WO2013027687A1 - Method for producing dihydroxy compound - Google Patents

Method for producing dihydroxy compound Download PDF

Info

Publication number
WO2013027687A1
WO2013027687A1 PCT/JP2012/070943 JP2012070943W WO2013027687A1 WO 2013027687 A1 WO2013027687 A1 WO 2013027687A1 JP 2012070943 W JP2012070943 W JP 2012070943W WO 2013027687 A1 WO2013027687 A1 WO 2013027687A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
dihydroxy compound
compound
solvent
Prior art date
Application number
PCT/JP2012/070943
Other languages
French (fr)
Japanese (ja)
Inventor
拓 浅海
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2013027687A1 publication Critical patent/WO2013027687A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0211Oxygen-containing compounds with a metal-oxygen link
    • B01J31/0212Alkoxylates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/122Metal aryl or alkyl compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/49Esterification or transesterification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the present invention relates to a method for producing a dihydroxy compound.
  • Japanese Patent Application Laid-Open No. 2011-074366 discloses formula (3). It is described that the dihydroxy compound represented by the formula can be converted into a diepoxy compound that is a raw material of the epoxy resin, and as a production method thereof, hydroxybenzoic acid and 4- (4-hydroxycyclohexyl) are present in the presence of an acid. A method of reacting with phenol is described.
  • the present invention includes the following inventions.
  • the formula (1) In the presence of at least one compound selected from the group consisting of a titanium compound and a tin compound, the formula (1) (In the formula, R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and Z represents an alkyl group having 1 to 5 carbon atoms.)
  • a 4- (4-hydroxycyclohexyl) phenol represented by the formula (3) is reacted in a solvent having no hydroxyl group: (In the formula, R 1 , R 2 , R 3 and R 4 have the same meaning as described above.)
  • the solvent having no hydroxyl group is at least one solvent selected from the group consisting of an aromatic halogenated hydrocarbon solvent not having a hydroxyl group and an ether solvent not having a hydroxyl group.
  • the manufacturing method of description [3] The production method according to [1] or [2], wherein the reaction is performed in the presence of a tin compound.
  • the present invention provides a compound represented by formula (1) in the presence of at least one compound selected from the group consisting of a titanium compound and a tin compound.
  • R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and Z represents an alkyl group having 1 to 5 carbon atoms.
  • a hydroxybenzoic acid ester represented by the formula hereinafter sometimes referred to as a hydroxybenzoic acid ester (1)
  • a formula (2) A 4- (4-hydroxycyclohexyl) phenol represented by the following formula (3), which is reacted in a solvent having no hydroxyl group:
  • Examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group, and a methyl group is preferable.
  • R 1 to R 4 are each independently preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
  • Examples of the alkyl group having 1 to 5 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, and tert-butyl group, preferably methyl group or ethyl group It is a group.
  • Z is preferably a methyl group or an ethyl group, and more preferably a methyl group.
  • the hydroxybenzoic acid ester (1) include methyl 4-hydroxybenzoate, ethyl 4-hydroxybenzoate, n-propyl 4-hydroxybenzoate, n-butyl 4-hydroxybenzoate, and 4-hydroxy-2-methylbenzoate.
  • the amount of phenol (2) used is usually in the range of 0.6 to 10 moles, and preferably in the range of 0.8 to 3 moles, with respect to 1 mole of the hydroxybenzoic acid ester (1).
  • the solvent having no hydroxyl group include aromatic hydrocarbon solvents having no hydroxyl group such as toluene, xylene, ethylbenzene, and cymene, chlorobenzene, dichlorobenzene, 2-chlorotoluene, 3-chlorotoluene, 4- Aromatic halogenated hydrocarbon solvents having no hydroxyl group such as chlorotoluene, ketone solvents having no hydroxyl group such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, hydroxyl groups such as 1,4-dioxane and anisole
  • the ether solvent which does not have is mentioned.
  • An aromatic halogenated hydrocarbon solvent having no hydroxyl group and an ether solvent not having a hydroxyl group are preferred.
  • the amount of the solvent having no hydroxyl group is usually in the range of 1 to 50 parts by weight, preferably in the range of 1 to 20 parts by weight per 1 part by weight of hydroxybenzoic acid (1). It is. You may use together the solvent which does not have two or more types of hydroxyl groups.
  • the titanium compound include titanium tetraethoxide, titanium tetraisopropoxide, and titanium tetrabutoxide.
  • tin compounds include dibutyltin oxide, dioctyltin oxide, didodecyltin oxide, diphenyltin oxide, methylphenyltin oxide, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin dichloride, tin di (2-ethylhexanoate), and tin dichloride.
  • the amount of at least one compound selected from the group consisting of titanium compounds and tin compounds is usually in the range of 0.001 mol to 0.30 mol with respect to 1 mol of hydroxybenzoic acid ester (1).
  • the reaction of the hydroxybenzoic acid ester (1) and the phenol (2) may be performed under normal pressure conditions, may be performed under pressure conditions, or may be performed under reduced pressure conditions. Moreover, you may react in inert gas atmosphere, such as nitrogen gas and argon gas.
  • the reaction temperature is usually in the range of 60 ° C to 250 ° C, preferably in the range of 80 ° C to 200 ° C.
  • the reaction time varies depending on the amount of titanium compound and / or tin compound used and the reaction temperature, but is usually in the range of 0.5 to 72 hours. As the reaction proceeds, alcohol is produced. It is preferable to carry out the reaction while removing the produced alcohol out of the reaction system.
