WO2013026200A1 - 偏振分光器件 - Google Patents

偏振分光器件 Download PDF

Info

Publication number
WO2013026200A1
WO2013026200A1 PCT/CN2011/078845 CN2011078845W WO2013026200A1 WO 2013026200 A1 WO2013026200 A1 WO 2013026200A1 CN 2011078845 W CN2011078845 W CN 2011078845W WO 2013026200 A1 WO2013026200 A1 WO 2013026200A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical prism
optical
birefringent
flat sheet
splitting device
Prior art date
Application number
PCT/CN2011/078845
Other languages
English (en)
French (fr)
Inventor
阮志展
Original Assignee
Ruan Zhizhan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruan Zhizhan filed Critical Ruan Zhizhan
Priority to PCT/CN2011/078845 priority Critical patent/WO2013026200A1/zh
Publication of WO2013026200A1 publication Critical patent/WO2013026200A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining

Definitions

  • the present invention relates to the field of optics and lasers, and more particularly to a polarizing beam splitting device.
  • polarization beam splitting prisms In optical applications, there are two main types of polarization beam splitting prisms. One is to use polarization coating to achieve polarization separation, ie PBS prism. The other is to use various polarization beam splitting prisms designed by the spectral characteristics of birefringent crystals. .
  • the PBS prism is formed by coating a multi-layer dielectric polarizing film on an optical glass prism, and then bonding the splitting surfaces of the two prisms to form a polarizing beam splitting prism.
  • the preparation method is complicated, and is affected by the glue quality and the bonding process. The quality is difficult to guarantee, and the glue is easily affected by temperature and can not work in high power applications. Moreover, the extinction ratio of this PBS prism is generally only about 30dB.
  • the most commonly used in the birefringent crystal polarization beam splitting prism is the Glan prism.
  • the structure is: crystal prism + glue layer (or air gap) + crystal prism.
  • the crystal polarization prism has an extinction ratio of 50dB or more. Glued structure, there is a small field of view, and can not be applied to high-power applications.
  • the air gap of the Glan prism can overcome these shortcomings, but its manufacturing process is complex, and the beam will be reflected multiple times between the air gap, resulting in interference.
  • the above Glan prism the important point is to use high quality bulk birefringent crystal, the cost is very high.
  • US Pat. No. 3,565,508 provides a An optical glass prism and a spectroscopic prism structure of a parallel birefringent crystal sheet, wherein the crystal flakes are polished with high precision and are optically (without glue) glued to the two prisms respectively.
  • the transmitted beam produces lateral displacement, which deviates from the central axis of the beam splitting prism; 2.
  • the crystal sheet is easily deformed during processing and photo-adhesive, thus affecting the beam quality and polarization state of the transmitted light;
  • the overall transmittance of the device is not high. 4. Since the refractive index of the prism glass is close to the refractive index of the crystal wafer, the device length needs to be long.
  • a first object of the present invention is to provide a polarization beam splitting device which counteracts lateral displacement of light caused by a birefringent flat sheet so that the position and direction of the outgoing light and the incident light are kept exactly the same.
  • the present invention provides a polarization beam splitting device comprising a first optical prism and a second optical prism, and a birefringent flat sheet interposed between the optical prisms, a light incident surface of the first optical prism Parallel to the light exit surface of the second prism, the first optical prism and the second optical prism have the same refractive index and greater than the refractive index of the birefringent flat sheet, characterized in that the light incident surface of the first optical prism is opposite to the light beam The vertical plane of the incident direction is at an angle of 2° to 10°.
  • the invention also discloses a polarizing beam splitting device using the most common and inexpensive optical glass material for an optical prism, comprising a first optical prism and a second optical prism, and a birefringent flat sheet interposed between the two optical prisms.
  • the light incident surface of the first optical prism is parallel to the light exit surface of the second prism, and the light incident surface of the first optical prism is at an angle of 2° to 10° with respect to a vertical plane of the incident direction of the light beam.
  • the refractive index of the film is greater than the refractive index of the birefringent plate, and the refractive index of the film gradually increases from the outside to the inside, and the film thickness is greater than the transmission depth of the evanescent wave to prevent the total reflection light from passing through the film Floor.
  • the design provided by the invention can offset the lateral displacement of the light caused by the birefringent flat sheet, keep the position and direction of the outgoing light and the incident light accurately and consistently, and reduce the amount of expensive crystal material, low cost, high performance and simple manufacture. .
  • FIG. 1 is a schematic structural view of a preferred embodiment 1 of a polarization splitting device of the present invention
  • FIG. 2 is a schematic structural view of a preferred embodiment 2 of a polarization splitting device of the present invention
