is a diagram illustrating a configuration example of the communication system according to the fourth embodiment of the present invention.
  • the communication system according to the present embodiment includes ONUs 1c-1 to 1c-n and an OLT 2b.
  • the ONU 1c-1 of the present embodiment connects the free-running clock control unit 154 and the MPCP control unit 155 so that the reference clock of the receiver 13 can be input to the MPCP control unit 152, and the time lag calculation unit 155 is deleted. Except for this, it is the same as the ONU 1-1 of the first embodiment.
  • the OLT 2b of the present embodiment is the same as the OLT 2 of the first embodiment except that the sleep time calculation unit 254a is provided instead of the sleep time calculation unit 254 of the first embodiment.
  • Components having the same functions as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant description is omitted.
  • FIG. 15 is a chart showing an example of a procedure for measuring time lag according to the present embodiment.
  • Step S1 in FIG. 15 is the same as that in the first embodiment.
  • the OLT 2 transmits the bandwidth allocation notification frame A as in the first embodiment, but at this time, the transmission time is recorded (step S2a).
  • the MPCP control unit 252 notifies the transmission time to the sleep time calculation 254a, and the sleep time calculation 254a records the transmission time.
  • Step S3 is the same as that in the first embodiment.
  • the ONU 1-1 measures t1 [s] with the free-running clock in the normal state (step S13a).
  • frame D which is a response frame of frame A
  • the frame D may be any frame as long as the OLT 2 can recognize that it is a response frame of the frame A that notifies the end of t1 [s].
  • the identifier indicating the frame that notifies the end of t1 [s] defined in advance is stored in the frame type of frame D and transmitted. Further, the value of t1 [s] may be stored in the frame D and transmitted.
  • the sleep time calculation unit 254a obtains an actual value of the relative error by statistical processing or the like based on the M relative errors, and based on the actual value.
  • the sleep time is calculated so that time stamp drift does not occur (step S17).
  • the method for calculating the sleep time is the same as in the first embodiment.
  • negotiation is performed again using the calculated sleep time as the sleep time of the TRx sleep mode (step S10).
  • the operations of the present embodiment other than those described above are the same as those of the first or third embodiment.
  • the relative error is obtained in step S16, and the process for obtaining the relative error is repeated M times.
  • step S16 the time lag (the reception time of frame D ⁇ the transmission time of frame A ⁇ RTT ⁇ t1 [ s]) may be obtained, an actual value of the time deviation may be obtained by statistical processing or the like based on the M time deviations, and a relative error may be obtained based on the actual measurement value.
  • the OLT 2 calculates the relative error based on the frame transmission / reception time.
  • the ONU 1-1 manages its own device at the time of starting and ending t1 [s] with the free-running clock.
  • a time lag between the free-running clock and the reference clock may be obtained based on the time to be updated (time updated by the reference clock), and the sleep time may be obtained based on the time lag.
  • the ONU 1-1 measures t1 [s] with the free-running clock from the time when the frame A is received from the OLT 2 in the normal state, and the frame D is detected after the elapse of t1 [s].
  • the OLT 2 obtains a relative error based on the recorded transmission time, the reception time of the frame D, the RTT, and t1 [s], and the TRx sleep so that the time stamp drift does not occur based on the obtained relative error.
  • the sleep time of the mode was set. For this reason, the same effect as in the first embodiment can be obtained, and the synchronization with the reference clock is maintained, so that time stamp drift does not occur. Therefore, t1 [s] can be set long, and the measurement accuracy of the time lag can be improved.
  • FIG. 16 is a flowchart showing an example of the mode selection procedure of the communication system according to the fifth embodiment of the present invention.
  • the configuration of the communication system of the present embodiment is described as being the same as that of the first embodiment, but is not limited to this and may be the configurations of the second to fourth embodiments.
  • the sleep times of the TRx sleep mode and the Tx sleep mode can be set independently.
  • the sleep time of TRx sleep when the sleep time of TRx sleep is set so that time stamp drift does not occur, the sleep time is shortened, so that the power consumption may increase compared to the conventional case. Depending on the performance of the optical device, it may not respond to the sleep time (the sleep time in the TRx sleep mode is shorter than the minimum value of the sleep time depending on the performance of the optical device). In this case, the Tx sleep mode is applied instead of the TRx sleep mode. In addition, since the Tx sleep mode reduces the amount of power consumption compared to the TRx sleep mode at the same sleep time, there is no sleep time for the sleep mode in the negotiation so that the power consumption can be reduced as much as possible in the Tx sleep mode.
  • the mode selection shown in FIG. 16 is performed by the MPCP control unit 252 of the OLT 2, but is not limited thereto, and may be performed by the ONU 1-1 (power save control unit 153, etc.).
  • the OLT 2 may select the mode, and the time stamp drift does not occur as in the second embodiment.
  • the ONU 1-1 may perform mode selection.
  • the MPCP control unit 252 of the OLT 2 performs mode selection.
  • the MPCP control unit 252 determines that the sleep time obtained from the error for the ONU 1-1 (the sleep time obtained so that the time stamp drift described in the first to fourth embodiments does not occur) is optical. It is determined whether or not the sleep time obtained from the performance of the device is not less than the minimum value (step S21). When the sleep time obtained from the error is smaller than the minimum value of the sleep time obtained from the performance of the optical device (No in step S21), the Tx sleep mode is applied to the ONU 1-1 (step S22).
  • Step S21 If the sleep time obtained from the error is equal to or greater than the minimum value of the sleep time obtained from the performance of the optical device (step S21, Yes), it is determined whether the power consumption of the TRx sleep mode is smaller than the power consumption of the Tx sleep mode. (Step S23). When the power consumption in the TRx sleep mode is smaller than the power consumption in the Tx sleep mode (step S23, Yes), the TRx sleep mode is applied to the ONU 1-1 (step S24). When the power consumption in the TRx sleep mode is equal to or higher than the power consumption in the Tx sleep mode (No in step S23), the Tx sleep mode is applied to the ONU 1-1 (step S25).
  • the operations of the present embodiment other than those described above are the same as those of the first to fourth embodiments.
  • the communication system, the subscriber side optical communication apparatus, the station side optical communication apparatus, the control apparatus, and the power saving control method according to the present invention are useful for the PON system, and in particular, the PON system that performs the power saving control. Suitable for

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Abstract

In the present invention, a communication system is provided with ONUs (ONU 1-1 to 1-n) and the ONU (1-1) that operates using a clock extracted from optical signals received from an OLT (2) by a receiver (13) and operates using a free-running clock in TRx sleep mode. The communication system is also provided with a time lag calculation unit (155) that measures the time lag between the OLT (2) clock and the free-running clock of the ONU (1-1), and with a sleep time calculation unit (254) that calculates the sleep time so as to prevent time stamp drift, on the basis of the time lag and a threshold that determines whether or not there is a time stamp drift. The ONU (1-1) uses the sleep time calculated by the sleep time calculation unit (254) as the sleep time for the TRx sleep mode.

