WO2013026206A1 - 建筑一体空调 - Google Patents

建筑一体空调 Download PDF

Info

Publication number
WO2013026206A1
WO2013026206A1 PCT/CN2011/078904 CN2011078904W WO2013026206A1 WO 2013026206 A1 WO2013026206 A1 WO 2013026206A1 CN 2011078904 W CN2011078904 W CN 2011078904W WO 2013026206 A1 WO2013026206 A1 WO 2013026206A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
port
reversing valve
way reversing
microporous
Prior art date
Application number
PCT/CN2011/078904
Other languages
English (en)
French (fr)
Inventor
奉政一
晏飞
奉卓
杨剑
仲宁
Original Assignee
Feng Zhengyi
Yan Fei
Feng Zhuo
Yang Jian
Zhong Ning
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47745856&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013026206(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Feng Zhengyi, Yan Fei, Feng Zhuo, Yang Jian, Zhong Ning filed Critical Feng Zhengyi
Priority to KR1020147007658A priority Critical patent/KR20140053364A/ko
Priority to US14/240,457 priority patent/US20140283541A1/en
Priority to CN201180072752.3A priority patent/CN103842730B/zh
Priority to JP2014526355A priority patent/JP2014527151A/ja
Priority to PCT/CN2011/078904 priority patent/WO2013026206A1/zh
Priority to DE112011105555.2T priority patent/DE112011105555T5/de
Publication of WO2013026206A1 publication Critical patent/WO2013026206A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0085Systems using a compressed air circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/12Tube and panel arrangements for ceiling, wall, or underfloor heating
    • F24D3/14Tube and panel arrangements for ceiling, wall, or underfloor heating incorporated in a ceiling, wall or floor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0089Systems using radiation from walls or panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0089Systems using radiation from walls or panels
    • F24F5/0092Systems using radiation from walls or panels ceilings, e.g. cool ceilings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/22Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/11Geothermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/006Parts of a building integrally forming part of heating systems, e.g. a wall as a heat storing mass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0035Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for domestic or space heating, e.g. heating radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • F28F2260/02Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Definitions

