WO2013030644A2 - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
WO2013030644A2
WO2013030644A2 PCT/IB2012/001625 IB2012001625W WO2013030644A2 WO 2013030644 A2 WO2013030644 A2 WO 2013030644A2 IB 2012001625 W IB2012001625 W IB 2012001625W WO 2013030644 A2 WO2013030644 A2 WO 2013030644A2
Authority
WO
WIPO (PCT)
Prior art keywords
coil end
sensor
holder
rotary electric
electric machine
Prior art date
Application number
PCT/IB2012/001625
Other languages
French (fr)
Other versions
WO2013030644A3 (en
Inventor
Keiichi Kaneshige
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP20120769467 priority Critical patent/EP2751912A2/en
Priority to CN201280041567.2A priority patent/CN103891111A/en
Priority to US14/239,959 priority patent/US20140184031A1/en
Publication of WO2013030644A2 publication Critical patent/WO2013030644A2/en
Publication of WO2013030644A3 publication Critical patent/WO2013030644A3/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/25Devices for sensing temperature, or actuated thereby

Definitions

  • the invention relates to a structure of a stator of a rotary electric machine.
  • Rotary electric machines such as electric motors and the like, produce heat when in operation.
  • a temperature sensor is attached to the coils so as to monitor the temperature of the coils.
  • the methods proposed for attaching a temperature sensor to the coils include a method in which guides having a D-shaped cross section made of resin are inserted into tunnel-shaped spaces in a coil end formed between slots of the stator core so that the temperature detection element of the sensor is pressed against the surface of the coil end by the guides (see, e.g., Japanese Patent Application Publication No. 2003-92858 (JP 2003-92858 A)).
  • a temperature sensor is attached to a bracket via sponge pieces or hollow rubber pieces so that when the bracket is incorporated into a casing, the temperature sensor is pressed against the surface of the coil end (see, e.g., Japanese Patent Application Publication No. 2003-32964 (JP 2003-32964 A)).
  • thermosensor is attached to a coil end-side surface of a neutral-point case made of resin that is attached to the coil end, and when the neutral-point case is attached to the coil end via a band made of resin, the temperature sensor is pressed, by tension of the band, against the surface of the coil end (see, e.g., Japanese Patent Application Publication No. 2008-29127 (JP 2008-29127 A)).
  • Yet another method proposed is, among other methods, a method in which when the coil is molded, a recess portion is formed on the surface of the coil end by a dummy member, and a temperature sensor is attached to the recess portion so as to measure the temperature of the coil end (see, e.g., Japanese Patent Application Publication No. 2008-22679 (JP 2008-22679 A)).
  • the invention provides a construction that stably measures the temperature of coils for a long period of time.
  • a rotary electric machine in accordance with an aspect of the invention includes: a stator core fixed to a casing; a coil end formed on the stator core; a bracket fixed to the casing; an arm that extends from the bracket and that is made of metal and that has elasticity; a holder that is attached to the arm and that is made of resin; and a sensor that is attached to the holder and that contacts the coil end to detect temperature of the coil end.
  • the arm may extend from the bracket toward an outer peripheral surface of the coil end, and the sensor may contact the outer peripheral surface of the coil end to detect the temperature of the coil end.
  • the coil end may be annular, and the arm may press the sensor against the coil end in a radial direction of the coil end.
  • the arm may be connected to the holder so as to press a temperature detection site of the sensor against the outer peripheral surface of the annular coil end, toward a center of the coil end, the temperature detection site of the sensor being a site of the sensor that detects the temperature.
  • the holder may hold the sensor so that a temperature detection site of the sensor which is a site of the sensor that detects the temperature is located at a first surface of an end-side portion of the holder in a circumferential direction of the coil end, the first surface facing the coil end, and the arm may be connected to a second surface of the end-side portion of the holder which is opposite to the first surface of the end-side portion of the holder.
  • the arm and the sensor may be thermally insulated from each other by the holder.
  • the holder may surround the sensor so that a side portion of the sensor that faces the coil end is exposed.
  • the holder may surround the sensor so as to cover a portion of the sensor which does not contact the coil end.
  • the senor may be a thermistor.
  • FIG. 1 is a perspective view showing a construction of a stator in an embodiment of the invention
  • FIG. 2 is a plan view of the stator in the embodiment of the invention.
  • FIG. 3 is a sectional view taken along line III- III of FIG. 2.
  • a rotary electric machine 100 in accordance with an embodiment of the invention includes a stator 20, a bracket 30 and a thermistor holder 40.
  • the stator 20 is fixed inside a casing 10.
  • the bracket 30 is attached to a fixture portion 11 of the casing 10, and is made of metal.
  • the thermistor holder 40 is attached to a distal end 35 of an arm 34 provided on the bracket 30, and is made of resin.
  • the stator 20 includes a stator core 21, coils and a coil end 22.
  • the stator core 21 is fixed to an internal surface of the casing 10. The coils are wound on the stator core 21.
  • the stator core 21 is provided with the coil end 22.
  • the coil end is formed on an axis-direction end surface of the stator core 21 due to the winding of the coils.
  • a sectional shape of the coil end 22 is semi-circular or rectangular.
  • the bracket 30 includes a main body 31 and the arm 34 that obliquely extends from the main body 31 toward an outside surface 23 of the coil end 22. That is, the arm 34 extends toward the outside surface 23 that is an outer peripheral surface of the coil end that is formed so as to have an annular shape.