Description

通信システム、加入者側光通信装置、局側光通信装置、制御装置および省電力制御方法Communication system, subscriber side optical communication apparatus, station side optical communication apparatus, control apparatus, and power saving control method
 本発明は、通信システム、加入者側光通信装置、局側光通信装置、制御装置および省電力制御方法に関する。 The present invention relates to a communication system, a subscriber-side optical communication device, a station-side optical communication device, a control device, and a power saving control method.
 PON(Passive Optical Network)システムにおいて、トラヒックが無いときにONU(Optical Network Unit)をパワーダウンさせる省電力制御プロトコルの標準化が検討されている(例えば、下記非特許文献1参照)。 In the PON (Passive Optical Network) system, standardization of a power saving control protocol for powering down an ONU (Optical Network Unit) when there is no traffic is being studied (for example, see Non-Patent Document 1 below).
 省電力制御では、例えば、送信機能を間欠停止させるTxスリープモード、送受信機能を間欠停止させるTRxスリープモード等の複数のスリープモードが用いられる。省電力制御を行う際には、OLTとONUの間で、対応可能なスリープモードや省電力制御に関連するパラメータをやりとりするネゴシエーションが行われ、このネゴシエーションにより合意したパラメータ等に基づいて省電力制御が実施される。 In the power saving control, for example, a plurality of sleep modes such as a Tx sleep mode in which the transmission function is intermittently stopped and a TRx sleep mode in which the transmission / reception function is intermittently stopped are used. When performing power saving control, negotiation is performed between the OLT and the ONU for exchanging compatible sleep modes and parameters related to power saving control, and power saving control is performed based on parameters agreed upon by this negotiation. Is implemented.
 OLTと各ONU間では、ONUがOLTから送信された信号を受信する通常状態では、ONUは受信した信号に基づいてクロック同期を実施している。しかしながら、例えば、TRxスリープモードで送受信機能を停止させている間は、ONUは、内蔵するクロック源を用いることになる。そのため、停止状態から復帰したときにOLTとONUの間のクロックの偏差が生じ、タイムスタンプドリフトによるリンク断が生じる可能性がある、という問題がある。なお、タイムスタンプドリフトとは、OLTとONUの間のクロック偏差が閾値を超えた状態であり、PONシステムではタイムスタンプドリフトが生じるとONUとOLTが同期できないと判定されPONリンクを切断する処理が行われる。 Between the OLT and each ONU, in a normal state in which the ONU receives a signal transmitted from the OLT, the ONU performs clock synchronization based on the received signal. However, for example, while the transmission / reception function is stopped in the TRx sleep mode, the ONU uses the built-in clock source. Therefore, there is a problem that a clock deviation between the OLT and the ONU occurs when returning from the stop state, and link breakage may occur due to time stamp drift. The time stamp drift is a state in which the clock deviation between the OLT and the ONU exceeds a threshold value. In the PON system, when the time stamp drift occurs, it is determined that the ONU and the OLT cannot be synchronized, and a process of disconnecting the PON link is performed. Done.
 本発明は、上記に鑑みてなされたものであって、タイムスタンプドリフトを回避することができる通信システム、加入者側光通信装置、局側光通信装置、制御装置および省電力制御方法を得ることを目的とする。 The present invention has been made in view of the above, and obtains a communication system, a subscriber side optical communication apparatus, a station side optical communication apparatus, a control apparatus, and a power saving control method capable of avoiding time stamp drift. With the goal.
 上述した課題を解決し、目的を達成するために、本発明は、局側光通信装置と、送信器および受信器を間欠的に停止させる送受信スリープモードへの遷移が可能であり、前記受信器によって前記局側光通信装置より受信した光信号から抽出したクロックを用いて動作し、前記受信器が停止状態の間は自走クロックを用いて動作する加入者側光通信装置と、を備える通信システムであって、前記局側光通信装置のクロックと前記加入者側光通信装置の前記自走クロックとの間の誤差を測定する時刻誤差算出部と、タイムスタンプドリフトの発生の有無を判定する閾値と前記誤差とに基づいて、タイムスタンプドリフトが発生しないよう前記送信器および前記受信器のスリープ時間を算出するスリープ時間算出部と、を備え、前記加入者側光通信装置は、前記スリープ時間算出部が算出したスリープ時間を前記送受信スリープモードのスリープ時間として用いる、ことを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention is capable of transitioning to a transmission / reception sleep mode in which a station-side optical communication device, a transmitter, and a receiver are intermittently stopped. A subscriber-side optical communication device that operates using a clock extracted from the optical signal received from the station-side optical communication device and operates using a free-running clock while the receiver is in a stopped state. A time error calculating unit for measuring an error between the clock of the optical communication apparatus on the station side and the free-running clock of the optical communication apparatus on the subscriber side, and determining whether a time stamp drift has occurred A sleep time calculation unit for calculating a sleep time of the transmitter and the receiver based on a threshold value and the error so as not to cause a time stamp drift, and Device uses a sleep time during which the sleep time calculating unit has calculated as the sleep time of the transceiver sleep mode, characterized in that.
 本発明にかかる加入者側光通信装置、局側光通信装置、制御装置および省電力制御方法は、タイムスタンプドリフトを回避することができるという効果を奏する。 The subscriber-side optical communication device, the station-side optical communication device, the control device, and the power saving control method according to the present invention have the effect that time stamp drift can be avoided.
図1は、実施の形態1の通信システムの構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a communication system according to the first embodiment. 図2は、Txスリープモードの動作例を示す図である。FIG. 2 is a diagram illustrating an operation example of the Tx sleep mode. 図3は、TRxスリープモードの動作例を示す図である。FIG. 3 is a diagram illustrating an operation example of the TRx sleep mode. 図4は、初期化時のネゴシエーションの従来の手順の一例を示す図である。FIG. 4 is a diagram illustrating an example of a conventional procedure for negotiation at the time of initialization. 図5は、従来のパワーセーブモードへの移行シーケンスの一例を示す図である。FIG. 5 is a diagram showing an example of a transition sequence to a conventional power save mode. 図6は、実施の形態1のTxスリープモード、TRxスリープモードにおけるスリープ時間およびアウェア時間の一例を示す図である。FIG. 6 is a diagram illustrating an example of a sleep time and an aware time in the Tx sleep mode and the TRx sleep mode according to the first embodiment. 図7は、実施の形態1の時刻ずれの測定手順の一例を示すチャート図である。FIG. 7 is a chart diagram illustrating an example of a procedure for measuring time lag according to the first embodiment. 図8は、実施の形態1のネゴシエーション手順の一例を示すチャート図である。FIG. 8 is a chart diagram illustrating an example of a negotiation procedure according to the first embodiment. 図9は、スリープ時間とアウェア時間を通知する場合のデータフォーマットの一例を示す図である。FIG. 9 is a diagram illustrating an example of a data format when the sleep time and the aware time are notified. 図10は、実施の形態2の通信システムの構成例を示す図である。FIG. 10 is a diagram illustrating a configuration example of a communication system according to the second embodiment. 図11は、実施の形態2の時刻ずれの測定手順の一例を示すチャート図である。FIG. 11 is a chart illustrating an example of a procedure for measuring the time lag according to the second embodiment. 図12は、実施の形態3の通信システムの構成例を示す図である。FIG. 12 is a diagram illustrating a configuration example of a communication system according to the third embodiment. 図13は、実施の形態3の時刻ずれの測定手順の一例を示すチャート図である。FIG. 13 is a chart diagram illustrating an example of a procedure for measuring time lag according to the third embodiment. 図14は、実施の形態4の通信システムの構成例を示す図である。FIG. 14 is a diagram illustrating a configuration example of a communication system according to the fourth embodiment. 図15は、実施の形態4の時刻ずれの測定手順の一例を示すチャート図である。FIG. 15 is a chart diagram illustrating an example of a procedure for measuring time lag according to the fourth embodiment. 図16は、実施の形態5のモード選択手順の一例を示すフローチャートである。FIG. 16 is a flowchart illustrating an example of a mode selection procedure according to the fifth embodiment.
 以下に、本発明にかかる加入者側光通信装置、局側光通信装置、制御装置および省電力制御方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Embodiments of a subscriber-side optical communication device, a station-side optical communication device, a control device, and a power saving control method according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明にかかる通信システムの実施の形態1の構成例を示す図である。本実施の形態の通信システムは、ONU(加入者側光通信装置)1-1~1-n(nは1以上の整数)と、OLT(局側光通信装置)2と、で構成される。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration example of a first embodiment of a communication system according to the present invention. The communication system according to the present embodiment includes ONUs (subscriber side optical communication apparatuses) 1-1 to 1-n (n is an integer of 1 or more) and OLT (station side optical communication apparatus) 2. .
 ONU1-1は、上りデータと下りデータを波長多重するWDM(Wavelength Division Multiplexing)11と、電気信号を光信号に変換して送信する送信器12と、受信した光信号を電気信号に変換する受信器13と、送信バッファ14と、制御部(制御装置)15と、受信バッファ16と、PHY(物理層処理部)17と、を備える。制御部15は、セレクタ151と、MPCP制御部152と、パワーセーブ(省電力)制御部153と、自走クロック制御部154と、時刻ずれ算出部(クロック誤差算出部)155と、を備える。PHY部17は、受信器171および送信器172を備える。ONU1-2~1-nの構成は、ONU1-1の構成と同様である。 The ONU 1-1 is a WDM (Wavelength Division Multiplexing) 11 that wavelength-multiplexes upstream and downstream data, a transmitter 12 that converts an electrical signal into an optical signal, and a receiver that converts the received optical signal into an electrical signal. Device 13, transmission buffer 14, control unit (control device) 15, reception buffer 16, and PHY (physical layer processing unit) 17. The control unit 15 includes a selector 151, an MPCP control unit 152, a power save (power saving) control unit 153, a free-running clock control unit 154, and a time shift calculation unit (clock error calculation unit) 155. The PHY unit 17 includes a receiver 171 and a transmitter 172. The configuration of the ONUs 1-2 to 1-n is the same as that of the ONU 1-1.
 OLT2は、WDM21と、電気信号を光信号に変換して送信する送信器22と、受信した光信号を電気信号に変換する受信器23と、送信バッファ24と、制御部(制御装置)25と、受信バッファ26と、PHY(物理層処理部)27と、を備える。制御部25は、自走クロック制御部251と、MPCP制御部252と、パワーセーブ制御部253と、スリープ時間算出部254と、を備える。PHY部27は、受信器271および送信器272を備える。 The OLT 2 includes a WDM 21, a transmitter 22 that converts an electrical signal into an optical signal and transmits it, a receiver 23 that converts the received optical signal into an electrical signal, a transmission buffer 24, and a control unit (control device) 25. A reception buffer 26 and a PHY (physical layer processing unit) 27. The control unit 25 includes a free-running clock control unit 251, an MPCP control unit 252, a power save control unit 253, and a sleep time calculation unit 254. The PHY unit 27 includes a receiver 271 and a transmitter 272.
 まず、通常時(ONU1-1がスリープモード(省電力モード)でない場合)、の動作について説明する。ONU1-1のPHY17は、ユーザ端末等に接続される。PHY17の受信器171は、ユーザ端末等から受信したデータを制御部15へ渡し、制御部15は受け取ったデータを上りデータとして送信バッファ14へ格納する。MPCP制御部152は、OLT2との間でやりとりされるMPCPメッセージの送受信処理を行う。MPCP制御部152は、OLT2からMPCPメッセージとして送信される帯域割当通知に基づいて、送信を許可された時間帯内で送信バッファ14から上りデータを読み出して送信器12およびWDM11経由で光信号としてOLT2へ送信する。 First, the operation during normal time (when the ONU 1-1 is not in the sleep mode (power saving mode)) will be described. The PHY 17 of the ONU 1-1 is connected to a user terminal or the like. The receiver 171 of the PHY 17 passes the data received from the user terminal or the like to the control unit 15, and the control unit 15 stores the received data in the transmission buffer 14 as uplink data. The MPCP control unit 152 performs transmission / reception processing of the MPCP message exchanged with the OLT 2. The MPCP control unit 152 reads the uplink data from the transmission buffer 14 within the time period permitted for transmission based on the bandwidth allocation notification transmitted from the OLT 2 as an MPCP message, and transmits the uplink data as an optical signal via the transmitter 12 and the WDM 11. Send to.
 OLT2では、受信器13がWDM21経由でONU1-1から受信した電気信号に変換し、MPCP制御部252へ出力する。MPCP制御部152は、受信器23から入力されたデータ(電気信号)が、コアネットワーク等のPHY27経由で上位ネットワークへ送信するデータである場合には、当該データを受信バッファ26に格納し、受信器23から入力されたデータがMPCPメッセージである場合には、当該メッセージに基づいた処理を実施する。受信バッファ26に格納されたデータは、制御部25および送信器272を経由して上位ネットワーク等へ送信される。 In OLT 2, the receiver 13 converts the electrical signal received from the ONU 1-1 via the WDM 21 and outputs it to the MPCP control unit 252. When the data (electrical signal) input from the receiver 23 is data to be transmitted to the upper network via the PHY 27 such as the core network, the MPCP control unit 152 stores the data in the reception buffer 26 and receives the data. If the data input from the device 23 is an MPCP message, processing based on the message is performed. The data stored in the reception buffer 26 is transmitted to the upper network or the like via the control unit 25 and the transmitter 272.
 OLT2の自走クロック制御部251は、発振器/発振子等の内部クロック源を有しており、内部クロック源によるクロックをMPCP制御部252へ供給する。MPCP制御部252は、自走クロック制御部251から供給されたクロックに基づいて動作する。また、MPCP制御部252は、ONU1-1~1-nのMPCPメッセージとして送信される帯域割当要求に基づいてONU1-1~1-nに対してそれぞれ帯域を割当て、割当結果を帯域割当通知としてONU1-1~1-nへ送信器22経由で送信する。 The free-running clock control unit 251 of the OLT 2 has an internal clock source such as an oscillator / resonator and supplies a clock from the internal clock source to the MPCP control unit 252. The MPCP control unit 252 operates based on the clock supplied from the free-running clock control unit 251. In addition, the MPCP control unit 252 allocates a band to each of the ONUs 1-1 to 1-n based on the band allocation request transmitted as the MPCP message of the ONUs 1-1 to 1-n, and uses the allocation result as a band allocation notification. Transmit to the ONUs 1-1 to 1-n via the transmitter 22.
 また、OLT2の受信器271は、上位ネットワーク等から受信したデータを制御部25へ渡し、制御部25が当該データを送信バッファ24へ格納する。MPCP制御部252は、送信バッファ24に格納されたデータを、送信器22およびWDM21を経由してONU1-1~1-nへ光信号として送信する。 Also, the receiver 271 of the OLT 2 passes the data received from the upper network or the like to the control unit 25, and the control unit 25 stores the data in the transmission buffer 24. The MPCP control unit 252 transmits the data stored in the transmission buffer 24 as an optical signal to the ONUs 1-1 to 1-n via the transmitter 22 and the WDM 21.