  • Examples of the method for removing the produced alcohol out of the reaction system include a method for distilling the produced alcohol and a method using a dealcoholizing agent such as molecular sieves.
  • a solid containing the dihydroxy compound (3) can be obtained by filtering the reaction mixture.
  • the obtained dihydroxy compound (3) can be purified by a usual purification means such as washing with a solvent or recrystallization, if necessary.
  • Example 1 In a reaction vessel equipped with a Dean-Stark apparatus, methyl 4-hydroxybenzoate 47.0 g (purity 98.0%, 303 mmol), 4- (4-hydroxycyclohexyl) phenol 60.2 g (purity 96.7%, 303 mmol), 1.88 g (7.55 mmol) of dibutyltin oxide and 235.1 g of 4-chlorotoluene were mixed at room temperature of about 25 ° C. The resulting mixture was stirred for 10 hours under reflux and then cooled to room temperature. In addition, the alcohol produced
  • dihydroxy compound (3-1) a dihydroxy compound represented by formula (3-1) (hereinafter referred to as dihydroxy compound (3-1)). There were obtained 83.9 g of white crystals. The obtained crystals were analyzed by liquid chromatography, and the area percentage of the obtained chromatograph was calculated to be 92.5%. Assuming that the content of the dihydroxy compound (3-1) in the crystal is 92.5% by weight, the yield of the dihydroxy compound (3-1) based on methyl 4-hydroxybenzoate was 82%. It was.
  • the conversion rate from 4- (4-hydroxycyclohexyl) phenol to a hydroxy compound was 82%.
  • Example 2 In a reaction vessel equipped with a Dean-Stark apparatus, methyl 4-hydroxybenzoate 47.0 g (purity 98.0%, 303 mmol), 4- (4-hydroxycyclohexyl) phenol 60.2 g (purity 96.7%, 303 mmol), 1.88 g (7.55 mmol) of dibutyltin oxide and 235.2 g of chlorobenzene were mixed at room temperature of about 25 ° C. The resulting mixture was stirred for 10 hours under reflux and then cooled to room temperature. In addition, the alcohol produced
  • the precipitated solid was separated by filtration to obtain a crude product.
  • the obtained crude product was washed twice with 235 g of methanol and then dried under reduced pressure at 60 ° C. to obtain 76.6 g of white crystals containing the dihydroxy compound (3-1).
  • the obtained crystals were analyzed by liquid chromatography, and the area percentage of the obtained chromatograph was calculated to be 94.2%. Assuming that the content of the dihydroxy compound (3-1) in the crystal is 94.2% by weight, the yield of the dihydroxy compound (3-1) based on methyl 4-hydroxybenzoate was 76%. It was.
  • the conversion rate from 4- (4-hydroxycyclohexyl) phenol to a hydroxy compound was 76%.
  • Example 3 In a reaction vessel equipped with a Dean-Stark apparatus, methyl 4-hydroxybenzoate 47.0 g (purity 98.0%, 303 mmol), 4- (4-hydroxycyclohexyl) phenol 60.2 g (purity 96.7%, 303 mmol), 1.88 g (7.55 mmol) of dibutyltin oxide and 235.0 g of anisole were mixed at room temperature of about 25 ° C. The resulting mixture was stirred at reflux for 10 hours and then cooled to room temperature. In addition, the alcohol produced
  • the obtained crude product was washed twice with 235 g of methanol and then dried under reduced pressure at 60 ° C. to obtain 83.5 g of white crystals containing the dihydroxy compound (3-1).
  • the obtained crystals were analyzed by liquid chromatography, and the area percentage of the obtained chromatograph was calculated to be 94.9%. Assuming that the content of the dihydroxy compound (3-1) in the crystal is 94.9% by weight, the yield of the dihydroxy compound (3-1) based on methyl 4-hydroxybenzoate was 84%. It was.
  • the conversion rate from 4- (4-hydroxycyclohexyl) phenol to a hydroxy compound was 84%.
  • Example 4 In Examples 1 to 3, the dihydroxy compound (3-1) is obtained by carrying out in the same manner as in Examples 1 to 3 except that dibutyltin oxide is replaced with titanium tetraisopropoxide.
  • Reference Comparative Example 1 In a reaction vessel equipped with a Dean-Stark apparatus, methyl 4-hydroxybenzoate 2.53 g (purity 98.0%, 16.3 mmol), 4- (4-hydroxycyclohexyl) phenol 3.13 g (purity 96.7) %, 15.7 mmol), 0.087 g (0.349 mmol) of dibutyltin oxide and 37.5 g of 2-methyl-2-propanol were mixed at room temperature of about 25 ° C.
  • generated with progress of reaction was removed from reaction container using the Dean-Stark apparatus. Then, the crude product was obtained by cooling to room temperature, adding 40.0g of methanol, and isolate
  • Example 6 In a reaction vessel equipped with a Dean-Stark apparatus, methyl 4-hydroxybenzoate 40.0 g (purity 98.0%, 258 mmol), 4- (4-hydroxycyclohexyl) phenol 52.0 g (purity 95.2%, 258 mmol), 1.60 g (6.44 mmol) of dibutyltin oxide and 200.0 g of 2-chlorotoluene were mixed and stirred for 12 hours while refluxing. In addition, the alcohol produced
  • the obtained crude product was washed with 120.0 g of methanol and 120.0 of 2-propanol, and then dried under reduced pressure at 60 ° C. to obtain 75.0 g of white crystals containing the dihydroxy compound (3-1).
  • the obtained crystals were analyzed by liquid chromatography, and the area percentage of the obtained chromatograph was calculated to be 96.3%. Assuming that the content of the dihydroxy compound (3-1) in the crystal is 96.3% by weight, the yield of the dihydroxy compound (3-1) based on methyl 4-hydroxybenzoate was 90%. It was.
  • the conversion rate from 4- (4-hydroxycyclohexyl) phenol to a hydroxy compound was 90%.
  • a more efficient method for producing a dihydroxy compound having a high conversion rate from 4- (4-hydroxycyclohexyl) phenol to a dihydroxy compound can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Provided is a method for producing a dihydroxy compound by reacting a hydroxybenzoic acid ester represented by general formula (1) (where R1, R2, R3 and R4 are each independently a hydrogen atom or a C1-3 alkyl group and Z is a C1-5 alkyl group) and a 4-(4-hydroxycyclohexyl)phenol represented by formula (2) in a hydroxyl group-free solvent and in the presence of at least one compound selected from the group consisting of titanium compounds and tin compounds to produce a dihydroxy compound represented by formula (3) (where R1, R2, R3 and R4 are the same as defined above).

