WO2013027523A1 - Welding rod and manufacturing method therefor - Google Patents

Welding rod and manufacturing method therefor Download PDF

Info

Publication number
WO2013027523A1
WO2013027523A1 PCT/JP2012/068641 JP2012068641W WO2013027523A1 WO 2013027523 A1 WO2013027523 A1 WO 2013027523A1 JP 2012068641 W JP2012068641 W JP 2012068641W WO 2013027523 A1 WO2013027523 A1 WO 2013027523A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding rod
melting point
cermet
binder
point binder
Prior art date
Application number
PCT/JP2012/068641
Other languages
French (fr)
Japanese (ja)
Inventor
太一 中道
Original Assignee
東洋鋼鈑株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋鋼鈑株式会社 filed Critical 東洋鋼鈑株式会社
Publication of WO2013027523A1 publication Critical patent/WO2013027523A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • B23K35/3613Polymers, e.g. resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/14Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on borides

Definitions

  • the present invention relates to a welding rod used for various types of welding and a method for manufacturing the same.
  • cermet which is a composite material of ceramic and metal
  • WC-based cemented carbide is widely used as a wear-resistant material.
  • WC-based cemented carbide has a specific gravity approximately twice as heavy as that of steel, and further, decomposition of WC occurs at a temperature of 200 ° C. or higher, resulting in a decrease in hardness and a decrease in wear resistance. There's a problem.
  • Patent Documents 1 and 2 propose hard sintered alloys containing double borides such as Mo 2 FeB 2 and Mo 2 NiB 2 as wear-resistant materials having excellent corrosion resistance and heat resistance.
  • the hard sintered alloy containing double borides such as Mo 2 FeB 2 and Mo 2 NiB 2 proposed in Patent Documents 1 and 2 is excellent in corrosion resistance, heat resistance, and wear resistance. Widely used in injection molded parts and sliding members that require corrosion and wear resistance.
  • a hard sintered alloy containing a double boride such as Mo 2 FeB 2 or Mo 2 NiB 2
  • a hard sintered alloy containing a double boride is sintered by powder metallurgy.
  • a method of post-processing the obtained sintered body is common, but it is difficult to manufacture a large size structure due to manufacturing restrictions such as the size limitation of the sintering furnace, and it is difficult to cut. For this reason, there is a problem that the manufacturing cost is increased because the processing is performed by grinding with a grindstone.
  • a method of forming a cermet layer containing a double boride on the surface of a metal base material by a high-speed flame spraying method is also conceivable, but the formed cermet layer is thin and sufficient wear resistance can be obtained. There was no case.
  • the present invention has been made in view of such a situation, and an object thereof is a welding rod used for overlay welding for forming a cermet layer excellent in corrosion resistance, heat resistance and wear resistance on a metal base material, and It is in providing the manufacturing method.
  • the inventors of the present invention are composed of hard phase particles containing Mo 2 FeB 2 or Mo 2 NiB 2 as a double boride and a binder phase made of an Fe-based alloy or Ni-based alloy, and the content ratio of the hard phase particles. It is possible to form a cermet layer excellent in corrosion resistance, heat resistance and wear resistance on a metal base material by overlay welding on the metal base material using a welding rod made of cermet having a weight of 50 to 95% by weight.
  • the headline and the present invention have been completed.
  • a welding rod made of cermet wherein the cermet is made of hard phase particles containing Mo 2 FeB 2 or Mo 2 NiB 2 as a double boride, and an Fe-based alloy or Ni-based alloy.
  • the hard phase particle content is 50 to 95% by weight.
  • the welding rod of the present invention preferably has a diameter of 0.3 to 5.0 mm ⁇ and a length of 50 to 200 mm.
  • a method for producing any one of the above welding rods wherein a raw material powder for forming the cermet is mixed with a low melting point binder and an organic solvent to obtain a slurry; and The slurry is dried, and the resulting dried product is granulated to obtain granulated particles, and a high melting point binder having a higher melting temperature than the low melting point binder is added to the granulated particles,
  • a step of obtaining a pellet a step of obtaining an injection molded body by injection molding of the pellet, and a sintering of the injection molded body by a powder metallurgy method
  • a process for producing a welding rod comprising the steps of:
  • the low melting point binder is paraffin wax.
  • the high melting point binder is polypropylene.
  • the raw material powder contains 4.2 to 6.5% by weight of B and 35 to 55% by weight of Mo.
  • the welding rod of the present invention it is possible to form a cermet layer excellent in corrosion resistance, heat resistance and wear resistance on the metal base material by overlay welding on the metal base material using this. Can do.
  • such a cermet layer excellent in corrosion resistance, heat resistance and wear resistance can be formed in a short time and at low cost, and productivity can be improved. It becomes.
  • FIG. 1 is a diagram for explaining a ring-on-disk wear test.
  • FIG. 2 is a diagram showing the results of a ring-on-disk wear test.
  • the welding rod of the present invention comprises hard phase particles containing Mo 2 FeB 2 or Mo 2 NiB 2 as a double boride, and a binder phase made of Fe-based alloy or Ni-based alloy, and the content ratio of the hard phase particles Is composed of cermet having a content of 50 to 95% by weight.
  • the hard phase particles contained in the cermet constituting the welding rod of the present invention contain Mo 2 FeB 2 or Mo 2 NiB 2 as a double boride and contribute to the hardness of the welding rod, that is, the wear resistance.
  • the hard phase particles are present in a dispersed state in the matrix of the binder phase described later.
  • Mo 2 FeB 2 a part of Mo may be substituted with other elements such as W, Nb, Zr, Ti, Ta, and Hf. Furthermore, a part of Fe may be Ni, It may be substituted with other elements such as Cr, V, and Co. Similarly, as Mo 2 NiB 2 , a part of Mo may be substituted with other elements such as W, Nb, Zr, Ti, Ta, Hf, and further, a part of Ni may be , Fe, Cr, V, Co, etc. may be substituted.
  • the content ratio of the hard phase particles in the cermet constituting the welding rod of the present invention is 50 to 95% by weight, preferably 50 to 72% by weight.
  • the content ratio of the hard phase particles can be controlled, for example, by adjusting the ratio of Mo and B in the raw material. When there is too little content rate of a hard phase particle, there exists a possibility that abrasion resistance may fall. On the other hand, if the amount is too large, the binder phase is insufficient, and the strength and thermal shock resistance may be reduced.
  • the binder phase contained in the cermet constituting the welding rod of the present invention is a phase that is made of an Fe-based alloy or an Ni-based alloy and forms a matrix for binding the hard phase particles described above.
  • the binder phase when the hard phase particles described above contain Mo 2 FeB 2 , the binder phase is usually made of an Fe-based alloy, and the hard phase particles described above contain Mo 2 NiB 2 .
  • the binder phase when it is contained, the binder phase is usually made of a Ni-based alloy.
  • examples of the alloy include Fe and an alloy of at least one selected from Cr, Ni, Mo, Mn, and Al.
  • the alloy includes an alloy of Ni and at least one selected from Co, Cr, Mo, W, Fe, Si, and Mn.
  • composition of the cermet constituting the welding rod of the present invention is not particularly limited, but B (boron) is preferably in the range of 4.2 to 6.5% by weight, more preferably in the range of 5 to 6% by weight, Mo (molybdenum). ) Is preferably contained in the range of 35 to 55% by weight, more preferably 40 to 48% by weight.
  • B is an element for forming a double boride that becomes a hard phase particle
  • Mo is an element for forming a double boride that becomes a hard phase particle together with B, and Mo A part of the solid solution dissolves in the binder phase, thereby improving the corrosion resistance.
  • the content ratio of the hard phase particles (Mo 2 FeB 2 or Mo 2 NiB 2 ) in the cermet constituting the welding rod will be low, and the wear resistance will be reduced. There is a risk.
  • the content of B and Mo is too large, the content ratio of the binder phase (Fe-based alloy or Ni-based alloy) in the cermet constituting the welding rod is reduced, and the toughness of the welding rod is reduced. Or, there is a risk of breakage during manufacture.
  • the cermet constituting the welding rod of the present invention contains Mo 2 FeB 2 as a double boride as hard phase particles and an Fe-based alloy as a binder phase
  • other elements such as W and Co may be contained.
  • Fe iron
  • B and Mo is an element for forming double borides to be hard phase particles and constitutes the main component of the binder phase.
  • the Fe content is less than 10% by mass, a sufficient liquid phase does not appear and a dense sintered body cannot be obtained, resulting in a decrease in strength.
  • the total amount of elements other than Fe, such as B, Mo, Cr, and Ni exceeds 90% by weight and 10% by weight of Fe cannot be contained, it goes without saying that the allowable weight of each element. In the range of%, the amount is reduced to secure 10% by weight or more of Fe in the balance. On the other hand, if it is too much, wear resistance and corrosion resistance may be lowered.
  • the cermet constituting the welding rod of the present invention contains Mo 2 NiB 2 as a double boride as hard phase particles and a Ni-based alloy as a binder phase
  • the composition thereof are preferably B: 4.2 to 6.5% by weight, Mo: 35 to 55% by weight, Cr: 7.5 to 15% by weight, V: 0.1 to 10% by weight, and Ni: the balance.
  • other elements such as W and Co may be contained.
  • Ni like B and Mo, is an element necessary for forming double borides. Moreover, it is a main element constituting the binder phase and contributes to excellent corrosion resistance. When the Ni content is less than 10% by weight, a sufficient liquid phase does not appear and a dense sintered body cannot be obtained, resulting in a decrease in strength. In addition, when the total amount of elements other than Ni, such as B, Mo, Cr, and V, exceeds 90% by weight and Ni cannot be contained by 10% by weight, it goes without saying that the allowable weight of each element. In the range of%, the amount is reduced to ensure 10% by weight or more of Ni in the balance.
  • Cr substitutes for solid solution with Ni in the double boride and has an effect of stabilizing the crystal structure of the double boride to a tetragonal crystal.
  • the added Cr also dissolves in the binder phase and greatly improves the corrosion resistance, wear resistance, high temperature characteristics and mechanical characteristics of the cermet.
  • borides such as Cr 5 B 3 are formed and the strength is lowered.
  • V vanadium
  • V vanadium
  • a part of V also dissolves in the crystal phase, thereby improving the corrosion resistance, wear resistance, high temperature characteristics, and mechanical characteristics. If the content of V is too small, it is difficult to obtain the effect of adding V. On the other hand, if the content is too large, borides such as VB are formed and the mechanical strength is lowered.
  • the shape of the welding rod of the present invention is not particularly limited and may be appropriately determined according to the welding method to be applied, but the diameter is preferably 0.3 to 5.0 mm ⁇ , more preferably 0.45. It is ⁇ 5.0 mm ⁇ , more preferably 0.5 to 5.0 mm ⁇ , and particularly preferably 0.5 to 1.0 mm ⁇ . If the diameter of the welding rod is too small, it may be difficult to manufacture by injection molding when manufacturing the welding rod, and a good injection molded body (welding rod) may not be obtained. On the other hand, if the diameter of the welding rod is too large, a large amount of thermal energy is required to melt the welding rod when performing overlay welding using the welding rod, and the cost required for forming the cermet layer is high. May increase.
  • the length of the welding rod of the present invention is preferably 50 to 200 mm, more preferably 100 to 200 mm. If the length of the welding rod is too short, overlay welding may not be performed satisfactorily when overlay welding is performed using the welding rod. On the other hand, if the length of the welding rod is too long, it may be difficult to produce a good injection-molded body (welding rod) by manufacturing the welding rod by injection molding.
  • the hardness of the welding rod of the present invention is not particularly limited, but the hardness of the cermet layer obtained when overlay welding is performed using the welding rod of the present invention, particularly, the Rockwell hardness (HRA of the outermost layer of the obtained cermet layer). ) Is preferably 80 or more, more preferably 84 or more.
  • the Rockwell hardness (HRA) can be measured, for example, using a 120 ° diamond conical indenter as an indenter and a load of 60 kg ⁇ f (the same applies hereinafter).
  • FIG. 1 is a diagram for explaining a ring-on-disk wear test
  • FIG. 2 is a diagram illustrating a result of the ring-on-disk wear test.
  • a disk-shaped sample 10 and a ring-shaped sample 20 are prepared, and the ring-shaped sample 20 is pressed against the disk-shaped sample 10 with a predetermined load.
  • the samples having the Rockwell hardness (HRA) of 81, 84, and 78 were subjected to the ring-on-disk wear test shown in FIG.
  • HRA Rockwell hardness
  • the Rockwell hardness (HRA) of the welding rod of the present invention is preferably 83 or more so that the Rockwell hardness (HRA) of the outermost layer of the obtained cermet layer is preferably 80 or more, more preferably 84 or more. More preferably, it is 85 or more, and more preferably 87 or more.
  • the upper limit of Rockwell hardness (HRA) of the welding rod of the present invention is not particularly limited, but is preferably 92 or less, more preferably 90 or less. If the Rockwell hardness is too high, the toughness may decrease and the welding rod may break.
  • the content of the hard phase particles in the cermet constituting the welding rod is preferably 50 to 95% by weight, more preferably 50 to 72% by weight, so that the Rockwell hardness is increased. Can be within the above range.