 ONU1-1の受信器13は、WDM11経由でOLT2から送信された光信号を受信して電気信号に変換する。また、受信器13は、CDR(Clock Data Recovery)の機能を備え、電気信号に変換後の信号から、OLT2より送信されたクロックと下りデータとを抽出し、抽出した下りデータをMPCP制御部152へ出力し、抽出したクロックをセレクタ15へ出力する。本実施の形態では、受信器13により抽出されたクロック(すなわち、OLT2からの光信号に基づいて再生したクロック)をリファレンスクロックと呼ぶこととする。なお、ここでは、受信器13がCDRの機能を有するようにしたが、CDRを受信器13とは独立した構成要素として備えるようにしてもよい。 The receiver 13 of the ONU 1-1 receives the optical signal transmitted from the OLT 2 via the WDM 11 and converts it into an electrical signal. The receiver 13 also has a CDR (Clock Data Recovery) function, extracts the clock and downlink data transmitted from the OLT 2 from the signal converted into an electrical signal, and extracts the extracted downlink data to the MPCP control unit 152. And the extracted clock is output to the selector 15. In the present embodiment, a clock extracted by the receiver 13 (that is, a clock regenerated based on an optical signal from the OLT 2) is referred to as a reference clock. Here, the receiver 13 has the CDR function, but the CDR may be provided as a component independent of the receiver 13.
 MPCP制御部152は、受信器13から入力された下りデータが、PHY17経由で接続しているユーザ端末等宛のデータである場合には、当該データを受信バッファ16に格納し、受信器13から入力された下りデータがMPCPメッセージである場合には、当該メッセージに基づいた処理を実施する。受信バッファ16に格納されたデータは、制御部15および送信器172を経由してユーザ端末等へ送信される。 When the downlink data input from the receiver 13 is data addressed to a user terminal or the like connected via the PHY 17, the MPCP control unit 152 stores the data in the reception buffer 16 and receives the data from the receiver 13. If the input downlink data is an MPCP message, processing based on the message is performed. Data stored in the reception buffer 16 is transmitted to the user terminal or the like via the control unit 15 and the transmitter 172.
 自走クロック制御部154は、発振器/発振子等の内部クロック源を有しており、内部クロック源によるクロック(自走クロック)をセレクタ151に出力する。セレクタ151は、受信器13からクロック(リファレンスクロック)が入力されている場合は受信器13からのクロックをMPCP制御部152へ供給し、受信器13からクロック(リファレンスクロック)が入力されない場合は自走クロック制御部154からのクロック(自走クロック)をMPCP制御部152へ供給する。MPCP制御部152は、セレクタ151から供給されるクロックに基づいて動作する。また、MPCP制御部152は、時刻を管理しており、帯域割当通知等のMPCPメッセージに格納されたOLT2が管理している時刻を示すタイムスタンプを抽出し、タイムスタンプに自身が管理する時刻を同期(タイムスタンプ同期)させる。また、入力されるクロックに基づいて自身の管理する時刻を1カウントずつインクリメントする。なお、受信器13はOLT2からの光信号に基づいて再生したリファレンスクロックの代わりに、アイドル信号等をセレクタ151に出力することがある。このような場合、受信器13は、セレクタ151へ出力する信号がリファレンスクロックかアイドル信号等であるかを識別する制御信号を生成し、セレクタ151へ出力する。セレクタ151は、この制御信号に基づき、リファレンスクロックまたは自走クロックを出力する。 The free-running clock control unit 154 has an internal clock source such as an oscillator / resonator and outputs a clock (free-running clock) from the internal clock source to the selector 151. The selector 151 supplies the clock from the receiver 13 to the MPCP control unit 152 when the clock (reference clock) is input from the receiver 13, and the selector 151 when the clock (reference clock) is not input from the receiver 13. The clock (self-running clock) from the running clock control unit 154 is supplied to the MPCP control unit 152. The MPCP control unit 152 operates based on the clock supplied from the selector 151. In addition, the MPCP control unit 152 manages time, extracts a time stamp indicating the time managed by the OLT 2 stored in the MPCP message such as a bandwidth allocation notification, and sets the time managed by itself to the time stamp. Synchronize (time stamp synchronization). Also, the time managed by itself is incremented by one count based on the input clock. The receiver 13 may output an idle signal or the like to the selector 151 instead of the reference clock regenerated based on the optical signal from the OLT 2. In such a case, the receiver 13 generates a control signal for identifying whether the signal output to the selector 151 is a reference clock or an idle signal, and outputs the control signal to the selector 151. The selector 151 outputs a reference clock or a free-running clock based on this control signal.
 つぎに、本実施の形態の省電力制御について説明する。ここでは、ONU1-1は、省電力モードとして、送信機能を間欠停止させるTxスリープモード、送受信機能を間欠停止させるTRxスリープモードの2つのパワーセーブモードを有しているとする。MPCP制御部152は、省電力制御に関するメッセージを受信した場合に、当該メッセージに基づいて省電力制御に関する情報(スリープモードの種別や、スリープ時間等)をパワーセーブ制御部153に通知する。パワーセーブ制御部153は、これらの情報に基づいて送信器12および受信器13に対して停止や起動等のパワーセーブ制御を実施する。 Next, the power saving control of this embodiment will be described. Here, it is assumed that the ONU 1-1 has two power save modes as a power saving mode, a Tx sleep mode in which the transmission function is intermittently stopped and a TRx sleep mode in which the transmission / reception function is intermittently stopped. When the MPCP control unit 152 receives a message related to power saving control, the MPCP control unit 152 notifies the power save control unit 153 of information related to power saving control (such as a sleep mode type and a sleep time) based on the message. The power save control unit 153 performs power save control such as stop and start on the transmitter 12 and the receiver 13 based on these pieces of information.
 図2は、Txスリープモードの動作例を示す図であり、図3は、TRxスリープモードの動作例を示す図である。図2に示すように、Txスリープモードでは、Tx(送信器12)を停止状態とする停止期間とTxを起動状態とする起動時間とを交互に繰り返す。図3に示すように、TRxスリープモードでは、TRx(送信器12および受信器13)を停止状態とする停止期間とTRxを起動状態とする起動時間とを交互に繰り返す。以降の説明では、この停止期間の長さをスリープ時間、起動時間の長さをアウェア時間と呼ぶこととする。なお、Txスリープモードでは、停止時間帯に、送信器12だけでなくONU1-1からOLT2への送信に関する処理を行う他の機能部を停止させてもよい。同様に、TRxスリープモードでは、停止時間帯に、送信器12および受信器13だけでなくOLT2からの受信に関する処理を行う他の機能部を停止させてもよい。 FIG. 2 is a diagram illustrating an operation example in the Tx sleep mode, and FIG. 3 is a diagram illustrating an operation example in the TRx sleep mode. As shown in FIG. 2, in the Tx sleep mode, a stop period in which Tx (transmitter 12) is stopped and a start time in which Tx is in a start state are alternately repeated. As shown in FIG. 3, in the TRx sleep mode, a stop period in which TRx (transmitter 12 and receiver 13) is stopped and a start-up time in which TRx is started are alternately repeated. In the following description, the length of the stop period is called sleep time, and the length of activation time is called aware time. In the Tx sleep mode, not only the transmitter 12 but also other functional units that perform processing related to transmission from the ONU 1-1 to the OLT 2 may be stopped during the stop time period. Similarly, in the TRx sleep mode, not only the transmitter 12 and the receiver 13 but also other functional units that perform processing related to reception from the OLT 2 may be stopped during the stop time period.
 OLT2においても、パワーセーブ制御部253によりOLT2のパワーセーブ制御が実施されるが、これについては従来と同様であるため説明を省略する。 Also in OLT 2, power save control of OLT 2 is performed by the power save control unit 253, but since this is the same as the conventional one, description thereof is omitted.
 ここで、従来の省電力制御について説明する。図4は、初期化時のネゴシエーションの従来の手順の一例を示す図である。まず、ONUの起動時等の初期化時には、OLTとONUとの間で、通信に必要な情報をやりとりするディスカバリシーケンスが実施された後、ネゴシエーションが実施される。図4は、このネゴシエーションの従来の手順の一例を示しており、まず、OLTからONUへ送信器初期化時間、送受信器初期化時間の要求が送信される(ステップS101)。ONUは、この要求を受信すると自装置の送信器初期化時間、送受信器初期化時間を送信する(ステップS102)。なお、送信器初期化時間、送受信器初期化時間は、送信器(または送信器および受信器)が停止の状態からONとなった場合に、実際に動作可能な状態となるまでの時間である。 Here, conventional power saving control will be described. FIG. 4 is a diagram illustrating an example of a conventional procedure for negotiation at the time of initialization. First, at initialization such as when the ONU is started up, a discovery sequence for exchanging information necessary for communication is performed between the OLT and the ONU, and then negotiation is performed. FIG. 4 shows an example of the conventional procedure of this negotiation. First, a request for transmitter initialization time and transmitter / receiver initialization time is transmitted from the OLT to the ONU (step S101). Upon receiving this request, the ONU transmits its own transmitter initialization time and transmitter / receiver initialization time (step S102). The transmitter initialization time and the transmitter / receiver initialization time are times until the transmitter (or the transmitter and the receiver) are actually operable when the transmitter (or the transmitter and the receiver) is turned on. .
 次に、OLTは、パワーセーブモードにおけるスリープ時間とアウェア時間を設定してONUへ通知する(ステップS103)。ONUは、この通知されたスリープ時間とアウェア時間に対する応答を送信する(ステップS104)。以上の手順により、OLTとONUの間でスリープ時間とアウェア時間の合意がなされる。従来の省電力制御では、パワーセーブモードの種別(Txスリープモード、TRxスリープモード等)によらず、スリープ時間とアウェア時間は共通の値が設定される。 Next, the OLT sets the sleep time and the aware time in the power save mode and notifies the ONU (step S103). The ONU transmits a response to the notified sleep time and aware time (step S104). Through the above procedure, the sleep time and the aware time are agreed between the OLT and the ONU. In conventional power saving control, a common value is set for the sleep time and the aware time regardless of the type of power save mode (Tx sleep mode, TRx sleep mode, etc.).
 図5は、従来のパワーセーブモード(TxスリープモードまたはTRxスリープモード)への移行シーケンスの一例を示す図である。OLTからパワーモードの遷移許可が送信される(ステップS201)と、ONUはパワーセーブ遷移をOLTへ通知するとともにパワーセーブモードへ遷移する(ステップS202)。そして、Txスリープモードに遷移した場合は、Txの停止状態と起動状態を交互に実施し、TRxスリープモードに遷移した場合は、TRxの停止状態と起動状態を交互に実施する。 FIG. 5 is a diagram showing an example of a transition sequence to a conventional power save mode (Tx sleep mode or TRx sleep mode). When power mode transition permission is transmitted from the OLT (step S201), the ONU notifies the OLT of the power save transition and transitions to the power save mode (step S202). When transitioning to the Tx sleep mode, the Tx stop state and activation state are alternately performed, and when transitioning to the TRx sleep mode, the TRx halt state and activation state are alternately performed.
 OLTは、帯域割当通知を例えば定期的にONUへ送信し(ステップS203)、帯域割当通知を受信すると帯域要求を送信する(ステップS204)。なお、ここでは、ONUがパワーセーブモードへ遷移した後も、帯域割当通知は例えば定期的に送信されるとする。 The OLT periodically transmits a bandwidth allocation notification to the ONU, for example (step S203), and transmits a bandwidth request when the bandwidth allocation notification is received (step S204). In this case, it is assumed that the bandwidth allocation notification is periodically transmitted even after the ONU transitions to the power save mode.
 通常動作時は、ONUは、OLTから受信したMPCPメッセージに格納されたOLTのタイムスタンプに基づいてOLTとタイムスタンプ同期を行い、さらに、OLTから受信した信号から抽出したクロックを用いて動作することによりクロック同期を行うことができ、OLTの管理する時刻との同期を実現している。しかしながら、以上の図4および図5を用いて説明した従来の省電力制御では、TRxスリープモードで受信器13が停止してしまうとクロックの抽出ができなくなる。したがって、この間は、ONUでは自走クロックを用いることになり、OLTとONUの内部クロックの周波数偏差により、スリープ時間が長くなるにつれてOLTの管理する時刻とのずれが大きくなる。このため、TRxスリープモードの停止状態から、起動状態または通常状態へ遷移して帯域許可通知を受信し、この帯域許可通知に格納されたタイムスタンプと、ONUが管理する時刻(自走クロックによりカウンタをインクリメントすることにより求める時刻)と、の差が閾値より大きい場合、タイムスタンプドリフトが発生しOLTとONUのリンクが切断される。 During normal operation, the ONU performs time stamp synchronization with the OLT based on the OLT time stamp stored in the MPCP message received from the OLT, and further operates using the clock extracted from the signal received from the OLT. Thus, clock synchronization can be performed, and synchronization with the time managed by the OLT is realized. However, in the conventional power saving control described with reference to FIGS. 4 and 5 described above, the clock cannot be extracted if the receiver 13 stops in the TRx sleep mode. Therefore, during this time, the ONU uses a free-running clock, and due to the frequency deviation between the OLT and the internal clock of the ONU, the deviation from the time managed by the OLT increases as the sleep time increases. For this reason, a transition from the stop state of the TRx sleep mode to the start state or the normal state is received to receive a bandwidth permission notification, and the time stamp stored in the bandwidth permission notification and the time managed by the ONU (counter based on the free-running clock) If the difference between the time and the time obtained by incrementing is larger than the threshold value, a time stamp drift occurs and the link between the OLT and the ONU is disconnected.
 本実施の形態では、上述した従来の省電力制御におけるタイムスタンプドリフトの発生を防ぐために、TRxスリープモードのスリープ時間を調整する。TxスリープモードとTRxスリープモードのスリープ時間は独立に設定するとして以下の説明を実施するが、TxスリープモードとTRxスリープモードのスリープ時間は共通としてもよい。アウェア時間については、TxスリープモードとTRxスリープモードとで独立に設定してもよいし、共通としてもよい。OLT2が、帯域割当通知を送信する際にONU1-1がパワーセーブモードであるか否かを考慮しない場合(パワーセーブモードの停止状態、起動状態に関係なく例えば定期的に帯域割当通知を送信する場合)には、アウェア時間はどのように決定してもよい。また、スリープ時間を短くした分アウェア時間を長くするようにしてもよい。 In this embodiment, the sleep time of the TRx sleep mode is adjusted in order to prevent the occurrence of time stamp drift in the above-described conventional power saving control. The following description will be given assuming that the sleep times of the Tx sleep mode and the TRx sleep mode are set independently, but the sleep times of the Tx sleep mode and the TRx sleep mode may be common. The aware time may be set independently in the Tx sleep mode and the TRx sleep mode or may be common. When the OLT 2 does not consider whether or not the ONU 1-1 is in the power save mode when transmitting the bandwidth allocation notification (for example, periodically transmits the bandwidth allocation notification regardless of whether the power save mode is stopped or activated) If), the aware time may be determined in any way. Further, the aware time may be lengthened as the sleep time is shortened.
 図6は、本実施の形態のTxスリープモード、TRxスリープモードにおけるスリープ時間およびアウェア時間の一例を示す図である。上段には、Txスリープモードにおけるスリープ時間およびアウェア時間を示し、下段にはTRxスリープモードにおける本実施の形態のスリープ時間およびアウェア時間を示している。図6の例では、TRxスリープモードのスリープ時間をTxスリープモードより短くし、TRxスリープモードのスリープ時間を短くした分TRxスリープモードのアウェア時間を長くした例を示しているが、TRxスリープモードのアウェア時間の設定方法はこれに限定されない。 FIG. 6 is a diagram illustrating an example of the sleep time and the aware time in the Tx sleep mode and the TRx sleep mode according to the present embodiment. The upper part shows the sleep time and the aware time in the Tx sleep mode, and the lower part shows the sleep time and the aware time of the present embodiment in the TRx sleep mode. In the example of FIG. 6, the sleep time in the TRx sleep mode is shorter than that in the Tx sleep mode, and the amount of time in the TRx sleep mode is increased as much as the sleep time in the TRx sleep mode is shortened. The setting method of the awareness time is not limited to this.
 次に、本実施の形態のTRxスリープモードのスリープ時間の設定方法について説明する。本実施の形態では、一定時間自走クロックで動作した場合のOLT2の時刻との時刻ずれ(クロック誤差)を算出し、この算出した時刻ずれに基づいてTRxスリープモードのスリープ時間をタイムスタンプドリフトが発生しないような長さに設定する。具体的には、例えば、以下のようにスリープ時間を設定する。OLT2のクロック周波数をf[Hz]とし、OLT2のクロック周波数に対するONU1-1のクロック周波数の相対誤差をeとすると、ONU1-1のクロック周波数は(1+e)f[Hz]である。ここで、TRxスリープモード時のスリープ時間をts[s]とすると、スリープ時間が満了し電源がオンになったときに、OLT2に対するONU1-1の時刻ずれtd[s]は以下の式(1)で示すことができる。なお、スリープ時間の開始時には、ONU1-1の時刻はOLT2の時刻に同期しているとする。
   td={e/(1+e)}ts      …(1)
