WO2013027539A1 - 磁気共鳴撮影装置、位相値補正方法およびプログラム - Google Patents

磁気共鳴撮影装置、位相値補正方法およびプログラム Download PDF

Info

Publication number
WO2013027539A1
WO2013027539A1 PCT/JP2012/069238 JP2012069238W WO2013027539A1 WO 2013027539 A1 WO2013027539 A1 WO 2013027539A1 JP 2012069238 W JP2012069238 W JP 2012069238W WO 2013027539 A1 WO2013027539 A1 WO 2013027539A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
phase
magnetic resonance
correction
magnetic field
Prior art date
Application number
PCT/JP2012/069238
Other languages
English (en)
French (fr)
Inventor
亨 白猪
尾藤 良孝
智嗣 平田
悦久 五月女
Original Assignee
株式会社日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立メディコ filed Critical 株式会社日立メディコ
Priority to JP2013529942A priority Critical patent/JP5829687B2/ja
Priority to US14/240,171 priority patent/US9678187B2/en
Publication of WO2013027539A1 publication Critical patent/WO2013027539A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/46NMR spectroscopy
    • G01R33/4625Processing of acquired signals, e.g. elimination of phase errors, baseline fitting, chemometric analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/483NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy
    • G01R33/485NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy based on chemical shift information [CSI] or spectroscopic imaging, e.g. to acquire the spatial distributions of metabolites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56518Correction of image distortions, e.g. due to magnetic field inhomogeneities due to eddy currents, e.g. caused by switching of the gradient magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging

Definitions

  • the present invention relates to spectroscopic imaging, and more particularly to an eddy current correction technique for correcting spectral distortion caused by eddy currents.
  • MRS Magnetic Resonance Spectroscopy
  • CSI Chemical Shift
  • Major metabolites of the human body that can be detected by MRS and MRSI include choline (Cho), creatine (Cr), N-acetylaspartic acid (NAA), lactic acid (Lac), and the like. From the amount of these metabolites, it is possible to determine the degree of progression and early diagnosis of metabolic disorders such as cancer. It is also considered possible to perform non-invasive diagnosis of tumor malignancy.
  • an eddy current is generated due to a gradient magnetic field applied during measurement. Eddy currents cause static magnetic field inhomogeneity spatially and temporally and distort the shape of the spectrum obtained by measurement.
  • This spectral distortion is usually corrected using the phase value of the signal of the substance having a signal intensity greater than that of the metabolite.
  • water is used as a substance having a signal intensity greater than that of a metabolite (see, for example, Non-Patent Document 1).
  • a spatial and temporal phase value is calculated from a water FID (free induction decay) signal, phase correction is performed on metabolite image data, and spectral distortion due to eddy current is reduced. to correct.
  • CSI or MRSI has a very small number of matrices (voxels) to be measured, about 8 ⁇ 8 to 32 ⁇ 32, from the viewpoint of measurement time and SNR (signal to noise ratio). For this reason, truncation occurs due to the Fourier transform performed in the image reconstruction, and a signal of a distant voxel is mixed. As a result, when the static magnetic field inhomogeneity exists, a water signal having a frequency different from that of the water signal in the target voxel is mixed.
  • phase skip region is a region in which the variation in the amount of change in the phase value per unit time is prominent and larger than other portions.
  • the magnitude of the phase change amount in this phase jump region is proportional to the concentration of the mixed water signal.
  • FIG. 17 (a) shows the spectrum of the water signal by computer simulation.
  • Water 1 and Water 2 in FIG. 17A are water signal spectra having frequencies of 2 Hz and 5 Hz, respectively, and a concentration ratio of 1.0 to 0.9.
  • FIG. 17B shows the time change of the phase value in the time domain of the water FID signal when these two signals coexist.
  • a phase jump proportional to the concentration ratio occurs at a time interval of 1 / ⁇ f with respect to the frequency difference ⁇ f.
  • static magnetic field fluctuations due to eddy currents are added to cause a gradual phase change.
  • FIG. 17C shows a spectrum before eddy current correction
  • FIG. 17D shows a spectrum after eddy current correction.
  • FIG. 17D when correction is performed using phase values having phase jumps, ringing artifacts are generated due to phase jumps, and the spectrum is deteriorated conversely by eddy current correction processing.
  • Non-Patent Document 3 there is a method of reducing ringing artifacts by applying a low-pass filter to the spectrum of the water signal (for example, see Non-Patent Document 2).
  • a method of correcting a phase jump appearing in the phase value of the water FID signal and reducing ringing artifacts see, for example, Non-Patent Document 3.
  • the timing at which the absolute value intensity of the FID signal of water in the time domain takes an extreme value is defined as the occurrence of a phase jump.
  • the range to be removed as a phase skip is determined using the first derivative of the phase value of the water FID signal with respect to time t.
  • the vicinity of the above-described phase jump occurrence location of the first derivative is fitted with a model function, and the full width at half maximum (full width at half maximum, FWHM) of the fitted model function is determined. Then, the phase value in the determined range is corrected on the phase value.
  • Non-Patent Document 2 cannot completely eliminate the ringing artifact because the phase skipping low frequency component remains. Further, since the high-frequency component of the eddy current is cut, a sufficient eddy current correction effect cannot be obtained.
  • Non-Patent Document 3 when a phase jump occurs even if there is no extreme value in the absolute value intensity of the FID signal of water in the time domain, the phase jump is not corrected. In addition, when there are a plurality of locations where the phase change is steep, it is difficult to identify and extract the location where the phase jumps. In addition, when there are a plurality of phase jumps having different phase change amounts, it is necessary to perform fitting for each phase jump occurrence location in order to increase the fitting accuracy, and the processing becomes complicated. Further, the range for correcting the phase jump is determined on the primary differential value, but the correction itself is performed on the phase value. Therefore, it is necessary to determine the phase change amount of the correction area in accordance with the time change of the phase value, and to correct the correction area and the other areas so as to be smoothly connected, so that the processing becomes complicated.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to suppress correction artifacts with a simple method and improve correction accuracy when correcting spectral distortion due to eddy currents in an MRI apparatus.
  • the phase jump of the phase value used for correction is determined in advance. To correct.
  • the phase jump correction first, a portion with a small amount of phase change is specified using the first-order differential value of the phase value, and the other portions are specified as phase jump occurrence locations. Then, the identified phase jump occurrence location is removed on the primary time differential value.
  • the phase jump occurrence location is specified as a location that changes by a predetermined threshold value or more within a predetermined range using a first-order time differential value.
  • a static magnetic field application unit that applies a static magnetic field to the subject
  • a gradient magnetic field application unit that applies a gradient magnetic field to the subject
  • a high-frequency magnetic field pulse irradiation unit that irradiates the subject with a high-frequency magnetic field pulse
  • a magnetic resonance imaging apparatus comprising: a receiving unit that receives a nuclear magnetic resonance signal from the subject; and a control unit, wherein the control unit includes the gradient magnetic field applying unit, the high-frequency magnetic field pulse irradiating unit, and the receiving unit.
  • Measurement control means for controlling the operation of the means to obtain a nuclear magnetic resonance signal of a desired metabolite at each measurement point, eddy current correction means for correcting eddy current of the nuclear magnetic resonance signal, and eddy current correction Display information generating means for generating display information from each magnetic resonance signal for each measurement point corrected by the means, wherein the eddy current correcting means has a FID of a correction substance having a signal intensity higher than that of a metabolite to be measured.
  • Trust Phase value calculating means for calculating the phase value for each measurement point, and phase value correcting means for correcting the phase skip of the phase value to obtain a corrected phase value, the phase value correcting means,
  • a primary differential value calculating means for calculating a primary time differential value of the phase value for each measurement point;
  • a threshold calculating means for calculating a threshold value for identifying a phase jump generation region in which a phase jump occurs;
  • the phase jump generation region specifying means for specifying the phase jump generation region of the phase value, and correcting the primary time differential value of the phase jump generation region by the phase
  • a phase jump correction unit for correcting a phase jump of the value, wherein the eddy current correction unit performs the eddy current correction using the phase value after the phase jump correction.
  • a static magnetic field applying means for applying a static magnetic field to the subject a gradient magnetic field applying means for applying a gradient magnetic field to the subject; a high frequency magnetic field pulse irradiating means for irradiating the subject with a high frequency magnetic field pulse;
  • a nuclear magnetic resonance signal of a desired metabolite is measured at each measurement point.
  • an eddy current correction means for performing eddy current correction of the nuclear magnetic resonance signal using a phase value for each measurement point of the FID signal of the correction substance having a signal intensity larger than that of the metabolite to be measured,
  • a magnetic resonance imaging apparatus comprising: display information generating means for generating display information from each magnetic resonance signal for each measurement point corrected by the eddy current correcting means, a phase value for correcting a phase jump of the phase value
  • a phase jump generation region specifying step for specifying the phase jump generation region of the phase value, and the first time differential value of the phase jump generation region.
  • a phase jump correcting step for correcting a phase jump of the phase value by correcting, and a corrected phase value calculating step for obtaining a corrected phase value from the corrected first time differential value.
  • a static magnetic field applying means for applying a static magnetic field to the subject a gradient magnetic field applying means for applying a gradient magnetic field to the subject; a high frequency magnetic field pulse irradiating means for irradiating the subject with a high frequency magnetic field pulse;
  • a nuclear magnetic resonance signal of a desired metabolite is measured at each measurement point.
  • an eddy current correction means for performing eddy current correction of the nuclear magnetic resonance signal using a phase value for each measurement point of the FID signal of the correction substance having a signal intensity larger than that of the metabolite to be measured
  • Display information generating means for generating display information from each magnetic resonance signal for each measurement point after correction by the eddy current correction means, and a computer of the magnetic resonance imaging apparatus for the primary time of the phase value for each measurement point
  • the threshold value calculating means for calculating the threshold value for specifying the phase jump occurrence region in which the phase jump occurs, the phase and the first time differential value
  • the phase A phase jump generation area specifying means for specifying the phase jump generation area of the value, and correcting the first time differential value of the phase jump generation area to correct the phase jump of the phase value
  • Provided is a program for functioning as a phase jump correcting means for obtaining a corrected phase value from the first time differential value.
  • (A)-(c) is an external view of the nuclear magnetic resonance imaging apparatus of embodiment of this invention.
  • 1 is a functional configuration diagram of a nuclear magnetic resonance imaging apparatus according to an embodiment of the present invention. It is a functional block diagram of the computer with which the nuclear magnetic resonance apparatus of embodiment of this invention is provided. It is a flowchart for demonstrating the flow of the whole measurement of embodiment of this invention. It is a figure which shows an example of the MRSI pulse sequence of embodiment of this invention.
  • (A)-(c) is a figure for demonstrating the area
  • FIG. 5 is a graph of a metabolic spectrum by a computer simulation result when eddy current correction is performed using a phase value that is not subjected to phase jump correction according to the embodiment of the present invention
  • (c) is a phase of the embodiment according to the present invention. It is a graph of the metabolism spectrum by the computer simulation result at the time of implementing eddy current correction
  • FIG. 1 is an external view of the MRI apparatus of this embodiment.
  • FIG. 1A shows a horizontal magnetic field type MRI apparatus 100 using a tunnel magnet that generates a static magnetic field with a solenoid coil.
  • FIG. 1B shows a hamburger type (open type) vertical magnetic field type MRI apparatus 120 in which magnets are separated into upper and lower sides in order to enhance the feeling of opening.
  • FIG. 1C shows an MRI apparatus 130 that uses the same tunnel-type magnet as in FIG. 1A and has a feeling of openness by shortening the depth of the magnet and tilting it obliquely. In the present embodiment, any of these MRI apparatuses having these appearances can be used.
  • the MRI apparatus of the present embodiment is not limited to these forms.
  • various known MRI apparatuses can be used regardless of the form and type of the apparatus.
  • the MRI apparatus 100 is representative.
  • FIG. 2 is a functional configuration diagram of the MRI apparatus 100 of the present embodiment.
  • the MRI apparatus 100 of the present embodiment includes a static magnetic field generating magnet 102 that is a static magnetic field applying means for applying a static magnetic field to a space in which a subject 101 is placed, an x direction, a y direction, and a z direction.
  • a gradient magnetic field coil 103 which is a gradient magnetic field application means for generating a gradient magnetic field in each direction and applying a gradient magnetic field to the subject, a shim coil 104 for adjusting a static magnetic field distribution, and a high-frequency magnetic field for the measurement region of the subject 101
  • a measuring high-frequency coil 105 (hereinafter simply referred to as a transmitting coil) that is a high-frequency magnetic field pulse irradiating means for irradiating a pulse, and a receiving high-frequency coil 106 (hereinafter referred to as a receiving means that receives a nuclear magnetic resonance signal generated from the subject 101).
  • the gradient magnetic field coil 103 and the shim coil 104 are driven by a gradient magnetic field power supply unit 112 and a shim power supply unit 113, respectively.
  • a case where separate transmission coils 105 and reception coils 106 are used will be described as an example.
  • the transmission coil 105 and the reception coil 106 are configured as a single coil. May be.
  • the high-frequency magnetic field irradiated by the transmission coil 105 is generated by the transmitter 107.
  • the nuclear magnetic resonance signal detected by the receiving coil 106 is sent to the computer 109 through the receiver 108.
  • the sequence controller 114 controls the operations of the gradient magnetic field power supply unit 112 that is a drive power supply for the gradient coil 103, the shim power supply unit 113 that is the drive power supply for the shim coil 104, the transmitter 107, and the receiver 108. Controls the application of a gradient magnetic field, a high-frequency magnetic field, and the reception of a nuclear magnetic resonance signal.
  • the control time chart is called a pulse sequence, is preset according to measurement, and is stored in a storage device or the like included in the computer 109 described later.
  • the computer 109 is a control unit that performs various arithmetic processes on the received nuclear magnetic resonance signal to generate image information and spectrum information, and controls the overall operation of the MRI apparatus 100.
  • the computer 109 is an information processing apparatus including a CPU, a memory, a storage device, and the like, and a display 110, an external storage device 111, an input device 115, and the like are connected to the computer 109.
