WO2013024848A1 - Electric power generation device and electric power generation system using same - Google Patents

Electric power generation device and electric power generation system using same Download PDF

Info

Publication number
WO2013024848A1
WO2013024848A1 PCT/JP2012/070676 JP2012070676W WO2013024848A1 WO 2013024848 A1 WO2013024848 A1 WO 2013024848A1 JP 2012070676 W JP2012070676 W JP 2012070676W WO 2013024848 A1 WO2013024848 A1 WO 2013024848A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
magnet
frame
diaphragm
attached
Prior art date
Application number
PCT/JP2012/070676
Other languages
French (fr)
Japanese (ja)
Inventor
寿一 奥村
Original Assignee
Okumura Hisakazu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okumura Hisakazu filed Critical Okumura Hisakazu
Publication of WO2013024848A1 publication Critical patent/WO2013024848A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K35/00Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
    • H02K35/02Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit with moving magnets and stationary coil systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators

Definitions

  • the present invention relates to a power generation apparatus provided with power generation means for generating power by vibrating a diaphragm, and a power generation system using the power generation apparatus.
  • a piezoelectric element basically has a structure in which a piezoelectric body is sandwiched between two electrodes, and a voltage is generated when pressure is applied to the piezoelectric body.
  • various power generation devices using this piezoelectric element are known.
  • one end of a piezoelectric element is fixed to a fixed portion and the other end is a free end.
  • a power generation device having a weight attached thereto is disclosed. In this power generation device, the piezoelectric element is bent so that the free end moves up and down around one end, and power is generated by this deformation.
  • this invention makes it a subject to provide the electric power generating apparatus which can generate electric power efficiently, and an electric power generation system using the same.
  • the first, second, and third power generation devices include a support body connected to a holding means via an elastic member and held in a hollow state, and one end supported by the support body on the other side.
  • a diaphragm having a free end is provided, and power generation means for generating electricity by vibrating the diaphragm.
  • the power generation means is a piezoelectric element attached to at least one surface of the diaphragm.
  • the vibration when vibration is applied to the support, the vibration is transmitted to the diaphragm, and the diaphragm is elastically vibrated with the other end bent up and down around one end, and pressure is applied to the piezoelectric element. Join and generate electricity. Since the support is held in a hollow state by the holding means via the elastic member, the applied vibration is amplified, the amplitude is increased, and the vibration is continued for a longer time, so that the support is more efficient. Power generation is possible.
  • the holding means is not particularly limited as long as the support can be held in a hollow state via an elastic member, and is a concept including, for example, a frame-shaped member or a building.
  • the support need not be held by the holding means only by the elastic member, and it is sufficient that at least one elastic member is interposed between the support and the holding means.
  • the elastic member may be connected to other members such as a string, and it is sufficient that the elastic member is interposed between at least the support and the holding means.
  • the support body includes a frame body and a column body, and the frame body is connected to the holding means via the elastic member and is held in a hollow state.
  • the body and the diaphragm are disposed inside the frame body, one end of the diaphragm is supported by the column body, a third magnet is attached to the other end of the diaphragm, and the frame A fourth magnet is attached to the body at a position facing the third magnet.
  • the second power generation device further includes a counter plate that is supported at one end by the support and faces the diaphragm, and the power generation means includes one of the diaphragm and the counter plate.
  • the positional relationship between the fifth magnet and the first coil changes due to the fifth magnet passing through the position facing the first coil due to the vibration of the diaphragm.
  • the lines of magnetic force passing through the first coil change, so that power is generated by the first coil.
  • the support includes a frame and a column, and the frame is connected to the holding unit via the elastic member and held in a hollow state, and the column A body, the diaphragm, and the counter plate are disposed inside the frame body, one end of the diaphragm and the counter plate is supported by the column body, and the other end of the diaphragm has a first end 3 magnets are attached, and a fourth magnet is attached to the frame at a position facing the third magnet.
  • the diaphragm is forcibly vibrated by the action of the third and fourth magnets.
  • the diaphragm generates vibration with a larger displacement. For this reason, the lines of magnetic force passing through the first coil change greatly, so that the amount of power generation can be significantly improved.
  • a third power generation device includes: a counter plate that is supported at one end by the support and faces the diaphragm; and an interlocking member disposed between the diaphragm and the counter plate.
  • the power generation means further includes a sixth magnet attached to one of the interlocking member and the counter plate, and a second coil attached to the other, and the interlocking is accompanied by vibration of the diaphragm.
  • the sixth magnet passes through a position facing the second coil.
  • the interlocking member vibrates with the vibration of the diaphragm
  • the sixth magnet passes through the position facing the second coil, and the position of the sixth magnet and the second coil.
  • the relationship changes.
  • the lines of magnetic force passing through the second coil change, so that power is generated by the second coil.
  • the support includes a frame and a column, and the frame is connected to the holding unit via the elastic member and held in a hollow state, and the column A body, the diaphragm, the interlocking member, and the counter plate are disposed inside the frame, and one end of the diaphragm and the counter plate is supported by the column body, and the other end of the diaphragm A third magnet is attached to the frame body, and a fourth magnet is attached to the frame body at a position facing the third magnet.
  • the diaphragm is forcibly vibrated by the action of the third and fourth magnets. For this reason, as compared with the case where the third and fourth magnets are not attached, the vibration plate and the interlocking member generate vibration with a larger displacement. Therefore, it is possible to greatly improve the power generation amount.
  • the support is connected to the holding means via at least two elastic members, and each elastic member is disposed at a position facing each other via the support. It can also be configured as described. According to this configuration, since the elastic members are alternately expanded and contracted, vibrations by the elastic members can be continuously applied to the support for a longer time.
  • the elastic member is preferably a member such as a tension spring or rubber that causes a tensile force to act on the support when the support is stationary.
  • a weight is attached to the other end of the diaphragm in order to vibrate more efficiently.
  • the first power generation device in which the first magnet is attached to the support, and the second magnet is attached to a position facing the first magnet, And a moving body that moves across the power generation device.
  • the second magnet approaches the first magnet, and the support body to which the first magnet is attached can be shaken.
  • a second power generation system includes a plurality of the first power generation devices, a power generation unit in which a first magnet is attached to a support frame of each power generation device, and each of the first magnets. And a moving body that moves so as to cross the power generation unit.
  • each second magnet approaches each corresponding first magnet, and the support body to which each first magnet is attached can be shaken.
  • the piezoelectric element efficiently generates power.
  • each first magnet and each second magnet are arranged so that each second magnet sequentially crosses each corresponding first magnet when the moving body crosses the power generation unit. It is preferable that they are arranged. According to this structure, since each 1st magnet and each 2nd magnet do not exert magnetic force simultaneously, the driving force required to move a moving body can be made small.
  • a third power generation system includes the second and third power generation apparatuses, and a moment applying unit that applies a moment for rotating the frame to the frame.
  • the moment is applied from the moment applying means to the frame so that the frame rotates. Therefore, the diaphragm can be vibrated, and power generation is performed by the power generation means.
  • the frame can be rotated about a first shaft member, and the moment applying means can be rotated about a second shaft member parallel to the first shaft member.
  • the link mechanism transmits the applied moment to the frame body via the third shaft member, thereby giving the frame body a moment around the first shaft member.
  • a moment for rotating the frame body is transmitted from the drive mechanism to the frame body via the link mechanism.
  • the frame can be rotated to vibrate the diaphragm, and power generation is performed by the power generation means.
  • the link mechanism is connected to the frame body at one end via the third shaft member, and a force is applied from the drive mechanism to the other end to rotate around the second shaft member. A moment is applied, and the length from the second shaft member to one end of the link mechanism is shorter than the length from the second shaft member to the other end of the link mechanism. According to this configuration, the driving force required to rotate the support body can be greatly reduced due to the lever principle.
  • a plurality of the power generation devices are arranged side by side in a predetermined direction, and the frame body of each of the power generation devices is rotatable about the first shaft member, and a plurality of the power generation devices
  • the frame body of the power generation device at one end (hereinafter referred to as a frame body at one end) is connected to the link mechanism via the third shaft member, and the two power generation devices adjacent to each other.
  • the frame body is connected via a fourth shaft member parallel to the first, second, and third shaft members, and the link mechanism transmits the applied moment to the one end via the third shaft member.
  • the moving body or the drive mechanism in the first, second, and third power generation systems is a rotation shaft that is rotatably installed.
  • the rotating shaft has a plurality of blades at one end, and the power generation system is connected to the casing that covers one end of the rotating shaft and includes an intake portion and an exhaust portion, and the exhaust portion. And an exhaust tower extending upward.
  • a plurality of power generation units having a power generation device and the rotating shaft, wind pressure detection means for detecting the wind pressure of air sucked into the casing, and operation of each power generation unit by the wind pressure detected by the wind pressure detection means.
  • a control means for controlling.
  • a rotation speed detection means for detecting the rotation speed of the rotating shaft is provided, and the control means operates each power generation unit according to the rotation speed detected by the rotation speed detection means instead of the wind pressure. It can also be configured to control.
  • the number of power generating units that can be sufficiently operated is determined from the wind pressure detected by the wind pressure detecting means (or the rotational speed detected by the rotational speed detecting means), and the control means Only the power generating unit that can be operated rotates the rotating shaft, and the other power generating units stop operating by stopping the rotation of the rotating shaft.
  • the exhaust unit is further provided with a damper, and a rotation number detection unit that detects the rotation number of the rotation shaft, and a control unit that controls the opening degree of the damper based on the rotation number detected by the rotation number detection unit. It can also be configured.
  • a wind pressure detection means for detecting the wind pressure of the air sucked into the casing is provided, and the control means is detected by the wind pressure detection means instead of the rotation speed. It is good also as a structure which controls the opening degree of a damper with the made wind pressure.
  • control means adjusts the amount of intake air from the intake portion by adjusting the opening of the damper based on the rotational speed of the rotating shaft (or the wind pressure of air sucked into the casing).
  • the rotational speed of the rotary shaft can be controlled to an appropriate rotational speed.
  • the temperature in the exhaust part can be increased, and as a result, the air permeability of the air flowing in the order of the intake part, the exhaust part, and the exhaust tower can be increased.
  • the power generator according to the present invention and the power generation system using the power generator can efficiently generate power.
  • FIG. 1 is a perspective view of a power generator according to this embodiment.
  • FIG. 2 is a side sectional view of the power generator according to the present embodiment.
  • FIG. 3 is a perspective view of the power generation system according to the present embodiment.
  • FIG. 4 is a perspective view showing a modification of the power generator according to this embodiment.
  • FIG. 5 is a plan view showing a state in which the diaphragm vibrates.
  • FIG. 6 is a perspective view showing a modification of the power generator according to this embodiment.
  • FIG. 7 is a front view showing a fifth magnet and a coil.
  • FIG. 8 is a plan view showing a state in which the diaphragm vibrates.
  • FIG. 9 is a perspective view showing a state where the diaphragm vibrates with respect to the rigid plate.
  • FIG. 10 is a perspective view showing the configuration of a modification of the power generation device according to this embodiment.
  • FIG. 11 is a perspective view illustrating a configuration of a modification of the power generation device according to the present embodiment.
  • FIG. 12 is a perspective view showing a modification of the power generation system according to the present embodiment.
  • FIG. 13 is a perspective view showing a modification of the power generation system according to the present embodiment.
  • FIG. 14 is a perspective view showing the overall configuration of the power generation system according to the present embodiment.
  • FIG. 15 is a perspective view showing a modification of the power generator according to this embodiment.
  • FIG. 16 is a perspective view showing a modification of the power generation system according to the present embodiment.
  • FIG. 17 is a perspective view showing a modification of the power generation system according to the present embodiment.
  • FIG. 18 is a cross-sectional view showing a modification of the power generation system according to the present embodiment.
  • the power generator 1 includes a holding frame (holding means) 2, a support frame (support) 3 held in a hollow state in the holding frame 2, and two supported by the support frame 3.
  • the main components are a diaphragm 4, a plurality of piezoelectric elements 5 attached on each diaphragm 4, and a tension spring 6 interposed between the holding frame 2 and the support frame 3.
  • the holding frame 2 is a rectangular frame in plan view, and includes a pair of long side walls 21 and a pair of short side walls 22. At both ends of the inner wall surface of each long side wall 21, a fixture 23 for attaching one end of the tension spring 6 is provided.
  • the holding frame 2 can be made of various materials and is not particularly limited.
  • the holding frame 2 can be formed of plastic or light metal.
  • the portable holding frame 2 is illustrated as a holding means for holding the support frame 3, but the holding means is not particularly limited to this, for example, a wall of a building Such a thing that is not portable can be used as the holding means.
  • the support frame 3 held by the holding frame 2 is an annular frame formed slightly smaller than the holding frame 2.
  • the support frame 3 is a rectangular frame in plan view, and includes a pair of long side walls 31 and a pair of short side walls 32. At both end portions of the inner wall surface of each long side wall 31 (positions facing the mounting portion 23 of the holding frame 2), mounting tools 33 for mounting the other end of the tension spring 6 are provided.
  • the tension spring 6 By attaching the tension spring 6 to the fixture 33 of the support frame 3 and the fixture 23 of the holding frame 2, the support frame 3 is held in a hollow state with respect to the holding frame 2 inside the holding frame 2. Yes. That is, as shown in FIG. 2, since the height of the support frame 3 is formed lower than the height of the holding frame 2, when the holding frame 2 is placed on or attached to a horizontal plane, the support frame 3 is It is held in a state of floating from the horizontal plane.
  • the support frame 3 has two diaphragms 4 attached thereto.
  • Each diaphragm 4 is a rectangular plate in plan view, and as shown in detail in FIG. 2, one end is fixed to each short side wall 32 of the support frame 3, and the other end is a free end. It has become.
  • the diaphragm 4 is formed of a material that elastically vibrates, when vibration or the like is applied to the support frame 3, the diaphragm 4 moves so that the free end moves up and down, and the entire diaphragm 4 vibrates elastically. It has become.
  • the weight 7 is attached to the free end of the diaphragm 4, it is easier to elastically vibrate.
  • the material of the diaphragm 4 is not particularly limited as long as it can elastically vibrate, and examples thereof include plastic, FRP (Fiber Reinforced Plastics), carbon fiber, stainless steel, spring steel, and the like. be able to.
  • a plurality of piezoelectric elements 5 are attached to the upper surface of each diaphragm 4.
  • the piezoelectric element 5 a known piezoelectric element can be used, and when the diaphragm 4 is bent by vibration, the piezoelectric element 5 generates pressure by applying pressure.
  • Various methods can be used for attaching the piezoelectric element 5 to the diaphragm 4.
  • the piezoelectric element 5 can be attached by baking, an adhesive, a pressure-sensitive adhesive, a rivet, a screw, or the like.
  • the number and arrangement of the piezoelectric elements 5 are not particularly limited, in this embodiment, a total of eight piezoelectric elements 5 of 2 ⁇ 4 are installed on one diaphragm 4.
  • the power generation apparatus 1 configured as described above is elastic so that the vibration is transmitted to the diaphragm 4 when the support frame 3 is subjected to vibration and the like so that the diaphragm 4 is bent up and down around the fixed end. As a result, a pressure is applied to the piezoelectric element 5 mounted on the diaphragm 4 to generate electricity. Since the support frame 3 is held in the holding frame 2 in a hollow state by the tension spring 6, vibration applied to the support frame 3 is amplified by the tension spring 6 to have a larger amplitude and for a longer time. Since it is possible to vibrate, the piezoelectric element 5 can generate power more efficiently.
  • the power generation apparatus 1 configured as described above can be installed in various places. For example, by installing it under a bridge or on a road, the power generation apparatus 1 generates power using vibration generated when a car or the like passes. can do.
  • the power generation system 10 is configured such that the rotary shaft 8 is rotatably installed, and a plurality of power generation units 20 are arranged radially around the rotary shaft 8.
  • the power generation unit 20 used in the system 10 is composed of a plurality of power generation devices 1 '.
  • This power generation device 1 ′ has the same basic configuration as that of the above-described power generation device 1, but there are portions that are partially different from the power generation device 1.
  • description of the same part as the power generation device 1 is omitted, and only different parts will be described.
  • each power generation device 1 ′ is shared by each power generation unit 20.
  • the holding frame 2 ′ is composed of a main column 22 ′ extending along the rotation axis 8, and a plurality of long side walls 21 extending laterally from the main column 22 ′ toward the rotation axis 8. Between the long side walls 21, the support frame 3 is held in a hollow state.
  • the power generation unit 20 may be configured by simply combining the above-described power generation devices 1 in the vertical direction and removing the short side wall 22 on the rotating shaft 8 side.
  • the first magnet M1 is attached to the short side wall 32 located on the rotating shaft 8 side of each support frame 3.
  • Three diaphragms 4 extend from the inner wall surface of each short side wall 32, and a total of six diaphragms 4 are attached to one support frame 3.
  • a plurality of power generation units 20 configured in this way are arranged radially about the rotation shaft 8. In FIG. 3, only one power generation unit 20 is shown in detail, and the remaining power generation units 20 are omitted or only the holding frame 2 'is shown.
  • the rotary shaft 8 has four second magnets M2 attached to the outer peripheral surface thereof, and is disposed at a position facing the first magnets M1 attached to the support frames 3 arranged in the vertical direction. These are arranged in the axial direction of the rotary shaft 8 at the same intervals as the first magnet M1.
  • the first magnet M1 and the second magnet M2 are attached so that the opposite poles face each other so as to repel each other.
  • each of the four second magnets M2 is arranged so as to be displaced in the circumferential direction of the rotating shaft 8, and only one is arranged on the same straight line extending in the axial direction of the rotating shaft 8. .
  • each of the second magnets M2 sequentially repels the corresponding first magnet M1 and does not repel at the same time.
  • the required driving force can be reduced.
  • the four second magnets M2 vibrate each support frame 3 of the power generation unit 20 that is adjacent to the power generation unit 20 in a clockwise direction after all the support frames 3 of the one power generation unit 20 are vibrated. It is arranged like this.
  • the power generation method by the power generation system 10 configured as described above will be described.
  • the second magnet M2 that is the second from the top approaches the first magnet M1 that is attached to the second support frame 3 from the top, and the second power generation from the top.
  • power generation is performed in the same manner.
  • the rotating shaft 8 further rotates, similarly, the third support frame 3 from the top vibrates, and then the bottom support frame 3 vibrates, so that power generation is performed in order from top to bottom. Is called.
  • power generation is sequentially performed from the top in the same manner also in the power generation unit 20 adjacent to the clockwise side.
  • the rotational speed of the rotary shaft 8 can be about 1 to 500 rpm, and preferably about 30 to 200 rpm.
  • the 1st and 2nd magnets M1 and M2 faced the same poles so that it might mutually repel, you may face different poles so that it may mutually attract.
  • an electromagnet may be used instead of the permanent magnet as described above.
  • the power generation unit 20 used in the power generation system 10 may include a plurality of power generation devices 200 shown in FIG. 4 instead of the power generation device 1 ′ (FIG. 3).
  • the support frame 3 includes an annular frame 3a and a column 3b.
  • the frame 3a is a rectangular frame.
  • the column 3b is arranged at the center inside the frame 3a.
  • the holding frame 2 ' is provided with a first shaft member 45 penetrating the frame body 3a and the column body 3b.
  • the frame 3a is rotatable around the first shaft member 45.
  • the column 3b is joined to the first shaft member 45 and does not rotate.
  • the 1st shaft member 45 and the column 3b may be comprised from the same member instead of a separate member.
  • a cylindrical bearing 60 is attached to the first shaft member 45.
  • the bearing 60 is disposed between the upper end of the frame 3a and the holding frame 2 ', or between the lower end of the frame 3a and the holding frame 2'.
  • the bearing 60 holds the frame 3a in a hollow state.
  • Each corner of the frame 3a is connected to the holding frame 2 'via a tension spring 6.
  • 1st magnet M1 is attached to the short side wall 90 by the side of the rotating shaft 8 in the frame 3a.
  • the first magnet M1 faces the second magnet M2 of the rotating shaft 8.
  • the diaphragm 4 is disposed inside the frame 3a. One end of the diaphragm 4 is supported by the column 3b.
  • a third magnet M3 is attached to the other end of the diaphragm 4.
  • a fourth magnet M4 is attached to the frame 3a at a position facing the third magnet M3.
  • the third magnet M3 and the fourth magnet M4 are attached so that the opposite poles face each other so as to repel each other.
  • each diaphragm 4 is attached to the left and right side surfaces of the column 3b.
  • a total of six piezoelectric elements 5 of 2 ⁇ 3 are installed on the upper surface of each diaphragm 4.
  • the number of diaphragms 4 and piezoelectric elements 5 is not limited to the above and can be arbitrarily set.
  • the diaphragm 4 may be attached only to one side surface of the column 3b.
  • the diaphragm 4 is forcibly vibrated by the action of the third and fourth magnets M3 and M4. For this reason, it is possible to greatly improve the power generation amount.
  • the frame 3a is turned by the action of the first and second magnets M1 and M2, the frame 3a is turned to one side and to the other side by the action of the tension spring 6. The rotation is repeated. For this reason, the 4th magnet M4 and the 3rd magnet M3 approach many times, and power generation continues for a long time.
  • the power generation unit 20 may include a plurality of power generation apparatuses 201 shown in FIG.
  • the power generation apparatus 201 includes a later-described fifth magnet M5 (FIG. 7) and coils 65, 66, and 67 as power generation means.
  • the support frame 3 includes an annular frame 3a and a column 3b, as in the power generation apparatus 200 of FIG.
  • the frame 3 a is held in a hollow state by the bearing 60.
  • Each corner of the frame 3a is connected to the holding frame 2 'via a tension spring 6.
  • the frame body 3 a is rotatable about the first shaft member 45, and the column body 3 b is joined to the first shaft member 45.
  • the 1st shaft member 45 and the column 3b may be comprised from the same member instead of a separate member.
  • a second magnet M2 is attached to the frame 3a.
  • a diaphragm 46 and a counter plate 50 are arranged to face each other in the vertical direction.
  • the diaphragms 46 and the counter plates 50 are alternately attached to the side surfaces on both the left and right sides of the column 3b.
  • the number of diaphragms 46 and counter plates 50 is not limited to the above and can be arbitrarily set. Further, the diaphragm 46 and the counter plate 50 may be attached only to one side surface of the column body 3b.
  • Each diaphragm 46 includes a magnet case 47, a case support 48, and a leaf spring 49.
  • One end of the plate spring 49 is supported by the column 3b.
  • the case support 48 is attached to the other end of the leaf spring 49.
  • the magnet case 47 is attached to the lower surface of the case support 48.
  • a third magnet M3 is attached to the other end of the diaphragm 46 (case support 48).
  • a fourth magnet M4 is attached to the frame 3a at a position facing the third magnet M3.
  • the counter plate 50 is a plate material having higher rigidity than the plate spring 49, for example. One end of each counter plate 50 is supported by the column 3b.
  • a fifth magnet M ⁇ b> 5 is attached to the lower surface of the magnet case 47 via a back yoke 51.
  • the fifth magnet M ⁇ b> 5 includes an S pole 52, an N pole 53, and an S pole 54 arranged in the vibration direction of the diaphragm 46.
  • the coils 65, 66, and 67 (first coils) including the cores 57, 58, and 59 are attached to the upper surface of each counter plate 50 via the back yoke 56.
  • the coils 65, 66, and 67 are arranged in the vibration direction of the diaphragm 46 below the fifth magnet M5.
  • FIG. 7A shows the initial position before vibration. In this initial position, the central coil 66 faces the N pole 53, and the outer coils 65 and 67 face the S poles 52 and 54.
  • the frame body 3a of the support frame 3 causes the first shaft member 45 to move by the repulsive force of the first and second magnets M1 and M2. Rotate to the center.
  • the fourth magnet M4 approaches the third magnet M3, and the repulsive forces of the third and fourth magnets M3 and M4 act on the diaphragm 46.
  • the diaphragm 46 vibrates with respect to the counter plate 50.
  • the fifth magnet M5 attached to the magnet case 47 reciprocates above the coils 65, 66, and 67 and passes through a position facing the coils 65, 66, and 67.
  • the lines of magnetic force passing through the coils 65, 66, and 67 change according to the positional relationship between the fifth magnet M5 and the coils 65, 66, and 67.
  • Power generation is performed at 65, 66 and 67.
  • the diaphragm 46 is forcibly vibrated by the action of the third and fourth magnets M3 and M4. For this reason, as compared with the case where the third and fourth magnets M3 and M4 are not attached, the diaphragm 46 generates a vibration with a larger displacement. For this reason, it is possible to greatly improve the power generation amount.
  • the fifth magnet M5 is attached to the diaphragm 46, and the coils 65, 66, and 67 are attached to the opposing plate 50.
  • the coils 65, 66, and 67 are attached to the diaphragm 46.
  • 66 and 67 may be attached, and the fifth magnet M5 may be attached to the opposing plate 50.
  • the vibration plate 46 vibrates with respect to the counter plate 50, whereby the positional relationship between the fifth magnet M5 (the S pole 52, the N pole 53, and the S pole 54) and the coils 65, 66, and 67 is obtained. Therefore, power is generated by the coils 65, 66, and 67.
  • the power generation device of the above modification is an axial type in which the magnetic lines of force are parallel to the axial direction of the support body (column body 3b) of the diaphragm 46.
  • a radial type power generator that is perpendicular to the axial direction of the support (column 3b) may be used.
  • a diaphragm 500 and a counter plate 600 shown in FIG. 10 are provided instead of the diaphragm 46 and the counter plate 50 shown in FIG.
  • the diaphragm 500 and the counter plate 600 are disposed inside the frame 3a (FIG. 6) and face each other in the vertical direction.
  • the diaphragm 500 includes a leaf spring 510, a case support 520, and a magnet case 530.
  • One end of the leaf spring 510 is supported by the column 3b.
  • the case support portion 520 includes a base portion 521 and an arm portion 522.
  • the other end of the leaf spring 510 is connected to one side surface of the base 521.
  • a magnet case 530 is attached to the other side surface of the base 521.
  • the arm portion 522 extends from the upper end of the base portion 521 to the other side.
  • a third magnet M3 is attached to the other end of the arm portion 522.
  • the third magnet M3 faces the fourth magnet M4 attached to the frame 3a (FIG. 6).
  • the magnet case 530 extends vertically between the arm portion 522 and the counter plate 600.
  • a fifth magnet M5 is attached to the other side surface of the magnet case 530.
  • the fifth magnet M5 includes an S pole 52, an N pole 53, and an S pole 54.
  • the S pole 52, the N pole 53, and the S pole 54 are arranged in the vibration direction (arrow A) of the diaphragm 500.
  • the opposite plate 600 is supported at one end by the column 3b.
  • a coil support member 610 is attached to the upper surface of the other end of the counter plate 600.
  • the coil support member 610 is positioned on the other side of the magnet case 530 and extends vertically.
  • Coils 65, 66, and 67 (first coil) are attached to one side surface of the coil support member 610.
  • the coils 65, 66, and 67 those having a core can be used.
  • the coils 65, 66, and 67 are arranged in the vibration direction (arrow A) of the diaphragm 500.
  • the coils 65, 66, 67 and the fifth magnet M5 face each other in a direction perpendicular to the axial direction (vertical direction) of the column 3b.
  • the magnetic lines of force generated by the fifth magnet M5 in the coils 65, 66, and 67 are directed in a direction perpendicular to the axial direction (vertical direction) of the column 3b.
  • the diaphragm 500 will vibrate with respect to the opposing board 600.
  • FIG. 6 the fifth magnet M5 reciprocates in front of the coils 65, 66, and 67 and passes through a position facing the coils 65, 66, and 67.
  • the positional relationship between the fifth magnet M5 (the S pole 52, the N pole 53, and the S pole 54) and the coils 65, 66, and 67 changes, and the magnetic lines of force that pass through the coils 65, 66, and 67 change. Change. Therefore, power generation is performed.
  • the diaphragm 700, the interlocking member 800, or the counter plate 900 shown in FIG. 11 may be provided instead of the diaphragm 46 and the counter plate 50 shown in FIG.
  • the diaphragm 700, the interlocking member 800, and the counter plate 900 are disposed inside the frame 3a (FIG. 6).
  • the diaphragm 700 and the counter plate 900 face each other in the vertical direction.
  • the interlocking member 800 is disposed between the diaphragm 700 and the counter plate 900.
  • the diaphragm 700 includes a leaf spring 710, a shaft support portion 720, and a drive shaft 730.
  • One end of the plate spring 710 is supported by the column 3b.
  • the shaft support portion 720 includes a base portion 721 and an arm portion 722.
  • the other end of the leaf spring 710 is connected to one side surface of the base 721.
  • the arm portion 722 extends from the upper end of the base portion 721 to the other side.
  • a third magnet M3 is attached to the other end of the arm portion 722.
  • the third magnet M3 faces the fourth magnet M4 attached to the frame 3a (FIG. 6).
  • the drive shaft 730 is supported by the arm portion 722 and extends downward from the lower surface of the arm portion 722.
  • the interlocking member 800 includes a stay 810, a magnet case 820, and a protrusion 830.
  • the stay 810 extends from one side to the other side along the upper surface of the counter plate 900.
  • a connecting portion 811 that is rotatably connected to the counter plate 900 is provided.
  • the magnet case 820 is attached to the other end of the stay 810.
  • the magnet case 820 extends vertically between the arm portion 722 and the counter plate 900.
  • the lower end of the magnet case 820 is slidably supported by the counter plate 900.
  • the protrusion 830 extends from the upper end of the magnet case 820 to one side.
  • a through hole 831 is formed in the protrusion 830.
  • the sixth magnet M6 is attached to the other side surface of the magnet case 820.
  • the sixth magnet M6 includes an S pole 74, an N pole 75, and an S pole 76.
  • the S pole 74, the N pole 75, and the S pole 76 are arranged in the vibration direction (arrow A) of the interlocking member 800.
  • a coil support member 910 is attached to the other end of the counter plate 900.
  • the coil support member 910 is located on the other side of the magnet case 820 and extends vertically. Coils 93, 94, and 95 (second coil) are attached to one side surface of the coil support member 910. As the coils 93, 94, and 95, those having a core can be used.
  • the coils 93, 94, 95 are arranged in the vibration direction (arrow A) of the interlocking member 800.
  • the coils 93, 94, 95 and the sixth magnet M6 face each other in a direction perpendicular to the axial direction (vertical direction) of the column 3b.
  • the magnetic lines of force generated by the sixth magnet M6 in the coils 93, 94, 95 are directed in a direction perpendicular to the axial direction (vertical direction) of the column.
  • the drive shaft 730 presses the inner surface of the through hole 831 in the vibration direction (arrow B) of the diaphragm 700.
  • the interlocking member 800 vibrates with respect to the opposing plate 50 with the connecting portion 811 as a fulcrum (arrow A).
  • the sixth magnet M6 (S pole 74, N pole 75, and S pole 76) reciprocates in front of the coils 93, 94, 95, and passes through the position facing the coils 93, 94, 95. To do.
  • the positional relationship between the sixth magnet M6 and the coils 93, 94, 95 changes, and the lines of magnetic force passing through the coils 93, 94, 95 change. Therefore, power generation is performed.
  • the diaphragm 700 is forcibly vibrated by the action of the third and fourth magnets M3 and M4. For this reason, as compared with the case where the third and fourth magnets M3 and M4 are not attached, the vibration plate 700 and the interlocking member 800 generate vibration with a larger displacement. Therefore, it is possible to greatly improve the power generation amount.
  • the sixth magnet M6 is attached to the interlocking member 800, and the coils 93, 94, 95 are attached to the counter plate 900. Conversely, the coils 93, 94, 95 are attached to the interlocking member 800. And the sixth magnet M6 may be attached to the counter plate 900.
  • a power generation system 300 illustrated in FIG. 12 includes a power generation device 202 and a moment application unit 400.
  • a plurality of power generation devices 202 are arranged in the vertical direction.
  • Each power generation device 202 has the same basic configuration as the power generation device 200 shown in FIG. 4, but is partly different from the power generation device 200. That is, in the power generation device 202, the projection 71 is provided on the frame 3a instead of the first magnet M1 (FIG. 4). A through hole 72 is formed in the protrusion 71.
  • the moment applying means 400 includes a link mechanism 81 and a rotating shaft 8 (drive mechanism).
  • the link mechanism 81 is provided for each power generator 202.
  • the link mechanism 81 is connected to the frame body 3a of the power generator 202, and applies a moment around the first shaft member 45 to the frame body 3a.
  • the link mechanism 81 includes a pair of upper and lower plate members 82, 82.
  • the plate members 82 and 82 are supported by the second shaft member 83.
  • the link mechanism 81 (plate members 82, 82) can rotate around the second shaft member 83.
  • the second shaft member 83 is a member integrated with the holding frame 2 ′ and is parallel to the first shaft member 45.
  • a length L1 from the second shaft member 83 to one end of the link mechanism 81 is shorter than a length L2 from the second shaft member 83 to the other end of the link mechanism 81.
  • each of the plate members 82 and 82 is connected by a connecting member 84.
  • a cylindrical roller 85 is attached to the connection member 84.
  • the other ends of the plate members 82 and 82 are connected by the third shaft member 86.
  • the third shaft member 86 is parallel to the first and second shaft members 45 and 83. Since the third shaft member 86 is passed through the through hole 72 of the protrusion 71, the link mechanism 81 is connected to the frame body 3 a via the third shaft member 86.
  • Rotating shaft 8 applies a moment to second link member 83 to link mechanism 81 by applying a force to roller 85.
  • the rotating shaft 8 has a plurality of protrusions 87 attached to the outer peripheral surface.
  • the protrusion 87 is disposed at a position facing the roller 85 of each link mechanism 81. That is, the protrusions 87 are arranged in the axial direction of the rotary shaft 8 at the same interval as the rollers 85. Further, each of the protrusions 87 is arranged so as to be displaced in the circumferential direction of the rotating shaft 8, and only one protrusion 87 is arranged on the same straight line extending in the axial direction of the rotating shaft 8. Thus, when the rotary shaft 8 rotates, the protrusions 87 sequentially contact the corresponding rollers 85 and do not contact at the same time.
  • the power generation system 300 is a unit in which a pair of a power generation device 202 and a link mechanism 81 is vertically arranged as one power generation unit. Although not shown, the power generation units described above are installed radially around the rotating shaft 8. Each protrusion 87 of the rotating shaft 8 contacts each roller 85 of one power generation unit, and then contacts each roller 85 of the second power generation unit adjacent to the one power generation unit in the clockwise direction.
  • the frame 3a rotates around the first shaft member 45, whereby the fourth magnet M4 approaches the third magnet M3, and the repulsive force of the third and fourth magnets M3 and M4 is generated. . Therefore, the vibration plate 4 vibrates and bends, and pressure is applied to the piezoelectric element 5 on the vibration plate 4 to generate power.
  • the moment applying means 400 applies a moment for rotating the frame 3a to the frame 3a. Specifically, a moment for rotating the frame 3 a is transmitted from the rotating shaft 8 to the frame 3 a via the link mechanism 81. Thereby, since the frame 3a rotates, the diaphragm 4 can be vibrated and bent, and power generation is performed.
  • the length L1 of the link mechanism 81 is shorter than the length L2, the driving force required for the rotation of the frame 3a can be greatly reduced by the lever principle.
  • the link mechanism 81 may be omitted, and the frame body 3a may be rotated by bringing the protrusion 87 of the rotating shaft 8 into direct contact with the frame body 3a.
  • the power generation device 22 ′ shown in FIG. 3 the power generation device 201 shown in FIG. 6, and the power generation device having the same basic configuration as the modification of the power generation device 201 shown in FIGS. May be provided.
  • the power generation system 300 can be changed as shown in FIG. In the modification of FIG. 13, a plurality of power generation devices 202 are arranged in the horizontal direction.
  • the frame body 3a of each power generation device 202 is rotatable about the first shaft member 45.
  • a projection 71 is provided on the short side wall 90 on one side (link mechanism 81 side).
  • a through hole 72 is formed in the protrusion 71.
  • the third shaft member 86 of the link mechanism 81 is passed through the through hole 72. Thereby, the frame body 3 a at one end and the link mechanism 81 are connected via the third shaft member 86.
  • each power generator 202 a pair of upper and lower plate members 89, 89 are provided on the short side wall 91 on the other side (the side opposite to the link mechanism 81).
  • the other ends of the plate members 89 and 89 are connected by the fourth shaft member 88.
  • the fourth shaft member 88 is parallel to the first, second, and third shaft members 45, 83, 86.
  • the fourth shaft member 88 of the power generation device 202 on one side is passed through the through hole 72 of the power generation device 202 on the other side. Thereby, two adjacent power generators 202 are connected via the fourth shaft member 88.
  • the link mechanism 81 transmits the applied moment to the one end frame via the third shaft member 86. Transmitted to the body 3a.
  • a moment around the first shaft member 45 is applied to the frame 3a at one end.
  • the frame 3a rotates about the first shaft member 45, and the repulsive force of the third and fourth magnets M3 and M4 is generated. Therefore, the diaphragm 4 vibrates and bends, and pressure is applied to the piezoelectric element 5 to generate power.
  • the power generation device 202 at one end transmits the moment applied from the rotary shaft 8 to the frame 3 a of the power generation device 202 on the other side via the fourth shaft member 88. Accordingly, in the power generator 202 on the other side, a moment around the first shaft member 45 is applied to the frame body 3a, and the frame body 3a rotates. As a result, also in the power generator 202 on the other side, the diaphragm 4 vibrates by the repulsive force of the third and fourth magnets M3 and M4, and power generation is performed.
  • the frame 3a of the power generation device 202 on one side applies the applied moment to the frame 3a of the power generation device 202 on the other side via the fourth shaft member 88. introduce. Accordingly, in the power generator 202 on the other side, a moment around the first shaft member 45 is applied to the frame body 3a, and the frame body 3a rotates. Thereby, the diaphragm 4 vibrates and power generation is performed.
  • the frame 3a is moved from the power generation device 202 on one side to the power generation device 202 on the other side via the fourth shaft member 88 according to the rotation of the rotary shaft 8.
  • the rotating moment is transmitted sequentially.
  • the diaphragm 4 can be vibrated and bent by the respective power generation devices 202 arranged in the horizontal direction, and power generation is performed. Therefore, one rotation of the rotating shaft 8 can cause many power generators to generate power, and the power generation amount can be greatly improved.
  • the number of power generation devices 202 arranged in the horizontal direction can be arbitrarily set.
  • a plurality of power generators 202 may be arranged in a direction inclined with respect to the horizontal direction.
  • the rotational drive source of the rotary shaft 8 can be various.
  • the rotary shaft 8 is rotated using wind power as the drive source. can do.
  • Reference numeral 100 denotes a power generation unit, which schematically illustrates the above-described rotary shaft 8 and a plurality of power generation units 20 arranged radially around the rotary shaft 8.
  • the lower end portion of the rotating shaft 8 has a plurality of blades (not shown) attached directly or indirectly to constitute a turbine, and the lower end portion of the rotating shaft 8 provided with the blades is the casing 11. Covered by.
  • the casing 11 is connected to an intake duct (intake section) 12 having an intake port 121 and an exhaust duct (exhaust section) 13 that discharges air flowing into the casing 11 from the casing 11.
  • An exhaust tower 14 extending upward is connected to the tip of the exhaust duct 13. According to the power generation systems 10 and 300, the exhaust tower 14 extending upward is provided, so that air flows in from the intake duct 12 and passes through the casing 11 and the exhaust duct 13, and the upper end of the exhaust tower 14. Discharged from.
  • an air flow is generated in the casing 11, air collides with a plurality of blades attached to the lower end portion of the rotating shaft 8, and as a result, the rotating shaft 8 rotates to generate power as described above. Done.
  • the support frame 3 is held on the holding frame 2 by the tension spring 6.
  • the present invention is not limited to this, and a stretchable member such as rubber is used instead of the tension spring 6. You can also.
  • the support frame 3 is held by the holding frame 2 by the four tension springs 6, but the number of the tension springs 6 is not particularly limited. Moreover, in the said embodiment, although the support frame 3 was hold
  • a pair of tension springs 6 are arranged to face each other via the support frame 3, and an O-shaped anchor 61 is attached to the short side wall 32 of the support frame 3, and the ring portion 611 is attached.
  • a configuration in which the U-shaped anchor 62 penetrating through is attached to the short side wall 22 of the holding frame 2 can be employed.
  • the tension spring 6 is connected to the holding frame 2 and the support frame 3 via the fixtures 23 and 33, and the tension spring 6 is omitted from the holding frame 2 and the support frame by omitting the fixtures 23 and 33. 3 can also be connected directly.
  • the tension spring 6 is attached to the long side walls 21 and 31 of the holding frame 2 and the support frame 3, but can also be attached to the short side walls 22 and 32.
  • the piezoelectric element 5 is attached only to the upper surface of the diaphragm 4, but can also be attached to the lower surface.
  • the plurality of piezoelectric elements 5 are attached to the upper surface of the diaphragm 4, but the number of piezoelectric elements 5 may be only one.
  • one diaphragm 4 is attached to each short side wall 32 of the support frame 3, but a plurality of diaphragms 4 can be attached, It can also be mounted side by side in the horizontal or vertical direction.
  • each support frame 3 is vibrated by a repulsive force by bringing the second magnet M2 closer to the first magnet M1 as the rotating shaft 8 rotates.
  • the second magnet M2 may be attached to a moving body that moves in a horizontal direction or a vertical direction so as to cross each power generation device 1 ′ instead of the rotating shaft 8 as a member for attaching the second magnet M2.
  • each power generation unit 20 is preferably arranged along the moving direction of the moving body.
  • the second magnet M2 is shifted in the circumferential direction of the rotating shaft 8 in order from the top, but the second magnet M2 is shifted in the circumferential direction of the rotating shaft 8. As long as it is present, the support frames 3 are not vibrated at the same time. Therefore, the second magnet M2 does not have to be displaced as in the arrangement of the above embodiment. If there is no problem with the driving force for rotationally driving the rotary shaft 8, the second magnet M2 may be arranged in a straight line in the axial direction of the rotary shaft 8 and the four support frames 3 may be vibrated at a time.
  • the protrusions 87 are sequentially shifted from the top in the circumferential direction of the rotating shaft 8. Since the support frames 3 do not vibrate at the same time as long as they are present, the projections 87 do not have to be displaced as in the arrangement of the above embodiment. If there is no problem with the driving force for rotationally driving the rotary shaft 8, the protrusions 87 may be arranged in a straight line in the axial direction of the rotary shaft 8 and the plurality of support frames 3 may be vibrated at a time.
  • the power generation systems 10 and 300 are arranged with a plurality of power generation units (power generation units 20 in the power generation system 10) in a radial manner, but there may be only one power generation unit.
  • the power generation systems 10 and 300 can also have two power generation units 100 as shown in FIG.
  • the wind pressure is detected by a sensor (pressure sensor) (not shown) that detects the wind pressure flowing in the casing 11, and if it is equal to or higher than a predetermined wind pressure, both are operated, and if less than the predetermined wind pressure,
  • a sensor pressure sensor
  • One of the electromagnetic clutches 15 can be disconnected by a control means (not shown), and only one power generation unit 100 can be operated.
  • a sensor for detecting the wind pressure a sensor for detecting the rotational speed of each rotating shaft 8 may be provided, and the operating number of the power generation unit 100 that operates can be controlled by this rotational speed.
  • a damper 16 when a damper 16 is installed in the exhaust duct 13 of the power generation systems 10 and 300 and the rotational speed of the rotary shaft 8 becomes too high, the damper 16 is opened and air from the intake port 121 is opened. It can also be set as the structure which reduces the inflow amount.
  • a rotation speed detection means (not shown) for detecting the rotation speed of the rotary shaft 8 and a control means (not shown) for controlling the opening / closing of the damper 16 by the rotation speed detected by the rotation speed detection means are provided. It is preferable that the damper 16 be opened and closed automatically.
  • the damper 16 can also be installed at the lower part of the exhaust tower 14. Further, an automatic transmission can be provided on the rotating shaft 8 in order to control the rotational speed of the rotating shaft 8 more precisely.
  • a heat receiving plate 17 having an arc-shaped cross section that is curved inside the exhaust duct 13 is provided in a part of the exhaust duct 13, and sunlight is collected by the condenser lens 18 toward the heat receiving plate 17.
  • a plurality of heat radiating plates 19 are attached to the inner wall surface of the heat receiving plate 17.
  • a position detection sensor (not shown) for detecting the position of the sun is provided, and the condensing lens is determined by the position of the sun detected by the position detection sensor.
  • Control means for controlling the 18 angles can also be provided.
  • a material of the heat receiving plate 17 copper, aluminum, etc. can be mentioned, for example.

Abstract

The purpose of the present invention is to provide an electric power generation device capable of generating electric power efficiently, and to provide an electric power generation system that uses the electric power generation device. The present invention comprises: a support body (3) held in midair and connected to a retaining frame (2) via tension springs (6); a vibration plate (4), one end of which is supported by the support body (3), and the other end of which is a free end; and an electric power generation means for generating electric power by the vibration of the vibration plate (4). The electric power generation means is, e.g., a piezoelectric element (5) that is attached to one side of the vibration plate (4).

Description

発電装置、及びこれを用いた発電システムPower generation device and power generation system using the same
 本発明は、振動板が振動することで発電する発電手段を備えた発電装置、及びこれを用いた発電システムに関するものである。 The present invention relates to a power generation apparatus provided with power generation means for generating power by vibrating a diaphragm, and a power generation system using the power generation apparatus.
 圧電素子は、基本的に圧電体を2枚の電極で挟んだ構造となっており、圧電体に圧力が加わると電圧が発生する。従来、この圧電素子を用いた種々の発電装置が知られており、例えば、特許文献1には、圧電素子の一端部を固定部に固定するとともに他端部を自由端とし、この他端部に錘を取付けた発電装置が開示されている。この発電装置では、圧電素子が一端部を中心に自由端が上下するように撓み、この変形により発電が行われる。 A piezoelectric element basically has a structure in which a piezoelectric body is sandwiched between two electrodes, and a voltage is generated when pressure is applied to the piezoelectric body. Conventionally, various power generation devices using this piezoelectric element are known. For example, in Patent Document 1, one end of a piezoelectric element is fixed to a fixed portion and the other end is a free end. A power generation device having a weight attached thereto is disclosed. In this power generation device, the piezoelectric element is bent so that the free end moves up and down around one end, and power is generated by this deformation.
特開平7-49388号公報JP 7-49388 A
 しかしながら、上述したような発電装置では、圧電素子から得られる電圧は十分であるが電流が十分に得られないために取り出せる電力が小さく、より効率よく発電することのできる発電装置が要望されている。そこで、本発明は、効率よく発電可能な発電装置及びこれを用いた発電システムを提供することを課題とする。 However, in the power generation apparatus as described above, there is a demand for a power generation apparatus that can generate power more efficiently because the voltage obtained from the piezoelectric element is sufficient, but sufficient current cannot be obtained, so that the power that can be extracted is small. . Then, this invention makes it a subject to provide the electric power generating apparatus which can generate electric power efficiently, and an electric power generation system using the same.
 本発明に係る第1、第2、及び第3の発電装置は、保持手段に対して弾性部材を介して接続され中空状態に保持された支持体と、前記支持体に一方端が支持され他方端が自由端である振動板と、前記振動板が振動することで発電する発電手段と、を備えている。第1の発電装置では、前記発電手段が、前記振動板の少なくとも一方面に取り付けられた圧電素子である。 The first, second, and third power generation devices according to the present invention include a support body connected to a holding means via an elastic member and held in a hollow state, and one end supported by the support body on the other side. A diaphragm having a free end is provided, and power generation means for generating electricity by vibrating the diaphragm. In the first power generation device, the power generation means is a piezoelectric element attached to at least one surface of the diaphragm.
 上記第1の発電装置によれば、支持体に振動が加わると、その振動が振動板に伝わり振動板が一方端を中心に他方端が上下に撓んで弾性振動するため、圧電素子に圧力が加わり発電する。そして、支持体は、弾性部材を介して保持手段に中空状態で保持されているため、加えられた振動が増幅し、より振幅が大きくなるとともに、より長時間振動が持続するため、より効率的な発電が可能となる。なお、保持手段は、弾性部材を介して支持体を中空状態に保持できるものであれば特に限定されるものではなく、例えば枠状の部材や、建造物なども含む概念である。また、弾性部材のみで支持体を保持手段に保持されている必要はなく、支持体と保持手段との間に少なくとも1つの弾性部材が介在していればよい。またさらには、弾性部材は、紐などの他の部材と連結されていてもよく、少なくとも支持体と保持手段との間に弾性部材が介在していればよい。 According to the first power generation device, when vibration is applied to the support, the vibration is transmitted to the diaphragm, and the diaphragm is elastically vibrated with the other end bent up and down around one end, and pressure is applied to the piezoelectric element. Join and generate electricity. Since the support is held in a hollow state by the holding means via the elastic member, the applied vibration is amplified, the amplitude is increased, and the vibration is continued for a longer time, so that the support is more efficient. Power generation is possible. The holding means is not particularly limited as long as the support can be held in a hollow state via an elastic member, and is a concept including, for example, a frame-shaped member or a building. Further, the support need not be held by the holding means only by the elastic member, and it is sufficient that at least one elastic member is interposed between the support and the holding means. Furthermore, the elastic member may be connected to other members such as a string, and it is sufficient that the elastic member is interposed between at least the support and the holding means.
 上記第1の発電装置において、前記支持体は、枠体と、柱体とを備え、前記枠体は、前記保持手段に対して前記弾性部材を介して接続され中空状態に保持され、前記柱体及び前記振動板は、前記枠体の内側に配置され、前記振動板の一方端は、前記柱体に支持され、前記振動板の他方端には、第3の磁石が取り付けられ、前記枠体には、前記第3の磁石と対向する位置に、第4の磁石が取り付けられる。この構成によれば、枠体に振動が加わると、第3及び第4磁石の作用により、振動板が強制的に振動される。このため、発電量を大幅に向上させることが可能である。 In the first power generation device, the support body includes a frame body and a column body, and the frame body is connected to the holding means via the elastic member and is held in a hollow state. The body and the diaphragm are disposed inside the frame body, one end of the diaphragm is supported by the column body, a third magnet is attached to the other end of the diaphragm, and the frame A fourth magnet is attached to the body at a position facing the third magnet. According to this configuration, when vibration is applied to the frame, the diaphragm is forcibly vibrated by the action of the third and fourth magnets. For this reason, it is possible to greatly improve the power generation amount.
 本発明に係る第2の発電装置は、前記支持体に一方端が支持されて、前記振動板に対向する対向板をさらに備え、前記発電手段は、前記振動板及び前記対向板のうち、一方に取り付けられる第5の磁石と、他方に取り付けられる第1のコイルとを備え、前記振動板が前記対向板に対して振動することで、前記第5の磁石は、前記第1のコイルと対向する位置を通過する。この構成によれば、振動板の振動により、第5の磁石が第1のコイルと対向する位置を通過することで、第5の磁石と第1のコイルとの位置関係が変わる。その結果、第1のコイルを通過する磁力線が変化するため、第1のコイルで発電が行われる。 The second power generation device according to the present invention further includes a counter plate that is supported at one end by the support and faces the diaphragm, and the power generation means includes one of the diaphragm and the counter plate. A fifth coil attached to the other and a first coil attached to the other, and the diaphragm vibrates with respect to the opposing plate, whereby the fifth magnet faces the first coil. Pass through the position to be. According to this configuration, the positional relationship between the fifth magnet and the first coil changes due to the fifth magnet passing through the position facing the first coil due to the vibration of the diaphragm. As a result, the lines of magnetic force passing through the first coil change, so that power is generated by the first coil.
 上記第2の発電装置において、前記支持体は、枠体と、柱体とを備え、前記枠体は、前記保持手段に対して前記弾性部材を介して接続され中空状態に保持され、前記柱体、前記振動板、及び前記対向板は、前記枠体の内側に配置され、前記振動板および前記対向板の一方端は、前記柱体に支持され、前記振動板の他方端には、第3の磁石が取り付けられ、前記枠体には、前記第3の磁石と対向する位置に、第4の磁石が取り付けられる。この構成によれば、枠体に振動が加わると、第3及び第4磁石の作用により、振動板が強制的に振動される。このため、第3及び第4磁石が設けられない場合に比して、振動板はより大きな変位の振動を生じる。このため、第1のコイルを通過する磁力線が大きく変化するため、発電量を大幅に向上させることが可能である。 In the second power generation device, the support includes a frame and a column, and the frame is connected to the holding unit via the elastic member and held in a hollow state, and the column A body, the diaphragm, and the counter plate are disposed inside the frame body, one end of the diaphragm and the counter plate is supported by the column body, and the other end of the diaphragm has a first end 3 magnets are attached, and a fourth magnet is attached to the frame at a position facing the third magnet. According to this configuration, when vibration is applied to the frame, the diaphragm is forcibly vibrated by the action of the third and fourth magnets. For this reason, as compared with the case where the third and fourth magnets are not provided, the diaphragm generates vibration with a larger displacement. For this reason, the lines of magnetic force passing through the first coil change greatly, so that the amount of power generation can be significantly improved.
 本発明に係る第3の発電装置は、前記支持体に一方端が支持されて、前記振動板に対向する対向板と、前記振動板と前記対向板との間に配置される連動部材とをさらに備え、前記発電手段は、前記連動部材及び前記対向板のうち、一方に取り付けられる第6の磁石と、他方に取り付けられる第2のコイルとを備え、前記振動板の振動に伴い、前記連動部材が前記対向板に対して振動することで、前記第6の磁石は、前記第2のコイルと対向する位置を通過する。この構成によれば、振動板の振動に伴い、連動部材が振動することで、第6の磁石が第2のコイルと対向する位置を通過し、第6の磁石と第2のコイルとの位置関係が変わる。その結果、第2のコイルを通過する磁力線が変化するため、第2のコイルで発電が行われる。 A third power generation device according to the present invention includes: a counter plate that is supported at one end by the support and faces the diaphragm; and an interlocking member disposed between the diaphragm and the counter plate. The power generation means further includes a sixth magnet attached to one of the interlocking member and the counter plate, and a second coil attached to the other, and the interlocking is accompanied by vibration of the diaphragm. As the member vibrates with respect to the counter plate, the sixth magnet passes through a position facing the second coil. According to this configuration, as the interlocking member vibrates with the vibration of the diaphragm, the sixth magnet passes through the position facing the second coil, and the position of the sixth magnet and the second coil. The relationship changes. As a result, the lines of magnetic force passing through the second coil change, so that power is generated by the second coil.
 上記第3の発電装置において、前記支持体は、枠体と、柱体とを備え、前記枠体は、前記保持手段に対して前記弾性部材を介して接続され中空状態に保持され、前記柱体、前記振動板、前記連動部材、及び前記対向板は、前記枠体の内側に配置され、前記振動板および前記対向板の一方端は、前記柱体に支持され、前記振動板の他方端には、第3の磁石が取り付けられ、前記枠体には、前記第3の磁石と対向する位置に、第4の磁石が取り付けられる。この構成によれば、枠体に振動が加わると、第3及び第4磁石の作用により、振動板が強制的に振動される。このため、第3及び第4磁石が取り付けられない場合に比して、振動板や連動部材は、より大きな変位の振動を生じる。よって、発電量を大幅に向上させることが可能である。 In the third power generation device, the support includes a frame and a column, and the frame is connected to the holding unit via the elastic member and held in a hollow state, and the column A body, the diaphragm, the interlocking member, and the counter plate are disposed inside the frame, and one end of the diaphragm and the counter plate is supported by the column body, and the other end of the diaphragm A third magnet is attached to the frame body, and a fourth magnet is attached to the frame body at a position facing the third magnet. According to this configuration, when vibration is applied to the frame, the diaphragm is forcibly vibrated by the action of the third and fourth magnets. For this reason, as compared with the case where the third and fourth magnets are not attached, the vibration plate and the interlocking member generate vibration with a larger displacement. Therefore, it is possible to greatly improve the power generation amount.
 上記第1、第2、及び第3の発電装置において、支持体は、少なくとも2つの弾性部材を介して保持手段に接続されており、各弾性部材は、支持体を介して対向する位置に配置されているような構成とすることもできる。この構成によれば、各弾性部材の伸縮が交互に行われるために、弾性部材による振動を支持体に対してより長時間与え続けることができる。 In the first, second, and third power generators, the support is connected to the holding means via at least two elastic members, and each elastic member is disposed at a position facing each other via the support. It can also be configured as described. According to this configuration, since the elastic members are alternately expanded and contracted, vibrations by the elastic members can be continuously applied to the support for a longer time.
 なお、上記弾性部材は、引っ張りバネや、ゴムなどのような、支持体の静止状態において引っ張り力を支持体に作用させるものが好ましい。 It should be noted that the elastic member is preferably a member such as a tension spring or rubber that causes a tensile force to act on the support when the support is stationary.
 また、上記振動板は、より効率的に振動するために、他方端に錘を取り付けることが好ましい。 Also, it is preferable that a weight is attached to the other end of the diaphragm in order to vibrate more efficiently.
 本発明に係る第1の発電システムは、前記支持体に第1の磁石が取り付けられた上記第1の発電装置と、前記第1の磁石と対向する位置に第2の磁石が取り付けられ、前記発電装置を横切るように移動する移動体と、を備えている。 In the first power generation system according to the present invention, the first power generation device in which the first magnet is attached to the support, and the second magnet is attached to a position facing the first magnet, And a moving body that moves across the power generation device.
 第1の発電システムによれば、移動体が発電装置を横切ることで、第2の磁石が第1の磁石に近付き、第1の磁石が取り付けられた支持体を揺らすことができる。 According to the first power generation system, when the moving body crosses the power generation device, the second magnet approaches the first magnet, and the support body to which the first magnet is attached can be shaken.
 本発明に係る第2の発電システムは、上記第1の発電装置を複数有し、前記各発電装置の支持枠に第1の磁石が取り付けられた発電ユニットと、前記各第1の磁石と対向する位置に第2の磁石が取り付けられ、前記発電ユニットを横切るように移動する移動体と、を備えている。 A second power generation system according to the present invention includes a plurality of the first power generation devices, a power generation unit in which a first magnet is attached to a support frame of each power generation device, and each of the first magnets. And a moving body that moves so as to cross the power generation unit.
 第2の発電システムによれば、移動体が発電ユニットを横切ることで、各第2の磁石が対応する各第1の磁石に近付き、各第1の磁石が取り付けられた支持体を揺らすことができ、その結果、上述したように、圧電素子が効率的に発電する。 According to the second power generation system, when the moving body crosses the power generation unit, each second magnet approaches each corresponding first magnet, and the support body to which each first magnet is attached can be shaken. As a result, as described above, the piezoelectric element efficiently generates power.
 第2の発電システムにおいて、各第1の磁石と各第2の磁石とは、移動体が発電ユニットを横切る際に、各第2の磁石が、対応する各第1の磁石を順次横切るように配置されていることが好ましい。この構成によれば、各第1の磁石と各第2の磁石とが同時に磁力を及ぼすことがないため、移動体を移動させるのに必要な駆動力を小さくすることができる。 In the second power generation system, each first magnet and each second magnet are arranged so that each second magnet sequentially crosses each corresponding first magnet when the moving body crosses the power generation unit. It is preferable that they are arranged. According to this structure, since each 1st magnet and each 2nd magnet do not exert magnetic force simultaneously, the driving force required to move a moving body can be made small.
 本発明に係る第3の発電システムは、上記第2及び第3の発電装置と、前記枠体に、該枠体を回動させるモーメントを付与するモーメント付与手段とを備える。第3の発電システムによれば、モーメント付与手段から、枠体を回動させるモーメントが、枠体に付与されることで、枠体が回動する。したがって、振動板を振動させることができ、発電手段で発電が行われる。 A third power generation system according to the present invention includes the second and third power generation apparatuses, and a moment applying unit that applies a moment for rotating the frame to the frame. According to the third power generation system, the moment is applied from the moment applying means to the frame so that the frame rotates. Therefore, the diaphragm can be vibrated, and power generation is performed by the power generation means.
 第3の発電システムにおいて、前記枠体は、第1軸部材を中心に回動可能であり、前記モーメント付与手段は、前記第1軸部材と平行な第2軸部材を中心に回動可能であるリンク機構と、該リンク機構に前記第2軸部材回りのモーメントを与える駆動機構とを備え、前記枠体と前記リンク機構とは、前記第1及び第2軸部材と平行な第3軸部材を介して連結され、前記リンク機構は、付与されたモーメントを前記第3軸部材を介して前記枠体に伝達することで、前記枠体に前記第1軸部材回りのモーメントを与える。この構成によれば、駆動機構からリンク機構を介して、枠体を回動させるモーメントが、枠体に伝達される。これにより、枠体を回動させて、振動板を振動させることができ、発電手段で発電が行われる。 In the third power generation system, the frame can be rotated about a first shaft member, and the moment applying means can be rotated about a second shaft member parallel to the first shaft member. A link mechanism; and a drive mechanism for applying a moment about the second shaft member to the link mechanism, wherein the frame and the link mechanism are a third shaft member parallel to the first and second shaft members The link mechanism transmits the applied moment to the frame body via the third shaft member, thereby giving the frame body a moment around the first shaft member. According to this configuration, a moment for rotating the frame body is transmitted from the drive mechanism to the frame body via the link mechanism. Thereby, the frame can be rotated to vibrate the diaphragm, and power generation is performed by the power generation means.
 第3の発電システムにおいて、前記リンク機構は、一方端に前記第3軸部材を介して前記枠体が連結され、他方端に前記駆動機構から力が加えられて、前記第2軸部材回りのモーメントが付与されるものであり、前記第2軸部材から前記リンク機構の一方端までの長さは、前記第2軸部材から前記リンク機構の他方端までの長さよりも短い。この構成によれば、テコの原理により、支持体を回動させるために要する駆動力を大幅に軽減することができる。 In the third power generation system, the link mechanism is connected to the frame body at one end via the third shaft member, and a force is applied from the drive mechanism to the other end to rotate around the second shaft member. A moment is applied, and the length from the second shaft member to one end of the link mechanism is shorter than the length from the second shaft member to the other end of the link mechanism. According to this configuration, the driving force required to rotate the support body can be greatly reduced due to the lever principle.
 第3の発電システムにおいて、前記発電装置は、所定方向に複数並んで配置され、各前記発電装置の前記枠体は、前記第1軸部材を中心に回動可能であり、複数の前記発電装置のうち、一方端の前記発電装置の前記枠体(以下、一方端の枠体と示す)は、前記リンク機構と前記第3軸部材を介して連結され、隣り合う2つの前記発電装置の前記枠体は、前記第1、第2、及び第3軸部材と平行な第4軸部材を介して連結され、前記リンク機構は、付与されたモーメントを前記第3軸部材を介して前記一方端の枠体に伝達することで、前記一方端の枠体に前記第1軸部材回りのモーメントを付与し、前記隣り合う2つの前記発電装置のうち、一方側の前記発電装置の前記枠体は、付与されたモーメントを、前記第4軸部材を介して、他方側の前記発電装置の前記枠体に伝達することで、該他方側の前記発電装置の枠体に前記第1軸部材回りのモーメントを付与する。この構成によれば、前記所定方向に配列される複数の発電装置では、駆動機構が駆動することに応じて、第4軸部材を介して、一方側の発電装置から、他方側の発電装置へと、枠体を回動させるモーメントが順次伝達される。したがって、上記複数の発電装置の各々で、振動板を振動させることができ、発電が行われる。このため、駆動機構の一度の駆動で、多くの発電装置に発電を行わせることができるため、発電量を大幅に向上させることが可能である。 In the third power generation system, a plurality of the power generation devices are arranged side by side in a predetermined direction, and the frame body of each of the power generation devices is rotatable about the first shaft member, and a plurality of the power generation devices The frame body of the power generation device at one end (hereinafter referred to as a frame body at one end) is connected to the link mechanism via the third shaft member, and the two power generation devices adjacent to each other. The frame body is connected via a fourth shaft member parallel to the first, second, and third shaft members, and the link mechanism transmits the applied moment to the one end via the third shaft member. By transmitting to the frame body, a moment around the first shaft member is applied to the frame body at the one end, and the frame body of the power generation apparatus on one side of the two adjacent power generation apparatuses is The applied moment is transferred to the other side via the fourth shaft member. Serial By transferred to the frame of the power generator, to impart the first shaft member about the moment the frame of the power generator said other side. According to this configuration, in the plurality of power generation devices arranged in the predetermined direction, from the power generation device on one side to the power generation device on the other side via the fourth shaft member in response to the drive mechanism being driven. Then, the moment for rotating the frame is sequentially transmitted. Therefore, each of the plurality of power generation devices can vibrate the diaphragm and generate power. For this reason, since many power generators can generate electric power by one drive of a drive mechanism, it is possible to improve a power generation amount significantly.
 また、上記第1、第2及び第3の発電システムにおける移動体又は駆動機構は、回転可能に設置された回転軸とすることが好ましい。この場合、回転軸は、一方端に複数の羽根を有しており、当該発電システムは、前記回転軸の一方端部を覆い、吸気部及び排気部を有するケーシングと、前記排気部に接続された上方に延びる排気塔と、をさらに備えた構成とすることができる。 Moreover, it is preferable that the moving body or the drive mechanism in the first, second, and third power generation systems is a rotation shaft that is rotatably installed. In this case, the rotating shaft has a plurality of blades at one end, and the power generation system is connected to the casing that covers one end of the rotating shaft and includes an intake portion and an exhaust portion, and the exhaust portion. And an exhaust tower extending upward.
 このような構成では、排気塔がケーシングの排気部に接続されているため、吸気部から排気部、排気塔へと流れる気流が発生する。この気流の発生により、回転軸の一方端の複数の羽根に空気が衝突し、回転軸を回転させることができる。 In such a configuration, since the exhaust tower is connected to the exhaust part of the casing, an air flow flowing from the intake part to the exhaust part and the exhaust tower is generated. By the generation of this air flow, air collides with a plurality of blades at one end of the rotation shaft, and the rotation shaft can be rotated.
 また、発電装置及び前記回転軸を有する複数の発電部と、前記ケーシング内に吸気される空気の風圧を検出する風圧検出手段と、風圧検出手段により検出された風圧によって、各発電部の稼働を制御する制御手段と、をさらに備えた構成とすることもできる。なお、風圧検出手段の代わりに、回転軸の回転数を検出する回転数検出手段を備え、制御手段は、風圧の代わりに、回転数検出手段により検出された回転数によって、各発電部の稼働を制御するように構成することもできる。この構成によれば、風圧検出手段によって検出された風圧(又は回転数検出手段によって検出された回転数)から、十分に稼働させることのできる発電部の数を判断し、制御手段によって、十分に稼働させることのできる発電部のみ回転軸を回転させ、それ以外の発電部は回転軸の回転を停止させることで稼働を停止させる。 In addition, a plurality of power generation units having a power generation device and the rotating shaft, wind pressure detection means for detecting the wind pressure of air sucked into the casing, and operation of each power generation unit by the wind pressure detected by the wind pressure detection means. And a control means for controlling. Instead of the wind pressure detection means, a rotation speed detection means for detecting the rotation speed of the rotating shaft is provided, and the control means operates each power generation unit according to the rotation speed detected by the rotation speed detection means instead of the wind pressure. It can also be configured to control. According to this configuration, the number of power generating units that can be sufficiently operated is determined from the wind pressure detected by the wind pressure detecting means (or the rotational speed detected by the rotational speed detecting means), and the control means Only the power generating unit that can be operated rotates the rotating shaft, and the other power generating units stop operating by stopping the rotation of the rotating shaft.
 また、上記排気部にダンパーを設け、回転軸の回転数を検出する回転数検出手段と、回転数検出手段により検出された回転数によってダンパーの開度を制御する制御手段と、をさらに備えた構成にすることもできる。なお、回転軸の回転数を検出する回転数検出手段の代わりに、ケーシング内に吸気される空気の風圧を検出する風圧検出手段を備え、制御手段は、回転数の代わりに風圧検出手段により検出された風圧によって、ダンパーの開度を制御するような構成としてもよい。この構成によれば、制御手段が、回転軸の回転数(又はケーシング内に吸気される空気の風圧)に基づいてダンパーの開度を調整することにより、吸気部からの吸気量を調整して回転軸の回転数を適切な回転数に制御することができる。 In addition, the exhaust unit is further provided with a damper, and a rotation number detection unit that detects the rotation number of the rotation shaft, and a control unit that controls the opening degree of the damper based on the rotation number detected by the rotation number detection unit. It can also be configured. In place of the rotation speed detection means for detecting the rotation speed of the rotation shaft, a wind pressure detection means for detecting the wind pressure of the air sucked into the casing is provided, and the control means is detected by the wind pressure detection means instead of the rotation speed. It is good also as a structure which controls the opening degree of a damper with the made wind pressure. According to this configuration, the control means adjusts the amount of intake air from the intake portion by adjusting the opening of the damper based on the rotational speed of the rotating shaft (or the wind pressure of air sucked into the casing). The rotational speed of the rotary shaft can be controlled to an appropriate rotational speed.
 また、太陽光を集光させる集光レンズと、集光レンズにより集光される太陽光により加熱され、排気部に設けられた受熱板と、をさらに備えた構成とすることもできる。この構成によれば、排気部内の温度を上昇させることができ、この結果、吸気部、排気部、排気塔の順に流れる空気の通気力を高めることができる。 Moreover, it can also be set as the structure further equipped with the condensing lens which condenses sunlight, and the heat receiving plate provided in the exhaust part heated by the sunlight condensed by the condensing lens. According to this configuration, the temperature in the exhaust part can be increased, and as a result, the air permeability of the air flowing in the order of the intake part, the exhaust part, and the exhaust tower can be increased.
 本発明に係る発電装置及びこれを用いた発電システムによれば、効率よく発電することができる。 The power generator according to the present invention and the power generation system using the power generator can efficiently generate power.
図1は本実施形態に係る発電装置の斜視図である。FIG. 1 is a perspective view of a power generator according to this embodiment. 図2は本実施形態に係る発電装置の側面断面図である。FIG. 2 is a side sectional view of the power generator according to the present embodiment. 図3は本実施形態に係る発電システムの斜視図である。FIG. 3 is a perspective view of the power generation system according to the present embodiment. 図4は本実施形態に係る発電装置の変形例を示す斜視図である。FIG. 4 is a perspective view showing a modification of the power generator according to this embodiment. 図5は振動板が振動する状態を示す平面図である。FIG. 5 is a plan view showing a state in which the diaphragm vibrates. 図6は本実施形態に係る発電装置の変形例を示す斜視図である。FIG. 6 is a perspective view showing a modification of the power generator according to this embodiment. 図7は、第5の磁石及びコイルを示す正面図である。FIG. 7 is a front view showing a fifth magnet and a coil. 図8は振動板が振動する状態を示す平面図である。FIG. 8 is a plan view showing a state in which the diaphragm vibrates. 図9は振動板が剛板に対して振動する状態を示す斜視図である。FIG. 9 is a perspective view showing a state where the diaphragm vibrates with respect to the rigid plate. 図10は本実施形態に係る発電装置の変形例が備える構成を示す斜視図である。FIG. 10 is a perspective view showing the configuration of a modification of the power generation device according to this embodiment. 図11は本実施形態に係る発電装置の変形例が備える構成を示す斜視図である。FIG. 11 is a perspective view illustrating a configuration of a modification of the power generation device according to the present embodiment. 図12は本実施形態に係る発電システムの変形例を示す斜視図である。FIG. 12 is a perspective view showing a modification of the power generation system according to the present embodiment. 図13は本実施形態に係る発電システムの変形例を示す斜視図である。FIG. 13 is a perspective view showing a modification of the power generation system according to the present embodiment. 図14は本実施形態に係る発電システムの全体構成を示す斜視図である。FIG. 14 is a perspective view showing the overall configuration of the power generation system according to the present embodiment. 図15は本実施形態に係る発電装置の変形例を示す斜視図である。FIG. 15 is a perspective view showing a modification of the power generator according to this embodiment. 図16は本実施形態に係る発電システムの変形例を示す斜視図である。FIG. 16 is a perspective view showing a modification of the power generation system according to the present embodiment. 図17は本実施形態に係る発電システムの変形例を示す斜視図である。FIG. 17 is a perspective view showing a modification of the power generation system according to the present embodiment. 図18は本実施形態に係る発電システムの変形例を示す断面図である。FIG. 18 is a cross-sectional view showing a modification of the power generation system according to the present embodiment.
 以下、本発明に係る発電装置、及びこれを用いた発電システムの実施形態について図面を参照しつつ説明する。 Hereinafter, embodiments of a power generation apparatus according to the present invention and a power generation system using the power generation apparatus will be described with reference to the drawings.
 図1に示すように、発電装置1は、保持枠(保持手段)2と、保持枠2内に中空状態で保持された支持枠(支持体)3と、支持枠3に支持された2つの振動板4と、各振動板4上に取り付けられた複数の圧電素子5と、保持枠2と支持枠3との間に介在する引っ張りバネ6と、を主な構成としている。 As shown in FIG. 1, the power generator 1 includes a holding frame (holding means) 2, a support frame (support) 3 held in a hollow state in the holding frame 2, and two supported by the support frame 3. The main components are a diaphragm 4, a plurality of piezoelectric elements 5 attached on each diaphragm 4, and a tension spring 6 interposed between the holding frame 2 and the support frame 3.
 保持枠2は、平面視矩形状の枠であって、一対の長辺側壁21及び一対の短辺側壁22から構成されている。各長辺側壁21の内壁面における両端部には、引っ張りバネ6の一方端を取り付けるための取付け具23が設けられている。なお、この保持枠2は、種々の材質とすることができ特に限定されるものではないが、例えばプラスチックや軽量金属などによって形成することができる。なお、本実施形態では、支持枠3を保持する保持手段として持ち運び可能な保持枠2を例示しているが、保持手段は特にこれに限定されるものではなく、例えば、建造物の壁などのような持ち運び不可能なものを保持手段とすることもできる。 The holding frame 2 is a rectangular frame in plan view, and includes a pair of long side walls 21 and a pair of short side walls 22. At both ends of the inner wall surface of each long side wall 21, a fixture 23 for attaching one end of the tension spring 6 is provided. The holding frame 2 can be made of various materials and is not particularly limited. For example, the holding frame 2 can be formed of plastic or light metal. In the present embodiment, the portable holding frame 2 is illustrated as a holding means for holding the support frame 3, but the holding means is not particularly limited to this, for example, a wall of a building Such a thing that is not portable can be used as the holding means.
 保持枠2に保持された支持枠3は、保持枠2よりも一回り小さく形成された環状の枠である。具体的には、支持枠3は、平面視矩形状の枠であって、一対の長辺側壁31及び一対の短辺側壁32とから構成されている。各長辺側壁31の内壁面における両端部(上記保持枠2の取付部23と対向する位置)には、引っ張りバネ6の他方端を取り付けるための取付け具33が設けられている。この支持枠3の取付け具33と、保持枠2の取付け具23とに引っ張りバネ6が取り付けられることにより、支持枠3は保持枠2の内側において保持枠2に対して中空状態で保持されている。すなわち、図2に示すように、支持枠3の高さは保持枠2の高さよりも低く形成されているため、保持枠2を水平面に載置したり取り付けたりした場合、支持枠3は、その水平面から浮いた状態となって保持される。 The support frame 3 held by the holding frame 2 is an annular frame formed slightly smaller than the holding frame 2. Specifically, the support frame 3 is a rectangular frame in plan view, and includes a pair of long side walls 31 and a pair of short side walls 32. At both end portions of the inner wall surface of each long side wall 31 (positions facing the mounting portion 23 of the holding frame 2), mounting tools 33 for mounting the other end of the tension spring 6 are provided. By attaching the tension spring 6 to the fixture 33 of the support frame 3 and the fixture 23 of the holding frame 2, the support frame 3 is held in a hollow state with respect to the holding frame 2 inside the holding frame 2. Yes. That is, as shown in FIG. 2, since the height of the support frame 3 is formed lower than the height of the holding frame 2, when the holding frame 2 is placed on or attached to a horizontal plane, the support frame 3 is It is held in a state of floating from the horizontal plane.
 上記支持枠3には、2つの振動板4が取り付けられている。各振動板4は、平面視矩形状の板であって、図2に詳細が示されているように、支持枠3の各短辺側壁32に一方端が固定されおり、他方端は自由端となっている。また、振動板4は弾性振動するような材質で形成されているため、支持枠3に振動などが加えられると、振動板4は自由端が上下に動き、振動板4全体が弾性振動するようになっている。また、振動板4の自由端には錘7が取り付けられているために、より弾性振動しやすくなっている。なお、振動板4の材質としては、弾性振動するようなものであれば特に限定されるものではないが、例えば、プラスチックや、FRP(Fiber Reinforced Plastics)、カーボンファイバー、ステンレス、バネ鋼などを挙げることができる。 The support frame 3 has two diaphragms 4 attached thereto. Each diaphragm 4 is a rectangular plate in plan view, and as shown in detail in FIG. 2, one end is fixed to each short side wall 32 of the support frame 3, and the other end is a free end. It has become. Further, since the diaphragm 4 is formed of a material that elastically vibrates, when vibration or the like is applied to the support frame 3, the diaphragm 4 moves so that the free end moves up and down, and the entire diaphragm 4 vibrates elastically. It has become. In addition, since the weight 7 is attached to the free end of the diaphragm 4, it is easier to elastically vibrate. The material of the diaphragm 4 is not particularly limited as long as it can elastically vibrate, and examples thereof include plastic, FRP (Fiber Reinforced Plastics), carbon fiber, stainless steel, spring steel, and the like. be able to.
 各振動板4の上面には、複数の圧電素子5が取り付けられている。圧電素子5は、公知の圧電素子を用いることができ、振動板4が振動により撓むことで、圧電素子5は圧力が加えられ発電する。なお、圧電素子5を振動板4へ取り付ける方法は、種々の方法を用いることができ、例えば、焼き付けや、接着剤、粘着剤、リベット、ネジ等によって、取り付けることができる。なお、圧電素子5の数や配置は特に限定されるものではないが、本実施形態では、1枚の振動板4に2×4の計8枚の圧電素子5が設置されている。 A plurality of piezoelectric elements 5 are attached to the upper surface of each diaphragm 4. As the piezoelectric element 5, a known piezoelectric element can be used, and when the diaphragm 4 is bent by vibration, the piezoelectric element 5 generates pressure by applying pressure. Various methods can be used for attaching the piezoelectric element 5 to the diaphragm 4. For example, the piezoelectric element 5 can be attached by baking, an adhesive, a pressure-sensitive adhesive, a rivet, a screw, or the like. Although the number and arrangement of the piezoelectric elements 5 are not particularly limited, in this embodiment, a total of eight piezoelectric elements 5 of 2 × 4 are installed on one diaphragm 4.
 以上のように構成された発電装置1は、支持枠3に振動などが加わることで、その振動が振動板4に伝わることで振動板4が固定端を中心に自由端が上下に撓むように弾性振動し、これにより、振動板4上に取り付けられた圧電素子5に圧力が加わり発電する。そして、支持枠3は、引っ張りバネ6によって保持枠2に中空状態に保持されているため、支持枠3に加えられた振動が引っ張りバネ6により増幅され、より大きな振幅となり、また、より長時間振動していることが可能となるため、圧電素子5はより効率よく発電することができる。 The power generation apparatus 1 configured as described above is elastic so that the vibration is transmitted to the diaphragm 4 when the support frame 3 is subjected to vibration and the like so that the diaphragm 4 is bent up and down around the fixed end. As a result, a pressure is applied to the piezoelectric element 5 mounted on the diaphragm 4 to generate electricity. Since the support frame 3 is held in the holding frame 2 in a hollow state by the tension spring 6, vibration applied to the support frame 3 is amplified by the tension spring 6 to have a larger amplitude and for a longer time. Since it is possible to vibrate, the piezoelectric element 5 can generate power more efficiently.
 以上のように構成された発電装置1は、種々の場所に設置することができ、例えば、橋の下や道路に設置することで、車などが通過した際に発生する振動を利用して発電することができる。 The power generation apparatus 1 configured as described above can be installed in various places. For example, by installing it under a bridge or on a road, the power generation apparatus 1 generates power using vibration generated when a car or the like passes. can do.
 次に、上述した発電装置1を一部変更して用いた発電システム10について説明する。 Next, a power generation system 10 using a part of the power generation apparatus 1 described above will be described.
 図3に示すように、発電システム10は、回転軸8が回転可能に設置されており、複数の発電ユニット20が回転軸8の周りに放射状に配置されている。 As shown in FIG. 3, the power generation system 10 is configured such that the rotary shaft 8 is rotatably installed, and a plurality of power generation units 20 are arranged radially around the rotary shaft 8.
 まず、本システム10に使用される発電ユニット20は複数の発電装置1’から構成されている。この発電装置1’は、基本的な構成は上述した発電装置1と同じであるが、一部上記発電装置1とは異なっている部分がある。以下、上記発電装置1と同じ部分については説明を省略し、異なる部分のみ説明する。 First, the power generation unit 20 used in the system 10 is composed of a plurality of power generation devices 1 '. This power generation device 1 ′ has the same basic configuration as that of the above-described power generation device 1, but there are portions that are partially different from the power generation device 1. Hereinafter, description of the same part as the power generation device 1 is omitted, and only different parts will be described.
 まず、各発電装置1’の保持枠2’は、発電ユニット20毎に共通化されている。この保持枠2’は、回転軸8に沿って延びる主柱22’と、この主柱22’から回転軸8に向かって側方に延びる複数の長辺側壁21とから構成されており、各長辺側壁21の間において、支持枠3が中空状態で保持されている。なお、発電ユニット20は、上述した発電装置1を単に上下方向に組み合わせ、回転軸8側の短辺側壁22を取り除いたものとすることもできる。 First, the holding frame 2 ′ of each power generation device 1 ′ is shared by each power generation unit 20. The holding frame 2 ′ is composed of a main column 22 ′ extending along the rotation axis 8, and a plurality of long side walls 21 extending laterally from the main column 22 ′ toward the rotation axis 8. Between the long side walls 21, the support frame 3 is held in a hollow state. Note that the power generation unit 20 may be configured by simply combining the above-described power generation devices 1 in the vertical direction and removing the short side wall 22 on the rotating shaft 8 side.
 各支持枠3の回転軸8側に位置する短辺側壁32には、第1の磁石M1が取り付けられている。各短辺側壁32の内壁面からは、3つずつ振動板4が延びており、1つの支持枠3に対して計6つの振動板4が取り付けられた構成となっている。そして、このように構成された発電ユニット20が、回転軸8を中心として、放射状に複数設置されている。なお、図3において、発電ユニット20は1つのみ詳細を図示しており、残りの発電ユニット20は、省略するか、若しくは保持枠2’のみを図示している。 The first magnet M1 is attached to the short side wall 32 located on the rotating shaft 8 side of each support frame 3. Three diaphragms 4 extend from the inner wall surface of each short side wall 32, and a total of six diaphragms 4 are attached to one support frame 3. A plurality of power generation units 20 configured in this way are arranged radially about the rotation shaft 8. In FIG. 3, only one power generation unit 20 is shown in detail, and the remaining power generation units 20 are omitted or only the holding frame 2 'is shown.
 回転軸8は、その外周面に第2の磁石M2が4つ取り付けられており、上下方向に並ぶ各支持枠3に取り付けられた第1の磁石M1と対向する位置に配置されている、すなわち、第1の磁石M1と同じ間隔で回転軸8の軸方向に配置されている。第1の磁石M1と第2の磁石M2とは、互いに反発し合うように異極同士が対面するように取り付けられている。また、4つの第2の磁石M2は、それぞれが回転軸8の周方向にずれるように配置されており、回転軸8の軸方向に延びる同一直線上に1つしか配置されないようになっている。このため、回転軸8を回転させたとき、各第2の磁石M2は対応する各第1の磁石M1と順次反発し合い、同時に反発し合うことがないため、回転軸8を回転するのに必要な駆動力を小さくすることができる。また、これら4つの第2の磁石M2は、一の発電ユニット20の各支持枠3を全て振動させた後に、この発電ユニット20と時計回りに隣接する発電ユニット20の各支持枠3を振動させるような配置となっている。 The rotary shaft 8 has four second magnets M2 attached to the outer peripheral surface thereof, and is disposed at a position facing the first magnets M1 attached to the support frames 3 arranged in the vertical direction. These are arranged in the axial direction of the rotary shaft 8 at the same intervals as the first magnet M1. The first magnet M1 and the second magnet M2 are attached so that the opposite poles face each other so as to repel each other. Further, each of the four second magnets M2 is arranged so as to be displaced in the circumferential direction of the rotating shaft 8, and only one is arranged on the same straight line extending in the axial direction of the rotating shaft 8. . For this reason, when the rotating shaft 8 is rotated, each of the second magnets M2 sequentially repels the corresponding first magnet M1 and does not repel at the same time. The required driving force can be reduced. The four second magnets M2 vibrate each support frame 3 of the power generation unit 20 that is adjacent to the power generation unit 20 in a clockwise direction after all the support frames 3 of the one power generation unit 20 are vibrated. It is arranged like this.
 以上のように構成された発電システム10による発電方法について説明すると、まず、回転軸8を手動、若しくは何かしらの駆動源により時計回りに回転させると、まず、一の発電ユニット20において、一番上に位置する第2の磁石M2が対応する一番上の第1の磁石M1に近づき、反発力によって一番上の支持枠3を振動させる。この振動により、一番上の発電装置1’において、振動板4が撓み、振動板4上の圧電素子5に圧力が加わり発電が行われる。また、支持枠3は、引っ張りバネ6によって保持枠2’に保持されているため、振動が増幅され、より大きな振幅になるとともに、より長時間振動する。そして、回転軸8がさらに回転すると、次は上から2番目の第2の磁石M2が、上から2番目の支持枠3に取り付けられた第1の磁石M1に近付き、上から2番目の発電装置1’において同様に発電が行われる。そして、回転軸8がさらに回転すると、同様に上から3番目の支持枠3が振動し、次に一番下の支持枠3が振動するというように、上から下へと順番に発電が行われる。そして、次は、時計回り側に隣接する発電ユニット20においても同様の方法で上から順次発電が行われる。 The power generation method by the power generation system 10 configured as described above will be described. First, when the rotating shaft 8 is rotated manually or clockwise by some drive source, The second magnet M2 positioned at the position approaches the corresponding uppermost first magnet M1, and the uppermost support frame 3 is vibrated by a repulsive force. Due to this vibration, in the uppermost power generator 1 ′, the diaphragm 4 is bent, and pressure is applied to the piezoelectric element 5 on the diaphragm 4 to generate power. Further, since the support frame 3 is held on the holding frame 2 ′ by the tension spring 6, the vibration is amplified and has a larger amplitude and vibrates for a longer time. When the rotating shaft 8 further rotates, the second magnet M2 that is the second from the top approaches the first magnet M1 that is attached to the second support frame 3 from the top, and the second power generation from the top. In the apparatus 1 ′, power generation is performed in the same manner. Then, when the rotating shaft 8 further rotates, similarly, the third support frame 3 from the top vibrates, and then the bottom support frame 3 vibrates, so that power generation is performed in order from top to bottom. Is called. Next, power generation is sequentially performed from the top in the same manner also in the power generation unit 20 adjacent to the clockwise side.
 なお、引っ張りバネ6の伸縮によって支持枠3が揺れている間に、その支持枠3の第1の磁石M1に対応する第2の磁石M2が近付くと、磁力によって支持枠3の揺れが逆に減衰してしまうため、支持枠3を一度揺らした後は、支持枠3の揺れが収まってきた頃に第2の磁石M2が第1の磁石M1に近付くような回転数にすることが好ましく、例えば、回転軸8の回転数は、1~500rpm程度とすることができ、30~200rpm程度とすることが好ましい。また、上記実施形態では、第1及び第2の磁石M1,M2は、互いに反発し合うように同じ極同士を対向させていたが、互いに引き合うように異なる極同士を対向させてもよい。また、上述したような永久磁石ではなく、電磁石であってもよい。 When the second magnet M2 corresponding to the first magnet M1 of the support frame 3 approaches while the support frame 3 is swinging due to the expansion and contraction of the tension spring 6, the swing of the support frame 3 is reversed by the magnetic force. Therefore, after the support frame 3 is shaken once, it is preferable to set the rotation speed so that the second magnet M2 approaches the first magnet M1 when the support frame 3 has stopped shaking. For example, the rotational speed of the rotary shaft 8 can be about 1 to 500 rpm, and preferably about 30 to 200 rpm. Moreover, in the said embodiment, although the 1st and 2nd magnets M1 and M2 faced the same poles so that it might mutually repel, you may face different poles so that it may mutually attract. Moreover, an electromagnet may be used instead of the permanent magnet as described above.
 また、発電システム10に使用される発電ユニット20は、発電装置1’(図3)の代わりに、図4に示す発電装置200を複数備えるものであってもよい。 Further, the power generation unit 20 used in the power generation system 10 may include a plurality of power generation devices 200 shown in FIG. 4 instead of the power generation device 1 ′ (FIG. 3).
 発電装置200では、支持枠3は、環状の枠体3aと、柱体3bとを備える。枠体3aは、矩形状の枠である。柱体3bは、枠体3aの内側の中央に配置される。 In the power generation device 200, the support frame 3 includes an annular frame 3a and a column 3b. The frame 3a is a rectangular frame. The column 3b is arranged at the center inside the frame 3a.
 保持枠2’には、枠体3a及び柱体3bを貫通する第1軸部材45が設けられる。枠体3aは、第1軸部材45を中心に回動可能である。柱体3bは、第1軸部材45に接合されており、回動しない。なお、第1軸部材45と柱体3bとは、別部材ではなく、同一の部材から構成されてもよい。 The holding frame 2 'is provided with a first shaft member 45 penetrating the frame body 3a and the column body 3b. The frame 3a is rotatable around the first shaft member 45. The column 3b is joined to the first shaft member 45 and does not rotate. In addition, the 1st shaft member 45 and the column 3b may be comprised from the same member instead of a separate member.
 第1軸部材45には、筒状のベアリング60が取り付けられる。ベアリング60は、枠体3aの上端と保持枠2’との間や、枠体3aの下端と保持枠2’との間に配置される。ベアリング60は、枠体3aを中空状態に保持する。 A cylindrical bearing 60 is attached to the first shaft member 45. The bearing 60 is disposed between the upper end of the frame 3a and the holding frame 2 ', or between the lower end of the frame 3a and the holding frame 2'. The bearing 60 holds the frame 3a in a hollow state.
 枠体3aの各隅部は、引っ張りバネ6を介して、保持枠2’に接続される。 Each corner of the frame 3a is connected to the holding frame 2 'via a tension spring 6.
 枠体3aにおける回転軸8側の短辺側壁90には、第1の磁石M1が取り付けられる。第1の磁石M1は、回転軸8の第2の磁石M2と対向する。 1st magnet M1 is attached to the short side wall 90 by the side of the rotating shaft 8 in the frame 3a. The first magnet M1 faces the second magnet M2 of the rotating shaft 8.
 振動板4は、枠体3aの内側に配置される。振動板4の一方端は、柱体3bに支持される。 The diaphragm 4 is disposed inside the frame 3a. One end of the diaphragm 4 is supported by the column 3b.
 振動板4の他方端には、第3の磁石M3が取り付けられる。枠体3aには、第3の磁石M3と対向する位置に、第4の磁石M4が取り付けられる。第3の磁石M3と第4の磁石M4とは、互いに反発し合うように異極同士が対面するように取り付けられる。 A third magnet M3 is attached to the other end of the diaphragm 4. A fourth magnet M4 is attached to the frame 3a at a position facing the third magnet M3. The third magnet M3 and the fourth magnet M4 are attached so that the opposite poles face each other so as to repel each other.
 図4の例では、振動板4は、柱体3bの左右両側の側面に3つずつ取り付けられる。各振動板4の上面には、2×3の計6枚の圧電素子5が設置されている。なお、振動板4や圧電素子5の数は、上記に限らず任意に設定できる。また、振動板4は、柱体3bの片側の側面のみに取り付けられてもよい。 In the example of FIG. 4, three diaphragms 4 are attached to the left and right side surfaces of the column 3b. A total of six piezoelectric elements 5 of 2 × 3 are installed on the upper surface of each diaphragm 4. The number of diaphragms 4 and piezoelectric elements 5 is not limited to the above and can be arbitrarily set. Moreover, the diaphragm 4 may be attached only to one side surface of the column 3b.
 以上のように構成された発電システム10では、回転軸8を回転させて、第2の磁石M2を第1の磁石M1に近づけると、第1及び第2の磁石M1,M2の反発力により、枠体3aが、第1軸部材45を中心に回動する。これにより、図5に示すように、第4の磁石M4が第3の磁石M3に近づき、第3及び第4の磁石M3,M4の反発力が、振動板4に作用する。この結果、振動板4が振動して撓むことで、振動板4上の圧電素子5に圧力が加わり、発電が行われる。 In the power generation system 10 configured as described above, when the rotating shaft 8 is rotated to bring the second magnet M2 closer to the first magnet M1, the repulsive force of the first and second magnets M1 and M2 The frame 3a rotates around the first shaft member 45. As a result, as shown in FIG. 5, the fourth magnet M4 approaches the third magnet M3, and the repulsive forces of the third and fourth magnets M3 and M4 act on the diaphragm 4. As a result, the vibration plate 4 vibrates and bends, whereby pressure is applied to the piezoelectric element 5 on the vibration plate 4 and power generation is performed.
 以上の変形例によれば、第3及び第4磁石M3,M4の作用により、振動板4が強制的に振動される。このため、発電量を大幅に向上させることが可能である。 According to the above modification, the diaphragm 4 is forcibly vibrated by the action of the third and fourth magnets M3 and M4. For this reason, it is possible to greatly improve the power generation amount.
 また、第1及び第2の磁石M1,M2の作用により、枠体3aに回動が生じた後では、枠体3aは、引っ張りバネ6の作用により、一方側への回動と他方側への回動とを繰り返すようになる。このため、第4の磁石M4と第3の磁石M3とが多数回接近し、発電が長時間継続する。 Further, after the frame 3a is turned by the action of the first and second magnets M1 and M2, the frame 3a is turned to one side and to the other side by the action of the tension spring 6. The rotation is repeated. For this reason, the 4th magnet M4 and the 3rd magnet M3 approach many times, and power generation continues for a long time.
 また、発電ユニット20は、図6に示す発電装置201を複数備えるものであってもよい。発電装置201は、発電手段として、後述の第5の磁石M5(図7)と、コイル65,66,67とを備える。 Further, the power generation unit 20 may include a plurality of power generation apparatuses 201 shown in FIG. The power generation apparatus 201 includes a later-described fifth magnet M5 (FIG. 7) and coils 65, 66, and 67 as power generation means.
 発電装置201では、図4の発電装置200と同様、支持枠3が、環状の枠体3aと、柱体3bとを備える。枠体3aは、ベアリング60により、中空状態に保持される。枠体3aの各隅部は、引っ張りバネ6を介して、保持枠2’に接続される。枠体3aは、第1軸部材45を中心に回動可能であり、柱体3bは第1軸部材45に接合される。なお、第1軸部材45と柱体3bとは、別部材ではなく、同一の部材から構成されてもよい。枠体3aには、第2の磁石M2が取り付けられる。 In the power generation apparatus 201, the support frame 3 includes an annular frame 3a and a column 3b, as in the power generation apparatus 200 of FIG. The frame 3 a is held in a hollow state by the bearing 60. Each corner of the frame 3a is connected to the holding frame 2 'via a tension spring 6. The frame body 3 a is rotatable about the first shaft member 45, and the column body 3 b is joined to the first shaft member 45. In addition, the 1st shaft member 45 and the column 3b may be comprised from the same member instead of a separate member. A second magnet M2 is attached to the frame 3a.
 枠体3aの内側には、振動板46と対向板50とが、上下に対向して配置される。図6の例では、振動板46や対向板50は、柱体3bの左右両側の側面に、3つずつ交互に取り付けられる。なお、振動板46や対向板50の数は上記に限らず任意に設定できる。また、振動板46や対向板50は、柱体3bの片側の側面のみに取り付けられてもよい。 Inside the frame 3a, a diaphragm 46 and a counter plate 50 are arranged to face each other in the vertical direction. In the example of FIG. 6, the diaphragms 46 and the counter plates 50 are alternately attached to the side surfaces on both the left and right sides of the column 3b. The number of diaphragms 46 and counter plates 50 is not limited to the above and can be arbitrarily set. Further, the diaphragm 46 and the counter plate 50 may be attached only to one side surface of the column body 3b.
 各振動板46は、磁石ケース47と、ケース支持部48と、板バネ49とを備える。板バネ49は、一方端が柱体3bに支持される。ケース支持部48は、板バネ49の他方端に取り付けられる。磁石ケース47は、ケース支持部48の下面に取り付けられる。 Each diaphragm 46 includes a magnet case 47, a case support 48, and a leaf spring 49. One end of the plate spring 49 is supported by the column 3b. The case support 48 is attached to the other end of the leaf spring 49. The magnet case 47 is attached to the lower surface of the case support 48.
 振動板46(ケース支持部48)の他方端には、第3の磁石M3が取り付けられる。枠体3aには、第3の磁石M3と対向する位置に、第4の磁石M4が取り付けられる。 A third magnet M3 is attached to the other end of the diaphragm 46 (case support 48). A fourth magnet M4 is attached to the frame 3a at a position facing the third magnet M3.
 対向板50は、例えば、板バネ49よりも剛性が高い板材である。各対向板50は、一方端が柱体3bに支持される。 The counter plate 50 is a plate material having higher rigidity than the plate spring 49, for example. One end of each counter plate 50 is supported by the column 3b.
 図7に示すように、各振動板46では、磁石ケース47の下面に、バックヨーク51を介して、第5の磁石M5が取り付けられる。第5の磁石M5は、S極52、N極53、及びS極54が、振動板46の振動方向に並んだものである。 As shown in FIG. 7, in each diaphragm 46, a fifth magnet M <b> 5 is attached to the lower surface of the magnet case 47 via a back yoke 51. The fifth magnet M <b> 5 includes an S pole 52, an N pole 53, and an S pole 54 arranged in the vibration direction of the diaphragm 46.
 各対向板50の上面には、バックヨーク56を介して、コア57,58,59を備えたコイル65,66,67(第1のコイル)が取り付けられる。コイル65,66,67は、第5の磁石M5の下方で、振動板46の振動方向に並ぶ。図7(a)は、振動前の初期位置を示す。この初期位置では、中央のコイル66は、N極53と対向し、外側のコイル65,67は、S極52,54と対向する。 The coils 65, 66, and 67 (first coils) including the cores 57, 58, and 59 are attached to the upper surface of each counter plate 50 via the back yoke 56. The coils 65, 66, and 67 are arranged in the vibration direction of the diaphragm 46 below the fifth magnet M5. FIG. 7A shows the initial position before vibration. In this initial position, the central coil 66 faces the N pole 53, and the outer coils 65 and 67 face the S poles 52 and 54.
 以上のように構成された発電システム10では、回転軸8を回転させると、第1及び第2の磁石M1,M2の反発力により、支持枠3の枠体3aは、第1軸部材45を中心に回動する。これにより、図8に示すように、第4の磁石M4が第3の磁石M3に近づき、第3及び第4の磁石M3,M4の反発力が、振動板46に作用する。この結果、図9に示すように、振動板46は、対向板50に対して振動する。これにより、磁石ケース47に取り付けられた第5の磁石M5は、コイル65,66,67の上方を往復運動し、コイル65,66,67と対向する位置を通過する。この往復運動により、第5の磁石M5(S極52、N極53、及びS極54)と、コイル65,66,67との位置関係が変わり、コイル65,66,67を通過する磁力線が変化する。具体的には、図7(a)に示すように、S極52、N極53、及びS極54が、コイル65,66,67と対向する状態では、S極52とN極53とは、コイル65,66を通過する磁力線を形成し、N極53とS極54とは、コイル66,67を通過する磁力線を形成する。そして、図7(b)に示すように、振動板46が対向板50に対して一方側に変位して、N極53とS極54とがコイル65,66と対向する状態では、N極53とS極54とは、コイル65,66を通過する磁力線を形成し、S極52は、コイルを通過する磁力線を形成しない。また、図7(c)に示すように、振動板46が対向板50に対して他方側に変位して、S極52とN極53とがコイル66,67と対向する状態では、S極52とN極53とは、コイル66,67を通過する磁力線を形成し、S極54は、コイルを通過する磁力線を形成しない。以上のように、本変形例によれば、第5の磁石M5と、コイル65,66,67との位置関係に応じて、コイル65,66,67を通過する磁力線が変化することで、コイル65,66,67で発電が行われる。 In the power generation system 10 configured as described above, when the rotary shaft 8 is rotated, the frame body 3a of the support frame 3 causes the first shaft member 45 to move by the repulsive force of the first and second magnets M1 and M2. Rotate to the center. As a result, as shown in FIG. 8, the fourth magnet M4 approaches the third magnet M3, and the repulsive forces of the third and fourth magnets M3 and M4 act on the diaphragm 46. As a result, as shown in FIG. 9, the diaphragm 46 vibrates with respect to the counter plate 50. As a result, the fifth magnet M5 attached to the magnet case 47 reciprocates above the coils 65, 66, and 67 and passes through a position facing the coils 65, 66, and 67. By this reciprocation, the positional relationship between the fifth magnet M5 (the S pole 52, the N pole 53, and the S pole 54) and the coils 65, 66, and 67 changes, and the magnetic lines of force that pass through the coils 65, 66, and 67 change. Change. Specifically, as shown in FIG. 7A, when the S pole 52, the N pole 53, and the S pole 54 face the coils 65, 66, and 67, the S pole 52 and the N pole 53 are The magnetic field lines passing through the coils 65 and 66 are formed, and the N pole 53 and the S pole 54 form magnetic field lines passing through the coils 66 and 67. Then, as shown in FIG. 7B, in the state where the diaphragm 46 is displaced to one side with respect to the counter plate 50 and the N pole 53 and the S pole 54 face the coils 65 and 66, the N pole 53 and the S pole 54 form magnetic lines of force that pass through the coils 65 and 66, and the S pole 52 does not form magnetic lines of force that pass through the coils. 7C, when the diaphragm 46 is displaced to the other side with respect to the opposing plate 50, and the S pole 52 and the N pole 53 are opposed to the coils 66 and 67, the S pole. 52 and N pole 53 form a magnetic field line passing through the coils 66 and 67, and the S pole 54 does not form a magnetic field line passing through the coil. As described above, according to the present modification, the lines of magnetic force passing through the coils 65, 66, and 67 change according to the positional relationship between the fifth magnet M5 and the coils 65, 66, and 67. Power generation is performed at 65, 66 and 67.
 また、上記変形例においても、第3及び第4磁石M3,M4の作用により、振動板46が強制的に振動される。このため、第3及び第4磁石M3,M4が取り付けられない場合に比して、振動板46は、より大きな変位の振動を生じる。このため、発電量を大幅に向上させることが可能である。 Also in the above modification, the diaphragm 46 is forcibly vibrated by the action of the third and fourth magnets M3 and M4. For this reason, as compared with the case where the third and fourth magnets M3 and M4 are not attached, the diaphragm 46 generates a vibration with a larger displacement. For this reason, it is possible to greatly improve the power generation amount.
 なお、上記変形例では、振動板46に第5の磁石M5が取り付けられ、対向板50にコイル65,66,67が取り付けられていたが、これとは逆に、振動板46にコイル65,66,67を取り付け、対向板50に第5の磁石M5を取り付けるようにしてもよい。この場合でも、振動板46が対向板50に対して振動することで、第5の磁石M5(S極52、N極53、及びS極54)と、コイル65,66,67との位置関係が変わるため、コイル65,66,67で発電が行われる。 In the modified example, the fifth magnet M5 is attached to the diaphragm 46, and the coils 65, 66, and 67 are attached to the opposing plate 50. On the contrary, the coils 65, 66, and 67 are attached to the diaphragm 46. 66 and 67 may be attached, and the fifth magnet M5 may be attached to the opposing plate 50. Even in this case, the vibration plate 46 vibrates with respect to the counter plate 50, whereby the positional relationship between the fifth magnet M5 (the S pole 52, the N pole 53, and the S pole 54) and the coils 65, 66, and 67 is obtained. Therefore, power is generated by the coils 65, 66, and 67.
 また、上記変形例の発電装置は、磁力線が、振動板46の支持体(柱体3b)の軸方向と平行になるアキシャルルタイプであるが、これに限定されず、磁力線が、振動板46の支持体(柱体3b)の軸方向と垂直になるラジアルタイプの発電装置が使用されてもよい。 In addition, the power generation device of the above modification is an axial type in which the magnetic lines of force are parallel to the axial direction of the support body (column body 3b) of the diaphragm 46. A radial type power generator that is perpendicular to the axial direction of the support (column 3b) may be used.
 発電装置をラジアルタイプとする場合、図6に示す振動板46や対向板50の代わりに、例えば、図10に示す振動板500や対向板600が設けられる。振動板500と対向板600とは、枠体3a(図6)の内側に配置されて、上下に対向する。 When the power generation device is a radial type, for example, a diaphragm 500 and a counter plate 600 shown in FIG. 10 are provided instead of the diaphragm 46 and the counter plate 50 shown in FIG. The diaphragm 500 and the counter plate 600 are disposed inside the frame 3a (FIG. 6) and face each other in the vertical direction.
 振動板500は、板バネ510と、ケース支持部520と、磁石ケース530とを備える。 The diaphragm 500 includes a leaf spring 510, a case support 520, and a magnet case 530.
 板バネ510は、一方端が柱体3bに支持される。 One end of the leaf spring 510 is supported by the column 3b.
 ケース支持部520は、基部521と、腕部522とを備える。 The case support portion 520 includes a base portion 521 and an arm portion 522.
 基部521の一方側面には、板バネ510の他方端が接続される。基部521の他方側面には、磁石ケース530が取り付けられる。 The other end of the leaf spring 510 is connected to one side surface of the base 521. A magnet case 530 is attached to the other side surface of the base 521.
 腕部522は、基部521の上端から、他方側へ延びる。腕部522の他方端には、第3の磁石M3が取り付けられる。第3の磁石M3は、枠体3a(図6)に取り付けられる第4の磁石M4と対向する。 The arm portion 522 extends from the upper end of the base portion 521 to the other side. A third magnet M3 is attached to the other end of the arm portion 522. The third magnet M3 faces the fourth magnet M4 attached to the frame 3a (FIG. 6).
 磁石ケース530は、腕部522と対向板600との間で、上下に延びる。磁石ケース530の他方側面には、第5の磁石M5が取り付けられる。 The magnet case 530 extends vertically between the arm portion 522 and the counter plate 600. A fifth magnet M5 is attached to the other side surface of the magnet case 530.
 第5の磁石M5は、S極52、N極53、及びS極54を備える。S極52、N極53、及びS極54は、振動板500の振動方向(矢印A)に並ぶ。 The fifth magnet M5 includes an S pole 52, an N pole 53, and an S pole 54. The S pole 52, the N pole 53, and the S pole 54 are arranged in the vibration direction (arrow A) of the diaphragm 500.
 対向板600は、一方端が柱体3bに支持される。対向板600の他方端の上面には、コイル支持部材610が取り付けられる。 The opposite plate 600 is supported at one end by the column 3b. A coil support member 610 is attached to the upper surface of the other end of the counter plate 600.
 コイル支持部材610は、磁石ケース530よりも他方側に位置して、上下に延びる。コイル支持部材610の一方側面には、コイル65,66,67(第1のコイル)が取り付けられる。このコイル65,66,67として、コアを備えたものを使用できる。 The coil support member 610 is positioned on the other side of the magnet case 530 and extends vertically. Coils 65, 66, and 67 (first coil) are attached to one side surface of the coil support member 610. As the coils 65, 66, and 67, those having a core can be used.
 コイル65,66,67は、振動板500の振動方向(矢印A)に並ぶ。コイル65,66,67と、第5の磁石M5(S極52,N極53,S極54)とは、柱体3bの軸方向(上下方向)と垂直な方向に対向する。 The coils 65, 66, and 67 are arranged in the vibration direction (arrow A) of the diaphragm 500. The coils 65, 66, 67 and the fifth magnet M5 (S pole 52, N pole 53, S pole 54) face each other in a direction perpendicular to the axial direction (vertical direction) of the column 3b.
 以上の変形例では、第5の磁石M5が、コイル65,66,67に生じさせる磁力線は、柱体3bの軸方向(上下方向)と垂直な方向に向かうものとなる。 In the above modification, the magnetic lines of force generated by the fifth magnet M5 in the coils 65, 66, and 67 are directed in a direction perpendicular to the axial direction (vertical direction) of the column 3b.
 そして、回転軸8(図6)を回転させて、第3及び第4の磁石M3,M4の反発力を生じさせると、振動板500は、対向板600に対して振動する。これにより、第5の磁石M5は、コイル65,66,67の前方を往復運動して、コイル65,66,67と対向する位置を通過する。この往復運動により、第5の磁石M5(S極52、N極53、及びS極54)と、コイル65,66,67との位置関係が変わり、コイル65,66,67を通過する磁力線が変化する。したがって、発電が行われる。 And if the rotating shaft 8 (FIG. 6) is rotated and the repulsive force of the 3rd and 4th magnet M3 and M4 is produced, the diaphragm 500 will vibrate with respect to the opposing board 600. FIG. As a result, the fifth magnet M5 reciprocates in front of the coils 65, 66, and 67 and passes through a position facing the coils 65, 66, and 67. By this reciprocation, the positional relationship between the fifth magnet M5 (the S pole 52, the N pole 53, and the S pole 54) and the coils 65, 66, and 67 changes, and the magnetic lines of force that pass through the coils 65, 66, and 67 change. Change. Therefore, power generation is performed.
 また、発電装置をラジアルタイプとする場合、図6に示す振動板46や対向板50の代わりに、例えば、図11に示す振動板700や連動部材800や対向板900が設けられてもよい。 Further, when the power generation device is a radial type, for example, the diaphragm 700, the interlocking member 800, or the counter plate 900 shown in FIG. 11 may be provided instead of the diaphragm 46 and the counter plate 50 shown in FIG.
 振動板700や連動部材800や対向板900は、枠体3a(図6)の内側に配置される。振動板700と対向板900とは、上下に対向する。連動部材800は、振動板700と対向板900との間に配置される。 The diaphragm 700, the interlocking member 800, and the counter plate 900 are disposed inside the frame 3a (FIG. 6). The diaphragm 700 and the counter plate 900 face each other in the vertical direction. The interlocking member 800 is disposed between the diaphragm 700 and the counter plate 900.
 振動板700は、板バネ710と、軸支持部720と、駆動軸730とを備える。 The diaphragm 700 includes a leaf spring 710, a shaft support portion 720, and a drive shaft 730.
 板バネ710は、一方端が柱体3bに支持される。 One end of the plate spring 710 is supported by the column 3b.
 軸支持部720は、基部721と、腕部722とを備える。 The shaft support portion 720 includes a base portion 721 and an arm portion 722.
 基部721の一方側面には、板バネ710の他方端が接続される。 The other end of the leaf spring 710 is connected to one side surface of the base 721.
 腕部722は、基部721の上端から、他方側へ延びる。腕部722の他方端には、第3の磁石M3が取り付けられる。第3の磁石M3は、枠体3a(図6)に取り付けられる第4の磁石M4と対向する。 The arm portion 722 extends from the upper end of the base portion 721 to the other side. A third magnet M3 is attached to the other end of the arm portion 722. The third magnet M3 faces the fourth magnet M4 attached to the frame 3a (FIG. 6).
 駆動軸730は、腕部722に支持されるものであり、腕部722の下面から下方に延びる。 The drive shaft 730 is supported by the arm portion 722 and extends downward from the lower surface of the arm portion 722.
 連動部材800は、ステー810と、磁石ケース820と、突起830とを備える。 The interlocking member 800 includes a stay 810, a magnet case 820, and a protrusion 830.
 ステー810は、対向板900の上面に沿って、一方側から他方側に延びる。ステー810の一方側には、対向板900に回動自在に連結される連結部811が設けられる。 The stay 810 extends from one side to the other side along the upper surface of the counter plate 900. On one side of the stay 810, a connecting portion 811 that is rotatably connected to the counter plate 900 is provided.
 磁石ケース820は、ステー810の他方端に取り付けられる。磁石ケース820は、腕部722と対向板900との間で、上下に延びる。磁石ケース820の下端は、対向板900に摺動自在に支持される。 The magnet case 820 is attached to the other end of the stay 810. The magnet case 820 extends vertically between the arm portion 722 and the counter plate 900. The lower end of the magnet case 820 is slidably supported by the counter plate 900.
 突起830は、磁石ケース820の上端から、一方側に延びる。突起830には貫通孔831が形成される。貫通孔831に駆動軸730が通されることで、振動板700の振動に伴い、連動部材800は振動可能である。 The protrusion 830 extends from the upper end of the magnet case 820 to one side. A through hole 831 is formed in the protrusion 830. By passing the drive shaft 730 through the through-hole 831, the interlocking member 800 can vibrate with the vibration of the diaphragm 700.
 磁石ケース820の他方側面には、第6の磁石M6が取り付けられる。第6の磁石M6は、S極74、N極75、及びS極76を備える。S極74、N極75、及びS極76は、連動部材800の振動方向(矢印A)に並ぶ。 The sixth magnet M6 is attached to the other side surface of the magnet case 820. The sixth magnet M6 includes an S pole 74, an N pole 75, and an S pole 76. The S pole 74, the N pole 75, and the S pole 76 are arranged in the vibration direction (arrow A) of the interlocking member 800.
 対向板900は、一方端が柱体3bに支持される。対向板900の他方端には、コイル支持部材910が取り付けられる。 One end of the counter plate 900 is supported by the column 3b. A coil support member 910 is attached to the other end of the counter plate 900.
 コイル支持部材910は、磁石ケース820よりも他方側に位置し、上下に延びる。コイル支持部材910の一方側面には、コイル93,94,95(第2のコイル)が取り付けられる。コイル93,94,95として、コアを備えたものを使用できる。 The coil support member 910 is located on the other side of the magnet case 820 and extends vertically. Coils 93, 94, and 95 (second coil) are attached to one side surface of the coil support member 910. As the coils 93, 94, and 95, those having a core can be used.
 コイル93,94,95は、連動部材800の振動方向(矢印A)に並ぶ。コイル93,94,95と、第6の磁石M6(S極74,N極75,S極76)とは、柱体3bの軸方向(上下方向)と垂直な方向に対向する。 The coils 93, 94, 95 are arranged in the vibration direction (arrow A) of the interlocking member 800. The coils 93, 94, 95 and the sixth magnet M6 (S pole 74, N pole 75, S pole 76) face each other in a direction perpendicular to the axial direction (vertical direction) of the column 3b.
 以上の変形例では、第6の磁石M6が、コイル93,94,95に生じさせる磁力線は、柱体の軸方向(上下方向)と垂直な方向に向かうものとなる。 In the above modification, the magnetic lines of force generated by the sixth magnet M6 in the coils 93, 94, 95 are directed in a direction perpendicular to the axial direction (vertical direction) of the column.
 そして、回転軸8(図6)を回転させて、第3及び第4の磁石M3,M4の反発力を生じさせると、振動板700が振動する。これに伴い、駆動軸730が、貫通孔831の内面を、振動板700の振動方向(矢印B)に押圧する。この押圧により、連動部材800は、連結部811を支点として、対向板50に対して振動する(矢印A)。これにより、第6の磁石M6(S極74、N極75、及びS極76)は、コイル93,94,95の前を往復運動して、コイル93,94,95と対向する位置を通過する。この往復運動により、第6の磁石M6と、コイル93,94,95との位置関係が変わり、コイル93,94,95を通過する磁力線が変化する。したがって、発電が行われる。 And if the rotating shaft 8 (FIG. 6) is rotated and the repulsive force of the 3rd and 4th magnets M3 and M4 is produced, the diaphragm 700 will vibrate. Accordingly, the drive shaft 730 presses the inner surface of the through hole 831 in the vibration direction (arrow B) of the diaphragm 700. By this pressing, the interlocking member 800 vibrates with respect to the opposing plate 50 with the connecting portion 811 as a fulcrum (arrow A). As a result, the sixth magnet M6 (S pole 74, N pole 75, and S pole 76) reciprocates in front of the coils 93, 94, 95, and passes through the position facing the coils 93, 94, 95. To do. By this reciprocation, the positional relationship between the sixth magnet M6 and the coils 93, 94, 95 changes, and the lines of magnetic force passing through the coils 93, 94, 95 change. Therefore, power generation is performed.
 また、第3及び第4磁石M3,M4の作用により、振動板700が強制的に振動される。このため、第3及び第4磁石M3,M4が取り付けられない場合に比して、振動板700や連動部材800は、より大きな変位の振動を生じる。よって、発電量を大幅に向上させることが可能である。 Further, the diaphragm 700 is forcibly vibrated by the action of the third and fourth magnets M3 and M4. For this reason, as compared with the case where the third and fourth magnets M3 and M4 are not attached, the vibration plate 700 and the interlocking member 800 generate vibration with a larger displacement. Therefore, it is possible to greatly improve the power generation amount.
 なお、上記変形例では、連動部材800に第6磁石M6を取り付け、対向板900にコイル93,94,95を取り付けているが、これとは逆に、連動部材800にコイル93,94,95を取り付け、対向板900に第6磁石M6を取り付けてもよい。 In the above modification, the sixth magnet M6 is attached to the interlocking member 800, and the coils 93, 94, 95 are attached to the counter plate 900. Conversely, the coils 93, 94, 95 are attached to the interlocking member 800. And the sixth magnet M6 may be attached to the counter plate 900.
 また、本発明の発電システムは、図12に示すように変更できる。図12に示す発電システム300は、発電装置202と、モーメント付与手段400とを備える。 Further, the power generation system of the present invention can be modified as shown in FIG. A power generation system 300 illustrated in FIG. 12 includes a power generation device 202 and a moment application unit 400.
 発電装置202は、上下方向に複数並んで配置される。各発電装置202は、図4に示す発電装置200と同様の基本的構成を有するが、発電装置200と一部異なる。すなわち、発電装置202では、第1の磁石M1(図4)の代わりに、突起71が枠体3aに設けられる。突起71には貫通孔72が形成される。 A plurality of power generation devices 202 are arranged in the vertical direction. Each power generation device 202 has the same basic configuration as the power generation device 200 shown in FIG. 4, but is partly different from the power generation device 200. That is, in the power generation device 202, the projection 71 is provided on the frame 3a instead of the first magnet M1 (FIG. 4). A through hole 72 is formed in the protrusion 71.
 モーメント付与手段400は、リンク機構81と、回転軸8(駆動機構)とを備える。 The moment applying means 400 includes a link mechanism 81 and a rotating shaft 8 (drive mechanism).
 リンク機構81は、発電装置202毎に設けられる。リンク機構81は、発電装置202の枠体3aに連結されて、枠体3aに第1軸部材45回りのモーメントを付与するものである。 The link mechanism 81 is provided for each power generator 202. The link mechanism 81 is connected to the frame body 3a of the power generator 202, and applies a moment around the first shaft member 45 to the frame body 3a.
 リンク機構81は、上下一対の板材82,82を備える。板材82,82は、第2軸部材83に支持される。リンク機構81(板材82,82)は、第2軸部材83を中心に回動可能である。第2軸部材83は、保持枠2’と一体の部材であり、第1軸部材45と平行である。第2軸部材83からリンク機構81の一方端までの長さL1は、第2軸部材83からリンク機構81の他方端までの長さL2よりも、短い。 The link mechanism 81 includes a pair of upper and lower plate members 82, 82. The plate members 82 and 82 are supported by the second shaft member 83. The link mechanism 81 (plate members 82, 82) can rotate around the second shaft member 83. The second shaft member 83 is a member integrated with the holding frame 2 ′ and is parallel to the first shaft member 45. A length L1 from the second shaft member 83 to one end of the link mechanism 81 is shorter than a length L2 from the second shaft member 83 to the other end of the link mechanism 81.
 板材82,82は、一方端同士が接続部材84により接続される。接続部材84には、筒状のローラ85が取り付けられる。 One end of each of the plate members 82 and 82 is connected by a connecting member 84. A cylindrical roller 85 is attached to the connection member 84.
 板材82,82は、他方端同士が第3軸部材86により接続される。第3軸部材86は、第1及び第2軸部材45,83と平行である。第3軸部材86が突起71の貫通孔72に通されることで、リンク機構81は、第3軸部材86を介して枠体3aと連結される。 The other ends of the plate members 82 and 82 are connected by the third shaft member 86. The third shaft member 86 is parallel to the first and second shaft members 45 and 83. Since the third shaft member 86 is passed through the through hole 72 of the protrusion 71, the link mechanism 81 is connected to the frame body 3 a via the third shaft member 86.
 回転軸8は、ローラ85に力を加えることで、リンク機構81に第2軸部材83回りのモーメントを付与するものである。 Rotating shaft 8 applies a moment to second link member 83 to link mechanism 81 by applying a force to roller 85.
 回転軸8は、外周面に突起87が複数取り付けられる。突起87は、各リンク機構81のローラ85と対向する位置に配置される。すなわち、突起87は、ローラ85と同じ間隔で回転軸8の軸方向に配置される。また、突起87は、それぞれ回転軸8の周方向にずれるように配置されており、回転軸8の軸方向に延びる同一直線上に1つしか配置されないようになっている。これにより、回転軸8の回転時に、各突起87は、対応する各ローラ85と順次接触し、同時には接触しない。 The rotating shaft 8 has a plurality of protrusions 87 attached to the outer peripheral surface. The protrusion 87 is disposed at a position facing the roller 85 of each link mechanism 81. That is, the protrusions 87 are arranged in the axial direction of the rotary shaft 8 at the same interval as the rollers 85. Further, each of the protrusions 87 is arranged so as to be displaced in the circumferential direction of the rotating shaft 8, and only one protrusion 87 is arranged on the same straight line extending in the axial direction of the rotating shaft 8. Thus, when the rotary shaft 8 rotates, the protrusions 87 sequentially contact the corresponding rollers 85 and do not contact at the same time.
 発電システム300は、発電装置202とリンク機構81の組が上下に並んだものを、一つの発電ユニットとするものである。図示を省略したが、上記の発電ユニットは、回転軸8を中心として、放射状に設置される。回転軸8の各突起87は、一の発電ユニットの各ローラ85と接触した後に、一の発電ユニットと時計回りに隣接する二の発電ユニットの各ローラ85と接触する。 The power generation system 300 is a unit in which a pair of a power generation device 202 and a link mechanism 81 is vertically arranged as one power generation unit. Although not shown, the power generation units described above are installed radially around the rotating shaft 8. Each protrusion 87 of the rotating shaft 8 contacts each roller 85 of one power generation unit, and then contacts each roller 85 of the second power generation unit adjacent to the one power generation unit in the clockwise direction.
 以上の発電システム300では、回転軸8を回転させると、まず、一の発電ユニットにおいて、一番上に位置する突起87が、一番上のリンク機構81に取り付けられたローラ85に接触して、力を加える。これにより、リンク機構81に第2軸部材83回りのモーメントが付与されて、リンク機構81は、第2軸部材83を中心に回動する。そして、リンク機構81は、回転軸8から付与されたモーメントを、第3軸部材86を介して、枠体3aに伝達する。これにより、枠体3aに第1軸部材45回りのモーメントが付与される。この結果、枠体3aが第1軸部材45を中心に回動することで、第4の磁石M4が第3の磁石M3に近づき、第3及び第4の磁石M3,M4の反発力が生じる。したがって、振動板4が振動して撓み、振動板4上の圧電素子5に圧力が加わり発電が行われる。 In the power generation system 300 described above, when the rotary shaft 8 is rotated, first, in one power generation unit, the projection 87 located at the top comes into contact with the roller 85 attached to the top link mechanism 81. Apply power. As a result, a moment around the second shaft member 83 is applied to the link mechanism 81, and the link mechanism 81 rotates about the second shaft member 83. The link mechanism 81 transmits the moment applied from the rotary shaft 8 to the frame body 3a via the third shaft member 86. Thereby, a moment around the first shaft member 45 is given to the frame 3a. As a result, the frame 3a rotates around the first shaft member 45, whereby the fourth magnet M4 approaches the third magnet M3, and the repulsive force of the third and fourth magnets M3 and M4 is generated. . Therefore, the vibration plate 4 vibrates and bends, and pressure is applied to the piezoelectric element 5 on the vibration plate 4 to generate power.
 そして、回転軸8がさらに回転すると、次は上から2番目の突起87が、上から2番目のリンク機構81に取り付けられたローラ85に接触し、上から2番目の発電装置202で同様に発電が行われる。 Then, when the rotating shaft 8 further rotates, the second projection 87 from the top comes into contact with the roller 85 attached to the second link mechanism 81 from the top, and the second power generator 202 from the top similarly Power generation is performed.
 そして、回転軸8がさらに回転すると、上から3番目の発電装置202(図示せず)で発電が行われるというように、上から下へと順番に発電が行われる。 Then, when the rotating shaft 8 further rotates, power generation is performed in order from top to bottom, such that power generation is performed by the third power generation device 202 (not shown) from the top.
 そして、次は、時計回り側に隣接する発電ユニットにおいても同様の方法で上から順次発電が行われる。 And next, power generation is performed sequentially from the top in the same manner in the power generation unit adjacent to the clockwise side.
 以上の発電システム300によれば、モーメント付与手段400が、枠体3aを回動させるモーメントを、枠体3aに付与する。具体的には、枠体3aを回動させるモーメントが、回転軸8からリンク機構81を介して、枠体3aに伝達される。これにより、枠体3aが回動するので、振動板4を振動させて撓ませることができ、発電が行われる。 According to the power generation system 300 described above, the moment applying means 400 applies a moment for rotating the frame 3a to the frame 3a. Specifically, a moment for rotating the frame 3 a is transmitted from the rotating shaft 8 to the frame 3 a via the link mechanism 81. Thereby, since the frame 3a rotates, the diaphragm 4 can be vibrated and bent, and power generation is performed.
 また、リンク機構81の長さL1が長さL2よりも短いことで、テコの原理により、枠体3aの回動に要する駆動力を大幅に軽減することができる。 Further, since the length L1 of the link mechanism 81 is shorter than the length L2, the driving force required for the rotation of the frame 3a can be greatly reduced by the lever principle.
 なお、発電システム300では、リンク機構81を省略して、回転軸8の突起87を、枠体3aに直接接触させることで、枠体3aを回動させてもよい。また、発電装置202の代わりに、図3に示す発電装置22’や、図6に示す発電装置201や、図10,図11に示す発電装置201の変形例と同様の基本構成を有する発電装置が設けられてもよい。 In the power generation system 300, the link mechanism 81 may be omitted, and the frame body 3a may be rotated by bringing the protrusion 87 of the rotating shaft 8 into direct contact with the frame body 3a. Further, instead of the power generation device 202, the power generation device 22 ′ shown in FIG. 3, the power generation device 201 shown in FIG. 6, and the power generation device having the same basic configuration as the modification of the power generation device 201 shown in FIGS. May be provided.
 また、発電システム300は、図13に示すように変更できる。図13の変形例は、発電装置202を、水平方向にも複数配列したものである。各発電装置202の枠体3aは、第1軸部材45を中心に回動可能とされる。 Further, the power generation system 300 can be changed as shown in FIG. In the modification of FIG. 13, a plurality of power generation devices 202 are arranged in the horizontal direction. The frame body 3a of each power generation device 202 is rotatable about the first shaft member 45.
 各発電装置202の枠体3aでは、一方側(リンク機構81側)の短辺側壁90に、突起71が設けられる。突起71には、貫通孔72が形成される。 In the frame body 3a of each power generation device 202, a projection 71 is provided on the short side wall 90 on one side (link mechanism 81 side). A through hole 72 is formed in the protrusion 71.
 一方端の発電装置202の枠体3a(以下、一方端の枠体3aと示す)では、貫通孔72に、リンク機構81の第3軸部材86が通される。これにより、一方端の枠体3aとリンク機構81とは、第3軸部材86を介して連結される。 In the frame body 3a of the power generation device 202 at one end (hereinafter referred to as the frame body 3a at one end), the third shaft member 86 of the link mechanism 81 is passed through the through hole 72. Thereby, the frame body 3 a at one end and the link mechanism 81 are connected via the third shaft member 86.
 また各発電装置202の枠体3aでは、他方側(リンク機構81と反対側)の短辺側壁91に、上下一対の板材89,89が設けられる。 Further, in the frame 3a of each power generator 202, a pair of upper and lower plate members 89, 89 are provided on the short side wall 91 on the other side (the side opposite to the link mechanism 81).
 板材89,89は、他方端同士が第4軸部材88により接続される。第4軸部材88は、第1、第2、及び第3軸部材45,83,86と平行である。 The other ends of the plate members 89 and 89 are connected by the fourth shaft member 88. The fourth shaft member 88 is parallel to the first, second, and third shaft members 45, 83, 86.
 隣り合う2つの発電装置202では、一方側の発電装置202の第4軸部材88が、他方側の発電装置202の貫通孔72に通される。これにより、隣り合う2つの発電装置202は、第4軸部材88を介して連結される。 In the two adjacent power generation devices 202, the fourth shaft member 88 of the power generation device 202 on one side is passed through the through hole 72 of the power generation device 202 on the other side. Thereby, two adjacent power generators 202 are connected via the fourth shaft member 88.
 以上の発電システム300によれば、回転軸8を回転させて、リンク機構81にモーメントを付与すると、リンク機構81は、付与されたモーメントを、第3軸部材86を介して、一方端の枠体3aに伝達する。これにより、一方端の枠体3aに、第1軸部材45回りのモーメントが付与される。この結果、一方端の発電装置202では、枠体3aが第1軸部材45を中心に回動して、第3及び第4の磁石M3,M4の反発力が生じる。したがって、振動板4が振動して撓み、圧電素子5に圧力が加わり発電が行われる。 According to the power generation system 300 described above, when the rotation shaft 8 is rotated and a moment is applied to the link mechanism 81, the link mechanism 81 transmits the applied moment to the one end frame via the third shaft member 86. Transmitted to the body 3a. As a result, a moment around the first shaft member 45 is applied to the frame 3a at one end. As a result, in the power generation device 202 at one end, the frame 3a rotates about the first shaft member 45, and the repulsive force of the third and fourth magnets M3 and M4 is generated. Therefore, the diaphragm 4 vibrates and bends, and pressure is applied to the piezoelectric element 5 to generate power.
 そして、一方端の発電装置202は、回転軸8から付与されたモーメントを、第4軸部材88を介して、他方側の発電装置202の枠体3aに伝達する。これにより、該他方側の発電装置202では、枠体3aに第1軸部材45回りのモーメントが付与されて、枠体3aが回動する。この結果、該他方側の発電装置202においても、第3及び第4の磁石M3,M4の反発力により、振動板4が振動して、発電が行われる。 Then, the power generation device 202 at one end transmits the moment applied from the rotary shaft 8 to the frame 3 a of the power generation device 202 on the other side via the fourth shaft member 88. Accordingly, in the power generator 202 on the other side, a moment around the first shaft member 45 is applied to the frame body 3a, and the frame body 3a rotates. As a result, also in the power generator 202 on the other side, the diaphragm 4 vibrates by the repulsive force of the third and fourth magnets M3 and M4, and power generation is performed.
 そして、隣り合う2つの発電装置202のうち、一方側の発電装置202の枠体3aは、付与されたモーメントを、第4軸部材88を介して、他方側の発電装置202の枠体3aに伝達する。これにより、該他方側の発電装置202では、枠体3aに第1軸部材45回りのモーメントが付与されて、枠体3aが回動する。これにより、振動板4が振動して、発電が行われる。 Of the two adjacent power generation devices 202, the frame 3a of the power generation device 202 on one side applies the applied moment to the frame 3a of the power generation device 202 on the other side via the fourth shaft member 88. introduce. Accordingly, in the power generator 202 on the other side, a moment around the first shaft member 45 is applied to the frame body 3a, and the frame body 3a rotates. Thereby, the diaphragm 4 vibrates and power generation is performed.
 以上の発電システム300によれば、回転軸8が回転することに応じて、第4軸部材88を介して、一方側の発電装置202から、他方側の発電装置202へと、枠体3aを回動させるモーメントが順次伝達される。これにより、水平方向に配列される各発電装置202で、振動板4を振動させて撓ませることができ、発電が行われる。したがって、回転軸8の一度の回転で、多くの発電装置に発電を行わせることができ、発電量を大幅に向上させることが可能である。 According to the power generation system 300 described above, the frame 3a is moved from the power generation device 202 on one side to the power generation device 202 on the other side via the fourth shaft member 88 according to the rotation of the rotary shaft 8. The rotating moment is transmitted sequentially. As a result, the diaphragm 4 can be vibrated and bent by the respective power generation devices 202 arranged in the horizontal direction, and power generation is performed. Therefore, one rotation of the rotating shaft 8 can cause many power generators to generate power, and the power generation amount can be greatly improved.
 なお、上記の発電システム300では、水平方向に配列される発電装置202の数は任意に設定できる。また、発電装置202は、水平方向に対して傾斜する方向に、複数配列されてもよい。 In the power generation system 300 described above, the number of power generation devices 202 arranged in the horizontal direction can be arbitrarily set. A plurality of power generators 202 may be arranged in a direction inclined with respect to the horizontal direction.
 上述した発電システム10、300において、回転軸8の回転駆動源は種々のものとすることができ、例えば、図14に示すように、風力を駆動源として回転軸8を回転させるような構成とすることができる。なお、符号100は、発電部であり、上述した回転軸8とこの回転軸8の周囲に放射状に配置された複数の発電ユニット20を備えたものを模式的に図示している。 In the power generation systems 10 and 300 described above, the rotational drive source of the rotary shaft 8 can be various. For example, as shown in FIG. 14, the rotary shaft 8 is rotated using wind power as the drive source. can do. Reference numeral 100 denotes a power generation unit, which schematically illustrates the above-described rotary shaft 8 and a plurality of power generation units 20 arranged radially around the rotary shaft 8.
 詳細について説明すると、回転軸8の下端部は複数の羽根(図示省略)が直接又は間接的に取り付けられてタービンを構成しており、この羽根が設けられた回転軸8の下端部がケーシング11によって覆われている。ケーシング11は、吸気口121を有する吸気ダクト(吸気部)12と、ケーシング11内に流入した空気をケーシング11内から排出する排気ダクト(排気部)13が接続されている。そして、排気ダクト13の先端には、上方へと延びる排気塔14が接続されている。この発電システム10、300によれば、上方へと延びる排気塔14が設けられていることにより、空気が吸気ダクト12から流入してケーシング11及び排気ダクト13を通過して、排気塔14の上端から排出される。このように、ケーシング11内には気流が生じるため、回転軸8の下端部に取り付けられた複数の羽根に空気が衝突し、その結果、回転軸8が回転して、上述したような発電が行われる。 More specifically, the lower end portion of the rotating shaft 8 has a plurality of blades (not shown) attached directly or indirectly to constitute a turbine, and the lower end portion of the rotating shaft 8 provided with the blades is the casing 11. Covered by. The casing 11 is connected to an intake duct (intake section) 12 having an intake port 121 and an exhaust duct (exhaust section) 13 that discharges air flowing into the casing 11 from the casing 11. An exhaust tower 14 extending upward is connected to the tip of the exhaust duct 13. According to the power generation systems 10 and 300, the exhaust tower 14 extending upward is provided, so that air flows in from the intake duct 12 and passes through the casing 11 and the exhaust duct 13, and the upper end of the exhaust tower 14. Discharged from. As described above, since an air flow is generated in the casing 11, air collides with a plurality of blades attached to the lower end portion of the rotating shaft 8, and as a result, the rotating shaft 8 rotates to generate power as described above. Done.
 以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。 As mentioned above, although embodiment of this invention was described, this invention is not limited to these, A various change is possible unless it deviates from the meaning of this invention.
 例えば上記実施形態では、支持枠3を引っ張りバネ6によって保持枠2に保持していたが、特にこれに限定されるものではなく、引っ張りバネ6の代わりにゴムなどの伸縮可能な部材を用いることもできる。 For example, in the above-described embodiment, the support frame 3 is held on the holding frame 2 by the tension spring 6. However, the present invention is not limited to this, and a stretchable member such as rubber is used instead of the tension spring 6. You can also.
 また、上記実施形態では、4つの引っ張りバネ6によって保持枠2に支持枠3を保持させていたが、引っ張りバネ6の本数は特に限定されるものではない。また、上記実施形態では引っ張りバネ6のみによって支持枠3を保持枠2に保持させていたが、特にこれに限定されるものではない。例えば図15に示すように、支持枠3を介して一対の引っ張りバネ6が対向して配置されており、また、支持枠3の短辺側壁32にO型アンカー61を取付け、輪部分611を貫通するコ字状アンカー62を保持枠2の短辺側壁22に取り付ける構成などにすることができる。 In the above embodiment, the support frame 3 is held by the holding frame 2 by the four tension springs 6, but the number of the tension springs 6 is not particularly limited. Moreover, in the said embodiment, although the support frame 3 was hold | maintained at the holding frame 2 only by the tension spring 6, it is not limited to this in particular. For example, as shown in FIG. 15, a pair of tension springs 6 are arranged to face each other via the support frame 3, and an O-shaped anchor 61 is attached to the short side wall 32 of the support frame 3, and the ring portion 611 is attached. A configuration in which the U-shaped anchor 62 penetrating through is attached to the short side wall 22 of the holding frame 2 can be employed.
 また、取付け具23,33を介して引っ張りバネ6が保持枠2と支持枠3とに接続している必要はなく、取付け具23,33を省略して引っ張りバネ6を保持枠2や支持枠3に直接接続することもできる。また、引っ張りバネ6は、保持枠2及び支持枠3の長辺側壁21,31に取り付けられているが、短辺側壁22,32に取り付けることもできる。 Further, it is not necessary that the tension spring 6 is connected to the holding frame 2 and the support frame 3 via the fixtures 23 and 33, and the tension spring 6 is omitted from the holding frame 2 and the support frame by omitting the fixtures 23 and 33. 3 can also be connected directly. The tension spring 6 is attached to the long side walls 21 and 31 of the holding frame 2 and the support frame 3, but can also be attached to the short side walls 22 and 32.
 また、上記実施形態では、圧電素子5は振動板4の上面のみに取り付けられているが、下面にも取り付けることができる。また、上記実施形態では、振動板4の上面に複数の圧電素子5が取り付けられているが、圧電素子5の数は1つのみであってもよい。 In the above embodiment, the piezoelectric element 5 is attached only to the upper surface of the diaphragm 4, but can also be attached to the lower surface. In the above embodiment, the plurality of piezoelectric elements 5 are attached to the upper surface of the diaphragm 4, but the number of piezoelectric elements 5 may be only one.
 また、図1に示す上記実施形態では、支持枠3の各短辺側壁32には、1つの振動板4が取り付けられているが、複数の振動板4を取り付けることができ、また、これを水平方向若しくは垂直方向に並べて取り付けることもできる。 In the above embodiment shown in FIG. 1, one diaphragm 4 is attached to each short side wall 32 of the support frame 3, but a plurality of diaphragms 4 can be attached, It can also be mounted side by side in the horizontal or vertical direction.
 また、上記実施形態における発電システム10(図3)は、回転軸8が回転することによって第1の磁石M1に第2の磁石M2を近づけて反発力により各支持枠3を振動させていたが、第2の磁石M2を取り付ける部材を回転軸8ではなく、例えば、各発電装置1’を横切るように水平方向や垂直方向に移動するような移動体に第2の磁石M2を取り付けてもよい。これによっても、移動体が近付いてくることで、第1の磁石M1に第2の磁石M2が近付き、反発力で各支持枠3を振動させることができる。この場合、各発電ユニット20は、移動体の移動方向に沿って配置されていることが好ましい。 Further, in the power generation system 10 (FIG. 3) in the above embodiment, each support frame 3 is vibrated by a repulsive force by bringing the second magnet M2 closer to the first magnet M1 as the rotating shaft 8 rotates. For example, the second magnet M2 may be attached to a moving body that moves in a horizontal direction or a vertical direction so as to cross each power generation device 1 ′ instead of the rotating shaft 8 as a member for attaching the second magnet M2. . Also by this, when the moving body approaches, the second magnet M2 approaches the first magnet M1, and each support frame 3 can be vibrated by a repulsive force. In this case, each power generation unit 20 is preferably arranged along the moving direction of the moving body.
 また、上記実施形態における発電システム10では、上から順に第2の磁石M2が回転軸8の周方向にずらして配置されているが、第2の磁石M2が回転軸8の周方向にずれてさえいれば各支持枠3を同時に振動させることがないため、上記実施形態の配置通りに第2の磁石M2がずれている必要はない。また、回転軸8を回転駆動させる駆動力に問題がなければ、第2の磁石M2を回転軸8の軸方向に一直線上に配置し、一度に4つの支持枠3を振動させてもよい。 Further, in the power generation system 10 according to the above-described embodiment, the second magnet M2 is shifted in the circumferential direction of the rotating shaft 8 in order from the top, but the second magnet M2 is shifted in the circumferential direction of the rotating shaft 8. As long as it is present, the support frames 3 are not vibrated at the same time. Therefore, the second magnet M2 does not have to be displaced as in the arrangement of the above embodiment. If there is no problem with the driving force for rotationally driving the rotary shaft 8, the second magnet M2 may be arranged in a straight line in the axial direction of the rotary shaft 8 and the four support frames 3 may be vibrated at a time.
 また、上記実施形態における発電システム300(図12,図13)では、上から順に突起87が回転軸8の周方向にずらして配置されているが、突起87が回転軸8の周方向にずれてさえいれば各支持枠3を同時に振動させることがないため、上記実施形態の配置通りに突起87がずれている必要はない。また、回転軸8を回転駆動させる駆動力に問題がなければ、突起87を回転軸8の軸方向に一直線上に配置し、一度に複数の支持枠3を振動させてもよい。 Further, in the power generation system 300 (FIGS. 12 and 13) in the above embodiment, the protrusions 87 are sequentially shifted from the top in the circumferential direction of the rotating shaft 8. Since the support frames 3 do not vibrate at the same time as long as they are present, the projections 87 do not have to be displaced as in the arrangement of the above embodiment. If there is no problem with the driving force for rotationally driving the rotary shaft 8, the protrusions 87 may be arranged in a straight line in the axial direction of the rotary shaft 8 and the plurality of support frames 3 may be vibrated at a time.
 また、上記実施形態では、発電システム10、300は、複数の発電ユニット(発電システム10では発電ユニット20)を放射状に配置していたが、発電ユニットは1つのみであってもよい。 In the above embodiment, the power generation systems 10 and 300 are arranged with a plurality of power generation units (power generation units 20 in the power generation system 10) in a radial manner, but there may be only one power generation unit.
 また、発電システム10、300は、図16に示すように、2つの発電部100を設置することもできる。この場合は、ケーシング11内を流れる風圧を検知するセンサ(圧力センサ)(図示省略)によって風圧を検出し、所定の風圧以上であれば、2つとも作動させ、所定の風圧未満であれば、制御手段(図示省略)によってどちらか一方の電磁クラッチ15の接続を解除し、1つの発電部100のみを作動させるように構成することができる。なお、風圧を検知するセンサの代わりに、各回転軸8の回転数を検出するセンサを設け、この回転数によって、稼働する発電部100の稼働数を制御することもできる。 In addition, the power generation systems 10 and 300 can also have two power generation units 100 as shown in FIG. In this case, the wind pressure is detected by a sensor (pressure sensor) (not shown) that detects the wind pressure flowing in the casing 11, and if it is equal to or higher than a predetermined wind pressure, both are operated, and if less than the predetermined wind pressure, One of the electromagnetic clutches 15 can be disconnected by a control means (not shown), and only one power generation unit 100 can be operated. Instead of the sensor for detecting the wind pressure, a sensor for detecting the rotational speed of each rotating shaft 8 may be provided, and the operating number of the power generation unit 100 that operates can be controlled by this rotational speed.
 また、図17に示すように、発電システム10、300の排気ダクト13にダンパー16を設置し、回転軸8の回転数が高くなり過ぎた場合に、ダンパー16を開いて吸気口121からの空気の流入量を減らすような構成とすることもできる。この場合、回転軸8の回転数を検出する回転数検出手段(図示省略)と、この回転数検出手段により検出された回転数によりダンパー16の開閉を制御する制御手段(図示省略)を設けて、ダンパー16の開閉を自動で制御するような構成にすることが好ましい。なお、ダンパー16は、排気塔14の下部に設置することもできる。また、より精密に回転軸8の回転数を制御するために、自動変速機を回転軸8に設けることもできる。 In addition, as shown in FIG. 17, when a damper 16 is installed in the exhaust duct 13 of the power generation systems 10 and 300 and the rotational speed of the rotary shaft 8 becomes too high, the damper 16 is opened and air from the intake port 121 is opened. It can also be set as the structure which reduces the inflow amount. In this case, a rotation speed detection means (not shown) for detecting the rotation speed of the rotary shaft 8 and a control means (not shown) for controlling the opening / closing of the damper 16 by the rotation speed detected by the rotation speed detection means are provided. It is preferable that the damper 16 be opened and closed automatically. The damper 16 can also be installed at the lower part of the exhaust tower 14. Further, an automatic transmission can be provided on the rotating shaft 8 in order to control the rotational speed of the rotating shaft 8 more precisely.
 また、上記排気ダクト13内もしくは排気塔14の下部の温度を高めることによって、排気塔14内を流れる空気の通気力を高めることができる。このため、例えば、図18に示すように、排気ダクト13の一部に排気ダクト13内部に湾曲する断面円弧状の受熱板17を設け、この受熱板17に向かって集光レンズ18によって太陽光を集光するような構成にすることができる。太陽光によって加熱された受熱板17の熱を排気ダクト14内の空気へと効率よく放熱するために、受熱板17の内壁面には複数の放熱板19が取り付けられている。また、集光レンズ18が太陽の光を効率よく集光するために、太陽の位置を検出する位置検出センサ(図示省略)を設け、この位置検出センサによって検出された太陽の位置によって集光レンズ18の角度を制御するような制御手段を設けることもできる。なお、受熱板17の材質として、例えば銅やアルミなどを挙げることができる。 Further, by increasing the temperature in the exhaust duct 13 or the lower part of the exhaust tower 14, the air permeability of the air flowing in the exhaust tower 14 can be increased. For this reason, for example, as shown in FIG. 18, a heat receiving plate 17 having an arc-shaped cross section that is curved inside the exhaust duct 13 is provided in a part of the exhaust duct 13, and sunlight is collected by the condenser lens 18 toward the heat receiving plate 17. Can be configured to condense. In order to efficiently radiate the heat of the heat receiving plate 17 heated by sunlight to the air in the exhaust duct 14, a plurality of heat radiating plates 19 are attached to the inner wall surface of the heat receiving plate 17. In addition, in order for the condensing lens 18 to condense solar light efficiently, a position detection sensor (not shown) for detecting the position of the sun is provided, and the condensing lens is determined by the position of the sun detected by the position detection sensor. Control means for controlling the 18 angles can also be provided. In addition, as a material of the heat receiving plate 17, copper, aluminum, etc. can be mentioned, for example.
 1、1’、200,201,202  発電装置
 2  保持枠
 3  支持枠
 3a  枠体
 3b  柱体
 4、46、500、700  振動板
 5  圧電素子(発電手段)
 6  引っ張りバネ(弾性部材)
 7  錘
 8  回転軸
 10、300  発電システム
 11  ケーシング
 12  吸気ダクト(吸気部)
 13  排気ダクト(排気部)
 14  排気塔
 15  電磁クラッチ
 16  ダンパー
 17  受熱板
 18  集光レンズ
 20  発電ユニット
 45  第1軸部材
 50、600、900  対向板
 65、66、67  第1のコイル(発電手段)
 81  リンク機構
 83  第2軸部材
 86  第3軸部材
 88  第4軸部材
 93、94、95  第2のコイル(発電手段)
 100  発電部
 400  モーメント付与手段
 800 連動部材
 M1  第1の磁石
 M2  第2の磁石
 M3  第3の磁石
 M4  第4の磁石
 M5  第5の磁石(発電手段)
 M6  第6の磁石(発電手段)
1, 1 ′, 200, 201, 202 Power generation device 2 Holding frame 3 Support frame 3a Frame body 3b Column body 4, 46, 500, 700 Diaphragm 5 Piezoelectric element (power generation means)
6 Tension spring (elastic member)
7 Weight 8 Rotating shaft 10, 300 Power generation system 11 Casing 12 Intake duct (intake part)
13 Exhaust duct (exhaust part)
14 exhaust tower 15 electromagnetic clutch 16 damper 17 heat receiving plate 18 condenser lens 20 power generation unit 45 first shaft member 50, 600, 900 counter plate 65, 66, 67 first coil (power generation means)
81 Link mechanism 83 Second shaft member 86 Third shaft member 88 Fourth shaft member 93, 94, 95 Second coil (power generation means)
DESCRIPTION OF SYMBOLS 100 Power generation part 400 Moment provision means 800 Interlocking member M1 1st magnet M2 2nd magnet M3 3rd magnet M4 4th magnet M5 5th magnet (power generation means)
M6 6th magnet (power generation means)

Claims (20)

  1.  保持手段に対して弾性部材を介して接続され中空状態に保持された支持体と、
     前記支持体に一方端が支持され他方端が自由端である振動板と、
     前記振動板が振動することで発電する発電手段と、を備えた発電装置。
    A support body connected to the holding means via an elastic member and held in a hollow state;
    A diaphragm having one end supported by the support and the other end being a free end;
    And a power generation unit configured to generate power when the diaphragm vibrates.
  2.  前記発電手段は、前記振動板の少なくとも一方面に取り付けられた圧電素子である請求項1に記載の発電装置。 The power generation device according to claim 1, wherein the power generation means is a piezoelectric element attached to at least one surface of the diaphragm.
  3.  前記支持体は、枠体と、柱体とを備え、
     前記枠体は、前記保持手段に対して前記弾性部材を介して接続され中空状態に保持され、
     前記柱体及び前記振動板は、前記枠体の内側に配置され、
     前記振動板の一方端は、前記柱体に支持され、
     前記振動板の他方端には、第3の磁石が取り付けられ、
     前記枠体には、前記第3の磁石と対向する位置に、第4の磁石が取り付けられる請求項2に記載の発電装置。
    The support includes a frame and a column,
    The frame is connected to the holding means via the elastic member and held in a hollow state,
    The column and the diaphragm are arranged inside the frame,
    One end of the diaphragm is supported by the column,
    A third magnet is attached to the other end of the diaphragm,
    The power generation device according to claim 2, wherein a fourth magnet is attached to the frame body at a position facing the third magnet.
  4.  前記支持体に一方端が支持されて、前記振動板に対向する対向板をさらに備え、
     前記発電手段は、前記振動板及び前記対向板のうち、一方に取り付けられる第5の磁石と、他方に取り付けられる第1のコイルとを備え、
     前記振動板が前記対向板に対して振動することで、前記第5の磁石は、前記第1のコイルと対向する位置を通過する請求項1に記載の発電装置。
    One end is supported by the support, and further includes a counter plate facing the diaphragm,
    The power generation means includes a fifth magnet attached to one of the diaphragm and the counter plate, and a first coil attached to the other.
    The power generation device according to claim 1, wherein the fifth magnet passes through a position facing the first coil as the vibration plate vibrates with respect to the counter plate.
  5.  前記支持体は、枠体と、柱体とを備え、
     前記枠体は、前記保持手段に対して前記弾性部材を介して接続され中空状態に保持され、
     前記柱体、前記振動板、及び前記対向板は、前記枠体の内側に配置され、
     前記振動板および前記対向板の一方端は、前記柱体に支持され、
     前記振動板の他方端には、第3の磁石が取り付けられ、
     前記枠体には、前記第3の磁石と対向する位置に、第4の磁石が取り付けられる請求項4に記載の発電装置。
    The support includes a frame and a column,
    The frame is connected to the holding means via the elastic member and held in a hollow state,
    The column body, the diaphragm, and the counter plate are disposed inside the frame body,
    One end of the diaphragm and the counter plate is supported by the column body,
    A third magnet is attached to the other end of the diaphragm,
    The power generation device according to claim 4, wherein a fourth magnet is attached to the frame body at a position facing the third magnet.
  6.  前記支持体に一方端が支持されて、前記振動板に対向する対向板と、
     前記振動板と前記対向板との間に配置される連動部材とをさらに備え、
     前記発電手段は、前記連動部材及び前記対向板のうち、一方に取り付けられる第6の磁石と、他方に取り付けられる第2のコイルとを備え、
     前記振動板の振動に伴い、前記連動部材が前記対向板に対して振動することで、前記第6の磁石は、前記第2のコイルと対向する位置を通過する請求項1に記載の発電装置。
    An opposing plate that is supported at one end by the support and faces the diaphragm;
    An interlocking member disposed between the diaphragm and the counter plate;
    The power generation means includes a sixth magnet attached to one of the interlocking member and the counter plate, and a second coil attached to the other.
    The power generation device according to claim 1, wherein the sixth magnet passes through a position facing the second coil as the interlocking member vibrates with respect to the counter plate with the vibration of the diaphragm. .
  7.  前記支持体は、枠体と、柱体とを備え、
     前記枠体は、前記保持手段に対して前記弾性部材を介して接続され中空状態に保持され、
     前記柱体、前記振動板、前記連動部材、及び前記対向板は、前記枠体の内側に配置され、
     前記振動板および前記対向板の一方端は、前記柱体に支持され、
     前記振動板の他方端には、第3の磁石が取り付けられ、
     前記枠体には、前記第3の磁石と対向する位置に、第4の磁石が取り付けられる請求項6に記載の発電装置。
    The support includes a frame and a column,
    The frame is connected to the holding means via the elastic member and held in a hollow state,
    The column body, the diaphragm, the interlocking member, and the counter plate are disposed inside the frame body,
    One end of the diaphragm and the counter plate is supported by the column body,
    A third magnet is attached to the other end of the diaphragm,
    The power generator according to claim 6, wherein a fourth magnet is attached to the frame body at a position facing the third magnet.
  8.  前記支持体に第1の磁石が取り付けられた請求項1から7のいずれかに記載の発電装置と、
     前記第1の磁石と対向する位置に第2の磁石が取り付けられ、前記発電装置を横切るように移動する移動体と、
    を備えた、発電システム。
    The power generation device according to any one of claims 1 to 7, wherein a first magnet is attached to the support.
    A moving body having a second magnet attached at a position facing the first magnet and moving across the power generation device;
    Power generation system equipped with.
  9.  請求項1から7のいずれかに記載の発電装置を複数有し、前記各発電装置の支持体に第1の磁石が取り付けられた発電ユニットと、
     前記各第1の磁石と対向する位置に第2の磁石が取り付けられ、前記発電ユニットを横切るように移動する移動体と、
    を備えた、発電システム。
    A plurality of power generation devices according to any one of claims 1 to 7, and a power generation unit in which a first magnet is attached to a support of each power generation device,
    A moving body in which a second magnet is attached at a position facing each of the first magnets and moves across the power generation unit;
    Power generation system equipped with.
  10.  前記各第1の磁石と前記各第2の磁石とは、前記移動体が前記発電ユニットを横切る際に、前記各第2の磁石が、対応する前記各第1の磁石を順次横切るように配置されている、請求項9に記載の発電システム。 Each of the first magnets and each of the second magnets are arranged so that each of the second magnets sequentially traverses each of the corresponding first magnets when the moving body crosses the power generation unit. The power generation system according to claim 9.
  11.  請求項3、5、又は7に記載の発電装置と、
     前記枠体に、該枠体を回動させるモーメントを付与するモーメント付与手段とを備える発電システム。
    A power generator according to claim 3, 5 or 7,
    A power generation system comprising moment applying means for applying a moment for rotating the frame to the frame.
  12.  前記枠体は、第1軸部材を中心に回動可能であり、
     前記モーメント付与手段は、前記第1軸部材と平行な第2軸部材を中心に回動可能であるリンク機構と、該リンク機構に前記第2軸部材回りのモーメントを与える駆動機構とを備え、
     前記枠体と前記リンク機構とは、前記第1及び第2軸部材と平行な第3軸部材を介して連結され、
     前記リンク機構は、付与されたモーメントを前記第3軸部材を介して前記枠体に伝達することで、前記枠体に前記第1軸部材回りのモーメントを与える請求項11に記載の発電システム。
    The frame is rotatable about a first shaft member;
    The moment applying means includes a link mechanism that is rotatable around a second shaft member parallel to the first shaft member, and a drive mechanism that applies a moment around the second shaft member to the link mechanism,
    The frame and the link mechanism are connected via a third shaft member parallel to the first and second shaft members,
    The power generation system according to claim 11, wherein the link mechanism transmits the applied moment to the frame body via the third shaft member, thereby giving the frame body a moment around the first shaft member.
  13.  前記リンク機構は、一方端に前記第3軸部材を介して前記枠体が連結され、他方端に前記駆動機構から力が加えられて、前記第2軸部材回りのモーメントが付与されるものであり、
     前記第2軸部材から前記リンク機構の一方端までの長さは、前記第2軸部材から前記リンク機構の他方端までの長さよりも短い請求項12に記載の発電システム。
    In the link mechanism, the frame body is connected to one end through the third shaft member, and a force is applied to the other end from the drive mechanism to apply a moment around the second shaft member. Yes,
    The power generation system according to claim 12, wherein a length from the second shaft member to one end of the link mechanism is shorter than a length from the second shaft member to the other end of the link mechanism.
  14.  前記発電装置は、所定方向に複数並んで配置され、各前記発電装置の前記枠体は、前記第1軸部材を中心に回動可能であり、
      複数の前記発電装置のうち、一方端の前記発電装置の前記枠体(以下、一方端の枠体と示す)は、前記リンク機構と前記第3軸部材を介して連結され、
     隣り合う2つの前記発電装置の前記枠体は、前記第1、第2、及び第3軸部材と平行な第4軸部材を介して連結され、
     前記リンク機構は、付与されたモーメントを前記第3軸部材を介して前記一方端の枠体に伝達することで、前記一方端の枠体に前記第1軸部材回りのモーメントを付与し、
     前記隣り合う2つの前記発電装置のうち、一方側の前記発電装置の前記枠体は、付与されたモーメントを、前記第4軸部材を介して、他方側の前記発電装置の前記枠体に伝達することで、該他方側の前記発電装置の枠体に前記第1軸部材回りのモーメントを付与する請求項12又は13に記載の発電システム。
    A plurality of the power generation devices are arranged side by side in a predetermined direction, and the frame body of each of the power generation devices is rotatable around the first shaft member,
    Among the plurality of power generation devices, the frame body of the power generation device at one end (hereinafter, referred to as a frame body at one end) is coupled via the link mechanism and the third shaft member,
    The frame bodies of two adjacent power generators are connected via a fourth shaft member parallel to the first, second, and third shaft members,
    The link mechanism imparts a moment around the first shaft member to the one end frame by transmitting the applied moment to the one end frame through the third shaft member;
    Of the two adjacent power generation devices, the frame body of the power generation device on one side transmits the applied moment to the frame body of the power generation device on the other side via the fourth shaft member. The power generation system according to claim 12 or 13, wherein a moment around the first shaft member is applied to the frame of the power generation device on the other side.
  15.  前記移動体は、回転可能に設置された回転軸である、請求項8から10のいずれかに記載の発電システム。 The power generation system according to any one of claims 8 to 10, wherein the moving body is a rotating shaft that is rotatably installed.
  16.  前記駆動機構は、回転可能に設置された回転軸である、請求項12から14のいずれかに記載の発電システム。 The power generation system according to any one of claims 12 to 14, wherein the drive mechanism is a rotating shaft that is rotatably installed.
  17.  前記回転軸は、一方端部に複数の羽根を有しており、
     当該発電システムは、
     前記回転軸の一方端部を覆い、吸気部及び排気部を有するケーシングと、
     前記排気部に接続された上方に延びる排気塔と、をさらに備えた、請求項15又は16に記載の発電システム。
    The rotating shaft has a plurality of blades at one end,
    The power generation system
    A casing that covers one end of the rotating shaft and has an intake portion and an exhaust portion;
    The power generation system according to claim 15, further comprising an upwardly extending exhaust tower connected to the exhaust unit.
  18.  前記発電装置及び前記回転軸を有する複数の発電部と、
     前記回転軸の回転数を検出する回転数検出手段、又は、前記ケーシング内に吸気される空気の風圧を検出する風圧検出手段と、
     前記回転数検出手段により検出された回転数、又は、前記風圧検出手段により検出された風圧によって、前記各発電部の稼働を制御する制御手段と、
    をさらに備えた、請求項17に記載の発電システム。
    A plurality of power generation units having the power generation device and the rotating shaft;
    A rotational speed detecting means for detecting the rotational speed of the rotating shaft, or a wind pressure detecting means for detecting a wind pressure of air sucked into the casing;
    Control means for controlling the operation of each of the power generation units according to the rotational speed detected by the rotational speed detection means or the wind pressure detected by the wind pressure detection means;
    The power generation system according to claim 17, further comprising:
  19.  前記排気部に形成されたダンパーと、
     前記回転軸の回転数を検出する回転数検出手段、又は、前記ケーシング内に吸気される空気の風圧を検出する風圧検出手段と、
     前記回転数検出手段により検出された回転数、又は前記風圧検出手段により検出された風圧によって、前記ダンパーの開度を制御する制御手段と、
    をさらに備えた、請求項18に記載の発電システム。
    A damper formed in the exhaust part;
    A rotational speed detecting means for detecting the rotational speed of the rotating shaft, or a wind pressure detecting means for detecting a wind pressure of air sucked into the casing;
    Control means for controlling the opening degree of the damper according to the rotational speed detected by the rotational speed detection means or the wind pressure detected by the wind pressure detection means;
    The power generation system according to claim 18, further comprising:
  20.  太陽光を集光させる集光レンズと、
     前記集光レンズにより集光される太陽光により加熱され、前記排気部に設けられた受熱板と、
    をさらに備えた、請求項17から19のいずれかに記載の発電システム。
    A condensing lens that collects sunlight;
    Heated by sunlight collected by the condenser lens, and a heat receiving plate provided in the exhaust part;
    The power generation system according to claim 17, further comprising:
PCT/JP2012/070676 2011-08-15 2012-08-14 Electric power generation device and electric power generation system using same WO2013024848A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011177591 2011-08-15
JP2011-177591 2011-08-15

Publications (1)

Publication Number Publication Date
WO2013024848A1 true WO2013024848A1 (en) 2013-02-21

Family

ID=47715165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070676 WO2013024848A1 (en) 2011-08-15 2012-08-14 Electric power generation device and electric power generation system using same

Country Status (3)

Country Link
JP (1) JPWO2013024848A1 (en)
TW (1) TW201330483A (en)
WO (1) WO2013024848A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103138626A (en) * 2013-03-13 2013-06-05 苏州市职业大学 Piezoelectric type capturing device of human walking energy
JP2015006087A (en) * 2013-06-21 2015-01-08 浩平 速水 Power generating system
JP5796229B2 (en) * 2013-03-13 2015-10-21 住友理工株式会社 Power generator
JPWO2015087956A1 (en) * 2013-12-13 2017-03-16 住友理工株式会社 Vibration power generator
JP6164561B1 (en) * 2016-06-16 2017-07-19 Saco合同会社 Vibration power generation unit
EP3579397A4 (en) * 2017-01-31 2020-04-08 Panasonic Intellectual Property Management Co., Ltd. Power generation device
CN113067501A (en) * 2021-04-15 2021-07-02 山东理工大学 Wind-gathering switch door type piezoelectric-electromagnetic power generation device
CN113155258A (en) * 2021-04-26 2021-07-23 长春工业大学 Road piezoelectric sensing device for weighing
US20210399204A1 (en) * 2018-11-09 2021-12-23 University Of Hertfordshire Higher Education Corporation Improvements in or relating to energy generation in a piezoelectric switch

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5872361A (en) * 1981-10-14 1983-04-30 ヒューズ・エアクラフト・カンパニー Power generator
JP2002369554A (en) * 2001-06-06 2002-12-20 Nec Tokin Corp Indicator
JP2003189641A (en) * 2001-12-12 2003-07-04 Nec Tokin Corp Power generating equipment
WO2010036089A2 (en) * 2008-09-29 2010-04-01 Mimos Berhad A device for maximum detection of vibrating energy for harvesting energy
WO2010119739A1 (en) * 2009-04-15 2010-10-21 観音エナジー株式会社 Solar thermal power generation apparatus
JP3169269U (en) * 2011-05-12 2011-07-21 孝明 原 Wind power generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5872361A (en) * 1981-10-14 1983-04-30 ヒューズ・エアクラフト・カンパニー Power generator
JP2002369554A (en) * 2001-06-06 2002-12-20 Nec Tokin Corp Indicator
JP2003189641A (en) * 2001-12-12 2003-07-04 Nec Tokin Corp Power generating equipment
WO2010036089A2 (en) * 2008-09-29 2010-04-01 Mimos Berhad A device for maximum detection of vibrating energy for harvesting energy
WO2010119739A1 (en) * 2009-04-15 2010-10-21 観音エナジー株式会社 Solar thermal power generation apparatus
JP3169269U (en) * 2011-05-12 2011-07-21 孝明 原 Wind power generator

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9735710B2 (en) 2013-03-13 2017-08-15 Sumitomo Riko Company Limited Power generator having a multiple-degree-of-freedom vibration system and a power generating element attached to the vibration system while converting vibration energy of a vibrating member to electrical energy
JP5796229B2 (en) * 2013-03-13 2015-10-21 住友理工株式会社 Power generator
JPWO2014141557A1 (en) * 2013-03-13 2017-02-16 住友理工株式会社 Power generator
DE112013006824B4 (en) 2013-03-13 2021-07-22 Panasonic Corporation Power generator
CN103138626A (en) * 2013-03-13 2013-06-05 苏州市职业大学 Piezoelectric type capturing device of human walking energy
JP2015006087A (en) * 2013-06-21 2015-01-08 浩平 速水 Power generating system
US10027256B2 (en) 2013-12-13 2018-07-17 Sumitomo Riko Company Limited Vibration power generation device
JPWO2015087956A1 (en) * 2013-12-13 2017-03-16 住友理工株式会社 Vibration power generator
DE112014003466B4 (en) 2013-12-13 2021-11-04 Panasonic Intellectual Property Management Co., Ltd. Vibratory power generating device
JP2017225261A (en) * 2016-06-16 2017-12-21 Saco合同会社 Oscillation power generation unit
JP6164561B1 (en) * 2016-06-16 2017-07-19 Saco合同会社 Vibration power generation unit
EP3579397A4 (en) * 2017-01-31 2020-04-08 Panasonic Intellectual Property Management Co., Ltd. Power generation device
US20210399204A1 (en) * 2018-11-09 2021-12-23 University Of Hertfordshire Higher Education Corporation Improvements in or relating to energy generation in a piezoelectric switch
CN113067501A (en) * 2021-04-15 2021-07-02 山东理工大学 Wind-gathering switch door type piezoelectric-electromagnetic power generation device
CN113155258A (en) * 2021-04-26 2021-07-23 长春工业大学 Road piezoelectric sensing device for weighing
CN113155258B (en) * 2021-04-26 2023-01-31 长春工业大学 Road piezoelectric sensing device for weighing

Also Published As

Publication number Publication date
TW201330483A (en) 2013-07-16
JPWO2013024848A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
WO2013024848A1 (en) Electric power generation device and electric power generation system using same
Zou et al. Design and experimental investigation of a magnetically coupled vibration energy harvester using two inverted piezoelectric cantilever beams for rotational motion
JP6762292B2 (en) Generator and power generation method
US7990022B2 (en) High-performance electroactive polymer transducers
US8519554B2 (en) Device and method for harvesting energy from flow-induced oscillations
US7750532B2 (en) Electroactive polymer actuated motors
US7626319B2 (en) Three-dimensional electroactive polymer actuated devices
US7915789B2 (en) Electroactive polymer actuated lighting
KR101785419B1 (en) Piezoelectric energy harvesting system using wind power
US20070200457A1 (en) High-speed acrylic electroactive polymer transducers
US20110150669A1 (en) Non-Propeller Fan
US20120228460A1 (en) Driving apparatus
JP2006291842A (en) Wind power generation device
Shi et al. A ring-type multi-DOF ultrasonic motor with four feet driving consistently
JP6047177B2 (en) Energy harvesting method and apparatus using intrinsic voltage difference between metal joints
CN106233594A (en) Actuator and air pump, reason beauty appliance and Laser Scanning Equipment
KR101065025B1 (en) Generator using vibration
JP4651015B2 (en) Wind power generator
CN107359814B (en) Rotary piezoelectric wind driven generator
JP2002371949A (en) Wind power generator
CN112865605A (en) Array type piezoelectric power generation equipment for capturing wave energy
JP2007051561A (en) Wind turbine generator
JP2005229655A (en) Generator
WO2016076382A1 (en) Power generation device and power generation system
WO2023068053A1 (en) Magnetostrictive vibrational power generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823812

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013529019

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12823812

Country of ref document: EP

Kind code of ref document: A1