Next, a method for setting the sleep time in the TRx sleep mode of the present embodiment will be described. In this embodiment, a time lag (clock error) with respect to the time of OLT 2 when operating with a free-running clock for a certain time is calculated, and the time stamp drift is calculated based on the calculated time lag as the sleep time in TRx sleep mode. Set the length so that it does not occur. Specifically, for example, the sleep time is set as follows. When the clock frequency of OLT2 is f [Hz] and the relative error of the clock frequency of ONU1-1 with respect to the clock frequency of OLT2 is e, the clock frequency of ONU1-1 is (1 + e) f [Hz]. Here, assuming that the sleep time in the TRx sleep mode is t s [s], the time shift t d [s] of the ONU 1-1 with respect to the OLT 2 when the sleep time expires and the power is turned on is It can be shown by (1). It is assumed that the ONU 1-1 time is synchronized with the OLT 2 time at the start of the sleep time.
t d = {e / (1 + e)} t s (1)
 タイムスタンプドリフトが発生する時刻ずれの閾値をtth[s]とすると、td>tthとなった場合にタイムスタンプドリフトが発生する。したがって、以下の式(2)を満たせばタイムスタンプドリフトは発生しないため、以下の式(2)を満たすようスリープ時間ts[s]を決定する。
   td≦tth                …(2)
Assuming that the threshold of time lag at which time stamp drift occurs is t th [s], time stamp drift occurs when t d > t th . Therefore, since the time stamp drift does not occur if the following expression (2) is satisfied, the sleep time t s [s] is determined so as to satisfy the following expression (2).
t d ≦ t th (2)
 相対誤差eは、仕様値やあらかじめ測定しておいた測定結果に基づく固定値を用いることも考えられるが、環境等により変化する可能性があるため、実測により求める方がより精度よく求められる。そこで、本実施の形態では、以下のように時刻ずれを実測し、この実測値に基づいて相対誤差eを求めることとする。相対誤差eを求めた後は、上記式(1)を式(2)に代入し、以下の式(3)を満たすようにts[s]を決定する。例えば、スリープ時間は長い方が省電力効果が高いため、下記(3)を満たす範囲の最大の値にts[s]を決定することができる。
   {e/(1+e)}ts≦tth        …(3)
As the relative error e, a fixed value based on a specification value or a measurement result measured in advance may be used. However, since the relative error e may change depending on the environment or the like, it is more accurately obtained by actual measurement. Therefore, in the present embodiment, the time lag is measured as follows, and the relative error e is obtained based on this measured value. After obtaining the relative error e, the above equation (1) is substituted into the equation (2), and t s [s] is determined so as to satisfy the following equation (3). For example, since the longer the sleep time, the higher the power saving effect, t s [s] can be determined as the maximum value in a range that satisfies the following (3).
{E / (1 + e)} t s ≦ t th (3)
 時刻ずれの測定方法について説明する。図7は、本実施の形態の時刻ずれの測定手順の一例を示すチャート図である。図7に示すように、まず、パワーセーブに必要な情報(パワーセーブモードごとのスリープ時間およびアウェア時間を含む)をOLT2とONU1-1の間でネゴシエーションする(ステップS1)。このネゴシエーションについては後述する。ネゴシエーションの際に設定されるTRxスリープモードのスリープ時間はこの時点では時刻ずれの測定がなされていないため、タイムスタンプドリフトを防ぐため、初期値として十分短い値を設定しておく。例えば、想定される最大の相対誤差を仮定した場合にもタイムスタンプドリフトが発生しないような短い値としておく。 説明 Explain how to measure the time difference FIG. 7 is a chart showing an example of a procedure for measuring the time lag according to the present embodiment. As shown in FIG. 7, first, information necessary for power saving (including sleep time and aware time for each power saving mode) is negotiated between OLT 2 and ONU 1-1 (step S1). This negotiation will be described later. The TRx sleep mode sleep time set at the time of negotiation is not measured at this time, so a sufficiently short value is set as an initial value in order to prevent time stamp drift. For example, even if the assumed maximum relative error is assumed, a short value is set so that time stamp drift does not occur.
 OLT2は、タイムスタンプを含む帯域割当通知のフレームAを送信する(ステップS2)。具体的には、OLT2のMPCP制御部252が、帯域割当通知のフレームAを生成し、送信器22およびWDM21経由でOLT1-1へ送信する。 The OLT 2 transmits a bandwidth allocation notification frame A including a time stamp (step S2). Specifically, the MPCP control unit 252 of the OLT 2 generates a bandwidth allocation notification frame A and transmits it to the OLT 1-1 via the transmitter 22 and the WDM 21.
 ONU1-1は、フレームAを受信すると、フレームAに格納されたタイムスタンプに自身の管理する時刻を同期(タイムスタンプ同期)させる(ステップS3)。具体的には、ONU1-1では、フレームAがWDM11および受信器13経由でMPCP制御部152に入力され、MPCP制御部152がフレームAに格納されたタイムスタンプに自身の管理する時刻を同期させる。この時点では、受信器13は起動しているため、リファレンスクロックがMPCP制御部152へ供給されており、OLT2とONU1-1は同期している。 When the ONU 1-1 receives the frame A, the ONU 1-1 synchronizes the time managed by the time stamp stored in the frame A (time stamp synchronization) (step S3). Specifically, in the ONU 1-1, the frame A is input to the MPCP control unit 152 via the WDM 11 and the receiver 13, and the MPCP control unit 152 synchronizes the time managed by itself with the time stamp stored in the frame A. . At this time, since the receiver 13 is activated, the reference clock is supplied to the MPCP control unit 152, and the OLT 2 and the ONU 1-1 are synchronized.
 TRxスリープモードへ遷移する時間になると、パワーセーブ制御部153は、受信器13の電源をオフし、スリープ(停止)状態となる(ステップS4)。受信器13の電源をオフした時点から、自走クロックがMPCP制御部152に供給され、MPCP制御部152は、受信器13の電源をオフした時点からt1[s]経過後、TRxスリープモードから復帰し、通常状態となる(ステップS5)。なお、t1[s]は、初回のステップS5では、ネゴシエーションで設定されたTRxスリープモードのスリープ時間の初期値である。 When it is time to transition to the TRx sleep mode, the power save control unit 153 turns off the power of the receiver 13 and enters a sleep (stop) state (step S4). The self-running clock is supplied to the MPCP control unit 152 from the time when the power of the receiver 13 is turned off, and the MPCP control unit 152 starts from the TRx sleep mode after t1 [s] from the time when the power of the receiver 13 is turned off. Return to normal state (step S5). Note that t1 [s] is the initial value of the sleep time in the TRx sleep mode set by negotiation in the first step S5.
 次に、OLT2から送信された帯域割当通知フレームBをONU1-1が受信する(ステップS6)。そして、ONU1-1は、フレームBに格納されているタイムスタンプと自装置が管理している時刻(すなわち自走クロック)との時刻ずれを算出する(ステップS7)。具体的には、フレームBを受信したONU1-1は、WDM11および受信器13経由でMPCP制御部152に入力され、MPCP制御部152は、フレームBに格納されたタイムスタンプと自装置が管理している時刻とを時刻ずれ算出部155へ渡す。時刻ずれ算出部155は、フレームBに格納されたタイムスタンプと自装置が管理している時刻(ONU1-1のタイムスタンプ)との差を算出する。 Next, the ONU 1-1 receives the bandwidth allocation notification frame B transmitted from the OLT 2 (step S6). Then, the ONU 1-1 calculates a time lag between the time stamp stored in the frame B and the time managed by the own device (that is, the free-running clock) (step S7). Specifically, the ONU 1-1 that has received the frame B is input to the MPCP control unit 152 via the WDM 11 and the receiver 13, and the MPCP control unit 152 manages the time stamp stored in the frame B and the own device. Is transferred to the time lag calculation unit 155. The time lag calculation unit 155 calculates the difference between the time stamp stored in the frame B and the time managed by the own device (time stamp of the ONU 1-1).
 ONU1-1は、算出した時刻ずれをフレームCにより、OLT2へ送信する(ステップS8)。具体的には、MPCP制御部152へ渡し、MPCP制御部152がMPCPメッセージに時刻ずれを格納してOLT2へ送信する。 The ONU 1-1 transmits the calculated time lag to the OLT 2 using the frame C (step S8). Specifically, the data is transferred to the MPCP control unit 152, and the MPCP control unit 152 stores the time lag in the MPCP message and transmits it to the OLT 2.
 そして、ステップS2~ステップS8をM(Mは1以上の整数)回繰り返す。OLT2は、フレームCを受信すると、フレームCに格納された時刻ずれを保持しておき、M個の時刻ずれとt1[s]とに基づいて相対誤差を求め、上記(3)を満たすts[s]を求める(ステップS9)。具体的には、フレームCが、WDM21および受信器23経由でMPCP制御部252に入力され、MPCP制御部252はM個の時刻ずれとt1[s]とをスリープ時間算出部254へ渡す。スリープ時間算出部254は、M個の時刻ずれに基づいて統計処理等により時刻ずれの実測値を求める。時刻ずれの実測値の求め方については後述する。そして、上記式(1)にts[s]にt1[s]を代入し、tdに時刻ずれの実測値を代入し、eについて解くことにより相対誤差eを求める。そして、さらに求めたeと閾値tthを用いて上記式(3)を満たすts[s]を求める。 Steps S2 to S8 are repeated M (M is an integer equal to or greater than 1) times. OLT2 receives the frame C, holds the time shift that has been stored in the frame C, determine the relative error on the basis of the M time shift between t1 [s] and, t s which satisfies the above (3) [S] is obtained (step S9). Specifically, the frame C is input to the MPCP control unit 252 via the WDM 21 and the receiver 23, and the MPCP control unit 252 passes M time lags and t1 [s] to the sleep time calculation unit 254. The sleep time calculation unit 254 obtains an actual measurement value of the time shift by statistical processing or the like based on the M time shifts. A method for obtaining the measured value of the time lag will be described later. Then, by substituting t1 [s] to t s [s] in equation (1), by substituting the measured value of the time displacement to t d, determine the relative error e by solving for e. Then, using the obtained e and the threshold value t th , t s [s] satisfying the above expression (3) is obtained.
 その後、ONU1-1とOLT2は、ネゴシエーションを実施してTRxスリープモードのスリープ時間を上記ステップS9で求めたts[s]に設定する(ステップS10)。なお、TRxスリープモードのスリープ時間とともにTRxスリープモードのアウェア時間についても初期値から変更する場合(例えば図6に示したようにアウェア時間を長くする場合)は、アウェア時間についてもステップS10のネゴシエーションで再設定する。以降は、ONU1-1がTRxスリープモードに遷移する場合は、ステップS10で設定されたスリープ時間およびアウェア時間を用いて動作する。 Thereafter, the ONU 1-1 and the OLT 2 negotiate and set the sleep time of the TRx sleep mode to t s [s] obtained in step S9 (step S10). When the TRx sleep mode sleep time and the TRx sleep mode aware time are changed from the initial values (for example, when the awareness time is increased as shown in FIG. 6), the awareness time is also negotiated in step S10. Reset it. Thereafter, when the ONU 1-1 transitions to the TRx sleep mode, it operates using the sleep time and the aware time set in step S10.
 なお、ここでは、t1[s]はM回の繰り返しの過程で一定値として説明したが、繰り返しの過程でt1[s]すなわちスリープ時間を徐々に伸ばしていくようにしてもよい。t1[s]が長い方が時刻ずれの計測精度がよくなるが、t1[s]を短く設定してしまうとタイムスタンプドリフトが発生してしまう可能性がある。したがって、繰り返し回数のカウンタをiとするとi=1(初回の計算)ではt1[s]を短い値に設定し、上記ステップS8の後に、OLT2が1個の時刻ずれを上記の時刻ずれの実測値として用いて上記式(3)を満たすts[s]を求める。そして、i=2の処理では、求めたts[s]をt1[s]として用いる。この場合、求めたts[s](すなわちt1[s])をOLT2からOLT1-1へ通知する必要があるため、例えばi=2のステップS2において、帯域割当通知にt1[s]を格納して通知する。帯域割当通知とは別にt1[s]を通知してもよい。この場合、例えば、繰り返しのたびに相対誤差を求めているため、ステップS9ではM個の相対誤差を統計処理等により相対誤差の実測値を決めて、上記式(3)を満たすts[s]を求めればよい。 Here, t1 [s] is described as a constant value in the process of M iterations, but t1 [s], that is, the sleep time may be gradually increased in the process of repetition. The longer t1 [s], the better the measurement accuracy of the time lag. However, if t1 [s] is set short, time stamp drift may occur. Therefore, if the counter of the number of repetitions is i, when i = 1 (initial calculation), t1 [s] is set to a short value, and after step S8, the OLT 2 detects one time lag as the above time lag measurement. Using the value, t s [s] satisfying the above equation (3) is obtained. In the process of i = 2, the obtained t s [s] is used as t1 [s]. In this case, since it is necessary to notify the obtained t s [s] (that is, t1 [s]) from the OLT 2 to the OLT 1-1, for example, in step S2 of i = 2, t1 [s] is stored in the bandwidth allocation notification. And notify. You may notify t1 [s] separately from a bandwidth allocation notification. In this case, for example, because they seek relative error in each iteration, determined measured values of the relative error by statistical processing such as the M relative error in step S9, t s [s satisfying the above formula (3) ] May be obtained.
 次に、上記ステップS9のM個の時刻誤差(時刻ずれまたは相対誤差)を用いて時刻ずれの実測値を決定する方法について説明する。実測値の決定方法としては、(1)測定したM個の時刻誤差の中から最大値を選択する方法、(2)測定したM個の時刻誤差の加重平均をとる方法等が考えられるがこれらに限定されない。 Next, a method for determining the actual measurement value of the time lag using the M time errors (time lag or relative error) in step S9 will be described. As a method of determining the actual measurement value, (1) a method of selecting the maximum value from the measured M time errors, and (2) a method of taking a weighted average of the measured M time errors are considered. It is not limited to.
 (2)測定したM個の時刻誤差の加重平均をとる方法は、具体的には例えば以下のような計算を行う。M回の測定を行った際に、誤差が測定するごとに増加している、または減少していると仮定する。例えば上述したようにt1[s]を繰り返しごとに伸ばしていく場合等には、1回目の測定結果よりM回目の測定結果のほうが信頼できることになる。したがって1回目からM回目にしたがって平均をとるときの重みを増すようにすることで信頼性の高い実測値を得ることができる。 (2) The method of taking the weighted average of the measured M time errors is specifically calculated as follows, for example. It is assumed that when M measurements are taken, the error increases or decreases with each measurement. For example, when t1 [s] is extended for each repetition as described above, the Mth measurement result is more reliable than the first measurement result. Therefore, a highly reliable measured value can be obtained by increasing the weight when taking the average from the first time to the Mth time.
 例えば、M回の測定で1回目からM回目までのM個の時刻誤差の測定値
1,x2,…,xM
が得られたとする。この場合、加重平均により決定した実測値yを以下の式(4)により求める。
 y=x11+x22+…+xMM       …(4)
ただし、
  w1+w2+…+wM=1
  w1<w2<…<wM
For example, measured values x 1 , x 2 ,..., X M of M time errors from the first to M times in M measurements.
Is obtained. In this case, the actual measurement value y determined by the weighted average is obtained by the following equation (4).
y = x 1 w 1 + x 2 w 2 +... + x M w M (4)
However,
w 1 + w 2 + ... + w M = 1
w 1 <w 2 <... <w M
 また、繰り返し回数(測定回数)Mは、パラメータであり状況に応じて変更することができる。Mが小さければ誤差測定の精度が高いが測定時間が少なくすむ。Mが大きければ誤差測定の精度が小さく、測定時間が大きくなる。Mが小さい場合に精度が低くなる原因として、時刻を記録する桁数が有限であることが挙げられる。 Also, the number of repetitions (number of measurements) M is a parameter and can be changed according to the situation. If M is small, the accuracy of error measurement is high, but the measurement time is reduced. If M is large, the accuracy of error measurement is small and the measurement time is long. The reason why the accuracy decreases when M is small is that the number of digits for recording time is finite.
 また、タイムスタンプドリフトの発生を判定するための閾値tthも、用途等によって変更することができる。 Further, the threshold value t th for determining the occurrence of the time stamp drift can also be changed depending on the application.
 以上、図7を用いて説明した時刻ずれの測定(ステップS2~ステップS10)は、ONU1-1のTRxスリープモード内の一動作として実施してもよいし、TRxスリープモード内の動作ではなく、別のモード(測定モード等)として定義して実施してもよい。 As described above, the measurement of the time lag described with reference to FIG. 7 (steps S2 to S10) may be performed as one operation in the TRx sleep mode of the ONU 1-1, and is not an operation in the TRx sleep mode. You may define and implement as another mode (measurement mode etc.).