  • the display 110 is an interface for displaying results obtained by the arithmetic processing to the operator.
  • the input device 115 is an interface for an operator to input conditions, parameters, and the like necessary for the arithmetic processing performed in the present embodiment.
  • the external storage device 111 holds, together with the storage device, data used for various arithmetic processes executed by the computer 109, data obtained by the arithmetic processes, input conditions, parameters, and the like.
  • FIG. 3 is a functional block diagram of the computer 109 of this embodiment.
  • the computer 109 of this embodiment includes a measurement control unit 210, a display information generation unit 220, and an eddy current correction unit 230.
  • the measurement control unit 210 operates the sequence control device 14 in accordance with the pulse sequence and controls each unit to perform measurement to obtain a nuclear magnetic resonance signal.
  • a nuclear magnetic resonance signal of a desired metabolite is obtained for each measurement point.
  • the eddy current correction unit 230 performs eddy current correction for correcting the spectral distortion due to the eddy current of the nuclear magnetic resonance signal obtained by the measurement.
  • the display information generation unit 220 performs various arithmetic processes on the nuclear magnetic resonance signal after correcting the spectral distortion due to the eddy current to generate display information such as image information and spectrum information.
  • the eddy current correction unit 230 applies spectral distortion caused by eddy currents to a FID signal (free induction decay signal; hereinafter referred to as eddy current correction) of a substance (correction substance; water in this embodiment) having a signal intensity higher than that of a metabolite. This is corrected using the phase value of the signal. At this time, the correction is performed after phase jump correction. Therefore, the eddy current correction unit 230 according to the present embodiment corrects the phase value calculation unit 240 that calculates the phase value from the eddy current correction signal, the phase jump in the phase value, and obtains the corrected phase value. A value correction unit 250.
  • the various functions realized by the computer 9 are realized by the CPU loading a program stored in the storage device into the memory and executing it.
  • at least one function is realized by an information processing apparatus that is independent of the MRI apparatus 100 and capable of transmitting and receiving data to and from the MRI apparatus 100. It may be.
  • FIG. 4 is a flowchart for explaining the overall measurement flow of this embodiment.
  • N the number of sampling points
  • t n is the discrete value representing the time in the n-th measurement point.
  • T 0 represents the measurement start time.
  • the phase value calculation unit 240 calculates the phase value ⁇ (t n ) of the water FID signal for each measurement point from the obtained water FID signal F (t n ) (step S1102).
  • the phase value ⁇ (t n ) of the water FID signal is calculated from the measured water FID signal F (t n ) according to the following equation (1).
  • ⁇ (t n ) tan ⁇ 1 (Im (F (t n ))) / (Re (F (t n ))) (1)
  • tan -1 is the arctangent function
  • Im (F (t n )) is the imaginary part of the complex number F (t n )
  • Re (F (t n )) is the real part of the complex number F (t n ).
  • phase value correcting unit 250 corrects the phase jump of the phase value ⁇ (t n), obtaining a phase value after correction corrected phase value ⁇ c (t n) (step S1103).
  • the measurement control unit 210 controls the sequence control device 14 according to a predetermined pulse sequence, performs water suppression measurement (step S1104), and obtains a metabolite signal S (t n ).
  • the eddy current correction unit 230 performs eddy current correction for correcting the obtained metabolite signal S (t n ) with the corrected phase value ⁇ c (t n ) (step S1105), and metabolism after the eddy current correction.
  • the substance signal S ecc (t n ) is obtained.
  • Eddy current corrected metabolite signal S ecc (t n) the metabolite of a material signal S (t n), using the phase value of the FID signal of water after the phase jump correction ⁇ c (t n), the following formula Calculated according to (2).
  • S ecc (t n ) S (t n ) ⁇ exp ( ⁇ i ⁇ ⁇ c (t n )) (2)
  • i is an imaginary unit.
  • the display information generation unit 220 performs a Fourier transform on the metabolite signal Secc (t n ) after eddy current correction to obtain a spectrum or distribution image of the metabolite (step S1106).
  • an example of a pulse sequence used by the measurement control unit 210 for the above measurement (the non-water suppression measurement in step S1101 and the water suppression measurement in step S1104) will be described.
  • a description will be given by taking as an example a region selective MRSI pulse sequence (hereinafter referred to as an MRSI pulse sequence) for imaging a metabolite.
  • FIG. 5 is an example of the MRSI pulse sequence 300.
  • RF indicates the application timing of the high-frequency magnetic field pulse.
  • Gx, Gy, and Gz indicate application timings of gradient magnetic field pulses in the x, y, and z directions, respectively.
  • a / D indicates a signal measurement period.
  • the MRSI pulse sequence 300 shown in FIG. 5 is the same as a known MRSI pulse sequence, and a predetermined region of interest is selectively excited using one excitation pulse RF1 and two inversion pulses RF2 and RF3.
  • An FID signal (free induction decay) FID1 is obtained from the region of interest.
  • FIGS. 6 (a) to 6 (c) The regions excited according to the MRSI pulse sequence 300 are shown in FIGS. 6 (a) to 6 (c).
  • 6 (a) to 6 (c) are positioning scout images obtained by the measurement performed prior to the main measurement.
  • FIG. 6 (a) is a transformer image 410 and
  • FIG. 6 (b) is a sagittal image.
  • Image 420, FIG. 6C is a coronal image 430.
  • a high-frequency magnetic field RF1 and gradient magnetic field pulses Gs1 and Gs1 ′ in the z direction are applied to excite the cross section 401 in the z direction.
  • a high frequency magnetic field RF2 and a gradient magnetic field pulse Gs2 in the y direction are applied after TE / 4 (where TE is an echo time).
  • TE is an echo time
  • the high frequency magnetic field RF3 and the gradient magnetic field pulse Gs3 in the x direction are applied after TE / 2 from the application of the high frequency magnetic field RF2.
  • the gradient magnetic field pulses Gd1 to Gd3 and Gd1 ′ to Gd3 ′ in each direction rephase the phase of nuclear magnetization excited by the high-frequency magnetic field RF1, and dephase the phase of nuclear magnetization excited by RF2 and RF3. It is a gradient magnetic field. Further, the phase encode gradient magnetic fields Gp1 and Gp2 are applied after the high-frequency magnetic field RF3. Thus, the nuclear magnetic resonance signal of the region of interest 404 is obtained.
  • the correction of the phase value of the present embodiment is correction of phase jump of the phase value used for eddy current correction.
  • the phase skip correction is performed by specifying the phase jump occurrence location on the phase value and removing the phase jump at the location.
  • a phase value that changes with time has an inflection point at a point where a phase jump occurs, and has a maximum value and a minimum value in the vicinity thereof. That is, the primary time differential value of the phase value (hereinafter referred to as the primary differential value) has a peak shape that is convex upward or downward in the vicinity of the location where the phase jump occurs. In the present embodiment, this is used to identify a phase jump region in the phase value. That is, in the primary differential value of the phase value, a range and position other than this peak shape are extracted, and the other range and position are specified as a phase jump occurrence location.
  • the phase value correction unit 250 determines whether the portion where the phase change exhibits the above characteristics is due to the influence of the eddy current or due to the phase jump, and specifies only the one due to the phase jump.
  • the amount of phase change due to eddy current is smaller than the amount of phase change due to phase jump. Therefore, among the phase changes, those whose amount of change is smaller than a predetermined value are phase changes due to eddy currents, and those whose amount is greater than a predetermined value are due to phase skipping.
  • the phase change amount in a predetermined time domain of the first derivative value of the phase value at each measurement point is used.
  • the predetermined time region is a region from the measurement start time to a predetermined time that is greatly influenced by the phase change due to the eddy current.
  • the phase change amount is calculated as an evaluation value at each point of the primary differential value.
  • a portion where the evaluation value is smaller than the threshold is set as a phase change region due to the influence of eddy current or a phase change region due to non-uniform static magnetic field, and the other portion is set as a phase jump generation region.
  • a phase change region caused by the influence of eddy currents or a phase change region caused by non-uniform static magnetic fields is referred to herein as a phase skip non-occurrence region.
  • Correction is performed by connecting the primary differential values of the measurement points in the phase skip non-occurrence area by interpolation.
  • the corrected phase value is obtained from the first-order differential value after connection.
  • the phase value correction unit 250 differentiates the phase value with respect to time and obtains a primary differential value, and a calculated primary differential value.
  • the threshold value calculated by the threshold value calculation unit 252 of the present embodiment first specifies a region where no phase jump has occurred (phase jump non-occurrence region) based on the threshold value, and sets the other regions as phase jump occurrence regions. By doing so, it is a threshold value for specifying the phase jump generation region. Therefore, the phase skip generation area specifying unit 253 specifies a region having a primary differential value equal to or less than the threshold on the primary differential value as a phase skip non-occurrence region, and specifies the other regions as phase jump generation regions. .
  • FIG. 7 is a flowchart for explaining the flow of the phase value correction processing of the present embodiment.
  • the primary differential value calculation unit 251 calculates the primary differential value ⁇ z ′ (t n ) from the phase value ⁇ (t n ) of the FID signal of water calculated by the phase value calculation unit 240 (step S1201). .
  • the threshold value calculation unit 252 calculates a threshold value P th used when specifying a phase skip non-occurrence region from the primary differential value ⁇ z ′ (t n ) (step S1202).
  • phase jump generation area specifying unit 253 specifies a phase jump non-occurrence area from the primary differential value ⁇ z ′ (t n ) using the threshold value P th , and other phase jump generation areas PJ. Is specified (step S1203).
  • phase jump correction unit 254 corrects the phase jump of the phase value by removing the phase jump generation region PJ from the primary differential value ⁇ z ′ (t n ), interpolating between them and returning to the phase value. (Step S1204). Thereby, the phase value correcting unit 250 obtains a corrected phase value ⁇ c (t n ).
  • the first-order differential value calculation unit 251 first performs a phase return connection process on the phase value ⁇ (t n ) calculated by the phase value calculation unit 240, and obtains the phase value ⁇ z (t n ) after the phase return connection process. obtain. Then, the primary differential value calculation unit 251 obtains a primary differential function ⁇ z ′ (t n ) by differentiating the phase value ⁇ z (t n ) after the phase return connection processing with time.
  • the horizontal axis represents time (ms) from the start of measurement of the water FID signal
  • the vertical axis represents the phase value (rad).
  • a broken line indicates a plot result of the phase value ⁇ (t n ) calculated from the measurement result
  • a solid line indicates a plot result of the phase value ⁇ z (t n ) after the phase return connection processing.
  • the phase value ⁇ (t n ) is calculated as a value between ⁇ and + ⁇ .
  • the phase of the water FID signal acquired by the MRSI pulse sequence 300 has a value exceeding the range of ⁇ to + ⁇ .
  • a phase exceeding the range of ⁇ to + ⁇ is folded back to a value between ⁇ and + ⁇ .
  • the values are discontinuous in the folded portion. Therefore, phase wrapping connection processing is performed to remove such temporally discontinuous changes in the phase value, and a phase value ⁇ z (t n ) indicating the original phase change state is obtained.
  • phase return connection process can use various existing phase return connection processes. At this time, smoothing may be appropriately performed in order to prevent phase variation due to noise.
  • phase value ⁇ z (t n ) after the phase loop-back connection process is simply referred to as a phase value ⁇ z (t n ).
  • the threshold value P th is used to specify the measurement point corresponding to the phase skip non-occurrence region in the primary differential value ⁇ z ′ (t n ).
  • the threshold calculation unit 252 calculates a threshold P th used for this determination.
  • the threshold calculation unit 252 sets a time range in which the influence of the phase change due to the eddy current is large from the primary differential value ⁇ z ′ (t n ) of the phase value ⁇ z (t n ) as the threshold calculation region R. Then, the amount of phase change in the threshold calculation region R is calculated as the threshold value P th as the phase change due to the eddy current.
  • the threshold value calculation unit 252 sets a time range from the measurement start time to a predetermined time as the threshold value calculation region R in the primary differential value ⁇ z ′ (t n ) of the phase value ⁇ z (t n ). Then, the absolute value
  • the threshold calculation region R is determined using, for example, the absolute value
  • the threshold value calculation region R is a time range in which the absolute value
  • FIG. 9 is a process flow for explaining the flow of the threshold value calculation process.
  • FIG. 10A is a diagram for explaining processing for determining the threshold calculation region R from the plot result of the absolute value
  • FIG. 10B is a diagram for explaining a process of determining the threshold value P th using the plot result of the primary differential value ⁇ z ′ (t n ).
  • the threshold value calculation unit 252 calculates the absolute value
  • the threshold value calculation unit 252 determines that the absolute value
  • p is an integer satisfying 1 ⁇ p ⁇ N), and the time range from the measurement start time t 0 to time t P is set as the threshold value calculation region R (step S1302).
  • at the apparent transverse magnetization relaxation time T2 * is used as the threshold Sth .
  • the threshold value calculation unit 252 selects the primary differential value ⁇ z ′ (t n ) of each measurement point t n within the threshold value calculation region R set in step S1302.
  • the maximum value M and the minimum value m are extracted, and the absolute value
  • is set as a threshold value P th (step S1303).
  • which is the change amount of the primary differential value ⁇ z ′ (t n ) obtained in the threshold calculation region R, is considered to be the change amount due to the eddy current.
  • the threshold calculation region (time range) R may be determined not by using the signal intensity F (t n ) of the water FID signal but by directly setting the predetermined time t P.