  • the content ratio of B and Mo in the cermet constituting the welding rod, the content ratio in the conventionally known cermet sintered body, and the cermet layer obtained by the high-speed flame spraying method The content of B is relatively larger than the content of B, that is, the content of B is 4.2 to 6.5% by weight, particularly 5 to 6% by weight, and the content of Mo is 35 to 55% by weight, particularly 40 to 48% by weight. %,
  • the content ratio of the hard phase particles in the cermet constituting the welding rod can be within the above range, and thereby the Rockwell hardness of the welding rod can be within the above range.
  • the manufacturing method of the welding rod of this invention is demonstrated.
  • the raw material powder for forming the cermet which comprises the welding rod of this invention is prepared. What is necessary is just to prepare as raw material powder so that the content rate of each element which forms the cermet which comprises a welding rod may become a desired composition ratio.
  • the prepared raw material powder to which a low melting point binder is added is dispersed in an organic solvent such as acetone, and pulverized and mixed for several tens of hours using a pulverizing and mixing means such as a ball mill.
  • the raw material powder slurry is obtained by pulverization.
  • the low melting point binder covers the powder surface and suppresses oxidation when the raw material powder is pulverized and mixed using a ball mill, and granulates the pulverized and mixed fine powder to facilitate molding processing.
  • the binder to be added is preferably one having a melting point of less than 100 ° C, more preferably 45 to 90 ° C.
  • the low melting point binder preferably has a decomposition temperature of 200 to 300 ° C.
  • paraffin wax is preferably exemplified.
  • the addition ratio of the low melting point binder is preferably 30 to 60% by volume with respect to the total binder (the total of the low melting point binder and the high melting point binder described later).
  • the addition ratio of the low-melting-point binder is too small, there is a possibility that problems such as blistering and cracking occur and mechanical properties and dimensional accuracy are reduced when a degreasing process described later is performed.
  • the addition ratio of the low-melting-point binder is too large, there may be a problem that the sample is easily deformed when the sample is taken out when an injection molding process described later is performed.
  • the raw material powder slurry obtained above is dried in a nitrogen atmosphere, and the resulting dried product is granulated using a granulating means such as a Spartan Luther to obtain granulated particles.
  • a high melting point binder is added to the obtained granulated particles, and a compound is obtained by kneading for several hours while heating to a temperature higher than the melting temperature of the high melting point binder and lower than the decomposition temperature using a stirring mixer. Then, it cools and solidifies, the solidified thing is grind
  • the high melting point binder is not particularly limited as long as it has a melting temperature higher than that of the above-described low melting point binder, but the melting point is preferably 100 ° C. or higher, more preferably 100 to 180 ° C. preferable. In the case of an amorphous resin having no clear melting point, one having a flow temperature of 100 to 180 ° C. can be used.
  • the high melting point binder preferably has a decomposition temperature of 300 to 400 ° C. As such a high melting point binder, polyolefin is preferable, and among them, atactic polypropylene can be particularly preferably used.
  • the addition ratio of the high melting point binder is preferably 40 to 70% by volume with respect to the total binder (the total of the low melting point binder and the high melting point binder described above).
  • the addition ratio of the high melting point binder is too small, there may be a problem that the sample is easily deformed when the sample is taken out when an injection molding process described later is performed.
  • the addition ratio of the high melting point binder is too large, there is a possibility that problems such as blistering and cracking occur and mechanical characteristics and dimensional accuracy are lowered when a degreasing process described later is performed.
  • the pellets are heated and melted, and a predetermined pressure is applied.
  • An injection molded body having a predetermined welding rod shape is obtained by injection filling a mold heated to a temperature lower than the melting temperature of the melting point binder.
  • the pressure for injection molding is preferably 60 to 120 MPa, more preferably 60 to 80 MPa. If the injection molding pressure is too low, the mold may not be sufficiently filled. On the other hand, if the pressure of injection molding is too high, overfilling may occur, and burrs may occur in the molded product.
  • the heating temperature of the pellets during the injection molding is preferably 80 to 150 ° C., more preferably 90 to 120 ° C. If the heating temperature of the pellets is too low, injection molding may be difficult due to unmelted high melting point binder. On the other hand, if the heating temperature of the pellets is too high, there is a possibility that draw ring (resin leakage) occurs at the nozzle tip. Then, the obtained injection molded body is loaded into a sintering chamber, and in the same chamber, the removal of the low melting point binder described later, the removal of the high melting point binder, the reduction of the particle surface oxide, and the liquid phase sintering are performed. A series of steps are performed.
  • the obtained injection-molded body is loaded into a sintering chamber, and the pressure inside the chamber is reduced to atmospheric pressure or lower and nitrogen gas is allowed to flow in.
  • the melting point is higher than the decomposition temperature (gasification temperature) of the low-melting binder and has a high melting point.
  • Heat to a temperature lower than the decomposition temperature (gasification temperature) of the binder hold for several hours, and remove the low melting point binder adhering to the surface of the granulated particles.
  • the heating temperature is preferably 200 to 300 ° C.
  • the chamber is heated to a temperature higher than the decomposition temperature (gasification temperature) of the high melting point binder while flowing the nitrogen gas while reducing the pressure to below atmospheric pressure, and maintained for several hours.
  • the high melting point binder remaining on the surface of the particle is removed.
  • the heating temperature is preferably 300 to 500 ° C.
  • the inside of the chamber is evacuated to 1 ⁇ 10 0 Pa or less, and the injection molded body is heated to a temperature not higher than the temperature at which sintering of the raw material powder occurs (for example, 950). The temperature is raised to 1150 ° C.) and then maintained for several hours to less than 10 hours to reduce the oxide present on the surface of the raw material powder constituting the injection molded body.
  • the surface of the raw material powder of the metal particles and alloy particles in the obtained injection molded body is subjected to friction and external heating in each step such as pulverization and mixing of the raw material powder, granulation, compound preparation and injection molding.
  • an oxide is formed, and most of this oxide is reduced in the sintering step in a reducing atmosphere, but there is also a component that remains as an oxide without being reduced. Therefore, in the present invention, as described above, it is preferable to reduce the oxide by holding for a certain period of time at a temperature below which the sintering of the metal particles and alloy particles in the injection molded body occurs. Then, by performing the treatment for reducing such an oxide, the low-melting binder and the high-melting binder that are slightly adhered after the above-described low melting binder removal and high melting binder removal treatment are removed. It can be completely removed before the liquid phase of the raw material powder appears.
  • the inside of the chamber is kept in a vacuum state of 1 ⁇ 10 0 Pa or lower, and the temperature is raised to a temperature at which a liquid phase is generated (sintering temperature).
  • sintering temperature a temperature at which a liquid phase is generated.
  • the welding rod of the present invention comprises hard phase particles containing Mo 2 FeB 2 or Mo 2 NiB 2 as a double boride, and a binder phase made of Fe-based alloy or Ni-based alloy, and the content ratio of the hard phase particles Is made of cermet with 50 to 95% by weight. Therefore, according to the welding rod of the present invention, a cermet layer excellent in corrosion resistance, heat resistance, and wear resistance can be satisfactorily formed by overlay welding on a metal base material using the welding rod. In particular, according to the welding rod of the present invention, such a cermet layer excellent in corrosion resistance, heat resistance and wear resistance can be formed in a short time and at low cost, and productivity can be improved. It becomes.
  • the material obtained by forming the cermet layer on the metal base material thus obtained includes, for example, members for injection molding machines, various sliding members, cold forging tools, hot forging tools, chemical plants, etc. It can be suitably used as a wear-resistant material capable of realizing excellent durability even in an environment with high load and severe corrosivity.
  • the welding rod of the present invention includes overlay welding using an apparatus for performing laser welding, electric arc welding, TIG welding, MIG welding, etc. in addition to overlay welding using a plasma overlay welding apparatus (PTA). It can be applied to various overlay welding techniques.
  • Example 1 The raw material powder was blended so that the blending composition was B: 6.44% by weight, Mo: 53.19% by weight, Cr: 7.68% by weight, Ni: 1.43% by weight, Fe: the balance, Next, 5 parts by weight of a paraffin wax as a low melting point binder is added to 100 parts by weight of the raw material powder, and this is wet mixed and pulverized in acetone using a vibration ball mill for 20 hours, thereby slurrying the raw material powder.
  • the blending composition was B: 6.44% by weight, Mo: 53.19% by weight, Cr: 7.68% by weight, Ni: 1.43% by weight, Fe: the balance,
  • 5 parts by weight of a paraffin wax as a low melting point binder is added to 100 parts by weight of the raw material powder, and this is wet mixed and pulverized in acetone using a vibration ball mill for 20 hours, thereby slurrying the raw material powder.
  • the obtained slurry of raw material powder was dried in a nitrogen atmosphere at 95 ° C. for 8 hours, and the obtained dried product was granulated using a Spartan Luther to obtain granulated particles.
  • atactic polypropylene as a high melting point binder is added to the granulated particles, and the mixture is kneaded for 4 hours while heating to 150 ° C. using a stirrer / mixer to form a compound, then cooled to room temperature and pulverized. It was set as the pellet for injection molding.
  • the pressure of 70 MPa was applied using an injection molding machine, and the pellets for injection molding obtained above were heated to 100 ° C. in a mold heated to 45 ° C. (inner dimensions: 0.8 mm ⁇ ⁇ 125 mm).
  • the rod-shaped injection molded body was obtained.
  • the obtained rod-shaped injection-molded body was loaded into a sintering chamber, and the chamber was decompressed to 1 ⁇ 10 3 Pa while flowing nitrogen gas at a rate of 2 ° C./min.
  • the temperature was raised to and maintained for 2 hours to remove the paraffin wax adhering to the surface of the granulated particles.
  • the pressure inside the chamber is reduced to 1 ⁇ 10 3 Pa and nitrogen gas is introduced, the temperature is raised to 400 ° C. at a temperature raising rate of 2 ° C./min and held for 2 hours.
  • the atactic polypropylene adhering to was removed.
  • the temperature is raised to 1000 ° C. at a rate of 10 ° C./min, and then raised to 1150 ° C. at a rate of 1 ° C./min. And a reduction treatment for 1 hour was performed.
  • the temperature was raised to 1150 ° C. at a rate of 1 ° C./min, then raised to 1220 ° C. at a rate of 5 ° C./min, held for 10 minutes, liquid phase sintered, and then stopped. Then, by cooling to room temperature in the chamber, a welding rod made of a cermet sintered body having a diameter of 0.5 mm ⁇ and a length of 100 mm was obtained.
  • the content ratio of the hard phase particles and the Rockwell hardness (HRA) were measured for the welding rod obtained above. Also, using the welding rod obtained above, a cermet layer is formed by overlay welding by melting the welding rod on the SCM440 as a metal base material using a plasma overlay welding apparatus (PTA). And the Rockwell hardness (HRA) was measured about the outermost layer of the obtained cermet layer.
  • PTA plasma overlay welding apparatus
  • the content ratio of the hard phase particles in the cermet constituting the welding rod was determined by the following method. That is, first, a scanning electron microscope (SEM) is used to take a reflected electron image of an arbitrary surface of the welding rod, and in the obtained reflected electron image, the hard phase particles are white and the binder phase portion is The binarization process was performed so that it might become black. Next, the area of the hard phase particles is measured by an image analyzer using the backscattered electron image subjected to the binarization treatment, and the specific gravity of the binder phase and the hard phase particles is taken into consideration from the area of the hard phase particles. The content ratio of hard phase particles was determined.
  • SEM scanning electron microscope
  • the Rockwell hardness (HRA) of the outermost layer of the welding rod and cermet layer was measured using a Rockwell hardness meter (indenter: 120 ° diamond conical indenter) under the condition of a load of 60 kg ⁇ f.
  • Examples 2 to 18> A welding rod made of a cermet sintered body was obtained and evaluated in the same manner as in Example 1 except that the raw material powder blended so that the blending composition became the composition shown in Table 1 was used. . The results are shown in Table 1.
  • Examples 1 to 18 including hard phase particles made of Mo 2 FeB 2 as the cermet constituting the welding rod, and the content ratio of the hard phase particles is 50 to 95% by weight The Rockwell hardness (HRA) of the outermost layer of the cermet layer obtained by overlay welding using the welding rod was 80 or more, and all of them were excellent in wear resistance (for example, FIG. 2). Further, since the cermet layers obtained in Examples 1 to 18 contain hard phase particles made of Mo 2 FeB 2 , in addition to wear resistance, the corrosion resistance inherent in Mo 2 FeB 2 as a double boride and It was also excellent in heat resistance.
  • HRA Rockwell hardness