 なお、本実施の形態では、時刻ずれ算出部155をMPCP制御部152とは別に備えるようにしたがMPCP制御部152が時刻ずれ算出部155の機能を有するようにしてもよい。同様に、MPCP制御部252がスリープ時間算出部254の機能を有するようにしてもよい。 In this embodiment, the time lag calculation unit 155 is provided separately from the MPCP control unit 152, but the MPCP control unit 152 may have the function of the time lag calculation unit 155. Similarly, the MPCP control unit 252 may have the function of the sleep time calculation unit 254.
 次に、本実施の形態のネゴシエーション手順の一例について説明する。図8は、本実施の形態のネゴシエーション手順の一例を示すチャート図である。図8のステップS101、ステップS102は、図4で説明した従来の手順と同様である。ステップS102の後、本実施の形態のOLT2は、パワーセーブモードにおけるスリープ時間とアウェア時間をモードごとに設定してONUへ通知する(ステップS103a)。この際、Txスリープモードのスリープ時間とアウェア時間についてはどのように設定してもよい。TRxスリープモードのスリープ時間は、上述のようにタイムドリフトが発生しないように短い値を設定する。ONU1-1は、この通知されたスリープ時間とアウェア時間に対する応答を送信する(ステップS104a)。 Next, an example of the negotiation procedure of this embodiment will be described. FIG. 8 is a chart showing an example of the negotiation procedure of the present embodiment. Steps S101 and S102 in FIG. 8 are the same as the conventional procedure described in FIG. After step S102, the OLT 2 of the present embodiment sets the sleep time and the aware time in the power save mode for each mode and notifies the ONU (step S103a). At this time, the sleep time and the aware time in the Tx sleep mode may be set in any manner. The sleep time in the TRx sleep mode is set to a short value so that time drift does not occur as described above. The ONU 1-1 transmits a response to the notified sleep time and aware time (step S104a).
 以上の手順により、OLT2とONU1-1の間で、モードごとのスリープ時間とアウェア時間の合意がなされる。 By the above procedure, the sleep time and the aware time for each mode are agreed between the OLT 2 and the ONU 1-1.
 図9は、ネゴシエーション時に、OLT2からONU1-1へスリープ時間とアウェア時間を通知する場合のデータフォーマットの一例を示す図である。図9では、IEEE P1904.1TMに基づくデータフォーマットの一例を示している。ネゴシエーションでスリープ時間とアウェア時間を通知する場合のデータフォーマットはこれに限定されず、例えばITU-T G.988に基づいたデータフォーマットで、モードごとのスリープ時間とアウェア時間を通知してもよい。 FIG. 9 is a diagram showing an example of a data format when notifying the sleep time and the aware time from the OLT 2 to the ONU 1-1 at the time of negotiation. FIG. 9 shows an example of a data format based on IEEE P1904.1 . The data format when the sleep time and the aware time are notified by negotiation is not limited to this, and for example, ITU-T G. The sleep time and the aware time for each mode may be notified in a data format based on 988.
 以上のように、本実施の形態では、ONU1-1が、所定の時間TRxを停止状態とし、停止状態が終了後に、OLT2から受信したタイムスタンプと停止状態の間自走クロックに基づいて更新した自身が管理する時刻との差を求める。そして、求めた差(時刻ずれ)に基づいてOLT2とONU1-1のクロックの相対誤差を求め、相対誤差とタイムスタンプドリフトの閾値とに基づいてタイムスタンプドリフトが発生しない範囲内のスリープ時間を求めて、TRxスリープモードのスリープ時間として設定するようにした。このため、タイムスタンプドリフトを回避することができる。 As described above, in this embodiment, the ONU 1-1 sets the predetermined time TRx to the stop state, and after the stop state ends, the time stamp received from the OLT 2 is updated based on the free-running clock. Find the difference from the time you manage. Then, a relative error between the OLT 2 and the ONU 1-1 is obtained based on the obtained difference (time lag), and a sleep time within a range in which the time stamp drift does not occur is obtained based on the relative error and the time stamp drift threshold. Thus, the sleep time is set as the TRx sleep mode. For this reason, time stamp drift can be avoided.
実施の形態2.
 図10は、本発明にかかる通信システムの実施の形態2の構成例を示す図である。本実施の形態の通信システムは、ONU1a-1~1a-nと、OLT2aと、で構成される。本実施の形態のONU1a-1は、実施の形態のONU1-1の時刻ずれ算出部155の代わりに時刻ずれ算出部155aを備える以外は実施の形態1のONU1-1と同様である。本実施の形態のOLT2aは、実施の形態のOLT2からスリープ時間算出部254を削除する以外は実施の形態1のOLT2と同様である。実施の形態1と同様の機能を有する構成要素は、実施の形態1と同一の符号を付して重複する説明を省略する。
Embodiment 2. FIG.
FIG. 10 is a diagram illustrating a configuration example of the communication system according to the second embodiment of the present invention. The communication system according to the present embodiment includes ONUs 1a-1 to 1a-n and an OLT 2a. The ONU 1a-1 of the present embodiment is the same as the ONU 1-1 of the first embodiment, except that it includes a time lag calculation unit 155a instead of the time lag calculation unit 155 of the ONU 1-1 of the embodiment. The OLT 2a of the present embodiment is the same as the OLT 2 of the first embodiment except that the sleep time calculation unit 254 is deleted from the OLT 2 of the embodiment. Components having the same functions as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant description is omitted.
 実施の形態1では、図7で説明したように、OLT2が時刻ずれの実測値に基づいてタイムスタンプドリフトの発生しないTRxスリープモードのスリープ時間を求め、その後ネゴシエーションにより求めたスリープ時間をOLT2とONU1-1との間で合意するようにした。本実施の形態では、ONU1-1が、時刻ずれの実測値に基づいてタイムスタンプドリフトの発生しないTRxスリープモードのスリープ時間を求める。 In the first embodiment, as described with reference to FIG. 7, the OLT 2 obtains the sleep time in the TRx sleep mode in which the time stamp drift does not occur based on the actually measured value of the time lag, and then obtains the sleep time obtained by the negotiation as the OLT 2 and the ONU 1 Agreed with -1. In the present embodiment, the ONU 1-1 obtains the sleep time in the TRx sleep mode in which the time stamp drift does not occur based on the actually measured value of the time lag.
 図11は、本実施の形態の時刻ずれの測定手順の一例を示すチャート図である。図11のステップS1~ステップS7は実施の形態1と同様である。そして、ステップS2~ステップS7をM回繰り返した後、ONU1-1の時刻ずれ算出部155aは、実施の形態1のOLT2のスリープ時間算出部254と同様にM個の時刻ずれの測定値に基づいて統計処理等により時刻ずれの実測値を求め(ステップS11)、時刻ずれの実測値を用いて実施の形態のOLT2のスリープ時間算出部254と同様にタイムスタンプドリフトが発生しないようスリープ時間を求める(ステップS12)。すなわち、本実施の形態では、時刻ずれ算出部155aはスリープ時間算出部としての機能も有する。なお、実施の形態1と同様に、繰り返しごとにt1[s]を長くしていってもよい。 FIG. 11 is a chart showing an example of a procedure for measuring time lag according to the present embodiment. Steps S1 to S7 in FIG. 11 are the same as those in the first embodiment. Then, after step S2 to step S7 are repeated M times, the time lag calculating unit 155a of the ONU 1-1 is based on the measured values of M time lags as in the sleep time calculating unit 254 of the OLT 2 of the first embodiment. Then, the measured value of the time lag is obtained by statistical processing or the like (step S11), and the sleep time is obtained using the measured value of the time lag so that the time stamp drift does not occur as in the sleep time calculation unit 254 of the OLT 2 of the embodiment. (Step S12). That is, in this embodiment, the time lag calculation unit 155a also has a function as a sleep time calculation unit. As in the first embodiment, t1 [s] may be increased for each repetition.
 本実施の形態では、以上の処理により、ONU1-1は、タイムスタンプドリフトの発生を防ぐように求めたスリープ時間を、TRxスリープモードのスリープ時間として保持し、当該スリープ時間を用いてTRxスリープモードの動作を行う。OLT2は、スリープ時間の変更がなかった(ステップS1のネゴシエーションにより合意されたスリープ時間のまま)として動作する。したがって、OLT2が帯域割当通知を送信する際に、ONU1-1が停止状態であるか起動状態であるかを考慮する(起動状態の間に帯域割当通知が送信されるように送信タイミングを制御する)場合には、実施の形態1の図6の例のようにOLT2が把握している起動状態の間に帯域割当通知受信ができるようにスリープ時間を長くした分アウェア時間を長くすることが望ましい。OLT2が帯域割当通知を送信する際に、ONU1-1が停止状態であるか起動状態であるかを考慮しない場合には、アウェア時間はどのように設定してもよい。以上述べた以外の本実施の形態の動作は、実施の形態1と同様である。 In the present embodiment, the ONU 1-1 retains the sleep time determined to prevent the occurrence of the time stamp drift as the sleep time of the TRx sleep mode by the above processing, and the TRx sleep mode is used by using the sleep time. Perform the operation. The OLT 2 operates on the assumption that the sleep time has not been changed (the sleep time agreed by the negotiation in step S1 remains). Therefore, when the OLT 2 transmits the bandwidth allocation notification, it is considered whether the ONU 1-1 is in the stopped state or the activated state (the transmission timing is controlled so that the bandwidth allocation notification is transmitted during the activated state). ), It is desirable to lengthen the awareness time by increasing the sleep time so that the bandwidth allocation notification can be received during the activation state known by the OLT 2 as in the example of FIG. 6 of the first embodiment. . When the OLT 2 transmits a bandwidth allocation notification, if the ONU 1-1 is not in the stopped state or the activated state, the aware time may be set in any way. The operations of the present embodiment other than those described above are the same as those of the first embodiment.
 以上のように、本実施の形態では、ONU1-1が、実施の形態1と同様に求めた時刻ずれの測定値に基づいてOLT2とONU1-1のクロックの相対誤差を求め、相対誤差とタイムスタンプドリフトの閾値とに基づいてタイムスタンプドリフトが発生しない範囲内のスリープ時間を求めて、TRxスリープモードのスリープ時間として設定するようにした。このため、実施の形態1と同様に、タイムスタンプドリフトを回避することができる。さらに、実施の形態1ではフレームCを送信するという従来の手順にない送信動作を実行する必要があったが、本実施の形態では、この送信動作の必要がなくOLT2側は従来と同様の動作でよい。 As described above, in this embodiment, the ONU 1-1 obtains the relative error between the clocks of the OLT 2 and the ONU 1-1 based on the measurement value of the time difference obtained in the same manner as in the first embodiment. Based on the stamp drift threshold value, the sleep time within a range where the time stamp drift does not occur is obtained and set as the sleep time of the TRx sleep mode. For this reason, time stamp drift can be avoided as in the first embodiment. Further, in the first embodiment, it is necessary to execute a transmission operation that is not in the conventional procedure of transmitting the frame C. However, in this embodiment, there is no need for this transmission operation, and the OLT 2 side performs the same operation as the conventional one. It's okay.
実施の形態3.
 図12は、本発明にかかる通信システムの実施の形態3の構成例を示す図である。本実施の形態の通信システムは、ONU1b-1~1b-nと、OLT2aと、で構成される。本実施の形態のONU1b-1は、時刻ずれ算出部155aの代わりに時刻ずれ算出部bを備え、自走クロック制御部154と時刻ずれ算出部155bを接続し、受信器13が抽出したリファレンスクロックをMPCP制御部152へ入力できるようにする以外は、実施の形態2のONU1a-1と同様である。実施の形態2と同様の機能を有する構成要素は、実施の形態1と同一の符号を付して重複する説明を省略する。
Embodiment 3 FIG.
FIG. 12 is a diagram illustrating a configuration example of the communication system according to the third embodiment of the present invention. The communication system according to the present embodiment includes ONUs 1b-1 to 1b-n and an OLT 2a. The ONU 1b-1 according to the present embodiment includes a time shift calculation unit b instead of the time shift calculation unit 155a, and connects the free-running clock control unit 154 and the time shift calculation unit 155b to extract the reference clock extracted by the receiver 13. Is the same as the ONU 1a-1 in the second embodiment, except that it can be input to the MPCP control unit 152. Components having the same functions as those in the second embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant description is omitted.
 実施の形態1、2では、t1[s]の間、TRxを停止状態とすることにより時刻ずれを計測した。本実施の形態では、TRxを停止せずに通常状態のまま時刻ずれを計測する。通常状態であるため、OLT2からの光信号の受信は継続しておりOLT2とのクロック同期は保たれたまま時刻ずれを計測できる。したがって、時刻ずれの計測時間であるt1[s]を長くしてもタイムスタンプドリフトが発生することはない。 In Embodiments 1 and 2, the time lag was measured by setting TRx to the stop state during t1 [s]. In the present embodiment, the time lag is measured in the normal state without stopping TRx. Since it is a normal state, the reception of the optical signal from the OLT 2 is continued, and the time lag can be measured while the clock synchronization with the OLT 2 is maintained. Therefore, even if t1 [s], which is the time difference measurement time, is increased, time stamp drift does not occur.
 図13は、本実施の形態の時刻ずれの測定手順の一例を示すチャート図である。図13のステップS1~ステップS3は実施の形態1と同様である。ステップS3の後、ONU1-1は、通常状態のまま、MPCP制御部152はリファレンスクロックを用いてt1[s]を計測し、その間自走クロックを動作させる(ステップS13)。時刻ずれ算出部155bは、t1[s]の開始時から終了時まで(例えば、カウンタをインクリメントすることにより)自走クロックによる計測時間を求める。そして、自走クロックによる計測時間と、t1[s]と、の差を時刻ずれとして求める(ステップS14)。そして、ステップS2、S3、S13、S14をM回繰り返し、その後、実施の形態2と同様にステップS11、S12を実施してスリープ時間を求める。そして、求めたスリープ時間を、TRxスリープモードのスリープ時間として保持し、当該スリープ時間を用いてTRxスリープモードの動作を行う。以上述べた以外の本実施の形態の動作は実施の形態2と同様である。 FIG. 13 is a chart showing an example of the procedure for measuring the time lag according to the present embodiment. Steps S1 to S3 in FIG. 13 are the same as those in the first embodiment. After step S3, the ONU 1-1 keeps the normal state, the MPCP control unit 152 measures t1 [s] using the reference clock, and operates the free-running clock during that time (step S13). The time lag calculation unit 155b obtains a measurement time based on the free-running clock from the start time to the end time of t1 [s] (for example, by incrementing the counter). Then, the difference between the time measured by the free-running clock and t1 [s] is obtained as a time lag (step S14). Then, steps S2, S3, S13, and S14 are repeated M times, and thereafter, steps S11 and S12 are performed in the same manner as in the second embodiment to obtain the sleep time. Then, the obtained sleep time is held as the sleep time of the TRx sleep mode, and the operation of the TRx sleep mode is performed using the sleep time. The operations of the present embodiment other than those described above are the same as those of the second embodiment.
 なお、ここでは、ONU1-1がTRxスリープモードのスリープ時間を求めてONU1-1のみで保持し、OLT2は求めたスリープ時間を把握しないようにしたが、ステップS12の後にONU1-1が求めたスリープ時間をOLT2に通知し、OLT2が通知されたスリープ時間を用いて再びネゴシエーションを行うようにしてもよい。 In this example, the ONU 1-1 obtains the sleep time in the TRx sleep mode and holds only the ONU 1-1, and the OLT 2 does not grasp the obtained sleep time. However, the ONU 1-1 obtains the sleep time after step S12. The sleep time may be notified to the OLT 2 and the negotiation may be performed again using the sleep time for which the OLT 2 has been notified.
 以上のように、本実施の形態では、通常状態のまま、OLT2のクロックと自走クロックの時刻ずれを測定するようにした。このため、実施の形態1と同様の効果が得られるとともに、リファレンスクロックとの同期は保持したままであるためタイムスタンプドリフトは発生しない。したがって、t1[s]を長く設定することができ、時刻ずれの測定精度を向上させることができる。 As described above, in this embodiment, the time difference between the OLT 2 clock and the free-running clock is measured in the normal state. For this reason, the same effects as those of the first embodiment can be obtained, and the synchronization with the reference clock is maintained, so that time stamp drift does not occur. Therefore, t1 [s] can be set long, and the measurement accuracy of the time lag can be improved.
実施の形態4.
 図14は、本発明にかかる通信システムの実施の形態4の構成例を示す図である。本実施の形態の通信システムは、ONU1c-1~1c-nと、OLT2bと、で構成される。本実施の形態のONU1c-1は、自走クロック制御部154とMPCP制御部155を接続し、受信器13のリファレンスクロックをMPCP制御部152へ入力できるようにし、時刻ずれ算出部155を削除する以外は実施の形態1のONU1-1と同様である。本実施の形態のOLT2bは、実施の形態1のスリープ時間算出部254の代わりにスリープ時間算出部254aを備える以外は実施の形態1のOLT2と同様である。実施の形態1と同様の機能を有する構成要素は、実施の形態1と同一の符号を付して重複する説明を省略する。
Embodiment 4.
