WO2013027899A1 - Method for manufacturing a large-surface area graphene film - Google Patents

Method for manufacturing a large-surface area graphene film Download PDF

Info

Publication number
WO2013027899A1
WO2013027899A1 PCT/KR2011/009919 KR2011009919W WO2013027899A1 WO 2013027899 A1 WO2013027899 A1 WO 2013027899A1 KR 2011009919 W KR2011009919 W KR 2011009919W WO 2013027899 A1 WO2013027899 A1 WO 2013027899A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
graphene film
graphene oxide
producing
film
Prior art date
Application number
PCT/KR2011/009919
Other languages
French (fr)
Korean (ko)
Inventor
이해신
류성우
홍순형
이빈
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2013027899A1 publication Critical patent/WO2013027899A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide

Definitions

  • the present invention relates to a method for producing a graphene film, and more particularly to a method for producing a large area graphene film in a very simple, fast and cheap method.
  • an object of the present invention is to provide a method for producing a large-area graphene film in a very simple, fast and cheap method.
  • the step of oxidizing graphite to form graphene oxide Dispersing the graphene oxide in water to form a dispersion of graphene oxide; Reducing the graphene oxide to form a dispersion of reduced graphene oxide; And a graphene film is formed at the air / water interface by injecting the dispersion of the reduced graphene oxide into an aqueous salt solution.
  • providing a dispersion of oxide graphene whose edge portion is modified with a hydrophilic group comprising the step of allowing the graphene to self-assemble at the air / water interface by reacting the dispersion and the aqueous salt solution of graphene.
  • the present invention provides a graphene film formed by self-assembly between a solution and an air interface using a salt ing out method used for protein separation and purification, thereby limiting the mass production and solution process of the conventional CVD process.
  • a high-conductivity transparent electrode can be mass-produced.
  • FIG. 1 is a process flow diagram showing a method for manufacturing a large-area graphene film according to an embodiment of the present invention. .
  • FIG. 2 is a view illustrating a process of forming graphene film by self-assembly where reduced graphene oxide meets metal ions.
  • Figure 3 is a photograph showing a large area graphene film prepared by the manufacturing method according to an embodiment of the present invention.
  • FIG. 4 is a graph showing an atomic force microscope (AFM) photograph and size histogram of graphene filtered by vacuum filtration.
  • AFM atomic force microscope
  • FIG. 5 shows an AFM image and size histogram of graphene transmitted by vacuum filtration.
  • FIG. 6 is a photograph showing an example of forming a graphene film using various types of salt aqueous solutions.
  • FIG. 7 is a scanning electron micrograph showing a cross section of a graphene film transferred on a silicon substrate.
  • FIG. 1 is a process flow diagram showing a method for manufacturing a large-area graphene film according to an embodiment of the present invention.
  • step S100 graphite is oxidized to form graphene oxide.
  • Graphite can be treated with an acid solution for oxidation.
  • Graphite is a carbon-only material that is difficult to disperse in aqueous solution. Therefore, the graphite can be treated with an acid solution to introduce a hydrophilic group containing oxygen on the surface thereof to increase the water dispersibility.
  • the hydrophilic group may be a carboxyl group, a carbonyl group, an epoxy group, or a hydroxyl group.
  • An acid solution is preferably used as an acid solution.
  • H 2 S0 4 , KMn0 4 , HC1 or HN0 3 are representative. These may be used alone or in combination, and for example, H 2 SO 4 and KMn0 4 may be used together to obtain very good oxidation power.
  • oxygen atoms are bonded between the layers of the graphite.
  • step S110 the additive graphene oxide is dispersed in water to form a dispersion of graphene oxide.
  • graphene oxide When graphene oxide is dispersed in water as it is, it is not uniformly dispersed even if it is shaken vigorously, because it is not yet peeled off, and the particles are large and dispersed in various sizes. Therefore, the graphene oxide did not peel off
  • the dispersion is treated with an ultrasonic wave generator in order to make pins into a single layer of graphene oxide, the graphene oxide particles are separated and become a graphene oxide dispersion uniformly dispersed. In this case, if the ultrasonic treatment time is too long, the carbon bond may be broken at the same time as the graphene oxide particles are peeled off, and thus the particle size may be reduced.
  • step S120 the graphene oxide is reduced to form a dispersion of reduced graphene oxide.
  • Graphene oxide has a stable dispersion in aqueous solution, but due to the oxidative reaction has a lot of S p2 bonds between the carbon is not conductive. Therefore, in order to restore the conductivity, it is desirable to reduce and remove the functional groups produced by the oxidation reaction.
  • hydrazine, NaBH 4 (sodium borohydride), HKhydrogen iodide), hydroquinone, etc. may be used as a reducing agent for the reduction.
  • various reduction methods may be included as a reduction method such as heat treatment using hydrogen and argon at high temperatures.
  • Graphene oxide is well dispersed in water because it is a hydrophilic particle.
  • reduced graphene oxide which reduces graphene oxide, can aggregate into particles and become hydrophobic due to the interaction due to the interlayer pi-pi bond as oxygen-containing functional groups are removed.
  • a solvent to prevent agglomeration can be added to the graphene oxide dispersion.
  • the solvent is N-methylpyrlidone (N-methylpyrrol idone), ethylene glycol (ethylene glycol), glycerin (glycerin), dimethylpyridone
  • the graphene oxide dispersion has a brown or yellow color depending on the concentration, and may change from brown or yellow to black when the graphene oxide is reduced.
  • the concentration of the reduced graphene oxide may be 0.001 to 5 tng / ml, preferably 0.01 to 2 mg / ml.
  • concentration is less than 0.001 mg / ml, delayed self-assembly may occur due to the low concentration of graphene, and in the case of 5 mg / ml second fruits, uneven self-assembly may occur due to the aggregation of graphene (aggregat ion). Can be.
  • a large-area graphene film may be prepared by adding the reduced graphene oxide dispersion to the aqueous salt solution in step S130 to form a graphene film at an air / water interface.
  • the salt aqueous solution is at least one selected from the group consisting of organic salts and inorganic salts Merchant salts.
  • the salt aqueous solution is alkaline earth metals such as Li, Na, K, Be, Ca, Mg, Au. Ions of a metal selected from transition metals such as Ag, Fe, Cu, ⁇ , Co, and post-transition metals such as A1, Ga, In, and metalloids such as B, Si, Ge, and As.
  • the concentration of the aqueous salt solution may be 10mM to 10M, preferably 100mM to 1M depending on the concentration of the reduced graphene oxide dispersion.
  • the dispersion of the reduced graphene oxide is added to the aqueous salt solution, it is preferable to dropwise add dropwise so that the graphene film is widely spread at the air / water interface.
  • FIG. 2 is a view illustrating a process of forming graphene film by self-assembly where reduced graphene oxide meets metal ions.
  • the reduced graphene oxide may remain with a hydrophilic group at the edge part even after the reduction.
  • the edge of the reduced graphene oxide may be negatively charged due to the loss of protons by the basicity of the aqueous salt solution.