Description

ジヒドロキシ化合物の製造方法Method for producing dihydroxy compound
 本発明は、ジヒドロキシ化合物の製造方法に関する。 The present invention relates to a method for producing a dihydroxy compound.
 特開2011−074366号公報には、式(3)
Figure JPOXMLDOC01-appb-I000004
で表わされるジヒドロキシ化合物が、エポキシ樹脂の原料であるジエポキシ化合物へ変換可能であることが記載されており、その製造方法として、酸の存在下に、ヒドロキシ安息香酸と4−(4−ヒドロキシシクロヘキシル)フェノールとを反応させる方法が記載されている。
Japanese Patent Application Laid-Open No. 2011-074366 discloses formula (3).
Figure JPOXMLDOC01-appb-I000004
It is described that the dihydroxy compound represented by the formula can be converted into a diepoxy compound that is a raw material of the epoxy resin, and as a production method thereof, hydroxybenzoic acid and 4- (4-hydroxycyclohexyl) are present in the presence of an acid. A method of reacting with phenol is described.
 本発明は、以下の発明を含む。
[1]チタン化合物及びスズ化合物からなる群より選ばれる少なくとも一種の化合物の存在下、式(1)
Figure JPOXMLDOC01-appb-I000005
(式中、R、R、R及びRはそれぞれ独立して、水素原子又は炭素数1~3のアルキル基を表わし、Zは炭素数1~5のアルキル基を表わす。)
で表わされるヒドロキシ安息香酸エステルと、式(2)
Figure JPOXMLDOC01-appb-I000006
で表わされる4−(4−ヒドロキシシクロヘキシル)フェノールとを、ヒドロキシル基を有していない溶媒中で反応させる、式(3)
Figure JPOXMLDOC01-appb-I000007
(式中、R、R、R及びRは、上記と同じ意味を表わす。)
で表わされるジヒドロキシ化合物の製造方法。
[2]ヒドロキシル基を有していない溶媒が、ヒドロキシル基を有していない芳香族ハロゲン化炭化水素溶媒及びヒドロキシル基を有していないエーテル溶媒からなる群より選ばれる少なくとも一種の溶媒である[1]記載の製造方法。
[3]反応が、スズ化合物の存在下で行われる[1]又は[2]記載の製造方法。
The present invention includes the following inventions.
[1] In the presence of at least one compound selected from the group consisting of a titanium compound and a tin compound, the formula (1)
Figure JPOXMLDOC01-appb-I000005
(In the formula, R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and Z represents an alkyl group having 1 to 5 carbon atoms.)
A hydroxybenzoic acid ester represented by the formula (2)
Figure JPOXMLDOC01-appb-I000006
A 4- (4-hydroxycyclohexyl) phenol represented by the formula (3) is reacted in a solvent having no hydroxyl group:
Figure JPOXMLDOC01-appb-I000007
(In the formula, R 1 , R 2 , R 3 and R 4 have the same meaning as described above.)
The manufacturing method of the dihydroxy compound represented by these.
[2] The solvent having no hydroxyl group is at least one solvent selected from the group consisting of an aromatic halogenated hydrocarbon solvent not having a hydroxyl group and an ether solvent not having a hydroxyl group. 1] The manufacturing method of description.
[3] The production method according to [1] or [2], wherein the reaction is performed in the presence of a tin compound.
 本発明は、チタン化合物及びスズ化合物からなる群より選ばれる少なくとも一種の化合物の存在下、式(1)
Figure JPOXMLDOC01-appb-I000008
(式中、R、R、R及びRはそれぞれ独立して、水素原子又は炭素数1~3のアルキル基を表わし、Zは炭素数1~5のアルキル基を表わす。)
で表わされるヒドロキシ安息香酸エステル(以下、ヒドロキシ安息香酸エステル(1)と記すことがある)と、式(2)
Figure JPOXMLDOC01-appb-I000009
で表わされる4−(4−ヒドロキシシクロヘキシル)フェノール(以下、フェノール(2)と記すことがある)とを、ヒドロキシル基を有していない溶媒中で反応させる、式(3)
Figure JPOXMLDOC01-appb-I000010
(式中、R、R、R及びRは、上記と同じ意味を表わす。)
で表わされるジヒドロキシ化合物(以下、ジヒドロキシ化合物(3)と記すことがある)の製造方法である。
 炭素数1~3のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基が挙げられ、好ましくは、メチル基である。
 R~Rが、それぞれ独立して、水素原子又はメチル基であることが好ましく、水素原子であることがより好ましい。
 炭素数1~5のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基が挙げられ、好ましくは、メチル基またはエチル基である。Zは、メチル基またはエチル基であることが好ましく、メチル基であることがより好ましい。
 ヒドロキシ安息香酸エステル(1)としては、4−ヒドロキシ安息香酸メチル、4−ヒドロキシ安息香酸エチル、4−ヒドロキシ安息香酸n−プロピル、4−ヒドロキシ安息香酸n−ブチル、4−ヒドロキシ−2−メチル安息香酸メチル、4−ヒドロキシ−2−メチル安息香酸エチル、4−ヒドロキシ−2−メチル安息香酸n−ブチル、4−ヒドロキシ−3−メチル安息香酸メチル、4−ヒドロキシ−3−メチル安息香酸エチル、4−ヒドロキシ−3−メチル安息香酸n−プロピル、4−ヒドロキシ−2−エチル安息香酸メチル、4−ヒドロキシ−3−エチル安息香酸n−プロピル、4−ヒドロキシ−3,5−ジメチル安息香酸メチルが挙げられる。
 フェノール(2)としては、式(2’)
Figure JPOXMLDOC01-appb-I000011
で表わされる化合物が好ましい。
 フェノール(2)は、通常、市販されているものが用いられる。また、式(2’)で表わされる化合物は、日本国特許第3930669号公報に記載される方法に従って製造することもできる。
 フェノール(2)の使用量は、ヒドロキシ安息香酸エステル(1)1モルに対して、通常0.6モル~10モルの範囲であり、好ましくは、0.8モル~3モルの範囲である。
 ヒドロキシル基を有していない溶媒としては、トルエン、キシレン、エチルベンゼン、シメン等のヒドロキシル基を有していない芳香族炭化水素溶媒、クロロベンゼン、ジクロロベンゼン、2−クロロトルエン、3−クロロトルエン、4−クロロトルエン等のヒドロキシル基を有していない芳香族ハロゲン化炭化水素溶媒、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のヒドロキシル基を有していないケトン溶媒、1,4−ジオキサン、アニソール等のヒドロキシル基を有していないエーテル溶媒が挙げられる。好ましくは、ヒドロキシル基を有していない芳香族ハロゲン化炭化水素溶媒およびヒドロキシル基を有していないエーテル溶媒である。
 ヒドロキシル基を有していない溶媒の使用量は、ヒドロキシ安息香酸(1)1重量部に対して、通常1重量部~50重量部の範囲であり、好ましくは1重量部~20重量部の範囲である。2種類以上のヒドロキシル基を有していない溶媒を併用してもよい。
 チタン化合物としては、チタンテトラエトキシド、チタンテトライソプロポキシド、チタンテトラブトキシドが挙げられる。
 スズ化合物としては、ジブチルスズオキシド、ジオクチルスズオキシド、ジドデシルスズオキシド、ジフェニルスズオキシド、メチルフェニルスズオキシド、ジブチルスズジアセテート、ジブチルスズジラウレート、ジブチルスズジクロリド、スズジ(2−エチルヘキサノエート)、スズジクロリドが挙げられる。
 チタン化合物及びスズ化合物からなる群より選ばれる少なくとも一種の化合物の使用量は、ヒドロキシ安息香酸エステル(1)1モルに対して、通常0.001モル~0.30モルの範囲である。
 ヒドロキシ安息香酸エステル(1)とフェノール(2)との反応は、常圧条件下でおこなってもよいし、加圧条件下でおこなってもよいし、減圧条件下でおこなってもよい。また、窒素ガスやアルゴンガス等の不活性ガス雰囲気下で反応をおこなってもよい。
 反応温度は、通常60℃~250℃の範囲であり、好ましくは80℃~200℃の範囲である。
 反応時間は、チタン化合物及び/又はスズ化合物の使用量や反応温度等によっても異なるが、通常0.5時間~72時間の範囲である。
 反応の進行に伴って、アルコールが生成するが、生成するアルコールを反応系外へ除去しながら、当該反応を行うことが好ましい。生成するアルコールを反応系外へ除去する方法としては、生成するアルコールを留去する方法、モレキュラーシブス等の脱アルコール剤を用いる方法が挙げられる。
 反応終了後、例えば、反応混合物を濾過することにより、ジヒドロキシ化合物(3)を含む固体を得ることができる。得られたジヒドロキシ化合物(3)は、必要に応じて、溶媒での洗浄や再結晶等の通常の精製手段により、精製することができる。
The present invention provides a compound represented by formula (1) in the presence of at least one compound selected from the group consisting of a titanium compound and a tin compound.
Figure JPOXMLDOC01-appb-I000008
(In the formula, R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and Z represents an alkyl group having 1 to 5 carbon atoms.)