FIG. 14 is a diagram illustrating a configuration example of the communication system according to the fourth embodiment of the present invention. The communication system according to the present embodiment includes ONUs 1c-1 to 1c-n and an OLT 2b. The ONU 1c-1 of the present embodiment connects the free-running clock control unit 154 and the MPCP control unit 155 so that the reference clock of the receiver 13 can be input to the MPCP control unit 152, and the time lag calculation unit 155 is deleted. Except for this, it is the same as the ONU 1-1 of the first embodiment. The OLT 2b of the present embodiment is the same as the OLT 2 of the first embodiment except that the sleep time calculation unit 254a is provided instead of the sleep time calculation unit 254 of the first embodiment. Components having the same functions as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant description is omitted.
 図15は、本実施の形態の時刻ずれの測定手順の一例を示すチャート図である。図15のステップS1は実施の形態1と同様である。本実施の形態では、OLT2は実施の形態1と同様に帯域割当通知フレームAを送信するが、この際、送信時刻を記録しておく(ステップS2a)。具体的には、MPCP制御部252が送信時刻をスリープ時間算出254aへ通知し、スリープ時間算出254aが送信時刻を記録する。ステップS3は実施の形態1と同様である。ステップS3の後、ONU1-1は、通常状態のまま、自走クロックでt1[s]を計測する(ステップS13a)。そして、自走クロックでt1[s]が終了した時点で、フレームAの応答フレームであるフレームDを送信する(ステップS15)。フレームDはt1[s]の終了を通知するフレームAの応答フレームであることをOLT2が認識できればどのようなフレームでもよい。例えば、フレームDのフレームの種別に、あらかじめ定義しておいたt1[s]の終了を通知するフレームであることを示す識別子、を格納して送信する。また、フレームDにt1[s]の値を格納して送信してもよい。 FIG. 15 is a chart showing an example of a procedure for measuring time lag according to the present embodiment. Step S1 in FIG. 15 is the same as that in the first embodiment. In the present embodiment, the OLT 2 transmits the bandwidth allocation notification frame A as in the first embodiment, but at this time, the transmission time is recorded (step S2a). Specifically, the MPCP control unit 252 notifies the transmission time to the sleep time calculation 254a, and the sleep time calculation 254a records the transmission time. Step S3 is the same as that in the first embodiment. After step S3, the ONU 1-1 measures t1 [s] with the free-running clock in the normal state (step S13a). Then, when t1 [s] ends with the free-running clock, frame D, which is a response frame of frame A, is transmitted (step S15). The frame D may be any frame as long as the OLT 2 can recognize that it is a response frame of the frame A that notifies the end of t1 [s]. For example, the identifier indicating the frame that notifies the end of t1 [s] defined in advance is stored in the frame type of frame D and transmitted. Further, the value of t1 [s] may be stored in the frame D and transmitted.
 OLT2は、フレームDを受信すると、スリープ時間算出部254aが、記録しておいた送信時刻とフレームDの受信時刻とRTT(Round Trip Time:往復遅延時間)とt1[s]に基づいて相対誤差を求める(ステップS16)。すなわち、本実施の形態のスリープ時間算出部254aは、時刻ずれ算出部としての機能も有する。具体的には、スリープ時間算出部254aは、例えば以下の式(5)に基づいて相対誤差を求める。なお、PONシステムでは一般にRTTは計測されているため、RTTの値はこの計測結果を用いればよい。
  相対誤差
   =(フレームDの受信時刻-フレームAの送信時刻
           -RTT-t1[s])/t1[s]…(5)
When the OLT 2 receives the frame D, the sleep time calculation unit 254a performs a relative error based on the recorded transmission time, reception time of the frame D, RTT (Round Trip Time), and t1 [s]. Is obtained (step S16). That is, the sleep time calculation unit 254a of the present embodiment also has a function as a time lag calculation unit. Specifically, the sleep time calculation unit 254a calculates a relative error based on, for example, the following formula (5). In the PON system, since RTT is generally measured, the measurement result may be used as the RTT value.
Relative error = (frame D reception time−frame A transmission time−RTT−t1 [s]) / t1 [s] (5)
 そして、ステップS2a、S3、S13a、S15、S16をM回繰り返した後、スリープ時間算出部254aが、M個の相対誤差に基づいて統計処理等により相対誤差の実測値を求め、実測値に基づいてタイムスタンプドリフトが発生しないようにスリープ時間を算出する(ステップS17)。スリープ時間の算出方法は、実施の形態1と同様である。その後、算出したスリープ時間をTRxスリープモードのスリープ時間として再度ネゴシエーションを実施する(ステップS10)。以上述べた以外の本実施の形態の動作は、実施の形態1または実施の形態3と同様である。なお、ここでは、ステップS16で相対誤差を求め、相対誤差を求める処理をM回繰り返すようにしたが、ステップS16では、時刻ずれ(フレームDの受信時刻-フレームAの送信時刻-RTT-t1[s])を求めておき、M個の時刻ずれに基づいて統計処理等により時刻ずれの実測値を求め、実測値に基づいて相対誤差を求める手順としてもよい。 Then, after repeating steps S2a, S3, S13a, S15, and S16 M times, the sleep time calculation unit 254a obtains an actual value of the relative error by statistical processing or the like based on the M relative errors, and based on the actual value. Thus, the sleep time is calculated so that time stamp drift does not occur (step S17). The method for calculating the sleep time is the same as in the first embodiment. Thereafter, negotiation is performed again using the calculated sleep time as the sleep time of the TRx sleep mode (step S10). The operations of the present embodiment other than those described above are the same as those of the first or third embodiment. Here, the relative error is obtained in step S16, and the process for obtaining the relative error is repeated M times. However, in step S16, the time lag (the reception time of frame D−the transmission time of frame A−RTT−t1 [ s]) may be obtained, an actual value of the time deviation may be obtained by statistical processing or the like based on the M time deviations, and a relative error may be obtained based on the actual measurement value.
 なお、ここでは、OLT2が、フレームの送受信時刻に基づいて相対誤差を求めるようにしたが、ONU1-1が、自走クロックでのt1[s]の開始と終了の時点での自装置の管理する時刻(リファレンスクロックにより更新される時刻)に基づいて自走クロックとリファレンスクロックとの時刻ずれを求め、時刻ずれに基づいてスリープ時間を求めるようにしてもよい。 In this example, the OLT 2 calculates the relative error based on the frame transmission / reception time. However, the ONU 1-1 manages its own device at the time of starting and ending t1 [s] with the free-running clock. A time lag between the free-running clock and the reference clock may be obtained based on the time to be updated (time updated by the reference clock), and the sleep time may be obtained based on the time lag.
 以上のように本実施の形態では、ONU1-1は、通常状態のまま、OLT2からフレームAを受信した時点から自走クロックでt1[s]を計測し、t1[s]経過後にフレームDを送信する。そして、OLT2は、記録しておいた送信時刻とフレームDの受信時刻とRTTとt1[s]に基づいて相対誤差を求め、求めた相対誤差に基づいてタイムスタンプドリフトが発生しないようにTRxスリープモードのスリープ時間を設定するようにした。そのため、実施の形態1と同様の効果が得られるとともに、リファレンスクロックとの同期は保持したままであるためタイムスタンプドリフトは発生しない。したがって、t1[s]を長く設定することができ、時刻ずれの測定精度を向上させることができる。 As described above, in the present embodiment, the ONU 1-1 measures t1 [s] with the free-running clock from the time when the frame A is received from the OLT 2 in the normal state, and the frame D is detected after the elapse of t1 [s]. Send. The OLT 2 obtains a relative error based on the recorded transmission time, the reception time of the frame D, the RTT, and t1 [s], and the TRx sleep so that the time stamp drift does not occur based on the obtained relative error. The sleep time of the mode was set. For this reason, the same effect as in the first embodiment can be obtained, and the synchronization with the reference clock is maintained, so that time stamp drift does not occur. Therefore, t1 [s] can be set long, and the measurement accuracy of the time lag can be improved.
実施の形態5.
 図16は、本発明にかかる通信システムの実施の形態5のモード選択手順の一例を示すフローチャートである。本実施の形態の通信システムの構成は実施の形態1と同様として説明するが、これに限らず実施の形態2~4の構成であってもよい。本実施の形態では、TRxスリープモードとTxスリープモードのスリープ時間は独立に設定可能とする。
Embodiment 5.
FIG. 16 is a flowchart showing an example of the mode selection procedure of the communication system according to the fifth embodiment of the present invention. The configuration of the communication system of the present embodiment is described as being the same as that of the first embodiment, but is not limited to this and may be the configurations of the second to fourth embodiments. In the present embodiment, the sleep times of the TRx sleep mode and the Tx sleep mode can be set independently.
 実施の形態1~4で説明したように、タイムスタンプドリフトが発生しないようにTRxスリープのスリープ時間を設定した場合、スリープ時間が短くなるため、従来に比べ消費電力が大きくなることがあり、また光デバイスの性能によってはスリープ時間に反応できない(光デバイスの性能に依存するスリープ時間の最小値よりTRxスリープモードのスリープ時間が短くなる)ことがある。この場合には、TRxスリープモードの代わりにTxスリープモードを適用する。また、Txスリープモードは、同じスリープ時間ではTRxスリープモードに比べて消費電力の削減量が少ないため、Txスリープモードでなるべく消費電力を低減できるように、ネゴシエーションにおいて、スリープモード用のスリープ時間を無信号によるリンク断(一定時間ONU1-1からの送信がないことによるリンク断、例えば1秒一定時間ONU1-1からの送信がないとOLT2はONU1-1とのリンクを切断する)にならない最大値に設定しておく。 As described in the first to fourth embodiments, when the sleep time of TRx sleep is set so that time stamp drift does not occur, the sleep time is shortened, so that the power consumption may increase compared to the conventional case. Depending on the performance of the optical device, it may not respond to the sleep time (the sleep time in the TRx sleep mode is shorter than the minimum value of the sleep time depending on the performance of the optical device). In this case, the Tx sleep mode is applied instead of the TRx sleep mode. In addition, since the Tx sleep mode reduces the amount of power consumption compared to the TRx sleep mode at the same sleep time, there is no sleep time for the sleep mode in the negotiation so that the power consumption can be reduced as much as possible in the Tx sleep mode. Maximum value that does not cause link breakage due to signal (link breakage due to no transmission from ONU1-1 for a certain period of time, for example, OLT2 disconnects link with ONU1-1 if there is no transmission from ONU1-1 for a certain period of 1 second) Set to.
 図16に示すモード選択は、例えば、OLT2のMPCP制御部252が実施するが、これに限らずONU1-1(パワーセーブ制御部153等)が実施してもよい。実施の形態1等のように、OLT2がTRxスリープのスリープ時間を求める場合には、OLT2がモード選択を実施してもよいし、実施の形態2等のように、タイムスタンプドリフトが発生しないように求めたTRxスリープのスリープ時間をOLT2に通知しない場合には、ONU1-1がモード選択を実施してもよい。ここでは、一例としてOLT2のMPCP制御部252がモード選択を実施するとして説明する。 For example, the mode selection shown in FIG. 16 is performed by the MPCP control unit 252 of the OLT 2, but is not limited thereto, and may be performed by the ONU 1-1 (power save control unit 153, etc.). When the OLT 2 obtains the sleep time of the TRx sleep as in the first embodiment, the OLT 2 may select the mode, and the time stamp drift does not occur as in the second embodiment. When the OLT 2 is not notified of the sleep time of the TRx sleep obtained in the above, the ONU 1-1 may perform mode selection. Here, as an example, it is assumed that the MPCP control unit 252 of the OLT 2 performs mode selection.
 図16に示すように、まず、MPCP制御部252は、ONU1-1について誤差から求めたスリープ時間(実施の形態1~4で説明したタイムスタンプドリフトが発生しないように求めたスリープ時間)が光デバイスの性能から求めたスリープ時間の最小値以上である否かを判断する(ステップS21)。誤差から求めたスリープ時間が光デバイスの性能から求めたスリープ時間の最小値より小さい(ステップS21 No)場合、ONU1-1へTxスリープモードを適用する(ステップS22)。 As shown in FIG. 16, first, the MPCP control unit 252 determines that the sleep time obtained from the error for the ONU 1-1 (the sleep time obtained so that the time stamp drift described in the first to fourth embodiments does not occur) is optical. It is determined whether or not the sleep time obtained from the performance of the device is not less than the minimum value (step S21). When the sleep time obtained from the error is smaller than the minimum value of the sleep time obtained from the performance of the optical device (No in step S21), the Tx sleep mode is applied to the ONU 1-1 (step S22).
 誤差から求めたスリープ時間が光デバイスの性能から求めたスリープ時間の最小値以上である場合(ステップS21 Yes)、TRxスリープモードの消費電力がTxスリープモードの消費電力より小さいか否かを判断する(ステップS23)。TRxスリープモードの消費電力がTxスリープモードの消費電力より小さい(ステップS23 Yes)場合、ONU1-1へTRxスリープモードを適用する(ステップS24)。TRxスリープモードの消費電力がTxスリープモードの消費電力以上(ステップS23 No)の場合、ONU1-1へTxスリープモードを適用する(ステップS25)。以上述べた以外の本実施の形態の動作は、実施の形態1~4と同様である。 If the sleep time obtained from the error is equal to or greater than the minimum value of the sleep time obtained from the performance of the optical device (step S21, Yes), it is determined whether the power consumption of the TRx sleep mode is smaller than the power consumption of the Tx sleep mode. (Step S23). When the power consumption in the TRx sleep mode is smaller than the power consumption in the Tx sleep mode (step S23, Yes), the TRx sleep mode is applied to the ONU 1-1 (step S24). When the power consumption in the TRx sleep mode is equal to or higher than the power consumption in the Tx sleep mode (No in step S23), the Tx sleep mode is applied to the ONU 1-1 (step S25). The operations of the present embodiment other than those described above are the same as those of the first to fourth embodiments.
 以上のように、本実施の形態では、誤差から求めたスリープ時間と光デバイスの性能から求めたスリープ時間の最小値との比較結果と、TRxスリープモードとTxスリープモードの消費電力の比較結果と、に基づいてパワーセーブモードのモード選択を行うようにした。このため、実施の形態1と同様の効果が得られるとともに、光デバイスの性能の制約を満たし、またより消費電力効果の高いモードを選択することができる。 As described above, in this embodiment, the comparison result between the sleep time obtained from the error and the minimum value of the sleep time obtained from the performance of the optical device, and the comparison result between the power consumption in the TRx sleep mode and the Tx sleep mode, Based on, the mode selection of the power save mode was made. For this reason, the same effects as those of the first embodiment can be obtained, and a mode that satisfies the restrictions on the performance of the optical device and has a higher power consumption effect can be selected.
 以上のように、本発明にかかる通信システム、加入者側光通信装置、局側光通信装置、制御装置および省電力制御方法は、PONシステムに有用であり、特に、省電力制御を行うPONシステムに適している。 As described above, the communication system, the subscriber side optical communication apparatus, the station side optical communication apparatus, the control apparatus, and the power saving control method according to the present invention are useful for the PON system, and in particular, the PON system that performs the power saving control. Suitable for
 1-1~1-n,1a-1~1a-n,1b-1~1b-n,1c-1~1c-n ONU
 2,2a,2b OLT
 11,21 WDM
 12,22 送信器
 13,23 受信器
 14,24 送信バッファ
 15,25 制御部
 16,26 受信バッファ
 17,27 PHY
 151 セレクタ
 152,252 MPCP制御部
 153,253 パワーセーブ制御部
 154,251 自走クロック制御部
 155,155a,155b 時刻ずれ算出部
 254,254a スリープ時間算出部
 171,271 受信器
 172,272 送信器
1-1 to 1-n, 1a-1 to 1a-n, 1b-1 to 1b-n, 1c-1 to 1c-n ONU
2,2a, 2b OLT
11, 21 WDM
12, 22 Transmitter 13, 23 Receiver 14, 24 Transmission buffer 15, 25 Control unit 16, 26 Reception buffer 17, 27 PHY
151 Selector 152,252 MPCP control unit 153,253 Power save control unit 154,251 Self-running clock control unit 155,155a, 155b Time shift calculation unit 254,254a Sleep time calculation unit 171,271 Receiver 172,272 Transmitter