  • the predetermined time t P to be set is determined by determining a period during which the eddy current component is held based on, for example, an empirically known time constant of eddy current. For example, t P is determined to be several tens of milliseconds to several hundreds of milliseconds.
  • the method for determining the threshold calculation area (time range) R is not limited to this. It suffices if an area that contains sufficient eddy current information and does not change due to a phase jump can be set as the threshold calculation area (time range) R.
  • the threshold value P th may be calculated from the primary differential value ⁇ z ′ (t n ) without using the threshold value calculation region R.
  • the primary differential value ⁇ z ′ (t n ) shown in FIG. 10B is divided into a plurality of small regions in the time direction. In each small area, the standard deviation of the primary differential value ⁇ z ′ (t n ) included in the small area is calculated. The minimum standard deviation is determined from the calculated standard deviations for each small area. Then, the minimum standard deviation is multiplied by a predetermined coefficient to obtain a threshold value.
  • the threshold value calculated by the above procedure uses a region where the phase change in the first-order differential value ⁇ z ′ (t n ) is gradual as a reference for the non-jumping portion.
  • an evaluation value calculation area RE k described later is determined by the determination method of the threshold calculation area (time range) R described above.
  • the phase jump generation area specifying unit 253 determines whether or not a phase jump has occurred at each measurement point t n . Determination is performed by comparing the evaluation value E k for each measurement point t k to be determined, and a threshold value P th for the threshold value calculation unit 252 has calculated. When the evaluation value E k is smaller than the threshold value P th , the determination target measurement point t k is determined as a phase jump non-occurrence location.
  • Evaluation value E k is the primary differential value ⁇ z included in the evaluation value calculation region RE k having a predetermined time width around the measurement point t k 'of (t n), the maximum value M k and the minimum value m k
  • FIG. 11 is a flowchart showing the flow of processing by the phase jump generation area specifying unit 253.
  • the phase jump generation area specifying unit 253 first sets the first measurement point t k (k is an integer equal to or greater than 1) (step S1401).
  • a measurement point for determining whether or not a phase skip occurs is referred to as an evaluation point.
  • the next measurement time (measurement point) t P + 1 of the time t P calculated by the threshold value calculation unit 252 is set as the first evaluation point t k .
  • the phase jump generation area specifying unit 253 sets an evaluation value calculation area RE k for the evaluation point t k (step S1402).
  • the same range as the threshold value calculation region R around the evaluation point t k is set as the evaluation value calculation region RE k .
  • the evaluation value calculation region RE k for the evaluation points t k is set to a range of t k -R / 2 of t k + R / 2.
  • the phase jump generation area specifying unit 253 calculates an evaluation value E k of the evaluation point t k (step S1403).
  • the maximum value M k and the minimum value m k are calculated from the primary differential values ⁇ z ′ (t n ) of each measurement point t n in the evaluation value calculation region RE k .
  • of the difference between the maximum value M k and the minimum value m k is calculated as the evaluation value E k .
  • the phase jump generation area specifying unit 253 compares the calculated evaluation value E k and the threshold value P th (step S1404). If the evaluation value E k is equal to or smaller than the threshold value P th , the phase jump occurs. It is set as a non-occurrence point (step S1406). That is, at this evaluation point t k , it is determined that only a linear phase change due to non-uniform static magnetic field or a phase change due to eddy current has occurred. On the other hand, if the evaluation value E k is larger than the threshold value P th , the evaluation point t k is set as a phase jump generation point (step S1405). That is, it is determined that a phase jump has occurred at this evaluation point t k .
  • phase jump occurrence area specifying unit 253 determines whether each measurement point t k is a phase jump occurrence point or a non-occurrence point.
  • a continuous phase jump generation point is called a phase jump generation area, and a continuous non-occurrence point is called a non-occurrence area.
  • FIG. 12 shows the determination result by the phase jump generation area specifying unit 253 of the present embodiment.
  • the horizontal axis represents time (sec) from the start of measurement of the water FID signal
  • the vertical axis represents the first-order differential value ⁇ z ′ (t n ) (rad / sec) of the phase of the water FID signal.
  • the solid line 501, 'a (t n) group, the broken line 502 the primary differential value ⁇ z of the phase jump generation region' primary differential value ⁇ z not generating region (t n) groups, respectively.
  • Incidentally hollow circles in FIG. 12 corresponds to the t P.
  • the phase jump generation region specifying unit 253 of the present embodiment specifies the phase jump generation region using the first-order differential value ⁇ z ′ (t n ) of the phase of the water FID signal.
  • FIG. 13 is a flowchart for explaining the flow of phase jump correction by the phase jump correction unit 254 of this embodiment.
  • the phase skip correction unit 254 connects adjacent non-occurrence areas 501 by interpolation on the plot result of the primary differential value ⁇ z ′ (t n ) (step S1501). Specifically, as shown in FIG. 14, interpolation is performed on the plot result of the primary differential value ⁇ z ′ (t n ) so that the non-occurrence areas 501 are smoothly connected, and the primary differential value ⁇ z ′ ( The value of the phase jump generation region 502 is removed from t n ).
  • a known method such as linear interpolation, spline interpolation, cubic interpolation, or the like that connects the ends of adjacent non-occurrence areas 501 with straight lines is used.
  • the phase skip correction unit 254 obtains a primary differential function ⁇ c ′ (t n ) after phase jump correction by fitting the plot result 511 after interpolation, and the value after each phase jump correction is obtained as the value of each measurement point.
  • a primary differential value ⁇ c ′ (t n ) (511) is obtained (step S1502).
  • the fitting is performed using a polynomial, an exponential function, or the like.
  • the phase skip correcting unit 254 obtains a corrected phase value ⁇ c (t n ) from the corrected primary differential value ⁇ c ′ (t n ) (step S1503).
  • a corrected phase value ⁇ c (t n ) is obtained from the corrected primary differential value ⁇ c ′ (t n ) (step S1503).
  • the phase function ⁇ c (t) after phase jump correction is obtained, and each measurement point of the phase function ⁇ c (t) after correction is obtained.
  • a phase value ⁇ c (t n ) after phase jump correction is calculated.
  • the corrected phase value ⁇ c (t n ) may be calculated as a power sum of the corrected primary differential value ⁇ c ′ (t n ).
  • FIG. 1 an example of a graph of the phase value before and after the phase jump correction by the phase jump correction unit 254 is shown in FIG.
  • the horizontal axis indicates time (sec)
  • the vertical axis indicates phase (rad).
  • the broken line is the plot result of the phase value ⁇ z (t n ) of the water FID signal before phase jump correction (graph of the phase function ⁇ z (t))
  • the solid line is the phase value of the water FID signal after phase jump correction.
  • a plot result of ⁇ c (t n ) (a graph of the phase function ⁇ c (t)) is represented. As shown in the figure, it is understood that the phase jump of the FID signal of water has been eliminated by the phase jump correction process.
  • the magnetic resonance apparatus of the present embodiment includes a static magnetic field application unit that applies a static magnetic field to a subject, a gradient magnetic field application unit that applies a gradient magnetic field to the subject, and a high-frequency magnetic field to the subject.
  • a magnetic resonance imaging apparatus 100 comprising: a high-frequency magnetic field pulse irradiation means for irradiating a pulse; a reception means for receiving a nuclear magnetic resonance signal from the subject; and a control means, wherein the control means applies the gradient magnetic field application Control unit 210 for controlling the operation of the means, the high-frequency magnetic field pulse irradiating means and the receiving means to obtain a nuclear magnetic resonance signal of a desired metabolite for each measurement point, and eddy current correction of the nuclear magnetic resonance signal An eddy current correction unit 230, and a display information generation unit 220 that generates display information from each magnetic resonance signal for each measurement point corrected by the eddy current correction unit 230.
  • phase jump correction unit 254 that corrects the phase jump of the phase value by correcting the first-order differential value of the phase jump generation region
  • the eddy current correction unit 230 includes the phase jump correction unit 230. Phase value after correction Used, and performs the eddy current correction.
  • the threshold calculation unit 252 sets a predetermined area as a threshold calculation area, and calculates an absolute value of a difference between the maximum value and the minimum value of the primary time differential value in the threshold calculation area as the threshold. Also good.
  • the threshold value calculation area may be an area from a measurement start time to a predetermined time.
  • the predetermined time may be a time at which the absolute value of the signal intensity of the FID signal of the correction substance becomes the predetermined value earliest.
  • the threshold value calculation unit 252 divides the primary time differential value sequence into a plurality of small regions in the time direction, and calculates a standard deviation of the primary time differential value included in the small region for each of the divided small regions.
  • the minimum standard deviation may be specified from all the calculated standard deviations, and a value obtained by multiplying the specified minimum standard deviation by a predetermined coefficient may be calculated as a threshold value.
  • the phase jump generation area specifying unit 253 includes a maximum value and a minimum value of the primary time differential value included in an evaluation value calculation area having a predetermined time width centered on a predetermined evaluation point. An absolute value of the difference is calculated as an evaluation value, and for each measurement point, the evaluation value calculated using the measurement point as the evaluation point is compared with the threshold value, and the evaluation value is greater than the threshold value. May be specified as the phase jump generation region, and other measurement points may be specified as the non-occurrence region.
  • the phase skip correction unit 254 may correct the phase skip by connecting the first time differential values of the non-occurrence region by interpolation.
  • the interpolation may be linear interpolation that connects the first-order differential values at the ends of the adjacent non-occurrence regions with a straight line.
  • the phase skip correction unit 254 may use a sum of powers of the first-order differential value after the interpolation as the phase value after the phase skip correction.
  • the phase skip correction unit 254 calculates a value corresponding to each measurement point of a function obtained by integrating the primary time differential value obtained by fitting the primary time differential value after the interpolation. It is good also as a phase value after amendment.
  • the phase jump is corrected in the eddy current correction processing for correcting the spectral distortion due to the eddy current using the phase value of the FID signal of the substance whose signal intensity is larger than the metabolite to be measured.
  • the eddy current correction is performed using the phase value.
  • phase value after phase jump correction is obtained by removing the phase jump occurrence location specified by using the primary differential value of the phase value on the primary differential value. That is, the corrected phase value is obtained as the sum of powers of the post-interpolation primary differential value obtained by interpolating between the primary differential values of the measurement points other than the phase jump occurrence location and the specified measurement point.
  • the phase jump occurrence location is specified as a location that changes by a predetermined threshold value or more within a predetermined range using a primary differential value.
  • the signal strength of the eddy current correction signal is used to identify the time range affected by the eddy current, and the amount of change in the phase value of the eddy current correction signal during that time is used as the threshold value.
  • the evaluation unit R is determined. And using these, the primary differential value of a phase value is evaluated and a phase jump generation
  • the present embodiment it is possible to identify the phase jump occurrence location regardless of the presence or absence of the extreme value of the absolute value intensity of the FID signal whose phase value is to be corrected. Moreover, the identification can be performed by a simple calculation. Since the location to be corrected is specified with high accuracy, the accuracy of correction is also increased.
  • the phase jump of the phase value used for eddy current correction can be removed efficiently and accurately. And, since the eddy current correction processing of the nuclear magnetic resonance signal to be measured is performed using the phase value corrected accurately, ringing artifacts can be effectively prevented and the spectral distortion due to eddy current is corrected well. can do. Therefore, high quality display information can be obtained.
  • the baseline is searched and the protruding portion is excluded.
  • a protruding part is searched. Therefore, according to the present embodiment, compared to the method disclosed in Non-Patent Document 3, there is no fitting process for a region determined to be out of phase. Further, since the phase skip correction process is performed on the first-order differential value, the phase change amount of the correction region is determined in accordance with the time change of the phase value used in the method disclosed in Non-Patent Document 3, and the correction is performed. The process of correcting so that the area and the other areas are smoothly connected can be omitted. For this reason, the amount of processing can be greatly reduced, the load is small, and the result can be obtained at high speed.
  • FIG. 16A shows a metabolite spectrum when eddy current correction is not performed
  • FIG. 16B shows a case where eddy current correction is performed using a phase value that is not subjected to phase jump correction according to this embodiment
  • FIG. 16C shows the metabolite spectrum when the eddy current correction is performed using the phase value obtained by performing the phase jump correction according to the present embodiment.
  • the phase value used for eddy current correction is obtained from the FID signal of water is taken as an example, but the present invention is not limited to this.
  • the signal is not limited to the water FID signal as long as it is a signal of a substance having a signal intensity higher than that of the metabolite to be measured.
  • DESCRIPTION OF SYMBOLS 100 MRI apparatus, 101: Subject, 102: Static magnetic field production