A hydroxybenzoic acid ester represented by the formula (hereinafter sometimes referred to as a hydroxybenzoic acid ester (1)), and a formula (2)
Figure JPOXMLDOC01-appb-I000009
A 4- (4-hydroxycyclohexyl) phenol represented by the following formula (3), which is reacted in a solvent having no hydroxyl group:
Figure JPOXMLDOC01-appb-I000010
(In the formula, R 1 , R 2 , R 3 and R 4 have the same meaning as described above.)
This is a method for producing a dihydroxy compound represented by the formula (hereinafter sometimes referred to as dihydroxy compound (3)).
Examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group, and a methyl group is preferable.
R 1 to R 4 are each independently preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
Examples of the alkyl group having 1 to 5 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, and tert-butyl group, preferably methyl group or ethyl group It is a group. Z is preferably a methyl group or an ethyl group, and more preferably a methyl group.
Examples of the hydroxybenzoic acid ester (1) include methyl 4-hydroxybenzoate, ethyl 4-hydroxybenzoate, n-propyl 4-hydroxybenzoate, n-butyl 4-hydroxybenzoate, and 4-hydroxy-2-methylbenzoate. Acid methyl, ethyl 4-hydroxy-2-methylbenzoate, n-butyl 4-hydroxy-2-methylbenzoate, methyl 4-hydroxy-3-methylbenzoate, ethyl 4-hydroxy-3-methylbenzoate, 4 -N-propyl 3-hydroxy-3-methylbenzoate, methyl 4-hydroxy-2-ethylbenzoate, n-propyl 4-hydroxy-3-ethylbenzoate, methyl 4-hydroxy-3,5-dimethylbenzoate It is done.
As phenol (2), the formula (2 ′)
Figure JPOXMLDOC01-appb-I000011
The compound represented by these is preferable.
As the phenol (2), a commercially available product is usually used. The compound represented by the formula (2 ′) can also be produced according to the method described in Japanese Patent No. 3930669.
The amount of phenol (2) used is usually in the range of 0.6 to 10 moles, and preferably in the range of 0.8 to 3 moles, with respect to 1 mole of the hydroxybenzoic acid ester (1).
Examples of the solvent having no hydroxyl group include aromatic hydrocarbon solvents having no hydroxyl group such as toluene, xylene, ethylbenzene, and cymene, chlorobenzene, dichlorobenzene, 2-chlorotoluene, 3-chlorotoluene, 4- Aromatic halogenated hydrocarbon solvents having no hydroxyl group such as chlorotoluene, ketone solvents having no hydroxyl group such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, hydroxyl groups such as 1,4-dioxane and anisole The ether solvent which does not have is mentioned. An aromatic halogenated hydrocarbon solvent having no hydroxyl group and an ether solvent not having a hydroxyl group are preferred.
The amount of the solvent having no hydroxyl group is usually in the range of 1 to 50 parts by weight, preferably in the range of 1 to 20 parts by weight per 1 part by weight of hydroxybenzoic acid (1). It is. You may use together the solvent which does not have two or more types of hydroxyl groups.
Examples of the titanium compound include titanium tetraethoxide, titanium tetraisopropoxide, and titanium tetrabutoxide.
Examples of tin compounds include dibutyltin oxide, dioctyltin oxide, didodecyltin oxide, diphenyltin oxide, methylphenyltin oxide, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin dichloride, tin di (2-ethylhexanoate), and tin dichloride. .
The amount of at least one compound selected from the group consisting of titanium compounds and tin compounds is usually in the range of 0.001 mol to 0.30 mol with respect to 1 mol of hydroxybenzoic acid ester (1).
The reaction of the hydroxybenzoic acid ester (1) and the phenol (2) may be performed under normal pressure conditions, may be performed under pressure conditions, or may be performed under reduced pressure conditions. Moreover, you may react in inert gas atmosphere, such as nitrogen gas and argon gas.
The reaction temperature is usually in the range of 60 ° C to 250 ° C, preferably in the range of 80 ° C to 200 ° C.
The reaction time varies depending on the amount of titanium compound and / or tin compound used and the reaction temperature, but is usually in the range of 0.5 to 72 hours.
As the reaction proceeds, alcohol is produced. It is preferable to carry out the reaction while removing the produced alcohol out of the reaction system. Examples of the method for removing the produced alcohol out of the reaction system include a method for distilling the produced alcohol and a method using a dealcoholizing agent such as molecular sieves.
After completion of the reaction, for example, a solid containing the dihydroxy compound (3) can be obtained by filtering the reaction mixture. The obtained dihydroxy compound (3) can be purified by a usual purification means such as washing with a solvent or recrystallization, if necessary.
 以下、本発明について、実施例を挙げてより詳細に説明する。
[実施例1]
Figure JPOXMLDOC01-appb-I000012
 ディーンスターク装置を取り付けた反応容器内にて、4−ヒドロキシ安息香酸メチル47.0g(純度98.0%、303mmol)、4−(4−ヒドロキシシクロヘキシル)フェノール60.2g(純度96.7%、303mmol)、ジブチルスズオキシド1.88g(7.55mmol)及び4−クロロトルエン235.1gを約25℃の室温で混合した。得られた混合物を還流しながら10時間攪拌した後、室温まで冷却した。尚、反応の進行に伴って生成したアルコールはディーンスターク装置を用いて反応容器から除去した。その後、析出した固体を濾過により分離することにより、粗生成物を得た。
 得られた粗生成物をメタノール235gで2回洗浄した後、60℃で減圧乾燥させて、式(3−1)で表されるジヒドロキシ化合物(以下、ジヒドロキシ化合物(3−1)と記すことがある)を含む白色結晶83.9gを得た。