  • the main body 31 of the bracket 30 is a thin metal plate that has a semi-circular shape, and is provided with bent hooks 32 and 33 that are bent toward an inner peripheral surface of the casing 10.
  • the main body 31 is fixed to the fixture portion 11 of the casing 10 by hooking the bent hooks 32 and 33 on the inner peripheral surface of the casing 10 and tightening a bolt 12 via a washer 13.
  • the arm 34 is a thin metal band plate continuous from the bent hook 33, and extends obliquely toward the outside surface 23 of the coil end 22 from a position at an angle a in the counterclockwise direction from a horizontal axis 71 of the rotary electric machine 100 as shown in FIG. 2.
  • a center 37 of the distal end 35 reaches the horizontal axis 71.
  • the arm 34 is made of metal, and is elastic.
  • the distal end 35 of the arm 34 is connected to the thermistor holder 40 made of resin, by insert molding.
  • the thermistor holder 40 is a generally rectangular parallelepiped in shape, and a bar-shaped thermistor 50 is attached to a coil end 22 side of the holder 40.
  • a temperature detection site 51 of the thermistor 50 that is a site that detects temperature is at the side of an end 42 of the thermistor holder 40, and is disposed so as to contact the outside surface 23 of the coil end 22 at the position of the horizontal axis 71 of the rotary electric machine 100.
  • the center 37 of the distal end 35 of the arm 34 and the temperature detection site 51 of the thermistor 50 are both constructed so as to be located on the horizontal axis 71 of the rotary electric machine 100. That is, the thermistor holder 40 holds the thermistor 50 so that, in an end 42-side portion of the thermistor holder 40, the temperature detection site 51 of the thermistor 50 is positioned at a surface 44 that faces the outside surface 23 of the coil end 22.
  • the elastic arm 34 made of metal is connected to a surface 45 of the end 42-side portion of the thermistor holder 40 which is opposite to the surface 44 of the thermistor holder 40 which faces the outside surface 23 of the coil end 22.
  • the center 37 of the distal end 35 of the arm 34 and the temperature detection site 51 of the thermistor 50 are both constructed so as to be located on the horizontal axis 71 of the rotary electric machine 100. Furthermore, at the side of a base 43 of the thermistor holder 40, there is disposed a base portion 52 of the bar-shaped thermistor 50. An output line 60 that outputs a temperature detection signal is connected to the base portion 52 of the thermistor 50, that is, extends therefrom upward in FIG. 2.
  • the thermistor holder 40 surrounds the thermistor 50 so as to cover portions of the thermistor 50 that do not contact the outside surface 23 of the coil end 22. Therefore, the thermistor 50 is surrounded by the resin of the thermistor holder 40, except that only a side portion of the thermistor 50 that faces the coil end 22 is exposed.
  • the temperature detection site 51 of the thermistor 50 contacts the outside surface 23 of the coil end 22, so that the arm 34 flexes or yields toward the main body 31 of the bracket 30. Due to the reaction force that results from the deformation of the flexure, the arm 34 presses the temperature detection site 51 of the thermistor 50 against the outside surface 23 of the coil end 22. Since the arm 34 is made of metal, the elasticity of the arm 34 does not undergo time-dependent degradation, so that the arm 34 is able to stably press the temperature detection site 51 of the thermistor 50 against the outside surface 23 of the coil end 22 over a long period of time. Furthermore, the pressing position remains stable, that is, does not deviate, for a long time, so that the temperature of the outside surface 23 of the coil end 22 can be stably detected.
  • the arm 34 is set in the thermistor holder 40 by insert molding so that a layer of resin of the thermistor holder 40 intervenes between the thermistor 50 and the arm 34. Therefore, heat conducted through the arm 34 of the bracket 30 to the distal end 35 is insulated by the resin layer of the thermistor holder 40, and is therefore not conducted from the distal end 35 of the arm 34 to the thermistor 50. Thus, the thermistor 50 can be substantially kept from being affected by the temperature of the casing 10 or the like.
  • the thermistor 50 is surrounded by the resin of the thermistor holder 40 except that only the side portion of the thermistor 50 that faces the coil end 22 is exposed. Therefore, the temperature detection site 51 of the thermistor 50 can be kept from being splashed with or exposed to cooling oil or the like. Therefore, false detection of the temperature caused by the cooling oil can be restrained.
  • the arm 34 is able to press the temperature detection site 51 of the thermistor 50 against the coil end 22, toward the center of the annular coil end 22, and therefore is able to hold the thermistor 50 so that the temperature detection site 51 of the thermistor 50 does not depart from the outside surface 23 of the coil end 22. Furthermore, since the depressing force by the arm 34 does not bring about a bending stress in the thermistor holder 40 due to the above-described structure, occurrence of deformation of the thermistor holder 40 resulting from the pressing force is restrained.
  • the construction in which the temperature detection site 51 of the thermistor 50 is disposed so as to contact the outside surface of the annular coil end 22 and in which the arm 34 presses the temperature detection site 51 against the outside surface 23 toward the center of the coil end 22 has been described as an example, the invention of this application is not limited to that construction.
  • the thermistor 50 may be disposed so as to contact the inner peripheral surface of the annular coil end 22, that is, an inside surface thereof, and may also be disposed so as to contact an end surface of the coil end 22 which is perpendicular to the outside surface 23.
  • thermistor 50 as a sensor that detects the temperature of the coil end 22, this is not restrictive.
  • a sensor may be provided by using a bimetal, a thermoelectric couple, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