Abstract

Provided is a welding rod obtained from a cermet. The welding rod is characterized in that the cermet is obtained from hard phase particles containing Mo2FeB2 or Mo2NiB2 as the complex boride and a binder phase obtained from an Fe-based alloy or Ni-based alloy, and the proportion of hard phase particles contained is 50 - 95 weight%.

Description

溶接棒およびその製造方法Welding rod and manufacturing method thereof
 本発明は、各種溶接に用いられる溶接棒およびその製造方法に関する。 The present invention relates to a welding rod used for various types of welding and a method for manufacturing the same.
 各種機械設備や機械装置などに用いられる耐摩耗材料に対する要求は年々厳しくなっており、近年では、単に耐摩耗性が高いのみでなく、耐食性、耐熱性などに優れていることが求められている。 The demand for wear-resistant materials used in various machinery and equipment is becoming stricter year by year. In recent years, not only high wear resistance but also excellent corrosion resistance and heat resistance are required. .
 このような耐摩耗材料として、従来より、セラミックと金属との複合材料であるサーメットが検討されており、なかでも、WC基超硬合金が耐摩耗材料として幅広く用いられている。しかしながら、WC基超硬合金は比重が鋼材の約2倍程度と重く、さらには、200℃以上の温度でWCの分解が発生し、硬度低下が引き起こされ、耐摩耗性が劣化してしまうという問題がある。 As such a wear-resistant material, cermet, which is a composite material of ceramic and metal, has been studied conventionally, and among them, WC-based cemented carbide is widely used as a wear-resistant material. However, WC-based cemented carbide has a specific gravity approximately twice as heavy as that of steel, and further, decomposition of WC occurs at a temperature of 200 ° C. or higher, resulting in a decrease in hardness and a decrease in wear resistance. There's a problem.
 これに対し、特許文献1,2では、耐食性、および耐熱性に優れた耐摩耗材料として、MoFeBやMoNiBなどの複硼化物を含有する硬質焼結合金が提案されている。特許文献1,2で提案されているMoFeBやMoNiBなどの複硼化物を含有する硬質焼結合金は、耐食性、耐熱性、および耐摩耗性に優れていることから、樹脂射出成形部品や耐食・耐摩耗性を要求される摺動部材等へ広く展開されている。 On the other hand, Patent Documents 1 and 2 propose hard sintered alloys containing double borides such as Mo 2 FeB 2 and Mo 2 NiB 2 as wear-resistant materials having excellent corrosion resistance and heat resistance. . The hard sintered alloy containing double borides such as Mo 2 FeB 2 and Mo 2 NiB 2 proposed in Patent Documents 1 and 2 is excellent in corrosion resistance, heat resistance, and wear resistance. Widely used in injection molded parts and sliding members that require corrosion and wear resistance.
 このようなMoFeBやMoNiBなどの複硼化物を含有する硬質焼結合金を製造する方法としては、粉末冶金法により複硼化物を含有する硬質焼結合金を焼結し、得られた焼結体を後加工する方法が一般的であるが、焼結炉のサイズの制限等の製造上の制約により、大きなサイズの構造物の製作は困難であり、また切削が困難なことから砥石研削により加工を行うため製造コストが高くなる等の問題がある。 As a method for producing such a hard sintered alloy containing a double boride such as Mo 2 FeB 2 or Mo 2 NiB 2, a hard sintered alloy containing a double boride is sintered by powder metallurgy. A method of post-processing the obtained sintered body is common, but it is difficult to manufacture a large size structure due to manufacturing restrictions such as the size limitation of the sintering furnace, and it is difficult to cut. For this reason, there is a problem that the manufacturing cost is increased because the processing is performed by grinding with a grindstone.
 これに対し、高速フレーム溶射法により、金属母材表面に複硼化物を含有するサーメット層を形成する方法も考えられるが、形成されるサーメット層の厚みが薄く、十分な耐摩耗性を得られない場合があった。 On the other hand, a method of forming a cermet layer containing a double boride on the surface of a metal base material by a high-speed flame spraying method is also conceivable, but the formed cermet layer is thin and sufficient wear resistance can be obtained. There was no case.
特公昭60-57499号公報Japanese Patent Publication No. 60-57499 特許第2631791号公報Japanese Patent No. 2631791
 本発明は、このような実状に鑑みてなされ、その目的は、金属母材上に、耐食性、耐熱性および耐摩耗性に優れたサーメット層を形成するための肉盛溶接に用いられる溶接棒およびその製造方法を提供することにある。 The present invention has been made in view of such a situation, and an object thereof is a welding rod used for overlay welding for forming a cermet layer excellent in corrosion resistance, heat resistance and wear resistance on a metal base material, and It is in providing the manufacturing method.
 本発明者等は、複硼化物としてのMoFeBまたはMoNiBを含む硬質相粒子と、Fe基合金またはNi基合金からなる結合相とからなり、かつ、硬質相粒子の含有割合が50~95重量%であるサーメットからなる溶接棒を用いて金属母材上に肉盛溶接することにより、耐食性、耐熱性および耐摩耗性に優れたサーメット層を金属母材上に形成できることを見出し、本発明を完成させるに至った。 The inventors of the present invention are composed of hard phase particles containing Mo 2 FeB 2 or Mo 2 NiB 2 as a double boride and a binder phase made of an Fe-based alloy or Ni-based alloy, and the content ratio of the hard phase particles. It is possible to form a cermet layer excellent in corrosion resistance, heat resistance and wear resistance on a metal base material by overlay welding on the metal base material using a welding rod made of cermet having a weight of 50 to 95% by weight. The headline and the present invention have been completed.
 すなわち、本発明によれば、サーメットからなる溶接棒であって、前記サーメットが、複硼化物としてのMoFeBまたはMoNiBを含む硬質相粒子と、Fe基合金またはNi基合金からなる結合相とからなり、前記硬質相粒子の含有割合が50~95重量%であることを特徴とする溶接棒が提供される。 That is, according to the present invention, a welding rod made of cermet, wherein the cermet is made of hard phase particles containing Mo 2 FeB 2 or Mo 2 NiB 2 as a double boride, and an Fe-based alloy or Ni-based alloy. There is provided a welding rod characterized in that the hard phase particle content is 50 to 95% by weight.
 本発明の溶接棒は、直径が0.3~5.0mmφであり、長さが50~200mmであることが好ましい。 The welding rod of the present invention preferably has a diameter of 0.3 to 5.0 mmφ and a length of 50 to 200 mm.
 また、本発明によれば、上記いずれかの溶接棒を製造する方法であって、前記サーメットを形成するための原料粉末を、低融点バインダおよび有機溶剤とともに混合することで、スラリーを得る工程と、前記スラリーを乾燥し、得られた乾燥物を造粒することで、造粒粒子を得る工程と、前記造粒粒子に、前記低融点バインダよりも溶融温度の高い高融点バインダを添加し、前記高融点バインダを添加した造粒粒子をペレット化することで、ペレットを得る工程と、前記ペレットを射出成形して射出成形体を得る工程と、前記射出成形体を粉末冶金法により焼結する工程と、を備えることを特徴とする溶接棒の製造方法が提供される。 Further, according to the present invention, there is provided a method for producing any one of the above welding rods, wherein a raw material powder for forming the cermet is mixed with a low melting point binder and an organic solvent to obtain a slurry; and The slurry is dried, and the resulting dried product is granulated to obtain granulated particles, and a high melting point binder having a higher melting temperature than the low melting point binder is added to the granulated particles, By pelletizing the granulated particles to which the high melting point binder has been added, a step of obtaining a pellet, a step of obtaining an injection molded body by injection molding of the pellet, and a sintering of the injection molded body by a powder metallurgy method And a process for producing a welding rod comprising the steps of:
 本発明の製造方法において、好ましくは、前記低融点バインダがパラフィンワックスである。
 また、本発明の製造方法において、好ましくは、前記高融点バインダがポリプロピレンである。
 さらに、本発明の製造方法において、好ましくは、前記原料粉末が、Bを4.2~6.5重量%、Moを35~55重量%含有する。
In the production method of the present invention, preferably, the low melting point binder is paraffin wax.
In the production method of the present invention, preferably, the high melting point binder is polypropylene.
Furthermore, in the production method of the present invention, preferably, the raw material powder contains 4.2 to 6.5% by weight of B and 35 to 55% by weight of Mo.
 本発明の溶接棒によれば、これを用いて金属母材上に肉盛溶接をすることにより、耐食性、耐熱性および耐摩耗性に優れたサーメット層を金属母材上に良好に形成することができる。特に、本発明の溶接棒によれば、このような耐食性、耐熱性および耐摩耗性に優れたサーメット層を、短時間で、しかも、低コストで形成することができ、生産性の向上が可能となる。 According to the welding rod of the present invention, it is possible to form a cermet layer excellent in corrosion resistance, heat resistance and wear resistance on the metal base material by overlay welding on the metal base material using this. Can do. In particular, according to the welding rod of the present invention, such a cermet layer excellent in corrosion resistance, heat resistance and wear resistance can be formed in a short time and at low cost, and productivity can be improved. It becomes.
図1は、リングオンディスク摩耗試験について説明するための図である。FIG. 1 is a diagram for explaining a ring-on-disk wear test. 図2は、リングオンディスク摩耗試験の結果を示す図である。FIG. 2 is a diagram showing the results of a ring-on-disk wear test.
 以下、本発明の溶接棒について説明する。
 本発明の溶接棒は、複硼化物としてのMoFeBまたはMoNiBを含む硬質相粒子と、Fe基合金またはNi基合金からなる結合相とからなり、前記硬質相粒子の含有割合が50~95重量%であるサーメットからなる。
Hereinafter, the welding rod of the present invention will be described.
The welding rod of the present invention comprises hard phase particles containing Mo 2 FeB 2 or Mo 2 NiB 2 as a double boride, and a binder phase made of Fe-based alloy or Ni-based alloy, and the content ratio of the hard phase particles Is composed of cermet having a content of 50 to 95% by weight.
<硬質相粒子>
 本発明の溶接棒を構成するサーメットに含有される硬質相粒子は、複硼化物としてのMoFeBまたはMoNiBを含み、溶接棒の硬度、すなわち耐摩耗性に寄与する。本発明の溶接棒において、硬質相粒子は、後述する結合相のマトリックス中に分散された状態で存在している。
<Hard phase particles>
The hard phase particles contained in the cermet constituting the welding rod of the present invention contain Mo 2 FeB 2 or Mo 2 NiB 2 as a double boride and contribute to the hardness of the welding rod, that is, the wear resistance. In the welding rod of the present invention, the hard phase particles are present in a dispersed state in the matrix of the binder phase described later.
 MoFeBとしては、Moの一部が、W,Nb,Zr,Ti,Ta,Hfなどの他の元素で置換されたものであってよく、さらには、Feの一部が、Ni,Cr,V,Coなどの他の元素で置換されたものであってもよい。同様に、MoNiBとしては、Moの一部が、W,Nb,Zr,Ti,Ta,Hfなどの他の元素で置換されたものであってよく、さらには、Niの一部が、Fe,Cr,V,Coなどの他の元素で置換されたものであってもよい。 As Mo 2 FeB 2 , a part of Mo may be substituted with other elements such as W, Nb, Zr, Ti, Ta, and Hf. Furthermore, a part of Fe may be Ni, It may be substituted with other elements such as Cr, V, and Co. Similarly, as Mo 2 NiB 2 , a part of Mo may be substituted with other elements such as W, Nb, Zr, Ti, Ta, Hf, and further, a part of Ni may be , Fe, Cr, V, Co, etc. may be substituted.
 本発明の溶接棒を構成するサーメット中における、硬質相粒子の含有割合は、50~95重量%であり、好ましくは50~72重量%である。硬質相粒子の含有割合は、たとえば、原料中における、MoおよびBの割合を調整することにより制御することができる。硬質相粒子の含有割合が少なすぎると、耐摩耗性が低下するおそれがある。一方、多すぎると、結合相が不足してしまい、強度および耐熱衝撃性が低下するおそれがある。 The content ratio of the hard phase particles in the cermet constituting the welding rod of the present invention is 50 to 95% by weight, preferably 50 to 72% by weight. The content ratio of the hard phase particles can be controlled, for example, by adjusting the ratio of Mo and B in the raw material. When there is too little content rate of a hard phase particle, there exists a possibility that abrasion resistance may fall. On the other hand, if the amount is too large, the binder phase is insufficient, and the strength and thermal shock resistance may be reduced.
<結合相>
 本発明の溶接棒を構成するサーメットに含有される結合相は、Fe基合金またはNi基合金からなり、上述した硬質相粒子を結合するためのマトリックスを形成する相である。本発明においては、上述した硬質相粒子がMoFeBを含有するものである場合には、結合相は、通常、Fe基合金からなり、また、上述した硬質相粒子がMoNiBを含有するものである場合には、結合相は、通常、Ni基合金からなる。さらに、結合相がFe基合金からなる場合には、該合金としては、Feと、Cr,Ni,Mo,Mn,Alから選択される少なくとも1種との合金が挙げられ、また、結合相がNi基合金をからなる場合には、該合金としては、Niと、Co,Cr,Mo,W,Fe,Si,Mnから選択される少なくとも1種との合金が挙げられる。
<Binder phase>
The binder phase contained in the cermet constituting the welding rod of the present invention is a phase that is made of an Fe-based alloy or an Ni-based alloy and forms a matrix for binding the hard phase particles described above. In the present invention, when the hard phase particles described above contain Mo 2 FeB 2 , the binder phase is usually made of an Fe-based alloy, and the hard phase particles described above contain Mo 2 NiB 2 . When it is contained, the binder phase is usually made of a Ni-based alloy. Further, when the binder phase is made of an Fe-based alloy, examples of the alloy include Fe and an alloy of at least one selected from Cr, Ni, Mo, Mn, and Al. In the case of comprising a Ni-based alloy, the alloy includes an alloy of Ni and at least one selected from Co, Cr, Mo, W, Fe, Si, and Mn.
<サーメットの組成>
 本発明の溶接棒を構成するサーメットの組成は、特に限定されないが、B(ホウ素)を、好ましくは4.2~6.5重量%、より好ましくは5~6重量%の範囲、Mo(モリブデン)を、好ましくは35~55重量%、より好ましくは40~48重量%の範囲で含有するものであることが好ましい。ここで、Bは、硬質相粒子となる複硼化物を形成するための元素であり、また、Moは、Bとともに、硬質相粒子となる複硼化物を形成するための元素であるとともに、Moの一部は結合相に固溶し、これにより耐食性を向上させる効果を有するものである。そのため、BおよびMoの含有量が少な過ぎると、溶接棒を構成するサーメット中における、硬質相粒子(MoFeBまたはMoNiB)の含有割合が低くなってしまい、耐摩耗性が低下するおそれがある。一方、BおよびMoの含有量が多過ぎると、溶接棒を構成するサーメット中における、結合相(Fe基合金またはNi基合金)の含有割合が低くなってしまい、溶接棒の靭性が低下したり、あるいは、製造中に折損し易くなるおそれがある。
<Composition of cermet>
