WO2013024735A1 - Electrophoretic display sheet and electrophoretic display medium using same - Google Patents

Electrophoretic display sheet and electrophoretic display medium using same Download PDF

Info

Publication number
WO2013024735A1
WO2013024735A1 PCT/JP2012/070012 JP2012070012W WO2013024735A1 WO 2013024735 A1 WO2013024735 A1 WO 2013024735A1 JP 2012070012 W JP2012070012 W JP 2012070012W WO 2013024735 A1 WO2013024735 A1 WO 2013024735A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrophoretic
sealing
electrophoretic display
adhesive layer
layer
Prior art date
Application number
PCT/JP2012/070012
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 厚志
Original Assignee
三菱鉛筆株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011176950A external-priority patent/JP5757821B2/en
Priority claimed from JP2011176952A external-priority patent/JP5757823B2/en
Priority claimed from JP2011176951A external-priority patent/JP5757822B2/en
Application filed by 三菱鉛筆株式会社 filed Critical 三菱鉛筆株式会社
Priority to CN201280039327.9A priority Critical patent/CN103718095A/en
Publication of WO2013024735A1 publication Critical patent/WO2013024735A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1679Gaskets; Spacers; Sealing of cells; Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1679Gaskets; Spacers; Sealing of cells; Filling or closing of cells
    • G02F1/1681Gaskets; Spacers; Sealing of cells; Filling or closing of cells having two or more microcells partitioned by walls, e.g. of microcup type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements

Definitions

  • the present invention relates to an electrophoretic display sheet and an electrophoretic display medium using the same.
  • an electrophoretic display device has a configuration in which two electrode substrates, at least one of which is transparent, are arranged to face each other, and an electrophoretic ink is provided between the electrodes arranged to face each other to form a display panel.
  • a display is obtained on the transparent electrode surface by applying an electric field to the display panel.
  • This electrophoretic display device can obtain a desired display by moving the electrophoretic particles in the electrophoretic ink by controlling the direction of the electric field. It has the advantages of being as wide as printed materials, consuming less power, and having memory properties for display.
  • an electrophoretic display device using an electrophoretic display sheet in which the electrophoretic display sheet is attached to various electrode substrates (back planes).
  • the electrophoretic display sheet used does not need to form partition walls (ribs) directly on the backplane (TFT, segment substrate, etc.), and can be used in any combination with various backplanes. It can be mass-produced on a roll-to-roll basis, can be produced without matching the size of the backplane, and can be cut and used as needed.
  • This electrophoretic display sheet has a configuration in which an electrophoretic ink layer is formed on a light-transmitting electrode surface formed on a light-transmitting substrate material.
  • a sealing method for manufacturing an electrophoretic display in which a) filling an array of microcups with an electrophoretic fluid; b) accommodating in a cell The electrophoretic fluid is overcoated with a sealing composition (sealing liquid) that contains a thermoplastic elastomer and a solvent or solvent mixture that is immiscible with the electrophoretic fluid and has a specific gravity lower than that of the electrophoretic fluid. And c) a method including drying a sealing composition (sealing liquid) so as to form a sealing layer is known (see, for example, Patent Document 1). However, in this manufacturing method, the sealing liquid is cured after overcoating such as application or spraying. However, when the electrophoretic fluid has a lower specific gravity than the sealing composition, the surface is cured before the sealing liquid is cured. There is a problem that it cannot be sealed because it sinks.
  • a method of manufacturing an image display medium having a partition wall provided between the substrates, wherein an end width a on the image display side and an end width b on the opposite side of the image display side in the cross section of the partition wall There is known a method for manufacturing an image display medium (see, for example, Patent Document 2), which includes a step of integrally forming a partition so that the ratio (a / b) is 0.8 or less. .
  • the ratio (a / b) between the end width a and the end width b on the image display side of the partition provided between at least two opposing substrates is set to 0.8 or less.
  • the width of the end portion is narrowed toward the image display side (front plate side) to ensure the aperture ratio on the image display side and the strength as a partition wall.
  • the electrophoretic display sheet (front plane) is affixed to the back plane without directly forming partition walls on various electrode substrates such as TFT and segment substrates, and the end width of the partition walls is opposite to the image display side. It is narrowed toward the back plate side, which is the side, to further improve the sealing performance of the electrophoretic ink, and the technical ideas (configuration and operational effects) of both are different.
  • JP 2005-509690A (Claims, Examples, FIG. 4, FIG. 5 etc.) Japanese Unexamined Patent Publication No. 2003-208107 (Claims, Examples, FIG. 1, FIG. 7, etc.)
  • the present invention has been made in view of the above-described problems of the prior art, and is intended to solve this problem.
  • a high-quality electrophoretic display sheet excellent in durability, display characteristics, and productivity at low cost, and electrophoretic display using the same The purpose is to provide a medium.
  • the inventor of the present invention has a cell-like structure configured by partition walls made of an insulating material on a light-transmitting electrode surface formed on a light-transmitting substrate material. Forming the body, filling the inside of the cellular structure with the electrophoretic ink, and bonding the film having a specific structure to the electrophoretic ink layer, it is found that the target electrophoretic display sheet can be obtained, Further, the inventors have found that the electrophoretic display medium can be obtained by laminating the electrophoretic display sheet on an arbitrary substrate, and the present invention has been completed.
  • the present invention resides in the following (1) to (16).
  • a cellular structure composed of partition walls made of an insulating material is formed on a transparent electrode surface formed on a transparent substrate material, and electrophoretic ink is filled in the cellular structure.
  • the partition wall of the insulating material is characterized in that the width of the short axis of the partition wall decreases from the light-transmitting electrode surface side toward the sealing adhesive layer or the sealing adhesive layer (1 )
  • the width of the short axis of the partition wall on the side of the sealing adhesive layer or the sealing adhesive layer is smaller than the particle diameter of at least one of the electrophoretic particles contained in the electrophoretic ink layer.
  • the electrophoretic display sheet described in 1. (4) The electrophoretic display sheet according to any one of (1) to (3) above, wherein a gap smaller than at least one of the particle diameters is formed in the partition wall of the insulating material. . (5) A cellular structure composed of partition walls made of an insulating material is formed on a transparent electrode surface formed on a transparent substrate material, and electrophoretic ink is filled in the cellular structure.
  • a cellular structure composed of partition walls made of an insulating material is formed on a light transmissive electrode surface formed on a light transmissive substrate material, and electrophoretic ink is filled into the cellular structure.
  • An electrophoretic display sheet wherein the electrophoretic ink layer is sealed by bonding the sealing film on which the adhesive layer is formed to the electrophoretic ink layer and then curing the adhesive layer. .
  • Electrophoresis characterized in that the electrophoretic display sheet according to (9) or (14) is bonded via an adhesive layer or an adhesive layer on a substrate on which one or more electrodes are formed. Display medium.
  • a high-quality electrophoretic display sheet having excellent durability, display characteristics, and productivity at low cost and an electrophoretic display medium using the same are provided.
  • (A) is a schematic longitudinal cross-sectional view of the electrophoretic display sheet which shows 1st Embodiment used as an example of this invention
  • (b) is an expanded schematic longitudinal cross-sectional view of (a).
  • (A)-(c) is a schematic drawing explaining the manufacturing process of the electrophoretic display sheet of 1st Embodiment for every process.
  • (A) is explanatory drawing in case the width
  • (b) is the width
  • (A)-(d) is explanatory drawing which shows the other example of each shape (vertical cross-sectional shape) of the short axis of a partition.
  • (A) to (c) are a partial plan view, a partial front view, and a partial perspective view showing an example of a cellular structure (cross-girder type) constituted by partition walls.
  • (A) to (c) are a partial plan view, a partial front view, and a partial perspective view showing another example (hexagonal shape type) of a cellular structure constituted by partition walls. It is explanatory drawing explaining the state of the electrophoretic ink layer using the cellular structure (hexagon shape type
  • (A) And (b) is explanatory drawing explaining the state which formed the communicating hole in each cell of the cellular structure (hexagon shape type, cross-girder type) comprised by the partition.
  • (A) is a schematic longitudinal sectional view showing a state in which the release film of the electrophoretic display sheet is peeled off, and (b) is a state in which the release film is peeled off from the electrophoretic display sheet in the backplane (TFT, segment substrate, etc.) It is explanatory drawing which shows the state which bonds.
  • (A) is a schematic longitudinal cross-sectional view of the electrophoretic display sheet which shows an example of 2nd Embodiment of this invention
  • (b) is an expanded schematic longitudinal cross-sectional view of (a).
  • (A)-(d) is a schematic drawing explaining the manufacturing process of the electrophoretic display sheet of 2nd Embodiment of this invention for every process.
  • (A) is a schematic longitudinal cross-sectional view which shows the state which peels the peeling film of the electrophoretic display sheet of 2nd Embodiment of this invention
  • (b) is the state which peeled the peeling film from the electrophoretic display sheet, and back It is explanatory drawing which shows the state which bonds a plane (TFT, a segment board
  • (A) is a schematic longitudinal cross-sectional view of the electrophoretic display sheet of 3rd Embodiment of this invention
  • (b) is an expansion schematic longitudinal cross-sectional view of (a).
  • (A)-(c) is a schematic drawing explaining the manufacturing process of the electrophoretic display sheet of 3rd Embodiment of this invention for every process. It is explanatory drawing which shows the state which bonds a back plane (TFT, segment substrate, etc.) through the contact bonding layer or adhesion layer formed in the outer surface of the electrophoretic display sheet of 3rd Embodiment of this invention.
  • TFT back plane
  • the electrophoretic display sheet of each embodiment forms a cellular structure composed of partition walls of an insulating material on a light transmissive electrode surface formed on a light transmissive substrate material, Each cell structure is filled with an electrophoretic ink, and a film having a specific structure according to any one of the first to third embodiments, which will be described in detail below, is bonded to the electrophoretic ink layer.
  • the electrophoretic display sheet of the embodiment is configured, and the electrophoretic display medium is formed by peeling the film of the electrophoretic display sheet of each embodiment on a substrate on which one or more electrodes are formed. It is formed by pasting.
  • FIGS. 1 to 9 are explanatory views of a first embodiment as an example of the present invention.
  • FIG. 1 is a schematic longitudinal sectional view and an enlarged schematic longitudinal sectional view of an electrophoretic display sheet.
  • FIG. It is the schematic explaining the manufacturing process of the electrophoretic display sheet of one Embodiment for every process.
  • the electrophoretic display sheet A according to the first embodiment includes a light transmissive electrode surface 11 formed on a light transmissive substrate material 10 and the light transmissive electrode.
  • a cellular structure 20 constituted by partition walls 15, 15... Of an insulating material on the surface 11, an electrophoretic ink (layer) 25 filled in the cellular structure 20, and a sealing adhesive layer (or sealing).
  • the light transmissive substrate material 10 may be any material as long as it has light transmissive properties, such as transparent inorganic materials such as glass, quartz, sapphire, MgO, LiF, and CaF 2 , fluororesin, polyester, polycarbonate, polyethylene, Examples thereof include resin films or ceramics of organic polymers such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN). Preferably, it is desirable to use a flexible resin film for roll-to-roll production and large area.
  • transparent inorganic materials such as glass, quartz, sapphire, MgO, LiF, and CaF 2
  • fluororesin polyester, polycarbonate, polyethylene
  • polyester polycarbonate
  • polyethylene examples thereof include resin films or ceramics of organic polymers such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the light transmissive electrode surface (electrode layer) 11 is made of, for example, a transparent conductive material such as ITO, ZnO, SnO 2 , aluminum (Al), gold (Au), platinum (Pt), copper (Cu), silver It can be formed using a metal such as (Ag), nickel (Ni), or chromium (Cr). Further, conductive polymers such as PODET / PVS and PODET / PSS, and transparent conductive materials such as titanium oxide, zinc oxide, and tin oxide may be used. These materials can be formed by methods such as vapor deposition, ion plating, and sputtering.
  • a transparent conductive material such as ITO, ZnO, SnO 2 , aluminum (Al), gold (Au), platinum (Pt), copper (Cu), silver It can be formed using a metal such as (Ag), nickel (Ni), or chromium (Cr).
  • conductive polymers such as PODET / PVS and PODET
  • a cellular structure 20 composed of partition walls 15, 15.
  • a cellular structure 20 is formed by laser processing an insulating resin material such as a PET film having a certain thickness to form a square, hexagon, circle, or the like and bonding it onto the electrode surface 11. can do.
  • the cellular structure 20 can be formed by patterning the insulating layer using a photolithography method.
  • the partition 15 may be called a spacer, a pillar, a wall, a rib, etc. from the shape and the objective.
  • the shape of the partition wall 15 made of an insulating material is such that the width of the short axis of the partition wall 15 decreases from the light-transmitting electrode surface 11 side toward the sealing adhesive layer (or sealing adhesive layer) 30 side.
  • the longitudinal section has a triangular shape (isosceles triangular shape). More preferably, the width of the minor axis (top) of the partition wall 15 on the sealing adhesive layer (or sealing adhesive layer) 30 side is larger than the particle diameter of at least one of the electrophoretic particles contained in the electrophoretic ink 25 described later. Small is desirable. Specifically, as shown in FIG.
  • the top 15a side is narrowed so that the electrophoretic particles do not remain on the top 15a of the partition wall 15 when the electrophoretic ink is filled.
  • the sealing adhesive layer (or sealing adhesive layer) 30 when the electrophoretic particles have a width that remains on the top portion 15b of the partition wall 15, the sealing adhesive layer (or sealing adhesive layer) 30 and The removal of the electrophoretic particles (cleaning) is necessary because it hinders adhesion, but as shown in FIG. 3A, the width of the short axis (top) 15a of the partition wall 15 is at least that of the electrophoretic particles used.
  • Removal of the electrophoretic particles can be omitted by making the particle diameter smaller than one particle diameter, particularly preferably smaller than the minimum particle diameter of the electrophoretic particles, and the top portion 15a is sealed. Since it will bite into the adhesive layer (or sealing adhesive layer) 30, it is possible to suppress deviation during production and to increase the contact area, so that the sealing property is excellent.
  • 26 and 27 indicate electrophoretic particles, 26 is black particles (carbon black-containing resin particles), and 27 is white particles (titanium oxide particles).
  • the vertical cross-sectional shape of the partition wall 15 made of this insulating material may be any shape as long as the width of the short axis of the partition wall 15 becomes narrower toward the sealing adhesive layer (or sealing adhesive layer) 30. Examples of the vertical cross-sectional shapes shown in FIGS. 4 (a) to 4 (d) are given. Also in each of these shapes, the width of each top portion 15a of each partition wall 15 is smaller than the particle diameter of at least one of the electrophoretic particles to be used, and particularly preferably smaller than the minimum particle diameter of the electrophoretic particles. It is desirable.
  • the length X of the minor axis on the electrode surface 11 side of the partition wall 15 varies depending on the type of electrophoretic ink, the electrophoretic display medium, etc., as shown in FIG. In order to ensure a sufficient aperture ratio, it is preferable to set it to 20 ⁇ m or less.
  • the height of the partition wall 15 is preferably slightly higher than the height Y of the electrophoretic ink layer 20 to be filled: 20 to 40
  • FIG. 5 and FIG. 6 show an example and other examples of the cellular structure 20 constituted by the partition walls 15, 15... Of an insulating material having the above-described longitudinal cross section having a triangular shape (isosceles triangular shape).
  • FIG. 5 shows a cellular structure 20 of a cross-beam type
  • FIG. 6 shows a cellular structure 20 of a hexagonal shape.
  • the cellular structure 20 formed on the electrode surface 11 is filled with the electrophoretic ink 25 as shown in FIG.
  • a method of filling the electrophoretic ink 25 for example, coating with a die coater or the like, and the electrophoretic ink 25 disposed at an arbitrary position of the electrode substrate are spread by substantially contacting with a bar coater, a doctor blade, a comma roll, or the like. Any method can be used as long as it is a method that can fill the cells with ink, such as a printing method using screen printing or the like, or filling with an ink jet or a dispenser.
  • the electrophoretic ink 25 to be used is not particularly limited, and any electrophoretic ink that includes at least one type of electrophoretic particles and a solvent such as a solvent may be used.
  • electrophoretic particles that can be used for example, colored or colorless (white) inorganic pigment particles, organic pigment particles, polymer fine particles, and the like can be used, and these can be used alone (one type) or two or more types. It can be used by mixing. Moreover, the fine particle by which the lipophilic surface treatment was carried out may be sufficient.
  • the electrophoretic ink 25 can be formed of positively charged white particles, negatively charged black particles, and a solvent (solvent) in which these particles are dispersed.
  • white particles white pigments such as titanium oxide, white resin particles, or resin particles colored in white can be used.
  • black particles black pigments such as titanium black and carbon black, resin particles colored in black, and the like can be used. These particles can be arbitrarily used in various colors as long as the contrast can be displayed, and can be a combination of white and red, white and blue, yellow and black, and the like. Alternatively, only one type of charged particle such as only white particles or only black particles may be used.
  • electrophoretic particles have an average particle size of 0.05 to 20 ⁇ m, and particularly preferably an average particle size of 0.1 to 10 ⁇ m.
  • the total content of these fine particles is preferably 5 to 95% by mass, more preferably 10 to 80% by mass, based on the total amount of electrophoretic ink.
  • the solvent for example, hydrocarbon-based, aromatic-based, ester-based, ketone-based, terpene-based, alcohol-based, silicone-based, and fluorine-based solvents may be used alone or in combination of two or more. it can.
  • the content of these solvents can be appropriately selected according to the electrophoretic particles and solvent type to be used, and is preferably 20 to 80%, more preferably 35%, based on the total amount of electrophoretic ink. It is desirable to set it to ⁇ 65%.
  • the electrophoretic ink 25 may further contain a dispersant and a charge control agent in addition to one or more types of electrophoretic particles and a solvent.
  • the dispersant that can be used include various commonly used dispersants, surfactants and polymer surfactants such as nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants. Examples thereof include, but are not limited to, system surfactants and polymer surfactants.
  • the content of these dispersants is appropriately determined depending on the electrophoretic particles and solvent type to be used, but is preferably 0.01 to 50.0% with respect to the total amount of electrophoretic ink. More preferably, it is contained in an amount of 0.5 to 30%.
  • the charge control agent various types conventionally used for electrophoresis inks can be used.
  • a wettability adjusting step for improving the wettability of the electrophoretic ink 25 may be added to the surface of the substrate 10.
  • the electrophoretic ink 25 is sufficiently distributed to the inner walls and corners of the plurality of cells 16, 16... Composed of the insulating partition walls 15, and a gas such as air is supplied to the cells 16 composed of the insulation partition walls 15, 15. , 16... Is a preferred process for expelling from within.
  • this wettability adjustment step for example, solvent treatment, acid treatment, alkali treatment, ozone treatment, plasma treatment, corona discharge treatment, UV treatment, UV ittro treatment, laser treatment, treatment with electron beam, treatment by ion implantation method, Ion beam treatment, ion irradiation treatment, primer treatment, surfactant treatment, sputtering treatment, (physical vapor deposition), CVD (chemical vapor deposition), polymer layer formation and inorganic layer formation, etc. Is mentioned. These may be used in combination, and are not limited to these. Further, in order to remove the contamination on the substrate surface in advance, the wettability can be adjusted more effectively by combining treatment such as washing with a solvent, for example, washing with alcohol.
  • the filling step is performed in a reduced pressure environment or after being applied, it is left in a reduced pressure environment. This facilitates the replacement of the voids in the electrophoretic ink 25 and the air in the cells with the electrophoretic ink 25, thereby reducing the possibility of bubbles remaining in the panel.
  • a method of deaeration before filling for example, a method of stirring the electrophoretic ink 25 with a stirring rod, a method of heating, a method of stirring while warming, a method using ultrasonic waves, a method using reduced pressure, or a method using centrifugal force
  • a method and a method by adding additives such as an antifoaming agent, but are not limited thereto. Furthermore, these methods can be used in combination.
  • Electrophoretic particles cannot pass through, but by forming communication holes 18, 18... With gaps that allow the solvent to pass through, local pressure changes inside each cell 16 are dispersed and evenly distributed by the movement of the solvent. It is alleviated, bubbles are less likely to be generated, and display characteristics can be improved. In addition, when the gap is smaller than one particle diameter but larger than the other particle diameter, one large particle closes the gap, so that the movement of small particles that affect display is not caused. Is.
  • the communication hole made up of the small gap is preferably formed in a portion where the partition walls 15, 15... Of the insulating material intersect, but similarly, a communication hole made up of a small gap can be provided in addition to the crossed portion. is there.
  • FIG. 8A shows a cell-like structure (hexagonal shape) 20 constituted by the partition walls 15, 15... At the portions 18, 18. Are formed with communication holes 18, 18.
  • FIG. 8 (b) shows the above characteristics for each unit of a portion where the partition walls 15, 15 of the insulating material intersect in the cellular structure (cross-beam type) 20 constituted by the partition walls 15, 15,. Are formed with communication holes 18, 18.
  • a sealing adhesive layer (or sealing adhesive) that is disposed opposite to the electrode surface 11 filled with the electrophoretic ink 25 and seals the electrophoretic ink 25.
  • the target electrophoretic display sheet A can be obtained by bonding the film 35 on which the (layer) 30 is formed to the upper surface of each structure 15.
  • the sealing adhesive layer (or sealing adhesive layer) 30 can be sealed to the extent that electrophoretic ink does not leak from the cell, and can be bonded (or adhered) to the backplane described later.
  • a polymer or a polymer precursor material such as polyvinylidene fluoride, polyurethane, nitrocellulose, or cellulose acetate that becomes a high dielectric constant, low volume resistivity material is desirable.
  • alkyl quaternary ammonium salts such as tetrabutylammonium hydrogen sulfate (TBAHS) and tetrabutylammonium hexafluorophosphate (TBAHP), fine particles of barium titanate, titanium It can also be configured by blending strontium acid or the like at a predetermined ratio.
  • various materials such as ultraviolet curable, thermoplastic, thermosetting, two-component curable, moisture curable, and catalyst curable can be used as the material.
  • the above materials are suitably combined to form a sealing adhesive layer (or sealing adhesive layer) 30 having a volume resistivity of 10 8 to 10 14 ⁇ cm and a dielectric constant of 3 to 11.
  • the thickness of the sealing adhesive layer (or sealing adhesive layer) 30 varies depending on the volume specific resistance, dielectric constant and electrophoretic ink layer height of the electrophoretic ink to be used. In order to make it possible to apply an appropriate voltage and seal the electrophoretic ink, it is preferably 1 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m.
  • the film 35 to be used is a film for peeling, and is a so-called release sheet, release film, which is obtained by coating a surface of PET, PE, paper or the like with a silicone release agent, a fluorine release agent, or the like. Release paper or the like can be used, and is determined as appropriate in combination with the sealing adhesive layer (or sealing adhesive layer) to be used.
  • a method of forming a sealing adhesive layer (or sealing adhesive layer) on the film for example, a liquid obtained by dissolving a polymer material in an organic solvent is applied using a coater, and then the excess solvent is removed to form.
  • a polymer precursor material such as a monomer or an oligomer is applied on a film together with a catalyst, and then formed by polymerizing using heat or light, a photocurable material is applied on the film,
  • a method of forming a semi-cured state by irradiation with light can be raised, but is not limited thereto.
  • two or more kinds of materials such as a combination of a thermoplastic material and a photocurable material, or a combination of a thermosetting material and a photocurable material can be mixed and used.
  • the sealing adhesive layer (or sealing adhesive layer) 30 has a function of sealing the electrophoretic ink inside the cell in contact with the partition wall, and it melts into the electrophoretic ink or sinks away from the film.
  • a viscosity, hardness, etc. there is also a function of bonding with a backplane described later. Therefore, the thickness, viscosity, tackiness, hardness, etc. of the sealing adhesive layer (or sealing adhesive layer) are appropriately adjusted so as to have the above function.
  • Each of the films 35 having the sealing adhesive layer (or sealing adhesive layer) 30 having the above-described properties that is disposed opposite to the substrate 10 on which the electrode 11 filled with the electrophoresis ink 25 is formed and that seals the electrophoresis ink 25 is provided.
  • the electrophoretic display medium sheet A shown in FIG. 1 can be obtained by bonding (or sealing adhesive layer) 30 to the upper surface of each partition wall 15.
  • a sealing adhesive layer (or sealing adhesive layer) is formed on the film, and then bonded to the upper surface of each partition wall 15 so that the electrophoretic ink becomes a sealing adhesive material (or sealing). Even when the specific gravity is smaller than that of the adhesive material, the sealing adhesive material (or sealing adhesive material) can be sealed without sinking from the surface.
  • the electrophoretic display medium is obtained by peeling off the film 35 of the obtained electrophoretic display sheet A and bonding an electrode substrate (backplane) on which one or more electrodes are formed.
  • An electrophoretic display device can be obtained by providing a control unit and the like.
  • the substrate on which one or more electrodes are formed include various electrode substrates conventionally used in electronic paper and electrophoretic display devices, such as a TFT substrate, a segment substrate, and a solid substrate.
  • FIG. 9 shows, after peeling the release film 35 of the obtained electrophoretic display medium sheet A (see FIG. 9A), for example, a TFT substrate 60 serving as a backplane is attached to a sealing adhesive layer (or sealing adhesive layer). ) 30 and the electrophoretic display medium can be manufactured.
  • FIGS. 10 to 12 10 to 12 are explanatory diagrams for explaining the second embodiment of the present invention.
  • a sealing precursor layer 40 is formed instead of the film 35 on which the sealing adhesive layer (or sealing adhesive layer) 30 used in the first embodiment is formed.
  • the sealing precursor layer 40 is cured to form a sealing layer 41, and the electrophoretic ink layer 25 is sealed. It differs only in that it is configured by peeling from the sealing layer 41, and each configuration of the substrate material 10, the electrode surface 11, the partition wall 15, the cellular structure 20, and the electrophoretic ink (layer) 25, and FIG.
  • the electrophoretic display sheet B according to the second embodiment includes a light transmissive electrode surface 11 formed on a light transmissive substrate material 10, and the light transmissive electrode.
  • a sealing precursor that is a precursor material that is disposed so as to face the electrode surface 11 filled with the electrophoretic ink 25 and seals the electrophoretic ink 25.
  • the sealing precursor layer 40 is cured to form the sealing layer 41 and seal the electrophoretic ink layer 20.
  • the target electrophoretic display sheet B can be obtained by peeling the film 45 from the sealing layer 41.
  • the sealing precursor layer 40 the sealing layer 41 is formed by curing, and is particularly limited as long as the electrophoretic ink can be sealed by curing to the extent that the electrophoretic ink does not leak from the cell.
  • UV curable resins such as epoxy acrylate, urethane acrylate, urethane, thermosetting resins such as phenol resin, urea resin, melamine resin, unsaturated polyester resin, epoxy resin, polyurethane resin, two-component urethane, etc.
  • thermosetting resins such as phenol resin, urea resin, melamine resin, unsaturated polyester resin, epoxy resin, polyurethane resin, two-component urethane, etc.
  • Various materials such as a two-component curable resin, a moisture curable resin such as a moisture curable urethane resin, and a catalyst curable resin such as epoxy and isocyanate can be used.
  • the material solution of the sealing precursor dissolved in the solvent it is possible to remove the excess solvent and use it.
  • alkyl quaternary ammonium salts such as tetrabutylammonium hydrogen sulfate (TBAHS) and tetrabutylammonium hexafluorophosphate (TBAHP), fine particle barium titanate, strontium titanate and the like, It can also be configured by adjusting the volume resistivity.
  • TSAHS tetrabutylammonium hydrogen sulfate
  • TSAHP tetrabutylammonium hexafluorophosphate
  • the above-described materials are suitably combined to form a sealing precursor layer 40 having a volume resistivity of 10 8 to 10 14 ⁇ cm and a dielectric constant of 3 to 11.
  • the thickness of the sealing precursor layer 40 varies depending on the volume resistivity, the dielectric constant value, and the height of the electrophoretic ink layer to be used, but a sufficient voltage can be applied to the electrophoretic ink. In order to seal the electrophoretic ink, it is preferably 1 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m.
  • the film 45 to be used is a peeling film similar to that in the first embodiment, and the surface of PET, PE, paper or the like is coated with a silicone release agent, a fluorine release agent, or the like.
  • a release sheet, a release film, a release paper, or the like can be used, and is appropriately determined in combination with the sealing adhesive layer (or sealing adhesive layer) to be used.
  • a method of forming the sealing precursor layer 40 on the film for example, a method in which a liquid obtained by dissolving a polymer material in an organic solvent is applied using a coater, and then the excess solvent is removed, a monomer, A method of forming a polymer precursor material such as an oligomer by applying it on a film together with a catalyst, or after applying a photocurable material on a film and then irradiating it with a light to a semi-cured state (in the case of irradiation that is completely cured)
  • the present invention is not limited to these methods.
  • the sealing precursor layer 40 has such a viscosity and hardness that it does not dissolve or sink in the electrophoretic ink away from the film, and after curing, the electrophoretic ink is brought into contact with the partition wall and the cell is passed through the cell. It has a function of sealing inside. Therefore, the thickness, viscosity, tackiness, hardness, etc. of the sealing precursor layer are appropriately adjusted so as to have the above function.
  • a film 45 having a sealing precursor layer 40 of the above-described characteristics that is disposed so as to seal the electrophoretic ink 25 is bonded to the upper surface of each partition wall 15 on the substrate 10 on which the electrode 11 filled with the electrophoretic ink 25 is formed.
  • the sealing precursor layer 40 is pasted to the upper surface of each partition wall 15 by passing between rollers disposed opposite to each other.
  • the film 45 is peeled off as shown in FIG. An electrophoretic display medium sheet B can be obtained.
  • the electrophoretic ink has a specific gravity smaller than that of the sealing precursor material by bonding to the upper surface of each partition wall 15. Even if it exists, it becomes possible to seal, without sealing precursor material sinking from the surface.
  • an adhesive layer (or adhesive layer) 46 is formed on the outer surface of the sealing layer 32 of the obtained electrophoretic display sheet B as shown in FIG.
  • An electrophoretic display medium can be produced by bonding an electrode substrate (back plane) on which the above electrodes are formed, and an electrophoretic display device can be obtained by providing a control unit or the like. Since the adhesive layer (or adhesive layer) 46 is the same as that of the first embodiment, the description thereof is omitted. After the release film 45 of the obtained electrophoretic display medium sheet B is peeled off as shown in FIG. 12A, an adhesive layer (or adhesive layer) 46 is formed on the outer surface of the sealing layer 41.
  • an electrophoretic display medium can be manufactured by bonding a TFT substrate 60 serving as a backplane to an adhesive layer (or adhesive layer) 46. At this time, as an auxiliary of bonding, pressurization with a roller, heating, light irradiation, and the like can be performed together. Note that the use (use application, rewriting method, etc.) of the electrophoretic display medium is the same as in the first embodiment, and the description thereof is omitted.
  • electrophoretic display sheet B In the electrophoretic display sheet B according to the second embodiment of the present invention configured as described above, a high-quality electrophoretic display sheet excellent in durability, display characteristics, and productivity at low cost, and an electrophoretic display using the same A medium will be provided.
  • an electrophoretic display sheet B having a large area with excellent durability and display characteristics can be mass-produced roll-to-roll, and can be produced without matching the size of the backplane. It becomes possible to cut and use it easily if necessary.
  • the electrophoretic display device obtained from the electrophoretic display sheet B realizes high contrast display, and can display contrast with high reliability even during repeated display, and has excellent responsiveness and display. Deterioration of characteristics is extremely small.
  • FIGS. 13 to 15 are explanatory diagrams for explaining the third embodiment of the present invention.
  • the electrophoretic display sheet of the third embodiment includes a film 35 on which the sealing adhesive layer (or sealing adhesive layer) 30 used in the first embodiment is formed, and the sealing used in the second embodiment.
  • the sealing film 55 on which the adhesive layer 50 is formed is bonded to the electrophoretic ink layer 25, and then the electrophoretic ink layer 25 is cured by curing the adhesive layer 50.
  • the substrate material 10 the electrode surface 11, the partition wall 15, the cellular structure 20, the electrophoretic ink (layer) 25, and FIGS.
  • the electrophoretic display sheet C according to the third embodiment of the present invention includes a light-transmitting electrode surface 11 formed on a light-transmitting substrate material 10, and the light-transmitting surface.
  • a cell-like structure 20 composed of partition walls 15, 15... Of the insulating material, an electrophoretic ink (layer) 25 filled in the cell-like structure 20, and an adhesive layer 50 are formed on the electrode surface 11.
  • the sealing film 55 is made.
  • the adhesive layer 50 is not particularly limited as long as it can bond the partition wall 15 and the sealing film 55 and can be bonded to the sealing film by curing to such an extent that the electrophoretic ink does not leak from the cell.
  • polymers or polymer precursor materials such as polyurethane, nitrocellulose, cellulose acetate and the like are desirable.
  • alkyl quaternary ammonium salts such as tetrabutylammonium hydrogen sulfate (TBAHS) and tetrabutylammonium hexafluorophosphate (TBAHP), fine particles of barium titanate, strontium titanate, etc. It can also comprise by mix
  • various materials such as ultraviolet curable, thermoplastic, thermosetting, two-component curable, moisture curable, and catalyst curable can be used.
  • the adhesive layer 50 having a volume resistivity of 10 8 to 10 14 ⁇ cm and a dielectric constant of 3 to 11.
  • the thickness of the adhesive layer 50 varies depending on the volume resistivity of the electrophoretic ink to be used, the value of the dielectric constant, the height of the electrophoretic ink layer, and the thickness of the sealing film. In order to seal the electrophoretic ink by adhering the partition wall 15 and the sealing film 55, the thickness is preferably 1 to 10 ⁇ m, more preferably 1 to 5 ⁇ m.
  • the sealing film 55 it does not specifically limit as the sealing film 55 to be used, It is desirable to use the film material which consists of a high dielectric constant material and a low volume specific resistance material.
  • polymer films such as a polyvinylidene chloride film, a polyvinylidene fluoride film, a polyurethane film, a nitrocellulose film, a cellulose acetate film, can be mentioned.
  • a polyvinylidene fluoride simple substance film, a copolymer film having a vinylidene fluoride content ratio of 50% by mass or more, a polyurethane film, and the like are desirable.
  • plasticizers such as phthalate ester, adipate ester, citrate ester, phosphate ester, dibutyl sebacate (DBS), acetyltributyl citrate (ATBC) with suitable contents; epoxidized soybean oil Epoxy compounds such as epoxidized linseed oil, bisphenol A diglycidyl ether, epoxidized polybutadiene, epoxidized octyl stearate; antioxidants such as vitamin E, butylhydroxytoluene (BHT), alkyl thiodipropionate; pyrophosphoric acid Soda, sodium tripolyphosphate, disodium ethylenediaminetetraacetate (EDTA-2Na), tetrabutylammonium hydrogen sulfate (TBAHS), tetrabutylammonium hexafluorophosphate (
  • Thermal stabilization aids such as rutile quaternary ammonium salts, fine particles of barium titanate and strontium titanate, magnesium oxide, etc .; various light stabilizers; various lubricants; various colorants, flame retardants, UV absorbers, etc. Can be mentioned. Some of these additives may be added simultaneously with or during the polymerization of the vinylidene chloride copolymer. Preferably, each of the above materials is contained in the film in an amount of 1 to 30% by mass.
  • the thickness of the sealing film 55 varies depending on the volume resistivity, dielectric constant, electrophoretic ink layer height, and adhesive layer thickness of the electrophoretic ink to be used. Is preferably 1 to 20 ⁇ m, and more preferably 5 to 10 ⁇ m in order to seal the electrophoretic ink.
  • the sealing film 55 preferably has a volume resistivity of 10 8 to 10 14 ⁇ cm and a dielectric constant of 3 to 11.
  • a method for forming the adhesive layer 50 on the sealing film for example, a method in which a solution obtained by dissolving a polymer material in an organic solvent is applied using a coater, and then an excess solvent is removed, or a monomer or oligomer is formed. After the polymer precursor material is applied onto the sealing film together with the catalyst, the photocuring material is applied onto the film, and then irradiated with light to be in a semi-cured state (irradiation that can be completely cured).
  • the present invention is not limited to these methods. Further, two or more kinds of materials such as a combination of a thermoplastic material and a photocurable material, or a combination of a thermosetting material and a photocurable material can be mixed and used.
  • the adhesive layer 50 has a function of adhering the partition wall and the sealing film to seal the electrophoretic ink inside the cell, and does not dissolve or sink in the electrophoretic ink apart from the sealing film. It has properties. Therefore, the thickness, viscosity, tackiness, hardness, etc. of the adhesive layer are appropriately adjusted so as to have the above functions.
  • the adhesive layer 50 is bonded to the upper surface of each partition wall 15 by passing between rollers disposed opposite to each other, and then the adhesive layer 50
  • the electrophoretic display medium sheet C shown in FIG. 15 formed by sealing the electrophoretic ink layer 25 can be obtained.
  • pressurization with a roller, heating, light irradiation, and the like can be performed together.
  • the electrophoretic ink has a specific gravity smaller than that of the adhesive layer material by bonding to the upper surface of each partition wall 15.
  • the sealing adhesive layer material can be sealed without sinking from the surface.
  • an adhesive layer (or adhesive layer) 56 is formed on the outer surface of the sealing film layer 55 of the obtained electrophoretic display sheet C as shown in FIG.
  • An electrophoretic display medium can be produced by bonding an electrode substrate (backplane) on which electrodes are formed, and an electrophoretic display device can be obtained by providing a control unit or the like.
  • the adhesive layer (or adhesive layer) 56 is not particularly limited as long as it is a material that can be adhered (or adhered) to the backplane, for example.
  • a high dielectric constant, low volume resistivity material and Polymeric or polymeric precursor materials such as polyvinylidene fluoride, polyurethane, nitrocellulose, cellulose acetate are desirable.
  • alkyl quaternary ammonium salts such as tetrabutylammonium hydrogen sulfate (TBAHS) and tetrabutylammonium hexafluorophosphate (TBAHP), fine particles of barium titanate, titanium
  • TAAHS tetrabutylammonium hydrogen sulfate
  • TSAHP tetrabutylammonium hexafluorophosphate
  • fine particles of barium titanate titanium
  • titanium can also be configured by blending strontium acid or the like at a predetermined ratio.
  • the material can be constituted by blending various materials such as ultraviolet curable, thermoplastic, thermosetting, two-component curable, moisture curable, and catalyst curable at a predetermined ratio.
  • the thickness of the adhesive layer (or adhesive layer) 56 is preferably 1 to 10 ⁇ m, more preferably 1 to 5 ⁇ m.
  • a TFT substrate, a segment substrate, a solid substrate, etc. various electrode substrates conventionally used in electronic paper and electrophoretic display devices can be mentioned.
  • FIG. 15 shows an example in which an adhesive (or adhesive layer) 56 is formed on the outer surface of the sealing film 55 of the obtained electrophoretic display medium sheet C, and then, for example, the TFT substrate 60 serving as a backplane is attached to the adhesive layer (or adhesive layer).
  • the electrophoretic display medium can be manufactured by being attached to 56.
  • a high-quality electrophoretic display sheet having excellent durability, display characteristics, and productivity at low cost, and an electrophoretic display using the same A medium will be provided.
  • a large area electrophoretic display sheet having excellent durability and display characteristics can be produced in a roll-to-roll manner, and can be produced without matching the size of the backplane. It can be cut and used easily according to the conditions.
  • the electrophoretic display device obtained from this electrophoretic display sheet can realize high contrast display, and can display contrast with high reliability even during repeated display, excellent response, and display characteristics. Deterioration of the product becomes extremely small.
  • Example 1 Through the following steps, an electrophoretic display sheet and an electrophoretic display medium were obtained.
  • a 125 ⁇ m-thick PET sheet (10 ⁇ m) formed with an ITO film, which is a transparent material, having a surface resistance of about 300 ⁇ / ⁇ as an electrode substrate ⁇ 10 cm) was used.
  • An acrylic UV curable resin material is applied on the first electrode substrate so as to have a thickness of 40 ⁇ m, and then exposed to UV and developed to form a plurality of grid-like cells (insulating high-density cells). And a cell size of 300 ⁇ 300 ⁇ m) was formed.
  • Step of filling the cell with electrophoretic ink Composition of electrophoretic ink used: Normal dodecane 75% by mass, titanium oxide particles [volume average particle diameter when measured with Microtrack (manufactured by Nikkiso Co., Ltd.): 10% by mass, carbon black-containing acrylic particles (magnified image taken with an electron microscope (Average particle diameter when image analysis (converted into area circle) by Mountec Co., Ltd.): about 6 ⁇ m) 10% by mass, 3% by mass of hydroxyethylamine, 2% by mass of sorbitan trioleate.
  • the electrophoretic ink was filled into the cell using a coater.
  • Bubbles were not mixed in the display area of the obtained electrophoretic display sheet, and the distance between the electrode and the film having the sealing adhesive layer (or sealing adhesive layer) was uniform. Further, a backplane (0.7 mm glass substrate on which an ITO solid electrode was formed) was bonded to the obtained electrophoretic display sheet, and ultraviolet rays were irradiated from the backplane side to cure the ultraviolet curable urethane acrylate resin. . Thereafter, it was confirmed that high contrast monochrome display was possible by alternately applying +50 v and ⁇ 50 v voltages between the two electrodes. Furthermore, when the obtained electrophoretic display medium was evaluated for display performance after being allowed to stand for 1 month at 50 ° C. under dry conditions, an electrophoretic display in which the display characteristics did not change from the initial state and display performance was very difficult to deteriorate. A medium was obtained. In addition, no bubble was observed in the cell.
  • Example 2 In Example 1 described above, a gap of about 5 ⁇ m was formed at the intersection of the insulating partition walls.
  • Example 3 In Example 1 above, the composition of the electrophoretic ink used was 78% by mass of normal decane, and titanium oxide-containing polyethylene particles (when the image magnified by an electron microscope was image-analyzed (converted into area circles) with McView (manufactured by Mountec) (Average particle size: about 15 ⁇ m) 10% by mass, carbon black-containing acrylic particles (average particle size: about 15 ⁇ m when an image magnified with an electron microscope is image-analyzed (converted into area circles) with Mac View (manufactured by Mountec) The composition was 10% by mass and 2% by mass of sorbitan trioleate, and a gap of about 10 ⁇ m was formed at the intersection of the insulating partition walls.
  • Example 4 In Example 1 above, a thermoplastic polyurethane resin was used as the sealing adhesive layer (or sealing adhesive layer). Specifically, a thermoplastic polyurethane resin is applied on a polyethylene release film so as to have a thickness of 8 ⁇ m, and is heated when bonded with a roller, and also when bonded with a backplane. An electrophoretic sheet and an electrophoretic medium were prepared.
  • Example 5 Through the following steps, an electrophoretic display sheet and an electrophoretic display medium were obtained.
  • An acrylic UV curable resin material is applied on the first electrode substrate so as to have a thickness of 40 ⁇ m, and then exposed to UV and developed to form a plurality of grid-like cells (insulating high-density cells). And a cell size of 300 ⁇ 300 ⁇ m) was formed.
  • Step of filling electrophoretic ink into cell Composition of electrophoretic ink used The electrophoretic ink having the same composition as in Example 1 was filled into the cell using a coater. 3) The process of bonding together the electrophoretic display sheet on which the backplane and the sealing layer are formed As the sealing precursor layer, a dispersion of an ultraviolet curable urethane oligomer whose viscosity is adjusted with purified water (including a photocuring initiator) was coated on a 70 ⁇ m thick PET film (10 ⁇ 10 cm), and then the water was removed to form a thickness of 8 ⁇ m.
  • purified water including a photocuring initiator
  • the film having the sealing precursor layer After aligning one end of the film having the sealing precursor layer to the electrode substrate filled with the electrophoretic ink, it is bonded by passing between rollers placed opposite to each other, and irradiated with ultraviolet rays from the PET film side.
  • the ultraviolet curable urethane resin was cured to form a sealing layer, and the PET film was peeled off to obtain an electrophoretic display sheet.
  • Bubbles were not mixed in the display area of the obtained electrophoretic display sheet, and the distance between the electrode and the sealing layer was uniform. Further, a urethane hot melt layer having a thickness of 5 ⁇ m is formed as an adhesive layer (or adhesive layer) on the outer surface of the sealing layer of the obtained electrophoretic display sheet, and a backplane (ITO) is formed on the adhesive layer (or adhesive layer).
  • the 125 ⁇ m PET substrate on which the solid electrode was formed was heated to 80 ° C. and thermally laminated. Thereafter, it was confirmed that high contrast monochrome display was possible by alternately applying +50 V and ⁇ 50 V voltages between the two electrodes.
  • Example 6 In Example 5 described above, a gap of about 5 ⁇ m was formed at the portion where the insulating partition walls intersect.
  • Example 7 In Example 5, the composition of the electrophoretic ink was changed in the same manner as in Example 3, and a gap of about 10 ⁇ m was formed at the portion where the insulating partition walls intersected.
  • Example 8 Through the following steps, an electrophoretic display sheet and an electrophoretic display medium were obtained.
  • a 125 ⁇ m-thick PET sheet (10 ⁇ m) formed with an ITO film, which is a transparent material, having a surface resistance of about 300 ⁇ / ⁇ as an electrode substrate ⁇ 10 cm) was used.
  • An acrylic UV curable resin material is applied on the first electrode substrate so as to have a thickness of 40 ⁇ m, and then exposed to UV and developed to form a plurality of grid-like cells (insulating high-density cells). And a cell size of 300 ⁇ 300 ⁇ m) was formed.
  • Step of filling electrophoretic ink into cell Composition of electrophoretic ink used The electrophoretic ink having the same composition as in Example 1 was filled into the cell using a coater. 3) The process of bonding the sealing film which has an adhesive layer As an adhesive layer, the ultraviolet curable urethane acrylate resin which adjusted the viscosity on the 10 micrometer-thick polyvinylidene fluoride film (10x10 cm) used as a sealing film After coating, it was formed to a thickness of 5 ⁇ m.
  • the sealing film having an adhesive layer After aligning one end of the sealing film having an adhesive layer to the electrode substrate filled with the electrophoretic ink, it is bonded by passing between rollers placed opposite to each other, and irradiated with ultraviolet rays from the polyvinylidene fluoride film side. Then, the ultraviolet curable urethane acrylate resin was cured to obtain an electrophoretic display sheet.
  • Bubbles were not mixed in the display area of the obtained electrophoretic display sheet, and the distance between the electrode and the sealing film having the adhesive layer was uniform. Further, a urethane hot melt layer having a thickness of 5 ⁇ m is formed as an adhesive layer (or adhesive layer) on the outer surface of the sealing film of the obtained electrophoretic display sheet, and a backplane (ITO) is formed on the adhesive layer (or adhesive layer).
  • the 125 ⁇ m PET substrate on which the solid electrode was formed was heated to 80 ° C. and thermally laminated. Thereafter, it was confirmed that high contrast monochrome display was possible by alternately applying +50 V and ⁇ 50 V voltages between the two electrodes.
  • Example 9 In the above Example 8, the composition of the electrophoretic ink was changed in the same manner as in Example 3, and a gap of about 10 ⁇ m was formed at the portion where the insulating partition walls intersect.
  • Example 10 In Example 8 above, a thermoplastic polyurethane resin was used as the adhesive layer. Specifically, an electrophoretic display sheet is produced by applying a thermoplastic polyurethane resin on a polyvinylidene fluoride film as a sealing film so as to have a thickness of 5 ⁇ m, and heating the laminated film with a roller. The configuration.
  • the electrophoretic display sheet of the present invention and the electrophoretic display medium using the same include electronic paper such as electronic books and electronic newspapers, billboards such as signboards, posters, and blackboards, electronic price tags, electronic shelf labels, electronic advertisements, and mobile devices. It can use suitably for uses, such as a display part.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

The purpose of the present invention is to provide the following: a low-cost, high-quality electrophoretic display sheet that is highly durable, exhibits excellent display characteristics, and can be produced with high yield; and an electrophoretic display medium using said electrophoretic display sheet. This electrophoretic display sheet (A) can be obtained, for example, by: using diving walls (15) comprising an insulating material to form a cell structure (20) on a light-transmitting electrode surface (11) formed on a light-transmitting substrate material (10); filling said cell structure (20) with an electrophoretic ink (25); and bonding a film (35) on which an adhesive sealing layer or pressure-sensitive adhesive sealing layer (30) is formed to the top surface of the cell structure (20).

