WO2013026211A1 - 工程机械回转机构的控制方法和控制系统以及工程机械 - Google Patents
工程机械回转机构的控制方法和控制系统以及工程机械 Download PDFInfo
- Publication number
- WO2013026211A1 WO2013026211A1 PCT/CN2011/078945 CN2011078945W WO2013026211A1 WO 2013026211 A1 WO2013026211 A1 WO 2013026211A1 CN 2011078945 W CN2011078945 W CN 2011078945W WO 2013026211 A1 WO2013026211 A1 WO 2013026211A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- controller
- power
- control
- signal
- control signal
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/18—Control systems or devices
- B66C13/22—Control systems or devices for electric drives
Definitions
- the present invention relates to a control method and control system for a construction machine slewing mechanism, and a construction machine.
- BACKGROUND OF THE INVENTION At present, when the tower crane is operated on site, the control performance of the slewing mechanism is very important for the operation and work efficiency of the on-site tower crane driver. Due to the long boom of the tower crane, the inertia of the slewing mechanism control system is soft, the characteristics are soft, and the speed response is delayed. The slewing mechanism of the tower crane requires fast starting response, stable speed during operation, smooth transition of the speed change, and is in place during parking. Smooth and accurate, excellent wind resistance. There are many control schemes for the slewing mechanism.
- the application is more for the winding motor with the hydraulic coupling mechanism, the series resistance speed control, the frequency conversion motor with the inverter drive speed regulation and the intergranular tube pressure regulation.
- the intergranular tube voltage regulation method is adopted to adjust the voltage stepless speed regulation, and the field operation performance is superior.
- the control scheme applied on the market is the RCV controller driving the swing torque motor, and the eddy current assist control rotation deceleration
- the control device of the RCV controller has a high failure rate and unstable reliability, which affects the widespread promotion of the control scheme.
- the reliability of controlling the slewing mechanism of the tower crane by the RCV controller is low, and an effective solution has not been proposed for this problem.
- the main object of the present invention is to provide a control method and control system for a construction machinery slewing mechanism and a construction machine to solve the problem of low reliability of controlling the slewing mechanism of the tower crane by using the RCV controller in the prior art. problem.
- a control method of a construction machine slewing mechanism is provided.
- the control method of the engineering machinery swing mechanism of the present invention comprises: the controller of the construction machine receives the speed command signal, converts the speed command signal into a power control signal required by the power controller, and then sends the power control signal to the power controller; The controller converts the power control signal into a control signal of the power module and then sends the control signal to the power module; the power module controls the torque motor of the swing mechanism according to a control signal sent by the power controller.
- a control system for a construction machine slewing mechanism is provided.
- the control system of the engineering machinery swing mechanism of the present invention comprises a controller, a power controller and a power module, wherein: the controller is configured to receive a speed command signal, and convert the speed command signal into a required value of the power controller The power control signal is then sent to the power controller; the power controller is configured to convert the power control signal into a control signal of the power module and then send the signal to the power module; The control signal sent by the power controller controls the torque motor of the swing mechanism.
- the speed command signal is received by the controller of the construction machine, and the signal is converted into a power control signal and then sent to the power controller, and the power controller converts the power control signal into a control signal of the power module and then sends the signal to the power module.
- the power module controls the torque motor of the slewing mechanism according to the control signal sent by the power controller.
- the method uses the controller of the engineering machine as the core control device, and the control is controlled by the intermediate conversion of the power controller.
- the real-time digital signal of the device is converted into the control signal of the power module.
- FIG. 1 is a schematic view showing a control method of a construction machine swing mechanism according to an embodiment of the present invention
- FIG. 1 is a schematic diagram of a control method of a construction machine swing mechanism according to an embodiment of the present invention. As shown in FIG.