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Signal Processing (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

MRI装置における渦電流によるスペクトル歪みを補正するにあたり、補正によるアーチファクトを簡易な手法で抑え、補正の精度を向上させることを目的とする。計測対象の代謝物質より信号強度の大きい物質のFID信号の位相値を用いて渦電流によるスペクトル歪みを補正する渦電流補正処理において、補正に用いる位相値の位相とびを、前以て補正する。位相とびの補正は、位相値の1次時間微分値を用いて位相変化量の少ない箇所を特定し、それ以外の箇所を位相とび発生箇所として特定する。特定された位相とび発生箇所を1次時間微分値上で除くことにより行う。位相とび発生箇所は、1次時間微分値を用い、予め定めた範囲内で予め定めた閾値以上変化する箇所として特定する。

Description

磁気共鳴撮影装置、位相値補正方法およびプログラム
 本発明は、スペクトロスコピックイメージングに関し、特に渦電流などによるスペクトル歪みを補正する渦電流補正技術に関する。
 MRIで計測される核磁気共鳴信号には、分子構造の違いによって、共鳴周波数が僅かに異なる化学シフト現象が生じる。この現象を利用して、分子(代謝物質)ごとに核磁気共鳴信号を分離し、スペクトルを得るMRS(Magnetic Resonance Spectroscopy)、代謝物質ごとの空間的な信号強度分布を画像化するCSI(Chemical Shift Imaging:化学シフトイメージング)、MRSI(Magnetic Resonance Spectroscopic Imaging:核磁気共鳴スペクトロスコピックイメージング)が知られている。
 MRSやMRSIで検出できる人体の主な代謝物質には、コリン(Cho)、クレアチン(Cr)、N-アセチルアスパラギン酸(NAA)、乳酸(Lac)等がある。これら代謝物質の量から、がん等の代謝異常疾患の進行度判定や早期診断が可能となる。また、腫瘍の悪性度診断を非侵襲的に行うことが可能になると考えられる。
 MRSおよびMRSIでは、計測時に印加する傾斜磁場に起因して渦電流が生じる。渦電流は、空間的、時間的に静磁場不均一を生じさせ、計測により得るスペクトルの形状を歪ませる。このスペクトル歪みは、通常、代謝物質より信号強度が大きい物質の信号の位相値を用いて補正される。例えば、代謝物質より信号強度が大きい物質として水が用いられる(例えば、非特許文献1参照。)。非特許文献1に開示の手法では、水のFID(自由誘導減衰)信号から空間的、時間的な位相値を算出し、代謝物質画像データに対して位相補正を行い、渦電流によるスペクトル歪みを補正する。
 CSIあるいはMRSIは、計測時間およびSNR(信号対雑音比)の観点から、計測するマトリクス(ボクセル)数が8×8~32×32程度と非常に少ない。このため、画像再構成で実施するフーリエ変換によって、トランケーションが生じ、遠くのボクセルの信号が混入する。その結果、静磁場不均一が存在する場合、対象とするボクセル内の水信号と異なる周波数の水信号が混入する。
 異なる周波数の水信号が混入すると、渦電流補正に用いる位相値の時間変化に、いわゆる、位相とび領域が発生する。位相とび領域とは、単位時間当たりの位相値の変化量の変動が他の箇所に比べて突出して大きい領域である。この位相とび領域における位相変化量の大きさは、混入した水信号の濃度に比例する。ここで、図17を用いて、この位相とびについて説明する。
 図17(a)に、計算機シミュレーションによる、水信号のスペクトルを示す。図17(a)におけるWater1およびWater2は、周波数がそれぞれ2Hzと5Hz、濃度比が1.0対0.9の水信号のスペクトルである。この2つの信号が混在する場合の、水のFID信号の時間領域における位相値の時間変化を図17(b)に示す。図17(a)および図17(b)に示すように、周波数差Δfに対して、1/Δfの時間間隔で、濃度比に比例した位相とびが生じる。なお、ここでは、渦電流による静磁場変動を付加し、緩やかな位相変化を生じさせている。
 ここで、時間方向に図17(b)に示す変化を示す位相値を用いて、代謝物質の渦電流によるスペクトル歪みを補正する場合の、補正前後のスペクトルを、それぞれ図17(c)および図17(d)に示す。図17(c)には、渦電流補正前のスペクトルを、図17(d)には、渦電流補正後のスペクトルをそれぞれ示す。図17(d)に示すように、位相とびのある位相値を用いて補正すると、位相とびによって、リンギングアーチファクトが生じ、渦電流補正処理によって逆にスペクトルが劣化する。
 これに対し、例えば、水信号のスペクトルに対してローパスフィルタをかけることによって、リンギングアーチファクトを低減する手法がある(例えば、非特許文献2参照。)。また、水のFID信号の位相値に現れる位相とびを補正し、リンギングアーチファクトを低減する手法がある(例えば、非特許文献3参照。)。非特許文献3では、時間領域における水のFID信号の絶対値強度が極値を取るタイミングを位相とびの発生箇所とする。そして、位相とびとして除去する範囲は、水のFID信号の位相値の、時間tについての1次導関数を用いて決定する。具体的には、1次導関数の上記の位相とび発生箇所の周辺をモデル関数でフィッティングし、フィッティングしたモデル関数の半値全幅(full width at half maximum, FWHM)を用いて決定する。そして、決定した範囲の位相値の補正は、位相値上で行う。
Uwe Klose "In Vivo Proton Spectroscopy in Presence of Eddy Currents" Magnetic Resonance In Medicine、14巻、26-30頁(1990年) J. M. Wild "Artifacts Introduced by Zero Order Phase Correction in Proton NMR Spectroscopy and a Method of Elimination by Phase Filtering" Journal of Magnetic Resonance、137巻、430-436頁(1999年) A. W. Simonetti,et al."Automated correction of unwanted phase jumps in reference signals which corrupt MRSI spectra after eddy current correction" Journal of Magnetic Resonance、159巻、151-157頁(2002年)
 しかしながら、非特許文献2に記載の手法では、位相とびの低周波成分が残るため、リンギングアーチファクトを完全には除去できない。また、渦電流の高周波成分をカットしてしまうため、十分な渦電流の補正効果が得られない。
 非特許文献3に記載の手法では、時間領域における水のFID信号の絶対値強度に極値が存在しなくても位相とびが発生するときには、位相とびが補正されない。また、位相変化が急峻な箇所が複数ある場合、その中から位相とびの箇所を特定し、抽出することが難しい。また、位相変化量が異なる複数の位相とびがある場合、フィッティング精度を高めるためには、位相とび発生箇所毎にフィッティングを行う必要があり、処理が煩雑となる。さらに、位相とびを補正する範囲は1次微分値上で決定するが、補正自体は、位相値上で行う。従って、位相値の時間変化に合わせて補正領域の位相変化量を決定し、補正領域とそれ以外の領域とが滑らかに接続するように補正する必要があり、処理が煩雑となる。
 本発明は、上記事情に鑑みてなされたものであり、MRI装置における渦電流によるスペクトル歪みを補正するにあたり、補正によるアーチファクトを簡易な手法で抑え、補正の精度を向上させることを目的とする。
 本発明は、計測対象の代謝物質より信号強度の大きい物質のFID信号の位相値を用いて渦電流によるスペクトル歪みを補正する渦電流補正処理において、補正に用いる位相値の位相とびを、前以て補正する。位相とびの補正では、まず、位相値の1次時間微分値を用いて位相変化量の少ない箇所を特定し、それ以外の箇所を位相とび発生箇所として特定する。そして、特定された位相とび発生箇所を1次時間微分値上で除く。位相とび発生箇所は、1次時間微分値を用い、予め定めた範囲内で予め定めた閾値以上変化する箇所として特定する。
 具体的には、被検体に静磁場を印加する静磁場印加手段と、前記被検体に傾斜磁場を印加する傾斜磁場印加手段と、前記被検体に高周波磁場パルスを照射する高周波磁場パルス照射手段と、前記被検体から核磁気共鳴信号を受信する受信手段と、制御手段と、を備える磁気共鳴撮影装置であって、前記制御手段は、前記傾斜磁場印加手段と前記高周波磁場パルス照射手段と前記受信手段との動作を制御して、所望の代謝物質の核磁気共鳴信号を計測点毎に得る計測制御手段と、前記核磁気共鳴信号の渦電流補正を行う渦電流補正手段と、前記渦電流補正手段で補正後の計測点毎の各磁気共鳴信号から表示情報を生成する表示情報生成手段と、を備え、前記渦電流補正手段は、計測対象の代謝物質より信号強度の大きい補正用物質のFID信号の位相値を前記計測点毎に算出する位相値算出手段と、前記位相値の位相とびを補正し、補正後の位相値を得る位相値補正手段と、を備え、前記位相値補正手段は、前記計測点毎の位相値の1次時間微分値を算出する1次微分値算出手段と、位相とびが発生する位相とび発生領域を特定するための閾値を算出する閾値算出手段と、前記閾値と前記1次時間微分値とを用いて、前記位相値の前記位相とび発生領域を特定する位相とび発生領域特定手段と、前記位相とび発生領域の前記1次時間微分値を補正することにより前記位相値の位相とびを補正する位相とび補正手段と、を備え、前記渦電流補正手段は、前記位相とび補正後の位相値を用い、前記渦電流補正を行うことを特徴とする磁気共鳴撮影装置を提供する。
 また、被検体に静磁場を印加する静磁場印加手段と、前記被検体に傾斜磁場を印加する傾斜磁場印加手段と、前記被検体に高周波磁場パルスを照射する高周波磁場パルス照射手段と、前記被検体から核磁気共鳴信号を受信する受信手段と、前記傾斜磁場印加手段と前記高周波磁場パルス照射手段と前記受信手段との動作を制御して、所望の代謝物質の核磁気共鳴信号を計測点毎に得る計測制御手段と、計測対象の代謝物質より信号強度の大きい補正用物質のFID信号の計測点毎の位相値を用いて前記核磁気共鳴信号の渦電流補正を行う渦電流補正手段と、前記渦電流補正手段で補正後の計測点毎の各磁気共鳴信号から表示情報を生成する表示情報生成手段と、を備える磁気共鳴撮影装置において、前記位相値の位相とびを補正する位相値補正方法であって、計測点毎の前記位相値の1次時間微分値を算出する1次微分値算出ステップと、位相とびが発生する位相とび発生領域を特定するための閾値を算出する閾値算出ステップと、前記閾値と前記1次時間微分値とを用いて、前記位相値の前記位相とび発生領域を特定する位相とび発生領域特定ステップと、前記位相とび発生領域の前記1次時間微分値を補正することにより、前記位相値の位相とびを補正する位相とび補正ステップと、前記補正後の前記1次時間微分値から補正後の位相値を得る補正後位相値算出ステップと、を備えることを特徴とする位相値補正方法を提供する。
 また、被検体に静磁場を印加する静磁場印加手段と、前記被検体に傾斜磁場を印加する傾斜磁場印加手段と、前記被検体に高周波磁場パルスを照射する高周波磁場パルス照射手段と、前記被検体から核磁気共鳴信号を受信する受信手段と、前記傾斜磁場印加手段と前記高周波磁場パルス照射手段と前記受信手段との動作を制御して、所望の代謝物質の核磁気共鳴信号を計測点毎に得る計測制御手段と、計測対象の代謝物質より信号強度の大きい補正用物質のFID信号の計測点毎の位相値を用いて前記核磁気共鳴信号の渦電流補正を行う渦電流補正手段と、前記渦電流補正手段で補正後の計測点毎の各磁気共鳴信号から表示情報を生成する表示情報生成手段と、を備える磁気共鳴撮影装置のコンピュータを、計測点毎の前記位相値の1次時間微分値を算出する1次微分値算出手段、位相とびが発生する位相とび発生領域を特定するための閾値を算出する閾値算出手段、前記閾値と前記1次時間微分値とを用いて、前記位相値の前記位相とび発生領域を特定する位相とび発生領域特定手段、および、前記位相とび発生領域の前記1次時間微分値を補正することにより、前記位相値の位相とびを補正し、補正後の前記1次時間微分値から補正後の位相値を得る位相とび補正手段として機能させるためのプログラムを提供する。
 本発明によれば、MRI装置における渦電流によるスペクトル歪みを補正するにあたり、補正によるアーチファクトを簡易な手法で抑え、補正の精度を向上させることができる。
(a)~(c)は、本発明の実施形態の核磁気共鳴撮影装置の外観図である。 本発明の実施形態の核磁気共鳴撮影装置の機能構成図である。 本発明の実施形態の核磁気共鳴装置が備える計算機の機能ブロック図である。 本発明の実施形態の計測全体の流れを説明するためのフローチャートである。 本発明の実施形態のMRSIパルスシーケンスの一例を示す図である。 (a)~(c)は、本発明の実施形態のMRSIパルスシーケンスにより励起される領域を説明するための図である。 本発明の実施形態の位相値補正処理のフローチャートである。 本発明の実施形態の位相折り返し接続処理の一例を説明するための図である。 本発明の実施形態の閾値算出処理のフローチャートである。 (a)は、本発明の実施形態の閾値算出領域の決定手法を説明するための説明図であり、(b)は、本発明の実施形態の閾値の決定手法を説明するための説明図である。 本発明の実施形態の位相とび発生領域特定処理のフローチャートである。 本発明の実施形態の位相とび補正領域特定処理を説明するための説明図である。 本発明の実施形態の位相とび補正処理のフローチャートである。 本発明の実施形態の位相とび補正を説明するための説明図である。 本発明の実施形態の位相とび補正処理を実施する前の位相値と、実施後の位相値とのグラフである。 計算機シミュレーション結果を用いて本発明の実施形態による効果を説明するための説明図であり、(a)は、渦電流補正を実施しない場合の計算機シミュレーション結果による代謝スペクトルのグラフであり、(b)は、本発明の実施形態の位相とび補正を実施しない位相値を用いて渦電流補正を実施した場合の計算機シミュレーション結果による代謝スペクトルのグラフであり、(c)は、本発明の実施形態の位相とび補正を実施した位相値を用いて渦電流補正を実施した場合の計算機シミュレーション結果による代謝スペクトルのグラフである。 水のFID信号の位相データを用いて渦電流補正を行う場合、リンギングアーチファクトが生じる原因を説明するための説明図であり、(a)は、計算機シミュレーションによる水のFID信号のスペクトルのグラフであり、(b)は、(a)に示す水のFID信号の位相値のグラフであり、(c)は、渦電流補正前の同スペクトルのグラフであり、(d)は、渦電流補正後の同スペクトルのグラフである。
 以下、本発明を適用する実施形態について説明する。以下、実施形態を説明するための全図において、同一機能を有するものは同一符号を付し、その繰り返しの説明は省略する。
 まず、本実施形態の磁気共鳴撮影装置(MRI装置)について説明する。図1は、本実施形態のMRI装置の外観図である。図1(a)は、ソレノイドコイルで静磁場を生成するトンネル型磁石を用いた水平磁場方式のMRI装置100である。図1(b)は、開放感を高めるために磁石を上下に分離したハンバーガー型(オープン型)の垂直磁場方式のMRI装置120である。また、図1(c)は、図1(a)と同じトンネル型磁石を用い、磁石の奥行を短くし且つ斜めに傾けることによって、開放感を高めたMRI装置130である。本実施形態では、これらの外観を有するMRI装置のいずれを用いることもできる。なお、これらは一例であり、本実施形態のMRI装置はこれらの形態に限定されるものではない。本実施形態では、装置の形態やタイプを問わず、公知の各種のMRI装置を用いることができる。以下、特に区別する必要がない場合は、MRI装置100で代表する。