 得られた結晶を液体クロマトグラフィーによって分析し、得られたクロマトグラフの面積百分率を算出したところ、92.5%であった。当該結晶中のジヒドロキシ化合物(3−1)の含有量を92.5重量%と仮定すると、4−ヒドロキシ安息香酸メチルを基準とするジヒドロキシ化合物(3−1)の収率は、82%であった。
 4−(4−ヒドロキシシクロヘキシル)フェノールからヒドロキシ化合物への変換率は、82%であった。
[実施例2]
 ディーンスターク装置を取り付けた反応容器内にて、4−ヒドロキシ安息香酸メチル47.0g(純度98.0%、303mmol)、4−(4−ヒドロキシシクロヘキシル)フェノール60.2g(純度96.7%、303mmol)、ジブチルスズオキシド1.88g(7.55mmol)及びクロロベンゼン235.2gを約25℃の室温で混合した。得られた混合物を還流しながら10時間攪拌した後、室温まで冷却した。尚、反応の進行に伴って生成したアルコールはディーンスターク装置を用いて反応容器から除去した。その後、析出する固体を濾過により分離することにより、粗生成物を得た。
 得られた粗生成物をメタノール235gで2回洗浄した後、60℃で減圧乾燥させて、ジヒドロキシ化合物(3−1)を含む白色結晶76.6gを得た。
 得られた結晶を液体クロマトグラフィーによって分析し、得られたクロマトグラフの面積百分率を算出したところ、94.2%であった。当該結晶中のジヒドロキシ化合物(3−1)の含有量を94.2重量%と仮定すると、4−ヒドロキシ安息香酸メチルを基準とするジヒドロキシ化合物(3−1)の収率は、76%であった。
 4−(4−ヒドロキシシクロヘキシル)フェノールからヒドロキシ化合物への変換率は、76%であった。
[実施例3]
 ディーンスターク装置を取り付けた反応容器内にて、4−ヒドロキシ安息香酸メチル47.0g(純度98.0%、303mmol)、4−(4−ヒドロキシシクロヘキシル)フェノール60.2g(純度96.7%、303mmol)、ジブチルスズオキシド1.88g(7.55mmol)及びアニソール235.0gを約25℃の室温で混合した。得られる混合物を還流しながら10時間攪拌した後、室温まで冷却した。尚、反応の進行に伴って生成したアルコールはディーンスターク装置を用いて反応容器から除去した。その後、析出する固体を濾過により分離することにより、粗生成物を得た。
 得られた粗生成物をメタノール235gで2回洗浄した後、60℃で減圧乾燥させて、ジヒドロキシ化合物(3−1)を含む白色結晶83.5gを得た。
 得られた結晶を液体クロマトグラフィーによって分析し、得られたクロマトグラフの面積百分率を算出したところ、94.9%であった。当該結晶中のジヒドロキシ化合物(3−1)の含有量を94.9重量%と仮定すると、4−ヒドロキシ安息香酸メチルを基準とするジヒドロキシ化合物(3−1)の収率は、84%であった。
 4−(4−ヒドロキシシクロヘキシル)フェノールからヒドロキシ化合物への変換率は、84%であった。
[実施例4]
 実施例1~3において、ジブチルスズオキシドをチタンテトライソプロポキシドに代えること以外は、実施例1~3と同様に実施することにより、ジヒドロキシ化合物(3−1)が得られる。
[参考比較例1]
 ディーンスターク装置を取り付けた反応容器内にて、4−ヒドロキシ安息香酸メチル2.53g(純度98.0%、16.3mmol)、4−(4−ヒドロキシシクロヘキシル)フェノール3.13g(純度96.7%、15.7mmol)、ジブチルスズオキシド0.087g(0.349mmol)及び2−メチル−2−プロパノール37.5gを約25℃の室温で混合した。得られた混合物を還流しながら3時間攪拌した。
 その後、得られた反応物を液体クロマトグラフィーによって分析し、得られたクロマトグラフの面積百分率を算出したところ、ジヒドロキシ化合物(3−1)の面積百分率は0%であり、その生成は認められなかった。
[実施例5]
 ディーンスターク装置を取り付けた反応容器内にて、4−ヒドロキシ安息香酸メチル40.0g(純度98.0%、258mmol)、4−(4−ヒドロキシシクロヘキシル)フェノール52.0g(純度95.2%、258mmol)、ジブチルスズオキシド1.60g(6.44mmol)及びo−ジクロロベンゼン200.0gを混合し、還流しながら20時間攪拌した。尚、反応の進行に伴って生成したアルコールはディーンスターク装置を用いて反応容器から除去した。その後、室温まで冷却してメタノール40.0gを加え、析出する固体を濾過により分離することにより、粗生成物を得た。
 得られた粗生成物をメタノール160.0gおよび2−プロパノール160.0で洗浄した後、60℃で減圧乾燥させて、ジヒドロキシ化合物(3−1)を含む白色結晶72.5gを得た。
 得られた結晶を液体クロマトグラフィーによって分析し、得られたクロマトグラフの面積百分率を算出したところ、98.0%であった。当該結晶中のジヒドロキシ化合物(3−1)の含有量を98.0重量%と仮定すると、4−ヒドロキシ安息香酸メチルを基準とするジヒドロキシ化合物(3−1)の収率は、88%であった。
 4−(4−ヒドロキシシクロヘキシル)フェノールからヒドロキシ化合物への変換率は、88%であった。
[実施例6]
 ディーンスターク装置を取り付けた反応容器内にて、4−ヒドロキシ安息香酸メチル40.0g(純度98.0%、258mmol)、4−(4−ヒドロキシシクロヘキシル)フェノール52.0g(純度95.2%、258mmol)、ジブチルスズオキシド1.60g(6.44mmol)及び2−クロロトルエン200.0gを混合し、還流しながら12時間攪拌した。尚、反応の進行に伴って生成したアルコールはディーンスターク装置を用いて反応容器から除去した。その後、室温まで冷却してメタノール40.0gを加え、析出する固体を濾過により分離することにより、粗生成物を得た。
 得られた粗生成物をメタノール120.0gおよび2−プロパノール120.0で洗浄した後、60℃で減圧乾燥させて、ジヒドロキシ化合物(3−1)を含む白色結晶75.0gを得た。
 得られた結晶を液体クロマトグラフィーによって分析し、得られたクロマトグラフの面積百分率を算出したところ、96.3%であった。当該結晶中のジヒドロキシ化合物(3−1)の含有量を96.3重量%と仮定すると、4−ヒドロキシ安息香酸メチルを基準とするジヒドロキシ化合物(3−1)の収率は、90%であった。
 4−(4−ヒドロキシシクロヘキシル)フェノールからヒドロキシ化合物への変換率は、90%であった。
Hereinafter, the present invention will be described in more detail with reference to examples.
[Example 1]
Figure JPOXMLDOC01-appb-I000012
In a reaction vessel equipped with a Dean-Stark apparatus, methyl 4-hydroxybenzoate 47.0 g (purity 98.0%, 303 mmol), 4- (4-hydroxycyclohexyl) phenol 60.2 g (purity 96.7%, 303 mmol), 1.88 g (7.55 mmol) of dibutyltin oxide and 235.1 g of 4-chlorotoluene were mixed at room temperature of about 25 ° C. The resulting mixture was stirred for 10 hours under reflux and then cooled to room temperature. In addition, the alcohol produced | generated with progress of reaction was removed from reaction container using the Dean-Stark apparatus. Thereafter, the precipitated solid was separated by filtration to obtain a crude product.
The obtained crude product was washed twice with 235 g of methanol, and then dried under reduced pressure at 60 ° C., and expressed as a dihydroxy compound represented by formula (3-1) (hereinafter referred to as dihydroxy compound (3-1)). There were obtained 83.9 g of white crystals.
The obtained crystals were analyzed by liquid chromatography, and the area percentage of the obtained chromatograph was calculated to be 92.5%. Assuming that the content of the dihydroxy compound (3-1) in the crystal is 92.5% by weight, the yield of the dihydroxy compound (3-1) based on methyl 4-hydroxybenzoate was 82%. It was.
The conversion rate from 4- (4-hydroxycyclohexyl) phenol to a hydroxy compound was 82%.
[Example 2]
In a reaction vessel equipped with a Dean-Stark apparatus, methyl 4-hydroxybenzoate 47.0 g (purity 98.0%, 303 mmol), 4- (4-hydroxycyclohexyl) phenol 60.2 g (purity 96.7%, 303 mmol), 1.88 g (7.55 mmol) of dibutyltin oxide and 235.2 g of chlorobenzene were mixed at room temperature of about 25 ° C. The resulting mixture was stirred for 10 hours under reflux and then cooled to room temperature. In addition, the alcohol produced | generated with progress of reaction was removed from reaction container using the Dean-Stark apparatus. Thereafter, the precipitated solid was separated by filtration to obtain a crude product.
The obtained crude product was washed twice with 235 g of methanol and then dried under reduced pressure at 60 ° C. to obtain 76.6 g of white crystals containing the dihydroxy compound (3-1).