Description

電気泳動表示シート及びこれを用いた電気泳動表示媒体Electrophoretic display sheet and electrophoretic display medium using the same
 本発明は、電気泳動表示シート及びこれを用いた電気泳動表示媒体に関する。 The present invention relates to an electrophoretic display sheet and an electrophoretic display medium using the same.
 近年、表示ディスプレイの低消費電力化、薄型軽量化、フレキシブル化等の需要が増してきており、その一つとして電子ペーパーに注目が集まってきている。このような電子ペーパーの一つとして電気泳動インク等を用いた電気泳動表示装置が知られている。 In recent years, there has been an increasing demand for display devices with low power consumption, thin and light weight, flexibility, etc. As one of them, electronic paper is attracting attention. An electrophoretic display device using electrophoretic ink or the like is known as one of such electronic papers.
 一般に、電気泳動表示装置は、少なくとも一方が透明な2枚の電極基板を対向するように配置させ、対向配置した電極間に電気泳動インクを設け、表示パネルとした構成となっている。そして、この表示パネルに電界を印加することにより透明電極面に表示を得ようとするものである。
 この電気泳動表示装置は、電界の向きを制御することにより、電気泳動インク中の電気泳動粒子を移動させて、所望の表示を得ることができるものであり、低コストで、視野角が通常の印刷物並みに広く、消費電力が小さく、表示のメモリ性を有する等の長所を持っている。
In general, an electrophoretic display device has a configuration in which two electrode substrates, at least one of which is transparent, are arranged to face each other, and an electrophoretic ink is provided between the electrodes arranged to face each other to form a display panel. A display is obtained on the transparent electrode surface by applying an electric field to the display panel.
This electrophoretic display device can obtain a desired display by moving the electrophoretic particles in the electrophoretic ink by controlling the direction of the electric field. It has the advantages of being as wide as printed materials, consuming less power, and having memory properties for display.
 このような電気泳動表示装置において、電気泳動表示シート(フロントプレーン)を用いるものでは、該電気泳動表示シートを各種の電極基板(バックプレーン)に貼り付けた電気泳動表示装置が知られている。用いる電気泳動表示シートは、バックプレーン(TFT、セグメント基板等)に直接隔壁(リブ)を形成する必要がなく、また、様々なバックプレーンと任意に組み合わせて用いることができ、更に、大面積、ロール・ツー・ロールでの大量生産が可能となり、バックプレーンのサイズに合わせることなく生産でき、必要に応じてカットして使用することも可能となるものである。この電気泳動表示シートは、光透過性の基板材料に形成された光透過性の電極面上に、電気泳動インク層が形成された構成となっている。 In such an electrophoretic display device, an electrophoretic display device using an electrophoretic display sheet (front plane) is known in which the electrophoretic display sheet is attached to various electrode substrates (back planes). The electrophoretic display sheet used does not need to form partition walls (ribs) directly on the backplane (TFT, segment substrate, etc.), and can be used in any combination with various backplanes. It can be mass-produced on a roll-to-roll basis, can be produced without matching the size of the backplane, and can be cut and used as needed. This electrophoretic display sheet has a configuration in which an electrophoretic ink layer is formed on a light-transmitting electrode surface formed on a light-transmitting substrate material.
 このような構造となる電気泳動表示装置において、例えば、電気泳動ディスプレイを製造するための封止方法であって、a)マイクロカップのアレイに電気泳動流体を充填すること;b)セル内に収容される電気泳動流体と非混和性であり、電気泳動流体の比重より小さい比重を示す溶媒または溶媒混合物と、熱可塑性エラストマーとを含む封止組成物(封止液)により電気泳動流体をオーバーコートすること;およびc)封止層を形成するように封止組成物(封止液)を乾燥させることを含む方法(例えば、特許文献1参照)が知られている。
 しかしながら、この製造方法では、封止液を塗布またはスプレーなどのオーバーコート後に硬化しているが、電気泳動流体が封止組成物よりも低比重の場合には封止液を硬化する前に表面から沈んでしまい封止できないなどの課題がある。
In an electrophoretic display device having such a structure, for example, a sealing method for manufacturing an electrophoretic display, in which a) filling an array of microcups with an electrophoretic fluid; b) accommodating in a cell The electrophoretic fluid is overcoated with a sealing composition (sealing liquid) that contains a thermoplastic elastomer and a solvent or solvent mixture that is immiscible with the electrophoretic fluid and has a specific gravity lower than that of the electrophoretic fluid. And c) a method including drying a sealing composition (sealing liquid) so as to form a sealing layer is known (see, for example, Patent Document 1).
However, in this manufacturing method, the sealing liquid is cured after overcoating such as application or spraying. However, when the electrophoretic fluid has a lower specific gravity than the sealing composition, the surface is cured before the sealing liquid is cured. There is a problem that it cannot be sealed because it sinks.
 一方、成形精度に優れ、製造コストが安く隔壁を形成することができ、濃度ムラの小さく、解像度が高く高画質な画像表示媒体の製造方法を提供するために、少なくとも2枚の対向した基板と、前記基板間に設けられる隔壁とを有する画像表示媒体の製造方法であって、前記隔壁断面における、画像表示側の端部幅aと、前記画像表示側とは反対側の端部幅bと、の比率(a/b)が0.8以下となるように、隔壁を一体成形する工程を含むことを特徴とする画像表示媒体の製造方法(例えば、特許文献2参照)が知られている。
 この製造方法は、少なくとも2枚の対向した基板間に設けられる隔壁の画像表示側の端部幅aと端部幅bとの比率(a/b)を0.8以下とすることにより、隔壁の端部幅を画像表示側(前面板側)に向けて狭くして画像表示側の開口率の確保と隔壁としての強度を確保するものであるのに対して、本発明では、バックプレーンとなるTFT、セグメント基板等の各種の電極基板に直接隔壁を形成することなく、電気泳動表示シート(フロントプレーン)をバックプレーンに貼り付けものであり、隔壁の端部幅を画像表示側とは反対側となる背面板側に向けて狭くして電気泳動インクの封止性を更に向上させるものであり、両者の技術思想(構成及びその作用効果)は相違するものである。
On the other hand, in order to provide a manufacturing method of an image display medium with excellent molding accuracy, low manufacturing cost, low density unevenness, high density, high resolution, and at least two opposing substrates, A method of manufacturing an image display medium having a partition wall provided between the substrates, wherein an end width a on the image display side and an end width b on the opposite side of the image display side in the cross section of the partition wall There is known a method for manufacturing an image display medium (see, for example, Patent Document 2), which includes a step of integrally forming a partition so that the ratio (a / b) is 0.8 or less. .
In this manufacturing method, the ratio (a / b) between the end width a and the end width b on the image display side of the partition provided between at least two opposing substrates is set to 0.8 or less. In the present invention, the width of the end portion is narrowed toward the image display side (front plate side) to ensure the aperture ratio on the image display side and the strength as a partition wall. The electrophoretic display sheet (front plane) is affixed to the back plane without directly forming partition walls on various electrode substrates such as TFT and segment substrates, and the end width of the partition walls is opposite to the image display side. It is narrowed toward the back plate side, which is the side, to further improve the sealing performance of the electrophoretic ink, and the technical ideas (configuration and operational effects) of both are different.
特表2005-509690号公報(特許請求の範囲、実施例、図4、図5等)JP 2005-509690A (Claims, Examples, FIG. 4, FIG. 5 etc.) 特開2003-208107号公報(特許請求の範囲、実施例、図1、図7等)Japanese Unexamined Patent Publication No. 2003-208107 (Claims, Examples, FIG. 1, FIG. 7, etc.)
 本発明は、上記従来技術の課題に鑑み、これを解消しようとするものであり、低コストで耐久性や表示特性、生産性に優れる高品質の電気泳動表示シート及びこれを用いた電気泳動表示媒体を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems of the prior art, and is intended to solve this problem. A high-quality electrophoretic display sheet excellent in durability, display characteristics, and productivity at low cost, and electrophoretic display using the same The purpose is to provide a medium.
 本発明者は、上記従来の課題等を解決するために鋭意検討した結果、光透過性の基板材料に形成された光透過性の電極面に、絶縁性材料の隔壁によって構成されるセル状構造体を形成し、該セル状構造体内部に電気泳動インクを充填し、特定構造のフィルムを上記電気泳動インク層に貼合することにより、上記目的の電気泳動表示シートが得られることを見出し、また、この電気泳動表示シートを用いて、これを任意の基板に積層することで上記目的の電気泳動表示媒体が得られることを見出し、本発明を完成するに至ったのである。 As a result of intensive studies to solve the above-described conventional problems, the inventor of the present invention has a cell-like structure configured by partition walls made of an insulating material on a light-transmitting electrode surface formed on a light-transmitting substrate material. Forming the body, filling the inside of the cellular structure with the electrophoretic ink, and bonding the film having a specific structure to the electrophoretic ink layer, it is found that the target electrophoretic display sheet can be obtained, Further, the inventors have found that the electrophoretic display medium can be obtained by laminating the electrophoretic display sheet on an arbitrary substrate, and the present invention has been completed.
 すなわち、本発明は、次の(1)~(16)に存する。
(1) 光透過性の基板材料に形成された光透過性の電極面に、絶縁性材料の隔壁によって構成されるセル状構造体を形成し、該セル状構造体内部に電気泳動インクを充填し、封止接着層又は封止粘着層が形成されたフィルムを上記電気泳動インク層に貼合することを特徴とする電気泳動表示シート。
(2) 絶縁性材料の隔壁は、光透過性の電極面側から封止接着層又は封止粘着層に向けて、隔壁の短軸の幅が狭くなっていくことを特徴とする上記(1)に記載の電気泳動表示シート。
(3) 封止接着層又は封止粘着層側の隔壁の短軸の幅が、電気泳動インク層に含有する電気泳動粒子の少なくとも一方の粒子径よりも小さいことを特徴とする上記(2)に記載の電気泳動表示シート。
(4) 絶縁性材料の隔壁には、少なくとも一方の粒子径よりも小さな隙間が形成されていることを特徴とする上記(1)~(3)の何れか一つに記載の電気泳動表示シート。
(5) 光透過性の基板材料に形成された光透過性の電極面に、絶縁性材料の隔壁によって構成されるセル状構造体を形成し、該セル状構造体内部に電気泳動インクを充填し、封止前駆体層が形成されたフィルムを上記電気泳動インク層に貼合した後、該封止前駆体層を硬化させることにより封止層を形成して電気泳動インク層を封止した後、上記フィルムを封止層から剥離することを特徴とする電気泳動表示シート。
(6) 絶縁性材料の隔壁は、光透過性の電極面側から封止層に向けて、隔壁の短軸の幅が狭くなっていくことを特徴とする上記(5)に記載の電気泳動表示シート。
(7) 封止着層側の隔壁の短軸の幅が、電気泳動インク層に含有する電気泳動粒子の少なくとも一方の粒子径よりも小さいことを特徴とする上記(6)に記載の電気泳動表示シート。
(8) 絶縁性材料の隔壁には、少なくとも一方の粒子径よりも小さな隙間が形成されていることを特徴とする上記(5)~(7)の何れか一つに記載の電気泳動表示シート。
(9) 更に、電気泳動表示シートの封止層の外面に接着層又は粘着層を形成したことを特徴とする上記(5)~(8)の何れか一つに記載の電気泳動表示シート。
(10) 光透過性の基板材料に形成された光透過性の電極面に、絶縁性材料の隔壁によって構成されるセル状構造体を形成し、該セル状構造体内部に電気泳動インクを充填し、接着層が形成された封止フィルムを上記電気泳動インク層に貼合した後、該接着層を硬化させることにより電気泳動インク層が封止されていることを特徴とする電気泳動表示シート。
(11) 絶縁性材料の隔壁は、光透過性の電極面側から封止フィルム側に向けて、隔壁の短軸の幅が狭くなっていくことを特徴とする上記(10)に記載の電気泳動表示シート。
(12) 封止着層側の隔壁の短軸の幅が、電気泳動インク層に含有する電気泳動粒子の少なくとも一方の粒子径よりも小さいことを特徴とする上記(11)に記載の電気泳動表示シート。
(13) 絶縁性材料の隔壁には、少なくとも一方の粒子径よりも小さな隙間が形成されていることを特徴とする上記(10)~(12)の何れか一つに記載の電気泳動表示シート。
(14) 更に、電気泳動表示シートの封止層の外面に接着層又は粘着層を形成したことを特徴とする上記(10)~(13)の何れか一つに記載の電気泳動表示シート。
(15) 一以上の電極が形成された基板上に、上記(1)~(4)の何れか一つに記載の電気泳動表示シートのフィルムを剥離して貼合することによって形成されることを特徴とする電気泳動表示媒体。
(16) 一以上の電極が形成された基板上に、上記(9)又は(14)に記載の電気泳動表示シートが接着層又は粘着層を介して貼合されたことを特徴とする電気泳動表示媒体。
That is, the present invention resides in the following (1) to (16).
(1) A cellular structure composed of partition walls made of an insulating material is formed on a transparent electrode surface formed on a transparent substrate material, and electrophoretic ink is filled in the cellular structure. An electrophoretic display sheet, wherein a film on which a sealing adhesive layer or a sealing adhesive layer is formed is bonded to the electrophoretic ink layer.
(2) The partition wall of the insulating material is characterized in that the width of the short axis of the partition wall decreases from the light-transmitting electrode surface side toward the sealing adhesive layer or the sealing adhesive layer (1 ) The electrophoretic display sheet described in the above.
(3) The width of the short axis of the partition wall on the side of the sealing adhesive layer or the sealing adhesive layer is smaller than the particle diameter of at least one of the electrophoretic particles contained in the electrophoretic ink layer. The electrophoretic display sheet described in 1.
(4) The electrophoretic display sheet according to any one of (1) to (3) above, wherein a gap smaller than at least one of the particle diameters is formed in the partition wall of the insulating material. .
(5) A cellular structure composed of partition walls made of an insulating material is formed on a transparent electrode surface formed on a transparent substrate material, and electrophoretic ink is filled in the cellular structure. Then, after the film on which the sealing precursor layer was formed was bonded to the electrophoretic ink layer, the sealing precursor layer was cured to form a sealing layer, thereby sealing the electrophoretic ink layer. Then, the electrophoretic display sheet, wherein the film is peeled from the sealing layer.
(6) The electrophoresis according to (5), wherein the partition wall of the insulating material has a width of a short axis of the partition wall becoming narrower from the light-transmitting electrode surface side toward the sealing layer. Display sheet.
(7) The electrophoresis according to (6), wherein the width of the minor axis of the partition wall on the sealing adhesion layer side is smaller than the particle diameter of at least one of the electrophoretic particles contained in the electrophoretic ink layer. Display sheet.
(8) The electrophoretic display sheet according to any one of (5) to (7) above, wherein a gap smaller than at least one of the particle diameters is formed in the partition wall of the insulating material. .
(9) The electrophoretic display sheet according to any one of the above (5) to (8), wherein an adhesive layer or an adhesive layer is further formed on the outer surface of the sealing layer of the electrophoretic display sheet.
(10) A cellular structure composed of partition walls made of an insulating material is formed on a light transmissive electrode surface formed on a light transmissive substrate material, and electrophoretic ink is filled into the cellular structure. An electrophoretic display sheet, wherein the electrophoretic ink layer is sealed by bonding the sealing film on which the adhesive layer is formed to the electrophoretic ink layer and then curing the adhesive layer. .
(11) The electric barrier according to (10), wherein the partition wall of the insulating material has a width of a short axis of the partition wall becoming narrower from the light-transmitting electrode surface side toward the sealing film side. Electrophoresis display sheet.
(12) The electrophoresis according to (11) above, wherein the width of the short axis of the partition wall on the sealing layer side is smaller than the particle diameter of at least one of the electrophoretic particles contained in the electrophoretic ink layer. Display sheet.
(13) The electrophoretic display sheet according to any one of (10) to (12) above, wherein a gap smaller than at least one of the particle diameters is formed in the partition wall of the insulating material. .
(14) The electrophoretic display sheet as described in any one of (10) to (13) above, wherein an adhesive layer or an adhesive layer is formed on the outer surface of the sealing layer of the electrophoretic display sheet.
(15) Formed by peeling and bonding the film of the electrophoretic display sheet according to any one of (1) to (4) above on a substrate on which one or more electrodes are formed. An electrophoretic display medium characterized by the above.
(16) Electrophoresis characterized in that the electrophoretic display sheet according to (9) or (14) is bonded via an adhesive layer or an adhesive layer on a substrate on which one or more electrodes are formed. Display medium.
 本発明によれば、低コストで耐久性や表示特性、生産性に優れる高品質の電気泳動表示シート及びこれを用いた電気泳動表示媒体が提供される。 According to the present invention, a high-quality electrophoretic display sheet having excellent durability, display characteristics, and productivity at low cost and an electrophoretic display medium using the same are provided.
(a)は本発明の一例となる第1実施形態を示す電気泳動表示シートの概略縦断面図、(b)は(a)の拡大概略縦断面図である。(A) is a schematic longitudinal cross-sectional view of the electrophoretic display sheet which shows 1st Embodiment used as an example of this invention, (b) is an expanded schematic longitudinal cross-sectional view of (a). (a)~(c)は、第1実施形態の電気泳動表示シートの製造工程を工程ごとに説明する概略図面である。(A)-(c) is a schematic drawing explaining the manufacturing process of the electrophoretic display sheet of 1st Embodiment for every process. (a)は、隔壁の短軸の幅が封止接着層(又は封止粘着層)側に向けて狭くなっている場合の説明図、(b)は隔壁の短軸の幅が封止接着層(又は封止粘着層)側に向けて狭くならない場合の説明図である。(A) is explanatory drawing in case the width | variety of the short axis of a partition is narrowing toward the sealing adhesive layer (or sealing adhesion layer) side, (b) is the width | variety of the short axis of a partition wall sealingly bonded. It is explanatory drawing in the case where it does not become narrow toward the layer (or sealing adhesion layer) side. (a)~(d)は、隔壁の短軸の各形状(縦断面形状)の他例を示す説明図である。(A)-(d) is explanatory drawing which shows the other example of each shape (vertical cross-sectional shape) of the short axis of a partition. (a)~(c)は、隔壁によって構成されるセル状構造体の一例(井桁状型)を示す部分平面図、部分正面図、部分斜視図である。(A) to (c) are a partial plan view, a partial front view, and a partial perspective view showing an example of a cellular structure (cross-girder type) constituted by partition walls. (a)~(c)は、隔壁によって構成されるセル状構造体の他例(六角形形状型)を示す部分平面図、部分正面図、部分斜視図である。(A) to (c) are a partial plan view, a partial front view, and a partial perspective view showing another example (hexagonal shape type) of a cellular structure constituted by partition walls. 隔壁によって構成されるセル状構造体(六角形形状型)を用いた電気泳動インク層の状態を説明する説明図である。It is explanatory drawing explaining the state of the electrophoretic ink layer using the cellular structure (hexagon shape type | mold) comprised by the partition. (a)及び(b)は、隔壁によって構成されるセル状構造体(六角形形状型、井桁状型)の各セルに連通孔を形成した状態を説明する説明図である。(A) And (b) is explanatory drawing explaining the state which formed the communicating hole in each cell of the cellular structure (hexagon shape type, cross-girder type) comprised by the partition. (a)は、電気泳動表示シートの剥離フィルムを剥離する状態を示す概略縦断面図、(b)は、電気泳動表示シートから剥離フィルムを剥離した状態で、バックプレーン(TFT、セグメント基板等)を貼合する状態を示す説明図である。(A) is a schematic longitudinal sectional view showing a state in which the release film of the electrophoretic display sheet is peeled off, and (b) is a state in which the release film is peeled off from the electrophoretic display sheet in the backplane (TFT, segment substrate, etc.) It is explanatory drawing which shows the state which bonds. (a)は本発明の第2実施形態の一例を示す電気泳動表示シートの概略縦断面図、(b)は(a)の拡大概略縦断面図である。(A) is a schematic longitudinal cross-sectional view of the electrophoretic display sheet which shows an example of 2nd Embodiment of this invention, (b) is an expanded schematic longitudinal cross-sectional view of (a). (a)~(d)は、本発明の第2実施形態の電気泳動表示シートの製造工程を各工程ごとに説明する概略図面である。(A)-(d) is a schematic drawing explaining the manufacturing process of the electrophoretic display sheet of 2nd Embodiment of this invention for every process. (a)は、本発明の第2実施形態の電気泳動表示シートの剥離フィルムを剥離する状態を示す概略縦断面図、(b)は、電気泳動表示シートから剥離フィルムを剥離した状態で、バックプレーン(TFT、セグメント基板等)を貼合する状態を示す説明図である。(A) is a schematic longitudinal cross-sectional view which shows the state which peels the peeling film of the electrophoretic display sheet of 2nd Embodiment of this invention, (b) is the state which peeled the peeling film from the electrophoretic display sheet, and back It is explanatory drawing which shows the state which bonds a plane (TFT, a segment board | substrate, etc.). (a)は本発明の第3実施形態の電気泳動表示シートの概略縦断面図、(b)は(a)の拡大概略縦断面図である。(A) is a schematic longitudinal cross-sectional view of the electrophoretic display sheet of 3rd Embodiment of this invention, (b) is an expansion schematic longitudinal cross-sectional view of (a). (a)~(c)は、本発明の第3実施形態の電気泳動表示シートの製造工程を各工程ごとに説明する概略図面である。(A)-(c) is a schematic drawing explaining the manufacturing process of the electrophoretic display sheet of 3rd Embodiment of this invention for every process. 本発明の第3実施形態の電気泳動表示シートの外面に形成した接着層又は粘着層を介して、バックプレーン(TFT、セグメント基板等)を貼合する状態を示す説明図である。It is explanatory drawing which shows the state which bonds a back plane (TFT, segment substrate, etc.) through the contact bonding layer or adhesion layer formed in the outer surface of the electrophoretic display sheet of 3rd Embodiment of this invention.
 以下に、図面を参照しつつ、本発明の各実施形態を詳細に説明する。なお、各図中、同一符号は同一又は同等の構成要素を表している。
 本発明において、各実施形態の電気泳動表示シートは、光透過性の基板材料に形成された光透過性の電極面に、絶縁性材料の隔壁によって構成されるセル状構造体を形成し、該セル状構造体内部に電気泳動インクを充填し、以下に詳述する、第1実施形態~第3実施形態となる各特定構造となるフィルムを上記電気泳動インク層に貼合することにより、各実施形態の電気泳動表示シートが構成されるものであり、また、電気泳動表示媒体は、一以上の電極が形成された基板上に、各実施形態の電気泳動表示シートのフィルムを剥離等して貼合することによって形成されるものである。
Embodiments of the present invention will be described below in detail with reference to the drawings. In each figure, the same numerals indicate the same or equivalent components.
In the present invention, the electrophoretic display sheet of each embodiment forms a cellular structure composed of partition walls of an insulating material on a light transmissive electrode surface formed on a light transmissive substrate material, Each cell structure is filled with an electrophoretic ink, and a film having a specific structure according to any one of the first to third embodiments, which will be described in detail below, is bonded to the electrophoretic ink layer. The electrophoretic display sheet of the embodiment is configured, and the electrophoretic display medium is formed by peeling the film of the electrophoretic display sheet of each embodiment on a substrate on which one or more electrodes are formed. It is formed by pasting.
(第1実施形態、図1~図9)
 図1~図9は、本発明の一例となる第1実施形態の説明図であり、図1は電気泳動表示シートの概略縦断面図とその拡大概略縦断面図であり、図2は、第1実施形態の電気泳動表示シートの製造工程を工程ごとに説明する概略図面である。
 本第1実施形態となる電気泳動表示シートAは、図1及び図2に示すように、光透過性の基板材料10に形成された光透過性の電極面11と、該光透過性の電極面11上に絶縁性材料の隔壁15、15…によって構成されるセル状構造体20と、該セル状構造体20に充填された電気泳動インク(層)25と、封止接着層(又は封止粘着層)30が形成されたフィルム35とを有している。
(First embodiment, FIGS. 1 to 9)
FIGS. 1 to 9 are explanatory views of a first embodiment as an example of the present invention. FIG. 1 is a schematic longitudinal sectional view and an enlarged schematic longitudinal sectional view of an electrophoretic display sheet. FIG. It is the schematic explaining the manufacturing process of the electrophoretic display sheet of one Embodiment for every process.
As shown in FIGS. 1 and 2, the electrophoretic display sheet A according to the first embodiment includes a light transmissive electrode surface 11 formed on a light transmissive substrate material 10 and the light transmissive electrode. A cellular structure 20 constituted by partition walls 15, 15... Of an insulating material on the surface 11, an electrophoretic ink (layer) 25 filled in the cellular structure 20, and a sealing adhesive layer (or sealing). And a film 35 on which an adhesive layer 30 is formed.
 光透過性の基板材料10は、光透過性を有するものであればよく、例えば、ガラス、石英、サファイア、MgO、LiF、CaF等の透明な無機材料、フッ素樹脂、ポリエステル、ポリカーボネート、ポリエチレン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等の有機高分子の樹脂フィルムまたはセラミック等を挙げることができる。
 好ましくは、ロール・ツー・ロールでの生産や大面積化のために、可撓性を有する樹脂フィルムを用いることが望ましい。
The light transmissive substrate material 10 may be any material as long as it has light transmissive properties, such as transparent inorganic materials such as glass, quartz, sapphire, MgO, LiF, and CaF 2 , fluororesin, polyester, polycarbonate, polyethylene, Examples thereof include resin films or ceramics of organic polymers such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN).
Preferably, it is desirable to use a flexible resin film for roll-to-roll production and large area.
 光透過性の電極面(電極層)11は、例えば、ITO、ZnO、SnO等の透明導電性材料や、アルミニウム(Al)、金(Au)、白金(Pt)、銅(Cu)、銀(Ag)、ニッケル(Ni)、クロム(Cr)等の金属を用いて形成することができる。また、PODET/PVSやPODET/PSSなどの導電性ポリマーや、酸化チタン系、酸化亜鉛系、酸化スズ系などの透明導電材料でも良い。これらの材料は、蒸着、イオンプレーティング、スパッタリング等の方法により形成することができる。 The light transmissive electrode surface (electrode layer) 11 is made of, for example, a transparent conductive material such as ITO, ZnO, SnO 2 , aluminum (Al), gold (Au), platinum (Pt), copper (Cu), silver It can be formed using a metal such as (Ag), nickel (Ni), or chromium (Cr). Further, conductive polymers such as PODET / PVS and PODET / PSS, and transparent conductive materials such as titanium oxide, zinc oxide, and tin oxide may be used. These materials can be formed by methods such as vapor deposition, ion plating, and sputtering.
 この光透過性の電極面11上に、図1及び図2(a)に示すように、絶縁性材料の隔壁15、15…によって構成されるセル状構造体20を形成する。例えば、一定の厚みを有するPETフィルムなどの絶縁性樹脂材料にレーザー加工して正方形や六角形、円形等の形状を形成し、電極面11上に接着することにより、セル状構造体20を形成することができる。また、電極面11上に光硬化性の絶縁層を形成した後、フォトリソグラフィ法を用いて当該絶縁層をパターニングすることにより、セル状構造体20を形成することができる。他にも、電極面11上に熱可塑性の絶縁性樹脂材料を形成し、ホットエンボスのような方法でセル状構造体20を形成することも可能である。なお、隔壁15は、その形状や目的から、スペーサー、柱、壁、リブ等と称される場合がある。 On the light transmissive electrode surface 11, as shown in FIG. 1 and FIG. 2A, a cellular structure 20 composed of partition walls 15, 15. For example, a cellular structure 20 is formed by laser processing an insulating resin material such as a PET film having a certain thickness to form a square, hexagon, circle, or the like and bonding it onto the electrode surface 11. can do. Moreover, after forming a photocurable insulating layer on the electrode surface 11, the cellular structure 20 can be formed by patterning the insulating layer using a photolithography method. In addition, it is also possible to form a cellular structure 20 by a method such as hot embossing by forming a thermoplastic insulating resin material on the electrode surface 11. In addition, the partition 15 may be called a spacer, a pillar, a wall, a rib, etc. from the shape and the objective.
 本発明において、絶縁性材料の隔壁15の形状は、光透過性の電極面11側から封止接着層(又は封止粘着層)30側に向けて、隔壁15の短軸の幅が狭くなっていく形状のものが好ましく、本実施形態では縦断面が三角形状(二等辺三角形状)となっている。
 更に好ましくは、封止接着層(又は封止粘着層)30側の隔壁15の短軸(頂部)の幅が、後述する電気泳動インク25に含有する電気泳動粒子の少なくとも一方の粒子径よりも小さいことが望ましい。具体的には、図3(a)に示すように、電気泳動インク充填の際に、電気泳動粒子が隔壁15の頂部15aの上に残らない幅となるように頂部15a側を狭くする。電気泳動インク充填の際に、図3(b)に示すように、電気泳動粒子が隔壁15の頂部15bの上に残る幅であると、封止接着層(又は封止粘着層)30との接着の障害となるので、電気泳動粒子の除去(クリーニング)が必要となるが、図3(a)に示すように、隔壁15の短軸(頂部)15aの幅が、用いる電気泳動粒子の少なくとも一方の粒子径よりも小さいこと、特に好ましくは、電気泳動粒子の最小の粒子径よりも小さくすることにより、電気泳動粒子の除去(クリーニング)を省略することができ、また、頂部15aが封止接着層(又は封止粘着層)30に食い込むものとなるので、製造時のズレが抑制でき、しかも接触面積を稼ぐこともできるので封止性に優れたものとなる。なお、図3中の26及び27は各電気泳動粒子を示し、26は黒粒子(カーボンブラック含有樹脂粒子)、27は白粒子(酸化チタン粒子)である。
In the present invention, the shape of the partition wall 15 made of an insulating material is such that the width of the short axis of the partition wall 15 decreases from the light-transmitting electrode surface 11 side toward the sealing adhesive layer (or sealing adhesive layer) 30 side. In this embodiment, the longitudinal section has a triangular shape (isosceles triangular shape).