 図2は、本実施形態のMRI装置100の機能構成図である。本図に示すように、本実施形態のMRI装置100は、被検体101が置かれる空間に、静磁場を印加する静磁場印加手段である静磁場生成磁石102と、x方向、y方向、z方向にそれぞれ傾斜磁場を発生させ、前記被検体に傾斜磁場を印加する傾斜磁場印加手段である傾斜磁場コイル103と、静磁場分布を調整するシムコイル104と、被検体101の計測領域に対し高周波磁場パルスを照射する高周波磁場パルス照射手段である計測用高周波コイル105(以下、単に送信コイルという)と、被検体101から発生する核磁気共鳴信号を受信する受信手段である受信用高周波コイル106(以下、単に受信コイルという)と、送信機107と、受信機108と、計算機109と、傾斜磁場用電源部112と、シム用電源部113と、シーケンス制御装置114と、を備える。
 静磁場生成磁石102は、図1(a)、図1(b)、図1(c)にそれぞれ示した各MRI装置100、120、130の構造に応じて、種々の形態のものが採用される。傾斜磁場コイル103及びシムコイル104は、それぞれ傾斜磁場用電源部112及びシム用電源部113により駆動される。なお、本実施形態では、送信コイル105と受信コイル106とに別個のものを用いる場合を例にあげて説明するが、送信コイル105と受信コイル106との機能を兼用する1のコイルで構成してもよい。送信コイル105が照射する高周波磁場は、送信機107により生成される。受信コイル106が検出した核磁気共鳴信号は、受信機108を通して計算機109に送られる。
 シーケンス制御装置114は、傾斜磁場コイル103の駆動用電源である傾斜磁場用電源部112、シムコイル104の駆動用電源であるシム用電源部113、送信機107及び受信機108の動作を制御し、傾斜磁場、高周波磁場の印加および核磁気共鳴信号の受信のタイミングを制御する。制御のタイムチャートはパルスシーケンスと呼ばれ、計測に応じて予め設定され、後述する計算機109が備える記憶装置等に格納される。
 計算機109は、受け取った核磁気共鳴信号に対して様々な演算処理を行い、画像情報やスペクトル情報を生成するとともに、MRI装置100全体の動作を制御する制御手段である。計算機109は、CPU、メモリ、記憶装置などを備える情報処理装置であり、計算機109にはディスプレイ110、外部記憶装置111、入力装置115などが接続される。ディスプレイ110は、演算処理で得られた結果等をオペレータに表示するインタフェースである。入力装置115は、本実施形態で行われる演算処理に必要な条件、パラメータ等をオペレータが入力するためのインタフェースである。外部記憶装置111は、記憶装置とともに、計算機109が実行する各種の演算処理に用いられるデータ、演算処理により得られるデータ、入力された条件、パラメータ等を保持する。
 以下、本実施形態の計算機109が実現する機能について説明する。図3は、本実施形態の計算機109の機能ブロック図である。本実施形態の計算機109は、計測制御部210と、表示情報生成部220と、渦電流補正部230とを備える。計測制御部210は、パルスシーケンスに従ってシーケンス制御装置14を動作させるとともに各部を制御して計測を行い、核磁気共鳴信号を得る。本実施形態では、例えば、所望の代謝物質の核磁気共鳴信号を、計測点毎に得る。渦電流補正部230は、計測により得た核磁気共鳴信号の、渦電流によるスペクトル歪みを補正する渦電流補正を行う。表示情報生成部220は、渦電流によるスペクトル歪みを補正後の核磁気共鳴信号に対して様々な演算処理を行い画像情報やスペクトル情報などの表示情報を生成する。
 渦電流補正部230は、渦電流によるスペクトル歪みを、代謝物質よりも信号強度の大きい物質(補正用物質;本実施形態では、水)のFID信号(自由誘導減衰信号;以下、渦電流補正用信号と呼ぶ。)の位相値を用いて補正する。このとき、補正には、位相とび補正後のものを用いる。従って、本実施形態の渦電流補正部230は、渦電流補正用信号から、位相値を算出する位相値算出部240と、位相値内の位相とびを補正し、補正後の位相値を得る位相値補正部250と、を備える。
 なお、計算機9が実現する各種の機能は、記憶装置が保持するプログラムを、CPUがメモリにロードして実行することにより実現される。また、計算機9が実現する各種の機能のうち、少なくとも1の機能は、MRI装置100とは独立した、情報処理装置であって、MRI装置100とデータの送受信が可能な情報処理装置により実現されていてもよい。
 以下、上記各機能による、本実施形態の計測全体の流れについて簡単に説明する。図4は、本実施形態の計測全体の流れを説明するためのフローチャートである。
 本実施形態では、渦電流補正用信号として水のFID信号を用いる。従って、まず、計測制御部210は、予め定められたパルスシーケンスに従ってシーケンス制御装置14を制御し、非水抑圧計測を行い(ステップS1101)、水のFID信号F(tn)(n=0、・・・N-1)を得る。ここで、Nはサンプリング点数、tnは、n番目の計測点における時刻を表す離散的な値である。また、t0は、計測開始時刻を表す。
 位相値算出部240は、得られた水のFID信号F(tn)から、計測点毎の、水のFID信号の位相値φ(tn)を算出する(ステップS1102)。水のFID信号の位相値φ(tn)は、計測された水のFID信号F(tn)から以下の式(1)に従って算出される。
   φ(tn)=tan-1 (Im(F(tn)))/(Re(F(tn)))   (1)
ここで、tan-1は、アークタンジェント関数、Im(F(tn))は複素数F(tn)の虚部、Re(F(tn))は複素数F(tn)の実部を表す。
 そして、位相値補正部250は、位相値φ(tn)の位相とびを補正し、補正後の位相値である補正後位相値φc(tn)を得る(ステップS1103)。
 次に、計測制御部210は、予め定められたパルスシーケンスに従ってシーケンス制御装置14を制御し、水抑圧計測を行い(ステップS1104)、代謝物質信号S(tn)を得る。
 そして、渦電流補正部230は、得られた代謝物質信号S(tn)を、補正後位相値φc(tn)で補正する渦電流補正を行い(ステップS1105)、渦電流補正後の代謝物質信号Secc(tn)を得る。渦電流補正後の代謝物質信号Secc(tn)は、代謝物質信号S(tn)から、位相とび補正後の水のFID信号の位相値φc(tn)を用いて、以下の式(2)に従って算出される。
   Secc(tn)=S(tn)・exp(-i・φc(tn))   (2)
ここで、iは虚数単位である。
 表示情報生成部220は、渦電流補正後の代謝物質信号Secc(tn)をフーリエ変換し、代謝物質のスペクトルまたは分布画像を得る(ステップS1106)。
 ここで、計測制御部210が、上記計測(ステップS1101の非水抑圧計測およびステップS1104の水抑圧計測)に用いるパルスシーケンスの一例について説明する。ここでは、代謝物質を画像化する領域選択型MRSIのパルスシーケンス(以降、MRSIパルスシーケンスと呼ぶ)を例にあげて説明する。
 図5は、MRSIパルスシーケンス300の一例である。図5において、RFは高周波磁場パルスの印加タイミングを示す。Gx、Gy、Gzは、それぞれ、x、y、z方向の傾斜磁場パルスの印加タイミングを示す。A/Dは、信号の計測期間を示す。図5に示すMRSIパルスシーケンス300は、公知のMRSIパルスシーケンスと同じであり、1つの励起パルスRF1と2つの反転パルスRF2およびRF3とを用いて、所定の関心領域を選択的に励起し、この関心領域からFID信号(自由誘導減衰)FID1を得る。
 このMRSIパルスシーケンス300に従って励起される領域を、図6(a)~図6(c)に示す。図6(a)~図6(c)は、本計測に先立って行われる計測により得る位置決め用スカウト画像であって、それぞれ、図6(a)はトランス像410、図6(b)はサジタル像420、図6(c)はコロナル像430である。以下、各部の動作と励起される領域との関係を図5および図6(a)~図6(c)を用いて説明する。
 まず高周波磁場RF1とz方向の傾斜磁場パルスGs1、Gs1'とを印加して、z方向の断面401を励起する。TE/4(ここで、TEはエコー時間)時間後に、高周波磁場RF2とy方向の傾斜磁場パルスGs2とを印加する。その結果、z方向の断面401とy方向の断面402とが交差する領域における核磁化の位相のみがリフェイズする(戻る)。続いて、高周波磁場RF2印加からTE/2後に高周波磁場RF3とx方向の傾斜磁場パルスGs3とを印加する。それによって、z方向の断面401、y方向の断面402、x方向の断面403が交差する関心領域404における核磁化の位相のみがリフェイズされ、ここからFID信号FID1が生じる。このFID信号FID1を計測する。なお、各方向の傾斜磁場パルスGd1~Gd3およびGd1'~Gd3'は、高周波磁場RF1で励起された核磁化の位相をリフェイズし、RF2、RF3で励起された核磁化の位相をディフェイズするための傾斜磁場である。また、高周波磁場RF3の後には、位相エンコード傾斜磁場Gp1、Gp2を印加する。以上により、関心領域404の核磁気共鳴信号を得る。
 次に、上記ステップS1103の位相値補正部250による位相値の補正について説明する。本実施形態の位相値の補正とは、渦電流補正に用いる位相値の位相とびの補正である。位相とびの補正は、位相値上で位相とび発生箇所を特定し、当該箇所の位相とびを除去するようになされる。
 一般に、時間によって変化する位相値は、位相とびが発生する箇所で変曲点を持ち、その近傍で極大値と極小値とを持つ。すなわち、位相値の1次時間微分値(以後、1次微分値と呼ぶ。)は、位相とびが発生する箇所の近傍で、上あるいは下に凸のピーク形状を有する。本実施形態では、これを利用し、位相値における位相とび領域を特定する。すなわち、位相値の1次微分値において、このピーク形状以外の範囲、位置を抽出し、それ以外の範囲、位置を位相とび発生箇所として特定する。
 ただし、渦電流による位相変化の箇所も、同様な変化を示す。従って、本実施形態の位相値補正部250は、位相変化が上記特徴を示す箇所が、渦電流の影響によるものか、位相とびによるものかを判別し、位相とびによるもののみを特定する。一般に、渦電流による位相の変化量は、位相とびによる位相の変化量より小さい。従って、位相変化の中で、その変化量が所定の値より小さいものを、渦電流による位相変化、所定の値以上のものを位相とびによるものとする。
 位相とびによるものであるか否かを判別する閾値として、各計測点の位相値の1次微分値の、所定の時間領域における位相変化量を用いる。所定の時間領域は、渦電流による位相変化の影響が大きい、計測開始時刻から予め定めた時間までの領域とする。そして、1次微分値の各点において、位相変化量を評価値として算出する。この評価値が閾値より小さい箇所を渦電流の影響による位相変化領域、または静磁場不均一などによる位相変化領域とし、その他の箇所を位相とび発生領域とする。なお、渦電流の影響による位相変化領域、または静磁場不均一などによる位相変化領域をここでは位相とび不発生領域と呼ぶ。
 補正は、位相とび不発生領域の計測点の1次微分値を補間により接続することにより行う。接続後の1次微分値から、補正後の位相値を得る。
 上記処理を実現するため、位相値補正部250は、図3に示すように、位相値を時間で微分し、1次微分値を得る1次微分値算出部251と、算出した1次微分値から、位相とび発生領域を特定するための閾値を算出する閾値算出部252と、閾値と1次微分値とを用いて位相値の位相とび発生領域を特定する位相とび発生領域特定部253と、位相とび発生領域内の位相とびを補正する位相とび補正部254と、を備える。
 なお、本実施形態の閾値算出部252が算出する閾値は、まず、当該閾値により位相とびが発生していない領域(位相とび不発生領域)を特定し、それ以外の領域を位相とび発生領域とすることにより、位相とび発生領域を特定する閾値である。従って、位相とび発生領域特定部253は、1次微分値上で、閾値以下の1次微分値を持つ領域を位相とび不発生領域として特定し、それ以外の領域を位相とび発生領域として特定する。
 上記各機能による、本実施形態の位相値補正処理の流れの概略を説明する。図7は、本実施形態の位相値補正処理の流れを説明するためのフローチャートである。
 まず、1次微分値算出部251は、位相値算出部240が算出した水のFID信号の位相値φ(tn)から、1次微分値φz'(tn)を算出する(ステップS1201)。
 次に、閾値算出部252は、1次微分値φz'(tn)から位相とび不発生領域を特定する際に用いる閾値Pthを算出する(ステップS1202)。
 次に、位相とび発生領域特定部253は、閾値Pthを用いて、1次微分値φz'(tn)の中から、位相とび不発生領域を特定し、それ以外の位相とび発生領域PJを特定する(ステップS1203)。
 最後に、位相とび補正部254は、1次微分値φz'(tn)から、位相とび発生領域PJを除去し、その間を補間後、位相値に戻すことにより、位相値の位相とびを補正する(ステップS1204)。これにより、位相値補正部250は、補正後の位相値φc(tn)を得る。
 以下、上記各処理の詳細を説明する。
 まず、上記ステップS1201における、1次微分値算出部251による、1次微分値の算出を説明する。1次微分値算出部251は、まず、位相値算出部240が算出した位相値φ(tn)に対し、位相折り返し接続処理を行い、位相折り返し接続処理後の位相値φz(tn)を得る。そして、1次微分値算出部251は、位相折り返し接続処理後の位相値φz(tn)を、時間で微分することにより、1次微分関数φz'(tn)を得る。
 ここで、上記位相折返し接続処理について図8を用いて説明する。図8において、横軸は、水のFID信号の計測開始からの時間(ms)、縦軸は位相値(rad)である。また、破線は計測結果から算出された位相値φ(tn)のプロット結果、実線は位相折り返し接続処理後の位相値φz(tn)のプロット結果を示す。
 位相値φ(tn)は、-πから+πの間の値として算出される。しかし、上記MRSIパルスシーケンス300により取得する水のFID信号の位相には、-πから+πの範囲を超えた値が生じる。-πから+πの範囲を超える位相は、-πから+πの間の値に折り返される。図8の破線に示すように、折り返された部分では、値が不連続となる。そこで、このような、位相値の時間的に不連続な変化を取り除く、位相折り返し接続処理を行い、本来の位相変化の状態を示す位相値φz(tn)を得る。
 なお、位相折り返し接続処理は、既存の各種の位相折り返し接続処理を用いることができる。なお、このとき、ノイズによる位相ばらつきを防ぐため、適宜スムージングを行ってもよい。以下、本明細書では、位相折り返し接続処理後の位相値φz(tn)を、単に位相値φz(tn)と呼ぶ。
 次に、ステップS1202における、閾値算出部252による閾値Pthの算出を説明する。閾値Pthは、位相とび不発生領域に対応する計測点を、前記1次微分値φz'(tn)の中で特定するために用いる。閾値算出部252は、この判別に用いる閾値Pthを算出する。
 閾値算出部252は、位相値φz(tn)の1次微分値φz'(tn)から渦電流による位相変化の影響が大きい時間範囲を閾値算出領域Rとする。そして、閾値算出領域R内の位相変化量を、渦電流による位相変化とし、閾値Pthとして算出する。
 前述のように、計測開始時刻から所定の時間までは、渦電流の影響が大きい。従って、閾値算出部252は、位相値φz(tn)の1次微分値φz'(tn)において、計測開始時刻から所定の時間までの時間範囲を閾値算出領域Rと設定する。そして、閾値算出領域R内の、1次微分値φz'(tn)の最大値Mと最小値mとの差分(M-m)の絶対値|(M-m)|を、閾値Pthとする。
 閾値算出領域Rは、例えば、水信号のFID信号F(tn)の絶対値|F(tn)|を用いて決定する。この場合、例えば、計測開始時刻から、絶対値|F(tn)|が予め定めた値以上である時間範囲を、閾値算出領域Rとする。