  • positively charged metal ions Metal n + in the figure
  • the graphene is entangled by the salting-out effect.
  • the reduced graphene oxide is located on the surface of the aqueous salt solution, ie, the air / water interface, due to its hydrophobicity. Due to the amphipathic nature of the reduced graphene oxide, very thin films can be formed by self-assembly. As a result, a large-area graphene film can be easily manufactured by a self-assembly method.
  • the average thickness of the graphene film may be lnm to l, 000nm. Transparency and conductivity may be selectively controlled according to the thickness of the graphene film.
  • Figure 3 is a photograph showing a large area graphene film prepared by the manufacturing method according to an embodiment of the present invention. Referring to Figure 3, a film of 20cm X 20cm size was produced, the size of the manufacturing mechanism of the present invention can be substantially increased without limitation.
  • the graphene film self-assembled on the surface of the salt solution can be transferred onto the substrate.
  • the graphene film may be transferred onto the substrate by dipping the substrate into the salt solution or removing the aqueous salt solution.
  • a polymer substrate such as PET, PE, PEN, or PDMS, or a substrate which is made of glass, quartz, or silicon, which can be thermally treated, can be used.
  • the functional groups of the graphene that are not reduced may be reduced by heat treating the substrate on which the graphene film is formed in a reducing gas atmosphere to improve the conductivity of the graphene film.
  • the heat treatment can be carried out for 30 seconds to 48 hours at a temperature of 200 to 800 ° C.
  • temperature rises fast-Rapid increase of residual moisture in graphene film It is preferable to increase the temperature at a rate of 5 to 50 ° C / min since there may be a loss of the graphene film according to the foot.
  • the temperature may be heat-treated in a vacuum at a temperature of 900 to 2,000 ° C at a rate of 5 to 50 ° C / min for 30 seconds to 48 hours. .
  • the final manufactured graphene film may have a multilayer structure, may have an average of 1 to 60 layers, preferably 1 to 30 layers.
  • Graphene having a multilayer structure having 30 or more layers has a structure close to graphite in the production of a large-area film, which may have a transparency of 60% or less in the visible light region (550 nm), thereby degrading performance as a transparent film. .
  • a transparent conductive film may be prepared by transferring the graphene film on a transparent substrate.
  • the transparent conductive film may be used in solar cells or electronic paper, transparent electronic devices, flexible devices, and the like.
  • the graphene film manufactured by the above-described manufacturing method may be manufactured inexpensively and easily and has excellent conductivity, and thus may be used in next-generation future electronic devices such as transparent display materials, next-generation semiconductor materials, and transparent electrode materials.
  • next-generation future electronic devices such as transparent display materials, next-generation semiconductor materials, and transparent electrode materials.
  • tertiary distilled water 50 mL of tertiary distilled water was dropped dropwise very slowly over 30 minutes into the semi-aqueous water, and then 350 mL of tertiary distilled water was further added slowly. 20 mL of hydrogen peroxide was slowly added dropwise to the reaction solution. At this time, the color of the half water that was dark green It turned to yellow and observed bubble formation. Hydrogen peroxide was added until the bubble disappeared.
  • reaction vessel was allowed to settle for one day to allow the product to sink below the vessel, and then the excess acid solvents were removed to remove excess metal ions.
  • 10 3 ⁇ 4> aqueous hydrochloric acid solution was added to the bottom of the submerged product and shaken vigorously to remove the remaining metal ions. Then solvent and metal transfers were removed by vacuum filtration under the filter paper (pore size: 0.2 pm). After repeating this process three times, the product filtered on the filter paper was mixed with about 100 mL of 10% hydrochloric acid aqueous solution, and evenly divided into four membrane bags (MWC0: 12-14,000).
  • the membrane bag was placed in a 5L beaker full of tertiary distilled water and dialyzed five times for three hours to remove almost all metal ions in the product. After the dialysis process was completed, the product was vacuum filtered again to remove the solvent and air-dried to prepare graphite powder.
  • Graphite oxide was dissolved in tertiary distilled water by 1 mg / mL to form a graphite oxide dispersion. Next, to disperse the graphite oxide into a single layer of graphene oxide, a dispersion was sonicated for 1 minute to prepare a uniform graphene oxide dispersion.
  • the graphene oxide was dispersed in a solvent in which water and dimethylformamide were mixed at a volume ratio of 1 : 9 , and hydrazine monohydrate, a representative reducing agent, was added to the graphene oxide dispersion as much as 3 ig / mg by mass ratio of graphene oxide. Dropped. Hydrazine was added as slowly as possible to prevent coagulation between particles. The reduced graphene oxide dispersion added with hydrazine was reacted for 24 hours using a shaker. After reaction, the color of the dispersion gradually changed from brown (graphene oxide) to black (reduced graphene oxide).
  • the synthesized graphite oxide was dispersed in water to make a graphene oxide dispersion. Next, vacuum filtration was performed using an aluminum oxide film having a pore size of 3.0 / mi. The graphene oxide filtered on the membrane was dispersed in a small amount of water, and then dried to obtain graphene oxide larger than 3.0 m in size.
  • FIG. 4 is a graph showing an atomic force microscope (AFM) photograph and size histogram of graphene filtered by vacuum filtration. Referring to FIG. 4, it was confirmed by AFM that the graphene having a size of 3 or more and graphene having a size of 3 IM or less were separated by vacuum filtration.
  • AFM atomic force microscope
  • FIG. 5 shows an AFM image and size histogram of graphene transmitted by vacuum filtration.
  • the graphene oxide having a size smaller than 0.8 m may be identified by AFM by passing the graphene oxide dispersion formed in a syringe filter having a hole size of 0.8 ⁇ m and drying the dispersion passed through the filter.
  • FIG. 6 is a photograph showing an example of forming a graphene film using various types of salt aqueous solution.
  • the graphene film self-assembled on the surface of the solution was transferred to a silicon substrate through dipping, washed with distilled water spray, and dried at room temperature.
  • the thickness of the film was measured by scanning electron microscopy (SEM). 7 is a scanning electron micrograph showing a cross section of a graphene film transferred on a silicon substrate. Referring to Figure 7, it can be seen that the graphene film having a thickness of about 60 nm was prepared.
  • the graphene film prepared in Example 2 was heated to 400 at a rate of 20 ?? / min and heat treated for 4 hours in an Ar and 3 ⁇ 4 atmosphere. If the temperature increase rate is fast, because the loss of the graphene film due to the rapid evaporation of the moisture remaining in the graphene film was raised slowly. The heat treatment of the graphene film reduced some of the remaining functional groups of graphene without being reduced. After the exfoliation (exfol iated) graphene was re-crystallized in a vacuum atmosphere at a rate of 20 °C / min to 1,000 ?? and then heat treated for 4 hours.
  • the microstructure of the graphene films prepared in Preparation Example 3 was analyzed.
  • 8 is a transmission electron microscope (TEM) photograph of the graphene films prepared in Preparation Example 3. Referring to FIG. 8, it can be seen that graphene having an average of 1 to 7 layers is manufactured. 8 is a TEM picture of single layer graphene, and the right picture is a TEM picture of graphene having a multilayer structure of 7-10 layers.
  • TEM transmission electron microscope
  • the resulting graphene film was measured for surface conductivity using a 4-point probe device and the transmittance was measured using a UV-vis spectrometer device.
  • the self-assembled graphene film reduced by Examples 2 and 3 may have a surface resistance value of 800 to 9 k ⁇ / cm 2 in a transparency range of 75-85%.
  • the present invention can be applied and used in a wide range of fields such as displays, touch screens, light emitting diodes, optoelectronic devices such as solar cells, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a method for manufacturing a large-surface area graphene film, and more particularly, to a method for manufacturing a large-surface area graphene film in a very simple, fast, and inexpensive manner. According to the present invention, the method for manufacturing the large-surface area graphene film comprises the steps of: forming a graphene oxide by oxidizing graphene; forming a graphene oxide dispersion solution by dispersing the graphene oxide into water; forming a reduced graphene oxide dispersion solution by reducing the graphene oxide; and forming a graphene film at an interface between air and water by inputting the reduced graphene oxide dispersion solution into a salt solution.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
대면적 그래핀 필름의 제조방법  Manufacturing method of large area graphene film
【기술분야】  Technical Field
본 발명은 그래핀 필름의 제조방법에 관한 것으로, 보다 상세하게는 매우 간 단하며 빠르고 값싼 방법으로 대면적 그래핀 필름을 제조하는 방법에 관한 것이다. 【배경기술】  The present invention relates to a method for producing a graphene film, and more particularly to a method for producing a large area graphene film in a very simple, fast and cheap method. Background Art
그래핀은 원래 우리가 잘 알고 있던 혹연 (graphite)에서부터 출발한다. 탄소 원자층이 여러 층으로 쌓여 이루어져 있는 형태인 혹연에서 한 층을 벗겨내어 그 물성을 물리적인 원리로 분석해 본 결과, 놀라운 전기전도도와 열전도도, 그리고 투명하고 유연한 물성을 지니고 있기 때문에 그래핀은 차세대 신소재로 각광을 받 기 시작하였다. 2010년 그래핀을 그래파이트에서 벗겨내어 그 물리적 성질을 명백 하게 연구한 러시아 과학자 2명이 노벨 물리학상을 수상함에 따라 그래핀의 물성 및 웅용 연구가 더욱 가속을 받고 있다 (Geim, A. K. , et al . , Nature (2007) 6, 183).  Graphene starts with graphite, which we are familiar with. By removing a layer from a layer of carbon atoms stacked in layers and analyzing its properties with physical principles, graphene is the next generation because it has amazing electrical and thermal conductivity and transparent and flexible properties. As a new material, it began to attract attention. In 2010, two Russian scientists who stripped graphene from graphite and studied its physical properties clearly won the Nobel Prize in Physics, further accelerating the study of graphene's properties and properties (Geim, AK, et al., Nature (2007) 6, 183).
현재까지 발표된 연구에 따르면 그래핀을 만드는 방법에는 몇 가지가 있다. 스카치 테이프를 이용하여 그래파이트에서 한층 벗겨내는 기계적 박리 방법 (mechanical exfoliation), 적충성장을 통한 방법 (epitaxial growth) , 화학적 기상 증착 (CVD) 그리고 HOPGOiighly ordered pyrolytic graphite)로부터 화학적 산화 /환 원을 통한 화학적 박리 (chemical exfoliation) 방법 등이 있다 (Novoselov, K. S., et al., Proc. Natl. Acad. Sci . USA (2005) 102, 10451; Novoselov, K. S., et al., Science (2004) 306, 666; Rrishnan, A. et al. Nature (1997) 388, 451; Dresselhaus, M. S. & Dresselhaus, G. Adv. Phys. (2002) 51, 1). 초창기에 실행 된 기계적 박리 방법의 경우 수작업에 의해 소량의 그래핀만 제조할 수 있었으므로 상업화에 어려움이 있다. 화학적 기상 증착법을 이용하여 제조할 경우 단일층 (single layer)의 고 전도도를 가지는 성질이 우수한 그래핀을 제조할 수 있는 것 으로 알려져 있다. 하지만 화학적 기상 증착법의 경우 전자 소재에 실제로 실용화 하기 위해서는 그래핀을 초대면적으로 성장을 해야 하는데 이때 촉매로 사용되는 Cu 및 금속 기판이 수톤 가량 필요하여 고가의 제조비용으로 실질적인 상업화에 어 려움을 가지고 있다. 현재 대한민국 소재 성균관대학교 연구실에서 를투를 (roll- to-roll) 방법을 사용하여 30 inch2 크기의 투명한 대면적 그래핀을 제작하기도 하 였다. 저비용으로 대량으로 그래핀 제조가 가능한 화학적 산화 /환원 공정이 사업화 하는 데에 있어서는 가장 큰 장점을 가지고 있다 . 그러나 산화 /환원 공정의 특성상 임의의 크기와 종류의 그래핀이 제조되며 환원시 완전 환원에 어려움이 있기 때문 에 균일한 고전도도 투명 전극과 같은 필름과 같은 실제 웅용에 있어서 전도도 특성 에 제약이 있다 (Geng, J . et al . J . Phys . Chem. C (2010) 114, 14433) . Research published to date suggests that there are several ways to make graphene. Chemical exfoliation using scotch tape to further exfoliate from graphite, chemical exfoliation, epitaxial growth, chemical vapor deposition (CVD) and HOPGOiighly ordered pyrolytic graphite (chemical exfoliation) method (Novoselov, KS, et al., Proc. Natl. Acad. Sci. USA (2005) 102, 10451; Novoselov, KS, et al., Science (2004) 306, 666; Rrishnan , A. et al. Nature (1997) 388, 451; Dresselhaus, MS & Dresselhaus, G. Adv. Phys. (2002) 51, 1). In the case of the mechanical peeling method performed in the early days, since only a small amount of graphene could be manufactured by manual labor, it is difficult to commercialize. When manufactured using chemical vapor deposition, it is known that graphene having excellent properties having a high conductivity of a single layer can be manufactured. However, in the case of chemical vapor deposition, graphene needs to be grown to a large area in order to be practically used in electronic materials. At this time, several tons of Cu and metal substrates used as catalysts are required, which makes it difficult to commercialize them at an expensive manufacturing cost. . Currently, Sungkyunkwan University lab in Korea has used a roll-to-roll method to produce transparent 30-inch 2 size graphene. Commercialization of chemical oxidation / reduction process that can produce graphene in bulk at low cost It has the biggest advantage in doing so. However, due to the nature of the oxidation / reduction process, graphenes of arbitrary size and type are manufactured, and there is a difficulty in complete reduction during reduction, so there is a limitation in conductivity characteristics in actual use such as a film such as a uniform high conductivity transparent electrode. (Geng, J. et al. J. Phys. Chem. C (2010) 114, 14433).
【발명의 상세한 설명】  [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
따라서 상기 종래의 문제점을 해결하기 위하여 안출된 본 발명은 , 매우 간 단하며 빠르고 값싼 방법으로 대면적 그래핀 필름을 제조하는 방법을 제공하는 데 그 목적이 있다.  Accordingly, an object of the present invention is to provide a method for producing a large-area graphene film in a very simple, fast and cheap method.
[기술적 해결방법】  [Technical Solution]
본 발명의 일 측면에 따르면, 그래파이트를 산화시켜 산화 그래핀을 형성하 는 단계 ; 상기 산화 그래핀을 물에 분산시켜 산화 그래핀의 분산액을 형성하는 단 계 ; 상기 산화 그래핀을 환원시켜 환원된 산화 그래핀의 분산액을 형성하는 단계 ; 및 상기 환원된 산화 그래핀의 분산액을 염 수용액에 투입하여 공기 /물 계면에서 그래핀 필름을 형성하는 단계를 포함하는 그래핀 필름의 제조방법 이 제공된다 .  According to an aspect of the invention, the step of oxidizing graphite to form graphene oxide; Dispersing the graphene oxide in water to form a dispersion of graphene oxide; Reducing the graphene oxide to form a dispersion of reduced graphene oxide; And a graphene film is formed at the air / water interface by injecting the dispersion of the reduced graphene oxide into an aqueous salt solution.
본 발명의 다른 측면에 따르면, 가장자리 부분이 친수성기로 개질된 산화 그 래핀의 분산액을 제공하는 단계 ; 및 상기 그래핀의 분산맥과 염 수용액을 반웅시켜 그래핀들이 공기 /물 계면에서 자기조립되도록 하는 단계를 포함하는 그래핀 필름의 제조방법 이 제공된다.  According to another aspect of the invention, providing a dispersion of oxide graphene whose edge portion is modified with a hydrophilic group; And it is provided with a method for producing a graphene film comprising the step of allowing the graphene to self-assemble at the air / water interface by reacting the dispersion and the aqueous salt solution of graphene.
본 발명의 또 다른 측면에 따르면, 상술한 방법으로 제조된 그래핀 필름이 제공된다.  According to another aspect of the invention, there is provided a graphene film produced by the above-described method.
【유리한 효과】  Advantageous Effects
본 발명은 단백질 분리 및 정제에 사용되는 salt ing out 방법을 이용하여 용액과 공기 계면사이에 자가 조립되어 형성되는 그래핀 필름을 제조함으로써, 기 존의 CVD 공정에서 발생하였던 대량생산의 한계성과 용액 공정상 사용되는 저 전도 도의 산화 그래핀을 사용하지 않음으로써 고전도도의 투명 전극을 대량 생산할 수 있는 효과가 있다 .  The present invention provides a graphene film formed by self-assembly between a solution and an air interface using a salt ing out method used for protein separation and purification, thereby limiting the mass production and solution process of the conventional CVD process. By not using low-conductivity graphene oxide, a high-conductivity transparent electrode can be mass-produced.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1은 본 발명의 일 실시 예에 따른 대면적 그래핀 필름의 제조방법을 나타 낸 공정흐름도이다. .  1 is a process flow diagram showing a method for manufacturing a large-area graphene film according to an embodiment of the present invention. .
도 2는 환원된 산화 그래핀이 금속 이온과 만나 자기조립에 의해 그래핀 필 름을 형성하는 과정을 나타내는 도면이다 . 도 3은 본 발명의 일 실시 예에 따른 제조방법으로 제조된 대면적 그래핀 필 름을 나타낸 사진이다. FIG. 2 is a view illustrating a process of forming graphene film by self-assembly where reduced graphene oxide meets metal ions. Figure 3 is a photograph showing a large area graphene film prepared by the manufacturing method according to an embodiment of the present invention.
도 4는 진공여과에 의해 걸러진 그래핀의 원자력현미경 (AFM) 사진과 크기 히 스토그램을 나타낸 도면이다.  4 is a graph showing an atomic force microscope (AFM) photograph and size histogram of graphene filtered by vacuum filtration.
도 5는 진공여과에 의해 투과된 그래핀의 AFM 사진과 크기 히스토그램을 나 타낸 도면이다 .  FIG. 5 shows an AFM image and size histogram of graphene transmitted by vacuum filtration.
도 6은 여 러 종류의 염 수용액을 사용하여 그래핀 필름을 형성한 예를 나타 낸 사진이다.  6 is a photograph showing an example of forming a graphene film using various types of salt aqueous solutions.
도 7은 실리콘 기판 위에 전이된 그래핀 필름의 단면을 나타낸 주사전자현마 경 사진이다.  7 is a scanning electron micrograph showing a cross section of a graphene film transferred on a silicon substrate.
도 8은 제조예 3에서 제조된 그래핀 필름들에 대한 투과 전자현미경 (TEM) 사 진이다.  8 is a transmission electron microscope (TEM) photograph of the graphene films prepared in Preparation Example 3.
도 9는 만들어진 그래핀 필름의 표면 전도도를 측정한 결과를 나타낸 그래프 이다.  9 is a graph showing the results of measuring the surface conductivity of the graphene film produced.
【발명의 실시를 위한 형 태】  [Form for implementation of invention]
이하, 도면을 참조하여 본 발명을 더욱 상세히 설명하고자 한다. 도 1은 본 발명의 일 실시 예에 따른 대면적 그래핀 필름의 제조방법을 나타낸 공정흐름도이 다.  Hereinafter, with reference to the drawings will be described the present invention in more detail. 1 is a process flow diagram showing a method for manufacturing a large-area graphene film according to an embodiment of the present invention.
도 1을 참조하면, 단계 S100에서 그래파이트를 산화시켜 산화 그래핀을 형성 한다. 산화를 위해 그래파이트를 산 용액으로 처리할 수 있다. 그래파이트는 탄소 로만 이루어진 물질로서 수용액 상에서 분산이 어 렵다. 따라서, 그래파이트를 산 용액으로 처리하여 그 표면에 산소를 함유한 친수성기를 도입하여 수분산성을 높일 수 있다. 상기 친수성기는 카르복실기 , 카르보닐기 , 에폭시기, 하이드록시기가 될 수 있다. 산 용액으로는 산화 산 용액이 사용되는 것이 바람직한데, 산화 산은 Referring to FIG. 1, in step S100, graphite is oxidized to form graphene oxide. Graphite can be treated with an acid solution for oxidation. Graphite is a carbon-only material that is difficult to disperse in aqueous solution. Therefore, the graphite can be treated with an acid solution to introduce a hydrophilic group containing oxygen on the surface thereof to increase the water dispersibility. The hydrophilic group may be a carboxyl group, a carbonyl group, an epoxy group, or a hydroxyl group. An acid solution is preferably used as an acid solution.
H2S04, KMn04, HC1 또는 HN03 등이 대표적 이다. 이들은 단독으로 또는 함께 사용될 수 있으며, 예를 들어 H2S04과 KMn04를 함께 사용하면 매우 우수한 산화력을 얻을 수 있다. 상술한 산화 처리에 의해 그래파이트가 산화되면서 그래파이트의 각 층 사이에 산소 원자가 결합을 하게 된다. H 2 S0 4 , KMn0 4 , HC1 or HN0 3 are representative. These may be used alone or in combination, and for example, H 2 SO 4 and KMn0 4 may be used together to obtain very good oxidation power. As the graphite is oxidized by the above-described oxidation treatment, oxygen atoms are bonded between the layers of the graphite.
단계 S110에서 상가 산화 그래핀을 물에 분산시켜 산화 그래핀의 분산액을 형성한다. 산화 그래핀을 물에 그대로 분산한 경우에는 격 렬하게 흔들어서 섞어보 아도 균일하게 분산되지 않는데, 이는 아직 박리가 되지 않아서 입자가 크고 분산 되어 있는 입자들의 크기가 다양하기 때문이다 . 따라서 , 박리되지 않은 산화 그래 핀을 단층의 산화 그래핀으로 만들기 위해서 분산액을 초음파 생성장치로 처리하면 산화 그래핀 입자들이 박리하게 되고 균일하게 분산되어 있는 산화 그래핀 분산액 이 된다. 이때 초음파 처 리시간이 너무 길면 산화 그래핀 입자들의 박리와 동시에 탄소결합이 깨져 입자 크기가 작아질 수도 있으므로 처리시간은 1분 내외가 바람직 하다. In step S110, the additive graphene oxide is dispersed in water to form a dispersion of graphene oxide. When graphene oxide is dispersed in water as it is, it is not uniformly dispersed even if it is shaken vigorously, because it is not yet peeled off, and the particles are large and dispersed in various sizes. Therefore, the graphene oxide did not peel off When the dispersion is treated with an ultrasonic wave generator in order to make pins into a single layer of graphene oxide, the graphene oxide particles are separated and become a graphene oxide dispersion uniformly dispersed. In this case, if the ultrasonic treatment time is too long, the carbon bond may be broken at the same time as the graphene oxide particles are peeled off, and thus the particle size may be reduced.
단계 S120에서 상기 산화 그래핀을 환원시켜 환원된 산화 그래핀의 분산액을 형성한다. 산화 그래핀은 수용액 상에서 안정적인 분산 형태를 가지고 있으나 산화 반웅으로 인하여 탄소 간 Sp2 결합이 많이 끊어져 있어 전도성 이 없다. 따라서 전 도성을 회복하기 위해 산화반옹으로 생긴 기능기를 환원시켜 제거하는 것이 바람직 하다 . 이때 환원을 위해 환원제로서 하이드라진 (hydrazine) , NaBH4( sodium borohydride) , HKhydrogen iodide) , 하이드로퀴논 등을 사용할 수 있다. 또는 환 원방법으로서 고온에서 수소, 아르곤 둥을 사용하는 열처리를 하는 방법 등 다양한 환원방법 이 포함될 수 있다. In step S120, the graphene oxide is reduced to form a dispersion of reduced graphene oxide. Graphene oxide has a stable dispersion in aqueous solution, but due to the oxidative reaction has a lot of S p2 bonds between the carbon is not conductive. Therefore, in order to restore the conductivity, it is desirable to reduce and remove the functional groups produced by the oxidation reaction. At this time, hydrazine, NaBH 4 (sodium borohydride), HKhydrogen iodide), hydroquinone, etc. may be used as a reducing agent for the reduction. Alternatively, various reduction methods may be included as a reduction method such as heat treatment using hydrogen and argon at high temperatures.
산화 그래핀은 친수성 입자이기 때문에 물에 잘 분산되어 있다. 하지만 산화 그래핀을 환원시 킨 환원된 산화 그래핀 (reduced graphene oxide , RG0)은 산소가 함 유된 기능기가 제거되면서 층간 파이 -파이 결합으로 인한 상호작용으로 입자들끼 리 뭉쳐 소수성으로 바뀔 수 있다. 따라서 뭉침을 막기 위한 용매가 산화 그래핀 분산 액에 추가될 수 있다. 상기 용매는 N-메틸피를리돈 (N-methylpyrrol idone) , 에틸렌 글리콜 (ethylene glycol ) , 글리세린 (glycerin), 디메틸피를리돈 Graphene oxide is well dispersed in water because it is a hydrophilic particle. However, reduced graphene oxide (RG0), which reduces graphene oxide, can aggregate into particles and become hydrophobic due to the interaction due to the interlayer pi-pi bond as oxygen-containing functional groups are removed. Thus, a solvent to prevent agglomeration can be added to the graphene oxide dispersion. The solvent is N-methylpyrlidone (N-methylpyrrol idone), ethylene glycol (ethylene glycol), glycerin (glycerin), dimethylpyridone
(dimethylpyrrol idone) , 아세톤 (acetone) , 테트라히드로프란 (tetrahydrofuran), 아 세토니트릴 (acetoni t r i le) , 디메틸포름아미드 (dimethyl formamide), 디메틸술폭사이 드 (dimethyl sulphoxide) , 아민 (amine) 또는 알콜 (alcohol )과 같은 물 흔화성 용매 가 될 수 있다. 산화 그래핀 분산액은 농도에 따라 갈색 또는 황색을 가지며 , 산화 그래핀이 환원되면 갈색 또는 황색에서 흑색으로 변할 수 있다. (dimethylpyrrol idone), acetone, tetrahydrofuran, acetonitrile, dimethyl formamide, dimethyl sulphoxide, amine or alcohol ( water-combustible solvents such as alcohol). The graphene oxide dispersion has a brown or yellow color depending on the concentration, and may change from brown or yellow to black when the graphene oxide is reduced.
상기 환원된 산화 그래핀의 농도는 0.001 내지 5 tng/ml일 수 있으며 , 바람직 하게는 0.01 내지 2 mg/ml일 수 있다. 상기 범위에서 농도가 0.001 mg/ml 미만일 경우 저농도 그래핀 농도에 의해 자기조립의 지연이 발생할 수 있으며 5 mg/ml 초 과일 경우 그래핀의 뭉침 (aggregat ion) 현상에 따른 불균일한 자기조립을 야기할 수 있다.  The concentration of the reduced graphene oxide may be 0.001 to 5 tng / ml, preferably 0.01 to 2 mg / ml. When the concentration is less than 0.001 mg / ml, delayed self-assembly may occur due to the low concentration of graphene, and in the case of 5 mg / ml second fruits, uneven self-assembly may occur due to the aggregation of graphene (aggregat ion). Can be.
단계 S130에서 상기 환원된 산화 그래핀의 분산액을 염 수용액에 투입하여 공기 /물 계면에서 그래핀 필름을 형성함으로써 대면적 그래핀 필름이 제조될 수 있 다. 상기 염 수용액은 유기 염 및 무기 염으로 이루어진 군 중에서 선택되는 1종 이 상인 염을 포함할 수 있다. 예를 들어 상기 염 수용액은 Li , Na, K 등 알칼리 금 속 , Be, Ca, Mg 등의 알칼리 토금속 , Au. Ag, Fe, Cu, Νί, Co 등의 전이금속과 A1 , Ga, In 둥의 전이후 금속, 및 B, Si , Ge, As 등의 준금속 중에서 선택되는 금속의 이온을 포함할 수 있다. 상기 염 수용액의 농도는 상기 환원된 산화 그래핀 분산액 의 농도에 따라 10mM 내지 10M일 수 있으며, 바람직하게는 lOOmM 내지 1M일 수 있 다. 상기 염 수용액에 대해 상기 환원된 산화 그래핀의 분산액을 투입할 때 그래핀 필름이 공기 /물 계면에서 널리 퍼지도록 한 방울씩 적가하는 것이 바람직하다. A large-area graphene film may be prepared by adding the reduced graphene oxide dispersion to the aqueous salt solution in step S130 to form a graphene film at an air / water interface. The salt aqueous solution is at least one selected from the group consisting of organic salts and inorganic salts Merchant salts. For example, the salt aqueous solution is alkaline earth metals such as Li, Na, K, Be, Ca, Mg, Au. Ions of a metal selected from transition metals such as Ag, Fe, Cu, Νί, Co, and post-transition metals such as A1, Ga, In, and metalloids such as B, Si, Ge, and As. The concentration of the aqueous salt solution may be 10mM to 10M, preferably 100mM to 1M depending on the concentration of the reduced graphene oxide dispersion. When the dispersion of the reduced graphene oxide is added to the aqueous salt solution, it is preferable to dropwise add dropwise so that the graphene film is widely spread at the air / water interface.
도 2는 환원된 산화 그래핀이 금속 이온과 만나 자기조립에 의해 그래핀 필 름을 형성하는 과정을 나타내는 도면이다 . 환원된 산화 그래핀은 환원 이후에도 가 장자리 (edge) 부분에 친수성기가 잔존할 수 있다. 도 2를 참조하면, 염 수용액의 염기성에 의해 친수성기가 양성자를 잃음으로써 환원된 산화 그래핀의 가장자리 부 분이 음전하를 될 수 있다. 한편 양전하를 띄는 금속 이온 (도면에서 Metaln+)이 환 원된 산화 그래핀의 가장자리에 흡착되어 전기 적으로 중성 이 되면 염석 효과 (salt ing-out effect )에 의해 그래핀들이 엉 기게 된다. 동시에 환원된 산화 그래핀 은 자체의 소수성에 의해 염 수용액의 표면 , 즉 공기 /물 계면에 위치하게 된다. 환 원된 산화 그래핀의 양친매성 특성으로 인해 스스로 자기 조립하면서 매우 얇은 필 름이 형성될 수 있다. 결국 자기 조립 방식에 의해 대면적 그래핀 필름이 용이하게 제조될 수 있다. 상기 그래핀 필름의 평균 두께는 lnm 내지 l ,000nm 일 수 있다. 그래핀 필름의 두께에 따라서 투명도와 전도도를 선택적으로 제어할 수 있다. FIG. 2 is a view illustrating a process of forming graphene film by self-assembly where reduced graphene oxide meets metal ions. The reduced graphene oxide may remain with a hydrophilic group at the edge part even after the reduction. Referring to FIG. 2, the edge of the reduced graphene oxide may be negatively charged due to the loss of protons by the basicity of the aqueous salt solution. On the other hand, when positively charged metal ions (Metal n + in the figure) are adsorbed on the edges of the reduced graphene oxide and become electrically neutral, the graphene is entangled by the salting-out effect. At the same time, the reduced graphene oxide is located on the surface of the aqueous salt solution, ie, the air / water interface, due to its hydrophobicity. Due to the amphipathic nature of the reduced graphene oxide, very thin films can be formed by self-assembly. As a result, a large-area graphene film can be easily manufactured by a self-assembly method. The average thickness of the graphene film may be lnm to l, 000nm. Transparency and conductivity may be selectively controlled according to the thickness of the graphene film.
도 3은 본 발명의 일 실시 예에 따른 제조방법으로 제조된 대면적 그래핀 필 름을 나타낸 사진이다. 도 3을 참조하면, 20cm X 20cm 크기의 필름이 제조되 었으 며, 본 발명의 제조 메커니즘에 의하면 그 크기는 실질적으로 제한없이 커 질 수 있 다.  Figure 3 is a photograph showing a large area graphene film prepared by the manufacturing method according to an embodiment of the present invention. Referring to Figure 3, a film of 20cm X 20cm size was produced, the size of the manufacturing mechanism of the present invention can be substantially increased without limitation.
본 발명의 일 실시 예에 따르면 , 상기 염 용액의 표면 상에서 자기 조립된 그 래핀 필름을 기판 위에 전이할 수 있다. 예를 들어 기판을 상기 염 용액에 딥핑 (dipping)하거나 염 수용액을 제거하는 방식으로 기판 위에 그래핀 필름을 전이할 수 있다. 기판의 종류로서 , PET, PE, PEN 또는 PDMS와 같은 고분자 기판이나, 열처 리가 가능한 유리, 쿼르츠 , 실리콘 재질의 기판 등을 사용할 수 있다.  According to one embodiment of the invention, the graphene film self-assembled on the surface of the salt solution can be transferred onto the substrate. For example, the graphene film may be transferred onto the substrate by dipping the substrate into the salt solution or removing the aqueous salt solution. As the type of substrate, a polymer substrate such as PET, PE, PEN, or PDMS, or a substrate which is made of glass, quartz, or silicon, which can be thermally treated, can be used.
필요에 따라, 그래핀 필름의 전도성 향상을 위해 그래핀 필름이 형성된 기판 을 환원가스 분위기에서 열처 리함으로써 환원되지 않고 남아 있는 그래핀의 기능기 들을 환원시킬 수 있다. 열처리는 200 내지 800 °C 의 온도로 30 초 내지 48 시간 동안 수행할 수 있다. 승온 속도가 빠를 경우 -그래핀 필름의 잔존 수분의 빠른 증 발에 따른 그래핀 필름의 손실이 있을 수 있으므로 5 내지 50 °C /분의 속도로 승온 하는 것이 바람직하다. If necessary, the functional groups of the graphene that are not reduced may be reduced by heat treating the substrate on which the graphene film is formed in a reducing gas atmosphere to improve the conductivity of the graphene film. The heat treatment can be carried out for 30 seconds to 48 hours at a temperature of 200 to 800 ° C. When temperature rises fast-Rapid increase of residual moisture in graphene film It is preferable to increase the temperature at a rate of 5 to 50 ° C / min since there may be a loss of the graphene film according to the foot.
이후 박리된 (exfol iated) 그래핀들의 재결정을 위해 진공에서 900 내지 2 , 000°C 의 온도로 5 내지 50°C/분의 속도로 승은 시 킨 후 30 초 내지 48 시간 동 안 열처리할 수 있다. 재결정을 위한 열처리에 의해 산화공정시 발생한 그래핀의 결함을 재결정화함으로써 필름의 전면적에 걸쳐 균일한 전도도를 유지할 수 있다. 최종 제조된 그래핀 필름은 복층 구조일 수 있으며, 평균 1 내지 60층을 가 질 수 있으며, 1 내지 30층인 것이 바람직하다. 30층 이상의 복층 구조를 갖는 그 래핀의 경우 대면적 필름의 제조시 그래파이트에 가까운 구조를 가짐으로써 가시광 선 영 역 (550nm)에서 60% 이하의 투명도를 가질 수 있으므로 투명 필름으로서의 성 능이 저하될 수 있다. Thereafter, for recrystallization of exfoliated graphene, the temperature may be heat-treated in a vacuum at a temperature of 900 to 2,000 ° C at a rate of 5 to 50 ° C / min for 30 seconds to 48 hours. . By recrystallizing the defect of the graphene generated during the oxidation process by the heat treatment for recrystallization it is possible to maintain a uniform conductivity over the entire surface of the film. The final manufactured graphene film may have a multilayer structure, may have an average of 1 to 60 layers, preferably 1 to 30 layers. Graphene having a multilayer structure having 30 or more layers has a structure close to graphite in the production of a large-area film, which may have a transparency of 60% or less in the visible light region (550 nm), thereby degrading performance as a transparent film. .
본 발명의 일 실시 예에 따르면, 상기 그래핀 필름을 투명 기판 위에 전이하 여 투명 전도성 필름을 제조할 수 있다. 상기 투명 전도성 필름은 태양전지 또는 전자 종이, 투명 전자 소자, 플렉시블 소자 등에 이용될 수 있다.  According to an embodiment of the present invention, a transparent conductive film may be prepared by transferring the graphene film on a transparent substrate. The transparent conductive film may be used in solar cells or electronic paper, transparent electronic devices, flexible devices, and the like.
상술한 제조방법에 의해 제조된 그래핀 필름은 값싸고 용이하게 제작될 수 있으며 전도성 이 우수하므로 , 투명 디스플레이 소재, 차세대 반도체 소재 , 투명 전 극 소재와 같은 차세대 미 래 전자 소자에 웅용될 수 있다. 이하, 본 발명을 실시 예를 통해 더욱 자세히 설명하고자 하나 하기 실시 예는 이해를 돕기 위해 제시되는 것으로, 본 발명의 사상이 하기 실시 예로만 한정되는 것은 아니다.  The graphene film manufactured by the above-described manufacturing method may be manufactured inexpensively and easily and has excellent conductivity, and thus may be used in next-generation future electronic devices such as transparent display materials, next-generation semiconductor materials, and transparent electrode materials. Hereinafter, the present invention will be described in more detail with reference to examples, but the following examples are presented to aid understanding, and the spirit of the present invention is not limited to the following examples.
<제조예 1> <Manufacture example 1>
산화 그래파이트의 합성  Synthesis of Graphite Oxide
얼음을 넣은 수조에 진한 황산 45 mL을 넣은 반웅 용기를 놓고 온도를 5~7 °C로 내렸다. 그래파이트 가루 lg을 상기 반웅 용기에 서서히 넣고 교반하였다 . 다 음 KMn04 3.5g을 투입할 때 아주 천천히 넣으면서 교반하여 열로 인한 그래파이트의 환원을 방지하였다. 그 다음, 35-37 °C로 온도를 올리고 280 rpm의 속도로 2시간 동 안 교반하였다 . 교반을 마친 후, 다시 얼음을 넣은 수조에 반웅 용기를 놓아 반웅 물의 온도를 5~7 °C로 내렸다. 상기 반웅물에 3차 증류수 50 mL를 30분에 걸쳐 매 우 천천히 한 방울씩 떨어뜨린 후 , 3차 증류수 350 mL를 추가로 천천히 더 넣었다 . 과산화수소 20 mL를 반웅물에 천천히 적하하였다. 이때 검녹색이던 반웅물의 색이 노란색으로 바뀌면서 기포가 생기는 것을 관찰하였다. 기포가 없어질 때까지 과산 화수소를 넣었다. Place a reaction vessel with 45 mL of concentrated sulfuric acid in an ice bath and lower the temperature to 5-7 ° C. Graphite powder lg was slowly added to the reaction vessel and stirred. Next, when adding 3.5 g of KMn0 4, the mixture was stirred very slowly to prevent the reduction of graphite due to heat. The temperature was then raised to 35-37 ° C. and stirred for 2 hours at a speed of 280 rpm. After the stirring was completed, the reaction vessel was placed in an ice bath again to lower the temperature of the reaction water to 5-7 ° C. 50 mL of tertiary distilled water was dropped dropwise very slowly over 30 minutes into the semi-aqueous water, and then 350 mL of tertiary distilled water was further added slowly. 20 mL of hydrogen peroxide was slowly added dropwise to the reaction solution. At this time, the color of the half water that was dark green It turned to yellow and observed bubble formation. Hydrogen peroxide was added until the bubble disappeared.
하루동안 상기 반옹 용기를 정치하여 생성물이 용기 밑으로 가라앉게 한후, 위에 떠있는 산 용매들을 제거하여 잉여 금속 이온들을 제거하였다. 밑에 가라앉은 생성물에 10 ¾> 염산 수용액올 층분히 넣고 세게 흔들어서 남아 있는 금속 이온들을 제거하였다. 그 다음, 진공 여과 (vacuum filtration)를 통해 용매 및 금속 이은들 을 여과지 (공극 크기: 0.2 pm) 밑으로 투과시켜 제거하였다. 이 과정을 3번 반복한 다음ᅳ 여과지에 걸러진 생성물에 10 % 염산 수용액을 100 mL 정도 섞은 다음, 멤브 레인 쌕 (membrane bag, MWC0 : 12-14,000) 4개에 균등하게 나누어 담았다. 3차 증 류수가 가득 담긴 5L 비이커에 상기 멤브레인 백을 넣고 3시간씩 5번 투석을 진행 하여 생성물 내의 거의 모든 금속 이온을 제거하였다. 투석 과정이 모두 끝난 생성 물은 다시 한번 진공 여과를 시켜서 용매를 제거 하고 공기 중에 자연건조를 시켜 산화 그래파이트 파우더를 제조하였다.  The reaction vessel was allowed to settle for one day to allow the product to sink below the vessel, and then the excess acid solvents were removed to remove excess metal ions. 10 ¾> aqueous hydrochloric acid solution was added to the bottom of the submerged product and shaken vigorously to remove the remaining metal ions. Then solvent and metal transfers were removed by vacuum filtration under the filter paper (pore size: 0.2 pm). After repeating this process three times, the product filtered on the filter paper was mixed with about 100 mL of 10% hydrochloric acid aqueous solution, and evenly divided into four membrane bags (MWC0: 12-14,000). The membrane bag was placed in a 5L beaker full of tertiary distilled water and dialyzed five times for three hours to remove almost all metal ions in the product. After the dialysis process was completed, the product was vacuum filtered again to remove the solvent and air-dried to prepare graphite powder.
<제조예 2> <Manufacture example 2>
산화 그래핀 분산액 제조  Graphene Oxide Dispersion Preparation
산화 그래파미트를 3차 증류수에 1 mg/mL만큼 녹여 산화 그래파이트 분산액 을 형성하였다. 다음 산화 그래파이트를 박리하여 단층의 산화 그래핀으로 만들기 위해 분산액을 1분 동안 초음파 처리하여 균일한 산화 그래핀 분산액을 제조하였 다.  Graphite oxide was dissolved in tertiary distilled water by 1 mg / mL to form a graphite oxide dispersion. Next, to disperse the graphite oxide into a single layer of graphene oxide, a dispersion was sonicated for 1 minute to prepare a uniform graphene oxide dispersion.
<제조예 3> <Manufacture example 3>
환원된 산화 그래핀 분산액 제조  Preparation of Reduced Graphene Oxide Dispersion
물과 다이메틸포름아마이드를 부피비 1:9로 섞은 용매에 산화 그래핀을 분산 시키고 대표적인 환원제인 하이드라진 모노하이드레이트 (hydrazine monohydrate)를 산화 그래핀과 질량비로 (3 ig/mg) 만큼 산화 그래핀 분산액에 떨어뜨렸다. 입자들 끼리의 웅집을 막기 위해 하이드라진을 최대한 천천히 넣었다. 하이드라진이 첨가 된 환원된 산화 그래핀 분산액은 쉐이커를 이용하여 24시간 동안 반웅을 시켰다. 반웅 후 분산액의 색이 점점 갈색 (산화 그래핀)에서 검정색 (환원된 산화 그래핀)으 로 바뀌었다. The graphene oxide was dispersed in a solvent in which water and dimethylformamide were mixed at a volume ratio of 1 : 9 , and hydrazine monohydrate, a representative reducing agent, was added to the graphene oxide dispersion as much as 3 ig / mg by mass ratio of graphene oxide. Dropped. Hydrazine was added as slowly as possible to prevent coagulation between particles. The reduced graphene oxide dispersion added with hydrazine was reacted for 24 hours using a shaker. After reaction, the color of the dispersion gradually changed from brown (graphene oxide) to black (reduced graphene oxide).
〈제조예 4> 산화 그래휘의 크기범 분류 <Production example 4> Size Category Classification of Oxidized Graphite
합성된 산화 그래파이트를 물에 분산시켜서 산화 그래핀 분산액을 만들었다. 그 다음, 3.0 /mi의 구멍 크기를 가지는 산화 알루미늄막을 이용하여 진공여과를 시 켰다. 막 위에 걸러진 산화 그래핀을 소량의 물에 분산시킨 다음, 건조를 시켜 3.0 m 보다 사이즈가 큰 산화 그래핀을 얻었다. The synthesized graphite oxide was dispersed in water to make a graphene oxide dispersion. Next, vacuum filtration was performed using an aluminum oxide film having a pore size of 3.0 / mi. The graphene oxide filtered on the membrane was dispersed in a small amount of water, and then dried to obtain graphene oxide larger than 3.0 m in size.
도 4는 진공여과에 의해 걸러진 그래핀의 원자력현미경 (AFM) 사진과 크기 히 스토그램을 나타낸 도면이다. 도 4를 참조하면, 진공여과를 통해 3 이상의 크기 를 가지는 그래판과 3 IM 이하의 크기를 가지는 그래핀으로 분리된 것을 AFM으로 확인하였다.  4 is a graph showing an atomic force microscope (AFM) photograph and size histogram of graphene filtered by vacuum filtration. Referring to FIG. 4, it was confirmed by AFM that the graphene having a size of 3 or more and graphene having a size of 3 IM or less were separated by vacuum filtration.
도 5는 진공여과에 의해 투과된 그래핀의 AFM 사진과 크기 히스토그램을 나 타낸 도면이다. 도 5를 참조하면 , 0.8 皿의 구멍 크기를 가지는 주사기 필터에 만 들어진 산화 그래핀 분산액을 통과시켜 필터를 통과한 분산액을 건조시키면 0.8 m 보다 사이즈가 작은 산화 그래핀을 AFM으로 확인할 수 있다. 임의로 제조되어진 그 래핀의 크기를 분리함으로써 크기가 3 이상의 그래핀만 사용하여 대면적 필름을 제조할 경우 발생하는 그래핀 간의 발생하는 접촉 저항을 최소화하여 고전도 필름 을 제조하였다. FIG. 5 shows an AFM image and size histogram of graphene transmitted by vacuum filtration. Referring to FIG. 5, the graphene oxide having a size smaller than 0.8 m may be identified by AFM by passing the graphene oxide dispersion formed in a syringe filter having a hole size of 0.8 μm and drying the dispersion passed through the filter. By separating the size of the graphene, which is arbitrarily prepared, a high-conductivity film was manufactured by minimizing the contact resistance generated between the graphenes generated when the large-area film was manufactured using only graphene having a size of 3 or more.
<실시 예 1> <Example 1>
그래핀 형성  Graphene formation
염화 칼슘 (CaCl2) , 염화 철 (I II )(FeCl3) , 염화 구리 (I I )(CuCl2), 염화 나트륨Calcium chloride (CaCl 2 ), iron chloride (I II) (FeCl 3 ), copper chloride (II) (CuCl 2 ), sodium chloride
(NaCl ) , 염화 알루미늄 (A1C13) , 염화 마그네슘 (MgCl2) , 염화 칼륨 (KC1 ) , 염화 바륨(NaCl), aluminum chloride (A1C1 3 ), magnesium chloride (MgCl 2 ), potassium chloride (KC1), barium chloride
(BaCl2)을 각각 100 mM의 농도로 물에 녹여 염 수용액을 만들었다. 넓은 비커에 상 기 염 수용액을 각각 담고 , 환원된 산화 그래핀 분산액을 한 방을씩 떨어뜨려 염 수용액과 공기의 계면에서 자발적으로 퍼지도록 하여 그래핀 필름을 형성시켰다 . 도 6은 여 러 종류의 염 수용액을 사용하여 그래핀 필름을 형성한 예를 나타낸 사진 이다. (BaCl 2 ) was dissolved in water at a concentration of 100 mM, respectively, to form an aqueous salt solution. Each of the above aqueous salt solution was placed in a wide beaker, and the reduced graphene oxide dispersion was dropped one by one to spontaneously spread at the interface between the aqueous salt solution and air to form a graphene film. Figure 6 is a photograph showing an example of forming a graphene film using various types of salt aqueous solution.
<실시 예 2> <Example 2>
그래핀 필름의 기판으로의 전이  Transfer of Graphene Film to Substrate
용액 표면에 자기 조립된 그래판 필름을 딥핑 (dipping)을 통해 실리콘 기판 위에 전이한 후 증류수 분무로 세척하며 상온에서 건조시켰다. 이 때 필름의 두께 는 주사전자현미경 (scanning electron microscopy, SEM)으로 측정하였다 . 도 7은 실리콘 기판 위에 전이된 그래핀 필름의 단면을 나타낸 주사전자현미경 사진이다. 도 7을 참조하면 , 약 60 nm 두께를 가지는 그래핀 필름이 제조된 것을 확인할 수 있다 . The graphene film self-assembled on the surface of the solution was transferred to a silicon substrate through dipping, washed with distilled water spray, and dried at room temperature. The thickness of the film Was measured by scanning electron microscopy (SEM). 7 is a scanning electron micrograph showing a cross section of a graphene film transferred on a silicon substrate. Referring to Figure 7, it can be seen that the graphene film having a thickness of about 60 nm was prepared.
<실시 예 3> Example 3
그래핀 ¾름의 환워 염처리와 재결정 염처리  Heat treatment salt treatment and recrystallization salt treatment of graphene
실시 예 2에서 제조된 그래핀 필름을 20 ??/분의 속도로 400 까지 승온 시켜 서 Ar과 ¾ 분위기에서 4시간 동안 열처 리를 하였다. 승온 속도가 빠를 경우 그래핀 필름에 남아있는 수분의 빠른 증발에 의한 그래핀 필름의 손실이 오기 때문에 서서 히 승온시켰다. 그래핀 필름의 열처 리를 통해 일부 환원되어지지 않고 남아있는 그 래핀의 기능기들을 환원시켰다 . 이후 박리된 (exfol iated) 그래핀들의 재결정을 위 해 진공 분위기에서 1 ,000 ??까지 20 ??/분의 속도로 승온 시킨 후 4시간 동안 열 처리시켰다.  The graphene film prepared in Example 2 was heated to 400 at a rate of 20 ?? / min and heat treated for 4 hours in an Ar and ¾ atmosphere. If the temperature increase rate is fast, because the loss of the graphene film due to the rapid evaporation of the moisture remaining in the graphene film was raised slowly. The heat treatment of the graphene film reduced some of the remaining functional groups of graphene without being reduced. After the exfoliation (exfol iated) graphene was re-crystallized in a vacuum atmosphere at a rate of 20 ℃ / min to 1,000 ?? and then heat treated for 4 hours.
<시험예 1> <Test Example 1>
그래핀의 미세조직 및 조성 분석  Analysis of Microstructure and Composition of Graphene
제조예 3에서 제조된 그래핀 필름들의 미세조직을 분석하였다. 도 8은 제조 예 3에서 제조된 그래핀 필름들에 대한 투과 전자현미경 (TEM) 사진이다. 도 8을 참 조하면, 평균 1—7 층을 가지는 그래핀이 제조된 것을 확인할 수 있다. 도 8의 좌측 사진은 단일층 그래핀의 TEM 사진이며, 우측 사진은 7-10 층의 복층 구조를 갖는 그래핀의 TEM 사진이다 .  The microstructure of the graphene films prepared in Preparation Example 3 was analyzed. 8 is a transmission electron microscope (TEM) photograph of the graphene films prepared in Preparation Example 3. Referring to FIG. 8, it can be seen that graphene having an average of 1 to 7 layers is manufactured. 8 is a TEM picture of single layer graphene, and the right picture is a TEM picture of graphene having a multilayer structure of 7-10 layers.
<시험 예 2> <Test Example 2 >
그래핀 흼름의 전도도 특성 분석  Conductivity Characterization of Graphene Film
만들어진 그래핀 필름은 4-포인트 프로브 (4-point probe) 장치를 이용하여 표면의 전도도 특성을 측정하였으며 투과도는 UV-vis 스펙트로미터 장치를 이용하 여 측정하였다 . 도 9를 참조하면 , 실시 예 2 및 실시 예 3에 의해 환원되어진 자기 조립 그래핀 필름의 경우 75-85%의 투명도 범위에서 800 내지 9ᅳ ΟΟΟΩ/cm2 의 표면 저항값을 가질 수 있다. The resulting graphene film was measured for surface conductivity using a 4-point probe device and the transmittance was measured using a UV-vis spectrometer device. Referring to FIG. 9, the self-assembled graphene film reduced by Examples 2 and 3 may have a surface resistance value of 800 to 9 kΩ / cm 2 in a transparency range of 75-85%.
이상에서는 도면 및 실시 예를 참조하여 설명하였지만 해당 기술 분야의 숙 련된 당업자는 하기의 특허청구범위에 기재된 본 발명의 기술적 사상으로부터 벗어 나지 않는 범위 내에서 개시된 실시 예들을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. Although described above with reference to the drawings and embodiments, those skilled in the art will be free from the technical spirit of the present invention described in the claims below. It will be appreciated that various modifications and changes can be made to the disclosed embodiments without departing from the scope thereof.
【산업상 이용가능성 ]  Industrial Applicability
본 발명은 디스플레이 , 터치 스크린, 발광 다이오드, 태양 전지와 같은 광전 자 소자등과 같이 광범위한 분야에 걸쳐 적용 및 웅용이 가능하다.  The present invention can be applied and used in a wide range of fields such as displays, touch screens, light emitting diodes, optoelectronic devices such as solar cells, and the like.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
그래파이트를 산화시켜 산화 그래핀을 형성하는 단계 ;  Oxidizing the graphite to form graphene oxide;
상기 산화 그래핀을 물에 분산시켜 산화 그래핀의 분산액을 형성하는 단계 ; 상기 산화 그래핀을 환원시켜 환원된 산화 그래핀의 분산액을 형성하는 단 계 ; 및  Dispersing the graphene oxide in water to form a dispersion of graphene oxide; Reducing the graphene oxide to form a dispersion of reduced graphene oxide; And
상기 환원된 산화 그래핀의 분산액을 염 수용액에 투입하여 공기 /물 계면에 서 그래핀 필름을 형성하는 단계를 포함하는 그래핀 필름의 제조방법 .  A method for producing a graphene film comprising the step of forming a graphene film at the air / water interface by introducing the dispersion of the reduced graphene oxide in an aqueous salt solution.
【청구항 2】  [Claim 2]
청구항 1에 있어서,  The method according to claim 1,
상기 염 수용액은 유기 염 및 무기 염으로 이루어진 군 중에서 선택되는 1종 이상인 염을 포함하는 그래핀 필름의 제조방법 .  The salt solution is a method for producing a graphene film comprising a salt of at least one selected from the group consisting of organic salts and inorganic salts.
【청구항 3】  [Claim 3]
청구항 1에 있어서 ,  The method according to claim 1,
상기 염 수용액은 알칼리 금속, 알칼리 토금속, 전이금속 , 전이후 금속 , 및 준금속으로 이루어진 군 중에서 선택되는 1종 이상의 금속의 이온을 포함하는 그래 핀 필름의 제조방법 .  The salt aqueous solution is a method for producing a graphene film containing ions of at least one metal selected from the group consisting of alkali metals, alkaline earth metals, transition metals, post-transition metals, and metalloids.
【청구항 4】  [Claim 4]
청구항 1에 있어서,  The method according to claim 1,
상기 염 수용액의 농도는 10mM 내지 10M인 그래핀 필름의 제조방법 .  The concentration of the aqueous salt solution is a method of producing a graphene film of 10mM to 10M.
[청구항 5】  [Claim 5]
청구항 1에 있어서,  The method according to claim 1,
상기 그래핀 필름의 평균 두께는 lnm 내지 l ,000nm인 그래핀 필름의 제조방 법 .  Method for producing a graphene film of the average thickness of the graphene film is lnm to l, 000nm.
【청구항 6]  [Claim 6]
가장자리 부분이 친수성기로 개질된 산화 그래핀의 분산액을 제공하는 단계 ; 상기 그래핀의 분산액과 염 수용액을 접촉시켜 그래핀들이 공기 /물 계면에서 자기조립되도록 하는 단계를 포함하는 그래핀 필름의 제조방법 .  Providing a dispersion of graphene oxide with edge portions modified with hydrophilic groups; The method for producing a graphene film comprising the step of allowing the graphene to self-assemble at the air / water interface by contacting the dispersion solution of the graphene with an aqueous salt solution.
【청구항 7】  [Claim 7]
청구항 6에 있어서 ,  The method according to claim 6,
상기 자기조립 후 기판을 ¾핑하거나 염 수용액을 제거함으로써 상기 기판으 로 그래핀 필름을 전이시키는 단계를 더 포함하는 그래핀 필름의 제조방법. After self-assembly, the substrate may be removed by backing the substrate or by removing an aqueous salt solution. Method of producing a graphene film further comprising the step of transferring the graphene film.
【청구항 8】  [Claim 8]
청구항 7에 있어서,  The method according to claim 7,
상기 그래핀 필름이 전이된 기판을 환원가스 분위기에서 열처리하여 환원되 지 않고 남아 있는 그래핀의 기능기들을 환원시키는 단계를 더 포함하는 그래핀 필 름의 제조방법 .  The method of producing a graphene film further comprises the step of reducing the functional groups of the remaining graphene is not reduced by heat treatment of the substrate to which the graphene film is transferred in a reducing gas atmosphere.
【청구항 9】  [Claim 9]
청구항 8에 있어서,  The method according to claim 8,
상기 환원을 위한 열처리 후 박리된 그래핀들의 재결정을 위한 열처리를 수 행하는 단계를 더 포함하는 그래핀 필름의 제조방법 .  The method of manufacturing a graphene film further comprising the step of performing a heat treatment for recrystallization of the exfoliated graphene after the heat treatment for the reduction.
【청구항 10】  [Claim 10]
청구항 7에 있어서,  The method according to claim 7,
상기 자기조립에 의해 생성된 그래핀 필름을 투명 기판에 전이시키는 단계를 포함하는 그래핀 필름의 제조방법.  Method of producing a graphene film comprising the step of transferring the graphene film produced by the self-assembly to a transparent substrate.
【청구항 11】  [Claim 11]
청구항 1 내지 청구항 10중 어느 한 항에 따른 제조방법으로 제조된 그래핀 필름.  Graphene film prepared by the manufacturing method according to any one of claims 1 to 10.
[청구항 12】  [Claim 12]
청구항 11에 있어서,  The method according to claim 11,
75-85%의 투명도 범위에서 800 내지 9,000Ω/ η2 의 표면저항값을 갖는 그래 핀 필름. Graphene film having a surface resistance value of 800 to 9,000 Ω / η 2 in the range of 75-85% transparency.
PCT/KR2011/009919 2011-08-22 2011-12-21 Method for manufacturing a large-surface area graphene film WO2013027899A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110083339A KR101294223B1 (en) 2011-08-22 2011-08-22 Fabricating method of large-area two dimensional graphene film
KR10-2011-0083339 2011-08-22

Publications (1)

Publication Number Publication Date
WO2013027899A1 true WO2013027899A1 (en) 2013-02-28

Family

ID=47746619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009919 WO2013027899A1 (en) 2011-08-22 2011-12-21 Method for manufacturing a large-surface area graphene film

Country Status (2)

Country Link
KR (1) KR101294223B1 (en)
WO (1) WO2013027899A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106705222A (en) * 2016-12-21 2017-05-24 中山市创思泰新材料科技股份有限公司 Indoor isothermal dehumidification device based on graphene/nano polymer material and indoor isothermal dehumidification method
CN111943176A (en) * 2020-08-21 2020-11-17 北京化工大学 Method for low-price macro preparation of low-defect high-quality graphene lubricating material
CN113148990A (en) * 2021-05-19 2021-07-23 重庆交通大学 Preparation method of graphene oxide reduction self-assembly film based on gas-liquid interface
CN113184838A (en) * 2021-05-19 2021-07-30 重庆交通大学 Preparation method of functionalized graphene material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101439782B1 (en) 2013-07-11 2014-09-15 주식회사 포스코 Environmentally friendly reduction method of oxidation of graphene films using a metal plate and brine
KR102391874B1 (en) 2013-12-30 2022-04-29 솔브레인 주식회사 graphene film and method for preparing the same
KR102314988B1 (en) 2014-12-26 2021-10-21 솔브레인 주식회사 Graphene Membrane Film and Method for Solvent Purification and Solvent Purification System using the Same
CN106705312A (en) * 2016-12-21 2017-05-24 中山市创思泰新材料科技股份有限公司 Anhydrous humidification device based on graphene/nanometer high molecular composite material and anhydrous humidification method
KR102444415B1 (en) * 2018-03-15 2022-09-16 한국전기연구원 Reduced graphene oxide-silicon metal particle composite formed by light irradiation, a method for producing the composite, and a electrode for secondary battery including the composite

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080279756A1 (en) * 2007-05-08 2008-11-13 Aruna Zhamu Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets
US20100178464A1 (en) * 2009-01-15 2010-07-15 Samsung Electronics Co., Ltd. Method for chemical modification of a graphene edge, graphene with a chemically modified edge and devices including the graphene
US20100303706A1 (en) * 2007-10-19 2010-12-02 University Of Wollongong Process for the preparation of graphene
KR20100136576A (en) * 2009-06-19 2010-12-29 한국과학기술원 A method for manufacturing graphene film, graphene film manufuctured by the same, electrode material comprising the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080279756A1 (en) * 2007-05-08 2008-11-13 Aruna Zhamu Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets
US20100303706A1 (en) * 2007-10-19 2010-12-02 University Of Wollongong Process for the preparation of graphene
US20100178464A1 (en) * 2009-01-15 2010-07-15 Samsung Electronics Co., Ltd. Method for chemical modification of a graphene edge, graphene with a chemically modified edge and devices including the graphene
KR20100136576A (en) * 2009-06-19 2010-12-29 한국과학기술원 A method for manufacturing graphene film, graphene film manufuctured by the same, electrode material comprising the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106705222A (en) * 2016-12-21 2017-05-24 中山市创思泰新材料科技股份有限公司 Indoor isothermal dehumidification device based on graphene/nano polymer material and indoor isothermal dehumidification method
CN111943176A (en) * 2020-08-21 2020-11-17 北京化工大学 Method for low-price macro preparation of low-defect high-quality graphene lubricating material
CN113148990A (en) * 2021-05-19 2021-07-23 重庆交通大学 Preparation method of graphene oxide reduction self-assembly film based on gas-liquid interface
CN113184838A (en) * 2021-05-19 2021-07-30 重庆交通大学 Preparation method of functionalized graphene material
CN113184838B (en) * 2021-05-19 2022-08-30 重庆交通大学 Preparation method of functionalized graphene material

Also Published As

Publication number Publication date
KR20130021051A (en) 2013-03-05
KR101294223B1 (en) 2013-08-16

Similar Documents

Publication Publication Date Title
KR101294223B1 (en) Fabricating method of large-area two dimensional graphene film
Bhimanapati et al. 2D boron nitride: synthesis and applications
Urade et al. Graphene properties, synthesis and applications: a review
Dasari et al. Graphene and derivatives–Synthesis techniques, properties and their energy applications
Shams et al. Graphene synthesis: a review
Huang et al. Growth of single-layer and multilayer graphene on Cu/Ni alloy substrates
TWI507357B (en) Stable dispersions of single and multiple graphene layers in solution
Sun et al. Synthesis of wafer‐scale graphene with chemical vapor deposition for electronic device applications
Edwards et al. Graphene synthesis: relationship to applications
US8715610B2 (en) Process for the preparation of graphene
Rümmeli et al. Graphene: Piecing it together
US8771630B2 (en) Method for the preparation of graphene
Wang et al. Surface tension components ratio: an efficient parameter for direct liquid phase exfoliation
JP2011032156A (en) Method for manufacturing graphene or thin film graphite
Sim et al. High-concentration dispersions of exfoliated MoS 2 sheets stabilized by freeze-dried silk fibroin powder
Chaudhary et al. Phosphorene—an emerging two-dimensional material: recent advances in synthesis, functionalization, and applications
Ishikawa et al. Electrophoretic deposition of high quality transparent conductive graphene films on insulating glass substrates
Guerrero-Bermea et al. Two-dimensional and three-dimensional hybrid assemblies based on graphene oxide and other layered structures: A carbon science perspective
Posudievsky et al. Facile mechanochemical preparation of nitrogen and fluorine co-doped graphene and its electrocatalytic performance
Bera Synthesis, properties and applications of amorphous carbon nanotube and MoS2 Nanosheets: a review
Xiaoli A review: the method for synthesis MoS 2 monolayer
Li et al. Superhydrophilic graphite surfaces and water-dispersible graphite colloids by electrochemical exfoliation
Trung et al. Direct and self-selective synthesis of Ag nanowires on patterned graphene
Kumari Catalytic graphitization: A bottom-up approach to graphene and quantum dots derived therefrom–A review
Xu et al. Facile synthesis of submillimeter sized graphene oxide by a novel method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871160

Country of ref document: EP

Kind code of ref document: A1