More preferably, the width of the minor axis (top) of the partition wall 15 on the sealing adhesive layer (or sealing adhesive layer) 30 side is larger than the particle diameter of at least one of the electrophoretic particles contained in the electrophoretic ink 25 described later. Small is desirable. Specifically, as shown in FIG. 3A, the top 15a side is narrowed so that the electrophoretic particles do not remain on the top 15a of the partition wall 15 when the electrophoretic ink is filled. When the electrophoretic ink is filled, as shown in FIG. 3B, when the electrophoretic particles have a width that remains on the top portion 15b of the partition wall 15, the sealing adhesive layer (or sealing adhesive layer) 30 and The removal of the electrophoretic particles (cleaning) is necessary because it hinders adhesion, but as shown in FIG. 3A, the width of the short axis (top) 15a of the partition wall 15 is at least that of the electrophoretic particles used. Removal of the electrophoretic particles (cleaning) can be omitted by making the particle diameter smaller than one particle diameter, particularly preferably smaller than the minimum particle diameter of the electrophoretic particles, and the top portion 15a is sealed. Since it will bite into the adhesive layer (or sealing adhesive layer) 30, it is possible to suppress deviation during production and to increase the contact area, so that the sealing property is excellent. In FIG. 3, 26 and 27 indicate electrophoretic particles, 26 is black particles (carbon black-containing resin particles), and 27 is white particles (titanium oxide particles).
 この絶縁性材料の隔壁15の縦断面形状としては、隔壁15の短軸の幅が封止接着層(又は封止粘着層)30側に向けて狭くなっていく形状であればよく、例えば、図4(a)~(d)の各縦断面形状などが挙げられる。これらの各形状の場合も、各隔壁15の各頂部15aの幅が、用いる電気泳動粒子の少なくとも一方の粒子径よりも小さいこと、特に好ましくは、電気泳動粒子の最小の粒子径よりも小さくすることが望ましい。
 また、隔壁15の電極面11側の短軸の長さXとしては、図1(b)に示すように、電気泳動インク種、電気泳動表示媒体などにより変動するものであるが、表示面の開口率を十分に確保するために20μm以下とすることが好ましい。また、隔壁15の高さとしては、充填される電気泳動インク層20の高さY:20~40μmよりも若干高いものとすることが好ましい。
The vertical cross-sectional shape of the partition wall 15 made of this insulating material may be any shape as long as the width of the short axis of the partition wall 15 becomes narrower toward the sealing adhesive layer (or sealing adhesive layer) 30. Examples of the vertical cross-sectional shapes shown in FIGS. 4 (a) to 4 (d) are given. Also in each of these shapes, the width of each top portion 15a of each partition wall 15 is smaller than the particle diameter of at least one of the electrophoretic particles to be used, and particularly preferably smaller than the minimum particle diameter of the electrophoretic particles. It is desirable.
The length X of the minor axis on the electrode surface 11 side of the partition wall 15 varies depending on the type of electrophoretic ink, the electrophoretic display medium, etc., as shown in FIG. In order to ensure a sufficient aperture ratio, it is preferable to set it to 20 μm or less. The height of the partition wall 15 is preferably slightly higher than the height Y of the electrophoretic ink layer 20 to be filled: 20 to 40 μm.
 上記光透過性を有する電極面11上に立設した隔壁15、15…により複数の小部屋(セル16、16…)が形成されたセル状構造体20が構成される。これらのセル16は、隔壁15によりそれぞれ分離されており、円形、矩形(長方形、正方形)、六角形等の様々な形状で設けることができる。
 図5及び図6は、上述の縦断面が三角形状(二等辺三角形状)となる絶縁性材料の隔壁15、15…によって構成されるセル状構造体20の一例と他例を示すものであり、図5は井桁状型のセル状構造体20を示すものであり、図6は六角形形状型のセル状構造体20を示すものである。
A cellular structure 20 in which a plurality of small chambers ( cells 16, 16...) Are formed by partition walls 15, 15... Standing on the light-transmitting electrode surface 11. These cells 16 are separated from each other by a partition wall 15 and can be provided in various shapes such as a circle, a rectangle (rectangle, square), and a hexagon.
FIG. 5 and FIG. 6 show an example and other examples of the cellular structure 20 constituted by the partition walls 15, 15... Of an insulating material having the above-described longitudinal cross section having a triangular shape (isosceles triangular shape). FIG. 5 shows a cellular structure 20 of a cross-beam type, and FIG. 6 shows a cellular structure 20 of a hexagonal shape.
 上記電極面11上に形成されたセル状構造体20に、図2(b)に示すように、電気泳動インク25を充填する。この電気泳動インク25を充填する方法としては、例えば、ダイコーターなどによるコーティングや、電極基板の任意箇所に配した電気泳動インク25をバーコーター、ドクターブレード、コンマロールなど、略接触によって、塗り広げてもよいものであるし、スクリーン印刷などを用いた印刷法、あるいはインクジェットやディスペンサーによる充填など、セル内にインクを充填することが可能な方法であれば、各種方法を用いることができる。 The cellular structure 20 formed on the electrode surface 11 is filled with the electrophoretic ink 25 as shown in FIG. As a method of filling the electrophoretic ink 25, for example, coating with a die coater or the like, and the electrophoretic ink 25 disposed at an arbitrary position of the electrode substrate are spread by substantially contacting with a bar coater, a doctor blade, a comma roll, or the like. Any method can be used as long as it is a method that can fill the cells with ink, such as a printing method using screen printing or the like, or filling with an ink jet or a dispenser.
 用いる電気泳動インク25としては、特に限定されず、例えば、少なくとも、1種類以上の電気泳動粒子と溶剤などの溶媒とを含むものであれば良いものである。
 用いることができる電気泳動粒子としては、例えば、有色または無色(白色)の無機顔料粒子、有機顔料粒子、高分子微粒子等を用いることができ、これらは各単独(1種)又は2種以上を混合して用いることができる。また、親油性表面処理されている微粒子であってよいものである。
The electrophoretic ink 25 to be used is not particularly limited, and any electrophoretic ink that includes at least one type of electrophoretic particles and a solvent such as a solvent may be used.
As the electrophoretic particles that can be used, for example, colored or colorless (white) inorganic pigment particles, organic pigment particles, polymer fine particles, and the like can be used, and these can be used alone (one type) or two or more types. It can be used by mixing. Moreover, the fine particle by which the lipophilic surface treatment was carried out may be sufficient.
 用いることができる電気泳動インク25の一例としては、正に帯電した白粒子と、負に帯電した黒粒子と、これらの粒子を分散させる溶剤(溶媒)で形成することができる。白粒子としては、酸化チタン等の白色顔料や、白色の樹脂粒子、または白色に着色された樹脂粒子等を用いることができる。黒粒子としては、チタンブラック、カーボンブラック等の黒色顔料や、黒色に着色された樹脂粒子等を用いることができる。これら粒子は、コントラスト表示可能な範囲で様々な色の粒子を任意に用いることも可能であり、白と赤、白と青、黄色と黒などのような組合せとすることもできる。また、白粒子のみ又は黒粒子のみといった1種類の帯電粒子のみを用いる構成とすることもできる。
 これらの電気泳動粒子は、平均粒子径が0.05~20μmのものが用いられ、特に好ましくは、平均粒子径が0.1~10μmのものが望ましい。また、これらの微粒子の合計含有量は、電気泳動インク全量に対して、好ましくは、5~95質量%、更に好ましくは、10~80質量%とすることが望ましい。
 また、溶媒としては、例えば、炭化水素系、芳香族系、エステル系、ケトン系、テルペン系、アルコール系、シリコーン系、フッ素系等の溶剤を各単独又は2種類以上を混合して用いることができる。これらの溶媒の含有量としては、用いる電気泳動粒子や溶媒種に応じて適宜選択でき、電気泳動インク全量に対して、20~80%となるように含有することが好ましく、更に好ましくは、35~65%とすることが望ましい。
As an example of the electrophoretic ink 25 that can be used, it can be formed of positively charged white particles, negatively charged black particles, and a solvent (solvent) in which these particles are dispersed. As the white particles, white pigments such as titanium oxide, white resin particles, or resin particles colored in white can be used. As the black particles, black pigments such as titanium black and carbon black, resin particles colored in black, and the like can be used. These particles can be arbitrarily used in various colors as long as the contrast can be displayed, and can be a combination of white and red, white and blue, yellow and black, and the like. Alternatively, only one type of charged particle such as only white particles or only black particles may be used.
These electrophoretic particles have an average particle size of 0.05 to 20 μm, and particularly preferably an average particle size of 0.1 to 10 μm. The total content of these fine particles is preferably 5 to 95% by mass, more preferably 10 to 80% by mass, based on the total amount of electrophoretic ink.
In addition, as the solvent, for example, hydrocarbon-based, aromatic-based, ester-based, ketone-based, terpene-based, alcohol-based, silicone-based, and fluorine-based solvents may be used alone or in combination of two or more. it can. The content of these solvents can be appropriately selected according to the electrophoretic particles and solvent type to be used, and is preferably 20 to 80%, more preferably 35%, based on the total amount of electrophoretic ink. It is desirable to set it to ~ 65%.
 また、電気泳動インク25としては、1種類以上の電気泳動粒子と溶媒に、更に、分散剤、電荷制御剤とを含有しても良い。用いることができる分散剤としては、慣用的に用いられる各種の分散剤、界面活性剤や高分子界面活性剤、例えば、ノニオン系界面活性剤、アニオン系界面活性剤、カチオン系界面活性剤、両性系界面活性剤、高分子型界面活性剤などが挙げられるが、これらに限定されるものではない。これらの分散剤の含有量としては用いる電気泳動粒子や溶媒種によって適宜決定されるが、電気泳動インク全量に対して、0.01~50.0%となるように含有されることが好ましく、更に好ましくは、0.5~30%となるように含有することが望ましい。
 電荷制御剤としては、従来電気泳動インクに用いられている各種タイプのものを用いることができる。
The electrophoretic ink 25 may further contain a dispersant and a charge control agent in addition to one or more types of electrophoretic particles and a solvent. Examples of the dispersant that can be used include various commonly used dispersants, surfactants and polymer surfactants such as nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants. Examples thereof include, but are not limited to, system surfactants and polymer surfactants. The content of these dispersants is appropriately determined depending on the electrophoretic particles and solvent type to be used, but is preferably 0.01 to 50.0% with respect to the total amount of electrophoretic ink. More preferably, it is contained in an amount of 0.5 to 30%.
As the charge control agent, various types conventionally used for electrophoresis inks can be used.
 この電気泳動インク25を充填する際に、好ましくは、これらの基板10の表面に電気泳動インク25に対し、ぬれ性を向上させるぬれ性調整工程を付加してもよいものである。絶縁性の隔壁15からなる複数のセル16,16…の内壁や角部分等まで十分に電気泳動インク25を行き渡らせ、空気等の気体を絶縁性の隔壁15、15…からなる複数のセル16,16…内から追い出すために好ましい工程である。
 このぬれ性調整工程としては、例えば、溶剤処理、酸処理、アルカリ処理、オゾン処理、プラズマ処理、コロナ放電処理、UV処理、UVイトロ処理、レーザー処理、電子線による処理、イオン注入法による処理、イオンビームによる処理、イオン照射による処理、プライマー処理、界面活性剤処理、スパッタリングによる処理、(物理気相成長法)、CVD(化学気相成長法)、ポリマー層形成及び無機層形成を行う方法等が挙げられる。これらは複数組み合わせて用いることもできるし、これらに限定されるものでもない。
 また、基板表面の汚れを予め除去するために、溶剤による洗浄等の処理、例えば、アルコール類による洗浄等を組み合わせて行うことにより、より効果的にぬれ性の調整が可能となる。
When the electrophoretic ink 25 is filled, preferably, a wettability adjusting step for improving the wettability of the electrophoretic ink 25 may be added to the surface of the substrate 10. The electrophoretic ink 25 is sufficiently distributed to the inner walls and corners of the plurality of cells 16, 16... Composed of the insulating partition walls 15, and a gas such as air is supplied to the cells 16 composed of the insulation partition walls 15, 15. , 16... Is a preferred process for expelling from within.
As this wettability adjustment step, for example, solvent treatment, acid treatment, alkali treatment, ozone treatment, plasma treatment, corona discharge treatment, UV treatment, UV ittro treatment, laser treatment, treatment with electron beam, treatment by ion implantation method, Ion beam treatment, ion irradiation treatment, primer treatment, surfactant treatment, sputtering treatment, (physical vapor deposition), CVD (chemical vapor deposition), polymer layer formation and inorganic layer formation, etc. Is mentioned. These may be used in combination, and are not limited to these.
Further, in order to remove the contamination on the substrate surface in advance, the wettability can be adjusted more effectively by combining treatment such as washing with a solvent, for example, washing with alcohol.
 また、電気泳動インク25を充填する際、表示エリア内に空気等の気泡が極力入り込まない、若しくは残らないようにするために、充填前、充填時、又は充填後に、電気泳動インク25中に溶存している気体や巻き込まれている空気等を、十分に脱気して除去する(環境雰囲気を減圧環境とする)ことが好ましい。具体的には、充填工程を減圧環境下で行うか、塗布したのちに、減圧環境下で放置する。これにより、電気泳動インク25中の空隙や、セル内の空気と電気泳動インク25との置換が促進され、パネル内に気泡が残ってしまう可能性を低減でき、また、基板と後述する封止接着層(又は封止粘着層)30が形成されたフィルム35を貼り合わせた後(封止後)の当該間には気泡の混入が抑えられるものとなる。 Further, when filling the electrophoretic ink 25, it is dissolved in the electrophoretic ink 25 before filling, at the time of filling, or after filling so that bubbles such as air do not enter or remain in the display area as much as possible. It is preferable to sufficiently deaerate and remove the gas or the air that is entrained (the environmental atmosphere is a reduced pressure environment). Specifically, the filling step is performed in a reduced pressure environment or after being applied, it is left in a reduced pressure environment. This facilitates the replacement of the voids in the electrophoretic ink 25 and the air in the cells with the electrophoretic ink 25, thereby reducing the possibility of bubbles remaining in the panel. After the film 35 on which the adhesive layer (or sealing pressure-sensitive adhesive layer) 30 is formed is bonded (after sealing), air bubbles are prevented from being mixed.
 充填前の脱気の方法としては、例えば、電気泳動インク25を撹拌棒などで撹拌する方法、加温する方法、加温しつつ撹拌する方法、超音波による方法、減圧による方法、遠心力による方法、消泡剤等の添加剤添加による方法等が挙げられるが、これらに限定されるものではない。さらに、これらの方法を組み合わせて用いることも可能である。 As a method of deaeration before filling, for example, a method of stirring the electrophoretic ink 25 with a stirring rod, a method of heating, a method of stirring while warming, a method using ultrasonic waves, a method using reduced pressure, or a method using centrifugal force Examples thereof include a method and a method by adding additives such as an antifoaming agent, but are not limited thereto. Furthermore, these methods can be used in combination.
 本第1実施形態では、隔壁15、15…の上面を後述する封止接着層(又は封止粘着層)30が形成されたフィルム35で貼合するものであるため、上記脱気工程を行っても、貼合時の貼合荷重や温度変化により内部圧力が変化してセル状構造体20の分離された各セル16が減圧状態となり、図7に示すように、気泡(真空状態、溶媒飽和状態)17、17…が発生しやすくなる。そこで、図8(a)及び(b)に示すように、絶縁性材料の隔壁15、15…が交差する部分に、電気泳動インク25に含有される少なくとも一方の粒子径、特に好ましくは、電気泳動粒子の最小の粒子径よりも小さな隙間からなる連通孔18、18…を形成することが望ましい。電気泳動粒子は通り抜けできないが、溶媒は通り抜けできるような隙間からなる連通孔18、18…を形成することにより、各セル16の内部の局部的な圧力変化が、溶媒の移動により分散し均一に緩和され、気泡の発生がしにくくなり、表示特性の向上を図ることができるものとなる。また、上記隙間が、一方の粒子径より小さいが他方の粒子径よりも大きい場合、一方の大きい粒子が当該隙間を閉塞するため、表示に影響を及ぼすような小さい粒子の移動を起こすことはないものである。上記小さな隙間からなる連通孔は、絶縁性材料の隔壁15、15…が交差する部分に形成することが好ましいが、同様にして交差部分以外に小さな隙間からなる連通孔を設けることもできるものである。 In this 1st Embodiment, since the upper surface of the partition 15, 15 ... is bonded by the film 35 in which the sealing adhesive layer (or sealing adhesion layer) 30 mentioned later was formed, the said deaeration process is performed. However, the internal pressure changes due to the bonding load and temperature change at the time of bonding, and each cell 16 from which the cellular structure 20 is separated becomes a reduced pressure state. As shown in FIG. .. (Saturated state) 17, 17. Therefore, as shown in FIGS. 8A and 8B, at least one particle diameter contained in the electrophoretic ink 25, particularly preferably electric, is formed at a portion where the partition walls 15, 15. It is desirable to form communication holes 18, 18... Having gaps smaller than the minimum particle diameter of the migrating particles. Electrophoretic particles cannot pass through, but by forming communication holes 18, 18... With gaps that allow the solvent to pass through, local pressure changes inside each cell 16 are dispersed and evenly distributed by the movement of the solvent. It is alleviated, bubbles are less likely to be generated, and display characteristics can be improved. In addition, when the gap is smaller than one particle diameter but larger than the other particle diameter, one large particle closes the gap, so that the movement of small particles that affect display is not caused. Is. The communication hole made up of the small gap is preferably formed in a portion where the partition walls 15, 15... Of the insulating material intersect, but similarly, a communication hole made up of a small gap can be provided in addition to the crossed portion. is there.
 図8(a)は、隔壁15、15…によって構成されるセル状構造体(六角形形状型)20において、絶縁性材料の隔壁15、15…が交差する部分18、18…に、上記特性の隙間からなる連通孔18、18…を形成したものである。図8(b)は、隔壁15、15…によって構成されるセル状構造体(井桁形状型)20において、絶縁性材料の隔壁15、15…が交差する部分の一定の単位ごとに、上記特性の隙間からなる連通孔18、18…を形成したものである。 FIG. 8A shows a cell-like structure (hexagonal shape) 20 constituted by the partition walls 15, 15... At the portions 18, 18. Are formed with communication holes 18, 18. FIG. 8 (b) shows the above characteristics for each unit of a portion where the partition walls 15, 15 of the insulating material intersect in the cellular structure (cross-beam type) 20 constituted by the partition walls 15, 15,. Are formed with communication holes 18, 18.
 本第1実施形態では、図2(c)に示すように、前記電気泳動インク25を充填した電極面11に、対向配置され電気泳動インク25を封止する封止接着層(又は封止粘着層)30が形成されたフィルム35を各構造体15上面に貼り合わせることにより、目的の電気泳動表示シートAを得ることができる。
 封止接着層(又は封止粘着層)30としては、電気泳動インクがセル内から漏れ出さない程度に封止することが可能であり、かつ後述するバックプレーンとの接着(または粘着)が可能な材料であれば特に限定されるものではないが、例えば、高誘電率、低体積固有抵抗材料となるポリフッ化ビニリデン、ポリウレタン、ニトロセルロース、酢酸セルロースなどのポリマーまたはポリマーの前駆体材料が望ましい。また、上記ポリマーを基材ポリマーとして、さらに誘電率を上げるためにテトラブチルアンモニウムハイドロゲンサルフェート(TBAHS)、テトラブチルアンモニウムヘキサフルオロホスフェート(TBAHP)などのアルキル第4級アンモニウム塩、微粒子チタン酸バリウム、チタン酸ストロンチウムなどを所定の割合で配合することにより構成することもできる。さらに、上記材料としては、紫外線硬化性、熱可塑性、熱硬化性、2液硬化型、水分硬化型、触媒硬化型などの各種材料を用いることも可能である。
In the first embodiment, as shown in FIG. 2 (c), a sealing adhesive layer (or sealing adhesive) that is disposed opposite to the electrode surface 11 filled with the electrophoretic ink 25 and seals the electrophoretic ink 25. The target electrophoretic display sheet A can be obtained by bonding the film 35 on which the (layer) 30 is formed to the upper surface of each structure 15.
The sealing adhesive layer (or sealing adhesive layer) 30 can be sealed to the extent that electrophoretic ink does not leak from the cell, and can be bonded (or adhered) to the backplane described later. For example, a polymer or a polymer precursor material such as polyvinylidene fluoride, polyurethane, nitrocellulose, or cellulose acetate that becomes a high dielectric constant, low volume resistivity material is desirable. Further, using the above polymer as a base polymer, in order to further increase the dielectric constant, alkyl quaternary ammonium salts such as tetrabutylammonium hydrogen sulfate (TBAHS) and tetrabutylammonium hexafluorophosphate (TBAHP), fine particles of barium titanate, titanium It can also be configured by blending strontium acid or the like at a predetermined ratio. Further, various materials such as ultraviolet curable, thermoplastic, thermosetting, two-component curable, moisture curable, and catalyst curable can be used as the material.
 さらにまた、溶剤に溶解したポリマー溶液をフィルムに塗布した後、余分な溶剤を除去して用いることも可能である。
 好ましくは、上記各材料を好適に組み合わせて、体積固有抵抗が10~1014Ωcm、誘電率3~11となる封止接着層(又は封止粘着層)30とすることが望ましい。
 この封止接着層(又は封止粘着層)30の厚さとしては、用いる電気泳動インクの体積固有抵抗、誘電率の値、電気泳動インク層の高さにより変動するが、電気泳動インクに十分な電圧を印加可能とし、かつ電気泳動インクを封止するために、好ましくは、1~10μm、更に好ましくは、0.5~5μmとすることが望ましい。
Furthermore, after applying a polymer solution dissolved in a solvent to the film, it is also possible to remove the excess solvent before use.
Preferably, the above materials are suitably combined to form a sealing adhesive layer (or sealing adhesive layer) 30 having a volume resistivity of 10 8 to 10 14 Ωcm and a dielectric constant of 3 to 11.
The thickness of the sealing adhesive layer (or sealing adhesive layer) 30 varies depending on the volume specific resistance, dielectric constant and electrophoretic ink layer height of the electrophoretic ink to be used. In order to make it possible to apply an appropriate voltage and seal the electrophoretic ink, it is preferably 1 to 10 μm, more preferably 0.5 to 5 μm.
 また、用いるフィルム35は、剥離用のフィルムとなるものであり、PETやPE、紙等の表面にシリコーン系離型剤、フッ素系離型剤などをコートしたいわゆる離型シート、離型フィルム、離型紙などを用いることが可能であり、用いる封止接着層(又は封止粘着層)との組合せにおいて、適宜決定されるものである。
 上記フィルムに封止接着層(又は封止粘着層)を形成する方法としては、例えば、ポリマー材料を有機溶剤に溶解した液をコーターを用いて塗布した後、余分な溶剤を除去して形成する方法や、モノマーやオリゴマーといったポリマー前駆体材料を触媒と共にフィルム上に塗布した後、熱や光を利用してポリマー化させることにより形成する方法や、光硬化性材料をフィルム上に塗布した後、光を照射して半硬化状態(完全に硬化させる程度の照射ではなく、タック性や粘性を持った状態)として形成する方法などを上げることができるが、これらに限定されるものではない。さらに、熱可塑性材料と光硬化性材料の組合せや、熱硬化性材料と光硬化性材料との組合せなど、2種類以上の材料を混合して用いることも可能である。
 封止接着層(又は封止粘着層)30は、隔壁と接して電気泳動インクをセル内部に封止する機能を有し、且つフィルムから離れて電気泳動インク中に溶け出したり、沈んでしまわない程度の粘度、硬さなどを有すると共に、後述するバックプレーンとの接着の機能も有するものである。したがって、上記機能を有するように適宜封止接着層(又は封止粘着層)の厚さ、粘度、タック性、硬さなどが調整されることになる。
Moreover, the film 35 to be used is a film for peeling, and is a so-called release sheet, release film, which is obtained by coating a surface of PET, PE, paper or the like with a silicone release agent, a fluorine release agent, or the like. Release paper or the like can be used, and is determined as appropriate in combination with the sealing adhesive layer (or sealing adhesive layer) to be used.
As a method of forming a sealing adhesive layer (or sealing adhesive layer) on the film, for example, a liquid obtained by dissolving a polymer material in an organic solvent is applied using a coater, and then the excess solvent is removed to form. After a method, a polymer precursor material such as a monomer or an oligomer is applied on a film together with a catalyst, and then formed by polymerizing using heat or light, a photocurable material is applied on the film, A method of forming a semi-cured state by irradiation with light (not a state of complete curing but a tacky or viscous state) can be raised, but is not limited thereto. Further, two or more kinds of materials such as a combination of a thermoplastic material and a photocurable material, or a combination of a thermosetting material and a photocurable material can be mixed and used.
The sealing adhesive layer (or sealing adhesive layer) 30 has a function of sealing the electrophoretic ink inside the cell in contact with the partition wall, and it melts into the electrophoretic ink or sinks away from the film. In addition to having a viscosity, hardness, etc., there is also a function of bonding with a backplane described later. Therefore, the thickness, viscosity, tackiness, hardness, etc. of the sealing adhesive layer (or sealing adhesive layer) are appropriately adjusted so as to have the above function.
 前記電気泳動インク25を充填した電極11が形成された基板10に、対向配置され電気泳動インク25を封止する上記特性の封止接着層(又は封止粘着層)30を有するフィルム35を各隔壁15上面に貼り合わせる方法としては、例えば、封止接着層(又は封止粘着層)30を有するフィルム35の一端を合わせた後、対向に設置されたローラー間を通すことで封止接着層(又は封止粘着層)30を各隔壁15上面に貼り合わせて、図1に示される電気泳動表示媒体シートAを得ることができる。
 この際、貼り合わせの補助として、ローラーによる加圧、加熱や、光照射などを合わせて行うことができる。
 上記のように、各種調整した上でフィルム上に封止接着層(又は封止粘着層)を形成した後、各隔壁15上面に貼り合わせることにより、電気泳動インクが封止接着材料(又は封止粘着材料)よりも比重が小さい場合であっても、表面から封止接着材料(又は封止粘着材料)が沈んでしまうことなく封止することが可能となる。
Each of the films 35 having the sealing adhesive layer (or sealing adhesive layer) 30 having the above-described properties that is disposed opposite to the substrate 10 on which the electrode 11 filled with the electrophoresis ink 25 is formed and that seals the electrophoresis ink 25 is provided. As a method of bonding to the upper surface of the partition wall 15, for example, after sealing one end of the film 35 having the sealing adhesive layer (or sealing adhesive layer) 30, the sealing adhesive layer is passed by passing between rollers disposed opposite to each other. The electrophoretic display medium sheet A shown in FIG. 1 can be obtained by bonding (or sealing adhesive layer) 30 to the upper surface of each partition wall 15.
At this time, as an auxiliary of bonding, pressurization with a roller, heating, light irradiation, and the like can be performed together.
As described above, after making various adjustments, a sealing adhesive layer (or sealing adhesive layer) is formed on the film, and then bonded to the upper surface of each partition wall 15 so that the electrophoretic ink becomes a sealing adhesive material (or sealing). Even when the specific gravity is smaller than that of the adhesive material, the sealing adhesive material (or sealing adhesive material) can be sealed without sinking from the surface.
 また、本第1実施形態では、得られた電気泳動表示シートAのフィルム35を剥離して、一以上の電極が形成された電極基板(バックプレーン)を貼合することによって電気泳動表示媒体を作製でき、さらに制御部等を設ければ電気泳動表示装置を得ることができる。
 一以上の電極が形成された基板としては、例えば、TFT基板、セグメント基板、ベタ基板等、従来電子ペーパーや電気泳動表示装置で用いられている各種電極基板を挙げることができる。
 図9は、得られた電気泳動表示媒体シートAの剥離フィルム35を剥離〔図9(a)参照〕した後、例えば、バックプレーンとなるTFT基板60を封止接着層(又は封止粘着層)30と貼り合わせることにより電気泳動表示媒体を作製することができる。
この際、貼り合わせの補助として、ローラーによる加圧、加熱や、光照射などを合わせて行うことができる。
 なお、電気泳動表示媒体の用途(使用用途、書換方法等)に応じて、基板に別の光透過性電極、非光透過性電極、樹脂フィルム、樹脂、木、金属、セラミックス、紙、布及び/又はガラスと貼り合わせることも可能である。
 また、基板に樹脂フィルムを用いた場合には、溶媒透過抑制効果や気体透過抑制効果を有する樹脂フィルムやその他基材を貼り合わせることによって、その効果を増大させることも可能である。
 その他、電気泳動表示装置の強度を上げるために、別の基材を貼り合わせて補強することや、表示装置の装飾用に別の基材として紙や布等を貼り合わせることも可能である。
In the first embodiment, the electrophoretic display medium is obtained by peeling off the film 35 of the obtained electrophoretic display sheet A and bonding an electrode substrate (backplane) on which one or more electrodes are formed. An electrophoretic display device can be obtained by providing a control unit and the like.
Examples of the substrate on which one or more electrodes are formed include various electrode substrates conventionally used in electronic paper and electrophoretic display devices, such as a TFT substrate, a segment substrate, and a solid substrate.
FIG. 9 shows, after peeling the release film 35 of the obtained electrophoretic display medium sheet A (see FIG. 9A), for example, a TFT substrate 60 serving as a backplane is attached to a sealing adhesive layer (or sealing adhesive layer). ) 30 and the electrophoretic display medium can be manufactured.
At this time, as an auxiliary of bonding, pressurization with a roller, heating, light irradiation, and the like can be performed together.
