WO2013025414A1 - Siloxane copolymer and solid polymer electrolyte comprising such siloxane copolymers - Google Patents

Siloxane copolymer and solid polymer electrolyte comprising such siloxane copolymers Download PDF

Info

Publication number
WO2013025414A1
WO2013025414A1 PCT/US2012/049955 US2012049955W WO2013025414A1 WO 2013025414 A1 WO2013025414 A1 WO 2013025414A1 US 2012049955 W US2012049955 W US 2012049955W WO 2013025414 A1 WO2013025414 A1 WO 2013025414A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
monomer
alkyl
composition
group
Prior art date
Application number
PCT/US2012/049955
Other languages
French (fr)
Inventor
Neeraj Gupta
Anantharaman Dhanabalan
Nagendiran SHANMUGAM
Vivek KHARE
Original Assignee
Momentive Perfomance Materials, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Momentive Perfomance Materials, Inc. filed Critical Momentive Perfomance Materials, Inc.
Priority to CN201280039526.XA priority Critical patent/CN103732656A/en
Priority to KR1020147003877A priority patent/KR20140066163A/en
Priority to JP2014525111A priority patent/JP2014528979A/en
Priority to EP12824489.4A priority patent/EP2742088A4/en
Publication of WO2013025414A1 publication Critical patent/WO2013025414A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • C08F290/148Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/46Block-or graft-polymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1037Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having silicon, e.g. sulfonated crosslinked polydimethylsiloxanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention provides a cross-linkable silicone polyether, a hydrogel copolymer comprising the silicone polyether, and a solid polymer electrolyte composition comprising the hydrogel copolymer. More particularly, the present invention provides a silicone polyether having a methyl siloxane backbone and alkoxy-terminated polyether and cross-linkable polyether side chains attached to the siloxane backbone.
  • the hydrogel copolymer comprises a cross-linked network of the silicone polyether with a monomer.
  • the solid polymer electrolyte comprises a film formed from the hydrogel copolymer, a plasticizer, and a salt.
  • the solid polymer electrolyte composition has a high ionic conductivity and may be formed into a film suitable for use in electrochemical devices (e.g., lithium ion batteries) of various sizes and for a wide range of applications.
  • Ionically conductive materials are used in a variety of electrochemical devices including primary batteries, secondary batteries, solar capacitors, sensors, electrochemical displays, etc.
  • a common ionically conductive material is an electrolyte employing a mixture of alkyl carbonate based liquids containing a lithium salt. These materials are able to form passive films around the anode and cathode, which enable the battery to function efficiently.
  • a majority of known ionically conductive electrolytes used in lithium ion batteries are liquids which pose problems in battery applications due to leakage. This requires using more expensive metal containers to prevent leakage in addition to raising the cost of manufacturing them. Additionally, such electrolyte materials may also be highly reactive and inflammable, which may pose safety problems particularly if the battery is overcharged to temperatures above 125°C.
  • Solid electrolyte materials such as polymer electrolytes and gel electrolytes (collectively referred to herein as solid polymer electrolytes or SPEs) have been developed for use as conductive material in battery applications.
  • Solid polymer electrolytes have excellent characteristics including thin film forming properties, flexibility, lightweight, elasticity, and transparency. These materials also do not exhibit the leakage associated with other ionic conductive materials, and may prevent decreases in battery capacity during repeated use and short-circuiting of positive and negative electrode materials.
  • Solid polymer electrolytes may also exhibit high charging/discharging efficiency, which, along with the ability to be formed as films, allows these materials to be used in various types of batteries of different sizes and shapes.
  • PVdF porous poly(vinylidene) fluoride
  • the present invention provides a novel silicone polyether.
  • the present invention provides a novel hydrogel copolymer comprising such silicone polyethers, and which may be employed in a solid polymer electrolyte composition to provide a solid polymer electrolyte film exhibiting excellent mechanical properties and ionic conductivity.
  • the inventors have found that the silicone polyether provides a material that, through the selection of the side chain functionality and the number of certain functionalized side chains, allows for flexibility in the design of the structure and control over the degree of cross-linking density.
  • the inventors have also found that controlling the degree of cross-linking density allows for control of the mechanical strength and ionic conductivity of the solid polymer electrolyte.
  • the present invention provides a silicone polyether of the Formula 1 comprising a polymethyl siloxane backbone comprising polyether side chains attached to the siloxane backbones, where the polyether side chains comprise alkoxy-terminated polyether side chains and a cross-linkable polyether side chains:
  • A is a cross-linkable group (such as from an acryloyl group, an alkyl acryloyl group, a methacryloyl group, alkyl methacryloyl group, a vinyl group, an allyl group, a styryl group, or combinations of two or more thereof), and R 1 is an alkyl group having 1 to 10 carbon atoms.
  • the present invention provides a hydrogel copolymer comprising a first monomer represented by the silicone polyether of Formula 1, and a second monomer chosen from a gel forming monomer.
  • the gel forming monomer may be, for example, a suitable (meth) acrylate material including a hydroxyl- substituted alkyl acrylate, a hydroxyl- substituted alkyl methacrylate, etc. or combinations of two or more thereof.
  • the present invention provides a solid polymer electrolyte composition
  • a solid polymer electrolyte composition comprising (i) a hydrogel copolymer comprising a silicone polyether of Formula 1 and a gel forming monomer, (ii) a plasticizer, and (iii) a salt.
  • the present invention also provides a solid polymer electrolyte film formed from the solid polymer electrolyte composition.
  • the present invention provides an electrochemical device comprising a solid polymer electrolyte film formed from a solid polymer electrolyte composition comprising (i) a hydrogel copolymer comprising a silicone polyether represented by Formula 1 and a gel forming monomer, (ii) a plasticizer, and (iii) a salt.
  • the present invention provides, a copolymer comprising a first monomer of Formula (1) CHg CHg CHg CHg
  • the second monomer is chosen from an alkyl acrylate, an alkyl methacrylate, an alkoxy alkyl acrylate, an alkoxy alkyl methacrylate, a polyester acrylate, a polyester methacrylate, a urethane acrylate, an epoxy acrylate, hydroxyl-substituted alkyl acrylate, a hydroxyl-substituted alkyl methacrylate, or a combination of two or more thereof hydroxyl-substituted alkyl acrylate, a hydroxy- substituted alkyl methacrylate, or a combination of two or more thereof.
  • the copolymer comprises from about 10 to about 90 wt. % of the first monomer and from about 10 to about 90% of the second monomer.
  • the copolymer comprises from about 40 to about 60 wt. % of the first monomer and from about 60 to about 40 wt. % of the second monomer.
  • m is from about 2 to about 30 and n is from about 2 to about 30.
  • m is about 8 to about 20 and n is from about 8 to about 20.
  • m + n is 36.
  • m is from about 25 to about 75% of m+n and n is from about 75 to about 25% of m+n.
  • m is from about 40 to about 60% of m + n and n is from about 60 to about 40% of m + n.
  • m + n is 36, m is 10 to 18, n is 18-26, the first monomer is about 50 to about 90 wt. % of the copolymer, and the second monomer is about 50 to about 10 wt. % of the copolymer.
  • the ratio of m:n is about 1:1 to about 1:11.
  • the first monomer is of the Formula (2):
  • A is an alkyl acryloyl, p is 1, and q is 1 such that the first monomer of Formula (1) is represented by Formula (3):
  • n is 20 to 40, x and y are individually 4 to 20, R 1 is an alkyl with 1 to 10 carbon atoms, and R 2 is hydrogen or an alkyl of 1 to 10 carbon atoms.
  • the second monomer is hydroxyethyl methacrylate.
  • the present invention provides a solid polymer electrolyte composition
  • a solid polymer electrolyte composition comprising (i) a copolymer comprising (a) a first monomer represented by Formula (1)
  • R 1 is an alkyl group having 1-10 carbon atoms
  • A is an alkyl acryloyl group, an acryloyl group, an alkyl acryloyl group, a methacryloyl group, an alkyl methacryloyl group, a vinyl group, an allyl group, a styryl group, or a combination of two or more thereof; and (b) a second monomer chosen from an alkyl acrylate, an alkyl methacrylate, an alkoxy alkyl acrylate, an alkoxy alkyl methacylate, a polyester acrylate, a polyester methacrylate, a urethane acrylate, an epoxy acrylate, hydroxyl-substituted alkyl acrylate, a hydroxyl- substituted alkyl methacryl
  • the copolymer (i) comprises from about 10 to about 90 wt. % of the first monomer and from about 10 to about 90% of the second monomer.
  • the copolymer (i) comprises from about 40 to about 60 wt. % of the first monomer and from about 60 to about 40 wt. % of the second monomer.
  • m is from about 2 to about 30 and n is from about 2 to about 30.
  • m is about 8 to about 20 and n is from about 8 to about 20.
  • m + n is about 36.
  • m is from about 25 to about 75% of m+n
  • n is from about 75 to about 25% of m+n.
  • m is from about 40 to about 60% of m+n
  • n is from about 60 to about 40% of m+n.
  • m + n is 36, m is 10 to 18, n is 18-26, the first monomer is about 50 to about 90 wt. % of the copolymer, and the second monomer is about 50 to about 10 wt. % of the copolymer.
  • A is an alkyl acryloyl, p is 1, and q is 1 such that the first monomer is represented by Formula (3):
  • n is 20 to 40, x and y are individually 4 to 20, R 1 is an alkyl with 1 to 10 carbon atoms, and R 2 is hydrogen or an alkyl of 1 to 10 carbon atoms.
  • the second monomer of the copolymer (i) is hydroxy ethyl methacrylate.