A rotary electric machine includes: a stator core fixed to a casing; a coil end formed on the stator core; a bracket fixed to the casing; an arm that extends from the bracket and that is made of metal and that has elasticity; a holder that is attached to the arm and that is made of resin; and a sensor that is attached to the holder and that contacts the coil end to detect temperature of the coil end.

Description

ROTARY ELECTRIC MACHINE
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a structure of a stator of a rotary electric machine.
2. Description of Related Art
[0001] Rotary electric machines, such as electric motors and the like, produce heat when in operation. In particular, when the load of a rotary electric machine becomes excessively large, there is a possibility of a great increase of the temperature of the coils. Therefore, a temperature sensor is attached to the coils so as to monitor the temperature of the coils.
[0002] The methods proposed for attaching a temperature sensor to the coils include a method in which guides having a D-shaped cross section made of resin are inserted into tunnel-shaped spaces in a coil end formed between slots of the stator core so that the temperature detection element of the sensor is pressed against the surface of the coil end by the guides (see, e.g., Japanese Patent Application Publication No. 2003-92858 (JP 2003-92858 A)). There also exists a method in which a temperature sensor is attached to a bracket via sponge pieces or hollow rubber pieces so that when the bracket is incorporated into a casing, the temperature sensor is pressed against the surface of the coil end (see, e.g., Japanese Patent Application Publication No. 2003-32964 (JP 2003-32964 A)). There is still another method in which a temperature sensor is attached to a coil end-side surface of a neutral-point case made of resin that is attached to the coil end, and when the neutral-point case is attached to the coil end via a band made of resin, the temperature sensor is pressed, by tension of the band, against the surface of the coil end (see, e.g., Japanese Patent Application Publication No. 2008-29127 (JP 2008-29127 A)). Yet another method proposed is, among other methods, a method in which when the coil is molded, a recess portion is formed on the surface of the coil end by a dummy member, and a temperature sensor is attached to the recess portion so as to measure the temperature of the coil end (see, e.g., Japanese Patent Application Publication No. 2008-22679 (JP 2008-22679 A)).
[0003] However, as for the related arts described in JP 2003-92858 A, JP 2003-32964 A and JP 2008-29127 A, although the arts are designed so that the temperature of the coil end is measured in an arrangement in which the temperature sensor is pressed against the surface of the coil end by utilizing the elasticity of the resin, the resin degrades due to high temperature within the rotary electric machines, such as electric motors and the like, during operation, or resin component parts deform due to creep that occurs as stressed state continues. Therefore, it is impossible to stably press the temperature sensor against the coils for a long period of time. This results in a time-dependent problem of possibly making an error in detecting the temperature.
[0004] In the related art described in JP 2008-22679 A, when the coil end is to be molded, a dummy is inserted so as to form the recess portion in the coil end, and the temperature sensor is attached to the recess portion. However, it is labor-consuming to insert and remove the dummy, and it is not easy to replace the temperature sensor at the time of failure since the temperature sensor is set in the recess portion. Therefore, the range of application of this related art is limited.
[0005] In the method in which the temperature sensor is pressed against the coil end by utilizing the elasticity of metal, degradation of the metal is small, and therefore it is possible to stably press the temperature sensor against the surfaces of the coils for a long period of time. However, since metal component parts have high heat conductivity, the ambient temperature, for example, the temperature of cooling oil, the temperature of air inside the casing, etc., is conducted to the temperature sensor, giving rise to a problem of the ambient environment causing an error in the output of the temperature sensor.
SUMMARY OF THE INVENTION
[0006] The invention provides a construction that stably measures the temperature of coils for a long period of time.
[0007] A rotary electric machine in accordance with an aspect of the invention includes: a stator core fixed to a casing; a coil end formed on the stator core; a bracket fixed to the casing; an arm that extends from the bracket and that is made of metal and that has elasticity; a holder that is attached to the arm and that is made of resin; and a sensor that is attached to the holder and that contacts the coil end to detect temperature of the coil end.
[0008] In the rotary electric machine of the foregoing aspect of the invention, the arm may extend from the bracket toward an outer peripheral surface of the coil end, and the sensor may contact the outer peripheral surface of the coil end to detect the temperature of the coil end.
[0009] In the rotary electric machine of the aspect of the invention, the coil end may be annular, and the arm may press the sensor against the coil end in a radial direction of the coil end.
[0010] In the rotary electric machine of the aspect of the invention, the arm may be connected to the holder so as to press a temperature detection site of the sensor against the outer peripheral surface of the annular coil end, toward a center of the coil end, the temperature detection site of the sensor being a site of the sensor that detects the temperature.
[0011] In the rotary electric machine of the aspect of the invention, the holder may hold the sensor so that a temperature detection site of the sensor which is a site of the sensor that detects the temperature is located at a first surface of an end-side portion of the holder in a circumferential direction of the coil end, the first surface facing the coil end, and the arm may be connected to a second surface of the end-side portion of the holder which is opposite to the first surface of the end-side portion of the holder.
[0012] In the rotary electric machine of the aspect of the invention, the arm and the sensor may be thermally insulated from each other by the holder.
[0013] In the rotary electric machine of the aspect of the invention, the holder may surround the sensor so that a side portion of the sensor that faces the coil end is exposed.
[0014] In the rotary electric machine of the aspect of the invention, the holder may surround the sensor so as to cover a portion of the sensor which does not contact the coil end.
[0015] In the rotary electric machine, the sensor may be a thermistor.
[0016] According to the invention, it is possible to stably measure the coil temperature for a long period of time.
BRIEF DESCRIPTION OF THE DRAWINGS
[0017] Features, advantages, and technical and industrial significance of exemplary embodiments of the invention will be described below with reference to the accompanying drawings, in which like numerals denote like elements, and wherein:
FIG. 1 is a perspective view showing a construction of a stator in an embodiment of the invention;
FIG. 2 is a plan view of the stator in the embodiment of the invention; and FIG. 3 is a sectional view taken along line III- III of FIG. 2. DETAILED DESCRIPTION OF EMBODIMENTS
[0018] Hereinafter, embodiments of the invention will be described with reference to the drawings. As shown in FIG. 1, a rotary electric machine 100 in accordance with an embodiment of the invention includes a stator 20, a bracket 30 and a thermistor holder 40. The stator 20 is fixed inside a casing 10. The bracket 30 is attached to a fixture portion 11 of the casing 10, and is made of metal. The thermistor holder 40 is attached to a distal end 35 of an arm 34 provided on the bracket 30, and is made of resin. The stator 20 includes a stator core 21, coils and a coil end 22. The stator core 21 is fixed to an internal surface of the casing 10. The coils are wound on the stator core 21. The stator core 21 is provided with the coil end 22. The coil end is formed on an axis-direction end surface of the stator core 21 due to the winding of the coils. A sectional shape of the coil end 22 is semi-circular or rectangular. The bracket 30 includes a main body 31 and the arm 34 that obliquely extends from the main body 31 toward an outside surface 23 of the coil end 22. That is, the arm 34 extends toward the outside surface 23 that is an outer peripheral surface of the coil end that is formed so as to have an annular shape. The main body 31 of the bracket 30 is a thin metal plate that has a semi-circular shape, and is provided with bent hooks 32 and 33 that are bent toward an inner peripheral surface of the casing 10. The main body 31 is fixed to the fixture portion 11 of the casing 10 by hooking the bent hooks 32 and 33 on the inner peripheral surface of the casing 10 and tightening a bolt 12 via a washer 13. The arm 34 is a thin metal band plate continuous from the bent hook 33, and extends obliquely toward the outside surface 23 of the coil end 22 from a position at an angle a in the counterclockwise direction from a horizontal axis 71 of the rotary electric machine 100 as shown in FIG. 2. A center 37 of the distal end 35 reaches the horizontal axis 71. The arm 34 is made of metal, and is elastic.
[0019] As shown in FIG. 3, the distal end 35 of the arm 34 is connected to the thermistor holder 40 made of resin, by insert molding. As shown in FIG. 2, the thermistor holder 40 is a generally rectangular parallelepiped in shape, and a bar-shaped thermistor 50 is attached to a coil end 22 side of the holder 40. A temperature detection site 51 of the thermistor 50 that is a site that detects temperature is at the side of an end 42 of the thermistor holder 40, and is disposed so as to contact the outside surface 23 of the coil end 22 at the position of the horizontal axis 71 of the rotary electric machine 100. Therefore, the center 37 of the distal end 35 of the arm 34 and the temperature detection site 51 of the thermistor 50 are both constructed so as to be located on the horizontal axis 71 of the rotary electric machine 100. That is, the thermistor holder 40 holds the thermistor 50 so that, in an end 42-side portion of the thermistor holder 40, the temperature detection site 51 of the thermistor 50 is positioned at a surface 44 that faces the outside surface 23 of the coil end 22. The elastic arm 34 made of metal is connected to a surface 45 of the end 42-side portion of the thermistor holder 40 which is opposite to the surface 44 of the thermistor holder 40 which faces the outside surface 23 of the coil end 22. The center 37 of the distal end 35 of the arm 34 and the temperature detection site 51 of the thermistor 50 are both constructed so as to be located on the horizontal axis 71 of the rotary electric machine 100. Furthermore, at the side of a base 43 of the thermistor holder 40, there is disposed a base portion 52 of the bar-shaped thermistor 50. An output line 60 that outputs a temperature detection signal is connected to the base portion 52 of the thermistor 50, that is, extends therefrom upward in FIG. 2.
[0020] As shown in FIG. 3, the thermistor holder 40 surrounds the thermistor 50 so as to cover portions of the thermistor 50 that do not contact the outside surface 23 of the coil end 22. Therefore, the thermistor 50 is surrounded by the resin of the thermistor holder 40, except that only a side portion of the thermistor 50 that faces the coil end 22 is exposed.
[0021] In the rotary electric machine 100 constructed as described above, when the bracket 30 is fixed to the fixture portion 11 of the casing 10 by the bolt 12, the temperature detection site 51 of the thermistor 50 contacts the outside surface 23 of the coil end 22, so that the arm 34 flexes or yields toward the main body 31 of the bracket 30. Due to the reaction force that results from the deformation of the flexure, the arm 34 presses the temperature detection site 51 of the thermistor 50 against the outside surface 23 of the coil end 22. Since the arm 34 is made of metal, the elasticity of the arm 34 does not undergo time-dependent degradation, so that the arm 34 is able to stably press the temperature detection site 51 of the thermistor 50 against the outside surface 23 of the coil end 22 over a long period of time. Furthermore, the pressing position remains stable, that is, does not deviate, for a long time, so that the temperature of the outside surface 23 of the coil end 22 can be stably detected.
[0022] Furthermore, as shown in FIG. 3, the arm 34 is set in the thermistor holder 40 by insert molding so that a layer of resin of the thermistor holder 40 intervenes between the thermistor 50 and the arm 34. Therefore, heat conducted through the arm 34 of the bracket 30 to the distal end 35 is insulated by the resin layer of the thermistor holder 40, and is therefore not conducted from the distal end 35 of the arm 34 to the thermistor 50. Thus, the thermistor 50 can be substantially kept from being affected by the temperature of the casing 10 or the like.
[0023] Furthermore, the thermistor 50 is surrounded by the resin of the thermistor holder 40 except that only the side portion of the thermistor 50 that faces the coil end 22 is exposed. Therefore, the temperature detection site 51 of the thermistor 50 can be kept from being splashed with or exposed to cooling oil or the like. Therefore, false detection of the temperature caused by the cooling oil can be restrained.
[0024] Furthermore, since the center 37 of the distal end 35 of the arm 34 and the temperature detection site 51 of the thermistor 50 are both constructed so as to be located on the horizontal axis 71 of the rotary electric machine 100 as shown in FIG. 2, the arm 34 is able to press the temperature detection site 51 of the thermistor 50 against the coil end 22, toward the center of the annular coil end 22, and therefore is able to hold the thermistor 50 so that the temperature detection site 51 of the thermistor 50 does not depart from the outside surface 23 of the coil end 22. Furthermore, since the depressing force by the arm 34 does not bring about a bending stress in the thermistor holder 40 due to the above-described structure, occurrence of deformation of the thermistor holder 40 resulting from the pressing force is restrained.
[0025] Although the construction in which the temperature detection site 51 of the thermistor 50 is disposed so as to contact the outside surface of the annular coil end 22 and in which the arm 34 presses the temperature detection site 51 against the outside surface 23 toward the center of the coil end 22 has been described as an example, the invention of this application is not limited to that construction. For example, the thermistor 50 may be disposed so as to contact the inner peripheral surface of the annular coil end 22, that is, an inside surface thereof, and may also be disposed so as to contact an end surface of the coil end 22 which is perpendicular to the outside surface 23. Incidentally, in the case of the construction in which the thermistor 50 contacts the inside surface of the coil end 22, a construction is adopted in which the thermistor 50 is pressed by the arm 34 in a radial direction of the coil end 22 from the inside surface toward the outside surface of the coil end 22.
[0026] Furthermore, while the foregoing description has been made in conjunction with the example that adopts the thermistor 50 as a sensor that detects the temperature of the coil end 22, this is not restrictive. For example, such a sensor may be provided by using a bimetal, a thermoelectric couple, etc.
[0027] While the disclosure has been explained in conjunction with specific exemplary embodiments thereof, it is evident that many alternatives, modifications, and variations will be apparent to those skilled in the art. Accordingly, exemplary embodiments of the disclosure as set forth herein are intended to be illustrative, not limiting. There are changes that may be made without departing from the scope of the disclosure.

Claims

1. A rotary electric machine comprising:
a stator core fixed to a casing;
a coil end formed on the stator core;
a bracket fixed to the casing;
an arm that extends from the bracket and that is made of metal and that has elasticity;
a holder that is attached to the arm and that is made of resin; and
a sensor that is attached to the holder and that contacts the coil end to detect temperature of the coil end.
2. The rotary electric machine according to claim 1, wherein:
the arm extends from the bracket toward an outer peripheral surface of the coil end; and
the sensor contacts the outer peripheral surface of the coil end and detects the temperature of the coil end.
3. The rotary electric machine according to claim 1 or 2, wherein:
the coil end is annular;
the arm presses the sensor against the coil end in a radial direction of the coil end.
4. The rotary electric machine according to claim 3, wherein
the arm is connected to the holder so as to press a temperature detection site of the sensor against the outer peripheral surface of the annular coil end, toward a center of the coil end, the temperature detection site of the sensor being a site of the senor that detects the temperature.
5. The rotary electric machine according to any one of claims 1 to 4, wherein
the holder holds the sensor so that a temperature detection site of the sensor which is a site that detects the temperature is located at a first surface of an end-side portion of the holder in a circumferential direction of the coil end, the first surface facing the coil end, and the arm is connected to a second surface of the end-side portion of the holder which is opposite to the first surface of the end-side portion of the holder.
6. The rotary electric machine according to claim 5, wherein
the arm and the sensor are thermally insulated from each other by the holder.
7. The rotary electric machine according to any one of claims 3 to 6, wherein
the holder surrounds the sensor so that a side portion of the sensor that faces the coil end is exposed.
8. The rotary electric machine according to any one of claims 3 to 6, wherein
the holder surrounds the sensor so as to cover a portion of the sensor which does not contact the coil end.
9. The rotary electric machine according to any one of claims 1 to 8, wherein
the sensor is a thermistor.
PCT/IB2012/001625 2011-08-31 2012-08-23 Rotary electric machine WO2013030644A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20120769467 EP2751912A2 (en) 2011-08-31 2012-08-23 Rotary electric machine
CN201280041567.2A CN103891111A (en) 2011-08-31 2012-08-23 Rotary electric machine
US14/239,959 US20140184031A1 (en) 2011-08-31 2012-08-23 Rotary electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011188133A JP5741327B2 (en) 2011-08-31 2011-08-31 Rotating electric machine
JP2011188133 2011-08-31

Publications (2)

Publication Number Publication Date
WO2013030644A2 true WO2013030644A2 (en) 2013-03-07
WO2013030644A3 WO2013030644A3 (en) 2014-04-03

Family

ID=46982640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2012/001625 WO2013030644A2 (en) 2011-08-31 2012-08-23 Rotary electric machine

Country Status (5)

Country Link
US (1) US20140184031A1 (en)
EP (1) EP2751912A2 (en)
JP (1) JP5741327B2 (en)
CN (1) CN103891111A (en)
WO (1) WO2013030644A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2830179A2 (en) 2013-07-23 2015-01-28 Valeo Equipements Electriques Moteur Rotating electrical machine, corresponding temperature probe support and heat measurement unit
FR3046507A1 (en) * 2016-01-05 2017-07-07 Valeo Equip Electr Moteur STATOR FOR A ROTATING ELECTRIC MACHINE
US20200393306A1 (en) * 2018-08-02 2020-12-17 Shibaura Electronics Co., Ltd. Temperature detection device and assembly thereof

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5811665B2 (en) * 2011-07-28 2015-11-11 トヨタ自動車株式会社 Rotating electricity
JP5693686B2 (en) * 2013-09-09 2015-04-01 三菱電機株式会社 Rotating electric machine
JP5726277B1 (en) * 2013-11-29 2015-05-27 三菱電機株式会社 Rotating electric machine, rotating electric machine stator, and method of manufacturing rotating electric machine stator
JP6221804B2 (en) * 2014-02-13 2017-11-01 トヨタ自動車株式会社 Rotating electric machine stator
GB2532193B (en) * 2014-10-31 2017-09-06 Protean Electric Ltd A stator for an electric motor or generator
CN107209063B (en) 2015-02-26 2018-08-21 株式会社芝浦电子 Temperature sensor
DE102016211536A1 (en) 2016-06-27 2017-12-28 Volkswagen Aktiengesellschaft Electric motor and a method for its production
JP6824765B2 (en) * 2017-01-30 2021-02-03 本田技研工業株式会社 Rotating machine stator
JP6949981B2 (en) * 2017-11-02 2021-10-13 日立Astemo株式会社 Stator of rotary electric machine and rotary electric machine
JP6652980B2 (en) 2018-02-26 2020-02-26 本田技研工業株式会社 Stator, thermistor fixing structure and thermistor fixing method
EP3537579B1 (en) * 2018-03-07 2022-05-11 Vitesco Technologies GmbH Isolation ring for isolating end windings of a stator generator for a hybrid electric vehicle
JP2019205260A (en) 2018-05-22 2019-11-28 本田技研工業株式会社 Stator and rotary electric machine
DE102018208384A1 (en) * 2018-05-28 2019-11-28 Zf Friedrichshafen Ag Stator of an electric machine with a temperature sensor and electric machine with such a stator
DE102018208385A1 (en) 2018-05-28 2019-11-28 Zf Friedrichshafen Ag Stator of an electrical machine with a device for temperature detection and electrical machine with such a stator
DE102018116889A1 (en) * 2018-07-12 2020-01-16 Schaeffler Technologies AG & Co. KG Arrangement for temperature detection of a stator winding of an electrical machine
JP6672395B2 (en) * 2018-08-01 2020-03-25 本田技研工業株式会社 Mounting structure of temperature sensor
US10833564B2 (en) * 2019-02-15 2020-11-10 Ford Global Technologies, Llc Electric machine temperature sensor
DE102019206006A1 (en) * 2019-04-26 2020-10-29 Robert Bosch Gmbh Stator of an electrical machine with exchangeable temperature sensor
JP2020202685A (en) * 2019-06-12 2020-12-17 本田技研工業株式会社 Stator and thermistor unit
WO2021070898A1 (en) * 2019-10-10 2021-04-15 株式会社芝浦電子 Temperature sensor and electric motor
DE112020007171T5 (en) * 2020-12-17 2023-03-02 Shibaura Electronics Co., Ltd. TEMPERATURE SENSOR AND ELECTRIC ROTARY MACHINE
CN117321894A (en) * 2021-04-13 2023-12-29 日立安斯泰莫株式会社 Rotary electric machine
WO2023188600A1 (en) * 2022-03-29 2023-10-05 本田技研工業株式会社 Temperature sensor holder and temperature sensor attachment method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032964A (en) 2001-07-17 2003-01-31 Fanuc Ltd Motor having winding overheat protecting sensor
JP2003092858A (en) 2001-09-19 2003-03-28 Hitachi Ltd Attaching structure of winding temperature detecting element of motor and motor using the structure
JP2008022679A (en) 2006-07-14 2008-01-31 Toyota Motor Corp Structure of fixing temperature detection device, and method of manufacturing rotary electric machine
JP2008029127A (en) 2006-07-21 2008-02-07 Toyota Motor Corp Vehicle rotating electric machine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3875439A (en) * 1973-09-17 1975-04-01 Gen Electric Mounting clip for a dynamoelectric machine
US4186318A (en) * 1977-09-22 1980-01-29 General Electric Company Prime mover and method of assembling a device thereto
US4203045A (en) * 1978-04-12 1980-05-13 Westinghouse Electric Corp. Thermally protected dynamoelectric machine
US4236092A (en) * 1978-06-08 1980-11-25 Copeland Corporation Compressor motor protection
US4313069A (en) * 1980-02-26 1982-01-26 Westinghouse Electric Corp. Mounting for thermal protector used in dynamoelectric machine stator windings
US4567390A (en) * 1984-08-02 1986-01-28 Carrier Corporation Internal line break assembly
DE3626770A1 (en) * 1986-08-07 1988-02-11 Braun Ag FUSE PROTECTION, ESPECIALLY FOR ELECTRIC MOTORS
US5723922A (en) * 1994-05-26 1998-03-03 Tecumseh Products Compressor overload holder and method of mounting same
JPH0819222A (en) * 1994-06-30 1996-01-19 Fanuc Ltd Motor having thermal switch
JP2921752B2 (en) * 1996-09-18 1999-07-19 ファナック株式会社 Mounting method and mounting device for winding temperature detecting element of motor
US8076909B2 (en) * 2008-09-12 2011-12-13 Siemens Energy, Inc. Method and system for monitoring the condition of generator end windings
JP5274948B2 (en) * 2008-09-17 2013-08-28 株式会社パイオラックス Temperature sensor mounting structure
JP5174062B2 (en) 2010-03-05 2013-04-03 日本放送協会 Intra prediction apparatus, encoder, decoder, and program
EP2551998A1 (en) * 2010-03-24 2013-01-30 Toyota Jidosha Kabushiki Kaisha Instrument for adjoining temperature detecting element
CN201708601U (en) * 2010-05-28 2011-01-12 中山大洋电机制造有限公司 Motor stator with temperature controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032964A (en) 2001-07-17 2003-01-31 Fanuc Ltd Motor having winding overheat protecting sensor
JP2003092858A (en) 2001-09-19 2003-03-28 Hitachi Ltd Attaching structure of winding temperature detecting element of motor and motor using the structure
JP2008022679A (en) 2006-07-14 2008-01-31 Toyota Motor Corp Structure of fixing temperature detection device, and method of manufacturing rotary electric machine
JP2008029127A (en) 2006-07-21 2008-02-07 Toyota Motor Corp Vehicle rotating electric machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2830179A2 (en) 2013-07-23 2015-01-28 Valeo Equipements Electriques Moteur Rotating electrical machine, corresponding temperature probe support and heat measurement unit
FR3009143A1 (en) * 2013-07-23 2015-01-30 Valeo Equip Electr Moteur ROTATING ELECTRIC MACHINE, TEMPERATURE PROBE SUPPORT, AND CORRESPONDING THERMAL MEASURING UNIT
EP2830179A3 (en) * 2013-07-23 2015-04-08 Valeo Equipements Electriques Moteur Rotating electrical machine, corresponding temperature probe support and heat measurement unit
FR3046507A1 (en) * 2016-01-05 2017-07-07 Valeo Equip Electr Moteur STATOR FOR A ROTATING ELECTRIC MACHINE
EP3190688A1 (en) * 2016-01-05 2017-07-12 Valeo Equipements Electriques Moteur Stator for rotary electric machine
US20200393306A1 (en) * 2018-08-02 2020-12-17 Shibaura Electronics Co., Ltd. Temperature detection device and assembly thereof
US11892358B2 (en) * 2018-08-02 2024-02-06 Shibaura Electronics Co., Ltd. Temperature detection device and assembly thereof

Also Published As

Publication number Publication date
WO2013030644A3 (en) 2014-04-03
JP5741327B2 (en) 2015-07-01
US20140184031A1 (en) 2014-07-03
JP2013051806A (en) 2013-03-14
CN103891111A (en) 2014-06-25
EP2751912A2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
US20140184031A1 (en) Rotary electric machine
US11892358B2 (en) Temperature detection device and assembly thereof
US8734020B2 (en) Bearing with sensor
JP2014178258A (en) Sensor bracket and fitting method of sensor bracket
EP3264056B1 (en) Temperature sensor
JP5807811B2 (en) Temperature sensor device
JP5828279B2 (en) Temperature sensor device
JP5611071B2 (en) Temperature sensor
WO2015008123A1 (en) Fixation structure and resolver stator
TWI607913B (en) Axle box device and temperature detection device with temperature sensor unit attached to a trolley for railway vehicles
JP5246719B2 (en) Measuring method of surface pressure at interface between cable insulator and rubber block
JP6672395B2 (en) Mounting structure of temperature sensor
JP2011043444A (en) Temperature sensor
JP5915440B2 (en) Wheel speed sensor
JP6075398B2 (en) Temperature sensor and method of manufacturing temperature sensor
US20200395822A1 (en) Stator and thermistor unit
JP2020060227A (en) Bearing device
JP2011259549A (en) Temperature detector
JP6408247B2 (en) Contact thermometer
US20190372435A1 (en) Temperature sensor bracket and motor comprising the same
CN111064324A (en) Wireless temperature sensor and assembly thereof, motor and air conditioner
KR101255665B1 (en) Apparatus for measuring torque using optical sensor
EP2614493A2 (en) Detector assembly
JP2012103166A (en) Sensor device
JPH10111051A (en) Compressor temperature detecting sensor retaining device for air conditioner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012769467

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14239959

Country of ref document: US