The composition of the cermet constituting the welding rod of the present invention is not particularly limited, but B (boron) is preferably in the range of 4.2 to 6.5% by weight, more preferably in the range of 5 to 6% by weight, Mo (molybdenum). ) Is preferably contained in the range of 35 to 55% by weight, more preferably 40 to 48% by weight. Here, B is an element for forming a double boride that becomes a hard phase particle, and Mo is an element for forming a double boride that becomes a hard phase particle together with B, and Mo A part of the solid solution dissolves in the binder phase, thereby improving the corrosion resistance. Therefore, when there is too little content of B and Mo, the content ratio of the hard phase particles (Mo 2 FeB 2 or Mo 2 NiB 2 ) in the cermet constituting the welding rod will be low, and the wear resistance will be reduced. There is a risk. On the other hand, if the content of B and Mo is too large, the content ratio of the binder phase (Fe-based alloy or Ni-based alloy) in the cermet constituting the welding rod is reduced, and the toughness of the welding rod is reduced. Or, there is a risk of breakage during manufacture.
 なお、本発明の溶接棒を構成するサーメットが、硬質相粒子として、複硼化物としてのMoFeBを含有し、結合相として、Fe基合金を含有するものである場合には、その組成は、B:4.2~6.5重量%、Mo:35~55重量%、Cr:0.5~25.0重量%、Ni:0~15重量%、Fe:残部であることが好ましい。また、これらに加えて、W、Coなど他の元素を含有していてもよい。 In the case where the cermet constituting the welding rod of the present invention contains Mo 2 FeB 2 as a double boride as hard phase particles and an Fe-based alloy as a binder phase, its composition Is preferably B: 4.2 to 6.5% by weight, Mo: 35 to 55% by weight, Cr: 0.5 to 25.0% by weight, Ni: 0 to 15% by weight, Fe: balance. . In addition to these, other elements such as W and Co may be contained.
 Fe(鉄)は、B,Moとともに、硬質相粒子となる複硼化物を形成するための元素であるとともに、結合相の主成分を構成する。Fe含有量が10質量%未満の場合は、十分な液相が出現せず緻密な焼結体が得られず、強度の低下を招く。なお、B,Mo,Cr,Ni等のFe以外の元素の合計量が90重量%を越えてしまい、Feを10重量%含有できない場合には、いうまでもなく、各元素の許容される重量%の範囲内において、その量を減じて、残部に10重量%以上のFeを確保する。一方、多すぎると、耐摩耗性および耐食性が低下するおそれがある。 Fe (iron), together with B and Mo, is an element for forming double borides to be hard phase particles and constitutes the main component of the binder phase. When the Fe content is less than 10% by mass, a sufficient liquid phase does not appear and a dense sintered body cannot be obtained, resulting in a decrease in strength. In addition, when the total amount of elements other than Fe, such as B, Mo, Cr, and Ni, exceeds 90% by weight and 10% by weight of Fe cannot be contained, it goes without saying that the allowable weight of each element. In the range of%, the amount is reduced to secure 10% by weight or more of Fe in the balance. On the other hand, if it is too much, wear resistance and corrosion resistance may be lowered.
 Ni(ニッケル)およびCr(クロム)は、いずれも本発明の溶接棒を構成するサーメットの耐食性および耐酸化性を向上させる効果を示す。また、NiとCrを組み合わせて使用(複合含有)することで、結合相をマルテンサイト、フェライト、オーステナイトおよびこれらの混相組織に任意に制御することにより、機械的特性および耐摩耗性を低減することなく、用途に応じた耐食性、耐熱性および非磁性化の付与が可能である。 Ni (nickel) and Cr (chromium) both show the effect of improving the corrosion resistance and oxidation resistance of the cermet constituting the welding rod of the present invention. Also, by using Ni and Cr in combination (comprising inclusion), the mechanical properties and wear resistance can be reduced by arbitrarily controlling the binder phase to martensite, ferrite, austenite and their mixed phase structure. In addition, it is possible to impart corrosion resistance, heat resistance and non-magnetization according to the application.
 あるいは、本発明の溶接棒を構成するサーメットが、硬質相粒子として、複硼化物としてのMoNiBを含有し、結合相として、Ni基合金を含有するものである場合には、その組成は、B:4.2~6.5重量%、Mo:35~55重量%、Cr:7.5~15重量%、V:0.1~10重量%、Ni:残部であることが好ましい。また、これらに加えて、W、Coなど他の元素を含有していてもよい。 Alternatively, if the cermet constituting the welding rod of the present invention contains Mo 2 NiB 2 as a double boride as hard phase particles and a Ni-based alloy as a binder phase, the composition thereof Are preferably B: 4.2 to 6.5% by weight, Mo: 35 to 55% by weight, Cr: 7.5 to 15% by weight, V: 0.1 to 10% by weight, and Ni: the balance. . In addition to these, other elements such as W and Co may be contained.
 Niは、BおよびMo同様に、複硼化物を形成するために必要な元素である。また、結合相を構成する主な元素であり、優れた耐食性に寄与する。Ni含有量が10重量%未満の場合は、十分な液相が出現せず緻密な焼結体が得られず、強度の低下を招く。なお、B,Mo,Cr,V等のNi以外の元素の合計量が90重量%を越えてしまい、Niを10重量%含有できない場合には、いうまでもなく、各元素の許容される重量%の範囲内において、その量を減じて、残部に10重量%以上のNiを確保する。 Ni, like B and Mo, is an element necessary for forming double borides. Moreover, it is a main element constituting the binder phase and contributes to excellent corrosion resistance. When the Ni content is less than 10% by weight, a sufficient liquid phase does not appear and a dense sintered body cannot be obtained, resulting in a decrease in strength. In addition, when the total amount of elements other than Ni, such as B, Mo, Cr, and V, exceeds 90% by weight and Ni cannot be contained by 10% by weight, it goes without saying that the allowable weight of each element. In the range of%, the amount is reduced to ensure 10% by weight or more of Ni in the balance.
 Crは、複硼化物中のNiと置換固溶し、複硼化物の結晶構造を正方晶に安定化させる効果を有する。また添加したCrは、結合相中にも固溶し、サーメットの耐食性、耐摩耗性、高温特性、および機械的特性を大幅に向上させる。Cr含有量が多くなりすぎると、Cr3などの硼化物を形成し、強度が低下する。 Cr substitutes for solid solution with Ni in the double boride and has an effect of stabilizing the crystal structure of the double boride to a tetragonal crystal. The added Cr also dissolves in the binder phase and greatly improves the corrosion resistance, wear resistance, high temperature characteristics and mechanical characteristics of the cermet. When the Cr content is excessively large, borides such as Cr 5 B 3 are formed and the strength is lowered.
 また、V(バナジウム)は、硬質相粒子となる複硼化物中のNiと置換固溶し、複硼化物の結晶構造を正方晶に安定化させる効果を有する。また、Vの一部は、結晶相にも固溶し、これにより耐食性、耐摩耗性、高温特性、および機械的特性を向上させる効果を有する。Vの含有量が少なすぎると、Vの添加効果が得難くなり、一方、多すぎると、VBなどの硼化物を形成してしまい、機械的強度が低下してしまう。 Also, V (vanadium) has an effect of replacing solid solution with Ni in the double boride to be the hard phase particles and stabilizing the crystal structure of the double boride to a tetragonal crystal. A part of V also dissolves in the crystal phase, thereby improving the corrosion resistance, wear resistance, high temperature characteristics, and mechanical characteristics. If the content of V is too small, it is difficult to obtain the effect of adding V. On the other hand, if the content is too large, borides such as VB are formed and the mechanical strength is lowered.
<溶接棒の形状>
 本発明の溶接棒の形状は、特に限定されず、適用する溶接方法に応じて適宜決定すればよいが、その直径が0.3~5.0mmφであることが好ましく、より好ましくは0.45~5.0mmφ、さらに好ましくは0.5~5.0mmφ、特に好ましくは0.5~1.0mmφである。溶接棒の直径が小さ過ぎると、溶接棒を製造する際に、射出成形での製造が困難となり、良好な射出成形体(溶接棒)を得ることができなくなるおそれがある。一方、溶接棒の直径が大き過ぎると、溶接棒を用いて肉盛溶接を行う際に、溶接棒を溶融させるために多大な熱エネルギーが必要となってしまい、サーメット層の形成に要するコストが増大してしまうおそれがある。
<Shape of welding rod>
The shape of the welding rod of the present invention is not particularly limited and may be appropriately determined according to the welding method to be applied, but the diameter is preferably 0.3 to 5.0 mmφ, more preferably 0.45. It is ˜5.0 mmφ, more preferably 0.5 to 5.0 mmφ, and particularly preferably 0.5 to 1.0 mmφ. If the diameter of the welding rod is too small, it may be difficult to manufacture by injection molding when manufacturing the welding rod, and a good injection molded body (welding rod) may not be obtained. On the other hand, if the diameter of the welding rod is too large, a large amount of thermal energy is required to melt the welding rod when performing overlay welding using the welding rod, and the cost required for forming the cermet layer is high. May increase.
 また、本発明の溶接棒の長さは、好ましくは50~200mmであり、より好ましくは100~200mmである。溶接棒の長さが短過ぎると、溶接棒を用いて肉盛溶接を行う際に、肉盛溶接を良好に行なうことができなくなるおそれがある。一方、溶接棒の長さが長過ぎると、溶接棒を製造する際に、射出成形での製造が困難となり、良好な射出成形体(溶接棒)を得ることができなくなるおそれがある。 Further, the length of the welding rod of the present invention is preferably 50 to 200 mm, more preferably 100 to 200 mm. If the length of the welding rod is too short, overlay welding may not be performed satisfactorily when overlay welding is performed using the welding rod. On the other hand, if the length of the welding rod is too long, it may be difficult to produce a good injection-molded body (welding rod) by manufacturing the welding rod by injection molding.
<溶接棒の硬度>
 本発明の溶接棒の硬度は、特に限定されないが、本発明の溶接棒を用いて肉盛溶接した場合に得られるサーメット層の硬度、特に、得られるサーメット層の最表層のロックウェル硬度(HRA)が好ましくは80以上、より好ましくは84以上となるような硬度を有するものであることが好ましい。なお、本発明において、ロックウェル硬度(HRA)は、たとえば、圧子として120°ダイアモンド円錐圧子を用い、荷重60kg・fの条件で測定することができる(以下においても、同様。)。
<Hardness of welding rod>
The hardness of the welding rod of the present invention is not particularly limited, but the hardness of the cermet layer obtained when overlay welding is performed using the welding rod of the present invention, particularly, the Rockwell hardness (HRA of the outermost layer of the obtained cermet layer). ) Is preferably 80 or more, more preferably 84 or more. In the present invention, the Rockwell hardness (HRA) can be measured, for example, using a 120 ° diamond conical indenter as an indenter and a load of 60 kg · f (the same applies hereinafter).
 ここで、本発明の溶接棒を用いて得られるサーメット層やサーメット焼結体などのロックウェル硬度と、耐摩耗性との関係について、図1、図2を参照しながら説明する。図1は、リングオンディスク摩耗試験について説明するための図であり、図2は、リングオンディスク摩耗試験の結果を示す図である。図1に示すように、リングオンディスク摩耗試験は、ディスク形状の試料10およびリング形状の試料20をそれぞれ準備し、リング形状の試料20を所定の荷重でディスク形状の試料10に押し付けた状態で、リング形状の試料20を所定の速度で所定時間回転させ、このときの摩耗減量を測定することで、耐摩耗性評価する試験である。リングオンディスク摩耗試験においては、ディスク形状の試料10およびリング形状の試料20の摩耗減量が少ないほど、耐摩耗性に優れていると評価することができる。 Here, the relationship between the Rockwell hardness of a cermet layer or a cermet sintered body obtained by using the welding rod of the present invention and the wear resistance will be described with reference to FIGS. FIG. 1 is a diagram for explaining a ring-on-disk wear test, and FIG. 2 is a diagram illustrating a result of the ring-on-disk wear test. As shown in FIG. 1, in the ring-on-disk wear test, a disk-shaped sample 10 and a ring-shaped sample 20 are prepared, and the ring-shaped sample 20 is pressed against the disk-shaped sample 10 with a predetermined load. This is a test for evaluating wear resistance by rotating the ring-shaped sample 20 at a predetermined speed for a predetermined time and measuring the wear loss at this time. In the ring-on-disk wear test, it can be evaluated that the smaller the wear loss of the disk-shaped sample 10 and the ring-shaped sample 20, the better the wear resistance.
 そして、図2に示すように、ロックウェル硬度(HRA)が、それぞれ81,84,78である各試料について、図1に示すリングオンディスク摩耗試験を行った結果、ロックウェル硬度(HRA)が、80以上である場合には、ディスク形状の試料10およびリング形状の試料20の摩耗減量は比較的少なくなる一方で、80未満となると、摩耗減量が比較的多くなる結果となることが、本発明者等による実験により明らかとなった。そのため、耐摩耗性の観点より、本発明の溶接棒は、ロックウェル硬度(HRA)が好ましくは80以上、より好ましくは84以上となるサーメット層を与えることのできるものであることが好ましい。なお、図2に示すリングオンディスク摩耗試験の結果は、リング形状の試料20を所定の荷重でディスク形状の試料10に押し付ける際の荷重:200kg・f、リング形状の試料20の回転数:370rpm、試験時間:20分の条件で測定した際のデータである。 Then, as shown in FIG. 2, the samples having the Rockwell hardness (HRA) of 81, 84, and 78 were subjected to the ring-on-disk wear test shown in FIG. In the case of 80 or more, the wear loss of the disk-shaped sample 10 and the ring-shaped sample 20 is relatively small. On the other hand, if it is less than 80, the wear loss is relatively large. It became clear by experiments by the inventors. Therefore, from the viewpoint of wear resistance, it is preferable that the welding rod of the present invention can provide a cermet layer having a Rockwell hardness (HRA) of preferably 80 or more, more preferably 84 or more. The results of the ring-on-disk wear test shown in FIG. 2 show that the load when the ring-shaped sample 20 is pressed against the disk-shaped sample 10 with a predetermined load: 200 kg · f, the rotation speed of the ring-shaped sample 20: 370 rpm Test time: Data when measured under the condition of 20 minutes.