  • FIG. 3 is a third preferred embodiment of the polarizing beam splitting device of the present invention.
  • 4 is a schematic structural view of a preferred embodiment 4 of the polarization splitting device of the present invention
  • FIG. 5 is a schematic structural view of a preferred embodiment 5 of the polarization splitting device of the present invention.
  • FIG. 1 is a schematic structural view of a preferred embodiment 1 of a polarization splitting device of the present invention.
  • a polarization beam splitting device comprising a first optical prism and a second optical prism, and a birefringent flat sheet interposed between the optical prisms, wherein a light incident surface of the first optical prism is parallel to the light of the second prism
  • the exit surface, the first optical prism and the second optical prism have the same refractive index and greater than the refractive index of the birefringent flat sheet, and the light incident surface of the first optical prism is 2° with respect to a vertical plane of the incident direction of the light beam. 10 ° angle.
  • a birefringent flat sheet 3 having two optical faces parallel to each other is sandwiched between Between an optical prism 2 and a second optical prism 4, the optical axis of the birefringent flat sheet 3 is perpendicular to the plane of the paper (ie, the main section is parallel to the cutting plane), and the refractive index of the optical prism 2 and the optical prism 4 is n, which is greater than double
  • the refractive index of the refracting flat sheet 3 is preferably 0.2 or more.
  • the light incident surface 21 of the optical prism 2 is designed to have a small angle of 2 to 10 degrees, preferably between 5 and 10 degrees.
  • the contact surface 22 of the first optical prism 2 and the birefringent flat sheet 3, the contact surface 42 of the second optical prism 4 and the birefringent flat sheet 4, and the two optical surfaces of the birefringent flat sheet 3 are plated with the anti-reflection film layer 5 and 6.
  • the film-coated optical prisms 2 and 4 are combined with the birefringent flat sheet 3 by optical bonding or deepening of a photoresist or glue to form a polarization beam splitting prism.
  • the optical axis of the birefringent flat sheet is perpendicular to the paper.
  • the main plane of the light that is, the main plane of the birefringent flat sheet coincides; or the optical axis of the birefringent flat sheet is not perpendicular to the paper surface, that is, the main plane of the light and the main cross section of the birefringent flat sheet do not coincide.
  • the first optical prism 2, the birefringent flat sheet 3, and the second optical prism 4 are disposed such that light incident on the birefringent flat sheet 3 is totally reflected at the birefringent flat sheet 3 And a second polarization state beam 202A orthogonal to the first polarization state beam 201A is transmitted at the birefringent flat sheet 3.
  • the refractive indices of the first optical prism 2 and the second optical prism 4 are much larger than the refractive indices (n. and n e ) of the birefringent flat sheet 3, and the two main refractive indices n of the birefringent flat sheet 3 .
  • the total reflection critical angles corresponding to n e are: arcsin(n./n) and arcsin iVn), the structural angle of the optical prism, that is, the deflection angle of the beam 200B is selected in arcsin(n./n) and arcsin( Between n e /n), the first polarization state beam 201A in the beam 200B is totally reflected on the contact surface 22, and the second polarization state beam 202A is transmitted through the interface 22, thereby realizing polarization splitting.
  • the first optical prism 2 and the second optical prism 4 may be made of a high refractive index optical material Material, such as SF57 glass.
  • the birefringent flat sheet 3 employs a main refractive index n in the range of the operating wavelength band. Materials that differ greatly from n e include birefringent crystals or polymer materials with birefringence properties, such as birefringent crystals a-BBO or Calcite, to obtain a larger field of view (receiving angle).
  • the sheet shape cannot be used, but it is necessary to have a flat sheet or a flat plate having a sufficient thickness relative to the large-pass light surface, and at the same time, the light incident surface of the first optical prism 2 21 or the light exit surface 41 of the second optical prism 4 is designed to be parallel to each other and to have a small angle of inclination with respect to a vertical plane of the incident direction of the light beam 200A. This can cancel the lateral displacement of the light beam generated by the flat sheet 3, the light beam 200B The light beam 202B is parallel to each other and has a lateral displacement. By adjusting this tilt angle and the thicknesses of the first optical prism 2 and the second optical prism 4, the position and direction of the outgoing light 202C and the incident light 200A are kept exactly the same.
  • the refractive index of the optical prism 2 and the optical prism 4 is larger than the refractive index of the birefringent flat sheet 3, and the smaller the total reflection critical angle corresponding to the first polarization state beam 201A, the shorter the length of the entire device can be made.
  • the first optical prism 2 and the second optical prism 4 and the two contact faces 22, 42, of the birefringent flat sheet 3, and the light incident surface 21 of the first optical prism 2 and the light exit surface 41 of the second optical prism 4 may be An anti-reflection coating is applied to reduce the reflection loss of light.