Claims (19)

  1.  局側光通信装置と、送信器および受信器を間欠的に停止させる送受信スリープモードへの遷移が可能であり、前記受信器によって前記局側光通信装置より受信した光信号から抽出したクロックを用いて動作し、前記受信器が停止状態の間は自走クロックを用いて動作する加入者側光通信装置と、を備える通信システムであって、
     前記局側光通信装置のクロックと前記加入者側光通信装置の前記自走クロックとの間の誤差を測定する時刻誤差算出部と、
     タイムスタンプドリフトの発生の有無を判定する閾値と前記誤差とに基づいて、タイムスタンプドリフトが発生しないよう前記送信器および前記受信器のスリープ時間を算出するスリープ時間算出部と、
     を備え、
     前記加入者側光通信装置は、前記スリープ時間算出部が算出したスリープ時間を前記送受信スリープモードのスリープ時間として用いる、ことを特徴とする通信システム。
    Transition to the station side optical communication device and transmission / reception sleep mode in which the transmitter and the receiver are intermittently stopped is possible, and a clock extracted from the optical signal received from the station side optical communication device by the receiver is used. A subscriber-side optical communication device that operates using a self-running clock while the receiver is in a stopped state, and a communication system comprising:
    A time error calculator for measuring an error between the clock of the station-side optical communication device and the self-running clock of the subscriber-side optical communication device;
    A sleep time calculation unit for calculating a sleep time of the transmitter and the receiver so as not to generate a time stamp drift, based on a threshold for determining whether or not a time stamp drift occurs and the error;
    With
    The said subscriber side optical communication apparatus uses the sleep time which the said sleep time calculation part calculated as the sleep time of the said transmission / reception sleep mode, The communication system characterized by the above-mentioned.
  2.  前記加入者側光通信装置が前記時刻誤差算出部を備え、
     前記局側光通信装置が前記スリープ時間算出部を備え、
     前記局側光通信装置は、前記スリープ時間算出部が算出したスリープ時間をネゴシエーションにより前記加入者側光通信装置を通知する、ことを特徴とする請求項1に記載の通信システム。
    The subscriber side optical communication device includes the time error calculation unit,
    The station-side optical communication device includes the sleep time calculation unit,
    2. The communication system according to claim 1, wherein the station-side optical communication device notifies the subscriber-side optical communication device by negotiation of the sleep time calculated by the sleep time calculation unit.
  3.  前記加入者側光通信装置が前記時刻誤差算出部および前記スリープ時間算出部を備える、ことを特徴とする請求項1に記載の通信システム。 The communication system according to claim 1, wherein the subscriber-side optical communication device includes the time error calculation unit and the sleep time calculation unit.
  4.  前記局側光通信装置が前記時刻誤差算出部および前記スリープ時間算出部を備え、
     前記局側光通信装置は、前記加入者光通信装置へフレームを送信した送信時刻を保持し、
     前記加入者光通信装置は、
     前記送信器および前記受信器が動作する通常状態で、前記局側光通信装置から前記フレームを受信した時点を起点として自走クロックで所定時間を計測し、前記所定時間の計測の終了時に前記フレームへの応答フレームを前記局側光通信装置へ送信し、
     前記時刻誤差算出部は、前記送信時刻と前記応答フレームの受信時刻と前記所定時間と往復遅延時間とに基づいて前記誤差を求める、ことを特徴とする請求項1に記載の通信システム。
    The station-side optical communication device includes the time error calculation unit and the sleep time calculation unit,
    The station side optical communication device holds the transmission time when the frame is transmitted to the subscriber optical communication device,
    The subscriber optical communication device is:
    In a normal state in which the transmitter and the receiver operate, a predetermined time is measured with a free-running clock starting from the time when the frame is received from the station-side optical communication device, and the frame is measured at the end of the measurement of the predetermined time. A response frame to the station side optical communication device,
    The communication system according to claim 1, wherein the time error calculation unit obtains the error based on the transmission time, the reception time of the response frame, the predetermined time, and a round trip delay time.
  5.  前記加入者光通信装置は、
     前記送信器および前記受信器を所定時間の間停止させることにより、前記所定時間の間、自装置の自走クロックで自装置の管理する時刻を更新し、
     前記時刻誤差算出部は、前記所定時間経過後の自装置の時刻と、前記所定時間経過後に前記局側光通信装置から受信したフレームに格納された前記局側光通信装置におけるタイムスタンプと、に基づいて前記誤差を求める、ことを特徴とする請求項1、2または3に記載の通信システム。
    The subscriber optical communication device is:
    By updating the transmitter and the receiver for a predetermined time, the time managed by the own device is updated with the self-running clock of the own device for the predetermined time,
    The time error calculation unit includes: a time of the local apparatus after the predetermined time has elapsed; and a time stamp in the local optical communication apparatus stored in a frame received from the local optical communication apparatus after the predetermined time has elapsed. The communication system according to claim 1, wherein the error is obtained based on the error.
  6.  前記加入者光通信装置は、
     前記送信器および前記受信器が動作する通常状態で、前記抽出したクロックにより所定時間を計測し、前記所定時間の計測の開始から終了時点までを自走クロックで計測した結果と前記所定時間とに基づいて前記誤差を求める、ことを特徴とする請求項1、2または3に記載の通信システム。
    The subscriber optical communication device is:
    In a normal state in which the transmitter and the receiver operate, a predetermined time is measured by the extracted clock, and a result obtained by measuring from the start to the end time of the predetermined time with a free-running clock and the predetermined time The communication system according to claim 1, wherein the error is obtained based on the error.
  7.  前記加入者光通信装置は、
     前記送信器および前記受信器が動作する通常状態で、自走クロックで所定時間を計測し、前記所定時間の計測の開始から終了時点までを前記リファレンスクロックで計測した結果と前記所定時間とに基づいて前記誤差を求める、ことを特徴とする請求項1、2または3に記載の通信システム。
    The subscriber optical communication device is:
    Based on a result obtained by measuring a predetermined time with a free-running clock in a normal state in which the transmitter and the receiver operate and measuring with a reference clock from the start to the end of the measurement of the predetermined time. 4. The communication system according to claim 1, 2, or 3, wherein the error is obtained.
  8.  前記誤差を求める処理を所定回数繰り返し、
     前記スリープ時間算出部は、所定回数分の前記誤差に基づいて前記加入者光通信装置における自走クロックと前記リファレンスクロックと相対誤差を求め、前記相対誤差と前記閾値とに基づいて前記スリープ時間を算出する、ことを特徴とする請求項4~7のいずれか1つに記載の通信システム。
    The process for obtaining the error is repeated a predetermined number of times,
    The sleep time calculation unit obtains a relative error between the self-running clock and the reference clock in the subscriber optical communication device based on the error for a predetermined number of times, and calculates the sleep time based on the relative error and the threshold value. 8. The communication system according to claim 4, wherein the communication system is calculated.
  9.  前記相対誤差を、前記所定回数分の前記誤差の最大値に基づいて求める、ことを特徴とする請求項8に記載の通信システム。 The communication system according to claim 8, wherein the relative error is obtained based on a maximum value of the error for the predetermined number of times.
  10.  前記相対誤差を、前記所定回数分の前記誤差の加重平均に基づいて求める、ことを特徴とする請求項8に記載の通信システム。 The communication system according to claim 8, wherein the relative error is obtained based on a weighted average of the errors for the predetermined number of times.
  11.  前記所定回数の繰り返しにおいて、繰り返しの回数ごとに前記所定時間を増加させる、ことを特徴とする請求項4~10のいずれか1つに記載の通信システム。 The communication system according to any one of claims 4 to 10, wherein, in the repetition of the predetermined number of times, the predetermined time is increased for each repetition.
  12.  前記加入者光通信装置は、
     前記送信器を間欠的に停止させる送信スリープモードに遷移可能とし、
     前記局側光通信装置または前記加入者光通信装置は、
     前記スリープ時間算出部により算出されたスリープ時間が、前記受信器および前記送信器に設定可能な最小時間より短い場合に、前記加入者光通信装置に適用するパワーセーブモードとして前記送信スリープモードを選択する、ことを特徴とする請求項1~11のいずれか1つに記載の通信システム。
    The subscriber optical communication device is:
    It is possible to transition to a transmission sleep mode in which the transmitter is intermittently stopped,
    The station side optical communication device or the subscriber optical communication device is:
    When the sleep time calculated by the sleep time calculation unit is shorter than the minimum time that can be set in the receiver and the transmitter, the transmission sleep mode is selected as a power save mode to be applied to the subscriber optical communication device The communication system according to any one of claims 1 to 11, wherein:
  13.  前記局側光通信装置または前記加入者光通信装置は、
     前記スリープ時間算出部により算出されたスリープ時間が、前記受信器および前記送信器に設定可能な最小時間以上である場合に、前記加入者光通信装置に適用するパワーセーブモードとして前記送信スリープモードと前記送受信スリープモードとのうち消費電力の少ないモードを選択する、ことを特徴とする請求項12に記載の通信システム。
    The station side optical communication device or the subscriber optical communication device is:
    When the sleep time calculated by the sleep time calculation unit is equal to or longer than a minimum time that can be set in the receiver and the transmitter, the transmission sleep mode is used as a power save mode to be applied to the subscriber optical communication device. The communication system according to claim 12, wherein a mode with low power consumption is selected from the transmission / reception sleep mode.
  14.  前記送信スリープモードのスリープ時間として、前記加入者側光通信装置からの信号が一定時間受信されないことによるリンク断が発生しない範囲内の値を設定する、ことを特徴とする請求項12または13に記載の通信システム。 14. The sleep time in the transmission sleep mode is set to a value within a range in which no link breakage occurs because a signal from the optical communication apparatus on the subscriber side is not received for a certain period of time. The communication system described.
  15.  局側光通信装置と接続され、送信器および受信器を間欠的に停止させる送受信スリープモードへの遷移が可能であり、前記受信器によって前記局側光通信装置より受信した光信号から抽出したクロックを用いて動作し、前記受信器が停止状態の間は自走クロックを用いて動作する加入者側光通信装置であって、
     前記局側光通信装置のクロックと前記自走クロックとの間の誤差を測定する時刻誤差算出部、
     を備え、
     タイムスタンプドリフトの発生の有無を判定する閾値と前記誤差とに基づいて、タイムスタンプドリフトが発生しないよう算出された前記送信器および前記受信器のスリープ時間を前記送受信スリープモードのスリープ時間として用いる、ことを特徴とする加入者側光通信装置。
    A clock extracted from an optical signal received from the station-side optical communication apparatus by the receiver, which is connected to the station-side optical communication apparatus, can be changed to a transmission / reception sleep mode in which the transmitter and the receiver are intermittently stopped. A subscriber-side optical communication device that operates using a free-running clock while the receiver is in a stopped state,
    A time error calculator that measures an error between the clock of the station-side optical communication device and the free-running clock;
    With
    Based on a threshold for determining whether or not time stamp drift has occurred and the error, the transmitter and the receiver sleep time calculated so as not to generate time stamp drift are used as sleep times in the transmission / reception sleep mode, A subscriber-side optical communication apparatus.
  16.  加入者側光通信装置と接続する前記局側光通信装置であって、
     前記加入者側光通信装置は、送信器および受信器を間欠的に停止させる送受信スリープモードへの遷移が可能であり、前記受信器によって前記局側光通信装置より受信した光信号から抽出したクロックを用いて動作し、前記受信器が停止状態の間は自走クロックを用いて動作することとし、
     前記加入者側光通信装置によって測定された前記局側光通信装置のクロックと前記加入者側光通信装置の自走クロックとの間の誤差とタイムスタンプドリフトの発生の有無を判定する閾値とに基づいて、タイムスタンプドリフトが発生しないよう前記送信器および前記受信器のスリープ時間を算出するスリープ時間算出部、
     を備える、ことを特徴とする局側光通信装置。
    The station side optical communication device connected to the subscriber side optical communication device,
    The subscriber-side optical communication device is capable of transition to a transmission / reception sleep mode in which a transmitter and a receiver are intermittently stopped, and a clock extracted from an optical signal received from the station-side optical communication device by the receiver And operate using a free-running clock while the receiver is in a stopped state,
    An error between the clock of the station side optical communication apparatus measured by the subscriber side optical communication apparatus and the self-running clock of the subscriber side optical communication apparatus and a threshold value for determining whether or not time stamp drift has occurred Based on a sleep time calculation unit for calculating a sleep time of the transmitter and the receiver so as not to generate a time stamp drift,
    A station-side optical communication apparatus comprising:
  17.  局側光通信装置と接続され、送信器および受信器を間欠的に停止させる送受信スリープモードへの遷移が可能であり、前記受信器によって前記局側光通信装置より受信した光信号から抽出したクロックを用いて動作し、前記受信器が停止状態の間は自走クロックを用いて動作する加入者側光通信装置における制御装置であって、
     前記局側光通信装置のクロックと前記加入者側光通信装置の自走クロックとの間の誤差を測定する時刻誤差算出部、
     を備え、
     タイムスタンプドリフトの発生の有無を判定する閾値と前記誤差とに基づいて、タイムスタンプドリフトが発生しないよう算出された前記送信器および前記受信器のスリープ時間を前記送受信スリープモードのスリープ時間として用いる、ことを特徴とする制御装置。
    A clock extracted from an optical signal received from the station-side optical communication apparatus by the receiver, which is connected to the station-side optical communication apparatus, can be changed to a transmission / reception sleep mode in which the transmitter and the receiver are intermittently stopped. A control device in a subscriber-side optical communication device that operates using a free-running clock while the receiver is in a stopped state,
    A time error calculator for measuring an error between the clock of the station side optical communication device and the self-running clock of the subscriber side optical communication device;
    With
    Based on a threshold for determining whether or not time stamp drift has occurred and the error, the transmitter and the receiver sleep time calculated so as not to generate time stamp drift are used as sleep times in the transmission / reception sleep mode, A control device characterized by that.
  18.  加入者側光通信装置と接続する前記局側光通信装置における制御装置であって、
     前記加入者側光通信装置は、送信器および受信器を間欠的に停止させる送受信スリープモードへの遷移が可能であり、前記受信器によって前記局側光通信装置より受信した光信号から抽出したクロックを用いて動作し、前記受信器が停止状態の間は自走クロックを用いて動作することとし、
     前記加入者側光通信装置によって測定された前記局側光通信装置のクロックと前記加入者側光通信装置の自走クロックとの間の誤差とタイムスタンプドリフトの発生の有無を判定する閾値とに基づいて、タイムスタンプドリフトが発生しないよう前記送信器および前記受信器のスリープ時間を算出するスリープ時間算出部、
     を備える、ことを特徴とする制御装置。
    A control device in the station side optical communication device connected to the subscriber side optical communication device,
    The subscriber-side optical communication device is capable of transition to a transmission / reception sleep mode in which a transmitter and a receiver are intermittently stopped, and a clock extracted from an optical signal received from the station-side optical communication device by the receiver And operate using a free-running clock while the receiver is in a stopped state,
    An error between the clock of the station side optical communication apparatus measured by the subscriber side optical communication apparatus and the self-running clock of the subscriber side optical communication apparatus and a threshold value for determining whether or not time stamp drift has occurred Based on a sleep time calculation unit for calculating a sleep time of the transmitter and the receiver so that a time stamp drift does not occur,
    A control device comprising:
  19.  局側光通信装置と、送信器および受信器を間欠的に停止させる送受信スリープモードへの遷移が可能であり、前記受信器によって前記局側光通信装置より受信した光信号から抽出したクロックを用いて動作し、前記受信器が停止状態の間は自走クロックを用いて動作する加入者側光通信装置と、を備える通信システムにおける省電力制御方法であって、
     前記局側光通信装置のクロックと前記加入者側光通信装置の前記自走クロックとの間の誤差を測定する時刻誤差算出ステップと、
     タイムスタンプドリフトの発生の有無を判定する閾値と前記誤差とに基づいて、タイムスタンプドリフトが発生しないよう前記送信器および前記受信器のスリープ時間を算出するスリープ時間算出ステップと、
     前記加入者側光通信装置が、前記スリープ時間算出部が算出したスリープ時間を前記送受信スリープモードのスリープ時間として用いる省電力ステップと、
     を含むことを特徴とする省電力制御方法。
    Transition to the station side optical communication device and transmission / reception sleep mode in which the transmitter and the receiver are intermittently stopped is possible, and a clock extracted from the optical signal received from the station side optical communication device by the receiver is used. A power-saving control method in a communication system comprising: a subscriber-side optical communication device that operates using a self-running clock while the receiver is in a stopped state,
    A time error calculation step of measuring an error between the clock of the station side optical communication device and the self-running clock of the subscriber side optical communication device;
    A sleep time calculating step for calculating a sleep time of the transmitter and the receiver so as not to generate a time stamp drift, based on a threshold for determining whether a time stamp drift occurs and the error; and
    The subscriber-side optical communication device uses the sleep time calculated by the sleep time calculation unit as the sleep time in the transmission / reception sleep mode, and
    A power saving control method comprising:
PCT/JP2011/069486 2011-08-29 2011-08-29 Communication system, subscriber side optical communication device, station side optical communication device, control device and power-saving control method WO2013030934A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/069486 WO2013030934A1 (en) 2011-08-29 2011-08-29 Communication system, subscriber side optical communication device, station side optical communication device, control device and power-saving control method
TW100147667A TW201310929A (en) 2011-08-29 2011-12-21 Communication system, participant side optical communication device, station side optical communication device, control device and method for controlling power saving