 絶対値|F(tn)|を用いて決定する場合の、閾値算出部252による閾値算出処理を説明する。図9は閾値算出処理の流れを説明するための処理フローである。図10(a)は、水のFID信号の信号強度F(tn)の絶対値|F(tn)|のプロット結果から閾値算出領域Rを決定する処理を説明するための図であり、図10(b)は、1次微分値φz'(tn)のプロット結果を用いて、閾値Pthを決定する処理を説明するための図である。
 まず、閾値算出部252は、水のFID信号の信号強度F(tn)の絶対値|F(tn)|を算出する(ステップS1301)。図10(a)に示すように、水のFID信号の信号強度F(tn)の絶対値|F(tn)|は、計測開始時刻t0から、所定の時間まで、一様に減少する。
 次に、図10(a)に示すように、閾値算出部252は、絶対値|F(tn)|が、予め設定される閾値Sthに最も近い時刻の中の最初の時刻tP(pは1≦p≦Nを満たす整数)を特定し、計測開始時刻t0から時刻tPまでの時間範囲を閾値算出領域Rとする(ステップS1302)。本実施形態では、閾値Sthには、見かけの横磁化緩和時間T2*における絶対値強度|F(T2*)|を用いる。具体的には、時刻t=0のときの、水のFID信号の信号強度を|F(0)|すると、下式(3)を満たす値を閾値Sthとして用いる。
   Sth=|F(T2*)|=|F(0)×exp(-1)|   (3)
 次に、閾値算出部252は、図10(b)に示すように、ステップS1302で設定した閾値算出領域R内の、各計測点tnの1次微分値φz'(tn)の中から、最大値Mおよび最小値mを抽出し、最大値Mと最小値mとの差分(M-m)の絶対値|M-m|を計算する。そして、得られた絶対値|M-m|を閾値Pthとする(ステップS1303)。
 閾値算出領域R内で得た1次微分値φz'(tn)の変化量である絶対値|M-m|が、渦電流による変化量と考えられる。本実施形態では、1次微分値φz'(tn)の所定の範囲内の変化量で、この渦電流による変化量よりも小さい変化量を、磁場変動による位相変化と判断し、それ以外の変化量を位相とびによる変化量と判断する。
 なお、閾値算出領域(時間範囲)Rは、水のFID信号の信号強度F(tn)を用いて決定するのではなく、直接、所定の時間tPを設定することにより決定してもよい。設定する所定の時間tPは、例えば、経験的に知られている渦電流の時定数に基づいて、渦電流の成分が保持されている期間を判断し、決定する。tPは、例えば、数10ms~数100msに決定する。
 なお、閾値算出領域(時間範囲)Rの決定手法は、これに限られない。渦電流の情報が十分含まれ、かつ、位相とびによる変化がない領域を閾値算出領域(時間範囲)Rとして設定できればよい。
 また、閾値Pthを、閾値算出領域Rを用いずに、1次微分値φz'(tn)から算出してもよい。図10(b)に示す1次微分値φz'(tn)を、時間方向に複数の小領域に分割する。各小領域で、当該小領域に含まれる1次微分値φz'(tn)の標準偏差を算出する。算出した小領域毎の標準偏差の中から、最小の標準偏差を決定する。そして、最小の標準偏差に所定の係数を乗算し、閾値とする。以上の手順によって算出した閾値は、1次微分値φz'(tn)における位相変化の緩やかな領域を位相とび不発生個所の基準としている。ただし、後述する評価値算出領域REは、上述の閾値算出領域(時間範囲)Rの決定方法で決定する。
 次に、ステップS1203における、位相とび発生領域特定部253による、位相とび発生領域PJの特定手法を説明する。本実施形態の位相とび発生領域特定部253は、計測点tn毎に、位相とび不発生箇所であるか否かを判定する。判定は、判定対象の計測点tk毎の評価値Eと、閾値算出部252が算出した閾値Pthとを比較することにより行う。評価値Eが閾値Pthより小さい場合、その判定対象の計測点tkを、位相とび不発生箇所と判定する。評価値Eは、計測点tkを中心として所定の時間幅を有する評価値算出領域RE内に含まれる1次微分値φz'(tn)の、最大値Mと最小値mとの差分(M-m)の絶対値|M-m|とする。
 図11は、位相とび発生領域特定部253による処理の流れを示すフローチャートである。
 位相とび発生領域特定部253は、まず、最初の計測点tk(kは1以上の整数)を設定する(ステップS1401)。以後、位相とび不発生箇所であるか否かを判定する計測点を評価点と呼ぶ。本実施形態では,閾値算出部252が算出した時刻tPの、次の計測時刻(計測点)tP+1を、最初の評価点tkとする。
 次に、位相とび発生領域特定部253は、評価点tkに対する評価値算出領域REを設定する(ステップS1402)。本実施形態では,評価点tkを中心として閾値算出領域Rと同じ範囲を評価値算出領域REとする。従って、評価点tkに対する評価値算出領域REは、tk-R/2からtk+R/2の範囲に設定される。
 次に、位相とび発生領域特定部253は、評価点tkの評価値Eを算出する(ステップS1403)。本実施形態では、評価値算出領域RE内の、各計測点tnの1次微分値φz'(tn)の中から、最大値Mと最小値mとを算出する。そして,最大値Mと最小値mとの差分の絶対値|M-m|を評価値Eとして算出する。
 次に、位相とび発生領域特定部253は、算出した評価値Eと閾値Pthとを比較して(ステップS1404)、当該評価値Eが閾値Pth以下であれば、位相とびが発生していない不発生点とする(ステップS1406)。すなわち、この評価点tkでは、静磁場不均一による線形な位相変化、または、渦電流による位相変化のみが発生していると判断する。一方、評価値Eが閾値Pthより大きければ、当該評価点tkを位相とび発生点と設定する(ステップS1405)。すなわち、この評価点tkで、位相とびが発生しているものと判断する。
 以上のステップを、tp+1以降の全ての評価点tkについて、順に繰り返す(ステップS1407、S1408)。これにより、位相とび発生領域特定部253は、各計測点tkについて、位相とび発生点であるか不発生点であるかを判別する。なお、連続する位相とび発生点を、位相とび発生領域と呼び、連続する不発生点を、不発生領域と呼ぶ。
 本実施形態の位相とび発生領域特定部253による判別結果を図12に示す。図12において、横軸は、水のFID信号の計測開始からの時間(sec)、縦軸は、水のFID信号の位相の1次微分値φz'(tn)(rad/sec)である。図12の、実線501は、不発生領域の1次微分値φz'(tn)群を、破線502は、位相とび発生領域の1次微分値φz'(tn)群を、それぞれ示す。なお図12の白抜きの丸印は上記tPに対応する。
 以上のように、本実施形態の位相とび発生領域特定部253は、水のFID信号の位相の1次微分値φz'(tn)を用いて、位相とび発生領域を特定する。
 次に、上記ステップS1204における、位相とび補正部254による、位相とび補正について説明する。図13は、本実施形態の位相とび補正部254による位相とび補正の流れを説明するためのフローチャートである。
 まず、位相とび補正部254は、1次微分値φz'(tn)のプロット結果上で、隣接する不発生領域501間を補間により接続する(ステップS1501)。具体的には、図14に示すように、1次微分値φz'(tn)のプロット結果上で、不発生領域501間が滑らかに接続されるよう補間し、1次微分値φz'(tn)から位相とび発生領域502の値を除去する。補間には、隣接する不発生領域501の端部間を直線で接続する直線補間、スプライン補間、キュービック補間等の公知の手法を用いる。
 位相とび補正部254は、補間後のプロット結果511をフィッティングすることにより、位相とび補正後の1次微分関数φc'(tn)を得、その各計測点の値として、位相とび補正後の1次微分値φc'(tn)(511)を得る(ステップS1502)。フィッティングは、多項式、指数関数等を用いて行う。
 そして、位相とび補正部254は、補正後の1次微分値φc'(tn)から、補正後の位相値φc(tn)を得る(ステップS1503)。ここでは、例えば、補正後の1次微分関数φc'(t)を積分することで、位相とび補正後の位相関数φc(t)を得、補正後の位相関数φc(t)の各計測点tnの値として位相とび補正後の位相値φc(tn)を算出する。
 なお、補正後の位相値φc(tn)は、補正後の1次微分値φc'(tn)の累乗和として算出してもよい。
 ここで、上記位相とび補正部254による位相とび補正の前後の位相値のグラフの一例を図15に示す。本図において、横軸は、時間(sec)、縦軸は、位相(rad)を示す。また、破線は位相とび補正前の水のFID信号の位相値φz(tn)のプロット結果(位相関数φz(t)のグラフ)、実線は位相とびを補正後の水のFID信号の位相値φc(tn)のプロット結果(位相関数φc(t)のグラフ)を表す。本図に示すように、上記位相とび補正処理により、水のFID信号の位相とびが解消されていることがわかる。
 以上説明したように、本実施形態の磁気共鳴装置は、被検体に静磁場を印加する静磁場印加手段と、前記被検体に傾斜磁場を印加する傾斜磁場印加手段と、前記被検体に高周波磁場パルスを照射する高周波磁場パルス照射手段と、前記被検体から核磁気共鳴信号を受信する受信手段と、制御手段と、を備える磁気共鳴撮影装置100であって、前記制御手段は、前記傾斜磁場印加手段と前記高周波磁場パルス照射手段と前記受信手段との動作を制御して、所望の代謝物質の核磁気共鳴信号を計測点毎に得る計測制御部210と、前記核磁気共鳴信号の渦電流補正を行う渦電流補正部230と、前記渦電流補正部230で補正後の計測点毎の各磁気共鳴信号から表示情報を生成する表示情報生成部220と、を備え、前記渦電流補正部230は、計測対象の代謝物質より信号強度の大きい補正用物質のFID信号の位相値を前記計測点毎に算出する位相値算出部240と、前記位相値の位相とびを補正し、補正後の位相値を得る位相値補正部250と、を備え、前記位相値補正部250は、前記計測点毎の位相値の1次時間微分値を算出する1次微分値算出部251と、位相とびが発生する位相とび発生領域を特定するための閾値を算出する閾値算出部252と、前記閾値と前記1次時間微分値とを用いて前記位相値の前記位相とび発生領域を特定する位相とび発生領域特定部253と、前記位相とび発生領域の前記1次時間微分値を補正することにより前記位相値の位相とびを補正する位相とび補正部254と、を備え、前記渦電流補正部230は、前記位相とび補正後の位相値を用い、前記渦電流補正を行うことを特徴とする。
 前記閾値算出部252は、所定の領域を閾値算出領域として設定し、当該閾値算出領域内の、前記1次時間微分値の最大値と最小値との差分の絶対値を前記閾値として算出してもよい。前記閾値算出領域は、計測開始時刻から所定の時刻までの領域としてもよい。前記所定の時刻は、前記補正用物質のFID信号の信号強度の絶対値が最も早く所定の値となる時刻としてもよい。
 前記閾値算出部252は、前記1次時間微分値列を、時間方向に複数の小領域に分割し、分割後の小領域毎に、当該小領域に含まれる1次時間微分値の標準偏差を算出し、算出した全標準偏差の中から最小の標準偏差を特定し、特定された最小の標準偏差に所定の係数をかけた値を閾値として算出してもよい。
 また、前記位相とび発生領域特定部253は、予め定めた評価点を中心とする所定の時間幅である評価値算出領域内に含まれる、前記1次時間微分値の最大値と最小値との差分の絶対値を評価値として算出し、前記計測点毎に、当該計測点を前記評価点として算出された前記評価値と前記閾値とを比較して、当該評価値が前記閾値より大きい計測点を、前記位相とび発生領域として特定し、他の計測点を不発生領域として特定してもよい。
 前記位相とび補正部254は、前記不発生領域の前記1次時間微分値間を、補間により接続し、前記位相とびを補正してもよい。前記補間は、隣接する前記不発生領域の端部の前記1次時間微分値間を直線で接続する直線補間としてもよい。また、前記位相とび補正部254は、前記補間後の前記1次時間微分値の累乗和を、前記位相とび補正後の位相値としてもよい。また、前記位相とび補正部254は、前記補間後の前記1次時間微分値をフィッティングして得た1次時間微分値を積分して得た関数の、各計測点に対応する値を、前記補正後の位相値としてもよい。
 このように、本実施形態によれば、計測対象の代謝物質より信号強度の大きい物質のFID信号の位相値を用いて渦電流によるスペクトル歪みを補正する渦電流補正処理において、位相とびを補正後の位相値を用いて渦電流補正を行う。
 位相とび補正後の位相値は、位相値の1次微分値を用いて特定された位相とび発生箇所を、1次微分値上で除くことにより得る。すなわち、位相とび発生箇所と特定された計測点以外の計測点の1次微分値間を補間することにより得た補間後1次微分値の累乗和として補正後の位相値を得る。
 位相とび発生箇所は、1次微分値を用い、予め定めた範囲内で予め定めた閾値以上変化する箇所として特定する。例えば、渦電流補正用信号の信号強度を用い、渦電流の影響を受ける時間範囲を特定し、その間の渦電流補正用信号の位相値の変化量から、渦電流による位相値の変化量を閾値Pthとして特定するとともに、評価単位Rを決定する。そして、これらを用いて、位相値の1次微分値を評価し、位相とび発生領域を特定する。
 従って、本実施形態によれば、位相値を補正する対象のFID信号の絶対値強度の極値の有無には関係なく、位相とび発生箇所を特定することができる。また、その特定を、簡易な計算で行うことができる。補正すべき箇所が精度よく特定されるため、補正の精度も高まる。
 従って、本実施形態によれば、効率よく、また、精度よく、渦電流補正に用いる位相値の位相とびを除去することができる。そして、精度よく補正された位相値を用いて計測対象の核磁気共鳴信号の渦電流補正処理がなされるため、リングングアーチファクトを効果的に防ぐことができ、渦電流によるスペクトル歪みを良好に補正することができる。従って、高品質な表示情報を得ることができる。
 また、本実施形態では、ベースラインを探し、突出しているところを除く。非特許文献3に開示の技術では、突出しているところを探す。従って、本実施形態によれば、非特許文献3に開示の手法に比べ、位相とびと判定された領域のフィッティング処理がない。また、位相とび補正処理は1次微分値上で実施するため、非特許文献3に開示の手法で用いられている、位相値の時間変化に合わせて補正領域の位相変化量を決定し、補正領域とそれ以外の領域が滑らかに接続するように補正する処理が省略できる。このため、処理量を大幅に低減することができ、負荷が少なく、高速に結果を得ることができる。
 ここで、本実施形態による渦電流補正の効果を計算機シミュレーションにて確認する。計算機シミュレーション結果を図16に示す。
 図16(a)は、渦電流補正を実施しなかった場合の代謝物質スペクトル、図16(b)は、本実施形態の位相とび補正を実施しない位相値を用いて渦電流補正を実施した場合の代謝物質スペクトル、図16(c)は、本実施形態の位相とび補正を実施した位相値を用いて渦電流補正を実施した場合の代謝物質スペクトルを、それぞれ示す。
 これらの図に示すように、本実施形態の位相とび補正後の位相値を用いて渦電流補正を行うと、位相とびによるリンギングアーチファクトが除去でき、かつ、渦電流によるスペクトル歪みも補正できることがわかる。
 なお、本実施形態では、渦電流の補正に用いる位相値を水のFID信号から得る場合を例にあげているが、これに限られない。計測対象の代謝物質よりも信号強度の大きい物質の信号であれば、特に水のFID信号に限られない。
 100:MRI装置、101:被検体、102:静磁場生成磁石、103:傾斜磁場コイル、104:シムコイル、105:送信コイル、106:受信コイル、107:送信機、108:受信機、109:計算機、110:ディスプレイ、111:外部記憶装置、112:傾斜磁場用電源部、113:シム用電源部、114:シーケンス制御装置、115:入力装置、120:MRI装置、130:MRI装置、210:計測制御部、220:表示情報生成部、230:渦電流補正部、240:位相値算出部、250:位相値補正部、251:1次微分値算出部、252:閾値算出部、253:位相とび発生領域特定部、254:補正部、300:MRSIパルスシーケンス、401:断面、402:断面、403:断面、404:関心領域、410:トランス像、420:サジタル像、430:コロナル像、501:不発生領域、502:位相とび発生領域、511:補間後プロット結果