- the method mainly includes the following steps: Step S11: A controller of a construction machine receives a speed command signal, and the speed command signal is The power control signal required for conversion to the power controller is then sent to the power controller; Step S13: The power controller converts the power control signal into a control signal of the power module and then sends the control signal to the power module; Step S15: The power module is based on the power controller The transmitted control signal controls the torque motor of the slewing mechanism.
- the main control elements are a controller, a power controller and a power module (three-phase AC voltage regulating module), wherein the controller may be an existing controller of the engineering machine.
- step S11 when the speed command signal is converted into the power control signal required by the power controller, specifically, the speed command signal is converted into a digital pulse width modulation (PWM) signal; thus, in step S13.
- PWM digital pulse width modulation
- the power controller converts the power control signal into the control signal of the power module, the power controller may convert the digital PWM signal into an analog pulse width modulation signal.
- the speed command signal in step S11 may be a swing control handle from the construction machine, BP.
- the swing control handle of the construction machine Before step S11, the swing control handle of the construction machine generates a speed command signal according to the received handle operation and then transmits the speed command signal to the controller.
- the rotational speed of the torque motor can be assisted by the eddy current coil of the slewing mechanism.
- the eddy current controller and the eddy current device may be used.
- the auxiliary speed regulation information may be sent to the eddy current controller by the controller, and the eddy current controller generates the auxiliary speed control command according to the auxiliary speed regulation information and then sends the auxiliary speed regulation command to the eddy current device.
- the eddy current device adjusts the rotational speed of the torque motor according to the auxiliary speed control command.
- the controller, the eddy current controller and the eddy current device assist the speed regulation of the torque motor with high reliability.
- the control of the torque motor brake can be completed by the controller. Specifically, the controller receives the brake command, generates a brake control command according to the brake command, and then sends the brake device to the brake device of the torque motor.
- the device brakes the torque motor according to the brake control command.
- the construction machine mentioned in the method of the embodiment may be a tower crane. 2 is a schematic diagram showing the basic structure of a control system of a construction machine slewing mechanism according to an embodiment of the present invention. As shown in FIG.
- the control system 20 of the construction machine slewing mechanism mainly includes the following parts: a controller 21 for receiving a speed command a signal, which converts the speed command signal into a power control signal required by the power controller and then sent to the power controller 23; the power controller 23 is configured to convert the power control signal into a control signal of the power module 25 and then send the signal to the power module 25; The power module 25 is configured to control the torque motor 27 of the swing mechanism according to the control signal sent by the power controller 23.
- the controller 21 after receiving the speed given signal, the controller 21 passes the program modeling process, and sends a control signal to the power controller 23, and the power controller 23 receives the digital control signal, and internally converts it into an analog quantity.
- the signal is controlled by the analog control signal to control the power module 25 to drive the swing torque motor 27.
- the voltage of the output of the thyristor main circuit in the power module 25 can be adjusted by changing the given speed of the swing control handle 29 to achieve the speed of the torque motor 27. purpose.
- the power module 25 converts the input three-phase current and outputs it, and supplies power to the torque motor 27.
- 3 is a schematic view of a preferred configuration of a control system of a construction machine swing mechanism according to an embodiment of the present invention. As shown in FIG.
- control system 30 of the construction machine slewing mechanism may further include an eddy current controller 34 and a vortex device 35, wherein the eddy current controller 34 is configured to generate an auxiliary speed control command according to the auxiliary speed regulation information sent by the controller 21 and then transmit The vortex device is used; the vortex device 35 is used to adjust the rotational speed of the torque motor 27 according to the auxiliary speed control command.
- Control 30 of the construction machine slewing mechanism may also include a brake device 36 (also shown in Figure 3).
- the controller 21 is also operable to receive a brake command, generate a brake control command based on the brake command and then transmit to the brake device 36; the brake device 36 is configured to brake the torque motor 27 in accordance with the brake control command.
- the construction machine of the present invention has a swing mechanism and has a control system of the construction machine swing mechanism of the present invention, which may be a tower crane.