  • the invention relates to an integrated building air conditioner, in particular to an integrated building device for heating and cooling.
  • air conditioners basically use indoor side fan coils for cooling and heating. Because the specific heat of air is very small, only convection can be used to transfer energy. The temperature difference is very large and the efficiency is very low. The minimum evaporation temperature should be below -20 °C. When the condensation temperature is 50 °C, no matter which refrigerant compression ratio is greater than 7, it is far beyond the working range of the existing compressor and cannot be heated in the north. .
  • the invention is based on the above two mathematical expression principles, to minimize the heat transfer resistance, maximize the heat release area, minimize the condensation heat release temperature, increase the evaporation temperature, and ensure the indoor comfortable heating. Under the premise, improve the energy efficiency ratio.
  • the condensing temperature is 26 °C
  • the room temperature is 18 °C
  • the heat dissipation of the concrete surface is more than 70W/n
  • the transmission loss is extremely small, which can meet the heating needs below the outdoor temperature of -20 °C.
  • the object of the present invention is achieved as follows: comprising an external heat exchanger, a four-way reversing valve, a compressor, a microporous pipeline, characterized in that: the microporous pipeline is a metal capillary tube, which is bundled in a building reinforcement 12, integrated with concrete casting, multiple parallel ports on one side of the microporous pipeline are connected to the right port of the four-way reversing valve 3, and multiple parallel ports on the other side of the microporous pipeline are connected to the outer heat exchange through the throttling member 5
  • Lower port of the device 1 the upper port of the outer heat exchanger 1 is connected to the left port of the four-way reversing valve 3, the intermediate port of the four-way reversing valve 3 is connected to the return port of the compressor 4, and the inlet of the four-way reversing valve 3 is compressed.
  • the outer heat exchanger is at least one of an air-cooled heat exchanger, a water-cooled heat exchanger, a foundation pile heat exchanger, and
  • the compressor is more than two or an inverter compressor.
  • Another way of achieving the object of the present invention is to include an external heat exchanger, a four-way reversing valve, a compressor, and a microporous line, characterized in that: the microporous pipeline is metal, PB or PERT Capillary, carbon fiber cloth, multiple layers are placed in parallel on the upper part of the floor or attached to the wall; the parallel port on the side of the ceiling micro-hole 9 is connected to the wall micro-hole 10 through the capillary 19 - the side parallel port, in the capillary 19
  • the electromagnetic valve 20 is connected to both ends, and the parallel port on the other side of the wall microporous pipe 10 is connected to the lower port of the outer heat exchanger 1 through the throttling member 5, and the upper port of the outer heat exchanger 1 is connected to the left port of the four-way reversing valve 3.
  • the right side port of the four-way reversing valve 3 is connected to the other side parallel port of the ceiling micro-hole line 10, and the intermediate common port of the four-way re
  • the microporous pipeline is provided with reinforcing ribs, and a heat conducting screed layer 16 of at least one of cement, sand, graphite and metal powder is disposed between the pipelines, and an inorganic one-way super is disposed on the upper portion of the heat conducting screed layer 16
  • the heat conductive material or the foamed heat insulation layer 15, the inlet of the four-way switching valve 3 and the outlet of the compressor 4 are connected in series with the water-cooled heat exchanger 17 - the side port, and the other side of the water-cooled heat exchanger 17 passes the water pump 18
  • the pipes that require hot water indoors are connected.
  • Another way of achieving the object of the present invention is to include an external heat exchanger, a four-way reversing valve, a compressor, a check valve, a microporous line, a ventilating dehumidifier, a throttle tube, and the like:
  • the microporous pipeline is at least one of a metal, a PERT, a PB capillary, and a plurality of microporous pipelines are attached in parallel to the ceiling or laid on the ground; a plurality of parallel ports on one side of the microporous pipeline pass through the check valve 8
  • Connect the right port of the four-way reversing valve 3, the left port of the four-way reversing valve 3 is connected to the upper port of the outer heat exchanger 1, and the lower port of the outer heat exchanger 1 is connected to the other side of the microporous pipe through the throttling member.
  • Root parallel port, four-way reversing valve 3 intermediate common port is connected to compressor 4 return port, four-way reversing valve 3 inlet is connected to compressor 4 outlet, at both ends of check valve 8
  • the air dehumidifier 28 is connected to the air dehumidifier 28, and the throttle tube 31 is provided on the side where the air dehumidifier 28 is connected to the outlet end of the check valve 8.
  • Another way of achieving the object of the present invention is to include a foundation pile heat exchanger, a four-way reversing valve, and a compression expander, characterized in that: the foundation pile heat exchanger 32 is bundled with a microporous pipe.
  • the building reinforcement 12 is cast with concrete or microporous steel in the pile; the foundation pile heat exchanger 32 - the side port is connected to the left port of the four-way reversing valve 3, and the other side of the foundation pile heat exchanger 32
  • the port is connected to the plurality of parallel ports on the side of the floor microporous pipe 9 through the compression expander 33, and the right port of the four-way reversing valve 3 is connected to the other side of the microporous pipe 9 on the other side of the parallel port, the four-way reversing valve 3
  • the intermediate common port is connected to the air inlet of the compression expander 33, and the inlet of the four-way switching valve 3 is connected to the outlet of the compression expander 33.
  • Another way of achieving the object of the present invention is to include an external heat exchanger, a compressor, characterized in that: the microporous pipe is bundled on the building steel bar 12 or the building steel bar is made of microporous steel, which is integrated with the concrete casting.
  • the microporous pipe or the microporous steel bar has a plurality of parallel ports connected to the compressor side port, and the microporous pipe or the microporous steel bar has the other parallel port on the other side connected to the outer heat exchanger 1 through the throttling member 5 Port, the upper heat exchanger 1 is connected to the other side of the compressor port; the outer heat exchanger 1 is at least one of an air-cooled heat exchanger, a water-cooled heat exchanger, a ground pile heat exchanger, and a solar panel heat exchanger.
  • the outer heat exchanger 1 is at least one of an air-cooled heat exchanger, a water-cooled heat exchanger, a ground pile heat exchanger, and a solar panel heat exchanger.
  • Another way of achieving the object of the present invention includes: an external heat exchanger, a four-way reversing valve, a compressor, a microporous steel bar, characterized in that: the microporous steel bar is welded into a mesh flow passage heat exchange After the device is integrated with the concrete casting; the parallel port of the microporous steel bar is connected to the right port of the four-way reversing valve 3, and the parallel port of the other side of the microporous steel bar is connected to the outer heat exchanger 1 through the throttling member 5 Port, external heat exchanger 1 upper port connected four-way reversing valve 3 left port, four-way reversing valve 3 intermediate common port connected to compressor 4 return port, four-way reversing valve 3 inlet connected compressor 4 outlet .
  • Another way of achieving the object of the present invention is to include an outer heat exchanger, a four-way reversing valve, a compressor, a metal radiant panel, characterized in that: opposite recesses are provided on two opposite metal radiant panels The trough or the inlet and outlet drainage tubes, the metal radiant panel are heat-pressed and integrated on the ground or pasted on the wall and the ceiling, the metal radiant panel inlet is connected to the four-way reversing valve 3 left port, and the metal radiant panel outlet is passed through the throttling member 5 Connect the lower port of the outer heat exchanger 1, the upper port of the outer heat exchanger 1 is connected to the right port of the four-way reversing valve 3, the inlet of the four-way reversing valve 3 is connected to the outlet of the compressor 4, and the intermediate port of the four-way reversing valve 3 The compressor 4 is connected to the return port, and the outer heat exchanger uses at least one of an air-cooled heat exchanger, a water-cooled heat exchanger, and a foundation pile heat exchanger
  • Another way of achieving the object of the present invention is to include an external heat exchanger, a four-way reversing valve, a compressor, and a microporous line, wherein: the microporous tube is a metal capillary tube, PERT, At least one of the PB capillaries, a plurality of microporous tubes are attached in parallel to the ceiling or laid on the ground; a plurality of parallel ports on one side of the microporous pipeline are connected to the right port of the four-way reversing valve 3, and the four-way reversing
  • the left port of the valve 3 is connected to the upper port of the outer heat exchanger 1, and the lower port of the outer heat exchanger 1 is connected to the plurality of parallel ports on the other side of the microporous pipe through the throttling member, and the common port of the four-way reversing valve 3 is compressed.
  • the condensed microporous pipeline is cast into reinforced concrete, and the heat transfer coefficient of the concrete is 60 times larger than the air and the large area of the building itself is used for heat release or cooling, so that the thermal resistance between the main unit and the heat release terminal is small.
  • the low volume ratio design allows the existing air conditioning technology to the fullest.
  • the unit area is very low, which is much lower than the total value of heating equipment and air-conditioning equipment under the existing living conditions. Moreover, there are no moving parts such as fans and pumps on the heat-dissipating end, long life, no noise, and maintenance-free. .
  • This technology can be used in existing buildings, not only steel microporous tubes, but also copper tubes, aluminum tubes, PB, PE, The carbon fiber cloth and the like are paved, and the process is simple, the cost is low, the construction is environmentally friendly, and there is no disadvantage that the water-cooled capillary stops heating and is easily frozen.
  • the invention is suitable for each household to use 1 ⁇ 2 small units, and can use 1 ⁇ 2 variable capacity large air-cooled heat pump units throughout the building. As long as the paving is correct and there is no leakage, the existing variable frequency variable capacity unit is connected. Can work smoothly for more than ten years without failure.
  • the invention designs an internal switching compressor, and the two ports are cooled and heated to generate the highest efficiency.
  • the four-way reversing valve in the prior art is omitted, and the fault is reduced. Reduce heat and cold loss.
  • the existing building steel bars are made into an internal microporous structure, welded into a mesh shape, and after casting concrete, the inlet and outlet ports are connected to the external machine, which is not only reliable and durable, but also has lower cost.
  • Figure 1 is a schematic view showing the concrete installation and installation of the present invention
  • FIG. 2 is a schematic plan view showing the connection and welding of the present invention
  • Figure 3 is a schematic view of the present invention with a domestic hot water and a plate type dehumidification heater;
  • FIG. 4 is a schematic cross-sectional view of a metal radiant panel and a porous microtube according to the present invention
  • Figure 5 is a schematic view of the end of the carbon conduit fiber of the present invention.
  • Figure 6 is a schematic diagram of a system with an air-cooled dehumidifier of the present invention.
  • Figure 7 is a schematic view of a heat exchange carbon dioxide unit with a foundation pile according to the present invention.
  • Figure 8 is a schematic diagram of the internal and reverse switching units of the compressor of the present invention.
  • FIG. 1 1 external heat exchanger, 2 fans, 3 four-way reversing valve, 4 compressors, 5 throttling parts, 6 connecting valves, 7 outdoor units, 8 check valves, 9 ceiling microporous pipes , 10 wall micro-hole pipeline, 11 ground micro-hole pipeline, 12 building reinforcement, 13 floor slab, 14 floor glue or floor tile;
  • A is a U-shaped connection
  • B is a Type III connection
  • C is a reamed microporous tube coiled connection
  • A is a cross-sectional view of a microporous tube with ribs
  • B, C, D are cross-sections of metal radiant panels
  • E is a metal microporous tube with fins
  • FIG. 7 3 four-way reversing valve, 6 connecting valve, 7 outdoor unit, 13 floor, 14 floor or floor tile, 27 foam insulation, 32 foundation pile heat exchanger, 33 compression expander, 34 Microporous steel bar;
  • Example 1 As shown in Figure 1, in a 16m wide plate type building, the wall thickness is 0. 6mm, the outer diameter of 2. 4mm ceiling microporous pipe 9 under pressure 30MPa, single length 30m, spacing 8cm, both ends are welded separately On the guide tube, fold it into 15m, and fix it into a pipe network with a pipe pitch of 4cm in the middle, as shown in Figure 2-A (you can also use the 2-BC plane method). The site is laid on the building reinforcement 12 and tied. Casting in one piece with cement, laying a total of 2,500 meters on a 100m 2 floor, heat transfer surface area: 18. 8m 2 , total flow cross-sectional area: 2cm 2 , internal volume ratio: 2. 8L, using carbon dioxide 3.
  • the length of the single tube is 5 30m, and the wall thickness is 0.30. 5mm, which can meet the pressure; the design value of the evaporation temperature during heating is about 2 3 °C lower than the outdoor temperature.
  • the condensing temperature is between 24 and 30 °C according to the indoor heat load.
  • the external heat exchanger 1 is facing the sunlight side during installation, in the early stage of the cold weather, the half-power operation after midnight is used for half-power operation.
  • the outer heat exchanger 1 has a small temperature difference and is substantially non-frosting. In the coldest season, try to use the full-power working heat storage at noon and the highest temperature.
  • the air humidity is very small, and the evaporative heat transfer temperature difference is not large, so basically no power defrosting, due to the entire micro-hole pipeline volume.
  • the rate is smaller than that of the ordinary equal-power air conditioner, the refrigerant flows faster and the cycle is better; the thermal conductivity of the reinforced concrete reaches 1.74w/m* c, and the indoor temperature usually changes within 21 19 °C, infra-red radiation
  • the body feels particularly comfortable.
  • the daytime temperature is still higher than _15 °C
  • the condensing temperature is 26 °C
  • the indoor ambient temperature is 20 °C
  • the surface temperature is 24 °C
  • the compressor output pressure drops below 30 °C, the noise will be reduced by 30%.
  • the evaporation temperature in the wall microporous pipe 10 can be cooled to 23 °C as long as the evaporation temperature reaches 15 20 °C, and the room temperature is lower than 26 °C, because the reinforced concrete storage capacity is very large, outdoor
  • the unit 7 can work after midnight. This period is the lowest temperature in the day.
  • the compressor 4 is only half loaded, the cooling capacity is already large enough, and the actual energy efficiency ratio COP can reach 8. 0, which is half price electricity, so it is adopted.
  • the electricity cost of this technology is one-sixth of the existing air conditioner.
  • the condensation heat of the outer heat exchanger 1 is 30 °C, which has been able to exotherm well.
  • the evaporation temperature above 12 °C is used to compress.
  • the output power of the machine 4 is nearly doubled. When it is loaded with a single unit or 50% power, its output power is equivalent to that of a normal air conditioner.
  • the existing building steel bar 12 can be directly welded into the structure shown in Figure 2-B with the micropores, instead of the microporous pipe cast in the concrete, it has higher pressure and larger surface area; The surface area is much larger than that of the microporous tube. The surface area of the building steel bar 12 in a building is even larger.
  • the building steel bar 12 with an outer diameter of 25 mm is machined with 1. 2 mm holes, which is equivalent to a wall thickness of 14 mm.
  • One hundred Mpa can match the work of supercritical carbon dioxide unit, the welding is not easy to block, it is not easy to leak, the temperature difference is very small, and the number is increased to make the building firmer.
  • the connection method and working principle are the same as those in Figure 1. .
  • the air In the area around the sea, the air is relatively humid, and it should be better combined with the ground and the wind and dehumidification.
  • inner hole 0. 5 1 wall thickness 1 1. 5 tube spacing 2 3mm multiple parallel welding, can be glued to the lower part of the floor 13 with cement glue, or Paste vertically on the surface of the wall, and set the sink 23 below. It can also be paved on the ground with cement, sand and graphite.
  • the sectional pressure control can be performed, the solenoid valve 20 is closed, the throttle unit 5 is adjusted, and the wall is made.
  • the cooling evaporation temperature of the body surface line 22 is between 22 and 27 ° C, avoiding condensation and maintaining the indoor constant temperature, and the evaporation (pressure) temperature of the ceiling microporous line 9 is about 15 ° C, which is the highest with the existing compressor.
  • the return air pressure is equivalent. Because the floor 13 is thick, it will not condense during normal working hours.
  • the solenoid valve 20 is opened, and the wall surface line 22 evaporates at a temperature of 7 to 15 ° C.
  • the dew condensation is used for indoor dehumidification and instant cooling, and the water tank 23 directs the condensed water to the outside.
  • the microporous tube can also adopt the cross-sectional structure of Fig. 4-A, which increases the surface heat release area and increases the pressure, and also reduces the volume ratio of the entire system.
  • the output gas of the compressor 4 is overheated at 80 °C during heating in winter, and the casing or plate heat exchanger 17 and the water pump 18 just absorb this overheating. , making it a domestic hot water, so that the exothermic temperature of the ceiling microporous pipe 9 is lower than 30 ° C, thereby satisfying the heat release and pressure.
  • the wall surface pipe 22 which is vertically pasted on the wall is used as the end heat release, which improves the efficiency and facilitates oil return.
  • the microporous pipe is attached to the metal plate as a ceiling and wall heat exchanger.
  • Figure 4-E shows the metal microporous pipe in the form of fins for better heat dissipation.
  • the two aluminum plates are extruded or etched into a groove to form a metal radiant panel, as shown in Fig. 4-B and D, forming a very fine corrugated or diamond-shaped flow path, and the surface is processed to form a cold and warm decorative integrated building.
  • Metal radiant panels can be affixed to the wall or laid on the ground or hoisted on the roof.
  • a carbon fiber cloth 26 is used, and the longitudinal ends are hot-extracted with a plastic such as PB, PP or PE, and the guide tube 24 is thermally injected with a high-strength thermal conductive adhesive 25 on the finished building floor, ceiling or wall. Bonding, forming a reinforcing bonding layer, connects the guiding tube 24 to the outdoor unit 7.
  • the microporous pipeline is at least one of a metal capillary tube, a PERT, and a PB capillary tube, and a plurality of microporous pipelines are attached in parallel to the ceiling or laid on the ground;
  • the port is connected to the right port of the four-way reversing valve 3 through the one-way valve 8, the left port of the four-way reversing valve 3 is connected to the upper port of the outer heat exchanger 1, and the lower port of the outer heat exchanger 1 is connected to the microporous tube through the throttling member.
  • the air dehumidifier 28 is provided with a throttle tube 31 on the side where the air dehumidifier 28 is connected to the outlet end of the check valve 8.
  • the microporous pipeline is directly laid on the ground, and then graphite, sand, and cement are leveled.
  • the microporous pipeline is pasted with the thermal conductive adhesive in the ceiling, and the ground and the ceiling microporous pipeline are connected in parallel and then passed through the air-cooled heat exchanger 28
  • the four-way reversing valve 3 is connected. Since the thermal conductivity of graphite is higher than that of the general metal, the refrigerant directly enters the microporous pipeline through the check valve 8 during heating, and the ground temperature is approximately equal to the condensation temperature in the microporous pipeline. Thus, the highest efficiency of the heat release end is achieved, and the air in the room is heated by the superheat of the compressed gas to make the indoor air fresh.
  • the check valve 8 is closed, and the refrigerant mainly enters the air-cooled heat exchanger 28 through the throttle tube 31, and the evaporation temperature can be dehumidified indoors at 10 ° C or less, and the evaporation temperature in the microporous tube is about 20 ° C. It can slowly cool down and prevent condensation. It can also use the air-cooled heat exchanger 28 to cool down quickly.
  • the existing air-conditioning compressors are generally designed to have a high output pressure, and in the use of the present invention, particularly in the summer cooling work, the maximum performance cannot be exerted, and the long-term application of the four-way reversing valve is also prone to failure. Parts, and internal hot and cold exchange also reduces efficiency.
  • the middle part is a motor
  • the right end is a heat pump working chamber
  • the left end is a cooling working chamber; when the motor is rotating forward, the left end is straight, and the right end is pressed
  • the motor is reversed, the right end is straight-through, and the left end of the refrigerant is compressed.
  • the rotor of the scroll compressor is used as the right heat pump, and the positive and negative rotation of the blade is compressed.
  • the left side of the cooling can achieve the above scheme, as shown in Figure 8.
  • the optimal compression ratio is designed.
  • the cooling side condensing pressure is designed to be 30 °C
  • the evaporation side is 20 °C
  • the compression ratio can be less than 1
  • the energy efficiency ratio can reach 15 or more.
  • the heat pump side condensing pressure is designed to be 25 ⁇ 30°C, the evaporation side is -10°C ⁇ 15°C, the compression ratio is greater than 3, and the energy efficiency ratio is 4 ⁇ 6.
  • the housing is made of cast aluminum to minimize noise.
  • the end of the refrigerant is evaporated by the motor, and the four-way reversing valve is omitted, which is reliable in operation and low in failure rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Geometry (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种建筑一体空调,包括:外换热器(1),四通换向阀(3),压缩机(4),微孔管路(9,10,11),所述微孔管路为金属毛细管,捆绑在建筑钢筋(12)上,与混凝土浇铸成为一体,微孔管路(9,10,11)一侧多根并联端口连接四通换向阀(3)右侧端口,另一侧多根并联端口通过节流部件(5)连接外换热器(1)下端口,外换热器(1)上端口连通四通换向阀(3)左侧端口,四通换向阀(3)中间公用端口连接压缩机(4)回气口,四通换向阀(3)进口连接压缩机(4)出口,外换热器(1)为风冷换热器、水冷换热器、地基桩换热器、阳光板换热器中的至少一种。该空调可靠耐用、无噪音、免维护、碳排放低、供暖及制冷运行费用少、施工工艺简单、环保、造价低,且能使建筑本身更加牢固。

Description

建筑一体空调 技术领域
本发明涉及一种建筑一体空调, 特别涉及一种供热、 制冷的建筑一体装置。
背景技术
目前的空调基本都是采用室内侧风机盘管进行制冷、 制热的, 由于空气的的比热很小, 只能采用对流方式传递能量, 温差很大、 效率很低, 空气源热水系统由于最低蒸发温度要 达到 -20°C以下, 当冷凝温度为 50°C时, 无论采用何种制冷剂压縮比都大于 7, 远远超出了 现有压縮机的工作范围, 不能在北方供暖。
虽然本发明人提出过毛细水管或地热水管进行低温采暖专利, 但是气水换热器转换进 程中要损失很大能量, 导致效率降低, 而水泵、 换热器及毛细水管铺设的合计成本要比本 发明高出许多, 冬天停止供暖时还容易冻坏。
发明内容
本发明的目的是提供一种新型的建筑一体空调。
采暖设备的放热量 Q=S P C (其中 S代表放热面积, P代表导热系数, C代表温度), 卡 诺循环的制热效率表达式为: e =Ta/Ta-T0 (其中 Ta为冷凝温度, TO为蒸发温度); 本发明 基于上述两个数学表达式原理, 最大限度降低传热热阻、 最大限度增加放热面积、 最大限 度降低冷凝放热温度, 提高蒸发温度, 保证室内舒适供暖的前提下, 提高能效比。
当冷凝温度为 26°C时, 室温 18°C, 混凝土表面散热量大于 70W/n , 传递损失极小, 可 以满足室外 -20°C气温以下的采暖需要。
本发明的目的是这样实现的: 包括有外换热器, 四通换向阀, 压縮机, 微孔管路, 其 特征在于: 所述的微孔管路为金属毛细管,捆绑在建筑钢筋 12上,与混凝土浇铸成为一体, 微孔管路一侧多根并联端口连接四通换向阀 3右侧端口, 微孔管路另一侧多根并联端口通 过节流部件 5连接外换热器 1下端口, 外换热器 1上端口连接四通换向阀 3左侧端口, 四 通换向阀 3中间公用端口连接压縮机 4回气口, 四通换向阀 3进口连接压縮机 4出口, 外 换热器为风冷换热器、 水冷换热器、 地基桩换热器、 阳光板换热器中的至少一种。
压縮机为二台以上或变频压縮机。
实现本发明的目的的另一种方式: 包括有外换热器, 四通换向阀, 压縮机, 微孔管路, 其特征在于: 所述的微孔管路为金属、 PB或 PERT毛细管、 碳导管纤维布, 多根并联铺设在 楼板的上部或粘贴在墙壁上; 顶棚微孔管路 9一侧并联端口通过毛细管 19连接墙壁微孔管 路 10—侧并联端口, 在毛细管 19的两端并接电磁阀 20,墙壁微孔管路 10另一侧并联端口 通过节流部件 5连接外换热器 1下端口, 外换热器 1上端口连接四通换向阀 3左侧端口, 四通换向阀 3右侧端口连接顶棚微孔管路 10另一侧并联端口, 四通换向阀 3中间公用端口 连接压縮机 4回气口。
所述的微孔管路内设置有加强筋, 管路之间设置有用水泥、 砂子与石墨、 金属粉中至 少一种的导热找平层 16,在导热找平层 16的上部设置有无机单向超导热材料或发泡隔热层 15, 四通换向阀 3进口与压縮机 4出口之间串连水冷换热器 17—侧端口, 水冷换热器 17 另一侧端口通过水泵 18与室内需求热水的管路进行连接。
实现本发明的目的的另一种方式: 包括有外换热器, 四通换向阀, 压縮机, 单向阀, 微孔管路, 通风除湿器, 节流管, 其特征在于: 所述的微孔管路为金属、 PERT、 PB毛细管 中的至少一种,微孔管路多根并联粘贴在顶棚上或铺设在地面上; 微孔管路一侧多根并联端 口通过单向阀 8连接四通换向阀 3右侧端口, 四通换向阀 3左侧端口连接外换热器 1上端 口, 外换热器 1下端口通过节流部件连接微孔管路另一侧多根并联端口, 四通换向阀 3中 间公用端口连接压縮机 4回气口, 四通换向阀 3进口连接压縮机 4出口, 在单向阀 8两端 并接换风除湿器 28, 换风除湿器 28与单向阀 8出口端连接一侧设有节流管 31。 实现本发明的目的的另一种方式: 包括有地基桩换热器, 四通换向阀, 压縮膨胀机, 其特征在于: 所述的地基桩换热器 32为微孔管路捆绑在建筑钢筋 12上与混凝土浇铸而成 或微孔钢筋在基桩中浇铸而成; 地基桩换热器 32—侧端口连接四通换向阀 3左侧端口, 地 基桩换热器 32另一侧端口通过压縮膨胀机 33连接楼板微孔管路 9一侧多根并联端口, 四 通换向阀 3右侧端口连接楼板微孔管路 9另一侧多根并联端口, 四通换向阀 3中间公用端 口连接压縮膨胀机 33回气口, 四通换向阀 3进口连接压縮膨胀机 33出口。
实现本发明的目的的另一种方式: 包括有外换热器, 压縮机, 其特征在于: 在建筑钢 筋 12上捆绑微孔管路或建筑钢筋采用微孔钢筋, 与混凝土浇铸成为一体, 该微孔管路或微 孔钢筋一侧多根并联端口连接压縮机一侧端口, 微孔管路或微孔钢筋另一侧多根并联端口 通过节流部件 5连接外换热器 1下端口, 外换热器 1上端口连接压縮机另一侧端口; 外换 热器 1为风冷换热器、 水冷换热器、 地基桩换热器、 阳光板换热器中的至少一种。
实现本发明的目的的另一种方式: 包括有外换热器, 四通换向阀, 压縮机, 微孔钢筋, 其特征在于: 所述的微孔钢筋焊接成网状流道换热器后与混凝土浇铸成为一体; 微孔钢筋 一侧多根并联端口连接四通换向阀 3右侧端口, 微孔钢筋另一侧多根并联端口通过节流部 件 5连接外换热器 1下端口, 外换热器 1上端口连接四通换向阀 3左侧端口, 四通换向阀 3 中间公用端口连接压縮机 4回气口, 四通换向阀 3进口连接压縮机 4出口。
实现本发明的目的的另一种方式: 包括有外换热器, 四通换向阀, 压縮机, 金属辐射 板, 其特征在于: 在两张相对的金属辐射板上设置有相对的凹槽或进、 出引流管, 金属辐 射板热压成为一体铺设在地面或粘贴在墙壁、 顶棚上, 金属辐射板进口连接四通换向阀 3 左侧端口, 金属辐射板出口通过节流部件 5连接外换热器 1下端口, 外换热器 1上端口连 接四通换向阀 3右侧端口, 四通换向阀 3进口连接压縮机 4出口, 四通换向阀 3中间公用 端口连接压縮机 4 回气口, 外换热器采用风冷换热器、 水冷换热器以及地基桩换热器中的 至少一种。
实现本发明的目的的另一种方式: 包括有外换热器, 四通换向阀, 压縮机, 微孔管路, 其特征在于: 所述的微孔管路为金属毛细管、 PERT、 PB毛细管中的至少一种,微孔管路多根 并联粘贴在顶棚上或铺设在地面上; 微孔管路一侧多根并联端口连接四通换向阀 3右侧端 口, 四通换向阀 3左侧端口连接外换热器 1上端口, 外换热器 1下端口通过节流部件连接 微孔管路另一侧多根并联端口, 四通换向阀 3中间公用端口连接压縮机 4回气口, 四通换 向阀 3进口连接压縮机 4出口。
本发明的优点:
1、 将冷凝微孔管路与钢筋混凝土浇铸为一体, 利用混凝土比空气大 60倍的导热系数及建 筑物本身的大面积进行放热或制冷, 使主机与放热终端中间热阻很小, 低容积率设计让现 有空调技术发挥到极致。
2、 由于不锈钢或碳钢微孔管拉伸强度很高, 铺设的又比较密集, 不仅代替了一部分钢筋, 而且使建筑本身更加牢固。
3、 单位面积造价很低, 比现有人居条件下的供暖设备、 空调设备的合计值更是低的多, 更 由于放热端没有风扇、 水泵等运动部件, 寿命长、 无噪音、 免维护。
4、 碳排放低, 供暖、 制冷运行费用少, 在北京地区平均采暖期制热能效比可达 4. 5以上, 相当于节省应缴采暖费的三分之二, 整个夏天节省空调电费 70%。
5、 采用壁厚 0. 6mm, 外径 2. 4mm钢制微孔管, 其本身承压大于 30MPa, 混凝土的浇铸进一 步增加了强度, 不仅能够使用普通中、 高压环保制冷剂, 还可以直接连接二氧化碳机组, 并且有很高的效率, 这是人类多年期待达到的效果。
6、 在已有建筑上采用本技术, 不仅可以用钢制微孔管, 还可以采用铜管、 铝管、 PB、 PE、 碳导管纤维布等进行铺装, 工艺简单、 造价低、 施工环保, 也没有水冷毛细管停止供暖就 容易冻坏的弊病。
7、 在建筑本身的基础桩中盘绕钢制微孔管, 即增加强度, 同时又利用土壤中蕴含的巨大能 量冬天采暖、 夏天制冷, 寿命与建筑同在, 在室内串连或并联风冷盘管, 即能在冬天迅速 加热, 又能在夏天除湿、 快速制冷。
8、 本发明既适合每个住户使用 1〜2台小型机组, 又可以整个建筑使用 1〜2台变容量大型 风冷热泵机组, 只要铺装正确、 无泄漏, 连接现有变频变容量机组即能无故障顺畅工作十 年以上。
9、 本发明设计了一种内部切换压縮机, 两个端口制冷、 制热正反流动, 都能达到本身设计 的最高效率, 省略了现有技术中的四通换向阀, 降低故障、 减少冷热损失。
10、 将现有建筑钢筋制造成内部微孔结构, 焊接成网状, 浇铸混凝土后, 进出端口连接室 外机, 不仅可靠耐用, 成本更低。
附图说明
图 1为本发明混凝土浇铸安装示意图;
图 2为本发明连接、 焊接平面示意图;
图 3为本发明带有生活热水与板式除湿加热器的原理图;
图 4为本发明金属辐射板及多孔微管剖面示意图;
图 5为本发明碳导管纤维末端铺装原理图;
图 6为本发明带有风冷除湿器的系统原理图;
图 7为本发明带有地基桩换热二氧化碳机组原理图;
图 8为本发明压縮机内部正、 反切换机组原理图。
附图标记说明:
在图 1中: 1外换热器, 2风扇, 3四通换向阀, 4压縮机, 5节流部件, 6连接阀, 7室外 机组, 8单向阀, 9顶棚微孔管路, 10墙壁微孔管路, 11地面微孔管路, 12建筑钢筋, 13 楼板, 14地胶或地砖;
在图 2中: A 为 U型连接, B为 III型连接, C 为钢筋微孔管盘绕式连接;
在图 3中: 1外换热器, 2风扇, 3四通换向阀, 4压縮机, 5节流部件, 6连接阀, 7室外 机组, 9顶棚微孔管路, 13楼板, 14地胶或地砖, 15无机单向超导热材料, 16导热找平层,
17板式换热器, 18水泵, 19毛细管, 20 电磁阀, 21墙体保温板, 22墙体表面管路, 23 水槽;
在图 4中: A 为带有加强筋的微孔管路剖面图, B、 C, D为金属辐射板剖面图, E为带有翅 片的金属微孔管;
在图 5中: 1外换热器, 2风扇, 3四通换向阀, 4压縮机, 5节流部件, 6连接阀, 7室外 机组, 8单向阀, 11微孔管路, 13楼板, 14地胶或地砖, 16导热找平层, 24引导管, 25 高强度导热粘接胶, 26碳导管纤维布,27发泡隔热层;
在图 6中: 1外换热器, 2风扇, 3四通换向阀, 4压縮机, 5节流部件, 6连接阀, 7室外 机组, 8单向阀, 9顶棚微孔管路, 11地面微孔管路, 13楼板, 14地胶或地砖, 16导热找 平层, 28风冷换热器, 29挡风板, 30风冷换热器, 31节流管;
在图 7中: 3四通换向阀, 6连接阀, 7室外机组, 13楼板, 14地胶或地砖, 27发泡隔热 层, 32地基桩换热器, 33压縮膨胀机, 34微孔钢筋;
在图 8中: 1外换热器, 2风扇, 4压縮机, 5节流部件, 10墙壁微孔管路, 11地面微孔管 路, 12建筑钢筋, 13楼板, 14地胶或地砖;
具体实施方式
实施例 1 : 如图 1所示,在一栋 16m宽板式建筑中,采用壁厚 0. 6mm,外径 2. 4mm顶棚微孔管路 9 承压 30MPa, 单根长度 30m、 间距 8cm, 两端分别焊接在引导管上, 折叠成 15m, 中间用卡 子固定成为管距 4cm的管网, 如图 2-A所示 (还可以采用图 2-B C平面方式), 现场铺设 在建筑钢筋 12上并绑扎好, 用水泥浇铸成一体, 100m2楼板上共计铺设 2500延长米, 换热 表面积: 18. 8m2, 合计流通截面积: 2cm2, 内部容积率: 2. 8L, 采用二氧化碳 3. 5 10kw 数码变频室外机; 当配接 R410制冷剂室外机时, 单根管的长度 5 30m、 壁厚 0. 3 0. 5mm 即可满足承压; 采暖时蒸发温度设计值平均比室外气温低 2 3°C左右, 冷凝温度根据室内 用热负荷在 24 30°C之间, 安装时外机换热器 1朝向阳光一侧, 在天气不太寒冷的采暖初 期, 利用午夜后的半价电进行半功率工作, 由于外换热器 1温差小, 基本不结霜, 到了最 寒冷的季节, 尽量使用中午阳光充足、 气温最高时段全功率工作储热, 此时空气湿度很小, 蒸发换热温差也不大, 所以基本不用电力除霜, 由于整个微孔管路容积率比普通等功率空 调内机还小, 制冷剂流动速度更快、 循环更好; 钢筋混凝土的导热系数达到 1. 74w/m* c, 室 内温度通常在 21 19°C以内变化, 以红外辐射为主要形式, 体感特别舒适。
在中国北方最寒冷气象条件下, 白天气温仍高于 _15°C, 冷凝温度 26°C, 室内环境温度 20°C条件下, 地表温度 24°C, 仅地面楼板放 13热量就达到 45w/m2, 上层楼板 13向下的辐 射热量也会达到 4(k/m2, 实际 C0P«4. 0, 机组工作 12小时, 就可满足全天热需求, 夜间 更低气温机组不用工作; 整个冬季供暖费用及碳排放仅为现有集中供热的三分之一, 当压 縮机输出压力降至 30°C以下时, 噪音也会降低 30%
夏季制冷时, 墙体微孔管路 10内的蒸发温度只要达到 15 20°C就可以使楼板 13冷却 至 23°C左右, 室温低于 26°C, 由于钢筋混凝土储冷量非常大, 室外机组 7可以在午夜后工 作, 这个时段是一天中气温最低点, 压縮机 4只要半加载工作, 制冷量就已经足够大, 实 际能效比 COP可达到 8. 0, 又是半价电费, 所以采用本技术电费是现有空调的六分之一。 夏季夜间制冷时, 由于北方气温多数在 20°C左右, 外换热器 1的冷凝蒸发温度在 30°C, 已 经能够很好的排热, 此时采用 12°C以上的蒸发温度, 压縮机 4的输出功率提高近一倍, 用 单台或 50%功率加载时, 其输出功率与普通空调全功率相当。
可以把现有建筑钢筋 12加工内部带有微孔直接焊接成图 2-B所示结构, 代替微孔管路 浇铸在混凝土中, 它的承压更高,表面积更大; 由于建筑钢筋 12的表面积比微孔管大得多, 一栋建筑中的建筑钢筋 12表面积更是大的惊人, 外径 25mm的建筑钢筋 12加工出 1. 2mm孔 后, 相当于壁厚 14mm, 承压可达几百 Mpa, 可匹配超临界二氧化碳机组工作, 焊接不容易 堵, 也不容易漏, 温差变化很小, 稍微增加数量让建筑更牢固, 如图 7楼板所示, 连接方 式及工作原理与图 1相同。
在北方以采暖为主的地区, 应以室内地面、 顶棚或墙壁大面积、 较高密度铺设为好, 以提高放热量,
而在环海地区, 空气比较潮湿, 应以地面和换风除湿结合较好。
在气候较热的地区, 则以顶棚楼板铺设与室内风冷结合的设计为佳。
实施例 2
如图 3、 图 4所示, 采用 PERT或 PB微孔管, 内孔 0. 5 1 壁厚 1 1. 5 管间距 2 3mm多根并联熔接, 可以用水泥胶粘贴在楼板 13下部, 或者垂直粘贴在墙体表面, 下面 设置水槽 23, 还可以用水泥、 砂子、 石墨铺装在地面上。
由于这种微孔管承压较低, 比较适合 R22 R134A R404等中低压制冷剂机组工作, 夏 天储冷工作时, 可以进行分段压力控制, 关闭电磁阀 20、 调整节流部件 5, 使墙体表面管 路 22的制冷蒸发温度在 22 27°C之间, 避免结露、保持室内恒温, 顶棚微孔管路 9的蒸发 (压力)温度在 15°C左右, 与现有压縮机最高回气压力相当, 由于楼板 13较厚, 一般的工 作时间内也不会结露, 表面温度达到 22°C时, 储冷量已达到 40kw, 夜间储冷白天用, 效果 很好; 傍晚室内需要增加冷量时, 开启电磁阀 20, 墙体表面管路 22蒸发温度在 7〜15°C, 利用结露给室内除湿和即时制冷, 水槽 23将冷凝水引至室外。
在压縮机 4出口串连套管或板式换热器 17, 将其环绕在压縮机 4外部, 即降低噪音又 节省空间, 还可以将制冷余热变成免费生活热水。
这种微孔管还可以采用图 4-A截面结构, 即增加表面放热面积, 又增加了承压, 同时 还降低了整个系统的容积率。
由于这种微孔管路最高耐受温度仅为 100°C, 冬天采暖时压縮机 4输出气体带有 80°C 过热, 套管或板式换热器 17和水泵 18恰好吸收了这种过热, 使之成为生活热水, 使顶棚 微孔管路 9的放热温度低于 30°C, 从而满足了放热和承压。
将墙壁上垂直粘贴的墙体表面管路 22做为末端放热, 即提高效率, 又有利于回油。 采用图 4-C所示, 将微孔管路粘贴在金属板材上, 做为吊顶及墙壁换热器使用, 图 4-E 将金属微孔管做成翅片形式, 散热效果更好。
将两张铝板挤压或蚀刻出凹槽热压为一体形成金属辐射板, 如图 4-B、 D所示, 构成非 常细小的波纹或菱形流道, 表面进行工艺处理, 形成冷暖装饰一体建筑, 金属辐射板可以 粘贴在墙壁上, 也可以铺装在地面上或吊装在棚顶。
实施例 3
如图 5所示,采用碳导管纤维布 26,纵向二端用 PB、 PP或 PE等塑料热注出引导管 24, 在已经完成的建筑地面、 顶棚或墙壁用高强度导热粘接胶 25进行粘接, 构成增强粘接层, 将引导管 24连接到室外机组 7上。
由承压计算表达式 P =2·壁厚 X (拉伸强度 /2 ) /直径 可知, 壁厚 30μπι、 内孔 20Hm的 碳纤维管承压大于 10MPa,其织物导管周围表面积可以大于铺设面积, 而碳导管又具有良好 的导热性, 单层织物铺装厚度小于 2mm, 即使有个别意外破损部位, 高强度导热粘接胶 25 也会将其密封, 流通截面积大于压縮机 4出口, 内容积很小, 制冷、 采暖效率都很高。 实施例 4
如图 6所示, 微孔管路为金属毛细管、 PERT、 PB毛细管中的至少一种,微孔管路多根并 联粘贴在顶棚上或铺设在地面上; 微孔管路一侧多根并联端口通过单向阀 8连接四通换向 阀 3右侧端口, 四通换向阀 3左侧端口连接外换热器 1上端口, 外换热器 1下端口通过节 流部件连接微孔管路另一侧多根并联端口, 四通换向阀 3中间公用端口连接压縮机 4回气 口, 四通换向阀 3进口连接压縮机 4出口, 在单向阀 8两端并接换风除湿器 28, 换风除湿 器 28与单向阀 8出口端连接一侧设有节流管 31。
本实施例采用微孔管路直接铺设在地面, 再用石墨、 砂子、 水泥找平, 在顶棚用导热 胶粘贴微孔管路, 地面、 顶棚微孔管路并联后通过风冷换热器 28连接四通换向阀 3, 由于 石墨的导热系数比一般金属高, 因此制热时, 制冷剂通过单向阀 8直接进入微孔管路内, 地面温度与微孔管路内冷凝温度大致相当, 从而做到了放热端的最高效率, 利用压縮气体 的过热加热室外进入室内的换风, 使室内空气新鲜。
夏天工作时, 单向阀 8截至, 制冷剂主要通过节流管 31进入风冷换热器 28, 蒸发温度 可以在 10°C以下为室内除湿, 微孔管内的蒸发温度在 20°C左右, 即可缓慢降温, 又防止结 露, 还可以利用风冷换热器 28迅速降温, 可谓一举多得。
实施例 5
在建筑基础阶段, 将不锈钢或碳钢微孔管路多根并联与地基桩的钢筋混凝土绑扎在一 起, 浇铸水泥成为一体, 代替室外机组 7 的风冷换热器, 用来满足建筑的一、 二楼大负荷 供暖及制冷, 如图 7所示, 当这种微孔管路外壁较厚、 直径较粗、 强度很高时, 可以直接 取代建筑钢筋 12盘圆, 整体照价很低, 甚至低于风冷换热器, 由于冬天蒸发温度很高, 夏 天冷凝温度很低, 又没有风扇耗电, 不仅制热、 制冷性能大幅提高, 还减小了室外机组 7 的噪音, 提高了寿命及可靠性; 当以采暖为主时, 可以在浇铸楼板 13前先铺一层发泡隔热 层 27。
实施例 6
现有空调压縮机通常设计输出压力较高, 在本发明的使用上, 特别是在夏天的制冷工 作上, 不能发挥出最大的效能, 而长期应用的四通换向阀也是易出故障的部件, 并且内部 的冷热交换也降低效率。
本发明的一种压縮机 4, 中间部分为电机, 右侧端部为热泵工作腔, 左侧端部为制冷工 作腔; 当电机正转时, 左侧端部直通, 右侧端部压縮工作; 当电机反转时, 右侧端部直通, 左侧端部制冷腔压縮工作, 比如, 用涡旋压縮机的动片脱离做右侧热泵, 叶片压縮的正反 旋转做左侧制冷, 都能实现上述方案, 如图 8所示。
根据制冷与制热的不同需求设计最佳压縮比, 制冷侧冷凝压力设计为 30°C对应值, 蒸 发侧为 20°C对应值, 压縮比可以小于 1, 能效比可达到 15以上。
热泵侧冷凝压力设计为 25〜30°C对应值, 蒸发侧为 -10°C ± 15°C对应值, 压縮比大于 3, 能 效比为 4〜6。
壳体用铸铝制造, 最大限度的减少噪音。
无论制冷工作, 还是热泵工作, 制冷剂末端蒸发都通过电机为其散热, 省略了四通换 向阀, 工作可靠、 故障率低。
综上所述实现本发明的目的。

Claims

权利要求
1、 一种建筑一体空调, 包括有外换热器, 四通换向阀, 压缩机, 微孔管路, 其特征在于: 所述的微孔管路为金属毛细管, 捆绑在建筑 钢筋(12)上, 与混凝土浇铸成为一体, 微孔管路一侧多根并联端口 连接四通换向阀 (3) 右侧端口, 微孔管路另一侧多根并联端口通过 节流部件 (5) 连接外换热器 (1) 下端口, 外换热器 (1) 上端口连 接四通换向阀 (3)左侧端口, 四通换向阀 (3) 中间公用端口连接压 缩机 (4) 回气口, 四通换向阀(3)进口连接压缩机(4)出口, 外换热 器为风冷换热器、 水冷换热器、 地基桩换热器、 阳光板换热器中的至 少一种。
2、 根据权利要求 1所述的建筑一体空调, 其特征是: 压缩机为 二台以上或变频压缩机。
3、 一种建筑一体空调, 包括有外换热器, 四通换向阀, 压缩机, 微孔管路, 其特征在于:所述的微孔管路为金属、 PB或 PERT毛细管、 碳导管纤维布, 多根并联铺设在楼板的上部或粘贴在墙壁上; 顶棚微 孔管路(9)一侧并联端口通过毛细管(19)连接墙壁微孔管路(10) 一侧并联端口, 在毛细管(19)的两端并接电磁阀 (20), 墙壁微孔管 路(10) 另一侧并联端口通过节流部件 (5)连接外换热器(1)下端 口, 外换热器(1)上端口连接四通换向阀 (3)左侧端口, 四通换向 阀 (3) 右侧端口连接顶棚微孔管路 (10) 另一侧并联端口, 四通换 向阀 (3) 中间公用端口连接压缩机 (4) 回气口。
4、 根据权利要求 3所述的建筑一体空调, 其特征在于: 所述的 微孔管路内设置有加强筋, 管路之间设置有用水泥、 砂子与石墨、 金 属粉中至少一种的导热找平层 (16), 在导热找平层 (16) 的上部设 置有无机单向超导热材料或发泡隔热层(15), 四通换向阀(3)进口与 压缩机 (4)出口之间串连水冷换热器( 17)一侧端口, 水冷换热器( 17) 另一侧端口通过水泵 (18) 与室内需求热水的管路进行连接。
5、 一种建筑一体空调, 包括有外换热器, 四通换向阀, 压缩机, 单向阀, 微孔管路, 通风除湿器, 节流管, 其特征在于: 所述的微孔 管路为金属、 PERT、 PB毛细管中的至少一种,微孔管路多根并联粘贴 在顶棚上或铺设在地面上; 微孔管路一侧多根并联端口通过单向阀
(8) 连接四通换向阀 (3) 右侧端口, 四通换向阀 (3) 左侧端口连 接外换热器(1)上端口, 外换热器(1)下端口通过节流部件连接微 孔管路另一侧多根并联端口, 四通换向阀 (3) 中间公用端口连接压 缩机 (4) 回气口, 四通换向阀(3)进口连接压缩机(4)出口, 在单向 阀 (8)两端并接换风除湿器 (28), 换风除湿器(28) 与单向阀 (8) 出口端连接一侧设有节流管 (31)。
6、 一种建筑一体空调, 包括有地基桩换热器, 四通换向阀, 压 缩膨胀机, 其特征在于: 所述的地基桩换热器(32)为微孔管路捆绑 在建筑钢筋(12)上与混凝土浇铸而成或微孔钢筋在基桩中浇铸而成; 地基桩换热器 (32) —侧端口连接四通换向阀 (3) 左侧端口, 地基 桩换热器(32)另一侧端口通过压缩膨胀机(33)连接楼板微孔管路
(9)一侧多根并联端口, 四通换向阀 (3)右侧端口连接楼板微孔管 路(9) 另一侧多根并联端口, 四通换向阀 (3) 中间公用端口连接压 缩膨胀机 (33) 回气口, 四通换向阀(3)进口连接压缩膨胀机 (33)出 □。
7、 一种建筑一体空调, 包括有外换热器, 压缩机, 其特征在于: 在建筑钢筋(12)上捆绑微孔管路或建筑钢筋采用微孔钢筋, 与混凝 土浇铸成为一体,该微孔管路或微孔钢筋一侧多根并联端口连接压缩 机一侧端口,微孔管路或微孔钢筋另一侧多根并联端口通过节流部件
(5) 连接外换热器 (1) 下端口, 外换热器 (1) 上端口连接压缩机 另一侧端口; 外换热器 (1) 为风冷换热器、 水冷换热器、 地基桩换 热器、 阳光板换热器中的至少一种。
8、 一种建筑一体空调, 包括有外换热器, 四通换向阀, 压缩机, 微孔钢筋, 其特征在于: 所述的微孔钢筋焊接成网状流道换热器后与 混凝土浇铸成为一体; 微孔钢筋一侧多根并联端口连接四通换向阀
(3)右侧端口, 微孔钢筋另一侧多根并联端口通过节流部件(5)连 接外换热器(1) 下端口, 外换热器(1)上端口连接四通换向阀 (3) 左侧端口, 四通换向阀 (3) 中间公用端口连接压缩机 (4) 回气口, 四通换向阀(3)进口连接压缩机 (4)出口。
9、 一种建筑一体空调, 包括有外换热器, 四通换向阀, 压缩机, 金属辐射板, 其特征在于: 在两张相对的金属辐射板上设置有相对的 凹槽或进、 出引流管, 金属辐射板热压成为一体铺设在地面或粘贴在 墙壁、 顶棚上, 金属辐射板进口连接四通换向阀 (3) 左侧端口, 金 属辐射板出口通过节流部件(5)连接外换热器(1)下端口, 外换热 器 (1) 上端口连接四通换向阀 (3) 右侧端口, 四通换向陶 (3) 进 口连接压缩机(4) 出口, 四通换向阀 (3) 中间公用端口连接压缩机
(4) 回气口, 外换热器采用风冷换热器、 水冷换热器以及地基桩换 热器中的至少一种。
10、一种建筑一体空调,包括有外换热器, 四通换向阀,压缩机, 微孔管路, 其特征在于: 所述的微孔管路为金属毛细管、 PERT、 PB 毛细管中的至少一种,微孔管路多根并联粘贴在顶棚上或铺设在地面 上; 微孔管路一侧多根并联端口连接四通换向阀 (3) 右侧端口, 四 通换向阀 (3) 左侧端口连接外换热器 (1) 上端口, 外换热器 (1) 下端口通过节流部件连接微孔管路另一侧多根并联端口,四通换向阀
(3) 中间公用端口连接压缩机 (4) 回气口, 四通换向阀(3)进口连 接压缩机 (4)出口。
PCT/CN2011/078904 2011-08-25 2011-08-25 建筑一体空调 WO2013026206A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020147007658A KR20140053364A (ko) 2011-08-25 2011-08-25 건축물 일체형 에어컨
US14/240,457 US20140283541A1 (en) 2011-08-25 2011-08-25 Building built-in air conditioning system
CN201180072752.3A CN103842730B (zh) 2011-08-25 2011-08-25 建筑一体空调
JP2014526355A JP2014527151A (ja) 2011-08-25 2011-08-25 ビルトインエアコン
PCT/CN2011/078904 WO2013026206A1 (zh) 2011-08-25 2011-08-25 建筑一体空调
DE112011105555.2T DE112011105555T5 (de) 2011-08-25 2011-08-25 Ins Gebäude integrierte Klimaanlage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/078904 WO2013026206A1 (zh) 2011-08-25 2011-08-25 建筑一体空调

Publications (1)

Publication Number Publication Date
WO2013026206A1 true WO2013026206A1 (zh) 2013-02-28

Family

ID=47745856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078904 WO2013026206A1 (zh) 2011-08-25 2011-08-25 建筑一体空调

Country Status (6)

Country Link
US (1) US20140283541A1 (zh)
JP (1) JP2014527151A (zh)
KR (1) KR20140053364A (zh)
CN (1) CN103842730B (zh)
DE (1) DE112011105555T5 (zh)
WO (1) WO2013026206A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104154644A (zh) * 2014-08-21 2014-11-19 珠海格力电器股份有限公司 空调器
EP2679922A3 (en) * 2013-08-16 2018-03-21 Guangxi Junfuhuang Ground Source Heat Pump Co., Ltd Heat pump system and air-conditioner
US10663198B2 (en) 2013-08-16 2020-05-26 Guangxi University Heat pump system and air-conditioner

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140352915A1 (en) * 2013-05-31 2014-12-04 Narayanan Raju Radiant thermal systems and methods for enclosed structures
US10429083B2 (en) * 2013-08-30 2019-10-01 Qingdao Hisense Hitachi Air-conditioning Systems Co., Ltd. Multi-type air conditioner system
CN104165429B (zh) * 2014-09-01 2017-01-18 李传友 基于地温调节空间内冷暖/干湿及净化环境的系统
BE1023389B1 (nl) * 2015-08-31 2017-03-01 Office-Line BVBA Een warmtepomp inclusief grondwarmtewisselaar
CN105823278A (zh) * 2016-05-25 2016-08-03 南京天加空调设备有限公司 一种变频空调的变频模块的冷却装置
KR101950606B1 (ko) * 2017-09-29 2019-02-20 남재일 벽체 내장형 에어워터 시스템
JP2019200019A (ja) * 2018-05-18 2019-11-21 清水建設株式会社 躯体蓄熱空調システム
KR102567909B1 (ko) * 2021-01-06 2023-08-16 이만복 실내 냉방 시스템
CN116045445B (zh) * 2023-04-03 2023-06-23 河北空调工程安装有限公司 一种室内空气质量多维度监测调控装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998005905A1 (de) * 1996-08-05 1998-02-12 Sandler Energietechnik Gmbh & Co. Kg Kapillarrohr-heiz- oder kühlplatte mit dünner zementdeckschicht
DE10019315A1 (de) * 1999-11-24 2001-05-31 Plastobras Holding S A Plattenartiges Bauteil (Sandwich-Platte)
JP2004012056A (ja) * 2002-06-10 2004-01-15 Hayashi Tama 水冷式エアコン
CN101343919A (zh) * 2007-07-11 2009-01-14 郭海新 一种调温板材
CN101818963A (zh) * 2010-04-20 2010-09-01 奉政一 用水做冷媒的室温调整装置
CN101975412A (zh) * 2010-11-09 2011-02-16 奉政一 建筑一体储热储冷室温调整装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1800150A (en) * 1927-01-29 1931-04-07 Musgrave Joseph Leslie Heating and cooling of buildings
US4257481A (en) * 1975-06-05 1981-03-24 Dobson Michael J Cement panel heat exchangers
KR910012619A (ko) * 1989-12-28 1991-08-08 강진구 공기 조화기
JPH0755295A (ja) * 1993-08-18 1995-03-03 Sharp Corp 熱交換器
US5461876A (en) * 1994-06-29 1995-10-31 Dressler; William E. Combined ambient-air and earth exchange heat pump system
US5551507A (en) * 1995-03-17 1996-09-03 Russell A Division Of Ardco, Inc. Finned heat exchanger support system
JP2000329485A (ja) * 1999-05-18 2000-11-30 Central Res Inst Of Electric Power Ind 熱交換器
WO2003001129A1 (fr) * 2001-06-26 2003-01-03 Daikin Industries, Ltd. Dispositif frigorifique
US20040026525A1 (en) * 2002-05-20 2004-02-12 Joachim Fiedrich In radiant wall and ceiling hydronic room heating or cooling systems, using tubing that is fed hot or cold water, the tubing is embedded in gypsum or cement wallboard in intimate thermal contact therewith so that the wallboard heats or cools the room
US20060048929A1 (en) * 2004-09-09 2006-03-09 Aaron David A Header and coil connections for a heat exchanger
US7871578B2 (en) * 2005-05-02 2011-01-18 United Technologies Corporation Micro heat exchanger with thermally conductive porous network
JP4558597B2 (ja) * 2005-07-07 2010-10-06 株式会社エコ・パワー 放熱管及び空調システム
JP2008151351A (ja) * 2006-12-14 2008-07-03 Matsushita Electric Ind Co Ltd 空気調和機
JP2009063247A (ja) * 2007-09-07 2009-03-26 Hitachi Appliances Inc 冷凍サイクル装置およびそれに用いる流体機械
JP2010266127A (ja) * 2009-05-14 2010-11-25 Fujishima Kensetsu:Kk ヒートポンプ式空調装置
EP2519783B1 (de) * 2009-12-31 2017-06-21 SGL Carbon SE Einrichtung zur temperierung eines raums
JP5509857B2 (ja) * 2010-01-12 2014-06-04 新日鐵住金株式会社 冷暖房用鋼製パネル及びこれを用いた建築物の冷暖房システム
JP3166125U (ja) * 2010-04-05 2011-02-24 小林 典夫 潜熱蓄熱型暖冷房システム
JP2012013240A (ja) * 2010-06-29 2012-01-19 Kita Nippon Electric Cable Co Ltd 床下蓄熱式暖房システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998005905A1 (de) * 1996-08-05 1998-02-12 Sandler Energietechnik Gmbh & Co. Kg Kapillarrohr-heiz- oder kühlplatte mit dünner zementdeckschicht
DE10019315A1 (de) * 1999-11-24 2001-05-31 Plastobras Holding S A Plattenartiges Bauteil (Sandwich-Platte)
JP2004012056A (ja) * 2002-06-10 2004-01-15 Hayashi Tama 水冷式エアコン
CN101343919A (zh) * 2007-07-11 2009-01-14 郭海新 一种调温板材
CN101818963A (zh) * 2010-04-20 2010-09-01 奉政一 用水做冷媒的室温调整装置
CN101975412A (zh) * 2010-11-09 2011-02-16 奉政一 建筑一体储热储冷室温调整装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2679922A3 (en) * 2013-08-16 2018-03-21 Guangxi Junfuhuang Ground Source Heat Pump Co., Ltd Heat pump system and air-conditioner
US10663198B2 (en) 2013-08-16 2020-05-26 Guangxi University Heat pump system and air-conditioner
CN104154644A (zh) * 2014-08-21 2014-11-19 珠海格力电器股份有限公司 空调器

Also Published As

Publication number Publication date
CN103842730A (zh) 2014-06-04
JP2014527151A (ja) 2014-10-09
DE112011105555T5 (de) 2014-06-05
US20140283541A1 (en) 2014-09-25
CN103842730B (zh) 2016-01-20
KR20140053364A (ko) 2014-05-07

Similar Documents

Publication Publication Date Title
WO2013026206A1 (zh) 建筑一体空调
CN109610683B (zh) 装配式空调墙及其运行方法
CN102589071B (zh) 超导热传递冷暖装置
CN100498130C (zh) 三套管蓄能型太阳能与空气源热泵集成系统
CN107062473A (zh) 一种太阳能空气源热泵三联供系统
WO2012062083A1 (zh) 建筑一体储热储冷室温调整装置
CN101825308B (zh) 地热铺设采暖装置
CN107044743B (zh) 一种利用微通道环路热管的太阳能热泵系统
CN112211308B (zh) 一种采用空气源热泵系统的多级辐射相变墙体
CN103528295B (zh) 复合能源热泵式节能型户式中央空调及其控制方法
CN204963635U (zh) 塑包金属微孔管换热结构组件及冷暖装置
CN106439990A (zh) 一种太阳能‑空气源复合式热泵无水采暖系统及采暖方法
RU2666507C1 (ru) Система отопления и кондиционирования здания
CN1900439B (zh) 太阳能热水及冷暖空调大楼
CN206073214U (zh) 一种太阳能‑空气源复合式热泵无水采暖系统
CN1281908C (zh) 风冷热泵蓄能空调机
CN2704775Y (zh) 复合热源多功能供暖装置
CN109612156B (zh) 包含节能式热泵系统的装配式空调墙及其运行方法
CN2457532Y (zh) 具有生活热水的风冷热泵装置
CN108643608B (zh) 一种采用冷热源一体化围护结构的零能耗岗亭
CN206929902U (zh) 一种太阳能空气源热泵三联供系统
CN203163138U (zh) 冰蓄冷式制热水供冷暖气中央空调
CN217844147U (zh) 一种模块化相变蓄能末端的辐射式高效热泵系统
CN205208861U (zh) 绿色地源热泵空调水路系统
CN219367828U (zh) 热泵型水介质地热、地冷、半空冷三供系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871156

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014526355

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112011105555

Country of ref document: DE

Ref document number: 1120111055552

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20147007658

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14240457

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11871156

Country of ref document: EP

Kind code of ref document: A1