Depending on the use (use application, rewriting method, etc.) of the electrophoretic display medium, another light transmissive electrode, non-light transmissive electrode, resin film, resin, wood, metal, ceramics, paper, cloth, etc. It is also possible to bond with glass.
Moreover, when a resin film is used for the substrate, the effect can be increased by bonding a resin film having a solvent permeation suppressing effect or a gas permeation suppressing effect or other base material.
In addition, in order to increase the strength of the electrophoretic display device, it is possible to attach and reinforce another base material, or to attach paper or cloth as another base material for decoration of the display device.
(第2実施形態、図10~図12)
 図10~図12は、本発明の第2実施形態を説明する説明図である。
 本第2実施形態の電気泳動表示シートは、上記第1実施形態で用いた封止接着層(又は封止粘着層)30が形成されたフィルム35に代えて、封止前駆体層40が形成されたフィルム45を電気泳動インク層25に貼合した後、該封止前駆体層40を硬化させることにより封止層41を形成して電気泳動インク層25を封止した後、フィルム45を封止層41から剥離することにより構成した点でのみ異なるものであり、基板材料10、電極面11、隔壁15、セル状構造体20、電気泳動インク(層)25の各構成、並びに、図3~図8及びその説明(隔壁25の短軸の幅が狭くなっていく構成、隔壁の短軸の幅が、電気泳動粒子の少なくとも一方の粒子径よりも小さいこと、隔壁には、少なくとも一方の粒子径よりも小さな隙間が形成されていること)などは上記第1実施形態の電気泳動表示シートと同様であるので、その説明を省略する。なお、図10~図12中において、上記第1実施形態と同様の内容は、各図中、同一符号を示し、その説明を省略する。
 本第2実施形態となる電気泳動表示シートBは、図10及び図11に示すように、光透過性の基板材料10に形成された光透過性の電極面11と、該光透過性の電極面11上に絶縁性材料の隔壁15、15…によって構成されるセル状構造体20と、該セル状構造体20に充填された電気泳動インク(層)25と、封止前駆体層40が形成されたフィルム45とを有している。
(Second Embodiment, FIGS. 10 to 12)
10 to 12 are explanatory diagrams for explaining the second embodiment of the present invention.
In the electrophoretic display sheet of the second embodiment, a sealing precursor layer 40 is formed instead of the film 35 on which the sealing adhesive layer (or sealing adhesive layer) 30 used in the first embodiment is formed. After the film 45 is bonded to the electrophoretic ink layer 25, the sealing precursor layer 40 is cured to form a sealing layer 41, and the electrophoretic ink layer 25 is sealed. It differs only in that it is configured by peeling from the sealing layer 41, and each configuration of the substrate material 10, the electrode surface 11, the partition wall 15, the cellular structure 20, and the electrophoretic ink (layer) 25, and FIG. 3 to 8 and the description thereof (a configuration in which the width of the short axis of the partition wall 25 is narrowed, the width of the short axis of the partition wall is smaller than the particle diameter of at least one of the electrophoretic particles, A gap smaller than the particle size of Since the fact that) etc. are the same as the electrophoretic display sheet of the first embodiment, description thereof will be omitted. 10 to 12, the same contents as those in the first embodiment are denoted by the same reference numerals in each drawing, and the description thereof is omitted.
As shown in FIGS. 10 and 11, the electrophoretic display sheet B according to the second embodiment includes a light transmissive electrode surface 11 formed on a light transmissive substrate material 10, and the light transmissive electrode. A cellular structure 20 constituted by partition walls 15, 15... Of an insulating material on the surface 11, an electrophoretic ink (layer) 25 filled in the cellular structure 20, and a sealing precursor layer 40. And a formed film 45.
 本第2実施形態では、図11(c)に示すように、前記電気泳動インク25を充填した電極面11に、対向配置され電気泳動インク25を封止する前駆体材料である封止前駆体層40が形成されたフィルム45を各構造体15上面に貼り合わせた後、該封止前駆体層40を硬化させることにより封止層41を形成して電気泳動インク層20を封止した後、図11(d)に示すように、上記フィルム45を封止層41から剥離することにより、目的の電気泳動表示シートBを得ることができる。
 封止前駆体層40としては、硬化により封止層41を形成するものであり、電気泳動インクがセル内から漏れ出さない程度に硬化により封止することが可能であれば特に限定されるものではないが、例えば、エポキシアクリレート、ウレタンアクリレート、ウレタンなどの紫外線硬化型樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ポリウレタン樹脂などの熱硬化型樹脂、2液ウレタンなどの2液硬化型樹脂、湿気硬化型ウレタン樹脂のなどの水分硬化型樹脂、エポキシやイソシアネートなどの触媒硬化型樹脂など、各種材料を用いることができる。
In the second embodiment, as shown in FIG. 11C, a sealing precursor that is a precursor material that is disposed so as to face the electrode surface 11 filled with the electrophoretic ink 25 and seals the electrophoretic ink 25. After the film 45 on which the layer 40 is formed is bonded to the upper surface of each structure 15, the sealing precursor layer 40 is cured to form the sealing layer 41 and seal the electrophoretic ink layer 20. As shown in FIG. 11 (d), the target electrophoretic display sheet B can be obtained by peeling the film 45 from the sealing layer 41.
As the sealing precursor layer 40, the sealing layer 41 is formed by curing, and is particularly limited as long as the electrophoretic ink can be sealed by curing to the extent that the electrophoretic ink does not leak from the cell. Not, for example, UV curable resins such as epoxy acrylate, urethane acrylate, urethane, thermosetting resins such as phenol resin, urea resin, melamine resin, unsaturated polyester resin, epoxy resin, polyurethane resin, two-component urethane, etc. Various materials such as a two-component curable resin, a moisture curable resin such as a moisture curable urethane resin, and a catalyst curable resin such as epoxy and isocyanate can be used.
 さらにまた、溶剤に溶解した封止前駆体の材料溶液をフィルムに塗布した後、余分な溶剤を除去して用いることも可能である。
 また、テトラブチルアンモニウムハイドロゲンサルフェート(TBAHS)、テトラブチルアンモニウムヘキサフルオロホスフェート(TBAHP)などのアルキル第4級アンモニウム塩、微粒子チタン酸バリウム、チタン酸ストロンチウムなどを所定の割合で配合することにより誘電率や体積固有抵抗を調整して構成することもできる。
 好ましくは、上記各材料を好適に組み合わせて、体積固有抵抗が10~1014Ωcm、誘電率3~11となる封止前駆体層40とすることが望ましい。
 この封止前駆体層40の厚さとしては、用いる電気泳動インクの体積固有抵抗、誘電率の値、電気泳動インク層の高さにより変動するが、電気泳動インクに十分な電圧を印加可能とし、かつ電気泳動インクを封止するために、好ましくは、1~10μm、更に好ましくは、0.5~5μmとすることが望ましい。
Furthermore, after applying the material solution of the sealing precursor dissolved in the solvent to the film, it is possible to remove the excess solvent and use it.
In addition, by adding a predetermined proportion of alkyl quaternary ammonium salts such as tetrabutylammonium hydrogen sulfate (TBAHS) and tetrabutylammonium hexafluorophosphate (TBAHP), fine particle barium titanate, strontium titanate and the like, It can also be configured by adjusting the volume resistivity.
Preferably, the above-described materials are suitably combined to form a sealing precursor layer 40 having a volume resistivity of 10 8 to 10 14 Ωcm and a dielectric constant of 3 to 11.
The thickness of the sealing precursor layer 40 varies depending on the volume resistivity, the dielectric constant value, and the height of the electrophoretic ink layer to be used, but a sufficient voltage can be applied to the electrophoretic ink. In order to seal the electrophoretic ink, it is preferably 1 to 10 μm, more preferably 0.5 to 5 μm.
 また、用いるフィルム45は、上記第1実施形態と同様の剥離用のフィルムとなるものであり、PETやPE、紙等の表面にシリコーン系離型剤、フッ素系離型剤などをコートしたいわゆる離型シート、離型フィルム、離型紙などを用いることが可能であり、用いる封止接着層(又は封止粘着層)との組合せにおいて、適宜決定されるものである。
 上記フィルムに封止前駆体層40を形成する方法としては、例えば、ポリマー材料を有機溶剤に溶解した液をコーターを用いて塗布した後、余分な溶剤を除去して形成する方法や、モノマーやオリゴマーといったポリマー前駆体材料を触媒と共にフィルム上に塗布することにより形成する方法や、光硬化性材料をフィルム上に塗布した後、光を照射して半硬化状態(完全に硬化させる程度の照射ではなく、タック性や粘性を持った状態)として形成する方法などを挙げることができるが、これらに限定されるものではない。さらに、熱可塑性材料と光硬化性材料の組合せや、熱硬化性材料と光硬化性材料との組合せなど、2種類以上の材料を混合して用いることも可能である。
 封止前駆体層40は、フィルムから離れて電気泳動インク中に溶け出したり、沈んでしまわない程度の粘度、硬さなどを有し、且つ、硬化後には隔壁と接して電気泳動インクをセル内部に封止する機能を有するものである。したがって、上記機能を有するように適宜封止前駆体層の厚さ、粘度、タック性、硬さなどが調整されることになる。
The film 45 to be used is a peeling film similar to that in the first embodiment, and the surface of PET, PE, paper or the like is coated with a silicone release agent, a fluorine release agent, or the like. A release sheet, a release film, a release paper, or the like can be used, and is appropriately determined in combination with the sealing adhesive layer (or sealing adhesive layer) to be used.
As a method of forming the sealing precursor layer 40 on the film, for example, a method in which a liquid obtained by dissolving a polymer material in an organic solvent is applied using a coater, and then the excess solvent is removed, a monomer, A method of forming a polymer precursor material such as an oligomer by applying it on a film together with a catalyst, or after applying a photocurable material on a film and then irradiating it with a light to a semi-cured state (in the case of irradiation that is completely cured) However, the present invention is not limited to these methods. Further, two or more kinds of materials such as a combination of a thermoplastic material and a photocurable material, or a combination of a thermosetting material and a photocurable material can be mixed and used.
The sealing precursor layer 40 has such a viscosity and hardness that it does not dissolve or sink in the electrophoretic ink away from the film, and after curing, the electrophoretic ink is brought into contact with the partition wall and the cell is passed through the cell. It has a function of sealing inside. Therefore, the thickness, viscosity, tackiness, hardness, etc. of the sealing precursor layer are appropriately adjusted so as to have the above function.
 前記電気泳動インク25を充填した電極11が形成された基板10に、対向配置され電気泳動インク25を封止する上記特性の封止前駆体層40を有するフィルム45を各隔壁15上面に貼り合わせる方法としては、例えば、封止前駆体層40を有するフィルム45の一端を合わせた後、対向に設置されたローラー間を通すことで封止前駆体層40を各隔壁15上面に貼り合わせた後、該封止前駆体層40を硬化させることにより電気泳動インク層25を封止する封止層41を形成した後、図11(d)に示すように、当該フィルム45を剥離することにより、電気泳動表示媒体シートBを得ることができる。
 この際、貼り合わせの補助として、ローラーによる加圧、加熱や、光照射などを合わせて行うことができる。
 上記のように、各種調整した上でフィルム上に封止前駆体層40を形成した後、各隔壁15上面に貼り合わせることにより、電気泳動インクが封止前駆体材料よりも比重が小さい場合であっても、表面から封止前駆体材料が沈んでしまうことなく封止することが可能となる。
A film 45 having a sealing precursor layer 40 of the above-described characteristics that is disposed so as to seal the electrophoretic ink 25 is bonded to the upper surface of each partition wall 15 on the substrate 10 on which the electrode 11 filled with the electrophoretic ink 25 is formed. As a method, for example, after one end of the film 45 having the sealing precursor layer 40 is combined, the sealing precursor layer 40 is pasted to the upper surface of each partition wall 15 by passing between rollers disposed opposite to each other. After forming the sealing layer 41 that seals the electrophoretic ink layer 25 by curing the sealing precursor layer 40, the film 45 is peeled off as shown in FIG. An electrophoretic display medium sheet B can be obtained.
At this time, as an auxiliary of bonding, pressurization with a roller, heating, light irradiation, and the like can be performed together.
As described above, after forming the sealing precursor layer 40 on the film after making various adjustments, the electrophoretic ink has a specific gravity smaller than that of the sealing precursor material by bonding to the upper surface of each partition wall 15. Even if it exists, it becomes possible to seal, without sealing precursor material sinking from the surface.
 また、本第2実施形態では、得られた電気泳動表示シートBの封止層32の外面に、図12(b)に示すように、接着層(又は粘着層)46を形成して、一以上の電極が形成された電極基板(バックプレーン)を貼合することによって電気泳動表示媒体を作製でき、さらに制御部等を設ければ電気泳動表示装置を得ることができる。
 接着層(又は粘着層)46としては、上記第1実施形態と同様なのでその説明を省略する。
 得られた電気泳動表示媒体シートBの剥離フィルム45を図12(a)に示すように、剥離した後、封止層41の外面に接着層(又は粘着層)46を形成した後、例えば、上記第1実施形態と同様に、バックプレーンとなるTFT基板60を接着層(又は粘着層)46と貼り合わせることにより電気泳動表示媒体を作製することができる。
 この際、貼り合わせの補助として、ローラーによる加圧、加熱や、光照射などを合わせて行うことができる。なお、電気泳動表示媒体の用途(使用用途、書換方法等)等は、上記第1実施形態と同様なのでその説明を省略する。
In the second embodiment, an adhesive layer (or adhesive layer) 46 is formed on the outer surface of the sealing layer 32 of the obtained electrophoretic display sheet B as shown in FIG. An electrophoretic display medium can be produced by bonding an electrode substrate (back plane) on which the above electrodes are formed, and an electrophoretic display device can be obtained by providing a control unit or the like.
Since the adhesive layer (or adhesive layer) 46 is the same as that of the first embodiment, the description thereof is omitted.
After the release film 45 of the obtained electrophoretic display medium sheet B is peeled off as shown in FIG. 12A, an adhesive layer (or adhesive layer) 46 is formed on the outer surface of the sealing layer 41. As in the first embodiment, an electrophoretic display medium can be manufactured by bonding a TFT substrate 60 serving as a backplane to an adhesive layer (or adhesive layer) 46.
At this time, as an auxiliary of bonding, pressurization with a roller, heating, light irradiation, and the like can be performed together. Note that the use (use application, rewriting method, etc.) of the electrophoretic display medium is the same as in the first embodiment, and the description thereof is omitted.
 このように構成される本発明となる第2実施形態の電気泳動表示シートBでは、低コストで耐久性や表示特性、生産性に優れる高品質の電気泳動表示シート及びこれを用いた電気泳動表示媒体が提供されるものとなる。本第2実施形態では、特に、耐久性や表示特性に優れる大面積の電気泳動表示シートBを、ロール・ツー・ロールでの大量生産が可能となり、バックプレーンのサイズに合わせることなく生産でき、必要に応じてカットして簡単に使用することが可能となる。
 また、この電気泳動表示シートBより得られる電気泳動表示装置は、高コントラストな表示の実現と、繰り返し表示時においても高い信頼性を持ってコントラスト表示することができ、応答性にも優れ、表示特性の劣化がきわめて少ないものとなる。
In the electrophoretic display sheet B according to the second embodiment of the present invention configured as described above, a high-quality electrophoretic display sheet excellent in durability, display characteristics, and productivity at low cost, and an electrophoretic display using the same A medium will be provided. In the second embodiment, in particular, an electrophoretic display sheet B having a large area with excellent durability and display characteristics can be mass-produced roll-to-roll, and can be produced without matching the size of the backplane. It becomes possible to cut and use it easily if necessary.
In addition, the electrophoretic display device obtained from the electrophoretic display sheet B realizes high contrast display, and can display contrast with high reliability even during repeated display, and has excellent responsiveness and display. Deterioration of characteristics is extremely small.
(第3実施形態、図13~図15)
 図13~図15は、本発明の第3実施形態を説明する説明図である。
 本第3実施形態の電気泳動表示シートは、上記第1実施形態で用いた封止接着層(又は封止粘着層)30が形成されたフィルム35、並びに、上記第2実施形態で用いた封止前駆体層40を有するフィルム45に代えて、接着層50が形成された封止フィルム55を電気泳動インク層25に貼合した後、該接着層50を硬化させることにより電気泳動インク層25を封止する構成した点でのみ異なるものであり、基板材料10、電極面11、隔壁15、セル状構造体20、電気泳動インク(層)25の各構成、並びに、図3~図8及びその説明(隔壁25の短軸の幅が狭くなっていく構成、隔壁の短軸の幅が、電気泳動粒子の少なくとも一方の粒子径よりも小さいこと、隔壁には、少なくとも一方の粒子径よりも小さな隙間が形成されていること)などは上記第1実施形態の電気泳動表示シートと同様であるので、その説明を省略する。なお、図13~図15中において、上記第1実施形態と同様の内容は、各図中、同一符号を示し、その説明を省略する。
 本発明の第3実施形態となる電気泳動表示シートCは、図13及び図14に示すように、光透過性の基板材料10に形成された光透過性の電極面11と、該光透過性の電極面11上に絶縁性材料の隔壁15、15…によって構成されるセル状構造体20と、該セル状構造体20に充填された電気泳動インク(層)25と、接着層50が形成された封止フィルム55とを有している。
(Third embodiment, FIGS. 13 to 15)
13 to 15 are explanatory diagrams for explaining the third embodiment of the present invention.
The electrophoretic display sheet of the third embodiment includes a film 35 on which the sealing adhesive layer (or sealing adhesive layer) 30 used in the first embodiment is formed, and the sealing used in the second embodiment. Instead of the film 45 having the stop precursor layer 40, the sealing film 55 on which the adhesive layer 50 is formed is bonded to the electrophoretic ink layer 25, and then the electrophoretic ink layer 25 is cured by curing the adhesive layer 50. The only difference is that the substrate material 10, the electrode surface 11, the partition wall 15, the cellular structure 20, the electrophoretic ink (layer) 25, and FIGS. 3 to 8 and Description thereof (configuration in which the width of the minor axis of the partition wall 25 is narrowed, the width of the minor axis of the partition wall is smaller than the particle diameter of at least one of the electrophoretic particles, A small gap is formed Since the) etc. are the same as the electrophoretic display sheet of the first embodiment, description thereof will be omitted. In FIGS. 13 to 15, the same contents as those in the first embodiment are denoted by the same reference numerals in each drawing, and the description thereof is omitted.
As shown in FIGS. 13 and 14, the electrophoretic display sheet C according to the third embodiment of the present invention includes a light-transmitting electrode surface 11 formed on a light-transmitting substrate material 10, and the light-transmitting surface. A cell-like structure 20 composed of partition walls 15, 15... Of the insulating material, an electrophoretic ink (layer) 25 filled in the cell-like structure 20, and an adhesive layer 50 are formed on the electrode surface 11. The sealing film 55 is made.
 本第3実施形態では、図14(c)に示すように、電気泳動インク25を充填した電極面11に、対向配置され電気泳動インク25を封止する接着層50が形成された封止フィルム55を各構造体15上面に貼り合わせた後、該接着層50を硬化させることにより電気泳動インク層25を封止して、目的の電気泳動表示シートCを得ることができる。
 接着層50は、隔壁15と封止フィルム55とを接着し、電気泳動インクがセル内から漏れ出さない程度に硬化により封止フィルムと接着することが可能であれば特に限定されるものではないが、例えば、ポリウレタン、ニトロセルロース、酢酸セルロースなどのポリマーまたはポリマーの前駆体材料が望ましい。また、上記ポリマーを基材ポリマーとして、さらにテトラブチルアンモニウムハイドロゲンサルフェート(TBAHS)、テトラブチルアンモニウムヘキサフルオロホスフェート(TBAHP)などのアルキル第4級アンモニウム塩、微粒子チタン酸バリウム、チタン酸ストロンチウムなどを所定の割合で配合することにより構成することもできる。さらに、上記材料としては、紫外線硬化性、熱可塑性、熱硬化性、2液硬化型、水分硬化型、触媒硬化型の各種材料を用いることも可能である。
In the third embodiment, as shown in FIG. 14C, a sealing film in which an adhesive layer 50 that is disposed so as to be opposed to and seals the electrophoretic ink 25 is formed on the electrode surface 11 filled with the electrophoretic ink 25. After bonding 55 to the upper surface of each structure 15, the electrophoretic ink layer 25 is sealed by curing the adhesive layer 50, and the target electrophoretic display sheet C can be obtained.
The adhesive layer 50 is not particularly limited as long as it can bond the partition wall 15 and the sealing film 55 and can be bonded to the sealing film by curing to such an extent that the electrophoretic ink does not leak from the cell. However, polymers or polymer precursor materials such as polyurethane, nitrocellulose, cellulose acetate and the like are desirable. Further, with the above polymer as a base polymer, alkyl quaternary ammonium salts such as tetrabutylammonium hydrogen sulfate (TBAHS) and tetrabutylammonium hexafluorophosphate (TBAHP), fine particles of barium titanate, strontium titanate, etc. It can also comprise by mix | blending in a ratio. Furthermore, as the material, various materials such as ultraviolet curable, thermoplastic, thermosetting, two-component curable, moisture curable, and catalyst curable can be used.
 さらにまた、溶剤に溶解したポリマー溶液を封止フィルム55に塗布した後、余分な溶剤を除去して用いることも可能である。
 好ましくは、上記各材料を好適に組み合わせて、体積固有抵抗が10~1014Ωcm、誘電率3~11となる接着層50とすることが望ましい。
 この接着層50の厚さとしては、用いる電気泳動インクの体積固有抵抗、誘電率の値、電気泳動インク層の高さ、封止フィルムの厚さにより変動するが、電気泳動インクに十分な電圧を印加可能とし、かつ隔壁15と封止フィルム55とを接着して電気泳動インクを封止するために、好ましくは、1~10μm、更に好ましくは、1~5μmとすることが望ましい。
Furthermore, after applying the polymer solution dissolved in the solvent to the sealing film 55, it is also possible to remove the excess solvent and use it.
Preferably, the above-mentioned materials are suitably combined to form the adhesive layer 50 having a volume resistivity of 10 8 to 10 14 Ωcm and a dielectric constant of 3 to 11.
The thickness of the adhesive layer 50 varies depending on the volume resistivity of the electrophoretic ink to be used, the value of the dielectric constant, the height of the electrophoretic ink layer, and the thickness of the sealing film. In order to seal the electrophoretic ink by adhering the partition wall 15 and the sealing film 55, the thickness is preferably 1 to 10 μm, more preferably 1 to 5 μm.
 用いる封止フィルム55としては、特に限定されないが、高誘電率材料や低体積固有抵抗材料からなるフィルム材料を用いることが望ましい。例えば、ポリ塩化ビニリデンフィルム、ポリフッ化ビニリデンフィルム、ポリウレタンフィルム、ニトロセルロースフィルム、酢酸セルロースフィルムなどのポリマーフィルムを挙げることができる。
 好ましくは、ポリフッ化ビニリデン単体フィルム、フッ化ビニリデン含有割合が50質量%以上の共重合体フィルム、ポリウレタンフィルムなどが望ましい。
Although it does not specifically limit as the sealing film 55 to be used, It is desirable to use the film material which consists of a high dielectric constant material and a low volume specific resistance material. For example, polymer films, such as a polyvinylidene chloride film, a polyvinylidene fluoride film, a polyurethane film, a nitrocellulose film, a cellulose acetate film, can be mentioned.
Preferably, a polyvinylidene fluoride simple substance film, a copolymer film having a vinylidene fluoride content ratio of 50% by mass or more, a polyurethane film, and the like are desirable.
 また、用いる上記各フィルムには、各種添加剤を含有したものを用いることができる。各種添加剤としては、好適な含有量のフタル酸エステル、アジピン酸エステル、クエン酸エステル、リン酸エステル、ジブチルセバケート(DBS)、アセチルトリブチルシトレート(ATBC)等の可塑剤;エポキシ化大豆油、エポキシ化アマニ油、ビスフェノールAジグリシジルエーテル、エポキシ化ポリブタジエン、エポキシ化ステアリン酸オクチル等のエポキシ化合物;ビタミンE、ブチルヒドロキシトルエン(BHT)、チオジプロピオン酸アルキルエステル等の抗酸化剤;ピロリン酸ソーダ、トリポリリン酸ソーダ、エチレンジアミン4酢酸2ナトリウム(EDTA-2Na)、テトラブチルアンモニウムハイドロゲンサルフェート(TBAHS)、テトラブチルアンモニウムヘキサフルオロホスフェート(TBAHP)などのアルキル第4級アンモニウム塩、微粒子チタン酸バリウム、チタン酸ストロンチウムなどの金属酸化物、酸化マグネシウム等の熱安定化助剤;各種光安定剤;各種滑剤;各種着色剤、難燃剤、紫外線吸収剤等を挙げることができる。これらの添加剤の一部は、塩化ビニリデン共重合体の重合でのモノマーと同時にもしくは重合中に添加してもよい。
 好ましくは、上記各材料を上記フィルム中に1~30質量%含有することが望ましい。
Moreover, what contained various additives can be used for each said film to be used. As various additives, plasticizers such as phthalate ester, adipate ester, citrate ester, phosphate ester, dibutyl sebacate (DBS), acetyltributyl citrate (ATBC) with suitable contents; epoxidized soybean oil Epoxy compounds such as epoxidized linseed oil, bisphenol A diglycidyl ether, epoxidized polybutadiene, epoxidized octyl stearate; antioxidants such as vitamin E, butylhydroxytoluene (BHT), alkyl thiodipropionate; pyrophosphoric acid Soda, sodium tripolyphosphate, disodium ethylenediaminetetraacetate (EDTA-2Na), tetrabutylammonium hydrogen sulfate (TBAHS), tetrabutylammonium hexafluorophosphate (TBAHP), etc. Thermal stabilization aids such as rutile quaternary ammonium salts, fine particles of barium titanate and strontium titanate, magnesium oxide, etc .; various light stabilizers; various lubricants; various colorants, flame retardants, UV absorbers, etc. Can be mentioned. Some of these additives may be added simultaneously with or during the polymerization of the vinylidene chloride copolymer.
Preferably, each of the above materials is contained in the film in an amount of 1 to 30% by mass.
 この封止フィルム55の厚さとしては、用いる電気泳動インクの体積固有抵抗、誘電率の値、電気泳動インク層の高さ、接着層の厚さにより変動するが、電気泳動インクに十分な電圧を印加可能とし、かつ電気泳動インクを封止するために、好ましくは、1~20μm、更に好ましくは、5~10μmとすることが望ましい。
 また、この封止フィルム55は、好ましくは、体積固有抵抗が10~1014Ωcm、誘電率3~11となるものが望ましい。
The thickness of the sealing film 55 varies depending on the volume resistivity, dielectric constant, electrophoretic ink layer height, and adhesive layer thickness of the electrophoretic ink to be used. Is preferably 1 to 20 μm, and more preferably 5 to 10 μm in order to seal the electrophoretic ink.
The sealing film 55 preferably has a volume resistivity of 10 8 to 10 14 Ωcm and a dielectric constant of 3 to 11.
 上記封止フィルムに接着層50を形成する方法としては、例えば、ポリマー材料を有機溶剤に溶解した液をコーターを用いて塗布した後、余分な溶剤を除去して形成する方法や、モノマーやオリゴマーといったポリマー前駆体材料を触媒と共に封止フィルム上に塗布することにより形成する方法や、光硬化性材料をフィルム上に塗布した後、光を照射して半硬化状態(完全に硬化させる程度の照射ではなく、タック性や粘性を持った状態)として形成する方法などを挙げることができるが、これらに限定されるものではない。さらに、熱可塑性材料と光硬化性材料の組合せや、熱硬化性材料と光硬化性材料との組合せなど、2種類以上の材料を混合して用いることも可能である。
 接着層50は、隔壁と封止フィルムとを接着して電気泳動インクをセル内部に封止する機能を有し、且つ封止フィルムから離れて電気泳動インク中に溶け出したり、沈んでしまわない性質を有するものである。したがって、上記機能を有するように適宜接着層の厚さ、粘度、タック性、硬さなどが調整されることになる。
As a method for forming the adhesive layer 50 on the sealing film, for example, a method in which a solution obtained by dissolving a polymer material in an organic solvent is applied using a coater, and then an excess solvent is removed, or a monomer or oligomer is formed. After the polymer precursor material is applied onto the sealing film together with the catalyst, the photocuring material is applied onto the film, and then irradiated with light to be in a semi-cured state (irradiation that can be completely cured). However, the present invention is not limited to these methods. Further, two or more kinds of materials such as a combination of a thermoplastic material and a photocurable material, or a combination of a thermosetting material and a photocurable material can be mixed and used.
The adhesive layer 50 has a function of adhering the partition wall and the sealing film to seal the electrophoretic ink inside the cell, and does not dissolve or sink in the electrophoretic ink apart from the sealing film. It has properties. Therefore, the thickness, viscosity, tackiness, hardness, etc. of the adhesive layer are appropriately adjusted so as to have the above functions.
 前記電気泳動インク25を充填した電極11が形成された基板10に、対向配置され電気泳動インク25を封止する上記特性の接着層50を有する封止フィルム55を各隔壁15上面に貼り合わせる方法としては、例えば、接着層50を有する封止フィルム55の一端を合わせた後、対向に設置されたローラー間を通すことで接着層50を各隔壁15上面に貼り合わせた後、該接着層50を硬化させることにより電気泳動インク層25を封止してなる、図15に示す電気泳動表示媒体シートCを得ることができる。
 この際、貼り合わせの補助として、ローラーによる加圧、加熱や、光照射などを合わせて行うことができる。
 上記のように、各種調整した上で封止フィルム55上に接着層50を形成した後、各隔壁15上面に貼り合わせることにより、電気泳動インクが接着層材料よりも比重が小さい場合であっても、表面から封止接着層材料が沈んでしまうことなく封止することが可能となる。
A method of bonding a sealing film 55 having an adhesive layer 50 disposed opposite to the substrate 10 on which the electrode 11 filled with the electrophoretic ink 25 is formed and facing the electrophoretic ink 25 to the upper surface of each partition wall 15. As one example, after one end of the sealing film 55 having the adhesive layer 50 is aligned, the adhesive layer 50 is bonded to the upper surface of each partition wall 15 by passing between rollers disposed opposite to each other, and then the adhesive layer 50 The electrophoretic display medium sheet C shown in FIG. 15 formed by sealing the electrophoretic ink layer 25 can be obtained.
At this time, as an auxiliary of bonding, pressurization with a roller, heating, light irradiation, and the like can be performed together.