  • the copolymer (i) is cross-linked using ethylene glycol dimethacrylate.
  • the copolymer (i) is cured using a photo- initiator (2 -hydroxy-2 - methylpropiophenone) .
  • the plasticizer comprises an alkyl carbonate, a cyclic carbonate, a glyme, a polyalkylene glycol dialkyl ether, or a combination of two or more thereof.
  • the plasticizer comprises an alkyl carbonate chosen from ethylene carbonate, propylene carbonate, butylenes carbonate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, or a combination of two or more thereof.
  • the plasticizer comprises a mixture of two alkyl carbonates in a ratio of from about 3:1 to about 1:1.
  • the salt is a lithium salt.
  • the composition comprises from about 40 to about 95% by weight of the hydrogel copolymer, and from about 5 to about 60% by weight of plasticizer that comprises about 0.5 to about 20% by weight of the salt.
  • the present invention provides a solid polymer electrolyte film made from such solid polymer electrolyte compositions.
  • the film has an ionic conductivity of about 1.0 x lO 5 S-cm 1 or greater; about 1.0 x lO 4 S-cm 1 or greater; or even about 1.0 x 10 3 S- cm 1 or greater.
  • the present invention provides an electrochemical device comprising such solid polymer electrolyte films.
  • the present invention provides, a copolymer comprising a first monomer of Formula (3)
  • the copolymer comprises from about 10 to about 90 wt. % of the first monomer, and from about 90 to about 10 wt. % of the second monomer.
  • m is from about 25 to about 75 % of m+n
  • n is from about 75 to about 25 % of m+n
  • R2 is methyl
  • Rl and R2 are methyl.
  • the copolymer comprises from about 40 to about 60 wt. % of the first monomer and from about 60 to about 40 wt. % of the second monomer, wherein m is 2 to 30 and n is 2 to 30.
  • m+n is 36.
  • the ratio of m:n is about 1:1 to about 1:11.
  • the ratio of m:n is 1:1.
  • the present invention provides a solid polymer electrolyte composition
  • a solid polymer electrolyte composition comprising (i) such of the above copolymers; (ii) a plasticizer; and (iii) a salt.
  • the present invention provides films formed from such solid polymer electrolyte compositions.
  • an electrochemical device comprising such films.
  • FIGURE 1 is a representation of a reaction scheme for forming a silicone polyether in accordance with embodiments of the present invention.
  • the present invention provides a hydrogel copolymer and a solid polymer electrolyte comprising such a hydrogel copolymer.
  • the hydrogel copolymer comprises a copolymer of a silicone polyether and a gel forming monomer such as, for example, a hydroxyl- substituted alkyl acrylate.
  • the hydrogel copolymer and solid polymer electrolyte comprising such copolymers exhibit excellent mechanical strength and ionic conductivity.
  • the present invention provides a hydrogel copolymer comprising a first monomer of a silicone polyether, and a second monomer chosen from a gel forming monomer.
  • the first monomer is a silicone polyether having a polymethyl siloxane backbone with a plurality of polyether side chains attached to silicon atoms along the siloxane backbone where the polyether side chains include a plurality of alkoxy- terminated polyether side chains and a plurality of side chains comprising a reactive or cross-linkable group.
  • the silicone polyether may be expressed by Formula 1:
  • A is a cross-linkable group
  • R 1 is an alkyl group having 1 to 10 carbon atoms.
  • the A group may be provided by a suitable group such as an acryloyl group, an alkyl acryloyl group, a methacryloyl group, alkyl methacryloyl group, a vinyl group, an alkyy group, a styryl group, or combinations of two or more thereof, and which, without being bound to any particular theory, may allow the silicone polyether to be cross-linkable with other monomers including the gel forming monomer.
  • m is 4 to 500. In another embodiment, m is 6 to 250. In still another embodiment, m is 8 to 100. In yet another embodiment, m is 8 to 20. In one embodiment, n is 4 to 500. In another embodiment, n is 6 to 250. In still another embodiment, n is 8 to 100. In yet another embodiment, n is 8 to 20. In a further embodiment, m is 2 to 30 and n is 2 to 30. In one embodiment m is 8 to 20 and n is 8 to 20. In one embodiment, m+n may be 4 to 2,000. In another embodiment, m+n is 12 to 500. In still another embodiment, m+n is 16 to 200. In yet another embodiment, m+n is 16 to 40. In another embodiment, m+n is 36.
  • individual numerical values can be combined to form additional and/or non-disclosed ranges.
  • the ratio of m:n may be from about 1:1 to about 1:15. In one embodiment, the ratio of m:n may be from about 1:2 to about 1:11. In one embodiment, the ratio of m:n may be about 1:5. In another embodiment, the ratio of m:n is about 1:2.6.
  • individual numerical values can be combined to form additional and/or non-disclosed ranges.
  • m may comprise about 25 to about 75 % of m+n, and n may comprise about 75 % to about 25% of m+n. In one embodiment, m comprises from about 40 to about 60 % of m+n, and n comprises from about 60 to about 40 % of m+n. In one embodiment, m and n are each 50% of m+n.
  • individual numerical values can be combined to form additional and/or non-disclosed ranges.
  • x and y are each individually 1 to 40. In another embodiment, x and y are each individually 2 to 30. In still another embodiment, x and y are each individually 3 to 25. In yet a further embodiment, x and y are each individually 4 to 20. In still a further embodiment, x and y are each individually 5 to 15.
  • the x and y values may be the same or different. In one embodiment, x and y are each 12.
  • individual numerical values can be combined to form additional and/or non-disclosed ranges.
  • the R 1 group may be an alkyl group having 1 to 10 carbons.
  • the alkyl group R 1 may be a straight chain or branched alkyl group.
  • R 1 is a methyl group.
  • the A group may be chosen from a group which is reactive to allow for cross- linking with other monomers.
  • the A group is chosen from an acryloyl group, an alkyl acryloyl group, a methacryloyl group, an alkyl methacryloyl group, a vinyl group, an allyl group, a styryl group, or a combination of two or more thereof.
  • the alkyl group in the alkyl acryloyl group or alkyl methacryloyl group may be an alkyl group having 1 to 10 carbon atoms.
  • the A group is an alkyl acryloyl group chosen from methyl acryloyl, ethyl acryloyl, and combinations of methyl acryloyl and ethyl acryloyl.
  • the silicone poly ether is of the Formula 2: where m, n, x, y, m+n, the ratio of m:n, p, q, and R 1 may have any of the values as previously described herein.
  • R 2 may be hydrogen or an alkyl group having 1 to 10 carbons.
  • the R 2 group may be a straight chain or branched alkyl group.
  • the R 2 group is a methyl group.
  • the silicone polyether is of the Formula 3:
  • Formula 3 represents an embodiment of Formula 2 in which p and q are each 1.
  • the silicone polyether is of the Formula 4:
  • the silicone polyether is represented by Formula (4), and m+n is 36, and the ratio of m:n is from about 1:1 to about 1:15. In another embodiment, m+n is 36, and the ratio of m:n is 1:1. In still another embodiment, m + n is 36, and the ratio of m:n is 1:11. In yet another embodiment, m+n is 36, and the ratio of m:n is 1:2.6. In one embodiment, x and y are 8-15, and x and y may be the same or different. In another embodiment x and y are 12.
  • individual numerical values can be combined to form additional and/or non-disclosed ranges.
  • the second monomer in the copolymer is chosen from a gel forming monomer such as an alkyl acrylate, an alkyl methacrylate, an alkoxy alkyl acrylate, an alkoxy alkyl methacylate, a polyester acrylate, a polyester methacrylate, a urethane acrylate, an epoxy acrylate, hydroxyl- substituted alkyl acrylate, a hydroxyl- substituted alkyl methacrylate, or a combination of two or more thereof.
  • the alkyl groups and alkoxy groups may have 1 to 10 carbon atoms.
  • the alkyl group is chosen from methyl or ethyl.
  • the second monomer comprises 2-hydroxy ethyl methacrylate (HEMA).
  • the gel forming monomer may be chosen from 2-hydroxyethyl methacrylate, 2-methoxyethyl methacrylate, polyester acrylate, polyester methacrylate, methyl methacrylate, ethyl methacrylate, isobutyl methacrylate, n- butyl methacrylate, n-butyl methyl methacrylate, hydroxypropyl methacrylate, hydroxyethyl acrylate, glycidyl methacrylate, ethyl acrylate, isobutyl acrylate, n- butyl acrylate, 2-ethylhexyl acrylate polymer, 2-ethylhexyl acrylate copolymer, 2- ethylhexyl acrylate terpolymer, urethane acrylate, epoxy-acrylate, or a combination of two or more
  • the hydrogel copolymer may comprise from about 10 to about 90% by weight of the silicone polyether (first monomer) and from about 90 to about 10 % by weight of the second (gel forming) monomer.
  • the copolymer comprises from about 90 to about 30 % by weight of the first monomer and from about 10 to about 70 % by weight of the second monomer.
  • the copolymer comprises from about 60 to about 40 % by weight of the first monomer and from about 40 to about 60 % by weight of the second monomer.
  • the copolymer comprises about 50% by weight of the first monomer and about 50% by weight of the second monomer.
  • the hydrogel copolymer may be formed by cross-linking the first and second monomers in the presence of a cross-linker and a photo-initiator.
  • suitable cross-linkers include ethylene glycol dimethacrylate, epoxy (meth) acrylate, urethane (meth) acrylate, isocyanuric acid (meth)acrylate, pentaerythritol (meth)acrylate, trimethylolpropane (meth) acrylate, polyester (meth) acrylate, or combinations of two or more thereof.
  • the present invention also provides a solid polymer electrolyte (SPE) composition comprising a hydrogel copolymer in accordance with the present invention, a plasticizer, and a salt.
  • SPE solid polymer electrolyte
  • the SPE composition comprises from about 40 to about 95% by weight of the hydrogel copolymer, from about 5 to about 60% by weight of plasticizer that comprises from about 0.5 to about 20% by weight of the salt.
  • the SPE composition comprises from about 10 to about 55% by weight of plasticizer, and from about 1 to about 15 % by weight of the lithium salt.
  • the SPE composition comprise from about 25 to about 50 % by weight of plasticizer, and from about 3 to about 9 % by weight of the salt.