 また、本発明者等の知見によると、本発明の溶接棒のようなサーメットからなる溶接棒を用いて肉盛溶接を行なった場合には、肉盛溶接により拡散が起こるため、得られるサーメット層は、溶接棒の状態と比較して特性が変化する場合があり、たとえば、得られるサーメット層の硬度は、溶接棒の硬度よりも低くなる傾向にある。そのため、得られるサーメット層の最表層のロックウェル硬度(HRA)が好ましくは80以上、より好ましくは84以上となるように、本発明の溶接棒のロックウェル硬度(HRA)が、好ましくは83以上、より好ましくは85以上、さらに好ましくは87以上であることが好ましい。また、本発明の溶接棒のロックウェル硬度(HRA)の上限は、特に限定されないが、好ましくは92以下、より好ましくは90以下である。ロックウェル硬度が高すぎると、靭性が低下し、溶接棒が折損する場合がある。 Further, according to the knowledge of the present inventors, when overlay welding is performed using a welding rod made of a cermet such as the welding rod of the present invention, diffusion occurs due to overlay welding, so that the obtained cermet layer The characteristics may change as compared with the state of the welding rod. For example, the hardness of the obtained cermet layer tends to be lower than the hardness of the welding rod. Therefore, the Rockwell hardness (HRA) of the welding rod of the present invention is preferably 83 or more so that the Rockwell hardness (HRA) of the outermost layer of the obtained cermet layer is preferably 80 or more, more preferably 84 or more. More preferably, it is 85 or more, and more preferably 87 or more. The upper limit of Rockwell hardness (HRA) of the welding rod of the present invention is not particularly limited, but is preferably 92 or less, more preferably 90 or less. If the Rockwell hardness is too high, the toughness may decrease and the welding rod may break.
 本発明によれば、溶接棒を構成するサーメット中における、硬質相粒子の含有割合を、好ましくは50~95重量%であり、より好ましくは50~72重量%とすることにより、そのロックウェル硬度を上記範囲とすることができる。特に、本発明によれば、たとえば、溶接棒を構成するサーメット中における、BおよびMoの含有割合を、従来公知のサーメット焼結体中における含有割合や、高速フレーム溶射法により得られるサーメット層中における含有割合よりも比較的多い量、すなわち、Bの含有割合を4.2~6.5重量%、特に5~6重量%、Moの含有割合を35~55重量%、特に40~48重量%とすることにより、溶接棒を構成するサーメット中における、硬質相粒子の含有割合を上記範囲とすることができ、これにより、溶接棒のロックウェル硬度を上記範囲とすることができる。 According to the present invention, the content of the hard phase particles in the cermet constituting the welding rod is preferably 50 to 95% by weight, more preferably 50 to 72% by weight, so that the Rockwell hardness is increased. Can be within the above range. In particular, according to the present invention, for example, the content ratio of B and Mo in the cermet constituting the welding rod, the content ratio in the conventionally known cermet sintered body, and the cermet layer obtained by the high-speed flame spraying method The content of B is relatively larger than the content of B, that is, the content of B is 4.2 to 6.5% by weight, particularly 5 to 6% by weight, and the content of Mo is 35 to 55% by weight, particularly 40 to 48% by weight. %, The content ratio of the hard phase particles in the cermet constituting the welding rod can be within the above range, and thereby the Rockwell hardness of the welding rod can be within the above range.
<溶接棒の製造方法>
 次いで、本発明の溶接棒の製造方法について、説明する。
 まず、本発明の溶接棒を構成するサーメットを形成するための原料粉末を準備する。原料粉末としては、溶接棒を構成するサーメットを形成する各元素の含有割合が所望の組成比となるように、準備すればよい。
<Method for manufacturing welding rod>
Subsequently, the manufacturing method of the welding rod of this invention is demonstrated.
First, the raw material powder for forming the cermet which comprises the welding rod of this invention is prepared. What is necessary is just to prepare as raw material powder so that the content rate of each element which forms the cermet which comprises a welding rod may become a desired composition ratio.
 次いで、準備した原料粉末に、低融点バインダを添加したものをアセトンなどの有機溶剤中に分散してボールミルなどの粉砕混合手段を用いて数十時間粉砕混合し、原料粉末を所定の粒径に微粉化することで、原料粉末のスラリーを得る。 Next, the prepared raw material powder to which a low melting point binder is added is dispersed in an organic solvent such as acetone, and pulverized and mixed for several tens of hours using a pulverizing and mixing means such as a ball mill. The raw material powder slurry is obtained by pulverization.
 ここで、低融点バインダは、原料粉末をボールミルを用いて粉砕混合する際に、粉末表面を被覆して酸化を抑制するとともに、粉砕混合した微細粉末を造粒して成形加工を容易にするために、添加するバインダであり、その融点が100℃未満のものが好ましく、45~90℃のものがさらに好ましい。また、低融点バインダは、分解温度が200~300℃のものが好ましい。このような低融点バインダとしては、パラフィンワックスが好適に挙げられる。なお、低融点バインダの添加割合は、全バインダ(低融点バインダと後述する高融点バインダとの合計)に対して、30~60体積%とすることが好ましい。低融点バインダの添加割合が少な過ぎると、後述する脱脂工程を行なった際に、膨れやひびが入り、機械的特性や寸法精度が低下するという問題が生じるおそれがある。一方、低融点バインダの添加割合が多過ぎると、後述する射出成形工程を行った際に、試料取り出し時に変形しやすいという問題が生じる場合がある。 Here, the low melting point binder covers the powder surface and suppresses oxidation when the raw material powder is pulverized and mixed using a ball mill, and granulates the pulverized and mixed fine powder to facilitate molding processing. The binder to be added is preferably one having a melting point of less than 100 ° C, more preferably 45 to 90 ° C. The low melting point binder preferably has a decomposition temperature of 200 to 300 ° C. As such a low melting point binder, paraffin wax is preferably exemplified. The addition ratio of the low melting point binder is preferably 30 to 60% by volume with respect to the total binder (the total of the low melting point binder and the high melting point binder described later). If the addition ratio of the low-melting-point binder is too small, there is a possibility that problems such as blistering and cracking occur and mechanical properties and dimensional accuracy are reduced when a degreasing process described later is performed. On the other hand, if the addition ratio of the low-melting-point binder is too large, there may be a problem that the sample is easily deformed when the sample is taken out when an injection molding process described later is performed.
 次いで、上記にて得られた原料粉末のスラリーを、窒素雰囲気中で乾燥し、得られた乾燥物をスパルタンリューザーなどの造粒手段を用いて造粒することで造粒粒子を得る。 Next, the raw material powder slurry obtained above is dried in a nitrogen atmosphere, and the resulting dried product is granulated using a granulating means such as a Spartan Luther to obtain granulated particles.
 次いで、得られた造粒粒子に、高融点バインダを添加し、撹拌混合機を用いて、高融点バインダの溶融温度以上、かつ分解温度未満の温度に加熱しながら数時間混練してコンパウンドとした後、冷却・固化し、固化したものを粉砕して射出成形用のペレットとする。 Next, a high melting point binder is added to the obtained granulated particles, and a compound is obtained by kneading for several hours while heating to a temperature higher than the melting temperature of the high melting point binder and lower than the decomposition temperature using a stirring mixer. Then, it cools and solidifies, the solidified thing is grind | pulverized, and it is set as the pellet for injection molding.
 ここで、高融点バインダとしては、上述した低融点バインダよりも溶融温度が高いバインダであればよく特に限定されないが、その融点が100℃以上のものが好ましく、100~180℃であるものがより好ましい。なお、明確な融点を持たない非晶性の樹脂である場合には、流動温度が100~180℃のものを使用することができる。また、高融点バインダは、分解温度が300~400℃のものが好ましい。このような高融点バインダとしては、ポリオレフインが好ましく、中でも、アタクチックポリプロピレンが特に好ましく用いることができる。なお、高融点バインダの添加割合は、全バインダ(上述した低融点バインダと高融点バインダとの合計)に対して、40~70体積%とすることが好ましい。高融点バインダの添加割合が少な過ぎると、後述する射出成形工程を行った際に、試料取り出し時に変形しやすいという問題が生じる場合がある。一方、高融点バインダの添加割合が多過ぎると、後述する脱脂工程を行なった際に、膨れやひびが入り、機械的特性や寸法精度が低下するという問題が生じるおそれがある。 Here, the high melting point binder is not particularly limited as long as it has a melting temperature higher than that of the above-described low melting point binder, but the melting point is preferably 100 ° C. or higher, more preferably 100 to 180 ° C. preferable. In the case of an amorphous resin having no clear melting point, one having a flow temperature of 100 to 180 ° C. can be used. The high melting point binder preferably has a decomposition temperature of 300 to 400 ° C. As such a high melting point binder, polyolefin is preferable, and among them, atactic polypropylene can be particularly preferably used. The addition ratio of the high melting point binder is preferably 40 to 70% by volume with respect to the total binder (the total of the low melting point binder and the high melting point binder described above). When the addition ratio of the high melting point binder is too small, there may be a problem that the sample is easily deformed when the sample is taken out when an injection molding process described later is performed. On the other hand, when the addition ratio of the high melting point binder is too large, there is a possibility that problems such as blistering and cracking occur and mechanical characteristics and dimensional accuracy are lowered when a degreasing process described later is performed.
 次いで、得られた射出成形用のペレットを用いて、高融点バインダの溶融温度以上、かつ分解温度未満の温度に加熱した射出成形機を用い、ペレットを加熱溶融して所定の圧力をかけ、低融点バインダの溶融温度未満に加熱した金型に射出充填することで、所定の溶接棒の形状を有する射出成形体を得る。なお、本発明において、射出成形の圧力は、好ましくは60~120MPaであり、より好ましくは60~80MPaである。射出成形の圧力が低過ぎると、金型に十分に充填されないおそれがある。一方、射出成形の圧力が高過ぎると、過充填となり、成形品にバリが発生するおそれがある。また、射出成形を行なう際におけるペレットの加熱温度は、好ましく80~150℃であり、より好ましくは90~120℃である。ペレットの加熱温度が低過ぎると、高融点バインダ未溶融により射出成形が困難になるおそれがある。一方、ペレットの加熱温度が高過ぎると、ノズル先端でのドローリング(樹脂漏れ)が発生するおそれがある。そして、得られた射出成形体を焼結用のチャンバーに装填し、同一チャンバー内で、後述する低融点バインダの除去、高融点バインダの除去、粒子表面酸化物の還元、および液相焼結からなる一連の工程を実施する。 Next, using the obtained injection molding pellets, using an injection molding machine heated to a temperature equal to or higher than the melting temperature of the high melting point binder and lower than the decomposition temperature, the pellets are heated and melted, and a predetermined pressure is applied. An injection molded body having a predetermined welding rod shape is obtained by injection filling a mold heated to a temperature lower than the melting temperature of the melting point binder. In the present invention, the pressure for injection molding is preferably 60 to 120 MPa, more preferably 60 to 80 MPa. If the injection molding pressure is too low, the mold may not be sufficiently filled. On the other hand, if the pressure of injection molding is too high, overfilling may occur, and burrs may occur in the molded product. In addition, the heating temperature of the pellets during the injection molding is preferably 80 to 150 ° C., more preferably 90 to 120 ° C. If the heating temperature of the pellets is too low, injection molding may be difficult due to unmelted high melting point binder. On the other hand, if the heating temperature of the pellets is too high, there is a possibility that draw ring (resin leakage) occurs at the nozzle tip. Then, the obtained injection molded body is loaded into a sintering chamber, and in the same chamber, the removal of the low melting point binder described later, the removal of the high melting point binder, the reduction of the particle surface oxide, and the liquid phase sintering are performed. A series of steps are performed.
 次いで、得られた射出成形体を焼結用のチャンバーに装填し、チャンバー内を大気圧以下に減圧しつつ窒素ガスを流入させながら低融点バインダの分解温度(ガス化温度)以上、かつ高融点バインダの分解温度(ガス化温度)未満の温度に加熱し、数時間保持して造粒粒子の表面に付着した低融点バインダを除去する。なお、低融点バインダとしてパラフィンワックスを用いた場合は、加熱温度は、200~300℃とすることが好ましい。 Next, the obtained injection-molded body is loaded into a sintering chamber, and the pressure inside the chamber is reduced to atmospheric pressure or lower and nitrogen gas is allowed to flow in. The melting point is higher than the decomposition temperature (gasification temperature) of the low-melting binder and has a high melting point. Heat to a temperature lower than the decomposition temperature (gasification temperature) of the binder, hold for several hours, and remove the low melting point binder adhering to the surface of the granulated particles. When paraffin wax is used as the low melting point binder, the heating temperature is preferably 200 to 300 ° C.
 次いで、低融点バインダを除去した後、引き続いてチャンバー内を大気圧以下に減圧しつつ窒素ガスを流入させながら高融点バインダの分解温度(ガス化温度)以上に加熱し、数時間保持して造粒粒子の表面に残存付着した高融点バインダを除去する。なお、高融点バインダとしてアタクチックポリプロピレンを用いた場合は、加熱温度は300~500℃とすることが望ましい。 Next, after removing the low melting point binder, the chamber is heated to a temperature higher than the decomposition temperature (gasification temperature) of the high melting point binder while flowing the nitrogen gas while reducing the pressure to below atmospheric pressure, and maintained for several hours. The high melting point binder remaining on the surface of the particle is removed. When atactic polypropylene is used as the high melting point binder, the heating temperature is preferably 300 to 500 ° C.
 次いで、射出成形体中の高融点バインダを除去した後、チャンバー内を、1×10Pa以下の真空状態とし、射出成形体を、原料粉末の焼結が生じる温度以下の温度(たとえば、950~1150℃)まで昇温させた後、さらに数時間~10時間未満保持することにより、射出成形体を構成する原料粉末表面に存在する酸化物を還元する処理を行なう。本発明においては、得られた射出成形体中の金属粒子や合金粒子の原料粉末表面には、原料粉末の粉砕混合、造粒、コンパウンド作製および射出成形等の各工程で、摩擦や外部加熱により酸化物が形成されており、この酸化物は還元雰囲気中における焼結工程で大半が還元される一方で、還元されずに酸化物のまま残存してしまう成分もある。そのため、本発明では、上述したように、射出成形体中の金属粒子や合金粒子の焼結が生じる温度以下で一定時間保持して酸化物を還元することが好ましい。そして、このような酸化物を還元する処理を行なうことにより、上述した低融点バインダ除去および高融点バインダ除去の処理を行った後もごくわずかに残存付着している低融点バインダおよび高融点バインダを、原料粉末の液相が出現する前に完全に除去することができる。 Next, after removing the high melting point binder in the injection molded body, the inside of the chamber is evacuated to 1 × 10 0 Pa or less, and the injection molded body is heated to a temperature not higher than the temperature at which sintering of the raw material powder occurs (for example, 950). The temperature is raised to 1150 ° C.) and then maintained for several hours to less than 10 hours to reduce the oxide present on the surface of the raw material powder constituting the injection molded body. In the present invention, the surface of the raw material powder of the metal particles and alloy particles in the obtained injection molded body is subjected to friction and external heating in each step such as pulverization and mixing of the raw material powder, granulation, compound preparation and injection molding. An oxide is formed, and most of this oxide is reduced in the sintering step in a reducing atmosphere, but there is also a component that remains as an oxide without being reduced. Therefore, in the present invention, as described above, it is preferable to reduce the oxide by holding for a certain period of time at a temperature below which the sintering of the metal particles and alloy particles in the injection molded body occurs. Then, by performing the treatment for reducing such an oxide, the low-melting binder and the high-melting binder that are slightly adhered after the above-described low melting binder removal and high melting binder removal treatment are removed. It can be completely removed before the liquid phase of the raw material powder appears.
 特に、このような酸化物を還元する処理を行なわずに、液相が生じる温度まで昇温して焼結した場合には、焼結体の寸法がばらついて十分な寸法精度が得られなかったり、あるいは、十分な機械的特性を得られない場合があり、これに対して、このような酸化物を還元する処理を行なうことで、このような不具合の発生を有効に防止できるものである。 In particular, when sintering is performed by raising the temperature to a temperature at which a liquid phase is generated without performing such treatment for reducing oxides, the size of the sintered body varies and sufficient dimensional accuracy may not be obtained. Alternatively, sufficient mechanical properties may not be obtained, and in response to this, the occurrence of such a problem can be effectively prevented by performing a treatment for reducing such an oxide.
 そして、酸化物を還元する処理を行なった後、チャンバー内を、1×10Pa以下の真空状態に保持し、液相が生成する温度(焼結温度)まで昇温し、数十分~1時間保持することで焼結を行なうことにより、本発明の溶接棒を製造することができる。なお、この際の焼結温度は、1200~1300℃の範囲とすることが好ましい。 After the oxide reduction treatment, the inside of the chamber is kept in a vacuum state of 1 × 10 0 Pa or lower, and the temperature is raised to a temperature at which a liquid phase is generated (sintering temperature). By performing sintering by holding for 1 hour, the welding rod of the present invention can be manufactured. The sintering temperature at this time is preferably in the range of 1200 to 1300 ° C.
 本発明の溶接棒は、複硼化物としてのMoFeBまたはMoNiBを含む硬質相粒子と、Fe基合金またはNi基合金からなる結合相とからなり、前記硬質相粒子の含有割合が50~95重量%であるサーメットからなるものである。そのため、本発明の溶接棒によれば、これを用いて金属母材上に肉盛溶接をすることにより、耐食性、耐熱性および耐摩耗性に優れたサーメット層を良好に形成することができる。特に、本発明の溶接棒によれば、このような耐食性、耐熱性および耐摩耗性に優れたサーメット層を、短時間で、しかも、低コストで形成することができ、生産性の向上が可能となる。そして、このようにして得られる金属母材上にサーメット層を形成してなる材料は、たとえば、射出成形機用の部材、各種摺動部材、冷間鍛造工具、熱間鍛造工具、化学プラントなどの高負荷であり、かつ、腐食性が厳しい環境下においても優れた耐久性を実現可能な耐摩耗材料として好適に用いることができる。また、本発明の溶接棒は、プラズマ肉盛溶接装置(PTA)を用いた肉盛溶接の他、レーザー溶接、電気アーク溶接、TIG溶接、あるいはMIG溶接等を行う装置を用いた肉盛溶接など種々の肉盛溶接技術に適用することができる。 The welding rod of the present invention comprises hard phase particles containing Mo 2 FeB 2 or Mo 2 NiB 2 as a double boride, and a binder phase made of Fe-based alloy or Ni-based alloy, and the content ratio of the hard phase particles Is made of cermet with 50 to 95% by weight. Therefore, according to the welding rod of the present invention, a cermet layer excellent in corrosion resistance, heat resistance, and wear resistance can be satisfactorily formed by overlay welding on a metal base material using the welding rod. In particular, according to the welding rod of the present invention, such a cermet layer excellent in corrosion resistance, heat resistance and wear resistance can be formed in a short time and at low cost, and productivity can be improved. It becomes. The material obtained by forming the cermet layer on the metal base material thus obtained includes, for example, members for injection molding machines, various sliding members, cold forging tools, hot forging tools, chemical plants, etc. It can be suitably used as a wear-resistant material capable of realizing excellent durability even in an environment with high load and severe corrosivity. Further, the welding rod of the present invention includes overlay welding using an apparatus for performing laser welding, electric arc welding, TIG welding, MIG welding, etc. in addition to overlay welding using a plasma overlay welding apparatus (PTA). It can be applied to various overlay welding techniques.
 以下に、実施例を挙げて、本発明についてより具体的に説明するが、本発明は、これら実施例に限定されない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
<実施例1>
 配合組成が、B:6.44重量%、Mo:53.19重量%、Cr:7.68重量%、Ni:1.43重量%、Fe:残部となるように、原料粉末を配合し、次いで、原料粉末100重量部に対して、5重量部の低融点バインダとしてのパラフィンワックスを加え、これをアセトン中で、振動ボールミルを用いて20時間湿式混合粉砕を行なうことにより、原料粉末のスラリーを得た。
<Example 1>
The raw material powder was blended so that the blending composition was B: 6.44% by weight, Mo: 53.19% by weight, Cr: 7.68% by weight, Ni: 1.43% by weight, Fe: the balance, Next, 5 parts by weight of a paraffin wax as a low melting point binder is added to 100 parts by weight of the raw material powder, and this is wet mixed and pulverized in acetone using a vibration ball mill for 20 hours, thereby slurrying the raw material powder. Got.
 次いで、得られた原料粉末のスラリーを、窒素雰囲気中で、95℃、8時間乾燥し、得られた乾燥物を、スパルタンリューザーを用いて造粒することで、造粒粒子を得た。そして、この造粒粒子に、高融点バインダとしてのアタクチックポリプロピレンを添加し、撹拌混合機を用いて150℃に加熱しながら4時間混練してコンパウンドとした後、常温まで冷却し、粉砕して射出成形用ペレットとした。 Next, the obtained slurry of raw material powder was dried in a nitrogen atmosphere at 95 ° C. for 8 hours, and the obtained dried product was granulated using a Spartan Luther to obtain granulated particles. Then, atactic polypropylene as a high melting point binder is added to the granulated particles, and the mixture is kneaded for 4 hours while heating to 150 ° C. using a stirrer / mixer to form a compound, then cooled to room temperature and pulverized. It was set as the pellet for injection molding.
 次いで、射出成形機を用いて70MPaの圧力をかけ、45℃に加熱した金型(内寸:0.8mmφ×125mm)中に、上記にて得られた射出成形用ペレットを100℃に加熱した状態で投入し、棒状の射出成形体を得た。 Subsequently, the pressure of 70 MPa was applied using an injection molding machine, and the pellets for injection molding obtained above were heated to 100 ° C. in a mold heated to 45 ° C. (inner dimensions: 0.8 mmφ × 125 mm). The rod-shaped injection molded body was obtained.
 そして、得られた棒状の射出成形体を焼結用のチャンバーに装填し、チャンバー内を、1×10Paに減圧しつつ窒素ガスを流入させながら2℃/分の昇温速度で250℃まで昇温して2時間保持し、造粒粒子の表面に付着したパラフィンワックスを除去した。そして、これに引き続き、チャンバー内を1×10Paに減圧しつつ窒素ガスを流入させながら2℃/分の昇温速度で400℃まで昇温して2時間保持し、造粒粒子の表面に付着したアタクチックポリプロピレンを除去した。 The obtained rod-shaped injection-molded body was loaded into a sintering chamber, and the chamber was decompressed to 1 × 10 3 Pa while flowing nitrogen gas at a rate of 2 ° C./min. The temperature was raised to and maintained for 2 hours to remove the paraffin wax adhering to the surface of the granulated particles. Subsequently, while the pressure inside the chamber is reduced to 1 × 10 3 Pa and nitrogen gas is introduced, the temperature is raised to 400 ° C. at a temperature raising rate of 2 ° C./min and held for 2 hours. The atactic polypropylene adhering to was removed.
 次いで、チャンバー内を、1×10Pa以下の減圧状態とした後、10℃/分の昇温速度で1000℃まで昇温させ、その後1℃/分の昇温速度で1150℃に昇温させて、1時間保持する還元処理を施した。 Next, after reducing the pressure in the chamber to 1 × 10 0 Pa or less, the temperature is raised to 1000 ° C. at a rate of 10 ° C./min, and then raised to 1150 ° C. at a rate of 1 ° C./min. And a reduction treatment for 1 hour was performed.
 さらに、1℃/分の昇温速度で1150℃まで昇温させ、次いで5℃/分の昇温速度で1220℃まで昇温させ、10分間保持して液相焼結した後、加熱を停止してチャンバー中で常温まで冷却することで、直径0.5mmφ、長さ100mmのサーメット焼結体からなる溶接棒を得た。 Further, the temperature was raised to 1150 ° C. at a rate of 1 ° C./min, then raised to 1220 ° C. at a rate of 5 ° C./min, held for 10 minutes, liquid phase sintered, and then stopped. Then, by cooling to room temperature in the chamber, a welding rod made of a cermet sintered body having a diameter of 0.5 mmφ and a length of 100 mm was obtained.
 そして、上記にて得られた溶接棒について、硬質相粒子の含有割合、およびロックウェル硬度(HRA)の測定を行なった。また、上記にて得られた溶接棒を用い、金属母材としてのSCM440上に、プラズマ肉盛溶接装置(PTA)を用いて、溶接棒を溶解させることで、肉盛溶接によりサーメット層を形成し、得られたサーメット層の最表層について、ロックウェル硬度(HRA)の測定を行なった。 Then, the content ratio of the hard phase particles and the Rockwell hardness (HRA) were measured for the welding rod obtained above. Also, using the welding rod obtained above, a cermet layer is formed by overlay welding by melting the welding rod on the SCM440 as a metal base material using a plasma overlay welding apparatus (PTA). And the Rockwell hardness (HRA) was measured about the outermost layer of the obtained cermet layer.
 溶接棒を構成するサーメット中における、硬質相粒子の含有割合は、次の方法により、行なった。すなわち、まず、走査型電子顕微鏡(SEM)を用いて、溶接棒の任意の表面について、反射電子像の撮影を行い、得られた反射電子像について、硬質相粒子が白色となり、結合相部分が黒色となるように2値化処理を行なった。次いで、2値化処理を行なった反射電子像を用いて、画像解析装置により、硬質相粒子の面積の測定を行い、硬質相粒子の面積から(結合相および硬質相粒子の比重を考慮した上で)硬質相粒子の含有割合を求めた。 The content ratio of the hard phase particles in the cermet constituting the welding rod was determined by the following method. That is, first, a scanning electron microscope (SEM) is used to take a reflected electron image of an arbitrary surface of the welding rod, and in the obtained reflected electron image, the hard phase particles are white and the binder phase portion is The binarization process was performed so that it might become black. Next, the area of the hard phase particles is measured by an image analyzer using the backscattered electron image subjected to the binarization treatment, and the specific gravity of the binder phase and the hard phase particles is taken into consideration from the area of the hard phase particles. The content ratio of hard phase particles was determined.
 また、溶接棒およびサーメット層の最表層のロックウェル硬度(HRA)は、ロックウェル硬度計(圧子:120°ダイアモンド円錐圧子)を用いて、荷重60kg・fの条件で測定した。 Further, the Rockwell hardness (HRA) of the outermost layer of the welding rod and cermet layer was measured using a Rockwell hardness meter (indenter: 120 ° diamond conical indenter) under the condition of a load of 60 kg · f.
<実施例2~18>
 配合組成が、それぞれ表1に示す組成となるように配合した原料粉末を用いた以外は、実施例1と同様にして、サーメット焼結体からなる溶接棒を得て、同様に評価を行った。結果を表1に示す。
<Examples 2 to 18>
A welding rod made of a cermet sintered body was obtained and evaluated in the same manner as in Example 1 except that the raw material powder blended so that the blending composition became the composition shown in Table 1 was used. . The results are shown in Table 1.
<比較例1~5>
 配合組成が、それぞれ表1に示す組成となるように配合した原料粉末を用いた以外は、実施例1と同様にして、サーメット焼結体からなる溶接棒を得て、同様に評価を行った。結果を表1に示す。
<Comparative Examples 1 to 5>
A welding rod made of a cermet sintered body was obtained and evaluated in the same manner as in Example 1 except that the raw material powder blended so that the blending composition became the composition shown in Table 1 was used. . The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、溶接棒を構成するサーメットとして、MoFeBからなる硬質相粒子を含み、該硬質相粒子の含有割合が50~95重量%である実施例1~18においては、該溶接棒を用いて肉盛溶接することにより得られたサーメット層の最表層のロックウェル硬度(HRA)が、いずれも80以上となり、いずれも耐摩耗性に優れるものであった(たとえば、図2参照)。また、実施例1~18において得られたサーメット層は、MoFeBからなる硬質相粒子を含むものであるため、耐摩耗性に加えて、複硼化物としてのMoFeBが本来有する耐食性および耐熱性にも優れるものであった。 As shown in Table 1, in Examples 1 to 18 including hard phase particles made of Mo 2 FeB 2 as the cermet constituting the welding rod, and the content ratio of the hard phase particles is 50 to 95% by weight, The Rockwell hardness (HRA) of the outermost layer of the cermet layer obtained by overlay welding using the welding rod was 80 or more, and all of them were excellent in wear resistance (for example, FIG. 2). Further, since the cermet layers obtained in Examples 1 to 18 contain hard phase particles made of Mo 2 FeB 2 , in addition to wear resistance, the corrosion resistance inherent in Mo 2 FeB 2 as a double boride and It was also excellent in heat resistance.
 一方、溶接棒を構成するサーメット中における、硬質相粒子の含有割合が50%未満である比較例1~5においては、該溶接棒を用いて肉盛溶接することにより得られたサーメット層の最表層のロックウェル硬度(HRA)が、いずれも80未満となり、いずれも耐摩耗性に劣るものであった(たとえば、図2参照)。 On the other hand, in Comparative Examples 1 to 5 in which the content ratio of the hard phase particles in the cermet constituting the welding rod is less than 50%, the most cermet layer obtained by overlay welding using the welding rod is used. The Rockwell hardness (HRA) of the surface layer was less than 80, and all were inferior in wear resistance (for example, see FIG. 2).
10…ディスク形状の試料
20…リング形状の試料
10: Disc-shaped sample 20 ... Ring-shaped sample