As described above, after the adhesive layer 50 is formed on the sealing film 55 after various adjustments, the electrophoretic ink has a specific gravity smaller than that of the adhesive layer material by bonding to the upper surface of each partition wall 15. In addition, the sealing adhesive layer material can be sealed without sinking from the surface.
 また、本第3実施形態では、得られた電気泳動表示シートCの封止フィルム層55の外面に、図15に示すように、接着層(又は粘着層)56を形成して、一以上の電極が形成された電極基板(バックプレーン)を貼合することによって電気泳動表示媒体を作製でき、さらに制御部等を設ければ電気泳動表示装置を得ることができる。
 接着層(又は粘着層)56としては、例えば、バックプレーンとの接着(または粘着)が可能な材料であれば特に限定されるものではないが、例えば、高誘電率、低体積固有抵抗材料となるポリフッ化ビニリデン、ポリウレタン、ニトロセルロース、酢酸セルロースなどのポリマーまたはポリマーの前駆体材料が望ましい。また、上記ポリマーを基材ポリマーとして、さらに誘電率を上げるためにテトラブチルアンモニウムハイドロゲンサルフェート(TBAHS)、テトラブチルアンモニウムヘキサフルオロホスフェート(TBAHP)などのアルキル第4級アンモニウム塩、微粒子チタン酸バリウム、チタン酸ストロンチウムなどを所定の割合で配合することにより構成することもできる。さらに、上記材料としては、紫外線硬化性、熱可塑性、熱硬化性、2液硬化型、水分硬化型、触媒硬化型の各種材料などを所定の割合で配合することにより構成することができる。また、接着層(又は粘着層)56の厚さとしては、好ましくは、1~10μm、更に好ましくは、1~5μmとすることが望ましい。
 一以上の電極が形成された基板としては、上述の第1実施形態と同様に、例えば、TFT基板、セグメント基板、ベタ基板等、従来電子ペーパーや電気泳動表示装置で用いられている各種電極基板を挙げることができる。
 図15は、得られた電気泳動表示媒体シートCの封止フィルム55の外面に接着(又は粘着層)56を形成した後、例えば、バックプレーンとなるTFT基板60を接着層(又は粘着層)56と貼り合わせることにより電気泳動表示媒体を作製することができる。この際、貼り合わせの補助として、ローラーによる加圧、加熱や、光照射などを合わせて行うことができる。なお、電気泳動表示媒体の用途(使用用途、書換方法等)等は、上記第1実施形態と同様なのでその説明を省略する。
In the third embodiment, an adhesive layer (or adhesive layer) 56 is formed on the outer surface of the sealing film layer 55 of the obtained electrophoretic display sheet C as shown in FIG. An electrophoretic display medium can be produced by bonding an electrode substrate (backplane) on which electrodes are formed, and an electrophoretic display device can be obtained by providing a control unit or the like.
The adhesive layer (or adhesive layer) 56 is not particularly limited as long as it is a material that can be adhered (or adhered) to the backplane, for example. For example, a high dielectric constant, low volume resistivity material and Polymeric or polymeric precursor materials such as polyvinylidene fluoride, polyurethane, nitrocellulose, cellulose acetate are desirable. Further, using the above polymer as a base polymer, in order to further increase the dielectric constant, alkyl quaternary ammonium salts such as tetrabutylammonium hydrogen sulfate (TBAHS) and tetrabutylammonium hexafluorophosphate (TBAHP), fine particles of barium titanate, titanium It can also be configured by blending strontium acid or the like at a predetermined ratio. Furthermore, the material can be constituted by blending various materials such as ultraviolet curable, thermoplastic, thermosetting, two-component curable, moisture curable, and catalyst curable at a predetermined ratio. Further, the thickness of the adhesive layer (or adhesive layer) 56 is preferably 1 to 10 μm, more preferably 1 to 5 μm.
As the substrate on which one or more electrodes are formed, as in the first embodiment, for example, a TFT substrate, a segment substrate, a solid substrate, etc., various electrode substrates conventionally used in electronic paper and electrophoretic display devices Can be mentioned.
FIG. 15 shows an example in which an adhesive (or adhesive layer) 56 is formed on the outer surface of the sealing film 55 of the obtained electrophoretic display medium sheet C, and then, for example, the TFT substrate 60 serving as a backplane is attached to the adhesive layer (or adhesive layer). The electrophoretic display medium can be manufactured by being attached to 56. At this time, as an auxiliary of bonding, pressurization with a roller, heating, light irradiation, and the like can be performed together. Note that the use (use application, rewriting method, etc.) of the electrophoretic display medium is the same as in the first embodiment, and the description thereof is omitted.
 このように構成される本発明となる第3実施形態の電気泳動表示シートCでは、低コストで耐久性や表示特性、生産性に優れる高品質の電気泳動表示シート及びこれを用いた電気泳動表示媒体が提供されるものとなる。本第3実施形態では、特に、耐久性や表示特性に優れる大面積の電気泳動表示シートを、ロール・ツー・ロールでの大量生産が可能となり、バックプレーンのサイズに合わせることなく生産でき、必要に応じてカットして簡単に使用することが可能となる。
 また、この電気泳動表示シートより得られる電気泳動表示装置は、高コントラストな表示の実現と、繰り返し表示時においても高い信頼性を持ってコントラスト表示することができ、応答性にも優れ、表示特性の劣化がきわめて少ないものとなる。
In the electrophoretic display sheet C according to the third embodiment of the present invention configured as described above, a high-quality electrophoretic display sheet having excellent durability, display characteristics, and productivity at low cost, and an electrophoretic display using the same A medium will be provided. In the third embodiment, a large area electrophoretic display sheet having excellent durability and display characteristics can be produced in a roll-to-roll manner, and can be produced without matching the size of the backplane. It can be cut and used easily according to the conditions.
In addition, the electrophoretic display device obtained from this electrophoretic display sheet can realize high contrast display, and can display contrast with high reliability even during repeated display, excellent response, and display characteristics. Deterioration of the product becomes extremely small.
 本発明は、上述の如く構成されるものであるが、上記各実施形態に限定されるものではなく、本発明の技術思想の範囲内で種々変更することができる。 The present invention is configured as described above, but is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea of the present invention.
 次に、本発明を実施するに適した実施例を示すが、本発明はこれらに限定されるものではない。 Next, examples suitable for carrying out the present invention will be shown, but the present invention is not limited to these.
〔実施例1~4、第1実施形態、図1~図10準拠〕
(実施例1)
 下記各工程により、電気泳動表示シート及び電気泳動表示媒体を得た。
1)電極基板上に絶縁性の隔壁からなる複数のセルを形成する工程
 電極基板として、透明材料であるITO膜を表面抵抗が約300Ω/□となるように形成した125μm厚のPETシート(10×10cm)を用いた。
 この第1の電極基板上に、アクリル系UV硬化樹脂材料を厚さ40μmとなるように塗布した後、UVによる露光、現像をして、絶縁性の隔壁からなる複数の格子状のセル(高さ40μm、セルのサイズ300×300μm)を形成した。隔壁の縦断面形状:二等辺三角形形状、底辺=20μm、高さ=40μm、頂部の幅:2μm以下。
[Examples 1 to 4, according to the first embodiment, FIGS. 1 to 10]
(Example 1)
Through the following steps, an electrophoretic display sheet and an electrophoretic display medium were obtained.
1) Step of forming a plurality of cells composed of insulating partition walls on an electrode substrate A 125 μm-thick PET sheet (10 μm) formed with an ITO film, which is a transparent material, having a surface resistance of about 300Ω / □ as an electrode substrate × 10 cm) was used.
An acrylic UV curable resin material is applied on the first electrode substrate so as to have a thickness of 40 μm, and then exposed to UV and developed to form a plurality of grid-like cells (insulating high-density cells). And a cell size of 300 × 300 μm) was formed. Vertical cross-sectional shape of partition walls: isosceles triangle shape, base = 20 μm, height = 40 μm, top width: 2 μm or less.
2)電気泳動インクをセルに充填する工程
 用いた電気泳動インクの組成:
 ノルマルドデカン75質量%、酸化チタン粒子〔マイクロトラック(日機装社製)で測定した際の体積平均粒子径:約1μm〕10質量%、カーボンブラック含有アクリル粒子(電子顕微鏡で拡大撮影した画像をマックビュー(マウンテック社製)で画像解析(面積円換算)した際の平均粒子径:約6μm)10質量%、ヒドロキシエチルアミン3質量%、ソルビタントリオレエート2質量%。
 この電気泳動インクを上記セル内にコーターを用いて充填した。
2) Step of filling the cell with electrophoretic ink Composition of electrophoretic ink used:
Normal dodecane 75% by mass, titanium oxide particles [volume average particle diameter when measured with Microtrack (manufactured by Nikkiso Co., Ltd.): 10% by mass, carbon black-containing acrylic particles (magnified image taken with an electron microscope (Average particle diameter when image analysis (converted into area circle) by Mountec Co., Ltd.): about 6 μm) 10% by mass, 3% by mass of hydroxyethylamine, 2% by mass of sorbitan trioleate.
The electrophoretic ink was filled into the cell using a coater.
3)電極基板と封止接着層(又は封止粘着層)を有するフィルムを貼り合わる工程
 封止接着層(又は封止粘着層)としては、酢酸ブチルで粘度調整した紫外線硬化型ウレタンアクリレート樹脂を厚さ125μmのポリエチレンフィルム(10×10cm)上に塗布した後、酢酸ブチルを除去して厚さ8μmとなるように形成した。
 前記電気泳動インクを充填した電極基板に、封止接着層(又は封止粘着層)を有するフィルムの一端を合わせた後、対向に設置されたローラー間を通すことで貼り合わせて、電気泳動表示シートを得た。
3) The process of bonding the electrode substrate and the film having the sealing adhesive layer (or sealing adhesive layer) As the sealing adhesive layer (or sealing adhesive layer), UV curable urethane acrylate resin whose viscosity is adjusted with butyl acetate Was coated on a 125 μm thick polyethylene film (10 × 10 cm), and then butyl acetate was removed to form a thickness of 8 μm.
One end of a film having a sealing adhesive layer (or sealing adhesive layer) is combined with the electrode substrate filled with the electrophoretic ink, and then pasted together by passing between rollers placed opposite to each other, and electrophoretic display A sheet was obtained.
 得られた電気泳動表示シートの表示エリア内には気泡の混入は無く、電極と封止接着層(又は封止粘着層)を有するフィルムの間隔は均一であった。
 更に、得られた電気泳動表示シートにバックプレーン(ITOのベタ電極が形成された0.7mmのガラス基板)を貼り合わせ、バックプレーン側から紫外線を照射して紫外線硬化型ウレタンアクリレート樹脂を硬化した。その後、2つの電極間に+50vと-50vの電圧を交互に印加することで、高コントラストの白黒表示が可能であることが確認できた。
 更に、得られた電気泳動表示媒体を50℃乾燥条件下に1ヶ月放置した後の表示性能等を評価したところ、初期と表示特性の変化が見られない、非常に表示劣化しにくい電気泳動表示媒体が得られた。また、セル内に気泡が成長した様子も見られなかった。
Bubbles were not mixed in the display area of the obtained electrophoretic display sheet, and the distance between the electrode and the film having the sealing adhesive layer (or sealing adhesive layer) was uniform.
Further, a backplane (0.7 mm glass substrate on which an ITO solid electrode was formed) was bonded to the obtained electrophoretic display sheet, and ultraviolet rays were irradiated from the backplane side to cure the ultraviolet curable urethane acrylate resin. . Thereafter, it was confirmed that high contrast monochrome display was possible by alternately applying +50 v and −50 v voltages between the two electrodes.
Furthermore, when the obtained electrophoretic display medium was evaluated for display performance after being allowed to stand for 1 month at 50 ° C. under dry conditions, an electrophoretic display in which the display characteristics did not change from the initial state and display performance was very difficult to deteriorate. A medium was obtained. In addition, no bubble was observed in the cell.
(実施例2)
 上記実施例1において、絶縁性の隔壁が交差する部分に約5μmの隙間を形成する構成とした。
(Example 2)
In Example 1 described above, a gap of about 5 μm was formed at the intersection of the insulating partition walls.
(実施例3)
 上記実施例1において、用いた電気泳動インクの組成をノルマルドデカン78質量%、酸化チタン含有ポリエチレン粒子(電子顕微鏡で拡大撮影した画像をマックビュー(マウンテック製)で画像解析(面積円換算)した際の平均粒子径:約15μm)10質量%、カーボンブラック含有アクリル粒子(電子顕微鏡で拡大撮影した画像をマックビュー(マウンテック製)で画像解析(面積円換算)した際の平均粒子径:約15μm)10質量%、ソルビタントリオレエート2質量%とし、絶縁性の隔壁が交差する部分に約10μmの隙間を形成する構成とした。
(Example 3)
In Example 1 above, the composition of the electrophoretic ink used was 78% by mass of normal decane, and titanium oxide-containing polyethylene particles (when the image magnified by an electron microscope was image-analyzed (converted into area circles) with McView (manufactured by Mountec) (Average particle size: about 15 μm) 10% by mass, carbon black-containing acrylic particles (average particle size: about 15 μm when an image magnified with an electron microscope is image-analyzed (converted into area circles) with Mac View (manufactured by Mountec) The composition was 10% by mass and 2% by mass of sorbitan trioleate, and a gap of about 10 μm was formed at the intersection of the insulating partition walls.
(実施例4)
 上記実施例1において、封止接着層(又は封止粘着層)として熱可塑性ポリウレタン樹脂を使用した。具体的には、ポリエチレン製の剥離フィルム上に熱可塑性ポリウレタン樹脂を厚さ8μmとなるように塗工し、ローラーにて貼り合わせる際に加熱すると共に、バックプレーンと貼り合わせる際にも加熱して電気泳動シートおよび電気泳動媒体を作製する構成とした。
(Example 4)
In Example 1 above, a thermoplastic polyurethane resin was used as the sealing adhesive layer (or sealing adhesive layer). Specifically, a thermoplastic polyurethane resin is applied on a polyethylene release film so as to have a thickness of 8 μm, and is heated when bonded with a roller, and also when bonded with a backplane. An electrophoretic sheet and an electrophoretic medium were prepared.
(実施例2~4の電気泳動表示媒体の性能評価)
 上記実施例2~4で得られた各電気泳動表示シートの表示エリア内には気泡の混入は無く、電極と封止接着層(又は封止粘着層)を有するフィルムの間隔は均一であった。
 更に、実施例2~4で得られた各電気泳動表示シートに上記実施例1と同様に電極基板を貼り合わせ、得られた電気泳動表示媒体を50℃乾燥条件下に1ヶ月放置した後の表示性能等を評価したところ、初期と表示特性の変化が見られない、非常に表示劣化しにくい電気泳動表示媒体が得られた。また、セル内に気泡が成長した様子も見られなかった。
(Performance evaluation of electrophoretic display media of Examples 2 to 4)
No bubbles were mixed in the display area of each electrophoretic display sheet obtained in Examples 2 to 4, and the distance between the electrode and the film having the sealing adhesive layer (or sealing adhesive layer) was uniform. .
Further, an electrode substrate was bonded to each of the electrophoretic display sheets obtained in Examples 2 to 4 in the same manner as in Example 1 above, and the obtained electrophoretic display medium was left to stand at 50 ° C. for 1 month. When the display performance and the like were evaluated, an electrophoretic display medium in which the display characteristics did not change from the initial stage and display resistance was hardly deteriorated was obtained. In addition, no bubble was observed in the cell.
〔実施例5~7、第2実施形態、図11~図13等準拠〕
(実施例5)
 下記各工程により、電気泳動表示シート及び電気泳動表示媒体を得た。
1)電極基板上に絶縁性の隔壁からなる複数のセルを形成する工程
 電極基板として、透明材料であるITO膜を表面抵抗が約300Ω/□となるように形成した125μm厚のPETシート(10×10cm)を用いた。
 この第1の電極基板上に、アクリル系UV硬化樹脂材料を厚さ40μmとなるように塗布した後、UVによる露光、現像をして、絶縁性の隔壁からなる複数の格子状のセル(高さ40μm、セルのサイズ300×300μm)を形成した。隔壁の縦断面形状:二等辺三角形形状、底辺=18μm、高さ=40μm、頂部の幅:5μm以下
[Conforms to Examples 5-7, Second Embodiment, FIGS. 11-13, etc.]
(Example 5)
Through the following steps, an electrophoretic display sheet and an electrophoretic display medium were obtained.
1) Step of forming a plurality of cells composed of insulating partition walls on an electrode substrate A 125 μm-thick PET sheet (10 μm) formed with an ITO film, which is a transparent material, having a surface resistance of about 300Ω / □ as an electrode substrate × 10 cm) was used.
An acrylic UV curable resin material is applied on the first electrode substrate so as to have a thickness of 40 μm, and then exposed to UV and developed to form a plurality of grid-like cells (insulating high-density cells). And a cell size of 300 × 300 μm) was formed. Vertical cross-sectional shape of partition wall: isosceles triangle shape, base = 18 μm, height = 40 μm, top width: 5 μm or less
2)電気泳動インクをセルに充填する工程
 用いた電気泳動インクの組成:上記実施例1と同様の組成となる電気泳動インクを上記セル内にコーターを用いて充填した。
3)バックプレーンと封止層を形成した電気泳動表示シートを貼り合わる工程
 封止前駆体層としては、精製水で粘度調整した紫外線硬化型ウレタンオリゴマーのディスパージョン(光硬化開始剤を含む)を厚さ70μmのPETフィルム(10×10cm)上に塗布した後、水分を除去して厚さ8μmとなるように形成した。
 前記電気泳動インクを充填した電極基板に、封止前駆体層を有するフィルムの一端を合わせた後、対向に設置されたローラー間を通すことで貼り合わせて、PETフィルム側から紫外線を照射して紫外線硬化型ウレタン樹脂を硬化して封止層とし、PETフィルムを剥離することで電気泳動表示シートを得た。
2) Step of filling electrophoretic ink into cell Composition of electrophoretic ink used: The electrophoretic ink having the same composition as in Example 1 was filled into the cell using a coater.
3) The process of bonding together the electrophoretic display sheet on which the backplane and the sealing layer are formed As the sealing precursor layer, a dispersion of an ultraviolet curable urethane oligomer whose viscosity is adjusted with purified water (including a photocuring initiator) Was coated on a 70 μm thick PET film (10 × 10 cm), and then the water was removed to form a thickness of 8 μm.
After aligning one end of the film having the sealing precursor layer to the electrode substrate filled with the electrophoretic ink, it is bonded by passing between rollers placed opposite to each other, and irradiated with ultraviolet rays from the PET film side. The ultraviolet curable urethane resin was cured to form a sealing layer, and the PET film was peeled off to obtain an electrophoretic display sheet.
 得られた電気泳動表示シートの表示エリア内には気泡の混入は無く、電極と封止層の間隔は均一であった。
 更に、得られた電気泳動表示シートの封止層の外面に、接着層(又は粘着層)として厚さ5μmのウレタンホットメルト層を形成し、該接着層(又は粘着層)にバックプレーン(ITOのベタ電極が形成された125μmのPET基板)を80℃に加熱して熱ラミネーションすることにより貼り合わせた。その後、2つの電極間に+50Vと-50Vの電圧を交互に印加することで、高コントラストの白黒表示が可能であることが確認できた。
 更に、得られた電気泳動表示媒体を50℃乾燥条件下に1ヶ月放置した後の表示性能等を評価したところ、初期と表示特性の変化が見られない、非常に表示劣化しにくい電気泳動表示媒体が得られた。また、セル内に気泡が成長した様子も見られなかった。
Bubbles were not mixed in the display area of the obtained electrophoretic display sheet, and the distance between the electrode and the sealing layer was uniform.
Further, a urethane hot melt layer having a thickness of 5 μm is formed as an adhesive layer (or adhesive layer) on the outer surface of the sealing layer of the obtained electrophoretic display sheet, and a backplane (ITO) is formed on the adhesive layer (or adhesive layer). The 125 μm PET substrate on which the solid electrode was formed was heated to 80 ° C. and thermally laminated. Thereafter, it was confirmed that high contrast monochrome display was possible by alternately applying +50 V and −50 V voltages between the two electrodes.
Furthermore, when the obtained electrophoretic display medium was evaluated for display performance after being allowed to stand for 1 month at 50 ° C. under dry conditions, an electrophoretic display in which the display characteristics did not change from the initial state and display performance was very difficult to deteriorate. A medium was obtained. In addition, no bubble was observed in the cell.
(実施例6)
 上記実施例5において、絶縁性の隔壁が交差する部分に約5μmの隙間を形成する構成とした。
(Example 6)
In Example 5 described above, a gap of about 5 μm was formed at the portion where the insulating partition walls intersect.
(実施例7)
 上記実施例5において、実施例3と同様にして、電気泳動インクの組成を変更し、絶縁性の隔壁が交差する部分に約10μmの隙間を形成する構成とした。
(Example 7)
In Example 5, the composition of the electrophoretic ink was changed in the same manner as in Example 3, and a gap of about 10 μm was formed at the portion where the insulating partition walls intersected.
 上記実施例6、7で得られた各電気泳動表示シートの表示エリア内には気泡の混入は無く、電極と封止層31を有するフィルムの間隔は均一であった。
 更に、実施例6、7で得られた各電気泳動表示シートに上記実施例5と同様に電極基板を貼り合わせ、得られた電気泳動表示媒体を50℃乾燥条件下に1ヶ月放置した後の表示性能等を評価したところ、初期と表示特性の変化が見られない、非常に表示劣化しにくい電気泳動表示媒体が得られた。また、セル内に気泡が成長した様子も見られなかった。
No bubbles were mixed in the display areas of the electrophoretic display sheets obtained in Examples 6 and 7, and the distance between the electrode and the film having the sealing layer 31 was uniform.
Furthermore, the electrode substrate was bonded to each of the electrophoretic display sheets obtained in Examples 6 and 7 in the same manner as in Example 5 above, and the obtained electrophoretic display medium was allowed to stand for 1 month under 50 ° C. drying conditions. When the display performance and the like were evaluated, an electrophoretic display medium in which the display characteristics did not change from the initial stage and display resistance was hardly deteriorated was obtained. In addition, no bubble was observed in the cell.
〔実施例8~10、第3実施形態、図13~図15等準拠〕
(実施例8)
 下記各工程により、電気泳動表示シート及び電気泳動表示媒体を得た。
1)電極基板上に絶縁性の隔壁からなる複数のセルを形成する工程
 電極基板として、透明材料であるITO膜を表面抵抗が約300Ω/□となるように形成した125μm厚のPETシート(10×10cm)を用いた。
 この第1の電極基板上に、アクリル系UV硬化樹脂材料を厚さ40μmとなるように塗布した後、UVによる露光、現像をして、絶縁性の隔壁からなる複数の格子状のセル(高さ40μm、セルのサイズ300×300μm)を形成した。隔壁の縦断面形状:二等辺三角形形状、底辺=18μm、高さ=40μm、頂部の幅:5μm以下
[Examples 8 to 10, according to the third embodiment, FIGS. 13 to 15 and the like]
(Example 8)
Through the following steps, an electrophoretic display sheet and an electrophoretic display medium were obtained.
1) Step of forming a plurality of cells composed of insulating partition walls on an electrode substrate A 125 μm-thick PET sheet (10 μm) formed with an ITO film, which is a transparent material, having a surface resistance of about 300Ω / □ as an electrode substrate × 10 cm) was used.
An acrylic UV curable resin material is applied on the first electrode substrate so as to have a thickness of 40 μm, and then exposed to UV and developed to form a plurality of grid-like cells (insulating high-density cells). And a cell size of 300 × 300 μm) was formed. Vertical cross-sectional shape of partition wall: isosceles triangle shape, base = 18 μm, height = 40 μm, top width: 5 μm or less
2)電気泳動インクをセルに充填する工程
 用いた電気泳動インクの組成:上記実施例1と同様の組成となる電気泳動インクを上記セル内にコーターを用いて充填した。
3)接着層を有する封止フィルムを貼り合わる工程
 接着層としては、粘度調整した紫外線硬化型ウレタンアクリレート樹脂を、封止フィルムとなる厚さ10μmのポリフッ化ビニリデンフィルム(10×10cm)上に塗布した後、厚さ5μmとなるように形成した。
 前記電気泳動インクを充填した電極基板に、接着層を有する封止フィルムの一端を合わせた後、対向に設置されたローラー間を通すことで貼り合わせて、ポリフッ化ビニリデンフィルム側から紫外線を照射して紫外線硬化型ウレタンアクリレート樹脂を硬化し、電気泳動表示シートを得た。
2) Step of filling electrophoretic ink into cell Composition of electrophoretic ink used: The electrophoretic ink having the same composition as in Example 1 was filled into the cell using a coater.
3) The process of bonding the sealing film which has an adhesive layer As an adhesive layer, the ultraviolet curable urethane acrylate resin which adjusted the viscosity on the 10 micrometer-thick polyvinylidene fluoride film (10x10 cm) used as a sealing film After coating, it was formed to a thickness of 5 μm.
After aligning one end of the sealing film having an adhesive layer to the electrode substrate filled with the electrophoretic ink, it is bonded by passing between rollers placed opposite to each other, and irradiated with ultraviolet rays from the polyvinylidene fluoride film side. Then, the ultraviolet curable urethane acrylate resin was cured to obtain an electrophoretic display sheet.
 得られた電気泳動表示シートの表示エリア内には気泡の混入は無く、電極と接着層を有する封止フィルムの間隔は均一であった。
 更に、得られた電気泳動表示シートの封止フィルムの外面に、接着層(又は粘着層)として厚さ5μmのウレタンホットメルト層を形成し、該接着層(又は粘着層)にバックプレーン(ITOのベタ電極が形成された125μmのPET基板)を80℃に加熱して熱ラミネーションすることにより貼り合わせた。その後、2つの電極間に+50Vと-50Vの電圧を交互に印加することで、高コントラストの白黒表示が可能であることが確認できた。
 更に、得られた電気泳動表示媒体を50℃乾燥条件下に1ヶ月放置した後の表示性能等を評価したところ、初期と表示特性の変化が見られない、非常に表示劣化しにくい電気泳動表示媒体が得られた。また、セル内に気泡が成長した様子も見られなかった。
Bubbles were not mixed in the display area of the obtained electrophoretic display sheet, and the distance between the electrode and the sealing film having the adhesive layer was uniform.
Further, a urethane hot melt layer having a thickness of 5 μm is formed as an adhesive layer (or adhesive layer) on the outer surface of the sealing film of the obtained electrophoretic display sheet, and a backplane (ITO) is formed on the adhesive layer (or adhesive layer). The 125 μm PET substrate on which the solid electrode was formed was heated to 80 ° C. and thermally laminated. Thereafter, it was confirmed that high contrast monochrome display was possible by alternately applying +50 V and −50 V voltages between the two electrodes.
Furthermore, when the obtained electrophoretic display medium was evaluated for display performance after being allowed to stand for 1 month at 50 ° C. under dry conditions, an electrophoretic display in which the display characteristics did not change from the initial state and display performance was very difficult to deteriorate. A medium was obtained. In addition, no bubble was observed in the cell.
(実施例9)
 上記実施例8において、実施例3と同様にして、電気泳動インクの組成を変更し、絶縁性の隔壁が交差する部分に約10μmの隙間を形成する構成とした。
Example 9
In the above Example 8, the composition of the electrophoretic ink was changed in the same manner as in Example 3, and a gap of about 10 μm was formed at the portion where the insulating partition walls intersect.
(実施例10)
 上記実施例8において、接着層として熱可塑性ポリウレタン樹脂を使用した。具体的には、封止フィルムとしてのポリフッ化ビニリデンフィルム上に熱可塑性ポリウレタン樹脂を厚さ5μmとなるように塗工し、ローラーにて貼り合わせる際に加熱することにより電気泳動表示シートを作製する構成とした。
(Example 10)
In Example 8 above, a thermoplastic polyurethane resin was used as the adhesive layer. Specifically, an electrophoretic display sheet is produced by applying a thermoplastic polyurethane resin on a polyvinylidene fluoride film as a sealing film so as to have a thickness of 5 μm, and heating the laminated film with a roller. The configuration.
(実施例9、10の電気泳動表示媒体の性能評価)
 上記実施例9~10で得られた各電気泳動表示シートの表示エリア内には気泡の混入は無く、電極と接着層を有する封止フィルムの間隔は均一であった。
 更に、実施例9、10で得られた各電気泳動表示シートに上記実施例8と同様に電極基板を貼り合わせ、得られた電気泳動表示媒体を50℃乾燥条件下に1ヶ月放置した後の表示性能等を評価したところ、初期と表示特性の変化が見られない、非常に表示劣化しにくい電気泳動表示媒体が得られた。また、セル内に気泡が成長した様子も見られなかった。
(Performance evaluation of electrophoretic display media of Examples 9 and 10)
No bubbles were mixed in the display areas of the electrophoretic display sheets obtained in Examples 9 to 10, and the gap between the sealing film having the electrode and the adhesive layer was uniform.
Furthermore, the electrode substrate was bonded to each of the electrophoretic display sheets obtained in Examples 9 and 10 in the same manner as in Example 8 above, and the obtained electrophoretic display medium was allowed to stand for 1 month under 50 ° C. drying conditions. When the display performance and the like were evaluated, an electrophoretic display medium in which the display characteristics did not change from the initial stage and display resistance was hardly deteriorated was obtained. In addition, no bubble was observed in the cell.
 本発明の電気泳動表示シート及びこれを用いた電気泳動表示媒体は、電子ブック、電子新聞等の電子ペーパー、看板、ポスター、黒板などの掲示板、電子値札、電子棚札、電子広告、モバイル機器の表示部等の用途に好適に用いることができる。 The electrophoretic display sheet of the present invention and the electrophoretic display medium using the same include electronic paper such as electronic books and electronic newspapers, billboards such as signboards, posters, and blackboards, electronic price tags, electronic shelf labels, electronic advertisements, and mobile devices. It can use suitably for uses, such as a display part.
 A B C 電気泳動表示シート
 10 基板
 11 電極層
 15 隔壁
 16 セル
 20 セル状構造体
 25 電気泳動インク
 30 封止接着層(又は封止粘着層)
 35 フィルム
 40 封止前駆体層
 41 封止層
 45 フィルム
 46 接着層(又は粘着層)
 50 接着層
 55 封止フィルム
 56 接着層(又は粘着層)
 60 バックプレーン(TFT基板)
A B C Electrophoretic display sheet 10 Substrate 11 Electrode layer 15 Partition 16 Cell 20 Cellular structure 25 Electrophoretic ink 30 Sealing adhesive layer (or sealing adhesive layer)
35 Film 40 Sealing precursor layer 41 Sealing layer 45 Film 46 Adhesive layer (or adhesive layer)
50 Adhesive layer 55 Sealing film 56 Adhesive layer (or adhesive layer)
60 Backplane (TFT substrate)