The obtained crystals were analyzed by liquid chromatography, and the area percentage of the obtained chromatograph was calculated to be 94.2%. Assuming that the content of the dihydroxy compound (3-1) in the crystal is 94.2% by weight, the yield of the dihydroxy compound (3-1) based on methyl 4-hydroxybenzoate was 76%. It was.
The conversion rate from 4- (4-hydroxycyclohexyl) phenol to a hydroxy compound was 76%.
[Example 3]
In a reaction vessel equipped with a Dean-Stark apparatus, methyl 4-hydroxybenzoate 47.0 g (purity 98.0%, 303 mmol), 4- (4-hydroxycyclohexyl) phenol 60.2 g (purity 96.7%, 303 mmol), 1.88 g (7.55 mmol) of dibutyltin oxide and 235.0 g of anisole were mixed at room temperature of about 25 ° C. The resulting mixture was stirred at reflux for 10 hours and then cooled to room temperature. In addition, the alcohol produced | generated with progress of reaction was removed from reaction container using the Dean-Stark apparatus. Thereafter, the precipitated solid was separated by filtration to obtain a crude product.
The obtained crude product was washed twice with 235 g of methanol and then dried under reduced pressure at 60 ° C. to obtain 83.5 g of white crystals containing the dihydroxy compound (3-1).
The obtained crystals were analyzed by liquid chromatography, and the area percentage of the obtained chromatograph was calculated to be 94.9%. Assuming that the content of the dihydroxy compound (3-1) in the crystal is 94.9% by weight, the yield of the dihydroxy compound (3-1) based on methyl 4-hydroxybenzoate was 84%. It was.
The conversion rate from 4- (4-hydroxycyclohexyl) phenol to a hydroxy compound was 84%.
[Example 4]
In Examples 1 to 3, the dihydroxy compound (3-1) is obtained by carrying out in the same manner as in Examples 1 to 3 except that dibutyltin oxide is replaced with titanium tetraisopropoxide.
[Reference Comparative Example 1]
In a reaction vessel equipped with a Dean-Stark apparatus, methyl 4-hydroxybenzoate 2.53 g (purity 98.0%, 16.3 mmol), 4- (4-hydroxycyclohexyl) phenol 3.13 g (purity 96.7) %, 15.7 mmol), 0.087 g (0.349 mmol) of dibutyltin oxide and 37.5 g of 2-methyl-2-propanol were mixed at room temperature of about 25 ° C. The resulting mixture was stirred at reflux for 3 hours.
Thereafter, the obtained reaction product was analyzed by liquid chromatography, and when the area percentage of the obtained chromatograph was calculated, the area percentage of the dihydroxy compound (3-1) was 0%, and its formation was not recognized. It was.
[Example 5]
In a reaction vessel equipped with a Dean-Stark apparatus, methyl 4-hydroxybenzoate 40.0 g (purity 98.0%, 258 mmol), 4- (4-hydroxycyclohexyl) phenol 52.0 g (purity 95.2%, 258 mmol), 1.60 g (6.44 mmol) of dibutyltin oxide and 200.0 g of o-dichlorobenzene were mixed and stirred for 20 hours while refluxing. In addition, the alcohol produced | generated with progress of reaction was removed from reaction container using the Dean-Stark apparatus. Then, the crude product was obtained by cooling to room temperature, adding 40.0g of methanol, and isolate | separating the depositing solid by filtration.
The obtained crude product was washed with 160.0 g of methanol and 160.0 of 2-propanol and then dried under reduced pressure at 60 ° C. to obtain 72.5 g of white crystals containing the dihydroxy compound (3-1).
The obtained crystals were analyzed by liquid chromatography, and the area percentage of the obtained chromatograph was calculated to be 98.0%. Assuming that the content of the dihydroxy compound (3-1) in the crystal is 98.0% by weight, the yield of the dihydroxy compound (3-1) based on methyl 4-hydroxybenzoate was 88%. It was.
The conversion rate from 4- (4-hydroxycyclohexyl) phenol to a hydroxy compound was 88%.
[Example 6]
In a reaction vessel equipped with a Dean-Stark apparatus, methyl 4-hydroxybenzoate 40.0 g (purity 98.0%, 258 mmol), 4- (4-hydroxycyclohexyl) phenol 52.0 g (purity 95.2%, 258 mmol), 1.60 g (6.44 mmol) of dibutyltin oxide and 200.0 g of 2-chlorotoluene were mixed and stirred for 12 hours while refluxing. In addition, the alcohol produced | generated with progress of reaction was removed from reaction container using the Dean-Stark apparatus. Then, the crude product was obtained by cooling to room temperature, adding 40.0g of methanol, and isolate | separating the depositing solid by filtration.
The obtained crude product was washed with 120.0 g of methanol and 120.0 of 2-propanol, and then dried under reduced pressure at 60 ° C. to obtain 75.0 g of white crystals containing the dihydroxy compound (3-1).
The obtained crystals were analyzed by liquid chromatography, and the area percentage of the obtained chromatograph was calculated to be 96.3%. Assuming that the content of the dihydroxy compound (3-1) in the crystal is 96.3% by weight, the yield of the dihydroxy compound (3-1) based on methyl 4-hydroxybenzoate was 90%. It was.
The conversion rate from 4- (4-hydroxycyclohexyl) phenol to a hydroxy compound was 90%.
 本発明によれば、4−(4−ヒドロキシシクロヘキシル)フェノールからジヒドロキシ化合物への変換率が高い、より効率的なジヒドロキシ化合物の製造方法を提供することができる。 According to the present invention, a more efficient method for producing a dihydroxy compound having a high conversion rate from 4- (4-hydroxycyclohexyl) phenol to a dihydroxy compound can be provided.