Claims (6)

  1.  サーメットからなる溶接棒であって、
     前記サーメットが、複硼化物としてのMoFeBまたはMoNiBを含む硬質相粒子と、Fe基合金またはNi基合金からなる結合相とからなり、前記硬質相粒子の含有割合が50~95重量%であることを特徴とする溶接棒。
    A welding rod made of cermet,
    The cermet is composed of hard phase particles containing Mo 2 FeB 2 or Mo 2 NiB 2 as a double boride and a binder phase composed of an Fe-based alloy or Ni-based alloy, and the content ratio of the hard phase particles is 50 to A welding rod characterized by being 95% by weight.
  2.  直径が0.3~5.0mmφであり、長さが50~200mmであることを特徴とする請求項1に記載の溶接棒。 The welding rod according to claim 1, wherein the diameter is 0.3 to 5.0 mmφ and the length is 50 to 200 mm.
  3.  請求項1または2に記載の溶接棒を製造する方法であって、
     前記サーメットを形成するための原料粉末を、低融点バインダおよび有機溶剤とともに混合することで、スラリーを得る工程と、
     前記スラリーを乾燥し、得られた乾燥物を造粒することで、造粒粒子を得る工程と、
     前記造粒粒子に、前記低融点バインダよりも溶融温度の高い高融点バインダを添加し、前記高融点バインダを添加した造粒粒子をペレット化することで、ペレットを得る工程と、
     前記ペレットを射出成形して射出成形体を得る工程と、
     前記射出成形体を粉末冶金法により焼結する工程と、を備えることを特徴とする溶接棒の製造方法。
    A method for producing the welding rod according to claim 1 or 2,
    Mixing raw material powder for forming the cermet together with a low melting point binder and an organic solvent to obtain a slurry;
    Drying the slurry and granulating the resulting dried product to obtain granulated particles;
    Adding a high melting point binder having a higher melting temperature than the low melting point binder to the granulated particles, pelletizing the granulated particles to which the high melting point binder has been added, and obtaining pellets;
    A step of injection-molding the pellets to obtain an injection-molded body;
    And a step of sintering the injection-molded body by powder metallurgy.
  4.  前記低融点バインダがパラフィンワックスであることを特徴とする請求項3に記載の溶接棒の製造方法。 The method of manufacturing a welding rod according to claim 3, wherein the low melting point binder is paraffin wax.
  5.  前記高融点バインダがポリプロピレンであることを特徴とする請求項3または4に記載の溶接棒の製造方法。 The method for manufacturing a welding rod according to claim 3 or 4, wherein the high melting point binder is polypropylene.
  6.  前記原料粉末が、Bを4.2~6.5重量%、Moを35~55重量%含有することを特徴とする請求項3~5のいずれかに記載の溶接棒の製造方法。 The method for producing a welding rod according to any one of claims 3 to 5, wherein the raw material powder contains 4.2 to 6.5 wt% of B and 35 to 55 wt% of Mo.
PCT/JP2012/068641 2011-08-19 2012-07-24 Welding rod and manufacturing method therefor WO2013027523A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-179716 2011-08-19
JP2011179716A JP2014223630A (en) 2011-08-19 2011-08-19 Welding rod and production method thereof