Claims (16)

  1.  光透過性の基板材料に形成された光透過性の電極面に、絶縁性材料の隔壁によって構成されるセル状構造体を形成し、該セル状構造体内部に電気泳動インクを充填し、封止接着層又は封止粘着層が形成されたフィルムを上記電気泳動インク層に貼合することを特徴とする電気泳動表示シート。 A cell-like structure composed of partition walls made of an insulating material is formed on the light-transmitting electrode surface formed on the light-transmitting substrate material. The cell-like structure is filled with electrophoretic ink and sealed. An electrophoretic display sheet, wherein a film on which an adhesive layer or a sealing adhesive layer is formed is bonded to the electrophoretic ink layer.
  2.  絶縁性材料の隔壁は、光透過性の電極面側から封止接着層又は封止粘着層に向けて、隔壁の短軸の幅が狭くなっていくことを特徴とする請求項1記載の電気泳動表示シート。 2. The electrical barrier according to claim 1, wherein the partition wall of the insulating material has a width of a short axis of the partition wall becoming narrower from the light transmissive electrode surface side toward the sealing adhesive layer or the sealing adhesive layer. Electrophoresis display sheet.
  3.  封止接着層又は封止粘着層側の隔壁の短軸の幅が、電気泳動インク層に含有する電気泳動粒子の少なくとも一方の粒子径よりも小さいことを特徴とする請求項2に記載の電気泳動表示シート。 3. The electricity according to claim 2, wherein the width of the minor axis of the partition wall on the side of the sealing adhesive layer or the sealing adhesive layer is smaller than the particle diameter of at least one of the electrophoretic particles contained in the electrophoretic ink layer. Electrophoresis display sheet.
  4.  絶縁性材料の隔壁には、少なくとも一方の粒子径よりも小さな隙間が形成されていることを特徴とする請求項1~3の何れか一つに記載の電気泳動表示シート。 4. The electrophoretic display sheet according to claim 1, wherein a gap smaller than at least one of the particle diameters is formed in the partition wall made of the insulating material.
  5.  光透過性の基板材料に形成された光透過性の電極面に、絶縁性材料の隔壁によって構成されるセル状構造体を形成し、該セル状構造体内部に電気泳動インクを充填し、封止前駆体層が形成されたフィルムを上記電気泳動インク層に貼合した後、該封止前駆体層を硬化させることにより封止層を形成して電気泳動インク層を封止した後、上記フィルムを封止層から剥離することを特徴とする電気泳動表示シート。 A cell-like structure composed of partition walls made of an insulating material is formed on the light-transmitting electrode surface formed on the light-transmitting substrate material. The cell-like structure is filled with electrophoretic ink and sealed. After the film on which the stop precursor layer is formed is bonded to the electrophoretic ink layer, the sealing precursor layer is cured to form a sealing layer and seal the electrophoretic ink layer. An electrophoretic display sheet, wherein a film is peeled from a sealing layer.
  6.  絶縁性材料の隔壁は、光透過性の電極面側から封止層に向けて、隔壁の短軸の幅が狭くなっていくことを特徴とする請求項5記載の電気泳動表示シート。 6. The electrophoretic display sheet according to claim 5, wherein the partition wall of the insulating material has a width of a short axis of the partition wall narrowing from the light transmissive electrode surface side toward the sealing layer.
  7.  封止着層側の隔壁の短軸の幅が、電気泳動インク層に含有する電気泳動粒子の少なくとも一方の粒子径よりも小さいことを特徴とする請求項6に記載の電気泳動表示シート。 The electrophoretic display sheet according to claim 6, wherein the width of the minor axis of the partition wall on the sealing adhesion layer side is smaller than the particle diameter of at least one of the electrophoretic particles contained in the electrophoretic ink layer.
  8.  絶縁性材料の隔壁には、少なくとも一方の粒子径よりも小さな隙間が形成されていることを特徴とする請求項5~7の何れか一つに記載の電気泳動表示シート。 The electrophoretic display sheet according to any one of claims 5 to 7, wherein a gap smaller than at least one of the particle diameters is formed in the partition wall of the insulating material.
  9.  更に、電気泳動表示シートの封止層の外面に接着層又は粘着層を形成したことを特徴とする請求項5~8の何れか一つに記載の電気泳動表示シート。 The electrophoretic display sheet according to any one of claims 5 to 8, further comprising an adhesive layer or an adhesive layer formed on the outer surface of the sealing layer of the electrophoretic display sheet.
  10.  光透過性の基板材料に形成された光透過性の電極面に、絶縁性材料の隔壁によって構成されるセル状構造体を形成し、該セル状構造体内部に電気泳動インクを充填し、接着層が形成された封止フィルムを上記電気泳動インク層に貼合した後、該接着層を硬化させることにより電気泳動インク層が封止されていることを特徴とする電気泳動表示シート。 A cell-like structure composed of partition walls made of an insulating material is formed on a light-transmitting electrode surface formed on a light-transmitting substrate material, and electrophoretic ink is filled into the cell-like structure and bonded. An electrophoretic display sheet, wherein the electrophoretic ink layer is sealed by bonding the sealing film on which the layer is formed to the electrophoretic ink layer and then curing the adhesive layer.
  11.  絶縁性材料の隔壁は、光透過性の電極面側から封止フィルム側に向けて、隔壁の短軸の幅が狭くなっていくことを特徴とする請求項10記載の電気泳動表示シート。 11. The electrophoretic display sheet according to claim 10, wherein the partition wall of the insulating material has a width of a short axis of the partition wall narrowing from the light transmissive electrode surface side toward the sealing film side.
  12.  封止着層側の隔壁の短軸の幅が、電気泳動インク層に含有する電気泳動粒子の少なくとも一方の粒子径よりも小さいことを特徴とする請求項11に記載の電気泳動表示シート。 The electrophoretic display sheet according to claim 11, wherein the width of the minor axis of the partition wall on the sealing adhesion layer side is smaller than the particle diameter of at least one of the electrophoretic particles contained in the electrophoretic ink layer.
  13.  絶縁性材料の隔壁には、少なくとも一方の粒子径よりも小さな隙間が形成されていることを特徴とする請求項10~12の何れか一つに記載の電気泳動表示シート。 13. The electrophoretic display sheet according to claim 10, wherein a gap smaller than at least one of the particle diameters is formed in the partition wall of the insulating material.
  14.  更に、電気泳動表示シートの封止層の外面に接着層又は粘着層を形成したことを特徴とする請求項10~13の何れか一つに記載の電気泳動表示シート。 14. The electrophoretic display sheet according to claim 10, further comprising an adhesive layer or an adhesive layer formed on the outer surface of the sealing layer of the electrophoretic display sheet.
  15.  一以上の電極が形成された基板上に、請求項1~4の何れか一つに記載の電気泳動表示シートのフィルムを剥離して貼合することによって形成されることを特徴とする電気泳動表示媒体。 Electrophoresis characterized by being formed by peeling and bonding the film of an electrophoretic display sheet according to any one of claims 1 to 4 on a substrate on which one or more electrodes are formed. Display medium.
  16.  一以上の電極が形成された基板上に、請求項9又は14に記載の電気泳動表示シートが接着層又は粘着層を介して貼合されたことを特徴とする電気泳動表示媒体。 15. An electrophoretic display medium, wherein the electrophoretic display sheet according to claim 9 or 14 is bonded via an adhesive layer or an adhesive layer on a substrate on which one or more electrodes are formed.
PCT/JP2012/070012 2011-08-12 2012-08-06 Electrophoretic display sheet and electrophoretic display medium using same WO2013024735A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280039327.9A CN103718095A (en) 2011-08-12 2012-08-06 Electrophoretic display sheet and electrophoretic display medium using same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011176950A JP5757821B2 (en) 2011-08-12 2011-08-12 Electrophoretic display sheet and electrophoretic display medium using the same
JP2011-176950 2011-08-12
JP2011-176951 2011-08-12
JP2011176952A JP5757823B2 (en) 2011-08-12 2011-08-12 Electrophoretic display sheet and electrophoretic display medium using the same
JP2011176951A JP5757822B2 (en) 2011-08-12 2011-08-12 Electrophoretic display sheet and electrophoretic display medium using the same
JP2011-176952 2011-08-12

Publications (1)

Publication Number Publication Date
WO2013024735A1 true WO2013024735A1 (en) 2013-02-21

Family

ID=47715055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070012 WO2013024735A1 (en) 2011-08-12 2012-08-06 Electrophoretic display sheet and electrophoretic display medium using same

Country Status (3)

Country Link
CN (1) CN103718095A (en)
TW (1) TW201321881A (en)
WO (1) WO2013024735A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020174437A1 (en) * 2019-02-27 2020-09-03 Halion Displays Inc. Electrophoretic display assemblies and devices and methods of manufacture thereof
CN113625501A (en) * 2021-09-23 2021-11-09 广东志慧芯屏科技有限公司 Electronic paper membrane assembly capable of bearing pressure and manufacturing process thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114566807B (en) * 2022-04-29 2022-08-12 广东福顺天际通信有限公司 Cylindrical electromagnetic wave lens

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020640A (en) * 2002-06-12 2004-01-22 Seiko Epson Corp Electrooptical device, electronic appliance equipped with the electrooptical device, and method for manufacturing electrooptical device
JP2009076852A (en) * 2007-08-31 2009-04-09 Seiko Epson Corp Thin-film device, method for manufacturing thin-film device, and display
JP2011043720A (en) * 2009-08-21 2011-03-03 Casio Computer Co Ltd Electrophoretic display element
JP2011059432A (en) * 2009-09-10 2011-03-24 Seiko Epson Corp Electrophoresis display device, method of manufacturing the same, and electronic device
JP2011085857A (en) * 2009-10-19 2011-04-28 Ricoh Co Ltd Method for manufacturing electrophoretic display element, and electrophoretic display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100354743C (en) * 2003-02-25 2007-12-12 株式会社普利司通 Image displaying panel and image display unit
JP2007086461A (en) * 2005-09-22 2007-04-05 Brother Ind Ltd Manufacturing method for display medium, and display medium
CN102053443A (en) * 2010-10-29 2011-05-11 友达光电(厦门)有限公司 Retroreflective electronic paper device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020640A (en) * 2002-06-12 2004-01-22 Seiko Epson Corp Electrooptical device, electronic appliance equipped with the electrooptical device, and method for manufacturing electrooptical device
JP2009076852A (en) * 2007-08-31 2009-04-09 Seiko Epson Corp Thin-film device, method for manufacturing thin-film device, and display
JP2011043720A (en) * 2009-08-21 2011-03-03 Casio Computer Co Ltd Electrophoretic display element
JP2011059432A (en) * 2009-09-10 2011-03-24 Seiko Epson Corp Electrophoresis display device, method of manufacturing the same, and electronic device
JP2011085857A (en) * 2009-10-19 2011-04-28 Ricoh Co Ltd Method for manufacturing electrophoretic display element, and electrophoretic display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020174437A1 (en) * 2019-02-27 2020-09-03 Halion Displays Inc. Electrophoretic display assemblies and devices and methods of manufacture thereof
CN113625501A (en) * 2021-09-23 2021-11-09 广东志慧芯屏科技有限公司 Electronic paper membrane assembly capable of bearing pressure and manufacturing process thereof

Also Published As

Publication number Publication date
CN103718095A (en) 2014-04-09
TW201321881A (en) 2013-06-01

Similar Documents

Publication Publication Date Title
US10254621B2 (en) Electro-optic displays, and processes for the production thereof
JP5286894B2 (en) Method for manufacturing electrophoretic display device
WO2013024735A1 (en) Electrophoretic display sheet and electrophoretic display medium using same
JP2012013790A (en) Manufacturing method and manufacturing apparatus of electronic paper
JP5757823B2 (en) Electrophoretic display sheet and electrophoretic display medium using the same
JP5757821B2 (en) Electrophoretic display sheet and electrophoretic display medium using the same
JP5660853B2 (en) Electrophoretic display medium sheet and electrophoretic display medium using the same
JP5757822B2 (en) Electrophoretic display sheet and electrophoretic display medium using the same
JP2009271387A (en) Electrophoresis display device and manufacturing method thereof
JP2012013934A (en) Electronic paper and method for manufacturing electronic paper
JP2016075877A (en) Electrophoretic display medium sheet and electrophoretic display medium using the same
JP2012002934A (en) Method for manufacturing electrophoretic display device
JP6221435B2 (en) Electrophoresis device, method of manufacturing electrophoresis device, and electronic apparatus
JP2012032710A (en) Manufacturing method of electrophoresis display device
JP5608114B2 (en) Method for manufacturing electrophoretic display device
JP5794722B2 (en) Method for manufacturing electrophoretic display device
JP5406786B2 (en) Method for manufacturing electrophoretic display medium
KR20100120589A (en) Electronic paper display device and manufacturing method thereof
JP5693113B2 (en) Method for manufacturing electrophoretic display device
JP2012027048A (en) Method for manufacturing electrophoretic display device
JP2012032687A (en) Manufacturing method of electrophoresis display device
JP2012008218A (en) Electronic paper and method for manufacturing electronic paper
JP5590729B2 (en) Method for manufacturing electrophoretic display device
JP2012159634A (en) Manufacturing method of electrophoretic display device
JP2007140365A (en) Manufacturing method for display medium, display medium, and display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12824301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12824301

Country of ref document: EP

Kind code of ref document: A1