  • individual numerical values can be combined to form additional and/or non- disclosed ranges.
  • the plasticizer is not particularly limited and may be selected from any suitable material for use in forming an SPE.
  • Suitable plasticizers include, but are not limited to, alkyl carbonates, cyclic carbonates, glymes, polyalkylene glycol dialkyl ethers, and combinations of two or more thereof.
  • Carbonates suitable as the plasticizer include, but are not limited to, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, dimethyl carbonate (DMC), diethyl carbonate, dipropyl carbonate, and the like, and combinations of two or more thereof.
  • the plasticizer comprises a mixture of carbonates.
  • the plasticizer comprises a mixture of carbonates in a ratio of from about 3:1 to 1:1.
  • the plasticizer comprises a mixture of carbonates in a ratio of 2:1.
  • the plasticizer comprises a mixture of carbonates in a ratio of 1:1.
  • individual numerical values can be combined to form additional and/or non-disclosed ranges.
  • the plasticizer comprises a 1:1 mixture by weight of PC:EC.
  • the plasticizer comprises a 1:1 mixture by weight of EC:DMC.
  • Suitable glymes include, but are not limited to, dimethoxyethane (C 4 Hio0 2 or "DME"), diglyme (CeH Oa), triglyme (CsHisC ), tetraglyme (CioH 22 0 5 ), and the like, or a combination of two or more thereof.
  • polyalkylene glycol dialkyl ethers include, but are not limited to, polyethylene glycol dimethyl ether, polyethylene glycol diethyl ether, polyethylene glycol dipropyl ether, polyethylene glycol dibutyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol dimethyl ether, polypropylene glycol diglycidyl ether, polypropylene glycol/polyethylene glycol copolymer at the end portion of dibutyl ether, polyethylene glycol/polypropylene glycol block copolymer at the end portion of dibutyl ether, and the like, or a combination of two or more thereof.
  • plasticizers include non-aqueous polar solvents such as tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxiran, 4,4-dimethyl-l,3-dioxiran, ⁇ -butyrolactone, and acetonitrile.
  • the salt is not limited to any particular salt and may be chosen for a particular purpose or application.
  • the salt is a lithium salt.
  • suitable lithium salts include, but are not limited to, LiCICk, LiCF3S03, LiBF4, LiPF6, LiAsF6, LiN(S02C2F5) 2 , LIBOB (lithium bis oxalato borate), etc., and combinations of two or more thereof.
  • the lithium salt may be present in a range of from about 2 to about 40 wt. % by weight of the plasticizer. In another embodiment, the salt is present in an amount of from about 5 to about 20 wt. % of the plasticizer.
  • the salt is present in a concentration of about 0.2 to about 3 M or in another embodiment from about 0.5 to about 1.5 M in the plasticizer.
  • individual numerical values can be combined to form additional and/or non-disclosed ranges.
  • the SPE composition may be used to form a film suitable for use as an SPE.
  • a process for manufacturing a solid polymer electrolyte film including the inventive components is described hereinafter.
  • the plasticizer and the lithium salt are charged into a reactor at an appropriate mixing ratio, and the mixture is stirred with a stirrer so as to prepare a solution.
  • a hydrogel copolymer of the present invention is added to the solution, and mixing is then carried out.
  • a curing initiator is added into the mixture, and stirring is carried out to form a reaction mixture for manufacturing the solid polymer electrolyte.
  • This solution is then spread on a supporting substrate which is made of, for example, glass or polyethylene, or on a commercial Mylar film.
  • the coated substrate is exposed to electron beams, ultraviolet lights or gamma rays, or heating is carried out, to achieve a curing reaction, thereby forming a film.
  • Another alternative process for obtaining a film is as follows.
  • the inventive solid polymer electrolyte solution is spread on a supporting substrate, and a spacer is fixed to each of the ends of the supporting substrate. Then another supporting member is overlapped on the former substrate.
  • a curing irradiator or a heat source is used to carry out a curing reaction, thereby manufacturing the solid polymer electrolyte film.
  • the SPE, or a film formed therefrom may have an ionic conductivity of about 1.0 x lO 5 S-cm 1 or greater. In one embodiment, the SPE or a film formed therefrom has an ionic conductivity of about 1.0 x lO 4 S-cm 1 or greater. In still another embodiment the SPE or a film formed therefrom has an ionic conductivity of 1.0 x 10 3 S-cm 1 or greater. In one embodiment, the SPE or a film formed therefrom has an ionic conductivity of about 1.0 x lO 4 S-cm 1 to about 1.0 x 10 3 S-cm 1 .
  • individual numerical values can be combined to form additional and/or non-disclosed ranges.
  • silicone polyether monomers and hydrogel monomers of the hydrogel copolymer have a synergistic effect providing excellent swelling and mechanical strength such that the swollen/gelled films exhibit high ionic conductivities and excellent mechanical strength.
  • the solid polymer electrolyte of the present invention provides an enhanced flexibility due to the structural characteristics of the hydrogel copolymer itself and the mechanical properties thereof can be controlled with the ratio of the reactive polyether side chains (the A- group terminated side chains in Formula 1) to the alkoxy terminated side chains, the ratio of silicone polyether monomer to hydrogel monomers, or both.
  • the invention further provides a lithium-polymer secondary battery employing the solid polymer electrolyte with improved mechanical strength and ionic conductivity.
  • inventive silicone polyether monomers of formula (1) which are employed in forming the inventive hydrogel copolymers, are formed from a novel silicone polyether having a plurality of hydroxyl-terminated and alkoxy- terminated polyether side chains attached to the silicon atoms of the siloxane backbone, and which may be represented by Formula (5):
  • m, n, m+n, ratio of m:n, x, y, p, q, and R 1 may be any value as previously describe herein.
  • FIGURE 1 illustrates a reaction scheme for forming a silicone polyether in accordance with aspects of the present invention.
  • a polymethyl hydrogen siloxane is reacted with a plurality of hydroxyl-terminated and alkoxy- terminated allyl polyethers, to form a silicone polyether represented by Formula (5).
  • the silicone polyether of Formula (5) having a plurality of alkoxy-terminated and hydroxyl-terminated polyether side chains is then reacted with a suitable compound to provide the desired A group in Formula (1).
  • the silicone polyether of Formula (5) is reacted with an (alkyl) acryloyl halide, to esterify the hydroxyl- terminated polyether groups and form the silicone polyether monomer represented by Formula 2.
  • an (alkyl) acryloyl halide to esterify the hydroxyl- terminated polyether groups and form the silicone polyether monomer represented by Formula 2.
  • the reaction scheme of FIGURE 1 is simply an example of forming a silicone polyether in accordance with aspects of the invention and that a method for forming a silicone polyether is not limited to that specific embodiment or to forming a silicone polyether represented by Formula 2. Rather, the reaction scheme may be employed to form a silicone polyether represented by Formula 1 by using an appropriate A group to meet a particular purpose or intended use.
  • Hydroxyl-terminated groups are highly reactive with lithium salts, and it is desirable for the reaction to be conducted to effect the complete of the hydroxyl groups.
  • the variation in the ratio of alkoxy-terminated to hydroxyl-terminated groups provide a greater degree of flexibility in structure with varying level of cross- linking densities.
  • An advantage of the SPE composition and films formed from such compositions is the flexibility in tailoring the composition in terms of the cross- linking density. That is, by changing the ratio of the methoxy end capped to the hydroxyl-terminated groups (and subsequently, the A group terminated polyether side chains), one can design a structure that offers good mechanical strength in addition to a workable ionic conductivity for a given degree of gelling with alkyl carbonate electrolytes.
  • a stoichiometric mixture of lOg of a polymethyl hydrogen siloxane (MH15 available from Momentive) and 67g of a methoxy capped polyethylene glycol (APEG 550R available from Clariant) is taken in a round bottom flask and heated to 80°C using a Heidolph magnetic stirrer/heater.
  • APEG 550R is an allyl polyether containing 12 polyether linkages.
  • the Karstedt catalyst (0.002% Pt) dissolved in 1 ml of toluene was added to the above mixture, followed by the addition of sodium propionate (50 ppm).
  • the resulting product is a silicone polyether such as that represented by Formula 5 having a plurality of hydroxyl- terminated and methoxy-terminated polyether side chains where p and q are each 1 and x and y are each 12.
  • the silicone polyether comprising the hydroxyl-terminated and methoxy- terminated polyether side chains, triethylamine (5.7g), and methylethyl ketone (MEK) (300 ml) solvent were introduced into a three-neck 1L RB flask equipped with dropping funnel and a stirring blade. The temperature of the flask was maintained at 0-5°C by immersing it in an ice bath. With constant stirring, methacryloyl chloride (5.5 ml) dissolved in methylethyl ketone (MEK) (20 ml) was added drop wise into the flask using a dropping funnel.
  • MEK methylethyl ketone
  • the resulting silicone polyether has a structure represented by the structure of Formula 4 (with x and y each being 12) having a plurality of alkyl acryloyl- and methoxy-terminated polyether side chains.
  • Different silicone polyethers were formed such that m+n is 36, and where m is 3 and n is 33; m is 10 and n is 26; or m is 18 and n is 18.
  • Table 1 shows the results for various properties of the SPE that were obtained from the silicone polyethers with the different ratio of hydroxyl (acryloyl) - terminated to methoxy-terminated polyether side chains in the structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Conductive Materials (AREA)
  • Silicon Polymers (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

A copolymer comprising a first monomer a methyl siloxane backbone with a side group comprising a polyether and a polymerizable ethylenic side group; and a second monomer a hydroxyl-substituted alkyl acrylate or methacrylate is presented. The copolymer may be used to form a solid polymer electrolyte composition comprising; (i) the copolymer (ii) a plasticizer, and (iii) a salt. The solid polymer electrolyte may be used to form a solid polymer electrolyte film, which may be suitable for use in electrochemical devices (e.g., lithium ion batteries) of various sizes and for a wide range of applications.

Description

SILOXANE COPOLYMER AND SOLID POLYMER ELECTROLYTE COMPRISING SUCH SILOXANE COPOLYMERS
CROSS-REFERENCE TO RELATED APPLICATION
[0001] This application claims the benefit of U.S. Utility Patent Application No. 13/208,864 entitled "Siloxane Copolymer and Solid Polymer Electrolyte Comprising Such Siloxane Copolymers" filed on August 12, 2011, which is hereby incorporated in its entirety by reference.
TECHNICAL FIELD
[0002] The present invention provides a cross-linkable silicone polyether, a hydrogel copolymer comprising the silicone polyether, and a solid polymer electrolyte composition comprising the hydrogel copolymer. More particularly, the present invention provides a silicone polyether having a methyl siloxane backbone and alkoxy-terminated polyether and cross-linkable polyether side chains attached to the siloxane backbone. The hydrogel copolymer comprises a cross-linked network of the silicone polyether with a monomer. The solid polymer electrolyte comprises a film formed from the hydrogel copolymer, a plasticizer, and a salt. The solid polymer electrolyte composition has a high ionic conductivity and may be formed into a film suitable for use in electrochemical devices (e.g., lithium ion batteries) of various sizes and for a wide range of applications.
BACKGROUND
[0003] Ionically conductive materials are used in a variety of electrochemical devices including primary batteries, secondary batteries, solar capacitors, sensors, electrochemical displays, etc. A common ionically conductive material is an electrolyte employing a mixture of alkyl carbonate based liquids containing a lithium salt. These materials are able to form passive films around the anode and cathode, which enable the battery to function efficiently. A majority of known ionically conductive electrolytes used in lithium ion batteries are liquids which pose problems in battery applications due to leakage. This requires using more expensive metal containers to prevent leakage in addition to raising the cost of manufacturing them. Additionally, such electrolyte materials may also be highly reactive and inflammable, which may pose safety problems particularly if the battery is overcharged to temperatures above 125°C.
[0004] Solid electrolyte materials such as polymer electrolytes and gel electrolytes (collectively referred to herein as solid polymer electrolytes or SPEs) have been developed for use as conductive material in battery applications. Solid polymer electrolytes have excellent characteristics including thin film forming properties, flexibility, lightweight, elasticity, and transparency. These materials also do not exhibit the leakage associated with other ionic conductive materials, and may prevent decreases in battery capacity during repeated use and short-circuiting of positive and negative electrode materials. Solid polymer electrolytes may also exhibit high charging/discharging efficiency, which, along with the ability to be formed as films, allows these materials to be used in various types of batteries of different sizes and shapes.
[0005] Batteries employing solid polymer electrolyte technology currently use porous poly(vinylidene) fluoride (PVdF) films swollen with organic carbonate solvents. These films, however, may pose flammability hazards and deficiencies due to limited life cycles.
SUMMARY
[0006] In one aspect, the present invention provides a novel silicone polyether. In another aspect, the present invention provides a novel hydrogel copolymer comprising such silicone polyethers, and which may be employed in a solid polymer electrolyte composition to provide a solid polymer electrolyte film exhibiting excellent mechanical properties and ionic conductivity. The inventors have found that the silicone polyether provides a material that, through the selection of the side chain functionality and the number of certain functionalized side chains, allows for flexibility in the design of the structure and control over the degree of cross-linking density. The inventors have also found that controlling the degree of cross-linking density allows for control of the mechanical strength and ionic conductivity of the solid polymer electrolyte.
[0007] In one aspect, the present invention provides a silicone polyether of the Formula 1 comprising a polymethyl siloxane backbone comprising polyether side chains attached to the siloxane backbones, where the polyether side chains comprise alkoxy-terminated polyether side chains and a cross-linkable polyether side chains:
Figure imgf000005_0001
where m is 2 to 1,000, n is 2 to 1,000, x and y are individually 1 to 100, p is 0 to 10, q is 0 to 10, A is a cross-linkable group (such as from an acryloyl group, an alkyl acryloyl group, a methacryloyl group, alkyl methacryloyl group, a vinyl group, an allyl group, a styryl group, or combinations of two or more thereof), and R1 is an alkyl group having 1 to 10 carbon atoms.
[0008] In one aspect, the present invention provides a hydrogel copolymer comprising a first monomer represented by the silicone polyether of Formula 1, and a second monomer chosen from a gel forming monomer. The gel forming monomer may be, for example, a suitable (meth) acrylate material including a hydroxyl- substituted alkyl acrylate, a hydroxyl- substituted alkyl methacrylate, etc. or combinations of two or more thereof.
[0009] In one aspect, the present invention provides a solid polymer electrolyte composition comprising (i) a hydrogel copolymer comprising a silicone polyether of Formula 1 and a gel forming monomer, (ii) a plasticizer, and (iii) a salt. The present invention also provides a solid polymer electrolyte film formed from the solid polymer electrolyte composition.
[0010] In still another aspect, the present invention provides an electrochemical device comprising a solid polymer electrolyte film formed from a solid polymer electrolyte composition comprising (i) a hydrogel copolymer comprising a silicone polyether represented by Formula 1 and a gel forming monomer, (ii) a plasticizer, and (iii) a salt.
[0011] In one aspect, the present invention provides, a copolymer comprising a first monomer of Formula (1) CHg CHg CHg CHg
HgC Si O-( Si O f iSi O) Si CHg
CHg CH2 CH2 CHg
Figure imgf000007_0001
where n is 2 to 1,000; m is 2 to 1,000; x and y are each at least 1; p is 0 to 10; q is 0 to 10, R1 is an alkyl group having 1 to 10 carbon atoms; and A is an acryloyl group, an alkyl acryloyl group, a methacryloyl group, an alkyl methacryloyl group, a vinyl group, an allyl group, a styryl group, or a combination of two or more thereof; and a second monomer chosen from a gel forming acrylate or methacrylate based monomer.
[0012] According to one embodiment, the second monomer is chosen from an alkyl acrylate, an alkyl methacrylate, an alkoxy alkyl acrylate, an alkoxy alkyl methacrylate, a polyester acrylate, a polyester methacrylate, a urethane acrylate, an epoxy acrylate, hydroxyl-substituted alkyl acrylate, a hydroxyl-substituted alkyl methacrylate, or a combination of two or more thereof hydroxyl-substituted alkyl acrylate, a hydroxy- substituted alkyl methacrylate, or a combination of two or more thereof.
[0013] According to one embodiment, the copolymer comprises from about 10 to about 90 wt. % of the first monomer and from about 10 to about 90% of the second monomer.
[0014] According to one embodiment, the copolymer comprises from about 40 to about 60 wt. % of the first monomer and from about 60 to about 40 wt. % of the second monomer. [0015] According to one embodiment, m is from about 2 to about 30 and n is from about 2 to about 30.
[0016] According to one embodiment, comprises m is about 8 to about 20 and n is from about 8 to about 20.
[0017] According to one embodiment, m + n is 36.
[0018] According to one embodiment, m is from about 25 to about 75% of m+n and n is from about 75 to about 25% of m+n.
[0019] According to one embodiment, m is from about 40 to about 60% of m + n and n is from about 60 to about 40% of m + n.
[0020] According to one embodiment, m + n is 36, m is 10 to 18, n is 18-26, the first monomer is about 50 to about 90 wt. % of the copolymer, and the second monomer is about 50 to about 10 wt. % of the copolymer.
[0021] According to one embodiment, the ratio of m:n is about 1:1 to about 1:11.
[0022] According to one embodiment, the first monomer is of the Formula (2):
Figure imgf000008_0001
[0023] According to one embodiment, A is an alkyl acryloyl, p is 1, and q is 1 such that the first monomer of Formula (1) is represented by Formula (3):
Figure imgf000009_0001
and m + n is 20 to 40, x and y are individually 4 to 20, R1 is an alkyl with 1 to 10 carbon atoms, and R2 is hydrogen or an alkyl of 1 to 10 carbon atoms.
[0024] According to one embodiment, the second monomer is hydroxyethyl methacrylate.
[0025] According to another aspect, the present invention provides a solid polymer electrolyte composition comprising (i) a copolymer comprising (a) a first monomer represented by Formula (1)
Figure imgf000009_0002
where n is 2 to 1,000; m is 2 to 1,000; x and y are individually 1 to 100; p is 0 to 10; q is 0 to 10; R1 is an alkyl group having 1-10 carbon atoms, and A is an alkyl acryloyl group, an acryloyl group, an alkyl acryloyl group, a methacryloyl group, an alkyl methacryloyl group, a vinyl group, an allyl group, a styryl group, or a combination of two or more thereof; and (b) a second monomer chosen from an alkyl acrylate, an alkyl methacrylate, an alkoxy alkyl acrylate, an alkoxy alkyl methacylate, a polyester acrylate, a polyester methacrylate, a urethane acrylate, an epoxy acrylate, hydroxyl-substituted alkyl acrylate, a hydroxyl- substituted alkyl methacrylate, or a combination of two or more thereof; (ii) a plasticizer; and (iii) a salt.
[0026] According to one embodiment, the copolymer (i) comprises from about 10 to about 90 wt. % of the first monomer and from about 10 to about 90% of the second monomer.
[0027] According to one embodiment, the copolymer (i) comprises from about 40 to about 60 wt. % of the first monomer and from about 60 to about 40 wt. % of the second monomer.
[0028] According to one embodiment, m is from about 2 to about 30 and n is from about 2 to about 30.
[0029] According to one embodiment, m is about 8 to about 20 and n is from about 8 to about 20.
[0030] According to one embodiment, m + n is about 36.
[0031] According to one embodiment, m is from about 25 to about 75% of m+n, and n is from about 75 to about 25% of m+n.
[0032] According to one embodiment, m is from about 40 to about 60% of m+n, and n is from about 60 to about 40% of m+n.
[0033] According to one embodiment, m + n is 36, m is 10 to 18, n is 18-26, the first monomer is about 50 to about 90 wt. % of the copolymer, and the second monomer is about 50 to about 10 wt. % of the copolymer.
[0034] According to one embodiment, A is an alkyl acryloyl, p is 1, and q is 1 such that the first monomer is represented by Formula (3):
Figure imgf000011_0001
and m + n is 20 to 40, x and y are individually 4 to 20, R1 is an alkyl with 1 to 10 carbon atoms, and R2 is hydrogen or an alkyl of 1 to 10 carbon atoms.
[0035] According to one embodiment, the second monomer of the copolymer (i) is hydroxy ethyl methacrylate.
[0036] According to one embodiment, the copolymer (i) is cross-linked using ethylene glycol dimethacrylate.
[0037] According to one embodiment, the copolymer (i) is cured using a photo- initiator (2 -hydroxy-2 - methylpropiophenone) .
[0038] According to one embodiment, the plasticizer comprises an alkyl carbonate, a cyclic carbonate, a glyme, a polyalkylene glycol dialkyl ether, or a combination of two or more thereof.
[0039] According to one embodiment, the plasticizer comprises an alkyl carbonate chosen from ethylene carbonate, propylene carbonate, butylenes carbonate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, or a combination of two or more thereof.
[0040] According to one embodiment, the plasticizer comprises a mixture of two alkyl carbonates in a ratio of from about 3:1 to about 1:1.
[0041] According to one embodiment, the salt is a lithium salt. [0042] According to one embodiment, the composition comprises from about 40 to about 95% by weight of the hydrogel copolymer, and from about 5 to about 60% by weight of plasticizer that comprises about 0.5 to about 20% by weight of the salt.
[0043] According to one embodiment, the present invention provides a solid polymer electrolyte film made from such solid polymer electrolyte compositions.
[0044] According to one embodiment, the film has an ionic conductivity of about 1.0 x lO 5 S-cm 1 or greater; about 1.0 x lO 4 S-cm 1 or greater; or even about 1.0 x 10 3 S- cm 1 or greater.
[0045] According to another aspect, the present invention provides an electrochemical device comprising such solid polymer electrolyte films.
[0046] According to still another aspect, the present invention provides, a copolymer comprising a first monomer of Formula (3)
Figure imgf000012_0001
wherein n is 2 to 1,000; m is 2 to 1,000; x and y are individually 1 to 100, R1 is an alkyl group having 1 to 10 carbon atoms, and R2 is hydrogen or an alkyl of 1 to 10 carbon atoms; and a second monomer chosen from a hydroxyl- substituted alkyl acrylate, a hydroxy- substituted alkyl methacrylate, or a combination of two or more thereof. [0047] According to one embodiment, the copolymer comprises from about 10 to about 90 wt. % of the first monomer, and from about 90 to about 10 wt. % of the second monomer.
[0048] According to one embodiment, m is from about 25 to about 75 % of m+n, and n is from about 75 to about 25 % of m+n.
[0049] According to one embodiment, R2 is methyl.
[0050] According to one embodiment, Rl and R2 are methyl.
[0051] According to one embodiment, the copolymer comprises from about 40 to about 60 wt. % of the first monomer and from about 60 to about 40 wt. % of the second monomer, wherein m is 2 to 30 and n is 2 to 30.
[0052] According to one embodiment, m+n is 36.
[0053] According to one embodiment, the ratio of m:n is about 1:1 to about 1:11.
[0054] According to one embodiment, the ratio of m:n is 1:1.
[0055] According to one embodiment, the present invention provides a solid polymer electrolyte composition comprising (i) such of the above copolymers; (ii) a plasticizer; and (iii) a salt.
[0056] According to one embodiment, the present invention provides films formed from such solid polymer electrolyte compositions.
[0057] According to one embodiment, an electrochemical device comprising such films.
[0058] These and other aspects of the invention may be further understood with reference to the following figures and detailed description. BRIEF DESCRIPTION OF THE DRAWINGS
[0059] FIGURE 1 is a representation of a reaction scheme for forming a silicone polyether in accordance with embodiments of the present invention.
DETAILED DESCRIPTION
[0060] The present invention provides a hydrogel copolymer and a solid polymer electrolyte comprising such a hydrogel copolymer. The hydrogel copolymer comprises a copolymer of a silicone polyether and a gel forming monomer such as, for example, a hydroxyl- substituted alkyl acrylate. The hydrogel copolymer and solid polymer electrolyte comprising such copolymers exhibit excellent mechanical strength and ionic conductivity.
[0061] In one aspect, the present invention provides a hydrogel copolymer comprising a first monomer of a silicone polyether, and a second monomer chosen from a gel forming monomer. The first monomer is a silicone polyether having a polymethyl siloxane backbone with a plurality of polyether side chains attached to silicon atoms along the siloxane backbone where the polyether side chains include a plurality of alkoxy- terminated polyether side chains and a plurality of side chains comprising a reactive or cross-linkable group. The silicone polyether may be expressed by Formula 1:
Figure imgf000014_0001
where m is 2 to 1,000, n is 2 to 1,000, x and y are individually 1 to 100, p is 0 to 10, q is 0 to 10, A is a cross-linkable group, and R1 is an alkyl group having 1 to 10 carbon atoms. The A group may be provided by a suitable group such as an acryloyl group, an alkyl acryloyl group, a methacryloyl group, alkyl methacryloyl group, a vinyl group, an alkyy group, a styryl group, or combinations of two or more thereof, and which, without being bound to any particular theory, may allow the silicone polyether to be cross-linkable with other monomers including the gel forming monomer.
[0062] In one embodiment, m is 4 to 500. In another embodiment, m is 6 to 250. In still another embodiment, m is 8 to 100. In yet another embodiment, m is 8 to 20. In one embodiment, n is 4 to 500. In another embodiment, n is 6 to 250. In still another embodiment, n is 8 to 100. In yet another embodiment, n is 8 to 20. In a further embodiment, m is 2 to 30 and n is 2 to 30. In one embodiment m is 8 to 20 and n is 8 to 20. In one embodiment, m+n may be 4 to 2,000. In another embodiment, m+n is 12 to 500. In still another embodiment, m+n is 16 to 200. In yet another embodiment, m+n is 16 to 40. In another embodiment, m+n is 36. Here, as well as elsewhere in the specification and claims, individual numerical values can be combined to form additional and/or non-disclosed ranges.
[0063] In one embodiment, the ratio of m:n may be from about 1:1 to about 1:15. In one embodiment, the ratio of m:n may be from about 1:2 to about 1:11. In one embodiment, the ratio of m:n may be about 1:5. In another embodiment, the ratio of m:n is about 1:2.6. Here as elsewhere in the specification and claims, individual numerical values can be combined to form additional and/or non-disclosed ranges.
[0064] In the silicone polyether, m may comprise about 25 to about 75 % of m+n, and n may comprise about 75 % to about 25% of m+n. In one embodiment, m comprises from about 40 to about 60 % of m+n, and n comprises from about 60 to about 40 % of m+n. In one embodiment, m and n are each 50% of m+n. Here, as well as elsewhere in the specification and claims, individual numerical values can be combined to form additional and/or non-disclosed ranges.
[0065] In one embodiment, x and y are each individually 1 to 40. In another embodiment, x and y are each individually 2 to 30. In still another embodiment, x and y are each individually 3 to 25. In yet a further embodiment, x and y are each individually 4 to 20. In still a further embodiment, x and y are each individually 5 to 15. The x and y values may be the same or different. In one embodiment, x and y are each 12. Here, as well as elsewhere in the specification and claims, individual numerical values can be combined to form additional and/or non-disclosed ranges.
[0066] The R1 group may be an alkyl group having 1 to 10 carbons. The alkyl group R1 may be a straight chain or branched alkyl group. In one embodiment, R1 is a methyl group.
[0067] The A group may be chosen from a group which is reactive to allow for cross- linking with other monomers. In one embodiment, the A group is chosen from an acryloyl group, an alkyl acryloyl group, a methacryloyl group, an alkyl methacryloyl group, a vinyl group, an allyl group, a styryl group, or a combination of two or more thereof. The alkyl group in the alkyl acryloyl group or alkyl methacryloyl group may be an alkyl group having 1 to 10 carbon atoms. In one embodiment the A group is an alkyl acryloyl group chosen from methyl acryloyl, ethyl acryloyl, and combinations of methyl acryloyl and ethyl acryloyl.
[0068] In one embodiment, the silicone poly ether is of the Formula 2:
Figure imgf000017_0001
where m, n, x, y, m+n, the ratio of m:n, p, q, and R1 may have any of the values as previously described herein. R2 may be hydrogen or an alkyl group having 1 to 10 carbons. The R2 group may be a straight chain or branched alkyl group. In one embodiment, the R2 group is a methyl group.
[0069] In one embodiment the silicone polyether is of the Formula 3:
Figure imgf000017_0002
where m, n, x, y, m + n, the ratio of m:n, R1, and R2 may have any of the values as previously described. Formula 3 represents an embodiment of Formula 2 in which p and q are each 1.
[0070] In still another embodiment, the silicone polyether is of the Formula 4:
Figure imgf000018_0001
where m, n, m + n, x, and y may be any value as previously described. In one embodiment, the silicone polyether is represented by Formula (4), and m+n is 36, and the ratio of m:n is from about 1:1 to about 1:15. In another embodiment, m+n is 36, and the ratio of m:n is 1:1. In still another embodiment, m + n is 36, and the ratio of m:n is 1:11. In yet another embodiment, m+n is 36, and the ratio of m:n is 1:2.6. In one embodiment, x and y are 8-15, and x and y may be the same or different. In another embodiment x and y are 12. Here, as well as elsewhere in the specification and claims, individual numerical values can be combined to form additional and/or non-disclosed ranges.
[0071] The second monomer in the copolymer is chosen from a gel forming monomer such as an alkyl acrylate, an alkyl methacrylate, an alkoxy alkyl acrylate, an alkoxy alkyl methacylate, a polyester acrylate, a polyester methacrylate, a urethane acrylate, an epoxy acrylate, hydroxyl- substituted alkyl acrylate, a hydroxyl- substituted alkyl methacrylate, or a combination of two or more thereof. In one embodiment, the alkyl groups and alkoxy groups may have 1 to 10 carbon atoms. In one embodiment the alkyl group is chosen from methyl or ethyl. In one embodiment, the second monomer comprises 2-hydroxy ethyl methacrylate (HEMA). In one embodiment, the gel forming monomer may be chosen from 2-hydroxyethyl methacrylate, 2-methoxyethyl methacrylate, polyester acrylate, polyester methacrylate, methyl methacrylate, ethyl methacrylate, isobutyl methacrylate, n- butyl methacrylate, n-butyl methyl methacrylate, hydroxypropyl methacrylate, hydroxyethyl acrylate, glycidyl methacrylate, ethyl acrylate, isobutyl acrylate, n- butyl acrylate, 2-ethylhexyl acrylate polymer, 2-ethylhexyl acrylate copolymer, 2- ethylhexyl acrylate terpolymer, urethane acrylate, epoxy-acrylate, or a combination of two or more thereof.
[0072] The hydrogel copolymer may comprise from about 10 to about 90% by weight of the silicone polyether (first monomer) and from about 90 to about 10 % by weight of the second (gel forming) monomer. In one embodiment, the copolymer comprises from about 90 to about 30 % by weight of the first monomer and from about 10 to about 70 % by weight of the second monomer. In still another embodiment, the copolymer comprises from about 60 to about 40 % by weight of the first monomer and from about 40 to about 60 % by weight of the second monomer. In yet another embodiment, the copolymer comprises about 50% by weight of the first monomer and about 50% by weight of the second monomer. Here, as well as elsewhere in the specification and claims, individual numerical values can be combined to form additional and/or non-disclosed ranges.
[0073] The hydrogel copolymer may be formed by cross-linking the first and second monomers in the presence of a cross-linker and a photo-initiator. Non-limiting examples of suitable cross-linkers, include ethylene glycol dimethacrylate, epoxy (meth) acrylate, urethane (meth) acrylate, isocyanuric acid (meth)acrylate, pentaerythritol (meth)acrylate, trimethylolpropane (meth) acrylate, polyester (meth) acrylate, or combinations of two or more thereof.
[0074] The present invention also provides a solid polymer electrolyte (SPE) composition comprising a hydrogel copolymer in accordance with the present invention, a plasticizer, and a salt. In one embodiment, the SPE composition comprises from about 40 to about 95% by weight of the hydrogel copolymer, from about 5 to about 60% by weight of plasticizer that comprises from about 0.5 to about 20% by weight of the salt. In another embodiment, the SPE composition comprises from about 10 to about 55% by weight of plasticizer, and from about 1 to about 15 % by weight of the lithium salt. In still another embodiment, the SPE composition comprise from about 25 to about 50 % by weight of plasticizer, and from about 3 to about 9 % by weight of the salt. Here, as well as elsewhere in the specification and claims, individual numerical values can be combined to form additional and/or non- disclosed ranges.
[0075] The plasticizer is not particularly limited and may be selected from any suitable material for use in forming an SPE. Suitable plasticizers include, but are not limited to, alkyl carbonates, cyclic carbonates, glymes, polyalkylene glycol dialkyl ethers, and combinations of two or more thereof.
[0076] Carbonates suitable as the plasticizer include, but are not limited to, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, dimethyl carbonate (DMC), diethyl carbonate, dipropyl carbonate, and the like, and combinations of two or more thereof. In one embodiment, the plasticizer comprises a mixture of carbonates. In one embodiment, the plasticizer comprises a mixture of carbonates in a ratio of from about 3:1 to 1:1. In another embodiment, the plasticizer comprises a mixture of carbonates in a ratio of 2:1. In still another embodiment, the plasticizer comprises a mixture of carbonates in a ratio of 1:1. Here, as well as elsewhere in the specification and claims, individual numerical values can be combined to form additional and/or non-disclosed ranges. In one embodiment, the plasticizer comprises a 1:1 mixture by weight of PC:EC. In one embodiment, the plasticizer comprises a 1:1 mixture by weight of EC:DMC.
[0077] Examples of suitable glymes include, but are not limited to, dimethoxyethane (C4Hio02 or "DME"), diglyme (CeH Oa), triglyme (CsHisC ), tetraglyme (CioH2205), and the like, or a combination of two or more thereof. Examples of suitable polyalkylene glycol dialkyl ethers include, but are not limited to, polyethylene glycol dimethyl ether, polyethylene glycol diethyl ether, polyethylene glycol dipropyl ether, polyethylene glycol dibutyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol dimethyl ether, polypropylene glycol diglycidyl ether, polypropylene glycol/polyethylene glycol copolymer at the end portion of dibutyl ether, polyethylene glycol/polypropylene glycol block copolymer at the end portion of dibutyl ether, and the like, or a combination of two or more thereof. Still other examples of suitable plasticizers include non-aqueous polar solvents such as tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxiran, 4,4-dimethyl-l,3-dioxiran, γ-butyrolactone, and acetonitrile.
[0078] In the solid polymer electrolyte composition of the present invention, the salt is not limited to any particular salt and may be chosen for a particular purpose or application. In one embodiment, the salt is a lithium salt. Examples of suitable lithium salts include, but are not limited to, LiCICk, LiCF3S03, LiBF4, LiPF6, LiAsF6, LiN(S02C2F5)2, LIBOB (lithium bis oxalato borate), etc., and combinations of two or more thereof. In one embodiment, the lithium salt may be present in a range of from about 2 to about 40 wt. % by weight of the plasticizer. In another embodiment, the salt is present in an amount of from about 5 to about 20 wt. % of the plasticizer. In one embodiment, the salt is present in a concentration of about 0.2 to about 3 M or in another embodiment from about 0.5 to about 1.5 M in the plasticizer. Here, as elsewhere in the specification and claims, individual numerical values can be combined to form additional and/or non-disclosed ranges.
[0079] The SPE composition may be used to form a film suitable for use as an SPE. A process for manufacturing a solid polymer electrolyte film including the inventive components is described hereinafter. First, the plasticizer and the lithium salt are charged into a reactor at an appropriate mixing ratio, and the mixture is stirred with a stirrer so as to prepare a solution. A hydrogel copolymer of the present invention is added to the solution, and mixing is then carried out. Next, a curing initiator is added into the mixture, and stirring is carried out to form a reaction mixture for manufacturing the solid polymer electrolyte. This solution is then spread on a supporting substrate which is made of, for example, glass or polyethylene, or on a commercial Mylar film. Then the coated substrate is exposed to electron beams, ultraviolet lights or gamma rays, or heating is carried out, to achieve a curing reaction, thereby forming a film. Another alternative process for obtaining a film is as follows. The inventive solid polymer electrolyte solution is spread on a supporting substrate, and a spacer is fixed to each of the ends of the supporting substrate. Then another supporting member is overlapped on the former substrate. Next, a curing irradiator or a heat source is used to carry out a curing reaction, thereby manufacturing the solid polymer electrolyte film.
[0080] The SPE, or a film formed therefrom, may have an ionic conductivity of about 1.0 x lO 5 S-cm 1 or greater. In one embodiment, the SPE or a film formed therefrom has an ionic conductivity of about 1.0 x lO 4 S-cm 1 or greater. In still another embodiment the SPE or a film formed therefrom has an ionic conductivity of 1.0 x 10 3 S-cm 1 or greater. In one embodiment, the SPE or a film formed therefrom has an ionic conductivity of about 1.0 x lO 4 S-cm 1 to about 1.0 x 10 3 S-cm 1. Here, as elsewhere in the specification and claims, individual numerical values can be combined to form additional and/or non-disclosed ranges.
[0081] The inventors have found that the silicone polyether monomers and hydrogel monomers of the hydrogel copolymer have a synergistic effect providing excellent swelling and mechanical strength such that the swollen/gelled films exhibit high ionic conductivities and excellent mechanical strength.
[0082] The solid polymer electrolyte of the present invention provides an enhanced flexibility due to the structural characteristics of the hydrogel copolymer itself and the mechanical properties thereof can be controlled with the ratio of the reactive polyether side chains (the A- group terminated side chains in Formula 1) to the alkoxy terminated side chains, the ratio of silicone polyether monomer to hydrogel monomers, or both. The invention further provides a lithium-polymer secondary battery employing the solid polymer electrolyte with improved mechanical strength and ionic conductivity.
[0083] The inventive silicone polyether monomers of formula (1), which are employed in forming the inventive hydrogel copolymers, are formed from a novel silicone polyether having a plurality of hydroxyl-terminated and alkoxy- terminated polyether side chains attached to the silicon atoms of the siloxane backbone, and which may be represented by Formula (5):
Figure imgf000024_0001
where m, n, m+n, ratio of m:n, x, y, p, q, and R1 may be any value as previously describe herein.
[0084] FIGURE 1 illustrates a reaction scheme for forming a silicone polyether in accordance with aspects of the present invention. Initially, a polymethyl hydrogen siloxane is reacted with a plurality of hydroxyl-terminated and alkoxy- terminated allyl polyethers, to form a silicone polyether represented by Formula (5). The silicone polyether of Formula (5) having a plurality of alkoxy-terminated and hydroxyl-terminated polyether side chains is then reacted with a suitable compound to provide the desired A group in Formula (1). In FIGURE 1, the silicone polyether of Formula (5) is reacted with an (alkyl) acryloyl halide, to esterify the hydroxyl- terminated polyether groups and form the silicone polyether monomer represented by Formula 2. It will be appreciated that the reaction scheme of FIGURE 1 is simply an example of forming a silicone polyether in accordance with aspects of the invention and that a method for forming a silicone polyether is not limited to that specific embodiment or to forming a silicone polyether represented by Formula 2. Rather, the reaction scheme may be employed to form a silicone polyether represented by Formula 1 by using an appropriate A group to meet a particular purpose or intended use. [0085] Hydroxyl-terminated groups are highly reactive with lithium salts, and it is desirable for the reaction to be conducted to effect the complete of the hydroxyl groups. The variation in the ratio of alkoxy-terminated to hydroxyl-terminated groups provide a greater degree of flexibility in structure with varying level of cross- linking densities.
[0086] An advantage of the SPE composition and films formed from such compositions is the flexibility in tailoring the composition in terms of the cross- linking density. That is, by changing the ratio of the methoxy end capped to the hydroxyl-terminated groups (and subsequently, the A group terminated polyether side chains), one can design a structure that offers good mechanical strength in addition to a workable ionic conductivity for a given degree of gelling with alkyl carbonate electrolytes.
[0087] Aspects of the invention may be further understood in view of the following examples. The examples are only for purposes of illustrating embodiments or aspects of the invention, but the invention is not limited to such examples.
Examples
[0088] Preparation of Silicone Polyether.
[0089] A stoichiometric mixture of lOg of a polymethyl hydrogen siloxane (MH15 available from Momentive) and 67g of a methoxy capped polyethylene glycol (APEG 550R available from Clariant) is taken in a round bottom flask and heated to 80°C using a Heidolph magnetic stirrer/heater. APEG 550R is an allyl polyether containing 12 polyether linkages. The Karstedt catalyst (0.002% Pt) dissolved in 1 ml of toluene was added to the above mixture, followed by the addition of sodium propionate (50 ppm). This was followed by the addition of 33g of hydroxyl- terminated APEG 550 R (30% stoichiometric excess). The progress of the reaction was monitored via Ή NMR analysis for the complete disappearance of the hydride group of the polymethyl hydrogen siloxane. The resulting product is a silicone polyether such as that represented by Formula 5 having a plurality of hydroxyl- terminated and methoxy-terminated polyether side chains where p and q are each 1 and x and y are each 12.
[0090] The silicone polyether comprising the hydroxyl-terminated and methoxy- terminated polyether side chains, triethylamine (5.7g), and methylethyl ketone (MEK) (300 ml) solvent were introduced into a three-neck 1L RB flask equipped with dropping funnel and a stirring blade. The temperature of the flask was maintained at 0-5°C by immersing it in an ice bath. With constant stirring, methacryloyl chloride (5.5 ml) dissolved in methylethyl ketone (MEK) (20 ml) was added drop wise into the flask using a dropping funnel. After complete addition of the methacryloyl chloride, stirring was continued at the same temperature for 1 hour and at room temperature for another 2 hours. The triethylamine hydrochloride salt that precipitated out during the reaction was filtered off. 50 ppm of hydroquinone was added to the filtrate and then solvent and other low boiling impurities in the filtrate were removed at lower temperature (40 - 45°C) using a rotary vacuum evaporator. The salt that precipitated out again (if any) was filtered off to obtain the final macromer.
[0091] An equal weight of a mixture of a 2-hydroxyethyl methacrylate (HEMA) was added to the obtained macromer. Subsequently the mixture was cross-linked by the addition of a cross-linker (ethylene glycol dimethacrylate) and a photo-initiator (2- hydroxy-2-methylpropiophenone). The solution was placed in a mould having dimensions of 5 cm x 5 cm x 1 mm (thick) or 5 cm x 5 cm x 0.5 mm (thick) and cured under UV light for 2 hours. After curing, the films were placed in an oven at 80 °C for another 2 hours to obtain the final film.
[0092] The resulting silicone polyether has a structure represented by the structure of Formula 4 (with x and y each being 12) having a plurality of alkyl acryloyl- and methoxy-terminated polyether side chains. Different silicone polyethers were formed such that m+n is 36, and where m is 3 and n is 33; m is 10 and n is 26; or m is 18 and n is 18.
[0093] The films so formed were then placed in different solution mixtures of LiPF6, ethylene carbonate and dimethyl carbonate to allow them to swell/gel. The percent change of weight due to swelling was measured and ionic conductivities of the resultant swelled polymer gel films were measured.
[0094] Table 1 shows the results for various properties of the SPE that were obtained from the silicone polyethers with the different ratio of hydroxyl (acryloyl) - terminated to methoxy-terminated polyether side chains in the structure.
Table 1
**High— films were intact after conductivity measurement
*Medium- films broke after conductivity measurement
***Low— films changed into powder after conductivity measurement
[0095] Without being bound to any particular theory, an increase in cross-linking would be expected to increase the film's mechanical strength but decrease the swelling and ionic conductivity of the gelled film. The results in Table 1 indicate, however, that with an increased ratio of hydroxyl- to methoxy- terminated polyether groups i.e. 3:33 to 10:26 to 18:18, which would cause an increase in cross-linking, the ionic conductivity increases from 0.13 x 10 3 to 0.32 x 10 3 S/cm to 1 x 10 3 in 16 days of swelling. For a 21 day experiment, the film with a hydroxyl-terminated to methoxy-terminated side chain ratio of 3:33 (1:11) were found too brittle to do ionic conductivity measurements. The ionic conductivity for 18:18 (1:1) ratio reaches an extremely promising ionic conductivity of 1.2 x 10 3 S cm 1.
[0096] It may also be noted from Table 1 that the relative mechanical strength of the copolymer increases with the degree of cross-linking. In essence both the mechanical strength and the ionic conductivity increase with degree of cross- linking. Without being bound to any particular theory, the presence of the second monomer appears to play a synergistic effect in increasing both the degree of swelling in alkyl carbonate solution and the mechanical strength.
[0097] The effect of the second monomer on swelling was also evaluated by preparing copolymers having different loadings of the hydrogel monomer. Solid polymer electrolyte films were prepared with a hydrogel copolymer formed employing (i) a silicone polyether represented by Formula 4 where m is 10, n is 26, and x and y are each 12, and (ii) 10 wt. %, 25 wt. %, or 50 wt. % of the hydrogel monomer HEMA. Table 2 shows that increasing the HEMA concentration in the copolymer causes an increase in the degree of swelling with the 1:1 EC:DMC solution. The swelling increases from 16% to 27% to 38% (by weight) in 6 days with an increase in HEMA from 10% to 25% to 50% (by weight) respectively.
Table 2
Figure imgf000028_0001
Copolymer +50 wt% HEMA 10:26 3 25
Copolymer +50 wt% HEMA 10:26 6 38
Copolymer +25 wt% HEMA 10:26 3 18
Copolymer +25 wt% HEMA 10:26 6 27
Copolymer +10 wt% HEMA 10:26 3 11
Copolymer +10 wt% HEMA 10:26 6 16
[0098] Embodiments of the invention have been described above and, obviously, modifications and alterations may occur to others upon the reading and understanding of this specification. The claims as follows are intended to include all modifications and alterations insofar as they come within the scope of the claims or the equivalent thereof.

Claims

is claimed is:
A copolymer comprising:
a first monomer of Formula (1)
Figure imgf000030_0001
where n is 2 to 1,000; m is 2 to 1,000; x and y are each at least 1; p is 0 to 10; q is 0 to 10, R1 is an alkyl group having 1 to 10 carbon atoms; and A is an acryloyl group, an alkyl acryloyl group, a methacryloyl group, an alkyl methacryloyl group, a vinyl group, an allyl group, a styryl group, or a combination of two or more thereof; and a second monomer chosen from a gel forming acrylate or methacrylate based monomer.
2. The copolymer of claim 1 where the second monomer is chosen from an alkyl acrylate, an alkyl methacrylate, an alkoxy alkyl acrylate, an alkoxy alkyl methacrylate, a polyester acrylate, a polyester methacrylate, a urethane acrylate, an epoxy acrylate, hydroxyl-substituted alkyl acrylate, a hydroxyl-substituted alkyl methacrylate, or a combination of two or more thereof hydroxyl-substituted alkyl acrylate, a hydroxy- substituted alkyl methacrylate, or a combination of two or more thereof.
3. The copolymer of claims 1 or 2, comprising from about 10 to about 90 wt. % of the first monomer and from about 90 to about 10% of the second monomer.
4. The copolymer of claims 1 or 2, comprising from about 40 to about 60 wt. % of the first monomer and from about 60 to about 40 wt. % of the second monomer.
5. The copolymer of any of claims 1-4, wherein m is from about 2 to about 30 and n is from about 2 to about 30.
6. The copolymer of any of claims 1-4, wherein m is about 8 to about 20 and n is from about 8 to about 20.
7. The copolymer of any of claims 1-6, wherein m + n is 36.
8. The copolymer of any of claims 1-7, wherein m is from about 25 to about 75% of m+n, and n is from about 75 to about 25% of m+n.
9. The copolymer of any of claims 1-7, wherein m is from about 40 to about 60% of m + n and n is from about 60 to about 40% of m + n.
10. The copolymer of claims 1 or 2, wherein m + n is 36, m is 10 to 18, n is 18-26, the first monomer is about 50 to about 90 wt. % of the copolymer, and the second monomer is about 50 to about 10 wt. % of the copolymer.
11. The copolymer of any of claims 1-10, where the ratio of m:n is about 1:1 to about 1:11.
12. The copolymer of any of claims 1-6, 8, 9, or 11, wherein A is an alkyl acryloyl, p is 1, and q is 1 such that the first monomer of Formula (1) is represented by Formula (3):
Figure imgf000032_0001
and m + n is 20 to 40, x and y are individually 4 to 20, R1 is an alkyl with 1 to 10 carbon atoms, and R2 is hydrogen or an alkyl of 1 to 10 carbon atoms.
13. The copolymer of any of claims 1-12, wherein the second monomer is hydroxyethyl methacrylate.
A solid polymer electrolyte composition comprising:
(i) a copolymer comprising (a) a first monomer represented by Formula (1)
Figure imgf000032_0002
where n is 2 to 1,000; m is 2 to 1,000; x and y are individually 1 to 100; p is 0 to 10; q is 0 to 10; R1 is an alkyl group having 1-10 carbon atoms, and A is an alkyl acryloyl group, an acryloyl group, an alkyl acryloyl group, a methacryloyl group, an alkyl methacryloyl group, a vinyl group, an allyl group, a styryl group, or a combination of two or more thereof; and (b) a second monomer chosen from an alkyl acrylate, an alkyl methacrylate, an alkoxy alkyl acrylate, an alkoxy alkyl methacylate, a polyester acrylate, a polyester methacrylate, a urethane acrylate, an epoxy acrylate, hydroxyl-substituted alkyl acrylate, a hydroxyl- substituted alkyl methacrylate, or a combination of two or more thereof
(ii) a plasticizer; and
(iii) a salt.
15. The composition of claim 14, where the copolymer (i) comprises from about 10 to about 90 wt. % of the first monomer and from about 90 to about 10% of the second monomer.
16. The composition of claims 14 or 15, where the copolymer (i) comprises from about 40 to about 60 wt. % of the first monomer and from about 60 to about 40 wt. % of the second monomer.
17. The composition of any of claims 14-16, wherein m is from about 2 to about 30 and n is from about 2 to about 30.
18. The composition of any of claims 14-16, wherein m is about 8 to about 20 and n is from about 8 to about 20.
19. The composition of any of claims 14-18, wherein m + n is about 36.
20. The composition of any of claims 14-19, wherein m is from about 25 to about 75% of m+n, and n is from about 75 to about 25% of m+n.
21. The composition of any of claims 14-19, wherein m is from about 40 to about 60% of m+n, and n is from about 60 to about 40% of m+n.
22. The composition of claim 14, wherein m + n is 36, m is 10 to 18, n is 18-26, the first monomer is about 50 to about 90 wt. % of the copolymer, and the second monomer is about 50 to about 10 wt. % of the copolymer.
23. The composition of any of claims 14-22, where A is an alkyl acryloyl, p is 1, and q is 1 such that the first monomer is represented by Formula (3):
Figure imgf000034_0001
and m + n is 20 to 40, x and y are individually 4 to 20, R1 is an alkyl with 1 to 10 carbon atoms, and R2 is hydrogen or an alkyl of 1 to 10 carbon atoms.
24. The composition of any of claims 14-23, wherein the second monomer copolymer (i) is 2 -hydroxy ethyl methacrylate.
25. The composition of any of claims 14-24, where the copolymer (i) linked using ethylene glycol dimethacrylate.
26. The composition of any of claims 14-24, where the copolymer (i) is cured using a photo-initiator (2-hydroxy-2-methylpropiophenone).
27. The composition of any of claims 14-26, wherein the plasticizer comprises an alkyl carbonate, a cyclic carbonate, a glyme, a polyalkylene glycol dialkyl ether, or a combination of two or more thereof.
28. The composition of any of claims 14-27, wherein the plasticizer comprises an alkyl carbonate chosen from ethylene carbonate, propylene carbonate, butylenes carbonate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, or a combination of two or more thereof.
29. The composition of any of claims 14-28, where the plasticizer comprises a mixture of two alkyl carbonates in a ratio of from about 3:1 to about 1:1.
30. The composition of any of claims 14-29, where the salt is a lithium salt.
31. The composition of any of claims 14-30, comprising from about 40 to about 95% by weight of the copolymer, and from about 5 to about 60% by weight of plasticizer that comprises from about 0.5 to about 20% by weight of the salt.
32. A solid polymer electrolyte film made from the composition of any of claims 14-31.
33. The film of claim 32 having an ionic conductivity of about 1.0 x 10 5 S-cm 1 or greater.
34. The film of claim 32 having an ionic conductivity of about 1.0 x lO 4 S-cm 1 or greater.
35. The film of claim 32 having an ionic conductivity of about 1.0 x 10 3 S-cm 1 or greater.
36. An electrochemical device comprising the film of any of claims 32-35,.
37. A copolymer comprising:
a first monomer of Formula (3)
Figure imgf000036_0001
wherein n is 2 to 1,000; m is 2 to 1,000; x and y are individually 1 to 100, R1 is an alkyl group having 1 to 10 carbon atoms, and R2 is hydrogen or an alkyl of 1 to 10 carbon atoms; and
a second monomer chosen from a hydroxyl- substituted alkyl acrylate, a hydroxy-substituted alkyl methacrylate, or a combination of two or more thereof.
38. The copolymer of claim 37, comprising from about 10 to about 90 wt. % of the first monomer, and from about 90 to about 10 wt. % of the second monomer.
39. The copolymer of claims 37 or 38, wherein m is from about 25 to about 75 % of m+n, and n is from about 75 to about 25 % of m+n.
40. The copolymer of any of claims 37-39, wherein R2 is methyl.
41. The copolymer of any of claims 37-40, where Rl and R2 are methyl.
42. The copolymer of any of claims 37, 39, 40, or 41 comprising from about 40 to about 60 wt. % of the first monomer and from about 60 to about 40 wt. % of the second monomer, wherein m is 2 to 30 and n is 2 to 30.
43. The copolymer of any of claims 37-42 where m+n is 36.
44. The copolymer of claim 43, wherein the ratio of m:n is about 1:1 to about 1:11.
45. The copolymer of claim 43, wherein the ratio of m:n is 1:1.
46. A solid polymer electrolyte composition comprising (i) the copolymer of any of claims 37-45; (ii) a plasticizer; and (iii) a salt.
47. A film formed from the solid polymer electrolyte composition of claim 46. An electrochemical device comprising the film of claim 47.
PCT/US2012/049955 2011-08-12 2012-08-08 Siloxane copolymer and solid polymer electrolyte comprising such siloxane copolymers WO2013025414A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280039526.XA CN103732656A (en) 2011-08-12 2012-08-08 Siloxane copolymer and solid polymer electrolyte comprising such siloxane copolymers
KR1020147003877A KR20140066163A (en) 2011-08-12 2012-08-08 Siloxane copolymer and solid polymer electrolyte comprising such siloxane copolymers
JP2014525111A JP2014528979A (en) 2011-08-12 2012-08-08 Siloxane copolymers and solid polymer electrolytes containing such siloxane copolymers
EP12824489.4A EP2742088A4 (en) 2011-08-12 2012-08-08 Siloxane copolymer and solid polymer electrolyte comprising such siloxane copolymers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/208,864 US8796406B2 (en) 2011-08-12 2011-08-12 Siloxane copolymer and solid polymer electrolyte comprising such siloxane copolymers
US13/208,864 2011-08-12

Publications (1)

Publication Number Publication Date
WO2013025414A1 true WO2013025414A1 (en) 2013-02-21

Family

ID=47677733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/049955 WO2013025414A1 (en) 2011-08-12 2012-08-08 Siloxane copolymer and solid polymer electrolyte comprising such siloxane copolymers

Country Status (6)

Country Link
US (1) US8796406B2 (en)
EP (1) EP2742088A4 (en)
JP (1) JP2014528979A (en)
KR (1) KR20140066163A (en)
CN (1) CN103732656A (en)
WO (1) WO2013025414A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015096619A1 (en) * 2013-12-24 2015-07-02 江苏华东锂电技术研究院有限公司 Preparation method for polymer lithium ion battery
JP2017535919A (en) * 2014-10-02 2017-11-30 エルジー・ケム・リミテッド Gel polymer electrolyte and lithium secondary battery including the same
US10476104B2 (en) 2014-10-02 2019-11-12 Lg Chem, Ltd. Gel polymer electrolyte and lithium secondary battery comprising the same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456984B (en) * 2013-09-13 2016-08-17 四川川为电子有限公司 A kind of manufacture method of inorganic solid electrolyte film
WO2016053064A1 (en) * 2014-10-02 2016-04-07 주식회사 엘지화학 Gel polymer electrolyte and lithium secondary battery comprising same
CN107851837B (en) * 2015-07-30 2020-06-02 莫门蒂夫性能材料股份有限公司 Siloxane copolymer and solid polymer electrolyte comprising the same
KR20190015248A (en) * 2016-06-07 2019-02-13 시오 인코퍼레이티드 Polyalkoxysiloxane catholyte for high-voltage lithium battery
US10361457B2 (en) 2017-03-24 2019-07-23 Seeo, Inc. Polar polysiloxane electrolytes for lithium batteries
US11142607B2 (en) * 2017-07-26 2021-10-12 Byk-Chemie Gmbh Polymer having polyether and polysiloxane segments
KR102227811B1 (en) 2017-11-03 2021-03-15 주식회사 엘지화학 Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
WO2019088733A1 (en) 2017-11-03 2019-05-09 주식회사 엘지화학 Electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR102406744B1 (en) * 2017-11-06 2022-06-10 주식회사 엘지에너지솔루션 Gel polymer electrolyte and lithium secondary battery comprising the same
WO2019135624A1 (en) 2018-01-03 2019-07-11 주식회사 엘지화학 Gel polymer electrolyte composition, gel polymer electrolyte prepared therefrom, and lithium secondary battery comprising same
EP3801446A4 (en) * 2018-06-08 2022-03-09 Adaptive Surface Technologies, Inc. Sidechain functionalized organosiloxanes, coating compositions containing sidechain functionalized organosiloxanes, coated articles, and methods of making and methods of use thereof
WO2020060293A1 (en) * 2018-09-21 2020-03-26 주식회사 엘지화학 Composition for gel polymer electrolyte and lithium secondary battery comprising gel polymer electrolyte formed therefrom
KR20200084697A (en) 2019-01-03 2020-07-13 삼성전자주식회사 Lithium secondary battery comprising the electrolyte containing siloxane compound
CN110571470B (en) * 2019-09-16 2021-05-11 上海汽车集团股份有限公司 Fluorine-containing modified polysiloxane solid electrolyte and preparation method and application thereof
CN110690500A (en) * 2019-10-14 2020-01-14 北京工业大学 Polymer electrolyte with high voltage window
CN115651605B (en) * 2022-09-09 2024-09-17 浙江国能科技有限公司 Ultraviolet light curing organic silicon conductive adhesive and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673718A (en) * 1986-01-06 1987-06-16 E. I. Du Pont De Nemours And Company Polysiloxane graft copolymers, flexible coating compositions comprising same and branched polysiloxane macromers for preparing same
US20050227144A1 (en) * 1998-10-16 2005-10-13 Hiroyuki Akashi Solid electrolyte battery
US20050271948A1 (en) * 2004-06-07 2005-12-08 Korea Research Institute Of Chemical Technology Polysiloxane-based compound and solid polymer electrolyte composition using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645481A (en) * 1979-09-22 1981-04-25 Toagosei Chem Ind Co Ltd 2-methylene-1,4,6-trioxaspiro 4,6 undecane
US4906718A (en) * 1988-12-09 1990-03-06 Dow Corning Corporation Acrylate functional organosiloxane/oxyalkylene copolymers and electrically conductive compositions containing same and a solubilized lithium salt
US5419984A (en) * 1993-12-16 1995-05-30 Valence Technology Inc. Solid electrolytes containing polysiloxane acrylates

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673718A (en) * 1986-01-06 1987-06-16 E. I. Du Pont De Nemours And Company Polysiloxane graft copolymers, flexible coating compositions comprising same and branched polysiloxane macromers for preparing same
US20050227144A1 (en) * 1998-10-16 2005-10-13 Hiroyuki Akashi Solid electrolyte battery
US20050271948A1 (en) * 2004-06-07 2005-12-08 Korea Research Institute Of Chemical Technology Polysiloxane-based compound and solid polymer electrolyte composition using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2742088A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015096619A1 (en) * 2013-12-24 2015-07-02 江苏华东锂电技术研究院有限公司 Preparation method for polymer lithium ion battery
JP2017535919A (en) * 2014-10-02 2017-11-30 エルジー・ケム・リミテッド Gel polymer electrolyte and lithium secondary battery including the same
US10243239B1 (en) 2014-10-02 2019-03-26 Lg Chem, Ltd. Gel polymer electrolyte and lithium secondary battery comprising the same
US10476104B2 (en) 2014-10-02 2019-11-12 Lg Chem, Ltd. Gel polymer electrolyte and lithium secondary battery comprising the same

Also Published As

Publication number Publication date
EP2742088A4 (en) 2015-04-01
CN103732656A (en) 2014-04-16
US20130040207A1 (en) 2013-02-14
JP2014528979A (en) 2014-10-30
EP2742088A1 (en) 2014-06-18
KR20140066163A (en) 2014-05-30
US8796406B2 (en) 2014-08-05

Similar Documents

Publication Publication Date Title
US8796406B2 (en) Siloxane copolymer and solid polymer electrolyte comprising such siloxane copolymers
JP5247692B2 (en) Phosphate-based acrylate crosslinking agent for polymer electrolyte and composition containing the same
JP3749217B2 (en) Novel cross-linking agent and cross-linked solid polymer electrolyte containing the same
KR100588475B1 (en) Solid polymer electrolyte composite using polysiloxane-based compound
US9269986B2 (en) Electrolyte composition, gel polymer electrolyte, and lithium battery including the gel polymer electrolyte
CA2244904C (en) Copolyether and solid polymer electrolyte
KR101527560B1 (en) Polymer electrolyte for rechargable lithium battery, manufacturing method of the same, and rechargable lithium battery including the polymer electrolyte
JP4995185B2 (en) Cyclic siloxane compound crosslinking agent, solid polymer electrolyte composition containing the crosslinking agent, and solid polymer electrolyte for small lithium polymer secondary battery
WO2010083330A1 (en) Polymer compositions with oligomeric alkylene oxide pendants
Jalbert et al. A 3D network based on poly (ε-caprolactone) macromonomers as polymer electrolyte for solid state lithium metal batteries
JP2020076024A (en) Electrolyte for secondary battery
CN102372849A (en) Comb-shaped polymer, comb-shaped polymer electrolyte material and preparation method of the comb-shaped polymer electrolyte material
JP3603383B2 (en) Polymer solid electrolyte
KR101495339B1 (en) Branched copolymer, method of preparing the same, and polymer electrolyte membrane for rechargeable lithium battery and rechargeable lithium battery including the same
JP3843505B2 (en) Polymer electrolyte and battery
JP2002260441A (en) Polymeric solid electrolyte and method of making the same
JP3601200B2 (en) Polymer electrolyte and method for producing the same
KR100365392B1 (en) Ion-conductive polymer electrolyte and electrochemical element using the same
JP2006257172A (en) Polyether based polymer solid electrolyte
KR100473352B1 (en) Polyalkylene oxide Composition for Polymer Electrolytes with Enhanced Lithium Stability
JP2002150836A (en) Polymer solid electrolyte, and manufacturing method of the same
JP4560721B2 (en) Electrolyte composition and battery
JP2005011820A (en) Solid polyelectrolyte
EP4195346A1 (en) Polysiloxane based crosslinked solid electrolyte compositions and the cells comprising the same
TW202436407A (en) Macromonomer and solid-state polymer electrolyte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12824489

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014525111

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012824489

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147003877

Country of ref document: KR

Kind code of ref document: A