WO2013024992A2 - 플랜트 취수로 혹은 배수로의 침전물 제거 장치 - Google Patents

플랜트 취수로 혹은 배수로의 침전물 제거 장치 Download PDF

Info

Publication number
WO2013024992A2
WO2013024992A2 PCT/KR2012/006139 KR2012006139W WO2013024992A2 WO 2013024992 A2 WO2013024992 A2 WO 2013024992A2 KR 2012006139 W KR2012006139 W KR 2012006139W WO 2013024992 A2 WO2013024992 A2 WO 2013024992A2
Authority
WO
WIPO (PCT)
Prior art keywords
sediment
compressed air
intake
drainage
pipe
Prior art date
Application number
PCT/KR2012/006139
Other languages
English (en)
French (fr)
Other versions
WO2013024992A3 (ko
Inventor
한만엽
Original Assignee
(주)써포텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110096315A external-priority patent/KR101328635B1/ko
Application filed by (주)써포텍 filed Critical (주)써포텍
Priority to CN201280039505.8A priority Critical patent/CN103732829A/zh
Publication of WO2013024992A2 publication Critical patent/WO2013024992A2/ko
Publication of WO2013024992A3 publication Critical patent/WO2013024992A3/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B5/00Artificial water canals, e.g. irrigation canals
    • E02B5/08Details, e.g. gates, screens
    • E02B5/085Arresting devices for waterborne materials, e.g. gratings
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/02Stream regulation, e.g. breaking up subaqueous rock, cleaning the beds of waterways, directing the water flow
    • E02B3/023Removing sediments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins

Definitions

  • the present invention is intended to reduce the amount of suspended solids or foreign substances in the cooling water used in the cooling system of a plant, in particular a nuclear power plant or a thermal power plant, to settle in the bottom of a flow path connected to the plant, that is, the intake and drainage channels to supply or discharge the cooling water.
  • a sediment removal device in a plant intake or drainage can remove sediments at cost.
  • Plants such as nuclear or thermal power plants are equipped with a number of large steam turbines and heat exchangers to cool the main units. These steam turbines and major equipment require a cooling system to maintain the temperature at an appropriate level for normal operation, and the cooling system needs a heat exchanger and coolant for transporting heat from the heat exchanger. Cooling water required for the plant equipment is introduced through the intake duct and out through the drainage passage, and the suspended solids of the coolant are settled in the intake duct and the drainage passage with low flow rate.
  • the suspended solids in the cooling water can enter the plant and cause the cooling system to malfunction, and the sediment should be dredged and removed periodically because it will settle in the intake and drainage channels and reduce the passage area, thus impairing the normal supply of cooling water.
  • the water intake passage or the drainage passage 1 has various shapes such as a rectangle and a circle according to surrounding conditions, and is typically trapezoidal.
  • the suspended solids 2 are precipitated in the lower part of this cross section, and the foreign matter 3 larger in particle size than the suspended solids is located in the upper part.
  • the dredged work of the water intake or drainage channel is frequently used by dredgers to remove these precipitated suspended matters 2 and foreign matters (3).
  • dredging work requires a dredger, dredging mechanism and dredging manpower, which is expensive and takes a long time for dredging of sediment.
  • the construction cost of the intake and drainage channel is increased because the size of the intake and drainage channels is increased in consideration of the communication surface due to sediment.
  • the present invention provides a plant intake furnace which can remove sediment which is precipitated in the intake and drainage in a short period of time, at low cost, without the occurrence of a separate dredging process and abnormal cooling water flow resulting therefrom.
  • An object of the present invention is to provide a sediment removal device.
  • the present invention in order to solve the above problems, includes a sediment suction port for sucking the fluid containing the sediment suspended in the water intake or drainage channel and a sediment discharge pipe for discharging the fluid containing the sediment sucked from the sediment suction port to the outside It provides a sediment removal device in the intake or drainage.
  • the deposit suction port is formed in the deposit suction pipe
  • the sediment suction pipe may be connected to a plurality of points of the sediment discharge pipe.
  • the precipitate suction pipe and the precipitate discharge pipe may be connected through an opening and closing device.
  • a compressed air outlet for discharging compressed air may be disposed in the water intake passage or the drain passage.
  • the compressed air discharge port disposed on one side in the width direction of the water intake passage or the drainage passage may face the upper side, and the compressed air discharge outlet arranged on the other side in the width direction of the intake passage or the drainage passage may face the lower side.
  • the compressed air transfer pipe for transferring the compressed air from the outside
  • a compressed air delivery pipe may be connected to a plurality of points of the compressed air delivery pipe, and the compressed air delivery port may be formed on the surface of the compressed air delivery pipe.
  • the compressed air delivery pipe and the compressed air delivery pipe may be connected through an opening and closing device.
  • the deposit discharge pipe may be formed in plural.
  • the compressed air transfer pipe may be formed in plural.
  • it may further include a float removal net located on the precipitate inlet.
  • it may further include a compressed air inlet pipe for injecting compressed air from the compressed air delivery pipe to the precipitate discharge pipe.
  • the present invention can exert the effect of removing the sediment precipitated in the water intake and drainage in a short period of time, at a low cost, without the occurrence of a separate dredging process and abnormal cooling water flow resulting therefrom.
  • the present invention can maintain the constant passage area of the intake and the drainage channel by removing the sediment of the intake and drainage from time to time, and thus can reduce the size of the facility constructed in consideration of the conventional sediment to reduce the construction cost It can be effective.
  • the present invention can also exhibit an effect of preventing problems such as non-operational problems, safety accidents, etc. of the plant facility due to dredging construction.
  • FIG. 1 is a cross-sectional view of a conventional water intake or drainage channel.
  • FIG. 2 is a cross-sectional view of the deposit removal apparatus of the first embodiment of the present invention.
  • FIG 3 is a cross-sectional view of the deposit removal apparatus of the second embodiment of the present invention.
  • FIG. 4 is a sectional view of a deposit removal apparatus of a third embodiment of the present invention.
  • Fig. 5 is a sectional view of the deposit removing apparatus of the fourth embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a deposit removal apparatus of a fifth embodiment of the present invention.
  • FIG. 7 is a conceptual diagram of the connection between the sediment suction pipe and the sediment discharge pipe of the present invention.
  • FIG. 8 is a conceptual view of the connection between the compressed air delivery pipe and the compressed air delivery pipe of the present invention.
  • Figure 2 is a first embodiment of the sediment removal device of the plant intake or drainage in accordance with the present invention.
  • the first embodiment of the sediment removal device of the plant intake or drainage of the present invention includes a sediment suction port 14, sediment discharge pipe 15, the sediment suction port 14 and the sediment discharge pipe ( 15) is buried in the inlet or drainage surface.
  • the first embodiment of the present invention sucks the sediment suspended in the intake passage through the sediment suction port 14, and moves it to the sediment discharge pipe 15.
  • Figure 3 is a second embodiment of the sediment removal device of the plant intake or drainage in accordance with the present invention.
  • the sediment removal device of the plant intake or drainage of the present invention is a suspended matter removal network 11, compressed air discharge port 12, compressed air discharge pipe 13, sediment suction port 14, And a sediment discharge pipe 15.
  • the float removing net 11 is disposed at a predetermined distance from the bottom of the intake passage or the drainage passage, and is preferably spaced at least 1/2 of the water depth.
  • the float removal net 15 passes through the precipitate particles but has a network structure to filter out the float having an average particle diameter larger than the precipitate.
  • Such a network structure is preferably a structure in which a number of fine pores having a particle diameter of 1 ⁇ m to 3 mm are formed.
  • the suspended solids (3) having a larger particle diameter than the precipitates is filtered by the suspended solids removing net (11), and the precipitate is settled between the bottom surface of the intake passage or the drainage channel (1) and the suspended solids removing network (15).
  • the compressed air is supplied from the compressed air delivery pipe 13 by a pump (not shown), and the compressed air is discharged from the plurality of compressed air outlets 12 toward the intake path. Sedimentation of the precipitate is suspended to prevent precipitation of the suspended matter.
  • the compressed air delivery pipe 13 is formed of a plurality of rows in one row or two rows or more in both ends of the water intake in the width direction of the intake passage, and the compressed air delivery pipe 13 is provided with a plurality of compressed air delivery at predetermined intervals.
  • the outlet 12 is arranged.
  • the compressed air outlet 12 discharges the compressed air so that vortices can be formed in the seawater of the intake or drainage channel located below the float removal network 11.
  • the compressed air outlet 12 is disposed on both sides in the width direction of the lower side of the water intake or drainage passage having a trapezoidal cross-section, and the compressed air outlet is arranged on both sides
  • the direction of (12) is made to be opposite to each other.
  • the compressed air outlet 12 is disposed to face the right side of the water surface (30 to 60 ° with the water surface), while the other side (in FIG. 3).
  • the compressed air delivery unit 12 faces the left side of the floor (to form 210 to 240 ° with the water surface), thereby minimizing the number of compressed air outlets to form vortices in the intake or drainage channels. Can be.
  • the formed vortex is restricted to flow to the upper side by the suspended matter removing net (11).
  • Figure 4 is a third embodiment of the sediment removal device of the plant intake or drainage in accordance with the present invention.
  • two rows of compressed air delivery pipes 13 are disposed at both end portions in the width direction of the water intake passage, and two rows of sediment discharge pipes 15 are arranged in the central portion of the intake passage.
  • the number of rows of the compressed air discharge pipe 13 and the precipitate discharge pipe 15 may be three or more rows as necessary.
  • Figure 5 shows a cross section of a fourth embodiment which further comprises a compressed air inlet tube.
  • the compressed air inlet pipe 20 is connected between each of the compressed air outlet pipe 13 and the precipitate discharge pipe 15 so that the compressed air is discharged from the compressed air discharge pipe 13. 15).
  • the precipitate discharge pipe 15 is blocked by a material having low fluidity, it is possible to exert compressed air through the compressed air injection pipe 20, thereby having the effect of eliminating the blockage of the precipitate discharge pipe 15.
  • the position of the compressed air inlet tube can be changed as necessary.
  • FIG. 6 is a cross-sectional view of a fifth embodiment in which the sediment removal device according to the present invention is provided by dividing a plurality of sections.
  • the sediment removal device of the plant intake or drainage of the present invention is a suspended matter removal network 11, compressed air discharge port 12, compressed air discharge pipe 13, sediment suction port 14, It includes a sediment discharge pipe 15, sediment suction pipe 16, opening and closing device 17, compressed air transfer pipe 18, opening and closing device 19, compressed air injection pipe 20.
  • the compressed air is discharged by the compressed air outlet to form a vortex in the intake passage 1, so that the precipitate precipitated in the intake passage or the drainage passage 1 becomes suspended, and thus the suspended precipitate or fine particle diameter Cooling water containing foreign matter is sucked in the sediment suction port 14, it is introduced into the sediment suction pipe (16). Then, when the opening and closing device 17 is opened, it is introduced into the sediment discharge pipe 15 connected to the pump (not shown) and finally transported and discharged from the water intake or drainage to the outside.
  • a compressed air inlet pipe 20 is connected between each of the compressed air discharge pipe 13 and the precipitate discharge pipe 15, so that compressed air can be injected into the precipitate discharge pipe 15 from the compressed air discharge pipe 13. Can be.
  • the precipitate discharge pipe 15 is blocked by a material having low fluidity, it is possible to exert compressed air through the compressed air injection pipe 20, thereby having the effect of eliminating the blockage of the precipitate discharge pipe 15.
  • the position of the compressed air inlet tube can be changed as necessary.
  • the sediment discharge pipe 15 is formed over the entire zone, and the sediment suction pipe 16 in each zone through the opening and closing device 17 15). Therefore, the sediment removal device of the present invention can be performed by dividing the intake passage or the drainage passage and separating the sediment suction work in each region.
  • compressed air delivery pipes 18 are formed throughout the entire zone, and compressed air delivery pipes 13 are provided in each zone through the opening and closing device 19. It is connected to the tube 18. Therefore, the sediment removal device of the present invention can be carried out by dividing the intake passage or the drainage passage, sending compressed air in each region to separate the sediment suction operation.
  • the sediment removal device of the plant intake or drainage passage is partitioned and operated sequentially.
  • one sediment discharge pipe 15 extends over the entire area of the water intake or the drainage passage, and the sediment suction pipe 16 separated in each compartment is precipitated through the opening and closing device 17. It is possible by being connected to each point of the discharge pipe (15). For example, by opening only the opening and closing device 17 of the sediment suction pipe 16 of one zone and closing the opening and closing device 17 of the sediment suction pipe 16 of the remaining zone, only the removal of sediment of one zone can be selectively performed. have.
  • the injection of compressed air can also be partitioned and operated.
  • one compressed air delivery pipe 18 extends over the entire area of the intake or drainage path, and the compressed air delivery pipe 13 separated in each compartment is provided with an opening and closing device 19. It is possible by being connected to each point of the compressed air transfer pipe (18) through. For example, by opening only the opening and closing device 19 of the compressed air delivery pipe 13 in one zone and closing the opening and closing device 19 of the compressed air delivery pipe 13 in the remaining zone, only the removal of sediment in one zone is selected. Can be carried out.
  • a preferred method of operation of the sediment removal device of the plant intake of the present invention is as follows. After the float is first filtered by the float removal device at the inlet of the intake passage, seawater flows into the plant intake passage. Thereafter, at first, the sediment removal device of the plant intake channel of the present invention is operated in one zone on the upstream side (inlet side into which seawater enters), and the precipitate or suspended matter which has settled on the bottom by the discharge of compressed air rises upwards and the sediment is deposited. It enters the sediment discharge pipe through the suction port and is discharged to the outside.
  • the sediment removal device of the plant intake path is operated in two zones located downstream from the one zone (plant side into which the seawater enters), and in this order, the sediment removal device of the six-zone plant intake furnace located on the plant side. Is working.
  • the zone is likewise partitioned so that the sediment removal device is operated in stages.
  • the sediment discharge pipe 15 can discharge the sediment from the upstream side to the intake path to the outside, which is advantageous in discharging the sediment, and the sea water on the plant side used in the cooling system of the plant (6). There is an advantage in keeping turbidity of the seawater in the zone low.
  • the sediment discharge pipe 15 and the sediment suction pipe 16 can be embedded in the lower portion of the intake passage.
  • the sediment discharge pipe 15 and the sediment suction pipe 16 may be disposed on the lower surface of the water inlet.
  • the aggregate may be installed by filling the aggregate thereon as necessary.

Abstract

본 발명은 플랜트의 냉각 시스템에 사용되는 냉각수의 부유물 혹은 이물질들이, 플랜트에 냉각수를 공급하기 위한 취수로 혹은 배수로의 바닥에 침전되는 것을 방지할 수 있는 플랜트 취수로 혹은 배수로의 침전물 제거 장치에 관한 것이다.

Description

플랜트 취수로 혹은 배수로의 침전물 제거 장치
본 발명은 플랜트, 특히 원자력 발전소나 화력 발전소의 냉각 시스템에 사용되는 냉각수의 부유물 혹은 이물질들이, 플랜트에 냉각수를 공급 혹은 방출하기 위하여 플랜트에 연결된 유로, 즉 취수로 및 배수로의 바닥에 침전되는 것을 적은 비용으로 침전물(sediment)을 제거할 수 있는 플랜트 취수로 혹은 배수로의 침전물 제거 장치에 관한 것이다.
원자력 발전소나 화력 발전소와 같은 플랜트에는 다수의 대형 증기터빈기 및 주요 기기들을 냉각시키기 위한 열교환기가 설치되어 있다. 이러한 증기터빈기 및 주요 기기들은 정상적인 작동을 위하여 온도를 적정 수준으로 유지하기 위한 냉각 시스템이 필요하고, 이러한 냉각 시스템에는 열교환기와 이러한 열교환기로부터 열을 수송하기 위한 냉각수가 필요하다. 플랜트 설비에 필요한 냉각수는 취수로를 통하여 유입되고, 배수로를 통해 유출되며, 냉각수의 부유물은 유속이 낮은 취수로 및 배수로에 침전된다.
냉각수의 부유물은 플랜트에 유입되어 냉각 시스템의 오작동을 일으킬 수 있을 뿐만 아니라, 취수로와 배수로에 침전되어 통수단면적을 줄어들게 함으로써 정상적인 냉각수의 공급을 저해하기 때문에 침전물을 주기적으로 준설하여 제거해야 한다.
도 1 은 이러한 종래의 취수로 혹은 배수로의 단면도를 도시한다. 도 1 에 도시된 바와 같이, 취수로 혹은 배수로(1)는 주변 여건에 따라 사각형, 원형 등의 다양한 형상이 있으며 대표적으로 사다리꼴 형상이다. 이 단면 하부에 부유물(2)이 침전되어 있고, 상부에는 침전된 부유물보다 입경이 큰 이물질(3)이 있다.
따라서, 종래의 기술에서는 수시로 준설선을 이용하여 취수로 혹은 배수로의 준설공사를 함으로써 이러한 침전된 부유물(2) 및 이물질(3)을 제거하고 있다. 그러나 준설공사는 준설선, 준설기구 및 준설인력 등이 요구되어 큰 비용이 소요되고, 침전물의 준설기간이 오래 걸린다. 또한 취수로 혹은 배수로의 건설시에도 침전물로 인한 통수단면을 고려하여 취수로 및 배수로의 규모를 크게 하기 때문에 건설비용이 많이 소요된다.
본 발명은 이와 같은 종래의 문제점을 해결하기 위하여, 별도의 준설공정 및 이에 기인하는 비정상적인 냉각수 흐름의 발생 없이, 적은 비용으로, 단기간에 취수로 및 배수로에 침전되는 침전물을 제거할 수 있는 플랜트 취수로의 침전물 제거 장치를 제공하는 것을 목적으로 한다.
본 발명은 상기와 같은 과제를 해결하기 위하여, 취수로 혹은 배수로에 부유하는 침전물을 포함하는 유체를 흡입하는 침전물 흡입구 및 상기 침전물 흡입구로부터 흡입된 침전물을 포함하는 유체를 외부로 배출시키는 침전물 배출관을 포함하는 취수로 혹은 배수로의 침전물 제거 장치를 제공한다.
본 발명에서는, 상기 침전물 흡입구는 침전물 흡입관에 형성되어 있고,
상기 침전물 흡입관은 침전물 배출관의 복수의 지점에 연결되어 있을 수도 있다.
본 발명에서는, 상기 침전물 흡입관과 상기 침전물 배출관은 개폐장치를 통하여 연결될 수도 있다.
본 발명에서는, 압축공기를 방출하는 압축공기 송출구가 상기 취수로 혹은 배수로에 배치되어 있을 수도 있다.
본 발명에서는, 상기 취수로 혹은 배수로의 폭 방향 일측에 배치된 압축공기 송출구는 상부측를 향하고, 상기 취수로 혹은 배수로의 폭 방향 타측에 배치된 압축공기 송출구는 하부측을 향할 수도 있다.
본 발명에서는, 외부로부터 압축공기를 이송하는 압축공기 이송관 및
상기 압축공기 이송관의 복수의 지점에 연결되어 있는 압축공기 송출관을 구비하고, 상기 압축공기 송출구는 상기 압축공기 송출관의 표면에 형성되어 있을 수도 있다.
본 발명에서는, 상기 압축공기 이송관과 상기 압축공기 송출관은 개폐장치를 통하여 연결될 수도 있다.
본 발명에서는, 상기 침전물 배출관은 복수로 형성되어 있을 수도 있다.
본 발명에서는, 상기 압축공기 이송관은 복수로 형성되어 있을 수도 있다.
본 발명에서는, 상기 침전물 흡입구 위에 위치하는 부유물 제거망을 더 포함할 수도 있다.
본 발명에서는, 상기 압축공기 송출관으로부터 상기 침전물 배출관으로 압축공기를 주입할 수 있는 압축공기 주입관을 더 포함할 수도 있다.
본 발명은 별도의 준설공정 및 이에 기인하는 비정상적인 냉각수 흐름의 발생 없이, 적은 비용으로, 단기간에 취수로 및 배수로에 침전되는 침전물을 제거할 수 있는 효과를 발휘할 수 있다.
또한, 본 발명은 수시로 취수로 및 배수로의 침전물을 제거하여 취수로 및 배수로의 통수단면적을 항상 일정하게 유지할 수 있기 때문에, 종래 침전물을 고려하여 건설하였던 시설규모를 축소할 수 있으므로 건설비용을 절감하는 효과를 발휘할 수 있다.
또한, 본 발명은 준설공사에 기인하는 플랜트 시설의 비가동 문제, 안전사고 등의 문제도 방지하는 효과를 발휘할 수 있다.
도 1 은 종래의 취수로 혹은 배수로의 단면도.
도 2 는 본 발명의 제1실시예의 침전물 제거 장치의 단면도.
도 3 은 본 발명의 제2실시예의 침전물 제거 장치의 단면도.
도 4 는 본 발명의 제3실시예의 침전물 제거 장치의 단면도.
도 5 는 본 발명의 제4실시예의 침전물 제거 장치의 단면도.
도 6 은 본 발명의 제5실시예의 침전물 제거 장치의 단면도.
도 7 은 본 발명의 침전물 흡입관과 침전물 배출관의 연결 개념도.
도 8 은 본 발명의 압축공기 이송관과 압축공기 송출관의 연결 개념도.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있을 정도로 설명하기 위하여 본 발명의 가장 바람직한 실시예를 첨부된 도면을 참조하여 설명하기로 한다.
도 2 는 본 발명에 의한 플랜트 취수로 혹은 배수로의 침전물 제거 장치의 제 1 실시예이다.
도 2 에 도시된 바와 같이, 본 발명의 플랜트 취수로 혹은 배수로의 침전물 제거 장치의 제 1 실시예는 침전물 흡입구(14), 침전물 배출관(15)을 포함하고, 침전물 흡입구(14)와 침전물 배출관(15)는 취수로 혹은 배수로 하면에 매립되어 있다.
이와 같은 구성에서, 본 발명의 제 1 실시예는 취수로에 부유하는 침전물을 침전물 흡입구(14)로 흡입하여, 침전물 배출관(15)으로 이동시킨다.
도 3 은 본 발명에 의한 플랜트 취수로 혹은 배수로의 침전물 제거 장치의 제 2 실시예이다.
도 3 에 도시된 바와 같이, 본 발명의 플랜트 취수로 혹은 배수로의 침전물 제거 장치는 부유물 제거망(11), 압축공기 송출구(12), 압축공기 송출관(13), 침전물 흡입구(14), 침전물 배출관(15)을 포함한다.
부유물 제거망(11)은 도 3 에 도시된 바와 같이, 취수로 혹은 배수로의 바닥에서 소정거리 이격되어 배치되고, 바람직하게는 수심의 1/2 이상 이격되어 배치된다. 부유물 제거망(15)은 침전물 입자를 통과시키지만, 침전물보다 큰 평균 입경을 갖는 부유물을 걸러내기 위한 망 조직을 갖는다. 이와 같은 망조직은 1 ㎛ ~ 3 mm 의 입경의 미세한 구멍이 다수 형성되어 있는 구조가 바람직하다.
상기 부유물 제거망(11)에 의하여 침전물보다 입경이 큰 부유물(3)이 걸러지고, 침전물은 취수로 혹은 배수로(1)의 바닥면과 부유물 제거망(15)사이에 침전되게 된다. 이에 대해, 본 발명의 실시예에서는 압축공기 송출관(13)으로부터 펌프(미도시)에 의하여 압축공기가 공급되어, 다수의 압축공기 송출구(12)로부터 압축공기가 취수로를 향하여 방출됨으로써, 침전된 침전물을 부유시켜 부유물의 침전을 방지한다.
구체적으로, 압축공기 송출관(13)은 취수로의 폭방향 양 단부측 모두에 1열 혹은 2열 이상의 복수의 열로 형성되어 있고, 압축공기 송출관(13)에는 소정간격으로 다수의 압축공기 송출구(12)가 배치되어 있다. 바람직하게는, 압축공기 송출구(12)는 부유물 제거망(11) 아래측에 위치하는 취수로 혹은 배수로의 해수에 와류가 형성될 수 있도록, 압축공기를 방출한다. 본 발명의 실시예에서는 도 3 에 도시된 바와 같이, 압축공기 송출구(12)를 사다리꼴의 단면을 갖는 취수로 혹은 배수로 하측의 폭방향 양 측면에 배치하고, 양 측면에 배치된 압축공기 송출구(12)의 방향을 서로 반대 방향이 되도록 한다.
더욱 바람직하게는, 일 측(도 3 에서 좌측 하부측)에서는 압축공기 송출구(12)를 수면 우측(수면과 30 ~ 60 °를 이루도록 함)을 향하도록 배치하는 반면, 다른 측(도 3 에서 우측 하부측)에서는 압축공기 송출부(12)를 바닥면 좌측(수면과 210 ~ 240 °를 이루도록 함)을 향하도록 함으로써, 압축공기 송출구의 개수를 최소한으로 하여 취수로 혹은 배수로 내에 와류를 형성할 수 있다. 또한, 형성된 와류는 부유물 제거망 (11) 에 의하여 상부측으로의 흐름이 제한된다.
도 4 는 본 발명에 의한 플랜트 취수로 혹은 배수로의 침전물 제거 장치의 제 3 실시예이다.
도 4 에 도시된 바와 같이, 취수로의 폭방향 양 단부측에는 각각 2 열의 압축공기 송출관(13)이 배치되고, 취수로의 중앙부에는 2 열의 침전물 배출관(15)이 배치되어 있다. 이와 같이, 본원 발명에서는 각각 2 열의 압축공기 송출관(13), 2 열의 침전물 배출관(15)을 구비함으로써, 각 측의 압축공기 송출관 및 침전물 배출관의 각각의 교대 작업 및 정비 작업이 가능하다. 압축공기 송출관(13) 및 침전물 배출관(15)의 열의 수는 필요에 따라, 3 열 이상도 가능하다.
도 5 는 압축공기 주입관을 더 포함하는 제4 실시예의 단면을 도시한다. 도 5에 도시된 바와 같이 각각의 압축공기 송출관(13)과 침전물 배출관(15) 사이에는 압축공기 주입관(20)이 연결되어 있어, 압축공기 송출관(13)으로부터 압축공기가 침전물 배출관(15)으로 주입될 수 있다. 이는 침전물 배출관(15)이 유동성이 낮은 물질에 의하여 막히는 경우, 상기 압축공기 주입관(20)을 통하여 압축공기를 주입함으로써, 침전물 배출관(15)의 막힘을 해소할 수 있는 효과를 발휘할 수 있다. 이러한 압축공기 주입관의 위치는 필요에 따라 적절하게 변경될 수 있다.
도 6 은 본 발명에 의한 침전물 제거 장치가 복수개로 구획을 구분하여 설치되는 제5실시예의 단면도이다.
도 6 에 도시된 바와 같이, 본 발명의 플랜트 취수로 혹은 배수로의 침전물 제거 장치는 부유물 제거망(11), 압축공기 송출구(12), 압축공기 송출관(13), 침전물 흡입구(14), 침전물 배출관(15), 침전물 흡입관(16), 개폐장치(17), 압축공기 이송관(18), 개폐장치(19), 압축공기 주입관(20)을 포함한다.
상기와 같이, 압축공기 송출구에 의하여 압축공기가 방출되어, 취수로(1)내에 와류를 형성시킴으로써, 취수로 혹은 배수로(1)에 침전된 침전물이 부유하게 되고, 이렇게 부유하는 침전물 혹은 미세한 입경을 갖는 이물질을 포함하는 냉각수는 침전물 흡입구(14)에서 흡입되어, 침전물 흡입관(16)으로 유입된다. 이후 개폐장치 (17) 가 열리게 되면, 펌프(미도시)에 연결되어 있는 침전물 배출관(15)으로 유입되고, 최종적으로 취수로 혹은 배수로부터 외부로 이송 및 배출된다.
또한, 각각의 압축공기 송출관(13)과 침전물 배출관(15) 사이에는 압축공기 주입관(20)이 연결되어 있어, 압축공기 송출관(13)으로부터 압축공기가 침전물 배출관(15)으로 주입될 수 있다. 이는 침전물 배출관(15)이 유동성이 낮은 물질에 의하여 막히는 경우, 상기 압축공기 주입관(20)을 통하여 압축공기를 주입함으로써, 침전물 배출관(15)의 막힘을 해소할 수 있는 효과를 발휘할 수 있다. 이러한 압축공기 주입관의 위치는 필요에 따라 적절하게 변경될 수 있다.
또한, 도 7 에 도시된 바와 같이, 본 발명의 침전물 제거 장치에서는 전구역에 걸쳐서 침전물 배출관(15)이 형성되어 있고, 각각의 구역에 침전물 흡입관(16)이 개폐장치(17)를 통하여 침전물 배출관(15)에 연결되어 있다. 따라서, 본 발명의 침전물 제거 장치는 취수로 혹은 배수로를 구획하여, 각각의 영역에서의 침전물 흡입 작업을 분리시켜서 실시할 수 있다.
더욱 바람직하게는, 도 8 에 도시된 바와 같이, 전구역에 걸쳐서 압축공기 이송관(18)이 형성되어 있고, 각각의 구역에 압축공기 송출관(13)이 개폐장치(19)를 통하여 압축공기 이송관(18)에 연결되어 있다. 따라서, 본 발명의 침전물 제거 장치는 취수로 혹은 배수로를 구획하여, 각각의 영역에서의 압축공기를 송출하여 침전물 흡입 작업을 분리시켜서 실시할 수 있다.
또한, 본 발명의 바람직한 실시예에서는 상기 플랜트 취수로 혹은 배수로의 침전물 제거 장치를 구획하여 배치하고, 이를 순차적으로 작동시킨다. 이는 도 7 에 도시된 바와 같이, 하나의 침전물 배출관(15)은 취수로 혹은 배수로의 전영역에 걸쳐서 연장되어 있고, 각각의 구획에 분리된 침전물 흡입관(16)이 개폐장치(17)를 통하여 침전물 배출관(15)의 각 지점에 연결됨에 의하여 가능하다. 예를들어, 1구역의 침전물 흡입관(16)의 개폐장치(17)만을 열고, 나머지 구역의 침전물 흡입관(16)의 개폐장치(17)는 닫음으로써, 1구역의 침전물 제거만을 선택적으로 실시할 수 있다.
마찬가지로, 본 발명의 바람직한 실시예에서는 상기 플랜트 취수로 혹은 배수로의 침전물 제거 장치를 구획하여 배치하고, 이를 순차적으로 작동시킴에 있어서, 압축공기의 주입도 구획하여 작동시킬 수 있다. 이는 도 8에 도시된 바와 같이, 하나의 압축공기 이송관(18)은 취수로 혹은 배수로의 전영역에 걸쳐서 연장되어 있고, 각각의 구획에 분리된 압축공기 송출관(13)이 개폐장치(19)를 통하여 압축공기 이송관(18)의 각 지점에 연결됨에 의하여 가능하다. 예를들어, 1구역의 압축공기 송출관(13)의 개폐장치(19)만을 열고, 나머지 구역의 압축공기 송출관(13)의 개폐장치(19)는 닫음으로써, 1구역의 침전물 제거만을 선택적으로 실시할 수 있다.
본 발명의 플랜트 취수로의 침전물 제거 장치의 바람직한 작동 방법은 다음과 같다. 취수로의 입구에서 부유물 제거 장치에 의하여 부유물이 1 차적으로 걸러진 후에, 해수가 플랜트 취수로에 유입된다. 이후, 처음에는 상류측(해수가 들어오는 입구측)의 1 구역에서 본 발명의 플랜트 취수로의 침전물 제거 장치가 작동되어, 압축공기의 송출로 바닥부에 침전된 침전물 혹은 부유물이 위측으로 상승하여 침전물 흡입구를 통해 침전물 배출관으로 유입되어 외부로 방출된다.
이후, 상기 1 구역보다 하류측(해수가 들어가는 플랜트측)에 위치하는 2 구역에서 플랜트 취수로의 침전물 제거 장치가 작동되고, 이러한 순서로 플랜트 측에 위치하는 6 구역의 플랜트 취수로의 침전물 제거 장치가 작동된다.
본 발명의 침전물 제거 장치가 플랜트 배수로에서 사용되는 경우에도 마찬가지로 구역이 구획되어 단계적으로 침전물 제거 장치가 작동된다.
이와 같은 작동 방식에서는 침전물 배출관(15)에서 침전물의 배출을 취수로의 상류측으로부터 외부로 배출할 수 있어, 침전물의 배출에 있어서 유리할 뿐만 아니라, 플랜트의 냉각 시스템에 사용되는 플랜트 측의 해수(6 구역의 해수)의 탁도를 낮게 유지하는 데 이점이 있다.
본 발명의 플랜트 취수로의 침전물 제거 장치를 신설하는 경우에는, 취수로의 하부에 침전물 배출관(15), 침전물 흡입관(16)을 매립하여 설치할 수 있다. 그러나, 기존에 건설된 취수로에 설치하기 위해서는 침전물 배출관(15) 및 침전물 흡입관(16)을 취수로의 하면 위에 배치하여 설치할 수도 있다. 혹은, 필요에 따라 골재를 그 위에 채우는 방식으로 설치할 수도 있다.
이상 본 발명의 일실시예를 설명하였으나 본 발명의 기술적 사상이 상기 실시예에 한정되는 것은 아니며, 본 발명의 기술적 사상을 벗어나지 않는 범주에서 다양한 구성으로 구현할 수 있다.

Claims (11)

  1. 취수로 혹은 배수로에 부유하는 침전물을 포함하는 유체를 흡입하는 침전물 흡입구 및
    상기 침전물 흡입구로부터 흡입된 침전물을 포함하는 유체를 외부로 배출시키는 침전물 배출관을 포함하는 취수로 혹은 배수로의 침전물 제거 장치.
  2. 청구항 1에 있어서,
    상기 침전물 흡입구는 침전물 흡입관에 형성되어 있고,
    상기 침전물 흡입관은 침전물 배출관의 복수의 지점에 연결되어 있는 것을 특징으로 하는 취수로 혹은 배수로의 침전물 제거 장치.
  3. 청구항 2에 있어서,
    상기 침전물 흡입관과 상기 침전물 배출관은 개폐장치를 통하여 연결되는 것을 특징으로 하는 취수로 혹은 배수로의 침전물 제거 장치.
  4. 청구항 1에 있어서,
    압축공기를 방출하는 압축공기 송출구가 상기 취수로 혹은 배수로에 배치되어 있는 것을 특징으로 하는 취수로 혹은 배수로의 침전물 제거 장치.
  5. 청구항 4에 있어서,
    상기 취수로 혹은 배수로의 폭 방향 일측에 배치된 압축공기 송출구는 상부측를 향하고, 상기 취수로 혹은 배수로의 폭 방향 타측에 배치된 압축공기 송출구는 하부측을 향하는 것을 특징으로 하는 취수로 혹은 배수로의 침전물 제거 장치.
  6. 청구항 4에 있어서,
    외부로부터 압축공기를 이송하는 압축공기 이송관 및
    상기 압축공기 이송관의 복수의 지점에 연결되어 있는 압축공기 송출관을 구비하고,
    상기 압축공기 송출구는 상기 압축공기 송출관의 표면에 형성되어 있는 것을 특징으로 하는 취수로 혹은 배수로의 침전물 제거 장치.
  7. 청구항 6에 있어서,
    상기 압축공기 이송관과 상기 압축공기 송출관은 개폐장치를 통하여 연결되는 것을 특징으로 하는 취수로 혹은 배수로의 침전물 제거 장치.
  8. 청구항 1 에 있어서,
    상기 침전물 배출관은 복수로 형성되어 있는 것을 특징으로 하는 취수로 혹은 배수로의 침전물 제거 장치.
  9. 청구항 6 에 있어서,
    상기 압축공기 이송관은 복수로 형성되어 있는 것을 특징으로 하는 취수로 혹은 배수로의 침전물 제거 장치.
  10. 청구항 1 에 있어서,
    상기 침전물 흡입구 위에 위치하는 부유물 제거망을 더 포함하는 것을 특징으로 하는 취수로 혹은 배수로의 침전물 제거 장치.
  11. 청구항 6 에 있어서,
    상기 압축공기 송출관으로부터 상기 침전물 배출관으로 압축공기를 주입할 수 있는 압축공기 주입관을 더 포함하는 것을 특징으로 하는 취수로 혹은 배수로의 침전물 제거 장치.
PCT/KR2012/006139 2011-08-12 2012-08-01 플랜트 취수로 혹은 배수로의 침전물 제거 장치 WO2013024992A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280039505.8A CN103732829A (zh) 2011-08-12 2012-08-01 一种用于从工厂的进水路径或排水路径移除沉积物的装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20110080744 2011-08-12
KR10-2011-0080744 2011-08-12
KR1020110096315A KR101328635B1 (ko) 2011-08-12 2011-09-23 플랜트 취수로 혹은 배수로의 침전물 제거 장치
KR10-2011-0096315 2011-09-23

Publications (2)

Publication Number Publication Date
WO2013024992A2 true WO2013024992A2 (ko) 2013-02-21
WO2013024992A3 WO2013024992A3 (ko) 2013-04-11

Family

ID=47715556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/006139 WO2013024992A2 (ko) 2011-08-12 2012-08-01 플랜트 취수로 혹은 배수로의 침전물 제거 장치

Country Status (1)

Country Link
WO (1) WO2013024992A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016209067A3 (es) * 2015-06-25 2017-05-18 Sifuentes Sánchez Humberto Leónides Metodo para la rehabilitacion de obra de toma para presa de almacenamiento

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4074535A (en) * 1973-12-21 1978-02-21 Schoonmaker Townsend L Self-cleaning fixed dredge
US5143623A (en) * 1991-06-17 1992-09-01 Kroll Brian L Nutrient and particle removal: method and apparatus for treatment of existing lakes, ponds and water bodies
JPH11197647A (ja) * 1998-01-12 1999-07-27 Shoichiro Cho 集水域の浄化方法
WO2002099202A1 (fr) * 2001-06-04 2002-12-12 Nagai Kosho Co., Ltd. Production hydroelectrique
KR200341022Y1 (ko) * 2003-11-13 2004-02-11 (주) 서광건설엔지니어링 하천 범람 방지를 위한 제방의 배수구조
JP2008196263A (ja) * 2007-02-15 2008-08-28 Taiyo Kogyo Corp 汚濁防止装置
US7943039B1 (en) * 2009-11-18 2011-05-17 Lebuffe Calvin N Catch basin for salt water sand

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4074535A (en) * 1973-12-21 1978-02-21 Schoonmaker Townsend L Self-cleaning fixed dredge
US5143623A (en) * 1991-06-17 1992-09-01 Kroll Brian L Nutrient and particle removal: method and apparatus for treatment of existing lakes, ponds and water bodies
JPH11197647A (ja) * 1998-01-12 1999-07-27 Shoichiro Cho 集水域の浄化方法
WO2002099202A1 (fr) * 2001-06-04 2002-12-12 Nagai Kosho Co., Ltd. Production hydroelectrique
KR200341022Y1 (ko) * 2003-11-13 2004-02-11 (주) 서광건설엔지니어링 하천 범람 방지를 위한 제방의 배수구조
JP2008196263A (ja) * 2007-02-15 2008-08-28 Taiyo Kogyo Corp 汚濁防止装置
US7943039B1 (en) * 2009-11-18 2011-05-17 Lebuffe Calvin N Catch basin for salt water sand

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016209067A3 (es) * 2015-06-25 2017-05-18 Sifuentes Sánchez Humberto Leónides Metodo para la rehabilitacion de obra de toma para presa de almacenamiento
US10227745B2 (en) * 2015-06-25 2019-03-12 Humberto Leonides SIFUENTES SANCHEZ Method for repairing an intake for a storage dam

Also Published As

Publication number Publication date
WO2013024992A3 (ko) 2013-04-11

Similar Documents

Publication Publication Date Title
WO2009120012A2 (ko) 자가 응집기능의 장방형 침전시스템
JP3895505B2 (ja) 沈殿物を収集移送する設備
WO2012167486A1 (zh) 装填水平管沉淀分离装置的沉淀池
WO2014058203A1 (ko) 침전지용 유체이송 슬러지 배출장치
KR101328635B1 (ko) 플랜트 취수로 혹은 배수로의 침전물 제거 장치
WO2010137763A1 (ko) 폐수의 열회수장치 및 방법
WO2013024992A2 (ko) 플랜트 취수로 혹은 배수로의 침전물 제거 장치
WO2019190215A1 (ko) 발전소 방류 냉각수에 의해 발생된 거품 제거 시스템
WO2018151506A1 (ko) 열분해기용 정제기
KR101032318B1 (ko) 슬러지 배출이 효율적인 상수 및 하폐수 처리용 경사판 침전지
CN107837605A (zh) 一种新型污水沉淀池
KR101047570B1 (ko) 맨홀
WO2015102268A1 (ko) 침전지용 슬러지 배출장치
KR101273326B1 (ko) 플랜트 취수로 혹은 배수로의 이토 제거 장치
WO2012141450A2 (ko) 여과수 취수시스템
CN101166870A (zh) 草皮运动场表面的通风和排水系统
WO2015060565A1 (ko) 슬러지 수집블록을 구비하는 슬러지 수집기
KR101365028B1 (ko) 필터 암거수로 내의 역세정 중에 이중분리를 이용하여 기체 및 액체를 분배하는 장치 및 방법
WO2015053427A1 (ko) 강의 녹조방지 시스템
KR102128720B1 (ko) 소각로의 부유성 소각재 배출장치
JP2003129559A (ja) 流入渠設備
WO2016108345A1 (ko) 모듈식 슬러지 수집블록을 구비하는 슬러지 수집기
CN108553946B (zh) 一种新型沉砂池
CN213101165U (zh) 一种污水处理固液分离装置
CN219194548U (zh) 一种隧道排水沟诱导结晶装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12824640

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12824640

Country of ref document: EP

Kind code of ref document: A2