  • FIG. 2 is a schematic structural view of a preferred embodiment 2 of the polarization beam splitting device of the present invention.
  • the first optical prism 2 is designed as a square prism of a specific angle, and a reflective film is plated on the end surface 23 such that the first polarization state beam 201A totally reflected at the birefringent flat sheet 3 is in the first optical Re-reflecting the trailing edge and the second polarized state light on the prism 2
  • the outgoing light 202C of the beam 202A is emitted in a vertical direction, so that two directions of polarization perpendicular to each other are obtained, that is, the first polarization state beam 201A emission direction 201B is perpendicular to the second polarization state 202A beam exit direction 202C.
  • FIG. 3 is a schematic structural view of a third preferred embodiment of the polarization splitting device of the present invention.
  • the polarization splitting device has the first optical prism 2 light exit surface 23 parallel to the plane of the birefringent flat sheet 3, and the end faces 21 and 24 of the first optical prism 2 are parallel to each other, that is, the first optical prism 2 is designed to be Parallel four-sided rows of prisms, such that the first polarization state beam 201A is reflected twice in the first optical prism 2, and the exit direction 201B is parallel to the exit light 202C of the second polarization state beam 202A, so that two directions can be obtained. Polarized light parallel to each other.
  • FIG. 4 is a schematic structural view of a preferred embodiment 4 of the polarization splitting device of the present invention.
  • This embodiment is an improvement on the first embodiment.
  • the first optical material 2 and the second prism 4 is not an optical prism optical glass, but into another birefringent crystal prism, the refractive index of the crystal and the main n el vary greatly, the optimal It is 0.2 or more and is both the main refractive index n of the birefringent flat sheet 3.
  • the optical axis 20 of the first optical prism 2 and the optical axis 40 of the second optical prism 4 are designed to be parallel or perpendicular to the optical axis 30 of the birefringent flat sheet 3, and the light of the first optical prism 2
  • the axis 20 and the optical axis 40 of the second optical prism 4 are aligned in the same direction.
  • the refractive index difference in the birefringent crystal optical prism and the birefringent flat sheet 3 is larger, and for the second polarization.
  • the light beam 202A has a smaller difference in refractive index between the birefringent crystal optical prism and the birefringent flat sheet 3, so that the total reflection critical angle corresponding to the first polarization state beam 201A corresponds to the second polarization state beam 202A.
  • the total reflection critical angle is more different, which greatly increases The angle of view (receiving angle) of the polarization splitting device.
  • FIG. 5 is a schematic structural view of another preferred embodiment of the polarization splitting device of the present invention.
  • the polarization splitting device comprises a first optical prism 2 and a second optical prism 4, and a birefringent flat sheet 3 interposed between the two optical prisms, the first optical prism 2
  • the light incident surface 21 is parallel to the light exit surface 41 of the second prism 4, and the light incident surface 21 of the first optical prism 2 is at an angle of 2° to 10° with respect to a plane perpendicular to the incident direction of the light beam 200A.
  • the refractive flat sheet 3 is plated with a plurality of high refractive index coating materials on both sides, and it is preferable that the refractive index of the film layer is 0.2 or more larger than that of the birefringent flat sheet.
  • the refractive indices of both layers gradually increase from the outside to the inside, and the thickness of both layers is larger than the transmission depth of the evanescent wave to prevent the total reflected light from partially passing through the film.
  • the first optical prism 2 and the second optical prism 4 adopt the most common optical glass, and the two optical prisms have the same refractive index, and the film layer 5 and the film layer 6 plated on both sides of the intermediate birefringent flat sheet 3 are used.
  • High refractive index coating material, and the thickness of both layers is greater than the transmission depth of the evanescent wave to prevent the total reflection light from passing through the film.
  • the present invention provides a design in which the light incident surface 21 of the first optical prism 2 is at a small angle to the vertical plane of the incident direction of the light beam 200A, offsetting the lateral displacement of the light caused by the birefringent flat sheet 3, resulting in The position and direction of the incident light 202C and the incident light 200A are kept exactly the same; the thickness of the birefringent flat sheet 3 is increased, so that no deformation occurs during processing and photo-adhesive, thereby ensuring that the beam quality and polarization state of the transmitted light are not affected; 2, 4 select a material with a higher refractive index, so that the length of the entire device can be made shorter; all the light-passing surfaces are coated with an anti-reflection film layer to improve the transmittance of light; and because of the two optical prisms 2, 4 Optically glued to the birefringent flat sheet 3 to achieve high power Requirement; the use of birefringent flat sheets for polarization splitting, with a very high

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种偏振分光器件,包括第一光学棱镜(2)和第二光学棱镜(4),以及夹设在光学棱镜之间的双折射平片(3)。第一光学棱镜(2)的光入射面(21)平行于第二光学棱镜(4)的光出射面(41),且第一光学棱镜(2)和第二光学棱镜(4)的折射率相同且大于双折射平片(3)的折射率。第一光学棱镜(2)的光入射面(21)与光束入射方向的垂直平面成2°—10°夹角。从而,双折射平片引起的光线侧向位移被抵消,出射光与入射光的位置和方向都保持精确一致。此外,降低了昂贵晶体材料的用量,成本低,性能高且制造简单。

Description

偏振分光器件 技术领域
本发明涉及光学与激光领域,尤其是一种偏振分光器件。
背景技术
在光学应用中, 现时使用比较多的偏振分光棱镜主要有两类. 一 类是利用镀膜工艺实现偏振分离,即 PBS棱镜.另一类是利用双折射 晶体的分光特性设计的各种偏振分光棱镜。
PBS 棱镜是在光学玻璃棱镜上镀制多层介质偏振分光膜,再将两 块棱镜的分光面胶合起来,构成偏振分光棱镜. 这种制备方法工艺较 复杂,受到胶品质和胶合工艺的影响,品质难以保证, 而且胶容易受 温度影响及无法在高功率的应用场合下工作. 并且,这种 PBS棱镜的 消光比一般只有 30dB左右.
双折射晶体偏振分光棱镜中最常用的是格兰棱镜, 其结构为: 晶 体棱镜 +胶层 (或空气隙) +晶体棱镜.这种晶体偏振分光棱镜的消光比 达到 50dB 以上.但采用胶层胶合结构,存在视场较小,而且无法应用 于高功率场合.空气隙的格兰棱镜可以克服这些缺点,但其制作工艺 复杂,并且光束会在空气隙之间多次反射,产生干涉. 对于以上的格 兰棱镜, 重要的一点是都要用到高质量的大块双折射晶体,其成本十 分高昂.
为了节省昂贵的晶体材料,专利 US 3,565,508提供了一种包含两 个光学玻璃棱镜和一个平行双折射晶体薄片的分光棱镜结构, 其中 晶体薄片两通光面高精度抛光,并分别与两个棱镜实现光学 (无胶)胶 合。 但该设计存在一些重要的缺陷: 1.透射光束产生侧向位移,偏离 分光棱镜的中心轴; 2.晶体薄片加工和光胶时容易产生变形,从而影 响透射光的光束质量和偏振态; 3.器件整体透过率不高; 4.因棱镜玻 璃折射率与晶体薄片折射率相近,所以器件长度需要很长。
发明内容
鉴于上述缺陷, 本发明第一个目的是提供一种偏振分光器件, 以 抵消双折射平片引起的光线侧向位移,使出射光与入射光的位置和方 向都保持精确一致。
为达到上述目的, 本发明提供了一种偏振分光器件, 包括第一光 学棱镜和第二光学棱镜,及夹设在光学棱镜之间的双折射平片, 所述 第一光学棱镜的光入射面平行于所述第二棱镜的光出射面,该第一光 学棱镜和该第二光学棱镜的折射率相同且大于双折射平片折射率,其 特征在于:第一光学棱镜的光入射面相对于光束入射方向的垂直平面 成 2°〜10°夹角。 本发明还公开一种光学棱镜采用最普通低廉的光学玻璃材料的偏 振分光器件, 包括第一光学棱镜和第二光学棱镜, 及夹设在所述两光 学棱镜之间的双折射平片,所述第一光学棱镜的光入射面平行于所述 第二棱镜的光出射面, 其特征在于: 第一光学棱镜的光入射面相对于 光束入射方向的垂直平面成 2°〜10°夹角, 所述双折射平片两侧均有 镀膜材料, 该膜层折射率大于所述双折射平片折射率, 且膜层折射率 由外至内逐渐增大, 且膜层厚度大于倏逝波透射深度, 以防止全反射 光透过膜层。
本发明提供的设计可抵消双折射平片引起的光线侧向位移, 使出 射光与入射光的位置和方向都保持精确一致,且降低了昂贵晶体材料 的用量, 成本低, 性能高并且制造简单。
附图说明
图 1是本发明的偏振分光器件较佳实施例一的结构示意图; 图 2是本发明的偏振分光器件较佳实施例二的结构示意图; 图 3是本发明的偏振分光器件较佳实施例三的结构示意图; 图 4是本发明的偏振分光器件较佳实施例四的结构示意图; 图 5是本发明的偏振分光器件较佳实施例五的结构示意图。
具体实施方式
为使本发明的目的、 技术方案及优点更加清楚明白, 以下将通过 具体实施例和相关附图, 对本发明作进一步详细说明。
请参考图 1。 图 1所示的是为本发明的偏振分光器件较佳实施例 一的结构示意图。一种偏振分光器件, 包括第一光学棱镜和第二光学 棱镜,及夹设在光学棱镜之间的双折射平片, 所述第一光学棱镜的光 入射面平行于所述第二棱镜的光出射面,该第一光学棱镜和该第二光 学棱镜的折射率相同且大于双折射平片折射率, 其特征在于: 第一光 学棱镜的光入射面相对于光束入射方向的垂直平面成 2°〜10°夹角。 在该实施例中, 将一片两光学面相互平行的双折射平片 3, 夹设在第 一光学棱镜 2和第二光学棱镜 4之间,双折射平片 3的光轴垂直于纸 面(即主截面平行于切割面), 光学棱镜 2和光学棱镜 4 的折射率为 n, 大于双折射平片 3的折射率, 该折射率差值最佳在 0.2或以上。 光学棱镜 2的光入射面 21设计成一个倾斜 2°〜10°的小角度,最佳在 5°〜10°之间。 第一光学棱镜 2与双折射平片 3的接触面 22、 第二光 学棱镜 4与双折射平片 4的接触面 42、 双折射平片 3的两个光学面 镀上减反射膜层 5和 6。 镀上膜的光学棱镜 2和 4与双折射平片 3通 过光学胶合或者深化光胶或者胶合剂胶合等方式结合,构成一个偏振 分光棱镜. 其中,所述双折射平片的光轴垂直于纸面, 即光的主平面 和双折射平片的主截面重合;也可以是双折射平片的光轴不垂直于纸 面, 即光的主平面和双折射平片的主截面不重合。
上述第一光学棱镜 2、双折射平片 3、第二光学棱镜 4设置为使得 入射到双折射平片 3的光中, 第一偏振态光束 201A在所述双折射平 片 3处发生全反射, 而与所述第一偏振态光束 201A正交的第二偏振 态光束 202A在所述双折射平片 3处透射。 在该实施例中, 即第一光 学棱镜 2和第二光学棱镜 4的折射率远大于双折射平片 3的折射率 (n。 和 ne ),双折射平片 3的两主折射率 n。 和 ne所对应的全反射临界角 分别为: arcsin(n。/n)和 arcsin iVn), 光学棱镜的结构角,即光束 200B 的起偏角选择在 arcsin(n。/n)和 arcsin(ne/n) 之间, 就可以让光束 200B 中的第一偏振态光束 201A在接触面 22上发生全反射, 而第二偏振 态光束 202A则从界面 22透射过去,从而实现了偏振分光。
上述第一光学棱镜 2和第二光学棱镜 4可以是由高折射率光学材 料,比如 SF57玻璃制成。双折射平片 3采用在工作波段范围内主折射 率 n。与 ne差别较大的材料,包括双折射晶体或具有双折射性质的聚 合物材料,比如双折射晶体 a-BBO或 Calcite,以获得较大的视场角(接 收角)。
为了保证双折射平片 3 加工的精度和光学胶合时不发生变形, 不能采用薄片形状,而必须是相对大通光面有足够厚度的平片或平 板,同时,第一光学棱镜 2的光入射面 21或第二光学棱镜 4的光出射 面 41设计成相互平行,并且相对于光束 200A入射方向的垂直平面成 一小角度倾斜角. 这样就可以抵消平片 3所产生的光束侧向位移,光 束 200B与光束 202B相互平行,且存在侧向位移 , 通过调节这个倾 斜角以及第一光学棱镜 2和第二光学棱镜 4的厚度, 使出射光 202C 与入射光 200A的位置和方向都保持精确一致。
光学棱镜 2和光学棱镜 4的折射率越大于双折射平片 3的折射率, 则第一偏振态光束 201A所对应的全反射临界角越小,从而整个器件 的长度可以做的越短. 同时, 第一光学棱镜 2和第二光学棱镜 4与双 折射平片 3的两接触面 22、 42,及第一光学棱镜 2的光入射面 21、 第二光学棱镜 4的光出射面 41均可以镀上减反射膜, 以减少光的反 射损失。
请参考图 2, 图 2是本发明的偏振分光器件较佳实施例二的结构 示意图。在该实施例中, 将第一光学棱镜 2设计成特定角度的四角棱 镜, 并在端面 23上镀反射膜, 使得在双折射平片 3处全反射的第一 偏振态光束 201A在第一光学棱镜 2上再次反射后沿与第二偏振态光 束 202A的出射光 202C垂直方向射出, 这样即可获得两束方向相互 垂直的偏振光, 即第一偏振态光束 201A出射方向 201B与第二偏振 态 202A光束出射方向 202C垂直。
请参考图 3, 图 3是本发明的偏振分光器件较佳实施例三的结构 示意图。 在该实施例中, 偏振分光器件将第一光学棱镜 2 光出射面 23与双折射平片 3所在平面平行, 第一光学棱镜 2的端面 21和 24 相互平行, 即第一光学棱镜 2设计成平行四边行棱镜,使得第一偏振 态光束 201A在第一光学棱镜 2内先后经过两次反射后出射, 其出射 方向 201B平行于第二偏振态光束 202A的出射光 202C, 这样可以获 得两束方向相互平行的偏振光。
请参考图 4, 图 4是本发明的偏振分光器件较佳实施例四的结构 示意图。 该实施例是对实施例一的改进。在该实施例中, 第一光学棱 镜 2和第二光学棱镜 4的材料不是光学玻璃, 而是换成另一种双折射 晶体棱镜, 该晶体的主折射率 和 nel 差别较大,最佳是 0.2或以 上,而且均比双折射平片 3的主折射率 n。 和 ne大,将第一光学棱镜 2的光轴 20和第二光学棱镜 4的光轴 40设计成与双折射平片 3的光 轴 30相互平行或垂直, 且第一光学棱镜 2的光轴 20和第二光学棱镜 4的光轴 40方向一致, 对于第一偏振态光束 201A,在双折射晶体光 学棱镜和双折射平片 3里所对应的折射率差别更大,而对于第二偏振 态光束 202A,在双折射晶体光学棱镜和双折射平片 3里所对应的折射 率差别更小, 使得第一偏振态光束 201A所对应的全反射临界角与第 二偏振态光束 202A所对应的全反射临界角差别更大, 从而大大提高 偏振分光器件的视场角(接收角)。
请参考图 5, 图 5是本发明的另一种偏振分光器件较佳实施例的 结构示意图。 在该实施例中, 该偏振分光器件, 包括第一光学棱镜 2 和第二光学棱镜 4, 及夹设在所述两光学棱镜之间的双折射平片 3, 所述第一光学棱镜 2的光入射面 21平行于所述第二棱镜 4的光出射 面 41, 所述第一光学棱镜 2的光入射面 21与光束 200A入射方向垂 直的平面成 2°〜10°夹角, 所述双折射平片 3两侧均镀有复数层高折 射率的镀膜材料, 最佳的是膜层折射率比双折射平片折射率大 0.2或 以上。两侧膜层折射率均由外至内逐渐增大, 并且两侧膜层厚度均大 于倏逝波透射深度, 以防止全反射光部分透过膜层。 在该实施例中, 第一光学棱镜 2和第二光学棱镜 4采用最普通的光学玻璃,两光学棱 镜折射率相同,中间双折射平片 3两侧镀有的膜层 5和膜层 6采用高 折射率的镀膜材料,且两侧膜层厚度均大于倏逝波透射深度, 以防止 全反射光透过膜层。
综上所述, 本发明提供的设计, 由于第一光学棱镜 2的光入射面 21与光束 200A入射方向的垂直平面成一小角度,抵消了双折射平片 3引起的光线侧向位移,使出射光 202C与入射光 200A的位置和方向 都保持精确一致; 提高双折射平片 3的厚度,使得加工和光胶时不产 生变形,从而保证透射光的光束质量和偏振态不受影响; 两光学棱镜 2、4选用更高折射率的材料, 从而整个器件的长度可以做的更短; 所 有通光面都镀上减反射膜层,提高了光的透过率; 而且由于两光学棱 镜 2、 4和双折射平片 3之间采用光学无胶胶合方式,达到了高功率的 要求;采用双折射平片实现偏振分光,具有极高的消光比,同时又降低 了昂贵晶体材料的用量, 成本低并且制造简单。
上列较佳实施例, 对本发明的目的、 技术方案和优点进行了进一 步详细说明,所应理解的是,以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的精神和原则之内, 所作的任何修 改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1. 一种偏振分光器件, 包括第一光学棱镜和第二光学棱镜, 及夹设在光学棱镜之间的双折射平片, 所述第一光学棱镜的光入 射面平行于所述第二棱镜的光出射面, 该第一光学棱镜和该第二 光学棱镜的折射率相同且大于双折射平片的折射率, 其特征在于: 第一光学棱镜的光入射面与光束入射方向的垂直平面成 2°〜10° 夹角。
2. 根据权利要求 1所述的偏振分光器件, 其特征在于: 所述 夹角为 5°〜10°。
3. 根据权利要求 1或 2所述的偏振分光器件, 其特征在于: 所述第一光学棱镜和第二光学棱镜与双折射平片的接触面上镀有 减反射膜层。
4. 如权利要求 1或 2所述的一种偏振分光器件, 其特征在于: 所述第一光学棱镜、 双折射平片、 第二光学棱镜设置为使得入射 到双折射平片的光中, 第一偏振态光束在所述平片处发生全反射, 而与所述第一偏振态光束正交的第二偏振态光束在所述平片处透 射。
5. 如权利要求 1或 2所述的一种偏振分光器件, 其特征在于: 所述两光学棱镜和所述双折射平片之间采用光学胶合或深化光胶 方式。
6. 如权利要求 1或 2所述的一种偏振分光器件, 其特征在于: 所述两光学棱镜和所述双折射平片之间采用胶合剂胶合。
7. 如权利要求 1或 2所述的一种偏振分光器件, 其特征在于: 所述双折射平片的光轴垂直于纸面, 即光的主平面和双折射平片 的主截面重合。
8. 如权利要求 1或 2所述的一种偏振分光器件, 其特征在于: 所述双折射平片的光轴不垂直于纸面, 即光的主平面和双折射平 片的主截面不重合。
9. 如权利要求 4 所述的一种偏振分光器件, 其特征在于:所 述第一光学棱镜截面为一平行四边形, 使得第一偏振态光束在第 一光学棱镜内经两次反射后出射, 其出射方向与第二偏振态光束 出射方向平行。
10. 如权利要求 4 所述的一种偏振分光器件, 其特征在于:调 整所述第一光学棱镜光出射面形状, 使得第一偏振态光束出射方 向与第二偏振态光束出射方向垂直。
11. 如权利要求 1 所述的一种偏振分光器件, 其特征在于:所 述双折射平片为双折射晶体或具有双折射性质的聚合物材料。
12. 如权利要求 1 所述的一种偏振分光器件, 其特征在于:所 述第一、 第二光学棱镜的折射率比双折射平片大 0.2或以上。
13. 如权利要求 1所述的偏振分光器件, 其特征在于, 所述光 学棱镜为双折射晶体, 该晶体主折射率!^和 1不相同, 且均大 于双折射平片的主折射率 n。和 ne, 且第一光学棱镜的光轴和第二 光学棱镜的光轴一致, 并且与所述双折射平片的光轴平行或垂直。
14. 如权利要求 13所述的偏振分光器件, 其特征在于, 所述双 折射晶体主折射率 和 nel的差别大于或等于 0.2。
15. —种偏振分光器件, 包括第一光学棱镜和第二光学棱镜, 及夹设在所述两光学棱镜之间的双折射平片, 所述第一光学棱镜 的光入射面平行于所述第二棱镜的光出射面, 其特征在于: 第一 光学棱镜的光入射面与光束入射方向的垂直平面成 2°〜10°夹角, 所述双折射平片两侧均有复数层镀膜材料, 该镀膜材料的膜层折 射率大于所述双折射平片折射率, 且两侧的膜层折射率均由外层 至内层逐渐增大, 且两侧膜层厚度均大于倏逝波透射深度, 以防 止全反射光透过膜层。
16. 如权利要求 15所述的偏振分光器件, 其特征在于, 所述膜 层折射率比双折射平片折射率大 0.2或以上。
17. 如权利要求 15所述的偏振分光器件, 其特征在于, 所述第 一光学棱镜的折射率与第二光学棱镜的折射率相同。
18. 如权利要求 16所述的偏振分光器件, 其特征在于, 所述第 一光学棱镜和第二光学棱镜的折射率低于双折射平片的折射率。
19. 如权利要求 16所述的偏振分光器件, 其特征在于, 所述第 一光学棱镜和第二光学棱镜的折射率高于双折射平片的折射率。
PCT/CN2011/078845 2011-08-24 2011-08-24 偏振分光器件 WO2013026200A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/078845 WO2013026200A1 (zh) 2011-08-24 2011-08-24 偏振分光器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/078845 WO2013026200A1 (zh) 2011-08-24 2011-08-24 偏振分光器件

Publications (1)

Publication Number Publication Date
WO2013026200A1 true WO2013026200A1 (zh) 2013-02-28

Family

ID=47745850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078845 WO2013026200A1 (zh) 2011-08-24 2011-08-24 偏振分光器件

Country Status (1)

Country Link
WO (1) WO2013026200A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113003A (ja) * 1984-11-08 1986-05-30 Fuji Elelctrochem Co Ltd 誘電体多層膜偏光子
JPH01241502A (ja) * 1988-03-23 1989-09-26 Namiki Precision Jewel Co Ltd 光アイソレータ用偏光素子
US5923470A (en) * 1995-10-13 1999-07-13 E-Tek Dynamics, Inc. Polarization beam splitter
CN201004093Y (zh) * 2006-06-26 2008-01-09 福州高意通讯有限公司 一种偏振分束棱镜
CN101625431A (zh) * 2009-08-13 2010-01-13 福州光诚光电有限公司 一种新型高功率偏振分光棱镜的制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113003A (ja) * 1984-11-08 1986-05-30 Fuji Elelctrochem Co Ltd 誘電体多層膜偏光子
JPH01241502A (ja) * 1988-03-23 1989-09-26 Namiki Precision Jewel Co Ltd 光アイソレータ用偏光素子
US5923470A (en) * 1995-10-13 1999-07-13 E-Tek Dynamics, Inc. Polarization beam splitter
CN201004093Y (zh) * 2006-06-26 2008-01-09 福州高意通讯有限公司 一种偏振分束棱镜
CN101625431A (zh) * 2009-08-13 2010-01-13 福州光诚光电有限公司 一种新型高功率偏振分光棱镜的制作方法

Similar Documents

Publication Publication Date Title
US10310155B2 (en) Multiple-stack wire grid polarizer
US7653268B1 (en) Substrate guided relay with polarization rotating apparatus
CN102096141B (zh) 一种α-BBO偏振棱镜
US8817371B1 (en) Polarizing beam splitters
JP2013508781A5 (zh)
US20090034069A1 (en) Polarization conversion device and projector using same
JP2013025065A (ja) 波長板、偏光変換素子、偏光変換ユニット及び投射装置
CN110456519B (zh) 偏振分束器及其制备方法、偏振分束方法
JP2012247705A (ja) 偏光変換素子、偏光変換ユニット及び投写型映像装置
CN112526656A (zh) 一种四方位消偏振分光棱镜及其制备方法
JP3584257B2 (ja) 偏光ビームスプリッタ
WO2013026200A1 (zh) 偏振分光器件
JP2009031406A (ja) 非偏光ビームスプリッター及びそれを利用した光学計測機器
JP6876189B1 (ja) フレネルロム、該フレネルロムを備えた計測装置及び光アッテネーター
JP4789541B2 (ja) 偏光分離素子
US7119951B2 (en) Polarizer for high-power deep UV radiation
US10649121B2 (en) Low Ts wire grid polarizer
JP2013025064A (ja) 波長板、偏光変換素子、偏光変換ユニット及び投射装置
US10145999B2 (en) Polarizing beamsplitter that passes s-polarization and reflects p-polarization
JP2007212694A (ja) ビームスプリッタ
EP2520955A1 (en) Plate-type broadband depolarizing beam splitter
JP2003014932A (ja) 偏光ビームスプリッタ、および偏光ビームスプリッタの作成方法
JP2014098756A (ja) 光学部品
CN216595594U (zh) 一种红绿蓝三波长二分之一波片
JPWO2009107355A1 (ja) 紫外線用自己クローニングフォトニック結晶

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 30.04.2014)

122 Ep: pct application non-entry in european phase

Ref document number: 11871314

Country of ref document: EP

Kind code of ref document: A1