Publications (1)

Publication Number Publication Date
WO2013027523A1 true WO2013027523A1 (en) 2013-02-28

Family

ID=47746274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068641 WO2013027523A1 (en) 2011-08-19 2012-07-24 Welding rod and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JP2014223630A (en)
WO (1) WO2013027523A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115131A1 (en) * 2012-01-31 2013-08-08 東洋鋼鈑株式会社 Molded article, material for molded article, and methods for producing same
CN106916986A (en) * 2017-02-22 2017-07-04 三峡大学 A kind of inexpensive Mo2FeB2The preparation method of based ceramic metal
CN113005319A (en) * 2021-02-22 2021-06-22 林玉婷 Metal ceramic wear-resistant material and preparation method thereof
CN114029652A (en) * 2021-11-17 2022-02-11 广东博杰特新材料科技有限公司 Ferro-molybdenum-boron alloy welding rod and preparation method and application thereof
CN114318038A (en) * 2021-12-01 2022-04-12 三峡大学 Boride modified Mo2FeB2Base cermet and method for preparing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2545886B (en) * 2015-11-09 2018-04-25 Cutting & Wear Resistant Developments Ltd Preparation of composite rods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215456A (en) * 1983-05-20 1984-12-05 Toyo Kohan Co Ltd Composite material having high resistance to abrasive wear, corrosion and heat
JPH0913177A (en) * 1995-06-29 1997-01-14 Tokushu Denkyoku Kk Cermet build-up metallic parts by welding and production thereof
JPH115191A (en) * 1997-04-25 1999-01-12 Asahi Glass Co Ltd Cermet cladding metal parts and manufacture thereof
JP2007314870A (en) * 2006-04-28 2007-12-06 Toyo Kohan Co Ltd Method for producing hard alloy sintered compact, and hard alloy sintered compact
JP2008049399A (en) * 2006-07-27 2008-03-06 Iwate Industrial Research Center Method for manufacturing preform, preform and inserted article using preform

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215456A (en) * 1983-05-20 1984-12-05 Toyo Kohan Co Ltd Composite material having high resistance to abrasive wear, corrosion and heat
JPH0913177A (en) * 1995-06-29 1997-01-14 Tokushu Denkyoku Kk Cermet build-up metallic parts by welding and production thereof
JPH115191A (en) * 1997-04-25 1999-01-12 Asahi Glass Co Ltd Cermet cladding metal parts and manufacture thereof
JP2007314870A (en) * 2006-04-28 2007-12-06 Toyo Kohan Co Ltd Method for producing hard alloy sintered compact, and hard alloy sintered compact
JP2008049399A (en) * 2006-07-27 2008-03-06 Iwate Industrial Research Center Method for manufacturing preform, preform and inserted article using preform

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115131A1 (en) * 2012-01-31 2013-08-08 東洋鋼鈑株式会社 Molded article, material for molded article, and methods for producing same
CN106916986A (en) * 2017-02-22 2017-07-04 三峡大学 A kind of inexpensive Mo2FeB2The preparation method of based ceramic metal
CN113005319A (en) * 2021-02-22 2021-06-22 林玉婷 Metal ceramic wear-resistant material and preparation method thereof
CN113005319B (en) * 2021-02-22 2023-01-20 深圳羽动创新科技有限公司 Metal ceramic wear-resistant material and preparation method thereof
CN114029652A (en) * 2021-11-17 2022-02-11 广东博杰特新材料科技有限公司 Ferro-molybdenum-boron alloy welding rod and preparation method and application thereof
CN114318038A (en) * 2021-12-01 2022-04-12 三峡大学 Boride modified Mo2FeB2Base cermet and method for preparing same

Also Published As

Publication number Publication date
JP2014223630A (en) 2014-12-04

Similar Documents

Publication Publication Date Title
WO2013027523A1 (en) Welding rod and manufacturing method therefor
JP6354592B2 (en) Metal powder for powder metallurgy, compound, granulated powder and sintered body
WO2012133328A1 (en) Hard sintered alloy
JP7272353B2 (en) Cemented Carbide, Cutting Tool and Cemented Carbide Manufacturing Method
JP2009542905A (en) Manufacturing method of alloy parts by metal injection molding and alloy parts thereof
JPWO2018194018A1 (en) Cemented carbide, cutting tool including the same, and method for producing cemented carbide
JP2015193904A (en) Metallic powder for powder metallurgy, compound, granulated powder, sintered body and manufacturing method of the same
JP2016098393A (en) Hard metal alloy
JPH03505862A (en) High hardness wear resistant material
JP5905907B2 (en) Method for producing Mo-Si-B alloy powder, metal material raw material powder and Mo-Si-B alloy powder
Panigrahi et al. Microstructure and mechanical properties of novel tungsten heavy alloys prepared using FeNiCoCrCu HEA as binder
Wang et al. Microstructure, preparation and properties of TiC-Fe/FeCoCrNiMn cermet with a core-rim structure
JP2015523954A (en) Sintered super-hard compact for cutting tools and its manufacturing method
JP6044737B2 (en) Cylinder for molding machine and manufacturing method thereof
KR20090115968A (en) Cemented carbide material and tool
JP4877997B2 (en) Method for producing sintered hard alloy
JP2016125103A (en) Metal powder for powder metallurgy, compound, granulated powder and sintered body
EP2853611B1 (en) Powder mixtures containing uniform dispersions of ceramic particles in superalloy particles and related methods
SE524583C2 (en) Composite metal product and process for making such
JP6387627B2 (en) Method for producing tungsten carbide based cemented carbide tool with excellent heat crack resistance
JP5095669B2 (en) Cylinder lining material for centrifugal casting and centrifugal casting method for producing cylinder lining material
Kim et al. Microstructure and mechanical properties of powder-injection-molded products of Cu-based amorphous powders and Fe-based metamorphic powders
JP6299610B2 (en) Metal powder for powder metallurgy, compound, granulated powder and sintered body
JP2018080375A (en) Cemented carbide and cemented carbide tool
Chol et al. Microstructure and Property of Sintered M4 High Speed Steels with regard to Evolution of Carbides and Carbonitrides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12825838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12825838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP