WO2016076382A1 - Power generation device and power generation system - Google Patents

Power generation device and power generation system Download PDF

Info

Publication number
WO2016076382A1
WO2016076382A1 PCT/JP2015/081819 JP2015081819W WO2016076382A1 WO 2016076382 A1 WO2016076382 A1 WO 2016076382A1 JP 2015081819 W JP2015081819 W JP 2015081819W WO 2016076382 A1 WO2016076382 A1 WO 2016076382A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
power generation
generation device
vibrating body
fixed
Prior art date
Application number
PCT/JP2015/081819
Other languages
French (fr)
Japanese (ja)
Inventor
憲一 古河
健介 山田
文明 新倉
Original Assignee
ミツミ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミツミ電機株式会社 filed Critical ミツミ電機株式会社
Publication of WO2016076382A1 publication Critical patent/WO2016076382A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K35/00Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit

Definitions

  • the present invention relates to a power generation apparatus and a power generation system.
  • a power generator is attached to a vibrating body such as a rotating device equipped with a motor such as a duct, a pump, a fan, and a turbine, and power is generated using the vibration of the vibrating body.
  • a vibrating body such as a rotating device equipped with a motor such as a duct, a pump, a fan, and a turbine
  • the power generation device described in Patent Literature 1 includes a magnet, a coil that is provided on the outer peripheral side of the magnet and is fixed to the vibrating body, and a coil spring that connects the magnet and the vibrating body.
  • the magnet is moved relative to the coil by the vibration of the vibrating body to generate a voltage accompanying electromagnetic induction in the coil.
  • the vibrating body to which the power generator is fixed is generally made of a magnetic material such as steel. Therefore, in the power generation device of Patent Document 1, an attractive force due to magnetic interaction acts between the magnet and the vibrating body, and the position of the magnet with respect to the coil is displaced to the vibrating body side from the standard position. When this displacement increases, the amount of displacement of the magnet with respect to the coil during vibration of the power generation device decreases, and as a result, the power generation amount of the power generation device becomes smaller than the design value. Further, when the nonlinearity of the coil spring appears due to this displacement, the spring constant changes, and the frequency characteristic of the power generation amount deviates from the design value.
  • the present invention has been devised in view of the above-described conventional problems, and an object of the present invention is to provide a power generation device capable of generating power generation efficiently by surely expressing characteristics at the time of designing the power generation device, and a power generation system including such a power generation device. It is to provide.
  • a power generation device fixed to a vibrating body and used.
  • a first magnet a coil spaced apart from the first magnet and surrounding the outer periphery thereof, and the first magnet relative to the coil along its magnetization direction.
  • a power generation unit comprising a spring to be displaced to When the power generation device is fixed to the stationary vibration body, the first magnet is held at or near the position of the first magnet in a natural state where no external force is applied to the power generation unit.
  • a second magnet arranged to exert a repulsive force on the first magnet.
  • Each of the first magnet and the second magnet has a block shape,
  • the vibrating body is made of a magnetic material,
  • the power generation device according to any one of (1) to (3), wherein the power generation device is fixed to the vibrating body via the second magnet.
  • the power generation device includes the second magnet, and has a suction unit that attaches the power generation device to the vibrating body.
  • the adsorbing means is flexible and is provided between the sheet material holding the second magnet and the sheet material and the second magnet, and
  • the power generation device according to any one of (4) to (6), further including a yoke for fixing a magnet.
  • the attracting means further includes a plurality of third magnets
  • the sheet material has a plurality of fixing portions that are fixed to the power generation portion, and a holding portion that extends to the side of the fixing portion and holds the third magnet at an end opposite to the fixing portion.
  • each of the arm portions has a length such that the holding portion is positioned outside the device main body.
  • a power generation system comprising: a vibrating body made of a magnetic material for fixing the power generation device.
  • the first magnet by applying a repulsive force from the second magnet to the first magnet, the first magnet applies an external force to the power generation unit when the power generation device is fixed to the stationary vibration body. It is held at or near the position of the first magnet in the natural state. Therefore, the vibration of the vibrating body can displace the first magnet relative to the coil with reference to the standard position (the position of the first magnet in a natural state where no external force is applied to the power generation unit). . As a result, the power generation apparatus can reliably generate the design characteristics (power generation amount and frequency characteristics) and efficiently generate power.
  • FIG. 1 is a perspective view showing a first embodiment of a power generator of the present invention.
  • FIG. 2 is a plan view of the power generator shown in FIG.
  • FIG. 3 is an exploded perspective view of the apparatus main body included in the power generation apparatus shown in FIG. 4 is a cross-sectional view taken along line AA in FIG.
  • FIG. 5 is a plan view of a leaf spring included in the apparatus main body shown in FIG.
  • FIG. 6 is an exploded perspective view of the suction means included in the power generation device shown in FIG. 1.
  • 7 is a cross-sectional view taken along line BB in FIG.
  • FIG. 8 is a schematic diagram for explaining the magnetic interaction between the first magnet, the second magnet, and the vibrating body in a state where the power generation device shown in FIG.
  • FIGS. 9 (a-1) and 9 (a-2) respectively show the magnet assembly of the power generation unit and the magnet assembly of the attracting means in a state where the power generation device shown in FIGS. 1 to 4 is fixed to the vibrating body. It is the analysis figure which analyzed the magnetic field which generate
  • 9 (b-1) and FIG. 9 (b-2) show power generation in which the first magnet and the second magnet of the power generation apparatus shown in FIGS. 1 to 4 are arranged so that the opposite poles face each other.
  • FIG. 10 is a diagram illustrating a use state (fixed state) of the power generation device illustrated in FIG. 1.
  • 11 is an enlarged side view showing the power generation device shown in FIG.
  • FIG. 12 is a diagram illustrating another usage state (fixed state) of the power generation device illustrated in FIG. 1.
  • FIG. 13 is a longitudinal sectional view of a second embodiment of the power generator of the present invention.
  • FIG. 1 is a perspective view showing a first embodiment of a power generator according to the present invention.
  • FIG. 2 is a plan view of the power generator shown in FIG.
  • FIG. 3 is an exploded perspective view of the apparatus main body included in the power generation apparatus shown in FIG. 4 is a cross-sectional view taken along line AA in FIG.
  • FIG. 5 is a plan view of a leaf spring included in the apparatus main body shown in FIG.
  • FIG. 6 is an exploded perspective view of the suction means included in the power generation device shown in FIG. 1.
  • 7 is a cross-sectional view taken along line BB in FIG.
  • FIG. 8 is a schematic diagram for explaining the magnetic interaction between the first magnet, the second magnet, and the vibrating body in a state where the power generation device shown in FIG.
  • FIG. 9 shows the magnet assembly of the power generation unit in a state where the power generation device shown in FIGS. 1 to 4 and the power generation device in which the first magnet and the second magnet are arranged so that the opposite poles face each other are fixed to a vibrating body.
  • An analysis diagram analyzing the magnetic field generated between the solid and the magnet assembly of the attracting means, and showing the relationship between the distance between the first magnet and the second magnet and the magnitude of the force acting on the first magnet It is a graph.
  • FIG. 10 is a diagram illustrating a use state (fixed state) of the power generation device illustrated in FIG. 1.
  • 11 is an enlarged side view showing the power generation device shown in FIG.
  • FIG. 12 is a diagram illustrating another usage state (fixed state) of the power generation device illustrated in FIG. 1.
  • FIGS. 1, 3, 4, and 6 to 12 the upper side in FIGS. 1, 3, 4, and 6 to 12 is referred to as “upper” or “upper”, and the lower side is referred to as “lower” or “lower”.
  • 2 and FIG. 5 is referred to as “upper” or “upper”, and the rear side of the page is referred to as “lower” or “lower”.
  • a power generation device 100 is provided with a device main body 1, suction means 9 for fixing the device main body 1 to the vibrating body by suction, and a connection that is provided so as to protrude laterally from the device main body 1 and is connected to an external device.
  • Connector 11 is provided with a device main body 1, suction means 9 for fixing the device main body 1 to the vibrating body by suction, and a connection that is provided so as to protrude laterally from the device main body 1 and is connected to an external device.
  • the apparatus main body 1 includes a housing 20 and a power generation unit 10 that is held in the housing 20 so as to vibrate in the vertical direction of FIG. 4.
  • the power generation unit 10 includes a pair of opposed upper leaf springs 60U and lower leaf springs 60L, a magnet assembly 30 having a permanent magnet (first magnet 31) fixed between them, and a first magnet 31.
  • a coil 40 provided so as to surround the outer peripheral side of the coil and a coil holding part 50 for holding the coil 40.
  • the upper leaf spring 60U and the lower leaf spring 60L have the same structure.
  • the housing 20 includes a cover 21, a base (support plate) 23 that supports the power generation unit 10 on the upper surface (one surface) side, and a space between the cover 21 and the base 23. And a cylindrical part 22 provided so as to surround the power generation part 10.
  • the cover 21 has a disk shape, and an annular (ring-shaped) rib 211 is formed so as to protrude downward along the outer peripheral edge thereof. Along the portion corresponding to the rib 211, six through holes 212 are formed at approximately equal intervals. In addition, a concave portion (a relief portion) 214 that is recessed upward is formed in a portion inside the rib 211 of the cover 21.
  • the power generation unit 10 is configured so as to be positioned (withdrawn) in the recess 214 and not to contact the cover 21 when vibrated.
  • the cylindrical portion 22 has a cylindrical shape, and its outer diameter is substantially equal to the outer diameter of the cover 21.
  • this state is referred to as an “assembly state”.
  • a main portion that contributes to power generation of the power generation unit 10 is located inside the cylindrical portion 22.
  • bosses 221 are formed on the inner peripheral surface of the cylindrical portion 22 at positions corresponding to the through holes 212 of the cover 21 along the height direction of the cylindrical portion 22.
  • An upper screw hole 221 a is formed at the upper end of the boss 221.
  • six through holes 66 are formed in the outer peripheral portion (first annular portion 61) of the upper leaf spring 60U at substantially equal intervals along the circumferential direction.
  • the screw 213 With the outer peripheral portion of the upper leaf spring 60U positioned between the cover 21 and the cylindrical portion 22, the screw 213 is inserted into the through hole 212 of the cover 21 and the through hole 66 of the upper leaf spring 60U, and the boss 221 is inserted. Screwed into the upper screw hole 221a. Thereby, the outer peripheral portion of the upper leaf spring 60 ⁇ / b> U is fixed to the cover 21 and the cylindrical portion 22.
  • the base 23 has a disk shape, and an annular (ring-shaped) rib 231 is formed to protrude upward along the outer peripheral edge portion thereof.
  • Six through holes 232 are formed at substantially equal intervals along the portion corresponding to the rib 231.
  • a concave portion (relief portion) 234 that is recessed downward is formed in a portion inside the rib 231 of the base 23.
  • the power generation unit 10 is configured to be positioned (withdrawn) in the recess 234 and not to contact the base 23 when vibrated.
  • a lower screw hole (female screw) 221b is formed at the lower end of the boss 221 of the cylindrical portion 22.
  • the screw 233 passes through the through hole 232 of the base 23 and the lower leaf spring 60L. It is inserted through the hole 66 and screwed into the lower screw hole 221b of the boss 221. Thereby, the outer peripheral part of the lower leaf spring 60 ⁇ / b> L is fixed to the base 23 and the cylindrical part 22.
  • the lower surface (the other surface) 230 of the base 23 is formed of a curved convex surface protruding downward.
  • a concave portion 235 capable of accommodating a permanent magnet (second magnet) 910 constituting a part of the attracting means 9 is formed in the central portion of the lower surface 230 of the base 23.
  • casing 20 (the cover 21, the cylindrical part 22, and the base 23)
  • a metal material, a ceramic material, a resin material etc. are mentioned, These 1 type or 2 types or more Can be used in combination.
  • the dimensions of the housing 20 are not particularly limited, but from the viewpoint of downsizing (lowering the height) the power generation apparatus 100, the average width of the housing 20 (base 23) is preferably about 60 to 120 mm.
  • the average height of the housing 20 is preferably about 20 to 50 mm, more preferably about 30 to 40 mm.
  • the power generation unit 10 is held in the housing 20 so as to be vibrated by an upper leaf spring 60U and a lower leaf spring 60L.
  • Upper leaf spring 60U, lower leaf spring 60L >> The upper leaf spring 60U is fixed by sandwiching the outer peripheral portion between the cover 21 and the cylindrical portion 22 between them.
  • the lower leaf spring 60L is fixed by sandwiching the outer peripheral portion between the base 23 and the cylindrical portion 22 between them.
  • each of the leaf springs 60L and 60U is a member formed of a metal thin plate material such as iron or stainless steel, and the entire shape thereof is a disk shape.
  • each of the leaf springs 60 ⁇ / b> L and 60 ⁇ / b> U includes, from the outer peripheral side, a first annular portion 61, a second annular portion 62 having an outer diameter smaller than the inner diameter of the first annular portion 61, and A third annular portion 63 having an outer diameter smaller than the inner diameter of the second annular portion 62 is provided.
  • the first annular portion 61, the second annular portion 62, and the third annular portion 63 are provided concentrically.
  • the first annular portion 61 and the second annular portion 62 are connected by a plurality of (six in this embodiment) first spring portions 64, and the second annular portion 62 and the third annular portion 62 are connected to each other.
  • first annular portion 61 In the first annular portion 61, six through holes 66 are formed at substantially equal intervals (approximately 60 ° intervals) along the circumferential direction. As described above, the screw 213 screwed into the upper screw hole 221a of the boss 221 is inserted into the through hole 66 of the upper leaf spring 60U, while the through hole 66 of the lower leaf spring 60L is inserted into the through hole 66 of the boss 221. A screw 233 to be screwed into the lower screw hole 221b is inserted.
  • six through holes 67 are formed in the second annular portion 62 at substantially equal intervals (approximately 60 ° intervals) along the circumferential direction.
  • six bosses 511 are formed in the coil holding portion 50 described later so as to protrude in the vertical direction along the circumferential direction. Each boss 511 is formed with an upper screw hole 511a at its upper end and a lower screw hole 511b at its lower end.
  • the screw 82 is inserted into the through hole 67 of the upper leaf spring 60U and screwed into the upper screw hole 511a of the boss 511. Thereby, the second annular portion 62 of the upper leaf spring 60 ⁇ / b> U is fixed to the coil holding portion 50.
  • the screw 82 is inserted into the through hole 67 of the lower leaf spring 60L and screwed into the lower screw hole 511b of the boss 511. Thereby, the second annular portion 62 of the lower leaf spring 60 ⁇ / b> L is fixed to the coil holding portion 50.
  • a spacer 70 disposed above the magnet assembly 30 is fixed to the third annular portion 63 of the upper leaf spring 60U.
  • the magnet assembly 30 is fixed to the third annular portion 63 of the lower leaf spring 60L.
  • the spacer 70 and the magnet assembly 30 are connected by the screw 73.
  • Each of the six first spring portions 64 has a shape having an arcuate portion (substantially S-shape), and is disposed between the first annular portion 61 and the second annular portion 62. Yes. Specifically, a pair of first spring portions 64 that are opposed to each other via the second annular portion 62 (coil holding portion 50) has three sets (centering on the central axis of the third annular portion 63). Placed at the position of the object to be rotated. One end of each first spring portion 64 is connected to the first annular portion 61 in the vicinity of the through hole 66 of the first annular portion 61, and the arc-shaped portions are the first annular portion 61 and the second annular portion. The other end extends counterclockwise (counterclockwise) along the circumferential direction of the portion 62, and the other end is connected to the second annular portion 62 in the vicinity of the through hole 67 of the second annular portion 62.
  • the six first spring portions 64 support (connect) the second annular portion 62 with respect to the first annular portion 61 so as to vibrate in the vertical direction of FIG.
  • the first annular portion 61 is fixed to the housing 20, and the second annular portion 62 is fixed to the coil holding portion 50. Therefore, when vibration from the vibrating body is transmitted to the housing 20, this vibration is transmitted to the second annular portion 62 via the first spring portion 64, and the coil holding portion 50 is moved with respect to the housing 20. Vibrate.
  • each of the three second spring portions 65 has a shape having an arcuate portion (substantially S-shape), and is disposed between the second annular portion 62 and the third annular portion 63.
  • the three second spring portions 65 are disposed at positions to be rotated around the central axis of the third annular portion 63 (magnet assembly 30).
  • One end of each second spring portion 65 is connected to the second annular portion 62 in the vicinity of the through hole 67 of the second annular portion 62, and the arc-shaped portion is the second annular portion 62 and the third annular portion. It extends clockwise (clockwise) along the circumferential direction of the portion 63, and the other end is connected to the third annular portion 63.
  • the three second spring portions 65 support (connect) the third annular portion 63 with respect to the second annular portion 62 so as to vibrate in the vertical direction of FIG.
  • the second annular portion 62 is fixed to the coil holding portion 50, and the third annular portion 63 is directly or indirectly fixed to the magnet assembly 30. Therefore, the vibration from the vibrating body transmitted to the second annular portion 62 is transmitted to the third annular portion 63 via the second spring portion 65, and the magnet assembly 30 is moved to the coil holding portion 50. Vibrate.
  • each leaf spring 60L, 60U has a rotationally symmetric shape with its center axis (the center axis of the third annular portion 63) as the center.
  • the center axis the center axis of the third annular portion 63
  • plate spring 60L and 60U arises. Therefore, it is possible to improve the rigidity (lateral rigidity) in a direction substantially orthogonal to the thickness direction of the plate springs 60L and 60U as a whole. Further, when assembling the power generation apparatus 100 (apparatus body 1), the work can be performed more easily.
  • a second vibration system in which the magnet assembly 30 vibrates via the portion 65 is formed.
  • the power generation unit 10 constitutes a two-degree-of-freedom vibration system having a first vibration system and a second vibration system.
  • the mass of the coil holding unit 50 (hereinafter sometimes simply referred to as “coil holding unit 50”) in which the first vibration system holds the coil. : and m 1, the mass ratio of the coil holder 50 and the magnet assembly 30: a mu, the spring constant of the first spring portion 64: k 1 as the first natural frequency is determined by: have a omega 1
  • the second vibration system includes the mass of the magnet assembly 30: m 2 , the mass ratio of the coil holding unit 50 and the magnet assembly 30: ⁇ , and the spring constant of the second spring portion 65: k 2 in a second natural frequency that is determined: with a omega 2.
  • each natural frequency ⁇ 1 , ⁇ 2 can be expressed by the following equation of motion (1).
  • the natural frequencies ⁇ 1 and ⁇ 2 of the two-degree-of-freedom vibration system are determined by the three parameters ⁇ , ⁇ 1 , and ⁇ 2 .
  • the power generation amount (power generation capacity) of the two-degree-of-freedom vibration system represented by the above formula (1) is accompanied by attenuation due to power generation, and two resonance frequencies f 1 and f resulting from the respective natural frequencies ⁇ 1 and ⁇ 2 The maximum value is taken at 2 .
  • the power generation unit 10 vibrates efficiently with respect to the housing 20 over the frequency band between the two resonance frequencies (f 1, f 2 ). When there is no damping, the natural frequencies ⁇ 1 and ⁇ 2 coincide with the resonance frequencies f 1 and f 2 .
  • the mass (m 1 , m 2 ) and the spring constant (k 1 , k 2 ) of each vibration system are adjusted, and the resonance frequency f 1 of the first vibration system and the resonance frequency f 2 of the second vibration system.
  • the power generation unit 10 can be efficiently vibrated with respect to the external vibration (vibration applied to the casing 20) in the set frequency band.
  • the mass (m 1 , m 2 ) and the spring constant (k 1 , k 2 ) of each vibration system are expressed by the following formulas:
  • each leaf spring 60L, the average thickness of 60U, the spring constant of the spring portions 64 and 65 of the (k 1, k 2) can be appropriately adjusted to a desired value.
  • the average thickness of each leaf spring 60L, 60U is preferably about 0.1 to 0.4 mm, and more preferably about 0.2 to 0.3 mm. If the average thickness of each leaf spring 60L, 60U is within the above range, the occurrence of plastic deformation, breakage, etc. of each leaf spring 60L, 60U can be reliably prevented. Thereby, it is possible to use the power generation device 100 for a long time in a state where the power generation device 100 is attached to the vibrating body.
  • a magnet assembly 30 having a first magnet 31 is provided between the upper leaf spring 60U and the lower leaf spring 60L.
  • the magnet assembly 30 includes a first magnet 31 that is a cylindrical permanent magnet, a bottomed cylindrical back yoke 32, and a disk-shaped yoke 33 provided on the first magnet 31. Yes.
  • the outer peripheral portion of the bottom surface of the back yoke 32 is fixed to the third annular portion 63 of the lower leaf spring 60 ⁇ / b> L, and the yoke 33 is connected to the third annular portion 63 of the upper leaf spring 60 ⁇ / b> U via the spacer 70. It is fixed to.
  • the first magnet 31 is arranged with the S pole on the upper side and the N pole on the lower side. Thereby, the 1st magnet 31 (magnet assembly 30) is displaced along the magnetization direction (up-down direction).
  • Examples of the first magnet 31 include an alnico magnet, a ferrite magnet, a neodymium magnet, a samarium cobalt magnet, and a magnet (bond magnet) formed by molding a composite material obtained by pulverizing them and kneading them into a resin material or a rubber material. Can be used.
  • the first magnet 31 is fixed to the back yoke 32 and the yoke 33 by, for example, adsorption by the magnetic force of the first magnet 31 itself, adhesion by an adhesive, or the like.
  • the size of the yoke 33 in plan view is substantially equal to the size of the first magnet 31 in plan view.
  • a screw hole 331 is formed in the central portion of the yoke 33.
  • the back yoke 32 includes a bottom plate portion 321 and a cylindrical portion 322 erected along the outer peripheral portion thereof.
  • the first magnet 31 is disposed concentrically with the cylindrical portion 322 at the center of the bottom plate portion 321. Further, the bottom plate portion 321 is formed with a through hole at the center thereof.
  • the magnetic flux generated by the first magnet 31 can be increased.
  • the constituent materials of the back yoke 32 and the yoke 33 are, for example, pure iron (for example, JIS SUY), soft iron, carbon steel, electromagnetic steel (silicon steel), high-speed tool steel, and structural steel (for example, JIS SS400). , Stainless steel, permalloy and the like, and one or more of them can be used in combination.
  • a coil holding unit 50 is provided between the magnet assembly 30 and the housing 20.
  • the coil holding part 50 includes a main body part 51 having a cylindrical shape as a whole and an annular disk part 52 located on the inner peripheral side of the main body part 51.
  • the main body 51 has a shape such that a cylindrical block is cut from the vertical direction.
  • the main body 51 is formed with six bosses 511 protruding in the vertical direction along the circumferential direction.
  • An upper screw hole 511a and a lower screw hole 511b into which the screw 82 is screwed are formed at the upper end portion and the lower end portion of each boss 511, respectively.
  • the disk part 52 is formed integrally with the main body part 51, and its inner diameter is formed larger than the outer diameter of the spacer 70 (main body part 71).
  • a coil 40 is held on the inner peripheral side of the lower surface of the disk portion 52.
  • the outer diameter of the coil 40 is smaller than the cylindrical portion 322 of the back yoke 32, and the inner diameter is set larger than the outer diameters of the first magnet 31 and the yoke 33. Thereby, the coil 40 is arrange
  • the coil 40 is displaced in the vertical direction relative to the first magnet 31 by the vibration of the power generation unit 10. At this time, the density of magnetic lines of force from the first magnet 31 passing through the coil 40 changes, and a voltage is generated in the coil 40.
  • the coil 40 is formed by, for example, winding a wire material in which a copper base wire is coated with an insulating film, a wire material in which a copper base wire is coated with an insulating film having a fusion function added, or the like.
  • the number of windings of the wire is appropriately set according to the cross-sectional area of the wire, and is not particularly limited.
  • the cross-sectional shape of the wire may be any shape such as a polygon such as a triangle, a square, a rectangle and a hexagon, a circle and an ellipse.
  • both ends of the wire constituting the coil 40 are connected to the connection connector 11 via a voltage extraction portion (not shown) provided on the upper side of the disk portion 52 of the coil holding portion 50.
  • the connection connector 11 By connecting the connection connector 11 to an electric circuit such as a wireless communication device, for example, the power generation device 100 can be used as a power source for the electric circuit.
  • the magnet assembly 30 is connected to the upper leaf spring 60U via the spacer 70.
  • the spacer 70 includes a bottomed cylindrical main body 71 and an annular flange 72 formed integrally with the main body 71 along the outer periphery of the upper end of the main body 71.
  • the bottom of the main body 71 is connected to the magnet assembly 30 (yoke 33) by a screw 73.
  • the third annular portion 63 of the upper leaf spring 60U is fixed to the outer peripheral side of the lower surface of the flange portion 72.
  • spacer 70 As a material constituting the spacer 70, for example, magnesium, aluminum, molding resin, or the like can be used.
  • the power generation unit 10 vibrates in the vertical direction inside the housing 20. More specifically, the coil holding portion 50 vibrates in the vertical direction with respect to the housing 20 via the first spring portions 64 of the leaf springs 60U and 60L (that is, the first vibration system vibrates). To do). Similarly, the magnet assembly 30 vibrates in the vertical direction with respect to the coil holding portion 50 via the second spring portions 65 of the leaf springs 60U and 60L (that is, the second vibration system vibrates). To do).
  • Each leaf spring 60U, 60L has a larger spring constant in the direction (lateral direction) substantially orthogonal to the vibration direction than the spring constant in the vibration direction of each spring portion 64, 65 due to its structure. That is, each of the leaf springs 60U and 60L has higher lateral stiffness (lateral stiffness) than its thickness stiffness. Therefore, each leaf spring 60U, 60L is deformed in preference to the thickness direction (vibration direction) rather than the lateral direction. Moreover, the magnet assembly 30 and the coil holding
  • the magnet assembly 30 and the coil holding portion 50 are linearly moved (rolling) and rotated (rolling) about the direction substantially orthogonal to the thickness direction of the leaf springs 60U and 60L. They are blocked and their vibration axes are regulated in a certain direction (longitudinal direction). Further, as described above, the coil 40 is disposed so as not to contact the magnet assembly 30 (the first magnet 31, the yoke 33, and the back yoke 32).
  • both the magnet assembly 30 and the coil holding part 50 are rigid bodies having high rigidity, the direction substantially perpendicular to the vibration direction is the same as the spring parts 64 and 65 of the leaf springs 60U and 60L. High rigidity (lateral rigidity). Therefore, even when the power generation unit 10 vibrates, the magnet assembly 30 and the coil 40 are reliably prevented from contacting each other.
  • the power generation unit 10 flows from the center side of the first magnet 31 toward the outside via the yoke 33, and toward the center side of the first magnet 31 via the back yoke 32. A flowing magnetic field loop is formed.
  • the relative movement between the magnet assembly 30 and the coil 40 moves the position of the first magnet 31 passing through the coil 40 of the magnetic field (magnetic field loop) having the magnetic flux density B generated.
  • an electromotive force is generated based on the Lorentz force received by the electrons in the coil 40 through which the magnetic field passes. Since the electromotive force directly contributes to the power generation of the power generation unit 10, the power generation unit 10 can efficiently generate power.
  • the distance between the first spring portion 64 of the upper leaf spring 60 ⁇ / b> U and the first spring portion 64 of the lower leaf spring 60 ⁇ / b> L is the same as that of the cylindrical portion 22 side of the housing 20 and the coil holding portion. It may be set to be approximately equal or different on the 50 side. Further, the separation distance between the second spring portion 65 of the upper leaf spring 60U and the second spring portion 65 of the lower leaf spring 60L is between the coil holding portion 50 side and the magnet assembly 30 side (spacer 70 side). It may be set to be approximately equal or different.
  • pretension initial load
  • the posture of the power generation unit 10 changes between when the power generation device 100 is placed horizontally (the state shown in FIG. 10A) and when it is placed vertically (the state shown in FIG. 10B). Can be suppressed. Therefore, the power generation apparatus 100 can generate power efficiently regardless of the installation location.
  • the suction means 9 is provided on the lower surface of the base (support plate) 23 (the surface opposite to the power generation unit 10). By adsorbing the adsorbing means 9 to a vibrating body made of a magnetic material, the apparatus main body 1 (power generation apparatus 100) can be fixed to the vibrating body.
  • Adsorption means 9 includes a plurality (seven in this embodiment) of magnet assemblies 91, a first sheet material 92 that holds the magnet assemblies 91, and a magnet assembly. 91 of the apparatus main body 1 and the 2nd sheet
  • Each magnet assembly 91 has a magnet block (second magnet 910 or third magnet 911 described later) formed of a permanent magnet having an annular shape and a bottomed cylindrical shape, and penetrates through the bottom (ceiling). And a yoke 912 made of a magnetic material in which holes are formed.
  • the magnet block is fixed inside the yoke 912 by, for example, adsorption by the magnetic force of the magnet block itself, adhesion by an adhesive, or the like. In the magnet assembly 91 having such a yoke 912, the attractive force of the magnet block can be increased.
  • the permanent magnet assembly 91 (the magnet assembly 91 held by the fixing portion 921 of the first sheet material 92 described later) located in the center in FIG.
  • the magnet constitutes a second magnet 910 that exerts a repulsive force on the first magnet 31.
  • the second magnet 910 is arranged with the north pole on the upper side and the south pole on the lower side. Therefore, the first magnet 31 and the second magnet 910 are arranged so that the same poles (N poles) face each other. For this reason, a repulsive force due to magnetic interaction acts between the first magnet 31 and the second magnet 910.
  • an attractive force due to magnetic interaction acts between the first magnet 31 and the duct 200.
  • a repulsive force due to magnetic interaction acts between the first magnet 31 and the second magnet 910.
  • the second magnet 910 that exerts a repulsive force on the first magnet 31 is disposed on the duct 200 side of the first magnet 31, so that the attractive force between the first magnet 31 and the duct 200 is obtained.
  • the repulsive force between the first magnet 31 and the second magnet 910 can be offset. For this reason, when the power generation device 100 is fixed to the duct 200 in a stationary state, the first magnet 31 is held at or near the position of the first magnet 31 in a natural state where no external force is applied to the power generation unit 10. .
  • the vibration of the duct 200 causes the first magnet 31 to move to its standard position (the position of the first magnet 31 in a natural state where no external force is applied to the power generator 10, in other words, the assembly of the power generator 100.
  • the position of the first magnet 31 with respect to the housing 20 at the time) or the vicinity thereof can be displaced relative to the coil 40.
  • the power generation apparatus 100 can reliably generate the design characteristics (power generation amount and frequency characteristics) and efficiently generate power.
  • the position of the first magnet 31 relative to the casing 20 in a natural state where no external force is applied to the power generation unit 10 and the power generation device 100 are fixed to the duct 200 in a stationary state, and the second magnet 910 fixes the first magnet 31 to the first magnet 31.
  • the amount of deviation along the magnetization direction with respect to the position of the first magnet 31 with respect to the housing 20 in a state where the repulsive force is applied is preferably small. However, specifically, the amount of deviation is preferably about 0 to 5 mm, and more preferably about 0 to 2 mm.
  • the second magnet 910 is provided along the magnetization direction of the first magnet 31 (vertical direction in FIG. 4).
  • the magnitude of the repulsive force acting between the first magnet 31 and the second magnet 910 is sufficiently large. Can be bigger. Thereby, the attractive force between the first magnet 31 and the duct 200 and the repulsive force between the first magnet 31 and the second magnet 910 can be more reliably offset.
  • the central axis in the magnetization direction of the second magnet 910 is configured to overlap (coincide with) the central axis in the magnetization direction of the first magnet 31.
  • the repulsive force of the second magnet 910 with respect to the first magnet 31 is increased. It is possible to work in the thickness direction (vertical upward direction in FIG. 8).
  • the magnitude of the repulsive force of the second magnet 910 on the first magnet 31 is equal to the magnitude of the attractive force of the first magnet 31 on the duct 200. It is preferable. As a result, the attractive force between the first magnet 31 and the duct 200 and the repulsive force between the first magnet 31 and the second magnet 910 can be more reliably offset, and the first magnetic force can be obtained. The force acting on one magnet 31 can be canceled with certainty.
  • the magnitude of the repulsive force of the second magnet 910 with respect to the first magnet 31 is equal to the magnitude of the attractive force of the first magnet 31 with respect to the duct 200 as described above. More specifically, the magnitude of the repulsive force of the second magnet 910 with respect to the first magnet 31 is preferably about 30 to 50 mN, and more preferably about 36 to 44 mN.
  • the magnitude of the repulsive force of the second magnet 910 on the first magnet 31 and the magnitude of the attractive force of the first magnet 31 on the duct 200 become substantially equal, and the first is due to the magnetic interaction. The force acting on one magnet 31 can be canceled more reliably.
  • the separation distance between the first magnet 31 and the second magnet 910 (the distance between the lower surface of the first magnet 31 and the upper surface of the second magnet 910 in FIG. 4) is the first distance of the second magnet 910. If repulsive force with respect to the magnet 31 can be enlarged enough, it will not specifically limit.
  • the separation distance between the first magnet 31 and the second magnet 910 can be appropriately adjusted depending on the constituent material and size of the second magnet 910 to be used. However, when a permanent magnet (magnet block) smaller in size than the first magnet 31 is used as the second magnet 910, the separation distance between the first magnet 31 and the second magnet 910 is 10 to It is preferably about 17 mm, more preferably about 11 to 15 mm.
  • the first magnet 31 and the second magnet 910 are disposed so that the same poles face each other, whereby the first magnet 31 and the vibrating body are arranged. And the repulsive force between the first magnet 31 and the second magnet 910 can be offset.
  • the power generation device 100 having such a configuration when the first magnet 31 and the second magnet 910 are arranged so that the opposite poles face each other, specifically, in the power generation device 100 shown in FIG.
  • the first magnet 31 is arranged with the N pole on the upper side and the S pole on the lower side, the above-described effects of the present invention cannot be obtained.
  • the first magnet 31 and the second magnet 910 are arranged so that the same poles face each other
  • the first magnet 31 and the second magnet 910 The force (attraction force, repulsive force) acting on the first magnet 31 in the power generation device in which the magnets 910 are arranged so that the opposite poles face each other will be described.
  • FIG. 9 shows the power generation device shown in FIGS. 1 to 4 and the power generation device in which the first magnet and the second magnet of the power generation device shown in FIGS.
  • the analysis diagram analyzing the magnetic field generated between the magnet assembly of the power generation unit and the magnet assembly of the attracting means, and the separation distance between the first magnet and the second magnet and the first magnet It is a graph which shows the relationship with the magnitude
  • FIG. 9 (a-1) shows the magnet assembly 30 of the power generation unit 10 and the magnet assembly 91 of the attracting means 9 in a state where the power generation apparatus 100 shown in FIGS. It is the analysis figure which analyzed the magnetic field generated between.
  • FIG. 9A-2 is a graph showing the relationship between the distance between the first magnet 31 and the second magnet 910 in the power generation apparatus 100 and the magnitude of the force acting on the first magnet 31.
  • FIG. 9 (b-1) also shows that the power generation apparatus in which the first magnet 31 of the power generation apparatus shown in FIGS. 1 to 4 is arranged with the N pole on the upper side and the S pole on the lower side is fixed to the vibrating body.
  • FIG. 9B-2 is a graph showing the relationship between the distance between the first magnet and the second magnet and the magnitude of the force acting on the first magnet in the power generation apparatus.
  • the magnitude (vertical axis) of the force acting on the first magnet 31 is positive (+) and negative ( ⁇ )
  • the density of magnetic lines of force (magnetic flux lines) between the first magnet 31 and the second magnet 910 is as shown in FIG. 9 (b-1) described later. It can be seen that it is lower than the power generator shown in FIG. In such a power generation device 100, even if the separation distance between the first magnet 31 and the second magnet 910 is set in a relatively wide range, the magnitude of the force acting on the first magnet 31 is small. In the power generation device 100, when these separation distances are set to 13 mm, the attractive force between the first magnet 31 and the vibrating body and the repulsive force between the first magnet 31 and the second magnet 910 are obtained. It can be canceled almost completely (see FIG. 9 (a-2)).
  • the first magnet 31 and the second magnet 910 it can be seen that the density of the magnetic field lines (magnetic flux lines) between and is high.
  • the separation distance between the first magnet 31 and the second magnet 910 is sufficiently increased, the magnitude of the force (attraction force) acting on the first magnet 31 cannot be reduced ( (See FIG. 9 (b-2)). For this reason, it is difficult for the power generation device having such a configuration to exhibit characteristics at the time of design (power generation amount, frequency characteristics) while reducing the size (lowering the height).
  • Such a second magnet 910 includes the apparatus main body 1 as a vibrating body together with the permanent magnets (third magnets 911) of the six magnet assemblies 91 other than the magnet assembly 91 located at the center in FIG. It further has a function of adsorbing.
  • the same permanent magnet is used as the second magnet 910 and each third magnet 911.
  • the constituent material of the second magnet 910 and the third magnet 911 for example, the same material as that of the first magnet 31 described above can be used.
  • the power generation device 100 can be fixed to the vibrating body with a sufficient attractive force (fixing force) regardless of the constituent material of the vibrating body.
  • the removing operation can be easily performed. That is, the power generator 100 can be easily and reliably detached from the vibrating body.
  • the direction of the magnetic pole of the third magnet 911 is not particularly limited. That is, the third magnet 911 may be disposed with the N pole on the upper side or with the S pole on the upper side. In the power generation device 100, since the separation distance between the third magnet 911 and the first magnet 31 is sufficiently large, the attractive force or repulsive force acting due to the magnetic interaction between them becomes a magnitude that can be almost ignored. is there.
  • the material is preferably a plate material obtained by plating a base material made of an iron-based material such as a galvanized steel plate, a tin-plated steel plate, or a nickel-plated steel plate. Used.
  • the first sheet material 92 has a substantially circular fixing portion 921 fixed to the base 23 of the apparatus main body 1, and extends to the side of the fixing portion 921. And a plurality of integrally formed arm portions 922.
  • the fixing portion 921 is fixed to the base 23 by, for example, adhesion using an adhesive.
  • a concave portion (holding portion) 923 that holds one magnet assembly 91 including the second magnet 910 is formed in the central portion of the fixing portion 921.
  • a concave portion (holding portion) 923 that holds the magnet assembly 91 including the third magnet 911 is formed at the end portion of each arm portion 922 opposite to the fixing portion 921.
  • the magnet assembly 91 is accommodated in the recess 923 and is fixed to the fixing portion 921 or the arm portion 922 by, for example, bonding with an adhesive.
  • the magnet assembly 91 (the magnet assembly 91 including the second magnet 910) held in the concave portion 923 of the fixing portion 921 is located in the concave portion 235 of the base 23.
  • the first sheet material 92 has flexibility. Thereby, the magnet assembly 91 (the second magnet 910 and the third magnet 911) held in the recess 923 of the arm portion 922 can be displaced with respect to the thickness direction of the base 23.
  • each arm portion 922 has a length such that the recess 923 (magnet assembly 91) is positioned outside the device body 1 when the power generation device 100 is placed on a flat surface. is doing.
  • the apparatus main body 1 can be stably fixed to a vibrating body having a curved surface (curved portion) such as the pipe 300 shown in FIG.
  • the arm portions 922 are provided at substantially equal intervals (approximately 60 ° intervals) along the circumferential direction of the fixed portion 921. That is, three magnet assemblies 91 (third magnets 911) are disposed at rotationally symmetric positions. Thereby, the apparatus main body 1 can be fixed to a vibrating body with uniform suction
  • the arm portion 922 includes a plurality of first arm portions 922a and a plurality of second arm portions 922b that are shorter in length than the first arm portions 922a. Between the arm parts 922a, it arrange
  • the length from the center of the fixing portion 921 to the tip of the first arm portion 922a is not particularly limited, but is preferably about 1.8 to 4 times the radius of the base 23, and preferably 2 to 3.5. More preferably, it is about double.
  • the length from the center of the fixing portion 921 to the tip of the second arm portion 922b is not particularly limited, but is preferably about 1.2 to 2.5 times the radius of the base 23, and preferably 1.2 to More preferably, it is about 2 times.
  • the first sheet material 92 is preferably made of a material having sufficient flexibility and flexibility and high tensile strength.
  • Examples of the material of the first sheet material 92 include a film such as a polyester film, a polyethylene film, a polypropylene film, and polyvinyl chloride, and a woven fabric produced by weaving fibers made of these polymer materials. Can be used.
  • the average thickness of the first sheet material 92 is not particularly limited, but is preferably about 0.01 to 1.0 mm, and more preferably about 0.03 to 0.1 mm. Since the first sheet material 92 having such a thickness is provided with excellent flexibility and flexibility regardless of the constituent material, it is possible to prevent the vibration from being inhibited when the vibrating body vibrates. . As a result, a decrease in power generation efficiency of the power generation apparatus 100 can be prevented or suppressed.
  • a second sheet material 93 having an outer shape substantially equal to the outer shape of the first sheet material 92 is fixed (laminated) to the lower surface of the first sheet material 92.
  • Examples of a method for fixing the second sheet material 93 to the first sheet material 92 include fusion (thermal fusion, ultrasonic fusion, high frequency fusion), adhesion with an adhesive, and the like.
  • the second sheet material 93 has a function of preventing the apparatus main body 1 from slipping with respect to the vibration body when the apparatus main body 1 is fixed to the vibration body.
  • the suction unit 9 includes the second sheet material 93, even if the vibrating body vibrates violently, the apparatus main body 1 can be more reliably prevented from being displaced with respect to the vibrating body.
  • the second sheet material 93 is preferably made of a material having a high coefficient of friction and capable of absorbing minute irregularities present on the surface of the vibrating body.
  • an elastomer material rubber material
  • examples of such an elastomer material include, but are not limited to, butyl rubber, styrene butadiene rubber, nitrile rubber, acrylic rubber, silicone rubber, fluorine rubber, urethane rubber, and the like. Can be used in combination.
  • the second sheet material 93 exhibits high adhesiveness, and its friction coefficient is preferably set to 0.7 or more, more preferably 0.85 or more. be able to.
  • the average thickness of the second sheet material 93 is not particularly limited, but is preferably about 0.1 to 2.0 mm, and more preferably about 0.3 to 1.0 mm.
  • the second sheet material 93 having such a thickness has excellent flexibility and bendability regardless of the constituent material thereof, and therefore the first sheet material 92 is fixed in a state where the second sheet material 93 is fixed. It is possible to prevent or suppress a decrease in flexibility (softness and flexibility).
  • the power generator 100 as described above is used by being fixed to a vibrating body made of a magnetic material such as the duct 200 shown in FIG. 10 or the pipe 300 shown in FIG.
  • the duct 200 shown in FIG. 10 has a rectangular tube shape including four deformable plate-like portions 201.
  • the duct 200 is formed, for example, by bending and joining (welding) a plate material (steel plate or plated steel plate) made of a magnetic material.
  • the duct 200 constitutes a flow path of a device that transfers (exhaust, ventilate, intake, circulate) a gas such as steam or air.
  • air is passed through an air-conditioning duct 200 installed in a facility such as a large facility, building, or station by a blower or the like for the purpose of exhaust or ventilation in the facility.
  • the duct 200 vibrates due to air pressure fluctuation (pulsation) of the blower or turbulence generated by the movement of air (fluid) in the duct 200.
  • the inside of the duct 200 is always positive pressure or negative pressure by the action of the blower.
  • the vibration of the duct 200 due to the aforementioned pulsation or the like is applied to the pressure, and the plate-like portion 201 is deformed.
  • the plate-like portion 201 is deformed into a state of projecting toward the outside of the duct 200 (convex shape), as shown in FIG.
  • the inside of the duct 200 is negative pressure
  • the plate-like portion 201 is deformed into a state of projecting toward the inside of the duct 200 (concave shape) as shown in FIG. Due to the deformation of the plate-like portion 201, the vibration of the duct 200 is amplified.
  • the magnet assembly 91 is attached to the apparatus main body 1 via the first sheet material 92 having flexibility. For this reason, even if unevenness exists on the surface of the plate-like portion 201 (the mounting surface of the power generation device 100), the first sheet material 92 is deformed following the unevenness to absorb the unevenness due to the unevenness. can do. Therefore, regardless of the surface shape of the plate-like portion 201, the suction means 9 can be reliably sucked to the plate-like portion 201. Furthermore, as described above, the plate-like portion 201 is deformed into a convex shape (see FIG. 11A) or the plate-like portion 201 is deformed into a concave shape (see FIG. 11B).
  • the first sheet material 92 is deformed following the deformation of the plate-like portion 201. Therefore, the suction state of the suction means 9 with respect to the plate-like portion 201 is maintained, and the power generation device 100 can be reliably prevented from falling off the duct 200.
  • the lower surface 230 of the base 23 forms a curved convex surface having a convex portion at the center. For this reason, even if the plate-like portion 201 is in the state (concave shape) shown in FIG. 11B, the edge of the base 23 is difficult to contact the plate-like portion 201. Can be reliably prevented from falling off the duct 200.
  • the vibration of the duct 200 is unnecessary vibration that generates noise and unpleasant vibration in the facility.
  • the apparatus main body 1 is fixed to the duct 200, and unnecessary vibration of the duct 200 is used (regeneration) to generate electric power in the power generation unit 10 (power generation) ). Therefore, if it is a place where the duct 200 is installed, electric power can be obtained from the power generation apparatus 100 even if there is no power supply wiring.
  • this power generation device 100 with a sensor and a wireless device, for example, the following power generation system can be constructed.
  • the illuminance, temperature, humidity, pressure, noise, and the like in the duct 200 and the facility can be measured by driving the sensor using the electric power obtained by the power generation apparatus 100.
  • the wireless device using the power obtained by the power generation device 100, the detection data measured by the sensor is transmitted to the external terminal via the wireless device and used as various control signals and monitoring signals. can do.
  • the power generation device 100 may be fixed to a plate-like portion 201 constituting the top plate portion, and as shown in FIG. 10 (b), You may make it fix the electric power generating apparatus 100 to the plate-shaped part 201 which comprises the side wall part.
  • the weight of the power generation apparatus 100 is preferably 200 to 800 g, and more preferably 400 to 600 g.
  • the attractive force with respect to the plate-like portion 201 of the attracting means 9 (the sum of the attractive forces with respect to the plate-like portion 201 of the magnet assembly 91) is larger than the weight of the power generation device 100. It is preferable to set the power generation device 100, specifically, it is preferable to set it to 600 g or more. Thereby, the power generation apparatus 100 can be stably fixed to any part of the plate-like portion 201 constituting the top plate portion. Can do.
  • the vibration acceleration of the power generation apparatus 100 When considering the vibration acceleration of the power generation apparatus 100 and external vibration generated by an earthquake or the like, if the vibration acceleration is 1 G and the acceleration due to the earthquake is 1 G, 3 G is added to the power generation apparatus 100 by adding the gravitational acceleration 1 G. Will join. Therefore, if the weight of the power generation device 100 is 400 g, it is preferable to set the suction force of the suction means 9 to the plate-like portion 201 to 1200 g or more. Accordingly, the power generation device 100 can be stably fixed also to the plate-like portion 201 that forms the side wall portion of the duct 200 illustrated in FIG. Moreover, if the suction force with respect to the plate-shaped part 201 of the adsorption
  • the attractive force of the attracting means 9 to the plate-like portion 201 is, for example, the types (constituent materials) of the second magnet 910 and the third magnet 911, the number of the third magnets 911, and the constituent material of the yoke 912. It is possible to make adjustments by appropriately selecting etc.
  • the pipe 300 shown in FIG. 12 is formed by, for example, bending (joining) a plate material (steel plate or plated steel plate) made of a magnetic material into a tubular shape. That is, the pipe 300 includes a curved portion (curved surface) over the entire outer periphery thereof.
  • the pipe 300 constitutes a flow path of a device that transfers fuel (fluid) such as hydrogen fuel gas and fuel oil.
  • the pipe 300 vibrates due to the hydraulic pressure fluctuation (pulsation) of the pump.
  • the magnet assembly 91 is attached to the apparatus main body 1 via the first sheet material 92 having flexibility.
  • the electric power generating apparatus 100 can be fixed also to a vibrating body having a curved surface (curved portion) like the pipe 300 shown in FIG.
  • the pipe 300 of a type having a different curvature radius in the cross-sectional shape is used.
  • the power generation apparatus 100 can be securely fixed.
  • the second magnet 910 is provided along the magnetization direction of the first magnet 31, and the central axis in the magnetization direction of the second magnet 910 is The first magnet 31 is configured to overlap the central axis in the magnetization direction.
  • the present invention is not limited to the above configuration. For example, even when the second magnet is not arranged along the magnetization direction of the first magnet, the type and size of the second magnet are changed, and the repulsive force of the second magnet on the first magnet is reduced. By adjusting so as to be sufficiently large, the same operation and effect as the power generation apparatus 100 of the present embodiment described above are produced.
  • the attracting means 9 has one magnet assembly 91 including the second magnet 910, but the present invention is not limited to this.
  • an attracting means having two or more magnet assemblies including a second magnet is prepared near the center of the fixed portion, and the shape and size of the concave portion of the base are changed.
  • the magnet assembly provided in the fixing portion of the attracting means so as to be positioned in the recess of the base, the same operation and effect as the power generation device of the present embodiment described above can be obtained. It is possible to obtain a power generation device having the same.
  • FIG. 13 is a longitudinal sectional view of a second embodiment of the power generator of the present invention.
  • the upper side in FIG. 12 is referred to as “upper” or “upper”, and the lower side is referred to as “lower” or “lower”.
  • the power generation apparatus 100 according to the second embodiment does not have the adsorbing means 9, the apparatus main body 1 is directly fixed to the vibrating body, and the magnet includes the magnet assembly 91 described above on the upper side of the apparatus main body 1. Except having the containing sheet 900, it is the same as that of the electric power generating apparatus 100 of the said 1st Embodiment. That is, the power generation apparatus 100 of the present embodiment has a configuration including the apparatus main body 1 and the magnet-containing sheet 900 similar to those of the first embodiment described above.
  • Such a power generator 100 is used, for example, by being fixed to the lower plate-like portion 201 (bottom plate portion) of the vibrating body (duct 200) shown in FIG. That is, the power generation device 100 of the present embodiment is used in a state where the power generation device 100 of the first embodiment shown in FIG. 10 is rotated 180 degrees.
  • the base 23 has a rectangular flat plate shape. Through holes (not shown) are formed in the four corners of the base 23, respectively. A screw (not shown) is passed through the through hole of the base 23 and screwed into a screw hole provided in the vibrating body. Thereby, the base 23 and the vibrating body are fixed, and the power generation apparatus 100 is fixed to the vibrating body.
  • a magnet-containing sheet 900 is provided on the upper surface of the cover 21 (device main body 1).
  • the magnet-containing sheet 900 includes one magnet assembly 91 described above, a first sheet material 901 that holds the magnet assembly 91, and a second sheet material 902 provided on the apparatus main body 1 side of the magnet assembly 91. And. Such a magnet-containing sheet 900 is fixed to the cover 21 such that the central axis in the magnetization direction of the second magnet 910 of the magnet assembly 91 overlaps the central axis in the magnetization direction of the first magnet 31. .
  • the second magnet 910 of the magnet assembly 91 is arranged with the north pole on the upper side and the south pole on the lower side. Therefore, the first magnet 31 and the second magnet 910 are arranged so that the same poles (S poles) face each other. For this reason, a repulsive force due to magnetic interaction acts between the first magnet 31 and the second magnet 910.
  • the power generation device 100 of the present embodiment is used in a state where the cover 21 is located below the base 23 (vertically below).
  • the first magnet 31 is displaced toward the cover 21.
  • the repulsive force acts between the first magnet 31 and the second magnet 910, whereby the first magnet It is possible to prevent the position of 31 relative to the housing 20 (coil 40) from being displaced.
  • the first magnet 31 can be displaced relative to the coil 40 with reference to the standard position by the vibration of the vibrating body. As a result, the power generation device 100 can reliably generate the design characteristics and efficiently generate power.
  • the first sheet material 901 is a rectangular sheet, and a recess (holding portion) that holds the magnet assembly 91 is formed.
  • a first sheet material 901 is the same as the first sheet material 92 described above except that the number of recesses and the outer shape thereof are different.
  • the second sheet material 902 has an outer shape substantially equal to the outer shape of the first sheet material 901, and fixes (laminates) the magnet assembly 91 between the first sheet material 901 and the second sheet material 902.
  • a method for fixing the second sheet material 902 to the first sheet material 901 include fusion (thermal fusion, ultrasonic fusion, high frequency fusion), adhesion with an adhesive, and the like.
  • Such a second sheet material 902 is the same as the second sheet material 902 described above except that its outer shape is different.
  • the magnet-containing sheet 900 can be attached (fixed) to the upper surface of the cover 21 by attaching the second sheet material 902 to the cover 21 by bonding with an adhesive or sticking with an adhesive.
  • the power generation device 100 of the present embodiment is fixed to the vibrating body by screwing. Therefore, in addition to the duct 200 described above, the power generation apparatus 100 of the present embodiment can be applied to a vibrating body in which the surface on which the power generation apparatus 100 is attached is made of a material other than a magnetic material.
  • the power generation unit 10 is configured by an electromagnetic induction element using the first magnet 31 and the coil 40.
  • the power generation unit 10 includes an electrostatic element (electret), a piezoelectric element.
  • An element, a magnetostrictive element, or the like can also be used.
  • the duct 200 and the pipe 300 were mentioned as an example of a vibrating body, as a vibrating body, for example, a transport plane (a freight train, an automobile, a truck bed), a rail constituting a track, a highway or a tunnel wall surface, for example. Examples include panels, bridges, and rotating equipment equipped with motors such as pumps, fans, and turbines.
  • the power generation apparatus 100 of the present invention can be configured by fixing the power generation device 100 to a portion formed of the magnetic material of these vibrators.
  • each configuration can be replaced with an arbitrary configuration that can exhibit the same function, or an arbitrary configuration can be added.
  • the arbitrary configurations of the first and second embodiments can be combined.
  • the first magnet by applying a repulsive force from the second magnet to the first magnet, the first magnet applies an external force to the power generation unit when the power generation device is fixed to the stationary vibration body. It is held at or near the position of the first magnet in the natural state. Therefore, the vibration of the vibrating body can displace the first magnet relative to the coil with reference to the standard position (the position of the first magnet in a natural state where no external force is applied to the power generation unit). . As a result, the power generation apparatus can reliably generate the design characteristics (power generation amount and frequency characteristics) and efficiently generate power. Therefore, the present invention has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

This power generation device 100, which is used fixed to a vibrating body, is provided with: a first magnet 31; a power generation unit 10 which comprises a coil 40 which is spaced away from and surrounds the outer periphery of the first magnet 31, and springs (60U, 60L) which, relative to the coil 40, displace the first magnet along the magnetization direction thereof; and a second magnet 910 which, when the power generation device 100 is fixed to the vibrating body and this is in a resting state, is arranged at or near the position of the first magnet 31 in a natural state, in which no external force is applied to the power generation unit 10, so as to bring a repulsive force to bear on the first magnet 31 so as to hold the first magnet 31.

Description

発電装置および発電システムPower generation device and power generation system
 本発明は、発電装置および発電システムに関する。 The present invention relates to a power generation apparatus and a power generation system.
 近年、小スペースで効率のよい発電を行うべく、ダクトや、ポンプ、ファン、タービン等のモーターを備えた回転機器等の振動体に発電装置を取り付けて、振動体の振動を利用して発電する試みがなされている(例えば、特許文献1参照)。特許文献1に記載の発電装置は、磁石と、磁石の外周側に設けられ、振動体に固定されるコイルと、磁石と振動体とを連結するコイルバネとを有している。かかる発電装置では、振動体の振動により、磁石をコイルに対して相対的に移動させて、コイルに電磁誘導に伴う電圧を発生させる。 In recent years, in order to generate power efficiently in a small space, a power generator is attached to a vibrating body such as a rotating device equipped with a motor such as a duct, a pump, a fan, and a turbine, and power is generated using the vibration of the vibrating body. Attempts have been made (see, for example, Patent Document 1). The power generation device described in Patent Literature 1 includes a magnet, a coil that is provided on the outer peripheral side of the magnet and is fixed to the vibrating body, and a coil spring that connects the magnet and the vibrating body. In such a power generation device, the magnet is moved relative to the coil by the vibration of the vibrating body to generate a voltage accompanying electromagnetic induction in the coil.
 発電装置が固定される振動体は、一般的に、鋼等の磁性材料で構成されている。そのため、特許文献1の発電装置では、磁石と振動体との間に磁気的相互作用による吸引力が働き、コイルに対する磁石の位置が、その標準位置よりも振動体側に変位する。この変位が大きくなると、発電装置の振動時における磁石のコイルに対する変位量が小さくなり、その結果、発電装置の発電量が設計値よりも小さくなる。また、この変位によって、コイルバネの非線形性が現れると、そのバネ定数が変化するため、発電量の周波数特性が設計値からズレてしまう。 The vibrating body to which the power generator is fixed is generally made of a magnetic material such as steel. Therefore, in the power generation device of Patent Document 1, an attractive force due to magnetic interaction acts between the magnet and the vibrating body, and the position of the magnet with respect to the coil is displaced to the vibrating body side from the standard position. When this displacement increases, the amount of displacement of the magnet with respect to the coil during vibration of the power generation device decreases, and as a result, the power generation amount of the power generation device becomes smaller than the design value. Further, when the nonlinearity of the coil spring appears due to this displacement, the spring constant changes, and the frequency characteristic of the power generation amount deviates from the design value.
 発電装置の発電量や周波数特性等の特性が設計値からズレるのを防止するため、発電装置を振動体に取り付けた状態で、磁石と振動体との距離を十分に大きくすることも考えられる。しかしながら、このような構成では、発電装置の厚さ方向のサイズを大きくせざるを得ないため、大きな取付けスペースを確保する必要がある。 In order to prevent characteristics such as the power generation amount and frequency characteristics of the power generation device from deviating from the design values, it is conceivable to sufficiently increase the distance between the magnet and the vibration body while the power generation device is attached to the vibration body. However, in such a configuration, it is necessary to increase the size of the power generation device in the thickness direction, and thus it is necessary to secure a large installation space.
特開平10-66323号公報Japanese Patent Laid-Open No. 10-66323
 本発明は、上記従来の問題点を鑑みたものであり、その目的は、発電装置の設計時の特性を確実に発現して、効率良く発電し得る発電装置、かかる発電装置を備える発電システムを提供することにある。 The present invention has been devised in view of the above-described conventional problems, and an object of the present invention is to provide a power generation device capable of generating power generation efficiently by surely expressing characteristics at the time of designing the power generation device, and a power generation system including such a power generation device. It is to provide.
 このような目的は以下の(1)~(11)の本発明により達成される。
 (1) 振動体に固定して使用する発電装置であって、
 第1の磁石と、該第1の磁石と離間し、かつ、その外周側を囲むように設けられたコイルと、前記第1の磁石を、その磁化方向に沿って前記コイルに対して相対的に変位させるバネとを備える発電部と、
 当該発電装置を静止状態の前記振動体に固定した際に、前記発電部に外力を付与しない自然状態における前記第1の磁石の位置またはその近傍に、前記第1の磁石を保持するように、前記第1の磁石に対して斥力を働かせるよう配置された第2の磁石とを有することを特徴とする発電装置。
Such an object is achieved by the present invention of the following (1) to (11).
(1) A power generation device fixed to a vibrating body and used.
A first magnet, a coil spaced apart from the first magnet and surrounding the outer periphery thereof, and the first magnet relative to the coil along its magnetization direction. A power generation unit comprising a spring to be displaced to
When the power generation device is fixed to the stationary vibration body, the first magnet is held at or near the position of the first magnet in a natural state where no external force is applied to the power generation unit. And a second magnet arranged to exert a repulsive force on the first magnet.
 (2) 前記第2の磁石は、前記第1の磁石の前記磁化方向に沿って設けられている上記(1)に記載の発電装置。 (2) The power generation device according to (1), wherein the second magnet is provided along the magnetization direction of the first magnet.
 (3) 前記第1の磁石および前記第2の磁石は、それぞれ、ブロック状をなしており、
 前記第2の磁石は、その磁化方向における中心軸が、前記第1の磁石の磁化方向における中心軸と重なるよう設けられている上記(2)に記載の発電装置。
(3) Each of the first magnet and the second magnet has a block shape,
The power generation apparatus according to (2), wherein the second magnet is provided such that a central axis in a magnetization direction thereof overlaps a central axis in the magnetization direction of the first magnet.
 (4) 前記振動体は、磁性材料で構成され、
 当該発電装置は、前記第2の磁石を介して、前記振動体に固定される上記(1)ないし(3)のいずれかに記載の発電装置。
(4) The vibrating body is made of a magnetic material,
The power generation device according to any one of (1) to (3), wherein the power generation device is fixed to the vibrating body via the second magnet.
 (5) 前記第2の磁石の前記第1の磁石に対する斥力の大きさが、前記第1の磁石の前記振動体に対する吸引力の大きさとほぼ等しい上記(4)に記載の発電装置。 (5) The power generation device according to (4), wherein the magnitude of the repulsive force of the second magnet with respect to the first magnet is substantially equal to the magnitude of the attractive force of the first magnet with respect to the vibrating body.
 (6) 当該発電装置は、前記第2の磁石の前記振動体に対する吸引力が、その重量より大きくなるよう構成されている上記(4)または(5)に記載の発電装置。 (6) The power generation device according to (4) or (5), wherein the power generation device is configured such that an attractive force of the second magnet to the vibrating body is greater than a weight thereof.
 (7) 当該発電装置は、前記第2の磁石を含み、当該発電装置を前記振動体に取り付ける吸着手段を有し、
 前記吸着手段は、可撓性を有し、前記第2の磁石を保持するシート材と、該シート材と前記第2の磁石との間に設けられ、前記シート材に対して前記第2の磁石を固定するヨークとを備える上記(4)ないし(6)のいずれかに記載の発電装置。
(7) The power generation device includes the second magnet, and has a suction unit that attaches the power generation device to the vibrating body.
The adsorbing means is flexible and is provided between the sheet material holding the second magnet and the sheet material and the second magnet, and The power generation device according to any one of (4) to (6), further including a yoke for fixing a magnet.
 (8) 前記吸着手段は、複数の第3の磁石をさらに有し、
 前記シート材は、前記発電部に固定される固定部と、該固定部の側方に延在し、前記固定部と反対側の端部に前記第3の磁石を保持する保持部を有する複数の腕部とを備える上記(7)に記載の発電装置。
(8) The attracting means further includes a plurality of third magnets,
The sheet material has a plurality of fixing portions that are fixed to the power generation portion, and a holding portion that extends to the side of the fixing portion and holds the third magnet at an end opposite to the fixing portion. The power generation device according to (7), further including an arm portion.
 (9) 当該発電装置を平坦面に載置したとき、各前記腕部は、前記保持部が前記装置本体より外側に位置するような長さを有する上記(8)に記載の発電装置。 (9) The power generation device according to (8), wherein when the power generation device is placed on a flat surface, each of the arm portions has a length such that the holding portion is positioned outside the device main body.
 (10) 前記第2の磁石は、当該発電装置を前記振動体に固定する際に、前記発電部の前記振動体とは反対側に取り付けられる上記(1)ないし(3)のいずれかに記載の発電装置。 (10) The second magnet according to any one of (1) to (3), wherein the second magnet is attached to a side of the power generation unit opposite to the vibration body when the power generation device is fixed to the vibration body. Power generator.
 (11) 上記(1)ないし(10)のいずれかに記載の発電装置と、
 当該発電装置を固定する、磁性材料で構成される振動体とを有することを特徴とする発電システム。
(11) The power generation device according to any one of (1) to (10) above,
A power generation system comprising: a vibrating body made of a magnetic material for fixing the power generation device.
 本発明によれば、第2の磁石から第1の磁石に対して斥力を働かせることにより、発電装置を静止状態の振動体に固定した際に、第1の磁石が、発電部に外力を付与しない自然状態における第1の磁石の位置またはその近傍に保持される。そのため、振動体の振動により、第1の磁石を、その標準位置(発電部に外力を付与しない自然状態における第1の磁石の位置)を基準としてコイルに対して相対的に変位させることができる。これにより、発電装置は、設計時の特性(発電量や周波数特性)を確実に発現して、効率良く発電することができる。 According to the present invention, by applying a repulsive force from the second magnet to the first magnet, the first magnet applies an external force to the power generation unit when the power generation device is fixed to the stationary vibration body. It is held at or near the position of the first magnet in the natural state. Therefore, the vibration of the vibrating body can displace the first magnet relative to the coil with reference to the standard position (the position of the first magnet in a natural state where no external force is applied to the power generation unit). . As a result, the power generation apparatus can reliably generate the design characteristics (power generation amount and frequency characteristics) and efficiently generate power.
図1は、本発明の発電装置の第1実施形態を示す斜視図である。FIG. 1 is a perspective view showing a first embodiment of a power generator of the present invention. 図2は、図1に示す発電装置の平面図である。FIG. 2 is a plan view of the power generator shown in FIG. 図3は、図1に示す発電装置が備える装置本体の分解斜視図である。FIG. 3 is an exploded perspective view of the apparatus main body included in the power generation apparatus shown in FIG. 図4は、図1中のA-A線断面図である。4 is a cross-sectional view taken along line AA in FIG. 図5は、図3に示す装置本体が備える板バネの平面図である。FIG. 5 is a plan view of a leaf spring included in the apparatus main body shown in FIG. 図6は、図1に示す発電装置が備える吸着手段の分解斜視図である。FIG. 6 is an exploded perspective view of the suction means included in the power generation device shown in FIG. 1. 図7は、図1中のB-B線断面図である。7 is a cross-sectional view taken along line BB in FIG. 図8は、図1に示す発電装置を振動体に固定した状態において、第1の磁石と第2の磁石および振動体との磁気的相互作用を説明するための模式図である。FIG. 8 is a schematic diagram for explaining the magnetic interaction between the first magnet, the second magnet, and the vibrating body in a state where the power generation device shown in FIG. 1 is fixed to the vibrating body. 図9(a-1)および図9(a-2)は、それぞれ、図1~4に示す発電装置を振動体に固定した状態において、発電部の磁石組立体と吸着手段の磁石組立体との間に発生する磁場を解析した解析図、および第1の磁石と第2の磁石との離間距離と第1の磁石に働く力の大きさとの関係を示すグラフである。また、図9(b-1)および図9(b-2)は、図1~4に示す発電装置の第1の磁石と第2の磁石とを異極同士が対向するように配置した発電装置を振動体に固定した状態において、発電部の磁石組立体と吸着手段の磁石組立体との間に発生する磁場を解析した解析図、および第1の磁石と第2の磁石との離間距離と第1の磁石に働く力の大きさとの関係を示すグラフである。FIGS. 9 (a-1) and 9 (a-2) respectively show the magnet assembly of the power generation unit and the magnet assembly of the attracting means in a state where the power generation device shown in FIGS. 1 to 4 is fixed to the vibrating body. It is the analysis figure which analyzed the magnetic field which generate | occur | produces between, and the graph which shows the relationship between the separation distance of a 1st magnet and a 2nd magnet, and the magnitude | size of the force which acts on a 1st magnet. 9 (b-1) and FIG. 9 (b-2) show power generation in which the first magnet and the second magnet of the power generation apparatus shown in FIGS. 1 to 4 are arranged so that the opposite poles face each other. An analysis diagram analyzing a magnetic field generated between the magnet assembly of the power generation unit and the magnet assembly of the attracting means in a state where the apparatus is fixed to the vibrating body, and a separation distance between the first magnet and the second magnet It is a graph which shows the relationship between the magnitude | size of the force which acts on a 1st magnet. 図10は、図1に示す発電装置の使用状態(固定状態)を示す図である。FIG. 10 is a diagram illustrating a use state (fixed state) of the power generation device illustrated in FIG. 1. 図11は、図10に示す発電装置を拡大して示す側面図である。11 is an enlarged side view showing the power generation device shown in FIG. 図12は、図1に示す発電装置の他の使用状態(固定状態)を示す図である。FIG. 12 is a diagram illustrating another usage state (fixed state) of the power generation device illustrated in FIG. 1. 図13は、本発明の発電装置の第2実施形態の縦断面図である。FIG. 13 is a longitudinal sectional view of a second embodiment of the power generator of the present invention.
 以下、本発明の発電装置を添付図面に示す好適な実施形態に基づいて説明する。
 <第1実施形態>
 まず、本発明の発電装置の第1実施形態について説明する。
Hereinafter, a power generator according to the present invention will be described based on preferred embodiments shown in the accompanying drawings.
<First Embodiment>
First, a first embodiment of the power generator of the present invention will be described.
 図1は、本発明の発電装置の第1実施形態を示す斜視図である。図2は、図1に示す発電装置の平面図である。図3は、図1に示す発電装置が備える装置本体の分解斜視図である。図4は、図1中のA-A線断面図である。図5は、図3に示す装置本体が備える板バネの平面図である。図6は、図1に示す発電装置が備える吸着手段の分解斜視図である。図7は、図1中のB-B線断面図である。図8は、図1に示す発電装置を振動体に固定した状態において、第1の磁石と第2の磁石および振動体との磁気的相互作用を説明するための模式図である。図9は、図1~4に示す発電装置および第1の磁石と第2の磁石とを異極同士が対向するように配置した発電装置を振動体に固定した状態において、発電部の磁石組立体と吸着手段の磁石組立体との間に発生する磁場を解析した解析図、および第1の磁石と第2の磁石との離間距離と第1の磁石に働く力の大きさとの関係を示すグラフである。図10は、図1に示す発電装置の使用状態(固定状態)を示す図である。図11は、図10に示す発電装置を拡大して示す側面図である。図12は、図1に示す発電装置の他の使用状態(固定状態)を示す図である。 FIG. 1 is a perspective view showing a first embodiment of a power generator according to the present invention. FIG. 2 is a plan view of the power generator shown in FIG. FIG. 3 is an exploded perspective view of the apparatus main body included in the power generation apparatus shown in FIG. 4 is a cross-sectional view taken along line AA in FIG. FIG. 5 is a plan view of a leaf spring included in the apparatus main body shown in FIG. FIG. 6 is an exploded perspective view of the suction means included in the power generation device shown in FIG. 1. 7 is a cross-sectional view taken along line BB in FIG. FIG. 8 is a schematic diagram for explaining the magnetic interaction between the first magnet, the second magnet, and the vibrating body in a state where the power generation device shown in FIG. 1 is fixed to the vibrating body. FIG. 9 shows the magnet assembly of the power generation unit in a state where the power generation device shown in FIGS. 1 to 4 and the power generation device in which the first magnet and the second magnet are arranged so that the opposite poles face each other are fixed to a vibrating body. An analysis diagram analyzing the magnetic field generated between the solid and the magnet assembly of the attracting means, and showing the relationship between the distance between the first magnet and the second magnet and the magnitude of the force acting on the first magnet It is a graph. FIG. 10 is a diagram illustrating a use state (fixed state) of the power generation device illustrated in FIG. 1. 11 is an enlarged side view showing the power generation device shown in FIG. FIG. 12 is a diagram illustrating another usage state (fixed state) of the power generation device illustrated in FIG. 1.
 なお、以下の説明では、図1、図3、図4、図6~図12中の上側を「上」または「上方」と言い、下側を「下」または「下方」と言う。また、図2および図5中の紙面手前側を「上」または「上方」と言い、紙面奥側を「下」または「下方」と言う。 In the following description, the upper side in FIGS. 1, 3, 4, and 6 to 12 is referred to as “upper” or “upper”, and the lower side is referred to as “lower” or “lower”. 2 and FIG. 5 is referred to as “upper” or “upper”, and the rear side of the page is referred to as “lower” or “lower”.
 図1および図2に示す発電装置100は、磁性材料で構成される振動体に固定して使用する装置である。かかる発電装置100は、装置本体1と、この装置本体1を振動体に吸着により固定する吸着手段9と、装置本体1から側方に突出するようにして設けられ、外部装置に接続される接続コネクタ11とを有している。 1 and 2 is an apparatus that is used by being fixed to a vibrating body made of a magnetic material. Such a power generation device 100 is provided with a device main body 1, suction means 9 for fixing the device main body 1 to the vibrating body by suction, and a connection that is provided so as to protrude laterally from the device main body 1 and is connected to an external device. Connector 11.
 図3に示すように、装置本体1は、筐体20と、筐体20内に、図4の上下方向に振動可能に保持された発電部10とを備えている。この発電部10は、一対の対向する上側板バネ60Uおよび下側板バネ60Lと、これらの間に固定された、永久磁石(第1の磁石31)を有する磁石組立体30、第1の磁石31の外周側を囲むように設けられたコイル40およびコイル40を保持するコイル保持部50とを有している。なお、本実施形態では、上側板バネ60Uと下側板バネ60Lとは、同じ構造を有している。 As shown in FIG. 3, the apparatus main body 1 includes a housing 20 and a power generation unit 10 that is held in the housing 20 so as to vibrate in the vertical direction of FIG. 4. The power generation unit 10 includes a pair of opposed upper leaf springs 60U and lower leaf springs 60L, a magnet assembly 30 having a permanent magnet (first magnet 31) fixed between them, and a first magnet 31. A coil 40 provided so as to surround the outer peripheral side of the coil and a coil holding part 50 for holding the coil 40. In the present embodiment, the upper leaf spring 60U and the lower leaf spring 60L have the same structure.
 <<筐体20>>
 筐体20は、図3および図4に示すように、カバー21と、発電部10を上面(一方の面)側に支持するベース(支持板)23と、カバー21とベース23との間に、発電部10を囲むように設けられた筒状部22とを備えている。
<< Case 20 >>
As shown in FIGS. 3 and 4, the housing 20 includes a cover 21, a base (support plate) 23 that supports the power generation unit 10 on the upper surface (one surface) side, and a space between the cover 21 and the base 23. And a cylindrical part 22 provided so as to surround the power generation part 10.
 カバー21は、円盤状をなし、その外周縁部に沿って、円環状(リング状)のリブ211が下方に向かって突出形成されている。このリブ211に対応する部分に沿って、ほぼ等間隔で6つの貫通孔212が形成されている。また、カバー21のリブ211より内側の部分には、上方に向かって凹没形成された凹部(逃げ部)214が形成されている。発電部10は、振動した際に、この凹部214内に位置(退避)し、カバー21と接触しないように構成されている。 The cover 21 has a disk shape, and an annular (ring-shaped) rib 211 is formed so as to protrude downward along the outer peripheral edge thereof. Along the portion corresponding to the rib 211, six through holes 212 are formed at approximately equal intervals. In addition, a concave portion (a relief portion) 214 that is recessed upward is formed in a portion inside the rib 211 of the cover 21. The power generation unit 10 is configured so as to be positioned (withdrawn) in the recess 214 and not to contact the cover 21 when vibrated.
 筒状部22は、円筒状をなし、その外径がカバー21の外径とほぼ等しくなっている。発電部10と筐体20とを組み立てた状態(以下、この状態を「組立状態」と言う。)で、筒状部22の内側に発電部10の発電に寄与する主要部が位置する。 The cylindrical portion 22 has a cylindrical shape, and its outer diameter is substantially equal to the outer diameter of the cover 21. In a state in which the power generation unit 10 and the housing 20 are assembled (hereinafter, this state is referred to as an “assembly state”), a main portion that contributes to power generation of the power generation unit 10 is located inside the cylindrical portion 22.
 また、筒状部22の内周面には、カバー21の貫通孔212に対応する位置に、筒状部22の高さ方向に沿って6つのボス221が形成されている。このボス221の上端部には、上側ネジ孔221aが形成されている。また、上側板バネ60Uの外周部(第1の環状部61)には、その周方向に沿ってほぼ等間隔で6つの貫通孔66が形成されている。 Further, six bosses 221 are formed on the inner peripheral surface of the cylindrical portion 22 at positions corresponding to the through holes 212 of the cover 21 along the height direction of the cylindrical portion 22. An upper screw hole 221 a is formed at the upper end of the boss 221. In addition, six through holes 66 are formed in the outer peripheral portion (first annular portion 61) of the upper leaf spring 60U at substantially equal intervals along the circumferential direction.
 上側板バネ60Uの外周部をカバー21と筒状部22との間に位置させた状態で、ネジ213を、カバー21の貫通孔212および上側板バネ60Uの貫通孔66に挿通し、ボス221の上側ネジ孔221aに螺合させる。これにより、上側板バネ60Uの外周部が、カバー21と筒状部22とに固定される。 With the outer peripheral portion of the upper leaf spring 60U positioned between the cover 21 and the cylindrical portion 22, the screw 213 is inserted into the through hole 212 of the cover 21 and the through hole 66 of the upper leaf spring 60U, and the boss 221 is inserted. Screwed into the upper screw hole 221a. Thereby, the outer peripheral portion of the upper leaf spring 60 </ b> U is fixed to the cover 21 and the cylindrical portion 22.
 ベース23は、円盤状をなし、その外周縁部に沿って、円環状(リング状)のリブ231が上方に向かって突出形成されている。このリブ231に対応する部分に沿って、ほぼ等間隔に6つの貫通孔232が形成されている。また、ベース23のリブ231より内側の部分には、下方に向かって凹没形成された凹部(逃げ部)234が形成されている。発電部10は、振動した際に、この凹部234内に位置(退避)し、ベース23と接触しないように構成されている。 The base 23 has a disk shape, and an annular (ring-shaped) rib 231 is formed to protrude upward along the outer peripheral edge portion thereof. Six through holes 232 are formed at substantially equal intervals along the portion corresponding to the rib 231. In addition, a concave portion (relief portion) 234 that is recessed downward is formed in a portion inside the rib 231 of the base 23. The power generation unit 10 is configured to be positioned (withdrawn) in the recess 234 and not to contact the base 23 when vibrated.
 また、筒状部22のボス221の下端部には、下側ネジ孔(雌ネジ)221bが形成されている。下側板バネ60Lの外周部(第1の環状部61)をベース23と筒状部22との間に位置させた状態で、ネジ233を、ベース23の貫通孔232および下側板バネ60Lの貫通孔66に挿通し、ボス221の下側ネジ孔221bに螺合させる。これにより、下側板バネ60Lの外周部が、ベース23と筒状部22とに固定される。 Further, a lower screw hole (female screw) 221b is formed at the lower end of the boss 221 of the cylindrical portion 22. With the outer peripheral portion (first annular portion 61) of the lower leaf spring 60L positioned between the base 23 and the cylindrical portion 22, the screw 233 passes through the through hole 232 of the base 23 and the lower leaf spring 60L. It is inserted through the hole 66 and screwed into the lower screw hole 221b of the boss 221. Thereby, the outer peripheral part of the lower leaf spring 60 </ b> L is fixed to the base 23 and the cylindrical part 22.
 図4に示すように、ベース23の下面(他方の面)230は、下方に向かって突出する湾曲凸面で構成されている。なお、かかる構成とすることにより得られる効果については、後に説明する。また、ベース23の下面230の中央部には、吸着手段9の一部を構成する永久磁石(第2の磁石)910等を収納可能な凹部235が形成されている。 As shown in FIG. 4, the lower surface (the other surface) 230 of the base 23 is formed of a curved convex surface protruding downward. In addition, the effect acquired by setting it as this structure is demonstrated later. Further, a concave portion 235 capable of accommodating a permanent magnet (second magnet) 910 constituting a part of the attracting means 9 is formed in the central portion of the lower surface 230 of the base 23.
 筐体20(カバー21、筒状部22およびベース23)を構成する材料としては、特に限定されないが、例えば、金属材料、セラミックス材料、樹脂材料等が挙げられ、これらの1種または2種以上を組み合わせて用いることができる。 Although it does not specifically limit as a material which comprises the housing | casing 20 (the cover 21, the cylindrical part 22, and the base 23), For example, a metal material, a ceramic material, a resin material etc. are mentioned, These 1 type or 2 types or more Can be used in combination.
 筐体20の寸法は、特に限定されないが、発電装置100を小型化(低背化)する観点からは、筐体20(ベース23)の平均幅は、60~120mm程度であるのが好ましい。また、筐体20の平均高さは、20~50mm程度であるのが好ましく、30~40mm程度であるのがより好ましい。 The dimensions of the housing 20 are not particularly limited, but from the viewpoint of downsizing (lowering the height) the power generation apparatus 100, the average width of the housing 20 (base 23) is preferably about 60 to 120 mm. The average height of the housing 20 is preferably about 20 to 50 mm, more preferably about 30 to 40 mm.
 この筐体20内には、上側板バネ60Uおよび下側板バネ60Lにより、発電部10が振動可能に保持されている。 The power generation unit 10 is held in the housing 20 so as to be vibrated by an upper leaf spring 60U and a lower leaf spring 60L.
 <<上側板バネ60U、下側板バネ60L>>
 上側板バネ60Uは、その外周部がカバー21と筒状部22との間に、これらに挟持されることにより固定される。また、下側板バネ60Lは、その外周部がベース23と筒状部22との間に、これらに挟持されることにより固定されている。
<< Upper leaf spring 60U, lower leaf spring 60L >>
The upper leaf spring 60U is fixed by sandwiching the outer peripheral portion between the cover 21 and the cylindrical portion 22 between them. The lower leaf spring 60L is fixed by sandwiching the outer peripheral portion between the base 23 and the cylindrical portion 22 between them.
 各板バネ60L、60Uは、例えば、鉄、ステンレス鋼のような金属製の薄板材から形成され、その全体形状が円盤状をなす部材である。図5に示すように、各板バネ60L、60Uは、外周側から、第1の環状部61、第1の環状部61の内径よりも小さい外径を有する第2の環状部62、および、第2の環状部62の内径よりも小さい外径を有する第3の環状部63を有している。 Each of the leaf springs 60L and 60U is a member formed of a metal thin plate material such as iron or stainless steel, and the entire shape thereof is a disk shape. As shown in FIG. 5, each of the leaf springs 60 </ b> L and 60 </ b> U includes, from the outer peripheral side, a first annular portion 61, a second annular portion 62 having an outer diameter smaller than the inner diameter of the first annular portion 61, and A third annular portion 63 having an outer diameter smaller than the inner diameter of the second annular portion 62 is provided.
 これらの第1の環状部61、第2の環状部62および第3の環状部63は、同心的に設けられている。また、第1の環状部61と第2の環状部62とは、複数(本実施形態では、6つ)の第1のバネ部64によって連結されており、第2の環状部62と第3の環状部63とは、複数(本実施形態では、3つ)の第2のバネ部65によって連結されている。 The first annular portion 61, the second annular portion 62, and the third annular portion 63 are provided concentrically. The first annular portion 61 and the second annular portion 62 are connected by a plurality of (six in this embodiment) first spring portions 64, and the second annular portion 62 and the third annular portion 62 are connected to each other. Are connected by a plurality (three in this embodiment) of second spring portions 65.
 第1の環状部61には、その周方向に沿って、6つの貫通孔66がほぼ等間隔(およそ60°間隔)で形成されている。前述したように、上側板バネ60Uの貫通孔66には、ボス221の上側ネジ孔221aに螺合されるネジ213が挿通され、一方、下側板バネ60Lの貫通孔66には、ボス221の下側ネジ孔221bに螺合されるネジ233が挿通される。 In the first annular portion 61, six through holes 66 are formed at substantially equal intervals (approximately 60 ° intervals) along the circumferential direction. As described above, the screw 213 screwed into the upper screw hole 221a of the boss 221 is inserted into the through hole 66 of the upper leaf spring 60U, while the through hole 66 of the lower leaf spring 60L is inserted into the through hole 66 of the boss 221. A screw 233 to be screwed into the lower screw hole 221b is inserted.
 また、第2の環状部62にも、その周方向に沿って、6つの貫通孔67がほぼ等間隔(およそ60°間隔)で形成されている。また、後述するコイル保持部50には、その周方向に沿って、6つのボス511が上下方向に突出して形成されている。各ボス511には、その上端部に上側ネジ孔511aと、下端部に下側ネジ孔511bとが形成されている。 Also, six through holes 67 are formed in the second annular portion 62 at substantially equal intervals (approximately 60 ° intervals) along the circumferential direction. In addition, six bosses 511 are formed in the coil holding portion 50 described later so as to protrude in the vertical direction along the circumferential direction. Each boss 511 is formed with an upper screw hole 511a at its upper end and a lower screw hole 511b at its lower end.
 ネジ82を上側板バネ60Uの貫通孔67に挿通し、ボス511の上側ネジ孔511aに螺合させる。これにより、上側板バネ60Uの第2の環状部62が、コイル保持部50に固定される。一方、ネジ82を下側板バネ60Lの貫通孔67に挿通し、ボス511の下側ネジ孔511bに螺合させる。これにより、下側板バネ60Lの第2の環状部62が、コイル保持部50に固定される。 The screw 82 is inserted into the through hole 67 of the upper leaf spring 60U and screwed into the upper screw hole 511a of the boss 511. Thereby, the second annular portion 62 of the upper leaf spring 60 </ b> U is fixed to the coil holding portion 50. On the other hand, the screw 82 is inserted into the through hole 67 of the lower leaf spring 60L and screwed into the lower screw hole 511b of the boss 511. Thereby, the second annular portion 62 of the lower leaf spring 60 </ b> L is fixed to the coil holding portion 50.
 また、上側板バネ60Uの第3の環状部63には、磁石組立体30の上方に配置されるスペーサ70が固定されている。一方、下側板バネ60Lの第3の環状部63には、磁石組立体30が固定されている。また、本実施形態では、ネジ73により、スペーサ70と磁石組立体30とが連結されている。 Also, a spacer 70 disposed above the magnet assembly 30 is fixed to the third annular portion 63 of the upper leaf spring 60U. On the other hand, the magnet assembly 30 is fixed to the third annular portion 63 of the lower leaf spring 60L. In the present embodiment, the spacer 70 and the magnet assembly 30 are connected by the screw 73.
 6つの第1のバネ部64は、それぞれ、円弧状の部分を有する形状(ほぼS字状)をなしており、第1の環状部61と第2の環状部62との間に配置されている。具体的には、第2の環状部62(コイル保持部50)を介して、互いに対向する一対の第1のバネ部64が3組で(第3の環状部63の中心軸を中心とした回転対象の位置に)配置されている。各第1のバネ部64は、その一端が第1の環状部61の貫通孔66近傍で第1の環状部61に連結され、円弧状の部分が第1の環状部61および第2の環状部62の周方向に沿って左回り(反時計回り)に延在して、他端が第2の環状部62の貫通孔67近傍で第2の環状部62に連結されている。 Each of the six first spring portions 64 has a shape having an arcuate portion (substantially S-shape), and is disposed between the first annular portion 61 and the second annular portion 62. Yes. Specifically, a pair of first spring portions 64 that are opposed to each other via the second annular portion 62 (coil holding portion 50) has three sets (centering on the central axis of the third annular portion 63). Placed at the position of the object to be rotated. One end of each first spring portion 64 is connected to the first annular portion 61 in the vicinity of the through hole 66 of the first annular portion 61, and the arc-shaped portions are the first annular portion 61 and the second annular portion. The other end extends counterclockwise (counterclockwise) along the circumferential direction of the portion 62, and the other end is connected to the second annular portion 62 in the vicinity of the through hole 67 of the second annular portion 62.
 6つの第1のバネ部64は、第2の環状部62を第1の環状部61に対して、図4の上下方向に振動可能に支持(連結)している。上述したように、第1の環状部61は筐体20に固定され、第2の環状部62はコイル保持部50に固定されている。そのため、振動体からの振動が筐体20に伝達されると、この振動が第1のバネ部64を介して第2の環状部62に伝達され、コイル保持部50が筐体20に対して振動する。 The six first spring portions 64 support (connect) the second annular portion 62 with respect to the first annular portion 61 so as to vibrate in the vertical direction of FIG. As described above, the first annular portion 61 is fixed to the housing 20, and the second annular portion 62 is fixed to the coil holding portion 50. Therefore, when vibration from the vibrating body is transmitted to the housing 20, this vibration is transmitted to the second annular portion 62 via the first spring portion 64, and the coil holding portion 50 is moved with respect to the housing 20. Vibrate.
 一方、3つの第2のバネ部65は、それぞれ、円弧状の部分を有する形状(ほぼS字状)をなしており、第2の環状部62と第3の環状部63との間に配置されている。具体的には、3つの第2のバネ部65は、第3の環状部63(磁石組立体30)の中心軸を中心とした回転対象の位置に配置されている。各第2のバネ部65は、その一端が第2の環状部62の貫通孔67近傍で第2の環状部62に連結され、円弧状の部分が第2の環状部62および第3の環状部63の周方向に沿って右回り(時計回り)に延在して、他端が第3の環状部63と連結している。 On the other hand, each of the three second spring portions 65 has a shape having an arcuate portion (substantially S-shape), and is disposed between the second annular portion 62 and the third annular portion 63. Has been. Specifically, the three second spring portions 65 are disposed at positions to be rotated around the central axis of the third annular portion 63 (magnet assembly 30). One end of each second spring portion 65 is connected to the second annular portion 62 in the vicinity of the through hole 67 of the second annular portion 62, and the arc-shaped portion is the second annular portion 62 and the third annular portion. It extends clockwise (clockwise) along the circumferential direction of the portion 63, and the other end is connected to the third annular portion 63.
 3つの第2のバネ部65は、第3の環状部63を第2の環状部62に対して、図4の上下方向に振動可能に支持(連結)している。上述したように、第2の環状部62はコイル保持部50に固定され、第3の環状部63は直接または間接的に磁石組立体30に固定されている。そのため、第2の環状部62に伝達された振動体からの振動が、第2のバネ部65を介して第3の環状部63に伝達され、磁石組立体30がコイル保持部50に対して振動する。 The three second spring portions 65 support (connect) the third annular portion 63 with respect to the second annular portion 62 so as to vibrate in the vertical direction of FIG. As described above, the second annular portion 62 is fixed to the coil holding portion 50, and the third annular portion 63 is directly or indirectly fixed to the magnet assembly 30. Therefore, the vibration from the vibrating body transmitted to the second annular portion 62 is transmitted to the third annular portion 63 via the second spring portion 65, and the magnet assembly 30 is moved to the coil holding portion 50. Vibrate.
 このように、各板バネ60L、60Uは、図5に示すように、その中心軸(第3の環状部63の中心軸)を中心とした回転対称の形状をなしている。これにより、各板バネ60L、60Uの周方向における第1のバネ部64および第2のバネ部65のバネ定数にバラつきが生じることを防止することができる。そのため、各板バネ60L、60Uの全体としての厚さ方向とほぼ直交する方向における剛性(横剛性)を向上させることができる。また、発電装置100(装置本体1)を組み立てる際には、その作業をより簡便に行うことができるようになる。 Thus, as shown in FIG. 5, each leaf spring 60L, 60U has a rotationally symmetric shape with its center axis (the center axis of the third annular portion 63) as the center. Thereby, it can prevent that the spring constant of the 1st spring part 64 and the 2nd spring part 65 in the circumferential direction of each leaf | plate spring 60L and 60U arises. Therefore, it is possible to improve the rigidity (lateral rigidity) in a direction substantially orthogonal to the thickness direction of the plate springs 60L and 60U as a whole. Further, when assembling the power generation apparatus 100 (apparatus body 1), the work can be performed more easily.
 かかる構成の装置本体1では、筐体20に対して、第1のバネ部64を介してコイル保持部50が振動する第1の振動系と、コイル保持部50に対して、第2のバネ部65を介して磁石組立体30が振動する第2の振動系とが形成されている。換言すれば、装置本体1では、発電部10が、第1の振動系および第2の振動系を有する2自由度振動系を構成している。 In the apparatus main body 1 configured as described above, the first vibration system in which the coil holding part 50 vibrates via the first spring part 64 with respect to the housing 20 and the second spring with respect to the coil holding part 50. A second vibration system in which the magnet assembly 30 vibrates via the portion 65 is formed. In other words, in the apparatus main body 1, the power generation unit 10 constitutes a two-degree-of-freedom vibration system having a first vibration system and a second vibration system.
 このような2自由度振動系の発電部10では、第1の振動系が、コイルを保持した状態のコイル保持部50(以下、単に「コイル保持部50」と言うこともある。)の質量:mと、コイル保持部50と磁石組立体30との質量比:μと、第1のバネ部64のバネ定数:kとで決定される第1の固有振動数:ωを有し、第2の振動系が、磁石組立体30の質量:mと、コイル保持部50と磁石組立体30との質量比:μと、第2のバネ部65のバネ定数:kとで決定される第2の固有振動数:ωを有する。
 ここで、各固有振動数ω1、ωは、下記式(1)の運動方程式で表すことができる。
In such a two-degree-of-freedom vibration system power generation unit 10, the mass of the coil holding unit 50 (hereinafter sometimes simply referred to as “coil holding unit 50”) in which the first vibration system holds the coil. : and m 1, the mass ratio of the coil holder 50 and the magnet assembly 30: a mu, the spring constant of the first spring portion 64: k 1 as the first natural frequency is determined by: have a omega 1 The second vibration system includes the mass of the magnet assembly 30: m 2 , the mass ratio of the coil holding unit 50 and the magnet assembly 30: μ, and the spring constant of the second spring portion 65: k 2 in a second natural frequency that is determined: with a omega 2.
Here, each natural frequency ω 1 , ω 2 can be expressed by the following equation of motion (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 すなわち、2自由度振動系の各固有振動数ω、ωは、上記μ、Ω、Ωの3つのパラメータで決定される。 That is, the natural frequencies ω 1 and ω 2 of the two-degree-of-freedom vibration system are determined by the three parameters μ, Ω 1 , and Ω 2 .
 上記式(1)で表される2自由度振動系の発電量(発電能力)は、発電による減衰を伴い、各固有振動数ω、ωにそれぞれ起因する2つの共振周波数f1、において最大値をとる。そして、発電装置100では、この2つの共振周波数(f1、)間の周波数帯域にわたって発電部10が筐体20に対して効率良く振動する。なお、減衰が無い場合において各固有振動数ω1、ωは各共振周波数f、fに一致する。 The power generation amount (power generation capacity) of the two-degree-of-freedom vibration system represented by the above formula (1) is accompanied by attenuation due to power generation, and two resonance frequencies f 1 and f resulting from the respective natural frequencies ω 1 and ω 2 The maximum value is taken at 2 . In the power generation apparatus 100, the power generation unit 10 vibrates efficiently with respect to the housing 20 over the frequency band between the two resonance frequencies (f 1, f 2 ). When there is no damping, the natural frequencies ω 1 and ω 2 coincide with the resonance frequencies f 1 and f 2 .
 したがって、各振動系の質量(m、m)およびバネ定数(k、k)を調整して、第1の振動系の共振周波数fと第2の振動系の共振周波数fとを異なる値に設定する(2重化する)ことにより、その設定された周波数帯域の外部振動(筐体20に付与される振動)に対して、発電部10を効率良く振動させることができる。 Accordingly, the mass (m 1 , m 2 ) and the spring constant (k 1 , k 2 ) of each vibration system are adjusted, and the resonance frequency f 1 of the first vibration system and the resonance frequency f 2 of the second vibration system. Are set to different values (doubled), the power generation unit 10 can be efficiently vibrated with respect to the external vibration (vibration applied to the casing 20) in the set frequency band. .
 例えば、振動体の振動が強く発生する周波数帯域が、20~40Hz程度である場合には、上記各振動系の質量(m、m)およびバネ定数(k、k)を下記式(1A)~(3A)の条件を満足するように調整することにより、この振動体に対する発電装置100の発電効率を特に向上させることができる。 For example, when the frequency band in which vibration of the vibrating body is strongly generated is about 20 to 40 Hz, the mass (m 1 , m 2 ) and the spring constant (k 1 , k 2 ) of each vibration system are expressed by the following formulas: By adjusting so as to satisfy the conditions (1A) to (3A), the power generation efficiency of the power generation apparatus 100 with respect to this vibrating body can be particularly improved.
       m[kg]:m[kg]=1.5:1     (1A)
       m[kg]:k[N/m]=1:60000  (2A)
       m[kg]:k[N/m]=1:22000  (3A)
m 1 [kg]: m 2 [kg] = 1.5: 1 (1A)
m 1 [kg]: k 1 [N / m] = 1: 60000 (2A)
m 2 [kg]: k 2 [N / m] = 1: 22000 (3A)
 なお、このような周波数帯域で振動が強く発生する振動体としては、後述するような空調ダクトが挙げられる。 In addition, as a vibrating body that vibrates strongly in such a frequency band, an air conditioning duct as described later can be cited.
 なお、各板バネ60L、60Uの平均厚さは、各バネ部64、65のバネ定数(k、k)を所望の値とするために適宜調整することができる。具体的には、各板バネ60L、60Uの平均厚さは、0.1~0.4mm程度であるのが好ましく、0.2~0.3mm程度であるのがより好ましい。各板バネ60L、60Uの平均厚さが上記範囲内であれば、各板バネ60L、60Uの塑性変形、破断などの発生を確実に防止することができる。これにより、発電装置100を振動体に取り付けた状態で長期間にわたって使用することができる。 Each leaf spring 60L, the average thickness of 60U, the spring constant of the spring portions 64 and 65 of the (k 1, k 2) can be appropriately adjusted to a desired value. Specifically, the average thickness of each leaf spring 60L, 60U is preferably about 0.1 to 0.4 mm, and more preferably about 0.2 to 0.3 mm. If the average thickness of each leaf spring 60L, 60U is within the above range, the occurrence of plastic deformation, breakage, etc. of each leaf spring 60L, 60U can be reliably prevented. Thereby, it is possible to use the power generation device 100 for a long time in a state where the power generation device 100 is attached to the vibrating body.
 これらの上側板バネ60Uと下側板バネ60Lとの間には、第1の磁石31を有する磁石組立体30が設けられている。 A magnet assembly 30 having a first magnet 31 is provided between the upper leaf spring 60U and the lower leaf spring 60L.
 <<磁石組立体30>>
 磁石組立体30は、円柱状の永久磁石である第1の磁石31と、有底筒状のバックヨーク32と、第1の磁石31上に設けられた円盤状のヨーク33とを有している。この磁石組立体30は、バックヨーク32の底面の外周部が下側板バネ60Lの第3の環状部63に固定され、ヨーク33がスペーサ70を介して上側板バネ60Uの第3の環状部63に固定されている。
<< Magnet assembly 30 >>
The magnet assembly 30 includes a first magnet 31 that is a cylindrical permanent magnet, a bottomed cylindrical back yoke 32, and a disk-shaped yoke 33 provided on the first magnet 31. Yes. In the magnet assembly 30, the outer peripheral portion of the bottom surface of the back yoke 32 is fixed to the third annular portion 63 of the lower leaf spring 60 </ b> L, and the yoke 33 is connected to the third annular portion 63 of the upper leaf spring 60 </ b> U via the spacer 70. It is fixed to.
 第1の磁石31は、S極を上側に、N極を下側にして配置されている。これにより、第1の磁石31(磁石組立体30)は、その磁化方向(上下方向)に沿って変位する。 The first magnet 31 is arranged with the S pole on the upper side and the N pole on the lower side. Thereby, the 1st magnet 31 (magnet assembly 30) is displaced along the magnetization direction (up-down direction).
 第1の磁石31には、例えば、アルニコ磁石、フェライト磁石、ネオジム磁石、サマリウムコバルト磁石や、それらを粉砕して樹脂材料やゴム材料に混練した複合素材を成形してなる磁石(ボンド磁石)等を用いることができる。なお、第1の磁石31は、例えば第1の磁石31自体の磁力による吸着、接着剤による接着等により、バックヨーク32およびヨーク33に固定される。 Examples of the first magnet 31 include an alnico magnet, a ferrite magnet, a neodymium magnet, a samarium cobalt magnet, and a magnet (bond magnet) formed by molding a composite material obtained by pulverizing them and kneading them into a resin material or a rubber material. Can be used. The first magnet 31 is fixed to the back yoke 32 and the yoke 33 by, for example, adsorption by the magnetic force of the first magnet 31 itself, adhesion by an adhesive, or the like.
 ヨーク33は、その平面視での大きさが第1の磁石31の平面視での大きさとほぼ等しくなっている。また、ヨーク33の中央部にはネジ孔331が形成されている。 The size of the yoke 33 in plan view is substantially equal to the size of the first magnet 31 in plan view. A screw hole 331 is formed in the central portion of the yoke 33.
 バックヨーク32は、底板部321と、その外周部に沿って立設された筒状部322とを備えている。第1の磁石31は、底板部321の中央部に、筒状部322と同心的に配置されている。また、底板部321には、その中央部に貫通孔が形成されている。かかるバックヨーク32を備える構成の磁石組立体30では、第1の磁石31により発生する磁束を増大させることができる。 The back yoke 32 includes a bottom plate portion 321 and a cylindrical portion 322 erected along the outer peripheral portion thereof. The first magnet 31 is disposed concentrically with the cylindrical portion 322 at the center of the bottom plate portion 321. Further, the bottom plate portion 321 is formed with a through hole at the center thereof. In the magnet assembly 30 configured to include the back yoke 32, the magnetic flux generated by the first magnet 31 can be increased.
 バックヨーク32およびヨーク33の構成材料としては、それぞれ、例えば、純鉄(例えば、JIS SUY)、軟鉄、炭素鋼、電磁鋼(ケイ素鋼)、高速度工具鋼、構造鋼(例えば、JIS SS400)、ステンレス、パーマロイ等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 磁石組立体30と筐体20との間には、コイル保持部50が設けられている。
The constituent materials of the back yoke 32 and the yoke 33 are, for example, pure iron (for example, JIS SUY), soft iron, carbon steel, electromagnetic steel (silicon steel), high-speed tool steel, and structural steel (for example, JIS SS400). , Stainless steel, permalloy and the like, and one or more of them can be used in combination.
A coil holding unit 50 is provided between the magnet assembly 30 and the housing 20.
 <<コイル保持部50>>
 コイル保持部50は、全体形状が円筒状の本体部51と、本体部51の内周側に位置する円環状の円盤部52とを有している。
<< Coil holding part 50 >>
The coil holding part 50 includes a main body part 51 having a cylindrical shape as a whole and an annular disk part 52 located on the inner peripheral side of the main body part 51.
 本体部51は、円筒状のブロックを上下方向から肉抜きしたような形状をなしている。また、本体部51には、その周方向に沿って、6つのボス511が上下方向に突出して形成されている。各ボス511の上端部および下端部には、それぞれ、ネジ82が螺合する上側ネジ孔511aおよび下側ネジ孔511bが形成されている。 The main body 51 has a shape such that a cylindrical block is cut from the vertical direction. The main body 51 is formed with six bosses 511 protruding in the vertical direction along the circumferential direction. An upper screw hole 511a and a lower screw hole 511b into which the screw 82 is screwed are formed at the upper end portion and the lower end portion of each boss 511, respectively.
 円盤部52は、本体部51と一体的に形成され、その内径は、スペーサ70(本体部71)の外径よりも大きく形成されている。この円盤部52の下面の内周側には、コイル40が保持されている。 The disk part 52 is formed integrally with the main body part 51, and its inner diameter is formed larger than the outer diameter of the spacer 70 (main body part 71). A coil 40 is held on the inner peripheral side of the lower surface of the disk portion 52.
 <<コイル40>>
 コイル40は、その外径がバックヨーク32の筒状部322より小さく、内径が第1の磁石31およびヨーク33の外径より大きく設定されている。これにより、コイル40は、組立状態において、バックヨーク32の筒状部322と第1の磁石31との間に、これらから離間して(これらに接触しないように)配置される。
<< Coil 40 >>
The outer diameter of the coil 40 is smaller than the cylindrical portion 322 of the back yoke 32, and the inner diameter is set larger than the outer diameters of the first magnet 31 and the yoke 33. Thereby, the coil 40 is arrange | positioned in the assembled state between the cylindrical part 322 of the back yoke 32, and the 1st magnet 31, spaced apart from these (it does not contact these).
 このコイル40は、発電部10の振動により、第1の磁石31に対して相対的に上下方向に変位する。このとき、コイル40を通過する第1の磁石31からの磁力線の密度が変化し、コイル40に電圧が発生する。 The coil 40 is displaced in the vertical direction relative to the first magnet 31 by the vibration of the power generation unit 10. At this time, the density of magnetic lines of force from the first magnet 31 passing through the coil 40 changes, and a voltage is generated in the coil 40.
 コイル40は、例えば、銅製の基線に絶縁被膜を被覆した線材や、銅製の基線に融着機能を付加した絶縁被膜を被覆した線材等を巻回することにより形成されている。線材の巻き数は、線材の横断面積等に応じて適宜設定され、特に限定されない。また、線材の横断面形状は、例えば、三角形、正方形、長方形、六角形のような多角形、円形、楕円形等のいかなる形状であってもよい。 The coil 40 is formed by, for example, winding a wire material in which a copper base wire is coated with an insulating film, a wire material in which a copper base wire is coated with an insulating film having a fusion function added, or the like. The number of windings of the wire is appropriately set according to the cross-sectional area of the wire, and is not particularly limited. Further, the cross-sectional shape of the wire may be any shape such as a polygon such as a triangle, a square, a rectangle and a hexagon, a circle and an ellipse.
 なお、このコイル40を構成する線材の両端は、コイル保持部50の円盤部52の上側に設けられた電圧取出部(図示せず)を介して接続コネクタ11に接続されている。この接続コネクタ11を、例えば、無線通信装置等の電気回路に接続することにより、発電装置100を電気回路の電源として利用することができる。 Note that both ends of the wire constituting the coil 40 are connected to the connection connector 11 via a voltage extraction portion (not shown) provided on the upper side of the disk portion 52 of the coil holding portion 50. By connecting the connection connector 11 to an electric circuit such as a wireless communication device, for example, the power generation device 100 can be used as a power source for the electric circuit.
 また、磁石組立体30は、スペーサ70を介して、上側板バネ60Uに連結されている。 The magnet assembly 30 is connected to the upper leaf spring 60U via the spacer 70.
 <<スペーサ70>>
 スペーサ70は、有底筒状の本体部71と、この本体部71の上端外周に沿って、本体部71と一体的に形成された円環状のフランジ部72とを備えている。本体部71の底部は、ネジ73により磁石組立体30(ヨーク33)に連結されている。また、フランジ部72の下面の外周側に、上側板バネ60Uの第3の環状部63が固定されている。
<< Spacer 70 >>
The spacer 70 includes a bottomed cylindrical main body 71 and an annular flange 72 formed integrally with the main body 71 along the outer periphery of the upper end of the main body 71. The bottom of the main body 71 is connected to the magnet assembly 30 (yoke 33) by a screw 73. The third annular portion 63 of the upper leaf spring 60U is fixed to the outer peripheral side of the lower surface of the flange portion 72.
 このスペーサ70を構成する材料としては、例えば、マグネシウム、アルミニウム、成形樹脂等を用いることができる。 As a material constituting the spacer 70, for example, magnesium, aluminum, molding resin, or the like can be used.
 このような装置本体1では、図4に示すように、振動体から筐体20に振動が伝達されると、発電部10が、筐体20の内部で上下方向に振動する。より具体的には、筐体20に対して、コイル保持部50が、各板バネ60U、60Lの第1のバネ部64を介して上下方向に振動する(すなわち、第1の振動系が振動する)。また、同様に、コイル保持部50に対して、磁石組立体30が、各板バネ60U、60Lの第2のバネ部65を介して上下方向に振動する(すなわち、第2の振動系が振動する)。 In such a device main body 1, as shown in FIG. 4, when vibration is transmitted from the vibrating body to the housing 20, the power generation unit 10 vibrates in the vertical direction inside the housing 20. More specifically, the coil holding portion 50 vibrates in the vertical direction with respect to the housing 20 via the first spring portions 64 of the leaf springs 60U and 60L (that is, the first vibration system vibrates). To do). Similarly, the magnet assembly 30 vibrates in the vertical direction with respect to the coil holding portion 50 via the second spring portions 65 of the leaf springs 60U and 60L (that is, the second vibration system vibrates). To do).
 各板バネ60U、60Lは、その構造上、各バネ部64、65の振動方向のバネ定数よりも、振動方向に対してほぼ直交する方向(横方向)のバネ定数の方が大きい。すなわち、各板バネ60U、60Lは、その厚さ方向の剛性よりも、横方向の剛性(横剛性)が高い。そのため、各板バネ60U、60Lは、その横方向よりも、厚さ方向(振動方向)に優先して変形する。また、磁石組立体30とコイル保持部50とは、それぞれ、それらの厚さ方向の両側において、一対の板バネ60U、60Lに固定されている。そのため、磁石組立体30とコイル保持部50とは、各板バネ60U、60Lと一体となって振動する。 Each leaf spring 60U, 60L has a larger spring constant in the direction (lateral direction) substantially orthogonal to the vibration direction than the spring constant in the vibration direction of each spring portion 64, 65 due to its structure. That is, each of the leaf springs 60U and 60L has higher lateral stiffness (lateral stiffness) than its thickness stiffness. Therefore, each leaf spring 60U, 60L is deformed in preference to the thickness direction (vibration direction) rather than the lateral direction. Moreover, the magnet assembly 30 and the coil holding | maintenance part 50 are being fixed to a pair of leaf | plate springs 60U and 60L in the both sides of those thickness directions, respectively. Therefore, the magnet assembly 30 and the coil holding part 50 vibrate together with the leaf springs 60U and 60L.
 このようなことから、磁石組立体30とコイル保持部50とは、各板バネ60U、60Lの厚さ方向とほぼ直交する方向を軸とする直動(横揺れ)および回動(ローリング)が阻止され、それらの振動軸が一定の方向(縦方向)に規制される。また、前述したように、コイル40は、磁石組立体30(第1の磁石31およびヨーク33、バックヨーク32)と接触しないように配置されている。 For this reason, the magnet assembly 30 and the coil holding portion 50 are linearly moved (rolling) and rotated (rolling) about the direction substantially orthogonal to the thickness direction of the leaf springs 60U and 60L. They are blocked and their vibration axes are regulated in a certain direction (longitudinal direction). Further, as described above, the coil 40 is disposed so as not to contact the magnet assembly 30 (the first magnet 31, the yoke 33, and the back yoke 32).
 したがって、発電部10が振動する際に、磁石組立体30とコイル40とが互いに接触することが防止される。特に、磁石組立体30とコイル保持部50とは、いずれも、高い剛性を有する剛体であるため、各板バネ60U、60Lの各バネ部64、65と同様に、振動方向とほぼ直交する方向への剛性(横剛性)も高い。そのため、発電部10の振動時においても、磁石組立体30とコイル40とが接触するのが確実に防止される。 Therefore, when the power generation unit 10 vibrates, the magnet assembly 30 and the coil 40 are prevented from contacting each other. In particular, since both the magnet assembly 30 and the coil holding part 50 are rigid bodies having high rigidity, the direction substantially perpendicular to the vibration direction is the same as the spring parts 64 and 65 of the leaf springs 60U and 60L. High rigidity (lateral rigidity). Therefore, even when the power generation unit 10 vibrates, the magnet assembly 30 and the coil 40 are reliably prevented from contacting each other.
 これにより、振動体からの振動エネルギーが第1の振動系に効率よく伝達され、この第1の振動系に伝達された振動エネルギーが、さらに第2の振動系に効率よく伝達される。その結果、磁石組立体30とコイル40との相対的な移動が確実になされる。発電部10には、図4に示すように、第1の磁石31の中心側からヨーク33を介して外側に向かって流れ、バックヨーク32を介して第1の磁石31の中心側に向かって流れる磁界ループが形成されている。 Thus, vibration energy from the vibrating body is efficiently transmitted to the first vibration system, and the vibration energy transmitted to the first vibration system is further efficiently transmitted to the second vibration system. As a result, the relative movement between the magnet assembly 30 and the coil 40 is ensured. As shown in FIG. 4, the power generation unit 10 flows from the center side of the first magnet 31 toward the outside via the yoke 33, and toward the center side of the first magnet 31 via the back yoke 32. A flowing magnetic field loop is formed.
 このため、磁石組立体30とコイル40との相対的な移動により、第1の磁石31が発生した磁束密度Bの磁場(磁界ループ)のコイル40を通過する位置が移動する。このとき、磁場が通過するコイル40内の電子が受けるローレンツ力に基づいて起電力が発生する。この起電力が直接的に発電部10の発電に寄与するので、発電部10では、効率的な発電が可能となる。 Therefore, the relative movement between the magnet assembly 30 and the coil 40 moves the position of the first magnet 31 passing through the coil 40 of the magnetic field (magnetic field loop) having the magnetic flux density B generated. At this time, an electromotive force is generated based on the Lorentz force received by the electrons in the coil 40 through which the magnetic field passes. Since the electromotive force directly contributes to the power generation of the power generation unit 10, the power generation unit 10 can efficiently generate power.
 なお、発電部10において、上側板バネ60Uの第1のバネ部64と、下側板バネ60Lの第1のバネ部64との離間距離は、筐体20の筒状部22側とコイル保持部50側とでほぼ等しく設定しても、異なるように設定してもよい。また、上側板バネ60Uの第2のバネ部65と、下側板バネ60Lの第2のバネ部65との離間距離は、コイル保持部50側と磁石組立体30側(スペーサ70側)とでほぼ等しく設定しても、異なるように設定してもよい。 In the power generation unit 10, the distance between the first spring portion 64 of the upper leaf spring 60 </ b> U and the first spring portion 64 of the lower leaf spring 60 </ b> L is the same as that of the cylindrical portion 22 side of the housing 20 and the coil holding portion. It may be set to be approximately equal or different on the 50 side. Further, the separation distance between the second spring portion 65 of the upper leaf spring 60U and the second spring portion 65 of the lower leaf spring 60L is between the coil holding portion 50 side and the magnet assembly 30 side (spacer 70 side). It may be set to be approximately equal or different.
 離間距離を異なるように設定することにより、発電部10が振動していない状態において、第1のバネ部64や第2のバネ部65にプリテンション(初期荷重)を付与することができる。このような構成では、発電装置100を横置きした場合(図10(a)に示す状態)と縦置きした場合(図10(b)に示す状態)との間で、発電部10の姿勢変化を抑制することができる。したがって、かかる発電装置100は、設置場所にかかわらず、効率のよい発電が可能である。 By setting the separation distances differently, pretension (initial load) can be applied to the first spring part 64 and the second spring part 65 in a state where the power generation part 10 is not vibrating. In such a configuration, the posture of the power generation unit 10 changes between when the power generation device 100 is placed horizontally (the state shown in FIG. 10A) and when it is placed vertically (the state shown in FIG. 10B). Can be suppressed. Therefore, the power generation apparatus 100 can generate power efficiently regardless of the installation location.
 以上説明したような装置本体1には、ベース(支持板)23の下面(発電部10と反対の面)に吸着手段9が設けられている。この吸着手段9を磁性材料で構成される振動体に吸着させることにより、装置本体1(発電装置100)を振動体に固定することができる。 In the apparatus body 1 as described above, the suction means 9 is provided on the lower surface of the base (support plate) 23 (the surface opposite to the power generation unit 10). By adsorbing the adsorbing means 9 to a vibrating body made of a magnetic material, the apparatus main body 1 (power generation apparatus 100) can be fixed to the vibrating body.
 <<吸着手段9>>
 図6および図7に示すように、吸着手段9は、複数(本実施形態では、7つ)の磁石組立体91と、磁石組立体91を保持する第1のシート材92と、磁石組立体91の装置本体1と反対側に設けられた第2のシート材93とを備えている。
<< Adsorption means 9 >>
As shown in FIGS. 6 and 7, the attracting means 9 includes a plurality (seven in this embodiment) of magnet assemblies 91, a first sheet material 92 that holds the magnet assemblies 91, and a magnet assembly. 91 of the apparatus main body 1 and the 2nd sheet | seat material 93 provided in the opposite side.
 各磁石組立体91は、円環状をなす永久磁石で構成された磁石ブロック(後述する第2の磁石910または第3の磁石911)と、有底筒状をなし、底部(天井部)に貫通孔が形成された磁性体からなるヨーク912とで構成されている。そして、このヨーク912の内側に、磁石ブロックが、例えば磁石ブロック自体の磁力による吸着、接着剤による接着等により固定されている。かかるヨーク912を備える構成の磁石組立体91では、磁石ブロックの吸引力を増大させることができる。 Each magnet assembly 91 has a magnet block (second magnet 910 or third magnet 911 described later) formed of a permanent magnet having an annular shape and a bottomed cylindrical shape, and penetrates through the bottom (ceiling). And a yoke 912 made of a magnetic material in which holes are formed. The magnet block is fixed inside the yoke 912 by, for example, adsorption by the magnetic force of the magnet block itself, adhesion by an adhesive, or the like. In the magnet assembly 91 having such a yoke 912, the attractive force of the magnet block can be increased.
 本実施形態では、7つの磁石組立体91のうち、図6中の中央に位置する磁石組立体91(後述する第1のシート材92の固定部921に保持される磁石組立体91)の永久磁石が、第1の磁石31に斥力を働かせる第2の磁石910を構成する。 In the present embodiment, among the seven magnet assemblies 91, the permanent magnet assembly 91 (the magnet assembly 91 held by the fixing portion 921 of the first sheet material 92 described later) located in the center in FIG. The magnet constitutes a second magnet 910 that exerts a repulsive force on the first magnet 31.
 図4に示すように、第2の磁石910は、N極を上側に、S極を下側にして配置されている。したがって、第1の磁石31と第2の磁石910とは、同極(N極)同士が互いに対向するように配置されている。このため、第1の磁石31と第2の磁石910との間に、磁気的相互作用による斥力が働く。 As shown in FIG. 4, the second magnet 910 is arranged with the north pole on the upper side and the south pole on the lower side. Therefore, the first magnet 31 and the second magnet 910 are arranged so that the same poles (N poles) face each other. For this reason, a repulsive force due to magnetic interaction acts between the first magnet 31 and the second magnet 910.
 ここで、発電装置100を振動体(ダクト200)に固定した状態において、第1の磁石31と第2の磁石910および振動体との磁気的相互作用を、図8に基づいて説明する。 Here, the magnetic interaction between the first magnet 31, the second magnet 910, and the vibrating body in a state where the power generation apparatus 100 is fixed to the vibrating body (duct 200) will be described with reference to FIG.
 図8に示すように、第1の磁石31とダクト200との間には、磁気的相互作用による吸引力が働く。一方、第1の磁石31と第2の磁石910との間には、磁気的相互作用による斥力が働く。発電装置100では、第1の磁石31のダクト200側に、第1の磁石31に斥力を働かせる第2の磁石910を配置することにより、第1の磁石31とダクト200との間の吸引力と第1の磁石31と第2の磁石910との間の斥力とを相殺することができる。このため、発電装置100を静止状態のダクト200に固定した際に、第1の磁石31は、発電部10に外力を付与しない自然状態における第1の磁石31の位置またはその近傍に保持される。言い換えれば、発電装置100を静止状態のダクト200へ固定する前後において、第1の磁石31の筐体20(コイル40)に対する位置が変位するのを防止することができる。かかる発電装置100では、ダクト200の振動により、第1の磁石31を、その標準位置(発電部10に外力を付与しない自然状態における第1の磁石31の位置、言い換えれば、発電装置100の組立時における筐体20に対する第1の磁石31の位置)またはその近傍を基準としてコイル40に対して相対的に変位させることができる。これにより、発電装置100は、設計時の特性(発電量や周波数特性)を確実に発現して、効率良く発電することができる。 As shown in FIG. 8, an attractive force due to magnetic interaction acts between the first magnet 31 and the duct 200. On the other hand, a repulsive force due to magnetic interaction acts between the first magnet 31 and the second magnet 910. In the power generation device 100, the second magnet 910 that exerts a repulsive force on the first magnet 31 is disposed on the duct 200 side of the first magnet 31, so that the attractive force between the first magnet 31 and the duct 200 is obtained. And the repulsive force between the first magnet 31 and the second magnet 910 can be offset. For this reason, when the power generation device 100 is fixed to the duct 200 in a stationary state, the first magnet 31 is held at or near the position of the first magnet 31 in a natural state where no external force is applied to the power generation unit 10. . In other words, it is possible to prevent the position of the first magnet 31 relative to the housing 20 (coil 40) from being displaced before and after fixing the power generation apparatus 100 to the stationary duct 200. In such a power generator 100, the vibration of the duct 200 causes the first magnet 31 to move to its standard position (the position of the first magnet 31 in a natural state where no external force is applied to the power generator 10, in other words, the assembly of the power generator 100. The position of the first magnet 31 with respect to the housing 20 at the time) or the vicinity thereof can be displaced relative to the coil 40. As a result, the power generation apparatus 100 can reliably generate the design characteristics (power generation amount and frequency characteristics) and efficiently generate power.
 発電部10に外力を付与しない自然状態における筐体20に対する第1の磁石31の位置と、発電装置100を静止状態のダクト200に固定し、第2の磁石910により第1の磁石31に対して斥力を働かせた状態における筐体20に対する第1の磁石31の位置との磁化方向に沿ったズレ量は、小さい方が好ましい。ただし、具体的には、このズレ量が、0~5mm程度であるのが好ましく、0~2mm程度であるのがより好ましい。上記条件を満足することにより、発電装置100では、ダクト200の振動により、第1の磁石31を、ほぼその標準位置を基準としてコイル40に対して相対的に変位させることができる。これにより、発電装置100は、設計時の特性を確実に発現して、より効率良く発電することができる。 The position of the first magnet 31 relative to the casing 20 in a natural state where no external force is applied to the power generation unit 10 and the power generation device 100 are fixed to the duct 200 in a stationary state, and the second magnet 910 fixes the first magnet 31 to the first magnet 31. The amount of deviation along the magnetization direction with respect to the position of the first magnet 31 with respect to the housing 20 in a state where the repulsive force is applied is preferably small. However, specifically, the amount of deviation is preferably about 0 to 5 mm, and more preferably about 0 to 2 mm. By satisfying the above conditions, in the power generation device 100, the first magnet 31 can be displaced relative to the coil 40 with the standard position as a reference by the vibration of the duct 200. As a result, the power generation apparatus 100 can reliably generate the design characteristics and generate power more efficiently.
 図4に示すように、本実施形態では、第2の磁石910が、第1の磁石31の磁化方向(図4中、上下方向)に沿って設けられている。かかる構成では、平面視における第1の磁石31と第2の磁石910との重なり面積が大きくなるため、第1の磁石31と第2の磁石910との間に働く斥力の大きさを十分に大きくすることができる。これにより、第1の磁石31とダクト200との間の吸引力と第1の磁石31と第2の磁石910との間の斥力とを、より確実に相殺することができる。 As shown in FIG. 4, in this embodiment, the second magnet 910 is provided along the magnetization direction of the first magnet 31 (vertical direction in FIG. 4). In such a configuration, since the overlapping area of the first magnet 31 and the second magnet 910 in plan view is large, the magnitude of the repulsive force acting between the first magnet 31 and the second magnet 910 is sufficiently large. Can be bigger. Thereby, the attractive force between the first magnet 31 and the duct 200 and the repulsive force between the first magnet 31 and the second magnet 910 can be more reliably offset.
 また、本実施形態では、第2の磁石910の磁化方向における中心軸が、第1の磁石31の磁化方向における中心軸と重なる(一致する)よう構成されている。このように、第1の磁石31および第2の磁石910の磁化方向の中心軸が、互いに重なる場合には、第2の磁石910の第1の磁石31に対する斥力を、第1の磁石31の厚さ方向(図8中、鉛直上方向)に働かせることができる。これにより、発電装置100を静止状態のダクト200に固定した際に、第1の磁石31の位置を、その標準位置に確実に維持することができる。その結果、発電装置100は、ダクト200の振動により、設計時の特性(発電量や周波数特性)をより確実に発現して、より効率良く発電することができる。 In the present embodiment, the central axis in the magnetization direction of the second magnet 910 is configured to overlap (coincide with) the central axis in the magnetization direction of the first magnet 31. As described above, when the central axes of the magnetization directions of the first magnet 31 and the second magnet 910 overlap each other, the repulsive force of the second magnet 910 with respect to the first magnet 31 is increased. It is possible to work in the thickness direction (vertical upward direction in FIG. 8). Thereby, when the electric power generating apparatus 100 is fixed to the duct 200 in a stationary state, the position of the first magnet 31 can be reliably maintained at the standard position. As a result, the power generation apparatus 100 can more reliably generate the characteristics (power generation amount and frequency characteristics) at the time of design by vibration of the duct 200 and more efficiently generate power.
 また、発電装置100をダクト200に固定した際に、第2の磁石910の第1の磁石31に対する斥力の大きさが、第1の磁石31のダクト200に対する吸引力の大きさと等しくなるよう構成されているのが好ましい。これにより、第1の磁石31とダクト200との間の吸引力と第1の磁石31と第2の磁石910との間の斥力とを、より確実に相殺して、磁気的相互作用による第1の磁石31に働く力を確実に打ち消すことができる。 Further, when the power generation apparatus 100 is fixed to the duct 200, the magnitude of the repulsive force of the second magnet 910 on the first magnet 31 is equal to the magnitude of the attractive force of the first magnet 31 on the duct 200. It is preferable. As a result, the attractive force between the first magnet 31 and the duct 200 and the repulsive force between the first magnet 31 and the second magnet 910 can be more reliably offset, and the first magnetic force can be obtained. The force acting on one magnet 31 can be canceled with certainty.
 なお、第2の磁石910の第1の磁石31に対する斥力の大きさは、上述したように第1の磁石31のダクト200に対する吸引力の大きさと等しくするのが好ましい。より具体的には、第2の磁石910の第1の磁石31に対する斥力の大きさが、30~50mN程度であるのが好ましく、36~44mN程度であるのがより好ましい。上記条件を満足することにより、第2の磁石910の第1の磁石31に対する斥力の大きさと、第1の磁石31のダクト200に対する吸引力の大きさとがほぼ等しくなり、磁気的相互作用による第1の磁石31に働く力をより確実に打ち消すことができる。 In addition, it is preferable that the magnitude of the repulsive force of the second magnet 910 with respect to the first magnet 31 is equal to the magnitude of the attractive force of the first magnet 31 with respect to the duct 200 as described above. More specifically, the magnitude of the repulsive force of the second magnet 910 with respect to the first magnet 31 is preferably about 30 to 50 mN, and more preferably about 36 to 44 mN. By satisfying the above conditions, the magnitude of the repulsive force of the second magnet 910 on the first magnet 31 and the magnitude of the attractive force of the first magnet 31 on the duct 200 become substantially equal, and the first is due to the magnetic interaction. The force acting on one magnet 31 can be canceled more reliably.
 第1の磁石31と第2の磁石910との離間距離(図4において、第1の磁石31の下面と第2の磁石910の上面との距離)は、第2の磁石910の第1の磁石31に対する斥力を十分に大きくすることができるのであれば、特に限定されない。第1の磁石31と第2の磁石910との離間距離は、使用する第2の磁石910の構成材料およびサイズにより、適宜調整することができる。ただし、第2の磁石910として、第1の磁石31よりもサイズの小さい永久磁石(磁石ブロック)を用いる場合には、第1の磁石31と第2の磁石910との離間距離は、10~17mm程度であるのが好ましく、11~15mm程度であるのがより好ましい。 The separation distance between the first magnet 31 and the second magnet 910 (the distance between the lower surface of the first magnet 31 and the upper surface of the second magnet 910 in FIG. 4) is the first distance of the second magnet 910. If repulsive force with respect to the magnet 31 can be enlarged enough, it will not specifically limit. The separation distance between the first magnet 31 and the second magnet 910 can be appropriately adjusted depending on the constituent material and size of the second magnet 910 to be used. However, when a permanent magnet (magnet block) smaller in size than the first magnet 31 is used as the second magnet 910, the separation distance between the first magnet 31 and the second magnet 910 is 10 to It is preferably about 17 mm, more preferably about 11 to 15 mm.
 上述したように、本実施形態の発電装置100では、第1の磁石31と第2の磁石910とを、同極同士が対向するように配置することにより、第1の磁石31と振動体との間の吸引力と、第1の磁石31と第2の磁石910との間の斥力とを相殺することができる。一方、かかる構成の発電装置100において、第1の磁石31と第2の磁石910とを、異極同士が対向するように配置した場合、具体的には、図4に示す発電装置100において、第1の磁石31を、N極を上側に、S極を下側にして配置した場合には、上述した本発明の効果を得ることができない。 As described above, in the power generation device 100 according to the present embodiment, the first magnet 31 and the second magnet 910 are disposed so that the same poles face each other, whereby the first magnet 31 and the vibrating body are arranged. And the repulsive force between the first magnet 31 and the second magnet 910 can be offset. On the other hand, in the power generation device 100 having such a configuration, when the first magnet 31 and the second magnet 910 are arranged so that the opposite poles face each other, specifically, in the power generation device 100 shown in FIG. When the first magnet 31 is arranged with the N pole on the upper side and the S pole on the lower side, the above-described effects of the present invention cannot be obtained.
 ここで、第1の磁石31と第2の磁石910とを、同極同士が対向するように配置した本実施形態の発電装置100と、かかる発電装置100において、第1の磁石31と第2の磁石910とを、異極同士が対向するように配置した発電装置とにおいて、第1の磁石31に働く力(吸引力、斥力)について説明する。 Here, in the power generation device 100 of the present embodiment in which the first magnet 31 and the second magnet 910 are arranged so that the same poles face each other, and in the power generation device 100, the first magnet 31 and the second magnet 910 The force (attraction force, repulsive force) acting on the first magnet 31 in the power generation device in which the magnets 910 are arranged so that the opposite poles face each other will be described.
 図9は、図1~4に示す発電装置および図1~4に示す発電装置の第1の磁石と第2の磁石とを異極同士が対向するように配置した発電装置を振動体に固定した状態において、発電部の磁石組立体と吸着手段の磁石組立体との間に発生する磁場を解析した解析図、および第1の磁石と第2の磁石との離間距離と第1の磁石に働く力の大きさとの関係を示すグラフである。 FIG. 9 shows the power generation device shown in FIGS. 1 to 4 and the power generation device in which the first magnet and the second magnet of the power generation device shown in FIGS. In the state, the analysis diagram analyzing the magnetic field generated between the magnet assembly of the power generation unit and the magnet assembly of the attracting means, and the separation distance between the first magnet and the second magnet and the first magnet It is a graph which shows the relationship with the magnitude | size of a working force.
 具体的には、図9(a-1)は、図1~4に示す発電装置100を振動体に固定した状態において、発電部10の磁石組立体30と吸着手段9の磁石組立体91との間に発生する磁場を解析した解析図である。また、図9(a-2)は、発電装置100における第1の磁石31と第2の磁石910との離間距離と第1の磁石31に働く力の大きさとの関係を示すグラフである。また、図9(b-1)は、図1~4に示す発電装置の第1の磁石31を、N極を上側に、S極を下側にして配置した発電装置を振動体に固定した状態において、発電部の磁石組立体と吸着手段の磁石組立体との間に発生する磁場を解析した解析図である。また、図9(b-2)は、かかる発電装置における第1の磁石と第2の磁石との離間距離と第1の磁石に働く力の大きさとの関係を示すグラフである。なお、図9(a-2)および図9(b-2)において、第1の磁石31に働く力の大きさ(縦軸)は、吸引力が正(+)となり、斥力が負(-)となる。 Specifically, FIG. 9 (a-1) shows the magnet assembly 30 of the power generation unit 10 and the magnet assembly 91 of the attracting means 9 in a state where the power generation apparatus 100 shown in FIGS. It is the analysis figure which analyzed the magnetic field generated between. FIG. 9A-2 is a graph showing the relationship between the distance between the first magnet 31 and the second magnet 910 in the power generation apparatus 100 and the magnitude of the force acting on the first magnet 31. FIG. 9 (b-1) also shows that the power generation apparatus in which the first magnet 31 of the power generation apparatus shown in FIGS. 1 to 4 is arranged with the N pole on the upper side and the S pole on the lower side is fixed to the vibrating body. It is the analysis figure which analyzed the magnetic field which generate | occur | produces between the magnet assembly of an electric power generation part and the magnet assembly of an adsorption | suction means in a state. FIG. 9B-2 is a graph showing the relationship between the distance between the first magnet and the second magnet and the magnitude of the force acting on the first magnet in the power generation apparatus. In FIGS. 9A-2 and 9B-2, the magnitude (vertical axis) of the force acting on the first magnet 31 is positive (+) and negative (− )
 図9(a-1)に示すように、発電装置100では、第1の磁石31と第2の磁石910との間の磁力線(磁束線)の密度が、後述する図9(b-1)に示す発電装置に比べて低いことが分かる。かかる発電装置100では、第1の磁石31と第2の磁石910との離間距離を比較的広い範囲で設定しても、第1の磁石31に働く力の大きさが小さい。かかる発電装置100では、これらの離間距離を13mmとした際に、第1の磁石31と振動体との間の吸引力と第1の磁石31と第2の磁石910との間の斥力とをほぼ完全に相殺することができる(図9(a-2)参照)。 As shown in FIG. 9 (a-1), in the power generation device 100, the density of magnetic lines of force (magnetic flux lines) between the first magnet 31 and the second magnet 910 is as shown in FIG. 9 (b-1) described later. It can be seen that it is lower than the power generator shown in FIG. In such a power generation device 100, even if the separation distance between the first magnet 31 and the second magnet 910 is set in a relatively wide range, the magnitude of the force acting on the first magnet 31 is small. In the power generation device 100, when these separation distances are set to 13 mm, the attractive force between the first magnet 31 and the vibrating body and the repulsive force between the first magnet 31 and the second magnet 910 are obtained. It can be canceled almost completely (see FIG. 9 (a-2)).
 一方、第1の磁石と第2の磁石とを異極同士が対向するように配置した発電装置では、図9(b-1)に示すように、第1の磁石31と第2の磁石910との間の磁力線(磁束線)の密度が高いことが分かる。かかる発電装置では、第1の磁石31と第2の磁石910との離間距離を十分に大きくしなければ、第1の磁石31に働く力(吸引力)の大きさを小さくすることができない(図9(b-2)参照)。そのため、このような構成の発電装置では、小型化(低背化)を図りつつ、設計時の特性(発電量、周波数特性)を発現することは難しい。 On the other hand, in the power generation device in which the first magnet and the second magnet are arranged so that the opposite poles face each other, as shown in FIG. 9 (b-1), the first magnet 31 and the second magnet 910 It can be seen that the density of the magnetic field lines (magnetic flux lines) between and is high. In such a power generation device, unless the separation distance between the first magnet 31 and the second magnet 910 is sufficiently increased, the magnitude of the force (attraction force) acting on the first magnet 31 cannot be reduced ( (See FIG. 9 (b-2)). For this reason, it is difficult for the power generation device having such a configuration to exhibit characteristics at the time of design (power generation amount, frequency characteristics) while reducing the size (lowering the height).
 このような第2の磁石910は、図6中の中央に位置する磁石組立体91以外の6つの磁石組立体91の各永久磁石(第3の磁石911)とともに、装置本体1を振動体に吸着させる機能をさらに有する。なお、本実施形態では、第2の磁石910および各第3の磁石911として、同じ永久磁石を用いている。 Such a second magnet 910 includes the apparatus main body 1 as a vibrating body together with the permanent magnets (third magnets 911) of the six magnet assemblies 91 other than the magnet assembly 91 located at the center in FIG. It further has a function of adsorbing. In the present embodiment, the same permanent magnet is used as the second magnet 910 and each third magnet 911.
 第2の磁石910および第3の磁石911の構成材料としては、例えば、前述した第1の磁石31と同様の材料を用いることができる。かかる第2の磁石910および第3の磁石911を用いることにより、振動体の構成材料によらず、発電装置100を十分な吸引力(固定力)で振動体に固定することができるとともに、発電装置100を振動体から取り外す際には、その取り外し操作を容易に行うことができる。すなわち、発電装置100の振動体からの脱着を容易かつ確実に行うことができる。 As the constituent material of the second magnet 910 and the third magnet 911, for example, the same material as that of the first magnet 31 described above can be used. By using the second magnet 910 and the third magnet 911, the power generation device 100 can be fixed to the vibrating body with a sufficient attractive force (fixing force) regardless of the constituent material of the vibrating body. When the device 100 is detached from the vibrating body, the removing operation can be easily performed. That is, the power generator 100 can be easily and reliably detached from the vibrating body.
 なお、発電装置100において、第3の磁石911の磁極の向きは、特に限定されない。すなわち、第3の磁石911は、N極を上側にして配置されても、S極を上側にして配置されてもよい。発電装置100では、第3の磁石911と第1の磁石31との離間距離が十分に大きいため、これらの間に、磁気的相互作用により働く吸引力または斥力がほぼ無視できる大きさとなるためである。 In the power generation device 100, the direction of the magnetic pole of the third magnet 911 is not particularly limited. That is, the third magnet 911 may be disposed with the N pole on the upper side or with the S pole on the upper side. In the power generation device 100, since the separation distance between the third magnet 911 and the first magnet 31 is sufficiently large, the attractive force or repulsive force acting due to the magnetic interaction between them becomes a magnitude that can be almost ignored. is there.
 また、ヨーク912の構成材料としては、飽和磁束密度が高い軟磁性材料が好ましい。ヨーク912をプレス成形により製造することを考慮した場合、その素材には、亜鉛メッキ鋼板、錫めっき鋼板、ニッケルめっき鋼板のような鉄系材料で構成される基材にメッキを施した板材が好ましく用いられる。 Further, as a constituent material of the yoke 912, a soft magnetic material having a high saturation magnetic flux density is preferable. In consideration of manufacturing the yoke 912 by press molding, the material is preferably a plate material obtained by plating a base material made of an iron-based material such as a galvanized steel plate, a tin-plated steel plate, or a nickel-plated steel plate. Used.
 これらの磁石組立体91は、第1のシート材(取付機構)92を介して、ベース23の下面230に取り付けられている。第1のシート材92は、図6に示すように、装置本体1のベース23に固定されるほぼ円形状の固定部921と、この固定部921の側方に延在し、固定部921と一体的に形成された複数の腕部922とを備えている。固定部921は、例えば接着剤による接着等により、ベース23に固定されている。 These magnet assemblies 91 are attached to the lower surface 230 of the base 23 via a first sheet material (attachment mechanism) 92. As shown in FIG. 6, the first sheet material 92 has a substantially circular fixing portion 921 fixed to the base 23 of the apparatus main body 1, and extends to the side of the fixing portion 921. And a plurality of integrally formed arm portions 922. The fixing portion 921 is fixed to the base 23 by, for example, adhesion using an adhesive.
 固定部921の中央部には、第2の磁石910を備える1つの磁石組立体91を保持する凹部(保持部)923が形成されている。また、各腕部922の固定部921と反対側の端部には、第3の磁石911を備える磁石組立体91を保持する凹部(保持部)923が形成されている。凹部923内に磁石組立体91が収納され、例えば接着剤による接着等により、固定部921または腕部922に固定されている。また、組立状態において、固定部921の凹部923に保持された磁石組立体91(第2の磁石910を備える磁石組立体91)は、ベース23の凹部235内に位置する。 A concave portion (holding portion) 923 that holds one magnet assembly 91 including the second magnet 910 is formed in the central portion of the fixing portion 921. In addition, a concave portion (holding portion) 923 that holds the magnet assembly 91 including the third magnet 911 is formed at the end portion of each arm portion 922 opposite to the fixing portion 921. The magnet assembly 91 is accommodated in the recess 923 and is fixed to the fixing portion 921 or the arm portion 922 by, for example, bonding with an adhesive. In the assembled state, the magnet assembly 91 (the magnet assembly 91 including the second magnet 910) held in the concave portion 923 of the fixing portion 921 is located in the concave portion 235 of the base 23.
 第1のシート材92は、可撓性を有している。これにより、腕部922の凹部923に保持された磁石組立体91(第2の磁石910および第3の磁石911)は、ベース23の厚さ方向に対して変位可能となっている。また、図2に示すように、各腕部922は、発電装置100を平坦面に載置したとき、凹部923(磁石組立体91)が装置本体1より外側に位置するような長さを有している。 The first sheet material 92 has flexibility. Thereby, the magnet assembly 91 (the second magnet 910 and the third magnet 911) held in the recess 923 of the arm portion 922 can be displaced with respect to the thickness direction of the base 23. In addition, as shown in FIG. 2, each arm portion 922 has a length such that the recess 923 (magnet assembly 91) is positioned outside the device body 1 when the power generation device 100 is placed on a flat surface. is doing.
 これにより、各腕部922の長手方向(長さ方向)の引張剛性を低下させることなく、腕部922同士が接近する方向や、各腕部922の長手方向を中心軸とする捻じり方向への剛性を低下させることができる。その結果、例えば、図12に示すパイプ300のような湾曲面(湾曲部)を備える振動体に対しても、装置本体1を安定的に固定することができる。 Thereby, without reducing the tensile rigidity in the longitudinal direction (length direction) of each arm portion 922, the arm portions 922 approach each other, or in the twisting direction with the longitudinal direction of each arm portion 922 as the central axis. The rigidity of can be reduced. As a result, for example, the apparatus main body 1 can be stably fixed to a vibrating body having a curved surface (curved portion) such as the pipe 300 shown in FIG.
 また、腕部922は、固定部921の周方向に沿って、ほぼ等間隔(およそ60°間隔)で設けられている。すなわち、回転対称となる位置に、3つの磁石組立体91(第3の磁石911)が配置されている。これにより、装置本体1を、その周方向に沿って均等な吸引力により、振動体に固定することができる。また、振動体の振動により、発電装置100が特定の方向に移動するのを防止すること、すなわち、振動体が振動しても、発電装置100を振動体の所定の位置に保持することができる。 The arm portions 922 are provided at substantially equal intervals (approximately 60 ° intervals) along the circumferential direction of the fixed portion 921. That is, three magnet assemblies 91 (third magnets 911) are disposed at rotationally symmetric positions. Thereby, the apparatus main body 1 can be fixed to a vibrating body with uniform suction | attraction force along the circumferential direction. Further, it is possible to prevent the power generation apparatus 100 from moving in a specific direction due to vibration of the vibration body, that is, even when the vibration body vibrates, the power generation apparatus 100 can be held at a predetermined position of the vibration body. .
 特に、本実施形態では、腕部922は、複数の第1の腕部922aと、これらの第1の腕部922aより長さの短い複数の第2の腕部922bとを含み、第1の腕部922a同士の間に、第2の腕部922bが位置するように配置されている。これにより、第1の腕部922aにより、曲率半径の比較的小さい湾曲面を備える振動体に対する装置本体1の固定力(保持力)を向上させ、第2の腕部922bにより、曲率半径の比較的大きい湾曲面や平坦面を備える振動体に対する装置本体1の固定力を向上させることができる。すなわち、腕部922をかかる構成とすることにより、振動体の形状や大きさを選ばず、装置本体1(発電装置100)を振動体に安定的に固定することができる。 In particular, in the present embodiment, the arm portion 922 includes a plurality of first arm portions 922a and a plurality of second arm portions 922b that are shorter in length than the first arm portions 922a. Between the arm parts 922a, it arrange | positions so that the 2nd arm part 922b may be located. Thereby, the fixing force (holding force) of the apparatus main body 1 with respect to the vibrating body having a curved surface with a relatively small radius of curvature is improved by the first arm portion 922a, and the radius of curvature is compared by the second arm portion 922b. It is possible to improve the fixing force of the apparatus main body 1 to a vibrating body having a large curved surface or flat surface. That is, by configuring the arm portion 922 as described above, the device main body 1 (the power generation device 100) can be stably fixed to the vibrating body regardless of the shape and size of the vibrating body.
 なお、固定部921の中心から第1の腕部922aの先端までの長さは、特に限定されないが、ベース23の半径の1.8~4倍程度であるのが好ましく、2~3.5倍程度であるのがより好ましい。一方、固定部921の中心から第2の腕部922bの先端までの長さも、特に限定されないが、ベース23の半径の1.2~2.5倍程度であるのが好ましく、1.2~2倍程度であるのがより好ましい。 The length from the center of the fixing portion 921 to the tip of the first arm portion 922a is not particularly limited, but is preferably about 1.8 to 4 times the radius of the base 23, and preferably 2 to 3.5. More preferably, it is about double. On the other hand, the length from the center of the fixing portion 921 to the tip of the second arm portion 922b is not particularly limited, but is preferably about 1.2 to 2.5 times the radius of the base 23, and preferably 1.2 to More preferably, it is about 2 times.
 第1のシート材92は、十分な柔軟性および屈曲性を有し、かつ、引張強度が高い素材で構成されていることが好ましい。かかる第1のシート材92の素材には、例えば、ポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリ塩化ビニル等のフィルムや、これらの高分子材料で構成される繊維を編み込んで作製した織布等を用いることができる。 The first sheet material 92 is preferably made of a material having sufficient flexibility and flexibility and high tensile strength. Examples of the material of the first sheet material 92 include a film such as a polyester film, a polyethylene film, a polypropylene film, and polyvinyl chloride, and a woven fabric produced by weaving fibers made of these polymer materials. Can be used.
 また、第1のシート材92の平均厚さは、特に限定されないが、0.01~1.0mm程度であるのが好ましく、0.03~0.1mm程度であるのがより好ましい。かかる厚さの第1のシート材92は、その構成材料によらず、優れた柔軟性および屈曲性を備えるので、振動体が振動する際に、その振動を阻害することを防止することができる。その結果、発電装置100の発電効率の低下を防止または抑制することができる。 The average thickness of the first sheet material 92 is not particularly limited, but is preferably about 0.01 to 1.0 mm, and more preferably about 0.03 to 0.1 mm. Since the first sheet material 92 having such a thickness is provided with excellent flexibility and flexibility regardless of the constituent material, it is possible to prevent the vibration from being inhibited when the vibrating body vibrates. . As a result, a decrease in power generation efficiency of the power generation apparatus 100 can be prevented or suppressed.
 第1のシート材92の下面には、この第1のシート材92の外形とほぼ等しい外形を有する第2のシート材93が固定(ラミネート)されている。第2のシート材93の第1のシート材92に対する固定方法としては、例えば、融着(熱融着、超音波融着、高周波融着)や接着剤による接着等が挙げられる。 A second sheet material 93 having an outer shape substantially equal to the outer shape of the first sheet material 92 is fixed (laminated) to the lower surface of the first sheet material 92. Examples of a method for fixing the second sheet material 93 to the first sheet material 92 include fusion (thermal fusion, ultrasonic fusion, high frequency fusion), adhesion with an adhesive, and the like.
 第2のシート材93は、装置本体1を振動体に固定した際に、装置本体1の振動体に対する滑りを防止する機能を有する。吸着手段9が第2のシート材93を備えることにより、振動体が激しく振動しても、装置本体1が振動体に対して位置ズレするのをより確実に防止することができる。 The second sheet material 93 has a function of preventing the apparatus main body 1 from slipping with respect to the vibration body when the apparatus main body 1 is fixed to the vibration body. When the suction unit 9 includes the second sheet material 93, even if the vibrating body vibrates violently, the apparatus main body 1 can be more reliably prevented from being displaced with respect to the vibrating body.
 第2のシート材93は、摩擦係数が高く、振動体の表面に存在する微小な凹凸を吸収することができる材料が好適である。かかる第2のシート材93の構成材料には、例えば、硬度10~100程度のエラストマー材料(ゴム材料)が好ましく用いられる。このようなエラストマー材料としては、特に限定されないが、例えば、ブチルゴム、スチレンブタジエンゴム、ニトリルゴム、アクリルゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。 The second sheet material 93 is preferably made of a material having a high coefficient of friction and capable of absorbing minute irregularities present on the surface of the vibrating body. As the constituent material of the second sheet material 93, for example, an elastomer material (rubber material) having a hardness of about 10 to 100 is preferably used. Examples of such an elastomer material include, but are not limited to, butyl rubber, styrene butadiene rubber, nitrile rubber, acrylic rubber, silicone rubber, fluorine rubber, urethane rubber, and the like. Can be used in combination.
 これらの中でも、低硬度のエラストマー材料を用いることにより、第2のシート材93は、高い粘着性を発揮し、その摩擦係数を好ましくは0.7以上、より好ましくは0.85以上に設定することができる。 Among these, by using a low-hardness elastomer material, the second sheet material 93 exhibits high adhesiveness, and its friction coefficient is preferably set to 0.7 or more, more preferably 0.85 or more. be able to.
 また、第2のシート材93の平均厚さは、特に限定されないが、0.1~2.0mm程度であるのが好ましく、0.3~1.0mm程度であるのがより好ましい。かかる厚さの第2のシート材93は、その構成材料によらず、優れた柔軟性および屈曲性を備えるので、第2のシート材93が固定された状態で、第1のシート材92の可撓性(柔軟性および屈曲性)が低下するのを防止または抑制することができる。 The average thickness of the second sheet material 93 is not particularly limited, but is preferably about 0.1 to 2.0 mm, and more preferably about 0.3 to 1.0 mm. The second sheet material 93 having such a thickness has excellent flexibility and bendability regardless of the constituent material thereof, and therefore the first sheet material 92 is fixed in a state where the second sheet material 93 is fixed. It is possible to prevent or suppress a decrease in flexibility (softness and flexibility).
 以上のような発電装置100は、図10に示すダクト200や、図12に示すパイプ300のような、磁性材料で構成される振動体に固定して使用される。 The power generator 100 as described above is used by being fixed to a vibrating body made of a magnetic material such as the duct 200 shown in FIG. 10 or the pipe 300 shown in FIG.
 図10に示すダクト200は、4つの変形可能な板状部201を備える四角筒状をなしている。ダクト200は、例えば、磁性材料で構成された板材(鋼板またはめっき鋼板)を折り曲げ、接合(溶接)すること等により形成されている。かかるダクト200は、例えば、蒸気、空気のような気体を移送(排気、換気、吸気、循環)する装置の流路を構成する。 The duct 200 shown in FIG. 10 has a rectangular tube shape including four deformable plate-like portions 201. The duct 200 is formed, for example, by bending and joining (welding) a plate material (steel plate or plated steel plate) made of a magnetic material. The duct 200 constitutes a flow path of a device that transfers (exhaust, ventilate, intake, circulate) a gas such as steam or air.
 例えば、大型施設、ビル、駅等の施設に設置されている空調用のダクト200には、施設内の排気や換気を目的として、送風機等により空気を通過させている。このとき、送風機の空気圧の揺れ(脈動)やダクト200内を空気(流体)が移動することで発生する乱気流等によりダクト200が振動する。また、ダクト200内は、送風機の作用により常に正圧または負圧となっている。かかる圧力に、前述の脈動等によるダクト200の振動が加わり、板状部201が変形する。具体的には、ダクト200内が正圧の場合には、板状部201は、図11(a)に示すように、ダクト200の外側に向かって突出した状態(凸状)に変形し、一方、ダクト200内が負圧の場合には、図11(b)に示すように、板状部201がダクト200の内側に向かって突出した状態(凹状)に変形する。このような板状部201の変形によって、ダクト200の振動が増幅される。 For example, air is passed through an air-conditioning duct 200 installed in a facility such as a large facility, building, or station by a blower or the like for the purpose of exhaust or ventilation in the facility. At this time, the duct 200 vibrates due to air pressure fluctuation (pulsation) of the blower or turbulence generated by the movement of air (fluid) in the duct 200. Moreover, the inside of the duct 200 is always positive pressure or negative pressure by the action of the blower. The vibration of the duct 200 due to the aforementioned pulsation or the like is applied to the pressure, and the plate-like portion 201 is deformed. Specifically, when the inside of the duct 200 is positive pressure, the plate-like portion 201 is deformed into a state of projecting toward the outside of the duct 200 (convex shape), as shown in FIG. On the other hand, when the inside of the duct 200 is negative pressure, the plate-like portion 201 is deformed into a state of projecting toward the inside of the duct 200 (concave shape) as shown in FIG. Due to the deformation of the plate-like portion 201, the vibration of the duct 200 is amplified.
 本発明によれば、磁石組立体91は、可撓性を有する第1のシート材92を介して装置本体1に取り付けられている。このため、仮に、板状部201の表面(発電装置100の取付面)に凹凸が存在しても、この凹凸に追従して第1のシート材92が変形することにより、凹凸による段差を吸収することができる。したがって、板状部201の表面形状によらず、吸着手段9を板状部201に確実に吸着させることができる。さらに、前述したように、板状部201が凸状に変形した状態(図11(a)参照)や、板状部201が凹状に変形した状態(図11(b)参照)となっても、第1のシート材92が、この板状部201の変形に追従して変形する。したがって、吸着手段9の板状部201に対する吸着状態が維持され、発電装置100がダクト200から脱落するのを確実に防止することができる。 According to the present invention, the magnet assembly 91 is attached to the apparatus main body 1 via the first sheet material 92 having flexibility. For this reason, even if unevenness exists on the surface of the plate-like portion 201 (the mounting surface of the power generation device 100), the first sheet material 92 is deformed following the unevenness to absorb the unevenness due to the unevenness. can do. Therefore, regardless of the surface shape of the plate-like portion 201, the suction means 9 can be reliably sucked to the plate-like portion 201. Furthermore, as described above, the plate-like portion 201 is deformed into a convex shape (see FIG. 11A) or the plate-like portion 201 is deformed into a concave shape (see FIG. 11B). The first sheet material 92 is deformed following the deformation of the plate-like portion 201. Therefore, the suction state of the suction means 9 with respect to the plate-like portion 201 is maintained, and the power generation device 100 can be reliably prevented from falling off the duct 200.
 なお、本実施形態では、ベース23の下面230は、その中央部を凸とする湾曲凸面を構成している。このため、板状部201が図11(b)に示す状態(凹状)となっても、ベース23の縁部が板状部201に接触し難くなっており、かかる観点からも、発電装置100がダクト200から脱落するのを確実に防止することができる。 In the present embodiment, the lower surface 230 of the base 23 forms a curved convex surface having a convex portion at the center. For this reason, even if the plate-like portion 201 is in the state (concave shape) shown in FIG. 11B, the edge of the base 23 is difficult to contact the plate-like portion 201. Can be reliably prevented from falling off the duct 200.
 ここで、本来、ダクト200の振動は、施設内に騒音や不快な振動を発生させる不要な振動である。本発明では、板状部201に吸着手段9を吸着させることにより、装置本体1をダクト200に固定し、ダクト200の不要な振動を利用(回生)して発電部10に電力を発生(発電)させることができる。したがって、ダクト200が設置されている場所であれば、電源供給配線が存在しなくても、発電装置100から電力を得ることができる。 Here, originally, the vibration of the duct 200 is unnecessary vibration that generates noise and unpleasant vibration in the facility. In the present invention, by adsorbing the adsorbing means 9 to the plate-like portion 201, the apparatus main body 1 is fixed to the duct 200, and unnecessary vibration of the duct 200 is used (regeneration) to generate electric power in the power generation unit 10 (power generation) ). Therefore, if it is a place where the duct 200 is installed, electric power can be obtained from the power generation apparatus 100 even if there is no power supply wiring.
 そして、この発電装置100とセンサーおよび無線装置とを組み合わせることにより、例えば、次のような発電システムを構築することができる。かかる発電システムでは、発電装置100で得られた電力を利用してセンサーを駆動させることにより、ダクト200内や施設内の照度、温度、湿度、圧力、騒音等を計測することができる。さらに、発電装置100で得られた電力を利用して無線装置を駆動させることにより、センサーで計測された検出データは、無線装置を介して外部端末に送信され、各種制御信号やモニタリング信号として利用することができる。 Then, by combining this power generation device 100 with a sensor and a wireless device, for example, the following power generation system can be constructed. In such a power generation system, the illuminance, temperature, humidity, pressure, noise, and the like in the duct 200 and the facility can be measured by driving the sensor using the electric power obtained by the power generation apparatus 100. Further, by driving the wireless device using the power obtained by the power generation device 100, the detection data measured by the sensor is transmitted to the external terminal via the wireless device and used as various control signals and monitoring signals. can do.
 このようなダクト200には、図10(a)に示すように、その天板部を構成する板状部201に発電装置100を固定してもよく、図10(b)に示すように、その側壁部を構成する板状部201に発電装置100を固定するようにしてもよい。 In such a duct 200, as shown in FIG. 10 (a), the power generation device 100 may be fixed to a plate-like portion 201 constituting the top plate portion, and as shown in FIG. 10 (b), You may make it fix the electric power generating apparatus 100 to the plate-shaped part 201 which comprises the side wall part.
 この場合、板状部201の質量およびバネ定数に対し、発電装置100の重量が大きすぎると、板状部201の振動を抑制してしまい、板状部201が十分に振動しない結果、発電装置100から目的とする発電量の電力を得ることができないおそれがある。そこで、空調用のダクト200の場合、発電装置100の重量は、200~800gとするのが好ましく、400~600gとするのがより好ましい。 In this case, if the weight of the power generation device 100 is too large with respect to the mass of the plate-like portion 201 and the spring constant, the vibration of the plate-like portion 201 is suppressed and the plate-like portion 201 does not sufficiently vibrate. There is a possibility that the target power generation amount cannot be obtained from 100. Therefore, in the case of the duct 200 for air conditioning, the weight of the power generation apparatus 100 is preferably 200 to 800 g, and more preferably 400 to 600 g.
 したがって、発電装置100の重量を400gとした場合、吸着手段9の板状部201に対する吸引力(磁石組立体91の板状部201に対する吸引力の総和)は、発電装置100の重量より大きくなるよう設定するのが好ましく、具体的には、600g以上に設定するのが好ましい、これにより、天板部を構成する板状部201のいかなる箇所にも、発電装置100を安定的に固定することができる。 Therefore, when the weight of the power generation device 100 is 400 g, the attractive force with respect to the plate-like portion 201 of the attracting means 9 (the sum of the attractive forces with respect to the plate-like portion 201 of the magnet assembly 91) is larger than the weight of the power generation device 100. It is preferable to set the power generation device 100, specifically, it is preferable to set it to 600 g or more. Thereby, the power generation apparatus 100 can be stably fixed to any part of the plate-like portion 201 constituting the top plate portion. Can do.
 なお、発電装置100の振動加速度、および、地震などで発生する外部からの振動を考慮した場合、振動加速度を1G、地震による加速度1Gとすれば、重力加速度1Gを加えて3Gが発電装置100に加わることになる。したがって、発電装置100の重量が400gであれば、吸着手段9の板状部201に対する吸引力を1200g以上に設定するのが好ましい。これにより、図10(b)に示すダクト200の側壁部を構成する板状部201に対しても、発電装置100を安定的に固定することができる。また、吸着手段9の板状部201に対する吸引力が1200g程度であれば、作業者による発電装置100のダクト200からの取り外し操作も容易に行うことができる。 When considering the vibration acceleration of the power generation apparatus 100 and external vibration generated by an earthquake or the like, if the vibration acceleration is 1 G and the acceleration due to the earthquake is 1 G, 3 G is added to the power generation apparatus 100 by adding the gravitational acceleration 1 G. Will join. Therefore, if the weight of the power generation device 100 is 400 g, it is preferable to set the suction force of the suction means 9 to the plate-like portion 201 to 1200 g or more. Accordingly, the power generation device 100 can be stably fixed also to the plate-like portion 201 that forms the side wall portion of the duct 200 illustrated in FIG. Moreover, if the suction force with respect to the plate-shaped part 201 of the adsorption | suction means 9 is about 1200g, the removal operation from the duct 200 of the generator 100 by an operator can also be performed easily.
 このような吸着手段9の板状部201に対する吸引力は、例えば、第2の磁石910および第3の磁石911の種類(構成材料)や、第3の磁石911の個数、ヨーク912の構成材料等を適宜選択することにより、調整することができる。 The attractive force of the attracting means 9 to the plate-like portion 201 is, for example, the types (constituent materials) of the second magnet 910 and the third magnet 911, the number of the third magnets 911, and the constituent material of the yoke 912. It is possible to make adjustments by appropriately selecting etc.
 一方、図12に示すパイプ300は、例えば、磁性材料で構成された板材(鋼板またはめっき鋼板)を円管状に湾曲させ、接合(溶接)すること等により形成されている。すなわち、パイプ300は、その外周全体にわたって湾曲部(湾曲面)を備えている。かかるパイプ300は、例えば、水素燃料ガス、燃料油のような燃料(流体)を移送する装置の流路を構成する。 On the other hand, the pipe 300 shown in FIG. 12 is formed by, for example, bending (joining) a plate material (steel plate or plated steel plate) made of a magnetic material into a tubular shape. That is, the pipe 300 includes a curved portion (curved surface) over the entire outer periphery thereof. The pipe 300 constitutes a flow path of a device that transfers fuel (fluid) such as hydrogen fuel gas and fuel oil.
 例えば、大型プラント等の施設に設置されている燃料供給用のパイプ300には、ポンプ等により燃料油を通過させている。このとき、ポンプの油圧の揺れ(脈動)等によりパイプ300が振動している。本発明によれば、磁石組立体91は、可撓性を有する第1のシート材92を介して装置本体1に取り付けられている。このため、図12に示すパイプ300のように湾曲面(湾曲部)を有する振動体に対しても発電装置100を固定することができる。 For example, fuel oil is passed through a fuel supply pipe 300 installed in a facility such as a large plant by a pump or the like. At this time, the pipe 300 vibrates due to the hydraulic pressure fluctuation (pulsation) of the pump. According to the present invention, the magnet assembly 91 is attached to the apparatus main body 1 via the first sheet material 92 having flexibility. For this reason, the electric power generating apparatus 100 can be fixed also to a vibrating body having a curved surface (curved portion) like the pipe 300 shown in FIG.
 また、前述したように、本実施形態では、第1のシート材92が長さの異なる2種類の腕部922a、922bを備えるため、横断面形状において曲率半径の異なる種類のパイプ300に対しても、発電装置100を確実に固定することができる。 Further, as described above, in the present embodiment, since the first sheet material 92 includes two types of arm portions 922a and 922b having different lengths, the pipe 300 of a type having a different curvature radius in the cross-sectional shape is used. In addition, the power generation apparatus 100 can be securely fixed.
 なお、上述した本実施形態の発電装置100では、第2の磁石910が、第1の磁石31の磁化方向に沿って設けられており、さらに、第2の磁石910の磁化方向における中心軸が、第1の磁石31の磁化方向における中心軸と重なるよう構成されている。しかしながら、本発明は上記構成に限定されない。例えば、第2の磁石が、第1の磁石の磁化方向に沿って配置されていない場合でも、第2の磁石の種類、サイズを変更し、第2の磁石の第1の磁石への斥力が十分に大きくなるように調整することにより、上述した本実施形態の発電装置100と同様の作用・効果を生じる。 In the power generation device 100 of the present embodiment described above, the second magnet 910 is provided along the magnetization direction of the first magnet 31, and the central axis in the magnetization direction of the second magnet 910 is The first magnet 31 is configured to overlap the central axis in the magnetization direction. However, the present invention is not limited to the above configuration. For example, even when the second magnet is not arranged along the magnetization direction of the first magnet, the type and size of the second magnet are changed, and the repulsive force of the second magnet on the first magnet is reduced. By adjusting so as to be sufficiently large, the same operation and effect as the power generation apparatus 100 of the present embodiment described above are produced.
 また、上述した本実施形態の発電装置100では、吸着手段9が、第2の磁石910を備える磁石組立体91を1つ有する構成であるが、本発明はこれに限定されない。例えば、固定部の中央付近に第2の磁石を備える磁石組立体を2つ以上有する吸着手段を用意し、ベースの凹部の形状、大きさを変更する。次に、前述したように、吸着手段の固定部に設けられた磁石組立体をベースの凹部内に位置するように設計することにより、前述した本実施形態の発電装置と同様の作用・効果を有する発電装置を得ることができる。 Further, in the power generation device 100 of the present embodiment described above, the attracting means 9 has one magnet assembly 91 including the second magnet 910, but the present invention is not limited to this. For example, an attracting means having two or more magnet assemblies including a second magnet is prepared near the center of the fixed portion, and the shape and size of the concave portion of the base are changed. Next, as described above, by designing the magnet assembly provided in the fixing portion of the attracting means so as to be positioned in the recess of the base, the same operation and effect as the power generation device of the present embodiment described above can be obtained. It is possible to obtain a power generation device having the same.
 <第2実施形態>
 次に、本発明の発電装置の第2実施形態について説明する。
Second Embodiment
Next, 2nd Embodiment of the electric power generating apparatus of this invention is described.
 図13は、本発明の発電装置の第2実施形態の縦断面図である。なお、以下の説明では、図12中の上側を「上」または「上方」と言い、下側を「下」または「下方」と言う。 FIG. 13 is a longitudinal sectional view of a second embodiment of the power generator of the present invention. In the following description, the upper side in FIG. 12 is referred to as “upper” or “upper”, and the lower side is referred to as “lower” or “lower”.
 以下、第2実施形態の発電装置について、前記第1実施形態の発電装置との相違点を中心に説明し、同様の事項については、その説明を省略する。第2実施形態の発電装置100は、吸着手段9を有しておらず、装置本体1が、直接振動体に固定されるとともに、装置本体1の上側に前述した磁石組立体91を備えた磁石含有シート900を有している以外は、前記第1実施形態の発電装置100と同様である。すなわち、本実施形態の発電装置100は、前述した第1実施形態と同様の装置本体1と、磁石含有シート900とを有する構成である。 Hereinafter, the power generation device of the second embodiment will be described with a focus on differences from the power generation device of the first embodiment, and description of similar matters will be omitted. The power generation apparatus 100 according to the second embodiment does not have the adsorbing means 9, the apparatus main body 1 is directly fixed to the vibrating body, and the magnet includes the magnet assembly 91 described above on the upper side of the apparatus main body 1. Except having the containing sheet 900, it is the same as that of the electric power generating apparatus 100 of the said 1st Embodiment. That is, the power generation apparatus 100 of the present embodiment has a configuration including the apparatus main body 1 and the magnet-containing sheet 900 similar to those of the first embodiment described above.
 かかる発電装置100は、例えば、図10に示す振動体(ダクト200)の下側の板状部201(底板部)に固定して使用される。すなわち、本実施形態の発電装置100は、図10に示す第1実施形態の発電装置100を180度回転させた状態で使用される。 Such a power generator 100 is used, for example, by being fixed to the lower plate-like portion 201 (bottom plate portion) of the vibrating body (duct 200) shown in FIG. That is, the power generation device 100 of the present embodiment is used in a state where the power generation device 100 of the first embodiment shown in FIG. 10 is rotated 180 degrees.
 本実施形態の発電装置100(装置本体1)では、ベース23が矩形平板状をなしている。ベース23の4隅には、それぞれ、貫通孔(図示せず)が形成されている。図示しないネジをベース23の貫通孔に貫通させ、振動体に設けられたネジ穴と螺合させる。これにより、ベース23と振動体とが固定されて、発電装置100が振動体に固定される。 In the power generation device 100 (device main body 1) of the present embodiment, the base 23 has a rectangular flat plate shape. Through holes (not shown) are formed in the four corners of the base 23, respectively. A screw (not shown) is passed through the through hole of the base 23 and screwed into a screw hole provided in the vibrating body. Thereby, the base 23 and the vibrating body are fixed, and the power generation apparatus 100 is fixed to the vibrating body.
 また、図13に示すように、カバー21(装置本体1)の上面に、磁石含有シート900が設けられている。 Further, as shown in FIG. 13, a magnet-containing sheet 900 is provided on the upper surface of the cover 21 (device main body 1).
 磁石含有シート900は、前述した1つの磁石組立体91と、磁石組立体91を保持する第1のシート材901と、磁石組立体91の装置本体1側に設けられた第2のシート材902とを備えている。このような磁石含有シート900は、磁石組立体91の第2の磁石910の磁化方向における中心軸が、第1の磁石31の磁化方向における中心軸と重なるようにしてカバー21に固定されている。 The magnet-containing sheet 900 includes one magnet assembly 91 described above, a first sheet material 901 that holds the magnet assembly 91, and a second sheet material 902 provided on the apparatus main body 1 side of the magnet assembly 91. And. Such a magnet-containing sheet 900 is fixed to the cover 21 such that the central axis in the magnetization direction of the second magnet 910 of the magnet assembly 91 overlaps the central axis in the magnetization direction of the first magnet 31. .
 図13に示すように、本実施形態では、磁石組立体91の第2の磁石910が、N極を上側に、S極を下側にして配置されている。したがって、第1の磁石31と第2の磁石910とは、同極(S極)同士が互いに対向するように配置されている。このため、第1の磁石31と第2の磁石910との間に、磁気的相互作用による斥力が働く。 As shown in FIG. 13, in this embodiment, the second magnet 910 of the magnet assembly 91 is arranged with the north pole on the upper side and the south pole on the lower side. Therefore, the first magnet 31 and the second magnet 910 are arranged so that the same poles (S poles) face each other. For this reason, a repulsive force due to magnetic interaction acts between the first magnet 31 and the second magnet 910.
 本実施形態の発電装置100は、カバー21がベース23の下方(鉛直下方)に位置する状態で使用される。装置本体1のみで構成された発電装置では、磁石組立体30の重量が、第1の磁石31の振動体に対する吸引力よりも大きい場合、第1の磁石31がカバー21側に変位してしまう。これに対して、装置本体1と磁石含有シート900とを有する本実施形態の発電装置100では、第1の磁石31と第2の磁石910との間に斥力が働くことにより、第1の磁石31の筐体20(コイル40)に対する位置が変位するのを防止することができる。かかる発電装置100では、振動体の振動により、第1の磁石31を、その標準位置を基準としてコイル40に対して相対的に変位させることができる。これにより、発電装置100は、設計時の特性を確実に発現して、効率良く発電することができる。 The power generation device 100 of the present embodiment is used in a state where the cover 21 is located below the base 23 (vertically below). In the power generator configured only by the apparatus main body 1, when the weight of the magnet assembly 30 is larger than the attractive force of the first magnet 31 to the vibrating body, the first magnet 31 is displaced toward the cover 21. . On the other hand, in the power generation apparatus 100 according to the present embodiment having the apparatus main body 1 and the magnet-containing sheet 900, the repulsive force acts between the first magnet 31 and the second magnet 910, whereby the first magnet It is possible to prevent the position of 31 relative to the housing 20 (coil 40) from being displaced. In the power generation apparatus 100, the first magnet 31 can be displaced relative to the coil 40 with reference to the standard position by the vibration of the vibrating body. As a result, the power generation device 100 can reliably generate the design characteristics and efficiently generate power.
 第1のシート材901は、矩形状のシートであり、磁石組立体91を保持する凹部(保持部)が形成されている。このような第1のシート材901は、凹部の数およびその外形が異なる以外は、前述した第1のシート材92と同様である。 The first sheet material 901 is a rectangular sheet, and a recess (holding portion) that holds the magnet assembly 91 is formed. Such a first sheet material 901 is the same as the first sheet material 92 described above except that the number of recesses and the outer shape thereof are different.
 また、第2のシート材902は、第1のシート材901の外形とほぼ等しい外形を有しており、磁石組立体91を、第1のシート材901との間に固定(ラミネート)する。第2のシート材902の第1のシート材901に対する固定方法としては、例えば、融着(熱融着、超音波融着、高周波融着)や接着剤による接着等が挙げられる。このような第2のシート材902は、その外形が異なる以外は、前述した第2のシート材902と同様である。第2のシート材902を、接着剤による接着または粘着剤による貼付により、カバー21に取り付けることにより、カバー21の上面に、磁石含有シート900を取り付ける(固定する)ことができる。 Further, the second sheet material 902 has an outer shape substantially equal to the outer shape of the first sheet material 901, and fixes (laminates) the magnet assembly 91 between the first sheet material 901 and the second sheet material 902. Examples of a method for fixing the second sheet material 902 to the first sheet material 901 include fusion (thermal fusion, ultrasonic fusion, high frequency fusion), adhesion with an adhesive, and the like. Such a second sheet material 902 is the same as the second sheet material 902 described above except that its outer shape is different. The magnet-containing sheet 900 can be attached (fixed) to the upper surface of the cover 21 by attaching the second sheet material 902 to the cover 21 by bonding with an adhesive or sticking with an adhesive.
 なお、本実施形態の発電装置100は、振動体にネジの螺合により固定されている。そのため、上述したダクト200以外に、発電装置100が取り付けられる面が磁性材料以外の材料で構成された振動体に対しても、本実施形態の発電装置100を適用することができる。 Note that the power generation device 100 of the present embodiment is fixed to the vibrating body by screwing. Therefore, in addition to the duct 200 described above, the power generation apparatus 100 of the present embodiment can be applied to a vibrating body in which the surface on which the power generation apparatus 100 is attached is made of a material other than a magnetic material.
 以上説明した実施形態の発電装置100では、発電部10が第1の磁石31とコイル40とを用いた電磁誘導素子で構成されているが、発電部10は、静電素子(エレクトレット)、圧電素子、磁歪素子等で構成することもできる。 In the power generation apparatus 100 according to the embodiment described above, the power generation unit 10 is configured by an electromagnetic induction element using the first magnet 31 and the coil 40. However, the power generation unit 10 includes an electrostatic element (electret), a piezoelectric element. An element, a magnetostrictive element, or the like can also be used.
 また、振動体の一例として、ダクト200およびパイプ300を挙げたが、振動体としては、例えば、輸送機(貨物列車や自動車、トラックの荷台)、線路を構成するレール、高速道路やトンネルの壁面パネル、架橋、およびポンプ、ファン、タービン等のモーターを備えた回転機器等が挙げられる。これらの振動体の磁性材料で構成される部位に、発電装置100を固定して、本発明の発電システムを構成することができる。 Moreover, although the duct 200 and the pipe 300 were mentioned as an example of a vibrating body, as a vibrating body, for example, a transport plane (a freight train, an automobile, a truck bed), a rail constituting a track, a highway or a tunnel wall surface, for example. Examples include panels, bridges, and rotating equipment equipped with motors such as pumps, fans, and turbines. The power generation apparatus 100 of the present invention can be configured by fixing the power generation device 100 to a portion formed of the magnetic material of these vibrators.
 以上、本発明の発電装置および発電システムを図示の実施形態に基づいて説明したが、本発明は、これに限定されない。例えば、各構成は、同様の機能を発揮し得る任意の構成と置換することができ、あるいは、任意の構成を付加することができる。 As mentioned above, although the electric power generating apparatus and electric power generation system of this invention were demonstrated based on embodiment of illustration, this invention is not limited to this. For example, each configuration can be replaced with an arbitrary configuration that can exhibit the same function, or an arbitrary configuration can be added.
 例えば、本発明では、前記第1および第2実施形態の任意の構成を組み合わせることもできる。 For example, in the present invention, the arbitrary configurations of the first and second embodiments can be combined.
 本発明によれば、第2の磁石から第1の磁石に対して斥力を働かせることにより、発電装置を静止状態の振動体に固定した際に、第1の磁石が、発電部に外力を付与しない自然状態における第1の磁石の位置またはその近傍に保持される。そのため、振動体の振動により、第1の磁石を、その標準位置(発電部に外力を付与しない自然状態における第1の磁石の位置)を基準としてコイルに対して相対的に変位させることができる。これにより、発電装置は、設計時の特性(発電量や周波数特性)を確実に発現して、効率良く発電することができる。したがって、本発明は産業上の利用可能性を有する。 According to the present invention, by applying a repulsive force from the second magnet to the first magnet, the first magnet applies an external force to the power generation unit when the power generation device is fixed to the stationary vibration body. It is held at or near the position of the first magnet in the natural state. Therefore, the vibration of the vibrating body can displace the first magnet relative to the coil with reference to the standard position (the position of the first magnet in a natural state where no external force is applied to the power generation unit). . As a result, the power generation apparatus can reliably generate the design characteristics (power generation amount and frequency characteristics) and efficiently generate power. Therefore, the present invention has industrial applicability.

Claims (11)

  1.  振動体に固定して使用する発電装置であって、
     第1の磁石と、該第1の磁石と離間し、かつ、その外周側を囲むように設けられたコイルと、前記第1の磁石を、その磁化方向に沿って前記コイルに対して相対的に変位させるバネとを備える発電部と、
     当該発電装置を静止状態の前記振動体に固定した際に、前記発電部に外力を付与しない自然状態における前記第1の磁石の位置またはその近傍に、前記第1の磁石を保持するように、前記第1の磁石に対して斥力を働かせるよう配置された第2の磁石とを有することを特徴とする発電装置。
    A power generation device used by being fixed to a vibrating body,
    A first magnet, a coil spaced apart from the first magnet and surrounding the outer periphery thereof, and the first magnet relative to the coil along its magnetization direction. A power generation unit comprising a spring to be displaced to
    When the power generation device is fixed to the stationary vibration body, the first magnet is held at or near the position of the first magnet in a natural state where no external force is applied to the power generation unit. And a second magnet arranged to exert a repulsive force on the first magnet.
  2.  前記第2の磁石は、前記第1の磁石の前記磁化方向に沿って設けられている請求項1に記載の発電装置。 The power generation device according to claim 1, wherein the second magnet is provided along the magnetization direction of the first magnet.
  3.  前記第1の磁石および前記第2の磁石は、それぞれ、ブロック状をなしており、
     前記第2の磁石は、その磁化方向における中心軸が、前記第1の磁石の磁化方向における中心軸と重なるよう設けられている請求項2に記載の発電装置。
    Each of the first magnet and the second magnet has a block shape,
    The power generation device according to claim 2, wherein the second magnet is provided such that a central axis in the magnetization direction thereof overlaps with a central axis in the magnetization direction of the first magnet.
  4.  前記振動体は、磁性材料で構成され、
     当該発電装置は、前記第2の磁石を介して、前記振動体に固定される請求項1ないし3のいずれかに記載の発電装置。
    The vibrator is made of a magnetic material,
    The power generation device according to claim 1, wherein the power generation device is fixed to the vibrating body via the second magnet.
  5.  前記第2の磁石の前記第1の磁石に対する斥力の大きさが、前記第1の磁石の前記振動体に対する吸引力の大きさとほぼ等しい請求項4に記載の発電装置。 The power generation device according to claim 4, wherein a magnitude of repulsive force of the second magnet with respect to the first magnet is substantially equal to a magnitude of attractive force of the first magnet with respect to the vibrating body.
  6.  当該発電装置は、前記第2の磁石の前記振動体に対する吸引力が、その重量より大きくなるよう構成されている請求項4または5に記載の発電装置。 The power generation device according to claim 4 or 5, wherein the power generation device is configured such that an attractive force of the second magnet to the vibrating body is greater than a weight thereof.
  7.  当該発電装置は、前記第2の磁石を含み、当該発電装置を前記振動体に取り付ける吸着手段を有し、
     前記吸着手段は、可撓性を有し、前記第2の磁石を保持するシート材と、該シート材と前記第2の磁石との間に設けられ、前記シート材に対して前記第2の磁石を固定するヨークとを備える請求項4ないし6のいずれかに記載の発電装置。
    The power generation device includes the second magnet, and has a suction unit that attaches the power generation device to the vibrating body,
    The adsorbing means is flexible and is provided between the sheet material holding the second magnet and the sheet material and the second magnet, and The power generator according to any one of claims 4 to 6, further comprising a yoke for fixing the magnet.
  8.  前記吸着手段は、複数の第3の磁石をさらに有し、
     前記シート材は、前記発電部に固定される固定部と、該固定部の側方に延在し、前記固定部と反対側の端部に前記第3の磁石を保持する保持部を有する複数の腕部とを備える請求項7に記載の発電装置。
    The attracting means further includes a plurality of third magnets,
    The sheet material has a plurality of fixing portions that are fixed to the power generation portion, and a holding portion that extends to the side of the fixing portion and holds the third magnet at an end opposite to the fixing portion. The power generation device according to claim 7, further comprising:
  9.  当該発電装置を平坦面に載置したとき、各前記腕部は、前記保持部が前記装置本体より外側に位置するような長さを有する請求項8に記載の発電装置。 The power generation device according to claim 8, wherein when the power generation device is placed on a flat surface, each of the arm portions has a length such that the holding portion is positioned outside the device main body.
  10.  前記第2の磁石は、当該発電装置を前記振動体に固定する際に、前記発電部の前記振動体とは反対側に取り付けられる請求項1ないし3のいずれかに記載の発電装置。 The power generation device according to any one of claims 1 to 3, wherein the second magnet is attached to a side of the power generation unit opposite to the vibration body when the power generation device is fixed to the vibration body.
  11.  請求項1ないし10のいずれかに記載の発電装置と、
     当該発電装置を固定する、磁性材料で構成される振動体とを有することを特徴とする発電システム。
    A power generation device according to any one of claims 1 to 10,
    A power generation system comprising: a vibrating body made of a magnetic material for fixing the power generation device.
PCT/JP2015/081819 2014-11-14 2015-11-12 Power generation device and power generation system WO2016076382A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-231721 2014-11-14
JP2014231721A JP2016096662A (en) 2014-11-14 2014-11-14 Electric power generating device and electric power generating system

Publications (1)

Publication Number Publication Date
WO2016076382A1 true WO2016076382A1 (en) 2016-05-19

Family

ID=55954459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081819 WO2016076382A1 (en) 2014-11-14 2015-11-12 Power generation device and power generation system

Country Status (2)

Country Link
JP (1) JP2016096662A (en)
WO (1) WO2016076382A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170366077A1 (en) * 2016-06-20 2017-12-21 Kabushiki Kaisha Toshiba Vibration power generator, vibration power generating unit, vibration power generating module, and electrical device
CN107681863A (en) * 2017-11-07 2018-02-09 中国计量大学 Mechanical compression micro-energy collection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073980A1 (en) * 2010-11-30 2012-06-07 セイコーインスツル株式会社 Electromagnetic generator
JP2014090542A (en) * 2012-10-29 2014-05-15 Mitsumi Electric Co Ltd Power generator and power generation system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073980A1 (en) * 2010-11-30 2012-06-07 セイコーインスツル株式会社 Electromagnetic generator
JP2014090542A (en) * 2012-10-29 2014-05-15 Mitsumi Electric Co Ltd Power generator and power generation system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170366077A1 (en) * 2016-06-20 2017-12-21 Kabushiki Kaisha Toshiba Vibration power generator, vibration power generating unit, vibration power generating module, and electrical device
US10811949B2 (en) * 2016-06-20 2020-10-20 Kabushiki Kaisha Toshiba Vibration power generator with elastic members fixed to a housing and coils poistioned between magnets
CN107681863A (en) * 2017-11-07 2018-02-09 中国计量大学 Mechanical compression micro-energy collection device
CN107681863B (en) * 2017-11-07 2023-06-16 中国计量大学 Mechanical pressing micro-energy collecting device

Also Published As

Publication number Publication date
JP2016096662A (en) 2016-05-26

Similar Documents

Publication Publication Date Title
JP6060621B2 (en) Power generation device and power generation system
JP5754478B2 (en) Power generation device, power generation device set and power generation system
JP6036143B2 (en) Power generator
JP6193965B2 (en) Micro vibration motor
EP2503792B1 (en) Moving armature receiver assemblies with vibration suppression
JP6022446B2 (en) Vibration confinement system
JP6425101B2 (en) Sensory signal output device
JP2013169544A (en) Vibration generation apparatus
US9743192B2 (en) Speaker and vibration control unit
CN103460574A (en) Vibration power generator
CN105387762A (en) Vibrational fluid mover jet with active damping mechanism
US11056959B2 (en) Linear actuator
WO2016076382A1 (en) Power generation device and power generation system
JP2021519571A (en) Electromechanical generator for converting mechanical vibration energy into electrical energy
KR101710861B1 (en) A two-way speaker equipped with a bar magnet
CN201141912Y (en) Shock-absorbing device for magnetic resonance system
JP6156405B2 (en) Power generation device, power generation device set and power generation system
JP2012034184A (en) Speaker device
WO2022067928A1 (en) Linear motor
JP2005249089A (en) Magnetic damper
CN110565936A (en) Tuned mass damper device and suspension construction robot with same
JP6652502B2 (en) Vibration unit
KR101202569B1 (en) Dynamic Absorber Using Electromagnet
WO2014168007A1 (en) Power generation device
JP2019115198A (en) Vibration power generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15859395

Country of ref document: EP

Kind code of ref document: A1