Claims (3)

  1.  チタン化合物及びスズ化合物からなる群より選ばれる少なくとも一種の化合物の存在下、式(1)
    Figure JPOXMLDOC01-appb-I000001
    (式中、R、R、R及びRはそれぞれ独立して、水素原子又は炭素数1~3のアルキル基を表わし、Zは炭素数1~5のアルキル基を表わす。)
    で表わされるヒドロキシ安息香酸エステルと、式(2)
    Figure JPOXMLDOC01-appb-I000002
    で表わされる4−(4−ヒドロキシシクロヘキシル)フェノールとを、ヒドロキシル基を有していない溶媒中で反応させる、式(3)
    Figure JPOXMLDOC01-appb-I000003
    (式中、R、R、R及びRは、上記と同じ意味を表わす。)
    で表わされるジヒドロキシ化合物の製造方法。
    In the presence of at least one compound selected from the group consisting of titanium compounds and tin compounds, the formula (1)
    Figure JPOXMLDOC01-appb-I000001
    (In the formula, R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and Z represents an alkyl group having 1 to 5 carbon atoms.)
    A hydroxybenzoic acid ester represented by the formula (2)
    Figure JPOXMLDOC01-appb-I000002
    A 4- (4-hydroxycyclohexyl) phenol represented by the formula (3) is reacted in a solvent having no hydroxyl group:
    Figure JPOXMLDOC01-appb-I000003
    (In the formula, R 1 , R 2 , R 3 and R 4 have the same meaning as described above.)
    The manufacturing method of the dihydroxy compound represented by these.
  2.  ヒドロキシル基を有していない溶媒が、ヒドロキシル基を有していない芳香族ハロゲン化炭化水素溶媒及びヒドロキシル基を有していないエーテル溶媒からなる群より選ばれる少なくとも一種の溶媒である請求項1記載の製造方法。 2. The solvent having no hydroxyl group is at least one solvent selected from the group consisting of an aromatic halogenated hydrocarbon solvent not having a hydroxyl group and an ether solvent not having a hydroxyl group. Manufacturing method.
  3.  反応が、スズ化合物の存在下で行われる請求項1又は2記載の製造方法。 The method according to claim 1 or 2, wherein the reaction is carried out in the presence of a tin compound.
PCT/JP2012/070943 2011-08-24 2012-08-13 Method for producing dihydroxy compound WO2013027687A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-182319 2011-08-24
JP2011182319 2011-08-24