Claims (12)

  1.  被検体に静磁場を印加する静磁場印加手段と、前記被検体に傾斜磁場を印加する傾斜磁場印加手段と、前記被検体に高周波磁場パルスを照射する高周波磁場パルス照射手段と、前記被検体から核磁気共鳴信号を受信する受信手段と、制御手段と、を備える磁気共鳴撮影装置であって、
     前記制御手段は、
     前記傾斜磁場印加手段と前記高周波磁場パルス照射手段と前記受信手段との動作を制御して、所望の代謝物質の核磁気共鳴信号を計測点毎に得る計測制御手段と、
     前記核磁気共鳴信号の渦電流補正を行う渦電流補正手段と、
     前記渦電流補正手段で補正後の計測点毎の各磁気共鳴信号から表示情報を生成する表示情報生成手段と、を備え、
     前記渦電流補正手段は、
     計測対象の代謝物質より信号強度の大きい補正用物質のFID信号の位相値を前記計測点毎に算出する位相値算出手段と、
     前記位相値の位相とびを補正し、補正後の位相値を得る位相値補正手段と、を備え、
     前記位相値補正手段は、
     前記計測点毎の位相値の1次時間微分値を算出する1次微分値算出手段と、
     位相とびが発生する位相とび発生領域を特定するための閾値を算出する閾値算出手段と、
     前記閾値と前記1次時間微分値とを用いて、前記位相値の記位相とび発生領域を特定する位相とび発生領域特定手段と、
     前記位相とび発生領域の前記1次時間微分値を補正することにより前記位相値の位相とびを補正する位相とび補正手段と、を備え、
     前記渦電流補正手段は、前記位相とび補正後の位相値を用い、前記渦電流補正を行うこと
     を特徴とする磁気共鳴撮影装置。
  2.  請求項1記載の磁気共鳴撮影装置であって、
     前記閾値算出手段は、
     所定の領域を閾値算出領域として設定し、当該閾値算出領域内の、前記1次時間微分値の最大値と最小値との差分の絶対値を前記閾値として算出すること
     を特徴とする磁気共鳴撮影装置。
  3.  請求項2記載の磁気共鳴撮影装置であって、
     前記閾値算出領域は、計測開始時刻から所定の時刻までの領域であること
     を特徴とする磁気共鳴撮影装置。
  4.  請求項3記載の磁気共鳴撮影装置であって、
     前記所定の時刻は、前記補正用物質のFID信号の信号強度の絶対値が最も早く所定の値となる時刻であること
     を特徴とする磁気共鳴撮影装置。
  5.  請求項1記載の磁気共鳴撮影装置であって、
     前記閾値算出手段は、
     前記1次時間微分値列を、時間方向に複数の小領域に分割し、分割後の小領域毎に、当該小領域に含まれる1次時間微分値の標準偏差を算出し、算出した全標準偏差の中から最小の標準偏差を特定し、特定された最小の標準偏差に所定の係数をかけた値を閾値として算出すること
    を特徴とする磁気共鳴撮影装置。
  6.  請求項1記載の磁気共鳴撮影装置であって、
     前記位相とび発生領域特定手段は、予め定めた評価点を中心とする所定の時間幅である評価値算出領域内に含まれる、前記1次時間微分値の最大値と最小値との差分の絶対値を評価値として算出し、前記計測点毎に、当該計測点を前記評価点として算出された前記評価値と前記閾値とを比較して、当該評価値が前記閾値より大きい計測点を、前記位相とび発生領域として特定し、他の計測点を不発生領域として特定すること
     を特徴とする磁気共鳴撮影装置。
  7.  請求項6記載の磁気共鳴撮影装置であって、
     前記位相とび補正手段は、前記不発生領域の前記1次時間微分値間を、補間により接続し、前記位相とびを補正すること
     を特徴とする磁気共鳴撮影装置。
  8.  請求項7記載の磁気共鳴撮影装置であって、
     前記補間は、隣接する前記不発生領域の端部の前記1次時間微分値間を直線で接続する直線補間であること
     を特徴とする磁気共鳴撮影装置。
  9.  請求項7記載の磁気共鳴撮影装置であって、
     前記位相とび補正手段は、前記補間後の前記1次時間微分値の累乗和を、前記位相とび補正後の位相値とすること
     を特徴とする磁気共鳴撮影装置。
  10.  請求項7記載の磁気共鳴撮影装置であって、
     前記位相とび補正手段は、前記補間後の前記1次時間微分値をフィッティングして得た1次時間微分値を積分して得た関数の、各計測点に対応する値を、前記補正後の位相値とすること
     を特徴とする磁気共鳴撮影装置。
  11.  被検体に静磁場を印加する静磁場印加手段と、前記被検体に傾斜磁場を印加する傾斜磁場印加手段と、前記被検体に高周波磁場パルスを照射する高周波磁場パルス照射手段と、前記被検体から核磁気共鳴信号を受信する受信手段と、前記傾斜磁場印加手段と前記高周波磁場パルス照射手段と前記受信手段との動作を制御して、所望の代謝物質の核磁気共鳴信号を計測点毎に得る計測制御手段と、計測対象の代謝物質より信号強度の大きい補正用物質のFID信号の計測点毎の位相値を用いて前記核磁気共鳴信号の渦電流補正を行う渦電流補正手段と、前記渦電流補正手段で補正後の計測点毎の各磁気共鳴信号から表示情報を生成する表示情報生成手段と、を備える磁気共鳴撮影装置において、前記位相値の位相とびを補正する位相値補正方法であって、
     計測点毎の前記位相値の1次時間微分値を算出する1次微分値算出ステップと、
     位相とびが発生する位相とび発生領域を特定するための閾値を算出する閾値算出ステップと、
     前記閾値と前記1次時間微分値とを用いて、前記位相値の前記位相とび発生領域を特定する位相とび発生領域特定ステップと、
     前記位相とび発生領域の前記1次時間微分値を補正することにより、前記位相値の位相とびを補正する位相とび補正ステップと、
     前記補正後の前記1次時間微分値から補正後の位相値を得る補正後位相値算出ステップと、を備えること
     を特徴とする位相値補正方法。
  12.  被検体に静磁場を印加する静磁場印加手段と、前記被検体に傾斜磁場を印加する傾斜磁場印加手段と、前記被検体に高周波磁場パルスを照射する高周波磁場パルス照射手段と、前記被検体から核磁気共鳴信号を受信する受信手段と、前記傾斜磁場印加手段と前記高周波磁場パルス照射手段と前記受信手段との動作を制御して、所望の代謝物質の核磁気共鳴信号を計測点毎に得る計測制御手段と、計測対象の代謝物質より信号強度の大きい補正用物質のFID信号の計測点毎の位相値を用いて前記核磁気共鳴信号の渦電流補正を行う渦電流補正手段と、前記渦電流補正手段で補正後の計測点毎の各磁気共鳴信号から表示情報を生成する表示情報生成手段と、を備える磁気共鳴撮影装置のコンピュータを、
     計測点毎の前記位相値の1次時間微分値を算出する1次微分値算出手段、
     位相とびが発生する位相とび発生領域を特定するための閾値を算出する閾値算出手段、
     前記閾値と前記1次時間微分値とを用いて、前記位相値の前記位相とび発生領域を特定する位相とび発生領域特定手段、および、
     前記位相とび発生領域の前記1次時間微分値を補正することにより、前記位相値の位相とびを補正し、補正後の前記1次時間微分値から補正後の位相値を得る位相とび補正手段として機能させるためのプログラム。
PCT/JP2012/069238 2011-08-24 2012-07-27 磁気共鳴撮影装置、位相値補正方法およびプログラム WO2013027539A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013529942A JP5829687B2 (ja) 2011-08-24 2012-07-27 磁気共鳴撮影装置
US14/240,171 US9678187B2 (en) 2011-08-24 2012-07-27 Magnetic resonance imaging device, phase value correction method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011183097 2011-08-24
JP2011-183097 2011-08-24

Publications (1)

Publication Number Publication Date
WO2013027539A1 true WO2013027539A1 (ja) 2013-02-28

Family

ID=47746290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069238 WO2013027539A1 (ja) 2011-08-24 2012-07-27 磁気共鳴撮影装置、位相値補正方法およびプログラム

Country Status (3)

Country Link
US (1) US9678187B2 (ja)
JP (1) JP5829687B2 (ja)
WO (1) WO2013027539A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015180246A (ja) * 2014-03-07 2015-10-15 株式会社東芝 磁気共鳴イメージング装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10302944B2 (en) * 2013-06-28 2019-05-28 Seiko Epson Corporation Head-mount type display device and method of controlling head-mount type display device
US9971008B2 (en) * 2014-09-30 2018-05-15 Toshiba Medical Systems Corporation MRI gradient trajectory mapping
US9911062B1 (en) * 2015-10-20 2018-03-06 Ohio State Innovation Foundation Background phase correction for quantitative cardiovascular MRI
EP3330728B1 (de) * 2017-05-22 2020-10-21 Siemens Healthcare GmbH Verfahren zur gefässdarstellung mit hilfe einer mr-anlage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008087822A1 (ja) * 2007-01-17 2008-07-24 Hitachi Medical Corporation 磁気共鳴撮影装置および磁気共鳴スペクトル画像算出方法
WO2010137516A1 (ja) * 2009-05-27 2010-12-02 株式会社 日立メディコ 磁気共鳴撮影装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110182495A1 (en) * 2010-01-26 2011-07-28 General Electric Company System and method for automatic defect recognition of an inspection image

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008087822A1 (ja) * 2007-01-17 2008-07-24 Hitachi Medical Corporation 磁気共鳴撮影装置および磁気共鳴スペクトル画像算出方法
WO2010137516A1 (ja) * 2009-05-27 2010-12-02 株式会社 日立メディコ 磁気共鳴撮影装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A.W.SIMONETTI ET AL.: "Automated correction of unwanted phase jumps in reference signals which corrupt MRSI spectra after eddy current correction", JOURNAL OF MAGNETIC RESONANCE, vol. 159, 2002, pages 151 - 157 *
Y.PANG ET AL.: "A New Post-processing Method to Remove Ringing Artifacts in Clinical MR Spectra", PROC. INTL. SOC. MAG. RESON. MED., 19 May 2007 (2007-05-19), pages P1378 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015180246A (ja) * 2014-03-07 2015-10-15 株式会社東芝 磁気共鳴イメージング装置

Also Published As

Publication number Publication date
JPWO2013027539A1 (ja) 2015-03-19
US9678187B2 (en) 2017-06-13
US20140306703A1 (en) 2014-10-16
JP5829687B2 (ja) 2015-12-09

Similar Documents

Publication Publication Date Title
US8587310B2 (en) Magnetic resonance imaging device
JP6071905B2 (ja) 磁気共鳴イメージング装置及び領域撮像方法
JP6014770B2 (ja) 磁気共鳴撮影装置および温度情報計測方法
Penner et al. Semi‐LASER 1H MR spectroscopy at 7 Tesla in human brain: metabolite quantification incorporating subject‐specific macromolecule removal
JP5829687B2 (ja) 磁気共鳴撮影装置
JP6038654B2 (ja) 磁気共鳴イメージング装置及び振動誤差磁場低減方法
US20100272337A1 (en) Magnetic resonance imaging apparatus
US9746537B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
Smith et al. Automatic off‐resonance correction in spiral imaging with piecewise linear autofocus
Meineke et al. Data consistency‐driven determination of‐fluctuations in gradient‐echo MRI
JP5165791B2 (ja) 磁気共鳴撮影装置
Feldman et al. A semiadiabatic spectral‐spatial spectroscopic imaging (SASSI) sequence for improved high‐field MR spectroscopic imaging
US9851424B2 (en) Magnetic resonance imaging apparatus
JP5548770B2 (ja) 磁気共鳴撮影装置
WO2013069513A1 (ja) 磁気共鳴イメージング装置および照射磁場分布計測方法
Waxmann et al. A new sequence for shaped voxel spectroscopy in the human brain using 2D spatially selective excitation and parallel transmission
US10254363B2 (en) Magnetic resonance imaging apparatus, magnetic resonance imaging method, and medical data analysis apparatus
JP6113012B2 (ja) 磁気共鳴イメージング装置及び補正用b1マップを計算する方法
US10677872B2 (en) Magnetic resonance apparatus and method for vascular imaging
JP5718148B2 (ja) 磁気共鳴イメージング装置及びDualSlice計測方法
US10302720B2 (en) Method and apparatus for determining dephasing factors in magnetic resonance imaging and spectroscopy
JP5127291B2 (ja) 核磁気共鳴撮影装置
JP3945918B2 (ja) 磁気共鳴装置
JPWO2017013801A1 (ja) 磁気共鳴イメージング装置
Silva Water and lipid artifacts removal in MRSI data of the brain using new post-processing methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12825043

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013529942

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14240171

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12825043

Country of ref document: EP

Kind code of ref document: A1