- the control method and the control system of the engineering machinery slewing mechanism of the present invention receive the speed command signal through the controller of the engineering machine, convert the signal into a power control signal, and send it to the power controller, and the power controller will power
- the control signal is converted into a control signal of the power module and then sent to the power module, and then the power module controls the torque motor of the slewing mechanism according to the control signal sent by the power controller.
- the method uses the controller of the engineering machine as the core control.
- the device converts the real-time digital signal of the controller into a control signal of the power module through the intermediate conversion of the power controller, and adjusts the voltage of the main circuit of the thyristor in the power module to adjust the input voltage of the torque motor through the control of the trigger control circuit.
- the utility model realizes the speed control of the tower crane swing torque motor; in the embodiment of the invention, the main control components are the controller, the power controller and the power module, all of which are high reliability products, the failure rate is low, and the help is For improving tower lifting
- the slewing mechanism of the machine performs control reliability.
- modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module.
- the invention is not limited to any specific combination of hardware and software.
- the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Mechanical Engineering (AREA)
- Control And Safety Of Cranes (AREA)
Abstract
本发明提供了一种工程机械回转机构的控制方法和控制系统以及工程机械,用以解决现有技术中采用RCV控制器对塔式起重机的回转机构进行控制的可靠性较低的问题。该方法包括:工程机械的控制器接收速度命令信号,将该速度命令信号转换为功率控制器所需的功率控制信号然后发送给功率控制器;功率控制器将功率控制信号转换为功率模块的控制信号然后发送给功率模块;功率模块根据功率控制器发送的控制信号对回转机构的力矩电机进行控制。采用本发明的技术方案,有助于提高对塔式起重机的回转机构进行控制的可靠性。
Description
工程机械回转机构的控制方法和控制系统以及工程机械 技术领域 本发明涉及一种工程机械回转机构的控制方法和控制系统以及工程机械。 背景技术 目前, 在塔式起重机的工地现场操作时, 回转机构的控制性能对于现场塔式起重 机司机的操作与工作效率非常的重要。 由于塔式起重机起重臂长, 回转机构控制系统 惯性大、 特性软、 速度响应迟滞, 塔式起重机回转机构运行中要求起动响应速度快、 运行中速度稳定、 换速过渡平滑, 停车时就位平稳准确、 抗风性能优异。 回转机构的 控制方案有很多种, 应用比较多的为绕线电机配合液力耦合机构串电阻调速、 变频电 机配合变频器驱动调速和晶间管调压调速。 现有技术中采取晶间管调压调速方式为调节电压无极调速, 现场操作性能优越, 目前市场上应用较多的控制方案为 RCV控制器驱动回转力矩电机,配有涡流辅助控制 回转减速, 但在现场工况下 RCV控制器的控制器件故障率高, 可靠性不稳定, 影响该 控制方案的广泛推广。 在现有技术中, 采用 RCV控制器对塔式起重机的回转机构进行控制的可靠性较 低, 对于该问题, 目前尚未提出有效解决方案。 发明内容 本发明的主要目的是提供一种工程机械回转机构的控制方法和控制系统以及工程 机械,以解决现有技术中采用 RCV控制器对塔式起重机的回转机构进行控制的可靠性 较低的问题。 为解决上述问题, 根据本发明的一个方面, 提供了一种工程机械回转机构的控制 方法。 本发明的工程机械回转机构的控制方法包括: 工程机械的控制器接收速度命令信 号, 将该速度命令信号转换为功率控制器所需的功率控制信号然后发送给所述功率控 制器; 所述功率控制器将所述功率控制信号转换为功率模块的控制信号然后发送给所 述功率模块; 所述功率模块根据所述功率控制器发送的控制信号对所述回转机构的力 矩电机进行控制。
根据本发明的另一方面, 提供了一种工程机械回转机构的控制系统。 本发明的工程机械回转机构的控制系统包括控制器、 功率控制器和功率模块, 其 中: 所述控制器, 用于接收速度命令信号, 将该速度命令信号转换为所述功率控制器 所需的功率控制信号然后发送给所述功率控制器; 所述功率控制器, 用于将所述功率 控制信号转换为功率模块的控制信号然后发送给所述功率模块; 所述功率模块, 用于 根据所述功率控制器发送的控制信号对所述回转机构的力矩电机进行控制。 根据本发明的又一方面, 提供了一种工程机械, 该工程机械具有回转机构, 并且 具有本发明的工程机械回转机构的控制系统。 根据本发明的技术方案, 通过工程机械的控制器接收速度命令信号, 将该信号转 换为功率控制信号后发送给功率控制器, 功率控制器将功率控制信号转换为功率模块 的控制信号然后发送给功率模块, 后由功率模块根据功率控制器发送的控制信号对回 转机构的力矩电机进行控制, 该方法中采用了工程机械自身的控制器作为核心控制器 件, 通过功率控制器的中间转换, 将控制器的实时数字信号转换为功率模块的控制信 号, 通过触发控制电路的控制, 调节功率模块内晶闸管主电路的电压达到对力矩电机 输入电压进行调节的效果, 实现了对塔式起重机回转力矩电机的调速控制; 在本发明 实施例中, 主要控制元件为控制器、 功率控制器和功率模块, 均为高可靠性产品, 故 障率低, 有助于提高对塔式起重机的回转机构进行控制的可靠性。 附图说明 说明书附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发明的示 意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1是根据本发明实施例的工程机械回转机构的控制方法的示意图; 图 2是根据本发明实施例的工程机械回转机构的控制系统的基本结构的示意图; 以及 图 3是根据本发明实施例的工程机械回转机构的控制系统的优选结构的示意图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。
图 1是根据本发明实施例的工程机械回转机构的控制方法的示意图,如图 1所示, 该方法主要包括如下步骤: 步骤 S11 : 工程机械的控制器接收速度命令信号, 将该速度命令信号转换为功率 控制器所需的功率控制信号然后发送给功率控制器; 步骤 S13 : 功率控制器将功率控制信号转换为功率模块的控制信号然后发送给功 率模块; 步骤 S15 : 功率模块根据功率控制器发送的控制信号对回转机构的力矩电机进行 控制。 应用本实施例中的这种控制方法, 其主要控制元件为控制器、 功率控制器和功率 模块(三相交流调压模块), 其中的控制器可以是工程机械现有的控制器。上述几种控 制元件为高可靠性产品, 故障率低, 用它们构成的系统稳定性较高, 有助于提高对塔 式起重机的回转机构进行控制的可靠性。 在上述步骤 S11中, 将速度命令信号转换为功率控制器所需的功率控制信号时, 具体可以是: 将速度命令信号转换为数字量的脉宽调制 (PWM)信号; 这样, 在步骤 S13 中, 功率控制器将功率控制信号转换为功率模块的控制信号时, 具体可以是功率 控制器将数字量的 PWM信号转换为模拟量的脉宽调制信号。 步骤 S11中的速度命令信号可以是来自工程机械的回转控制手柄, BP,在步骤 S11 之前, 工程机械的回转控制手柄根据接收到的手柄操作, 生成速度命令信号然后发送 给控制器。 在本实施例中, 可以利用回转机构的涡流线圈对力矩电机的转速进行辅助调整。 具体可采用涡流控制器和涡流装置, 这样, 在步骤 S11之后, 可由控制器将辅助调速 信息发送给涡流控制器, 涡流控制器根据辅助调速信息生成辅助调速指令然后发送给 涡流装置, 涡流装置根据辅助调速指令对力矩电机的转速进行调节。这种采用控制器、 涡流控制器和涡流装置对力矩电机的转速进行辅助调速, 具有较高的可靠性。 在本实施例中, 对于力矩电机制动的控制可由控制器完成, 具体是, 控制器接收 制动命令, 根据该制动命令生成制动控制指令然后发送给力矩电机的制动装置, 制动 装置根据制动控制指令对力矩电机进行制动。 本实施例的方法中提到的工程机械可以是塔式起重机。
图 2是根据本发明实施例的工程机械回转机构的控制系统的基本结构的示意图, 如图 2所示, 工程机械回转机构的控制系统 20主要包括如下部分: 控制器 21, 用于 接收速度命令信号, 将该速度命令信号转换为功率控制器所需的功率控制信号然后发 送给功率控制器 23 ; 功率控制器 23, 用于将功率控制信号转换为功率模块 25的控制 信号然后发送给功率模块 25 ; 功率模块 25, 用于根据功率控制器 23发送的控制信号 对回转机构的力矩电机 27进行控制。 在本实施例中, 控制器 21在接收到速度给定信号后, 经过程序建模处理, 发送控 制信号给功率控制器 23, 功率控制器 23接收到数字量的控制信号, 内部转换为模拟 量信号, 由模拟量控制信号控制功率模块 25来驱动回转力矩电机 27, 通过改变回转 控制手柄 29给定速度可以调节功率模块 25中的晶闸管主电路的输出的电压, 以达到 调节力矩电机 27速度的目的。 其中功率模块 25将输入的三相电流进行转换后输出, 为力矩电机 27供电。 图 3是根据本发明实施例的工程机械回转机构的控制系统的优选结构的示意图。 如图 3所示, 工程机械回转机构的控制系统 30还可以包括涡流控制器 34和涡流装置 35, 其中涡流控制器 34用于根据控制器 21发送的辅助调速信息生成辅助调速指令然 后发送给涡流装置; 涡流装置 35用于根据辅助调速指令对力矩电机 27的转速进行调 节。工程机械回转机构的控制 30还可以包括制动装置 36 (同示于图 3中)。控制器 21 还可用于接收制动命令, 根据该制动命令生成制动控制指令然后发送给制动装置 36; 制动装置 36用于根据制动控制指令对力矩电机 27进行制动。 本发明的工程机械具有回转机构, 并且具有本发明中的工程机械回转机构的控制 系统, 该工程机械可以是塔式起重机。 由以上描述可知, 本发明的工程机械回转机构的控制方法和控制系统, 通过工程 机械的控制器接收速度命令信号,将该信号转换为功率控制信号后发送给功率控制器, 功率控制器将功率控制信号转换为功率模块的控制信号然后发送给功率模块, 后由功 率模块根据功率控制器发送的控制信号对回转机构的力矩电机进行控制, 该方法中采 用了工程机械自身的控制器作为核心控制器件, 通过功率控制器的中间转换, 将控制 器的实时数字信号转换为功率模块的控制信号, 通过触发控制电路的控制, 调节功率 模块内晶闸管主电路的电压达到对力矩电机输入电压进行调节的效果, 实现了对塔式 起重机回转力矩电机的调速控制; 在本发明实施例中, 主要控制元件为控制器、 功率 控制器和功率模块, 均为高可靠性产品, 故障率低, 有助于提高对塔式起重机的回转 机构进行控制的可靠性。
显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 或者将它们分别制作成各个集成电路模 块, 或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明 不限制于任何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
Claims
1. 一种工程机械回转机构的控制方法, 其特征在于, 包括:
工程机械的控制器接收速度命令信号, 将该速度命令信号转换为功率控制 器所需的功率控制信号然后发送给所述功率控制器;
所述功率控制器将所述功率控制信号转换为功率模块的控制信号然后发送 给所述功率模块;
所述功率模块根据所述功率控制器发送的控制信号对所述回转机构的力矩 电机进行控制。
2. 根据权利要求 1所述的方法, 其特征在于, 工程机械的控制器接收速度命令信 号之前, 还包括: 所述工程机械的回转控制手柄根据接收到的手柄操作, 生成 所述速度命令信号然后发送给所述控制器。
3. 根据权利要求 1所述的方法,其特征在于,所述控制器接收速度命令信号之后, 还包括:
所述控制器将辅助调速信息发送给涡流控制器;
所述涡流控制器根据所述辅助调速信息生成辅助调速指令然后发送给涡流 装置;
所述涡流装置根据所述辅助调速指令对所述力矩电机的转速进行调节。
4. 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括:
所述控制器接收制动命令, 根据该制动命令生成制动控制指令然后发送给 所述力矩电机的制动装置;
所述制动装置根据所述制动控制指令对所述力矩电机进行制动。
5. 根据权利要求 1至 4中任一项所述的方法, 其特征在于, 所述将该速度命令信号转换为功率控制器所需的功率控制信号包括: 将所 述速度命令信号转换为数字量的脉宽调制信号;
所述功率控制器将所述功率控制信号转换为功率模块的控制信号包括: 所 述功率控制器将所述数字量的脉宽调制信号转换为模拟量的脉宽调制信号。
6. 根据权利要求 1至 4中任一项所述的方法, 其特征在于, 所述工程机械为塔式 起重机。
7. 一种工程机械回转机构的控制系统, 其特征在于, 包括控制器、 功率控制器和 功率模块, 其中:
所述控制器, 用于接收速度命令信号, 将该速度命令信号转换为所述功率 控制器所需的功率控制信号然后发送给所述功率控制器;
所述功率控制器, 用于将所述功率控制信号转换为功率模块的控制信号然 后发送给所述功率模块;
所述功率模块, 用于根据所述功率控制器发送的控制信号对所述回转机构 的力矩电机进行控制。
8. 根据权利要求 7所述的控制系统,其特征在于,还包括涡流控制器和涡流装置, 其中: 所述涡流控制器, 用于根据所述控制器发送的辅助调速信息生成辅助调速 指令然后发送给所述涡流装置;
所述涡流装置, 用于根据所述辅助调速指令对所述力矩电机的转速进行调 节。
9. 根据权利要求 7所述的控制系统,其特征在于,所述控制系统还包括制动装置;
所述控制器还用于接收制动命令, 根据该制动命令生成制动控制指令然后 发送给所述制动装置;
所述制动装置, 用于根据所述制动控制指令对所述力矩电机进行制动。
10. 根据权利要求 7, 8或 9所述的控制系统, 其特征在于,
所述控制器还用于将所述速度命令信号转换为数字量的脉宽调制信号; 所述功率控制器还用于将所述数字量的脉宽调制信号转换为模拟量的脉宽 调制信号。
11. 根据权利要求 7, 8或 9所述的控制系统, 其特征在于, 所述工程机械为塔式起 重机。
12. 一种工程机械, 具有回转机构, 其特征在于, 所述工程机械具有权利要求 7-10 中任一项所述的控制系统。
3. 根据权利要求 12所述的工程机械, 其特征在于, 所述工程机械为塔式起重机 t
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2011/078945 WO2013026211A1 (zh) | 2011-08-25 | 2011-08-25 | 工程机械回转机构的控制方法和控制系统以及工程机械 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2011/078945 WO2013026211A1 (zh) | 2011-08-25 | 2011-08-25 | 工程机械回转机构的控制方法和控制系统以及工程机械 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013026211A1 true WO2013026211A1 (zh) | 2013-02-28 |
Family
ID=47745861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/078945 WO2013026211A1 (zh) | 2011-08-25 | 2011-08-25 | 工程机械回转机构的控制方法和控制系统以及工程机械 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013026211A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102730568A (zh) * | 2012-07-09 | 2012-10-17 | 中联重科股份有限公司 | 起重机起升机构调速方法、设备以及包含该设备的起重机 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6311095A (ja) * | 1986-07-02 | 1988-01-18 | Daifuku Co Ltd | 入出庫用走行クレ−ンの加速制御方法 |
CN2646957Y (zh) * | 2003-08-29 | 2004-10-06 | 长沙中联重工科技发展股份有限公司 | 回转涡流控制器 |
CN201587814U (zh) * | 2009-12-25 | 2010-09-22 | 长沙中联重工科技发展股份有限公司 | 一种塔机调速装置 |
CN102141809A (zh) * | 2010-12-30 | 2011-08-03 | 中国科学院长春光学精密机械与物理研究所 | 基于速度计的光电跟踪系统跟踪架参数测试仪 |
-
2011
- 2011-08-25 WO PCT/CN2011/078945 patent/WO2013026211A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6311095A (ja) * | 1986-07-02 | 1988-01-18 | Daifuku Co Ltd | 入出庫用走行クレ−ンの加速制御方法 |
CN2646957Y (zh) * | 2003-08-29 | 2004-10-06 | 长沙中联重工科技发展股份有限公司 | 回转涡流控制器 |
CN201587814U (zh) * | 2009-12-25 | 2010-09-22 | 长沙中联重工科技发展股份有限公司 | 一种塔机调速装置 |
CN102141809A (zh) * | 2010-12-30 | 2011-08-03 | 中国科学院长春光学精密机械与物理研究所 | 基于速度计的光电跟踪系统跟踪架参数测试仪 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102730568A (zh) * | 2012-07-09 | 2012-10-17 | 中联重科股份有限公司 | 起重机起升机构调速方法、设备以及包含该设备的起重机 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9871476B2 (en) | Braking torque closed-loop control system and method for switch reluctance motor | |
US7888894B2 (en) | Electric motor control system, series hybrid vehicle, electric motor control apparatus, and electric motor control method | |
CN204089664U (zh) | 基于Buck变换器的无刷直流电机驱动电路 | |
JP4898230B2 (ja) | 風力発電システムの運転制御方法及びその装置 | |
JP6640812B2 (ja) | 蓄電装置を有するモータ駆動システム | |
WO2020098538A1 (zh) | 一种用于电励磁双凸极电机的转矩控制方法 | |
CN109019341B (zh) | 塔式起重机回转控制系统以及方法 | |
CN102427236B (zh) | 不平衡电压下采用串联网侧变换器的双馈感应风电系统抑制总输出无功功率波动的方法 | |
CN203783812U (zh) | 机械耦合式磁悬浮风机偏航系统 | |
CN103883469B (zh) | 机械耦合式磁悬浮风机偏航系统 | |
CN102328875B (zh) | 工程机械回转机构的控制方法和控制系统以及工程机械 | |
CN105305894B (zh) | 一种基于转矩分配函数在线修正的srm转矩脉动最小化控制方法 | |
WO2019233004A1 (zh) | 分布式驱动电动汽车的实时同步网络化控制装置及方法 | |
CN104678163A (zh) | 一种直流电机绕组电流的采样电路和采样方法 | |
CN101534086A (zh) | 基于cpld的电动车用开关磁阻电机的控制装置及方法 | |
CN104300854A (zh) | 基于Buck变换器的无刷直流电机驱动电路 | |
CN103078574B (zh) | 一种直流无刷电机的有源制动控制方法和系统 | |
CN103391034B (zh) | 电动汽车轮毂用盘式无铁心永磁同步电机控制器的控制方法 | |
CN104811100A (zh) | 一种电励磁双凸极电机不对称电流控制系统及其方法 | |
WO2013026211A1 (zh) | 工程机械回转机构的控制方法和控制系统以及工程机械 | |
CN104716669A (zh) | 一种永磁同步风电系统变流器双模控制方法 | |
CN202978810U (zh) | 基于双pwm变频式双馈电机的升降机构 | |
CN107332484A (zh) | 一种电力电子变换器 | |
CN210927489U (zh) | 一种三相开关磁阻电机快速制动控制系统 | |
CN110844788B (zh) | 一种塔式起重机回转控制系统及其控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11871282 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11871282 Country of ref document: EP Kind code of ref document: A1 |