Publications (1)

Publication Number Publication Date
WO2013027687A1 true WO2013027687A1 (en) 2013-02-28

Family

ID=47746429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070943 WO2013027687A1 (en) 2011-08-24 2012-08-13 Method for producing dihydroxy compound

Country Status (3)

Country Link
JP (1) JP2013060425A (en)
TW (1) TW201319032A (en)
WO (1) WO2013027687A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074366A (en) * 2009-09-03 2011-04-14 Sumitomo Chemical Co Ltd Diepoxy compound, composition including the compound, cured product obtained by curing the composition
EP3476879A4 (en) * 2016-06-22 2019-12-04 Hitachi Chemical Company, Ltd. Epoxy resin composition, cured product, and composite material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6747780B2 (en) * 2015-04-30 2020-08-26 上野製薬株式会社 Method for producing 4-hydroxybenzoic acid long chain ester

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927853A (en) * 1982-07-13 1984-02-14 チバ−ガイギ−・アクチエンゲゼルシヤフト Manufacture of sterically hindered hydroxyphenyl carboxylic acid ester
JPH01301651A (en) * 1988-05-30 1989-12-05 Mitsubishi Gas Chem Co Inc Dihydroxy compound containing hydrogenated bisphenol a skeleton
JP2010126481A (en) * 2008-11-27 2010-06-10 Dic Corp Method for producing transesterification product using organotin catalyst
WO2011027802A1 (en) * 2009-09-03 2011-03-10 住友化学株式会社 Diepoxy compound, process for producing same, and composition containing the diepoxy compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927853A (en) * 1982-07-13 1984-02-14 チバ−ガイギ−・アクチエンゲゼルシヤフト Manufacture of sterically hindered hydroxyphenyl carboxylic acid ester
JPH01301651A (en) * 1988-05-30 1989-12-05 Mitsubishi Gas Chem Co Inc Dihydroxy compound containing hydrogenated bisphenol a skeleton
JP2010126481A (en) * 2008-11-27 2010-06-10 Dic Corp Method for producing transesterification product using organotin catalyst
WO2011027802A1 (en) * 2009-09-03 2011-03-10 住友化学株式会社 Diepoxy compound, process for producing same, and composition containing the diepoxy compound

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KRASIK ET AL.: "Synthesis of sterically hindered esters via titanium catalyzed transesterification", TETRAHEDRON LETTERS, vol. 39, no. 24, 1998, pages 4223 - 4226, XP005222467, DOI: doi:10.1016/S0040-4039(98)00790-4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074366A (en) * 2009-09-03 2011-04-14 Sumitomo Chemical Co Ltd Diepoxy compound, composition including the compound, cured product obtained by curing the composition
EP3476879A4 (en) * 2016-06-22 2019-12-04 Hitachi Chemical Company, Ltd. Epoxy resin composition, cured product, and composite material
US11149109B2 (en) 2016-06-22 2021-10-19 Showa Denko Materials Co., Ltd. Epoxy resin composition, cured product and composite material

Also Published As

Publication number Publication date
JP2013060425A (en) 2013-04-04
TW201319032A (en) 2013-05-16

Similar Documents

Publication Publication Date Title
JP6269508B2 (en) Process for producing purified amine compound
JP2011098952A (en) Method for producing diepoxy compound
WO2013027687A1 (en) Method for producing dihydroxy compound
JP6221771B2 (en) Method for producing ether compound, and method for producing polymerizable compound
JP2020063196A (en) Method for producing 5,5'-methylenedisalicylic acid
CN1696096A (en) Method for synthesizing Idebenone
JP5356722B2 (en) Method for producing 2,6-diphenylphenol or a derivative thereof
JP2007254408A (en) High-purity bis(cyclopentadienyl)magnesium and method for producing the same
JP2004137201A (en) Method for refining fluorenylidenediallylphenol
JP2012020970A (en) Method for producing {3-(1-diphenylmethylazetidin-3-yl)ester-5-isopropyl ester 2-amino-1,4-dihydro-6-methyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate}
EP2248795B1 (en) Method for purifying optically active 1-(2-trifluoromethylphenyl)ethanol
JP3001862B2 (en) Novel method for producing tetraalkyldiphenol
JP2007231002A (en) Manufacturing method of polymerizable diamantyl ester compound
JP5029162B2 (en) Method for producing cyclohexanone
JP4633400B2 (en) Method for producing alicyclic polycarboxylic acid and acid anhydride thereof
WO2018010974A1 (en) Process for the deprotection of a carbapenem by heterogeneous catalytic hydrogenation with hydrogen in the presence of an organic amine
US20210040029A1 (en) Synthesis of 2-(2-aminoethoxy) ethanol
JP5229479B2 (en) Method for producing adamantane dialcohol
JP4323874B2 (en) Novel alkyl vinyl ether substituted trinuclear polyphenols
JP2010150220A (en) Method for producing adamantanecarboxylate
JP2009013121A (en) Method for purifying cyclohexyl isocyanate, and method for producing glipizide
JP6853639B2 (en) Method for purifying diglycidyl compounds
JP2012224761A (en) Method for producing aromatic polycarbonate
WO2023157814A1 (en) Method for producing phenyl phosphonic acid ester and phenyl phosphonic acid compound
CN114685509A (en) Preparation method of Reidesciclovir intermediate or hydrochloride thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12826336

Country of ref document: EP

Kind code of ref document: A1