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/069486 WO2013030934A1 (en) 2011-08-29 2011-08-29 Communication system, subscriber side optical communication device, station side optical communication device, control device and power-saving control method

Publications (1)

Publication Number Publication Date
WO2013030934A1 true WO2013030934A1 (en) 2013-03-07

Family

ID=47755487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069486 WO2013030934A1 (en) 2011-08-29 2011-08-29 Communication system, subscriber side optical communication device, station side optical communication device, control device and power-saving control method

Country Status (2)

Country Link
TW (1) TW201310929A (en)
WO (1) WO2013030934A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201194A (en) * 2014-04-03 2015-11-12 富士電機株式会社 Data management system with time stamp, device thereof, and program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093556A (en) * 2008-10-08 2010-04-22 Sumitomo Electric Ind Ltd Station side device, and communications method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093556A (en) * 2008-10-08 2010-04-22 Sumitomo Electric Ind Ltd Station side device, and communications method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201194A (en) * 2014-04-03 2015-11-12 富士電機株式会社 Data management system with time stamp, device thereof, and program

Also Published As

Publication number Publication date
TW201310929A (en) 2013-03-01

Similar Documents

Publication Publication Date Title
EP2728808B1 (en) Subscriber-side optical communication device, communication system, control device and power-saving control method
JP5226901B2 (en) Communication method for optical communication system, optical communication system, slave station apparatus, control apparatus, and program
US9264213B2 (en) Time synchronization method for communication system, slave station apparatus, master station apparatus, control device, and program
JP5258969B2 (en) PON system, subscriber-side terminator, station-side terminator, and power saving method
KR101310905B1 (en) Optical network terminal, method for time syncronization thereof, optical line termianl, and method for managing network thereof
JP5546662B2 (en) Slave station apparatus, communication method of optical communication system, optical communication system, and control apparatus
KR101285277B1 (en) Method and system for time synchronization in a passive optical network
WO2009155830A1 (en) Exchanging method, equipment and system for the optical access system
JP2007295151A (en) Pon system and station side apparatus and terminal used for the same
WO2013030934A1 (en) Communication system, subscriber side optical communication device, station side optical communication device, control device and power-saving control method
US8165173B2 (en) Data transmission method, system and terminal
JP4173044B2 (en) Method of using upstream bandwidth in optical burst transmission / reception network
WO2012117890A1 (en) Clock/data reproduction unit, method for controlling power thereof, and pon system
JP2014057192A (en) Slave station device, master station device, control device, optical communication system and power saving control method
JP5757190B2 (en) Optical communication system, control method of optical communication system, and home side apparatus
JP5712855B2 (en) Optical communication system, control method of optical communication system, and home side apparatus
US20140213317A1 (en) Station side device, power-saving control system, and power-saving control method
JP5862365B2 (en) Transmission apparatus and power control system
Yazawa et al. High accurately synchronized λ-tunable WDM/TDM-PON using timestamps based time and frequency synchronization for mobile backhaul
JP5607206B2 (en) PON system, subscriber-side termination device, station-side termination device, control device, and power saving method
JP2013081065A (en) Power saving control method, station side device, and communication system
JP2013255083A (en) Transmission control method and transmission device
JP2014127727A (en) Communication system and communication device
JP2014007707A (en) Method for power saving in subscriber side optical communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP