WO2013024720A1 - PEPTIDE CATALYST AND ALDEHYDE ASYMMETRIC α-AMINATION USING SAME - Google Patents

PEPTIDE CATALYST AND ALDEHYDE ASYMMETRIC α-AMINATION USING SAME Download PDF

Info

Publication number
WO2013024720A1
WO2013024720A1 PCT/JP2012/069864 JP2012069864W WO2013024720A1 WO 2013024720 A1 WO2013024720 A1 WO 2013024720A1 JP 2012069864 W JP2012069864 W JP 2012069864W WO 2013024720 A1 WO2013024720 A1 WO 2013024720A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
amino acid
peptide
carrier
catalyst
Prior art date
Application number
PCT/JP2012/069864
Other languages
French (fr)
Japanese (ja)
Inventor
辰佳 田中
賢吾 赤川
一秋 工藤
満田 勝
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2013024720A1 publication Critical patent/WO2013024720A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C281/00Derivatives of carbonic acid containing functional groups covered by groups C07C269/00 - C07C279/00 in which at least one nitrogen atom of these functional groups is further bound to another nitrogen atom not being part of a nitro or nitroso group
    • C07C281/02Compounds containing any of the groups, e.g. carbazates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0821Tripeptides with the first amino acid being heterocyclic, e.g. His, Pro, Trp
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1024Tetrapeptides with the first amino acid being heterocyclic

Definitions

  • the present invention relates to a peptide catalyst and a method for asymmetric amination of an ⁇ -position of an aldehyde using the peptide catalyst.
  • Non-patent Document 1 peptide catalysts whose N-terminal is a proline derivative have been studied in various ways because they can be used for asymmetric functionalization of the ⁇ -position of the carbonyl group, such as an asymmetric aldol reaction.
  • Non-patent Documents 2 and 3 it is difficult to predict a suitable sequence for each reaction and substrate.
  • the object of the present invention is to develop a peptide catalyst capable of proceeding with a highly stereoselective asymmetric ⁇ -amination reaction of an aldehyde.
  • the present inventors include a sequence in which an amino acid having a secondary amino group and an ⁇ , ⁇ -disubstituted amino acid and one or two amino acids are bonded at the N-terminus, and the C-terminus is bonded to a carrier.
  • the present inventors have found that the above problem can be solved by reacting an aldehyde with a diazodicarboxylate derivative in the presence of a peptide catalyst immobilized thereon.
  • the present invention comprises a peptide and a carrier, and the peptide is represented by the following formula (1): (SAA)-(AA)-(AA2) (1) (Wherein SAA represents an amino acid having a secondary amino group, AA represents an ⁇ , ⁇ -disubstituted amino acid, and AA2 represents one or two natural or non-natural amino acids).
  • SAA represents an amino acid having a secondary amino group
  • AA represents an ⁇ , ⁇ -disubstituted amino acid
  • AA2 represents one or two natural or non-natural amino acids.
  • the present invention relates to an immobilized peptide catalyst having an amino acid sequence at the N-terminus and having the C-terminus bound to a carrier and immobilized and having 27 or less amino acid residues.
  • the present invention comprises a peptide and a carrier, and the peptide is represented by the formula (1) or the following formula (2): (SAA1)-(SAA)-(AA)-(AA2) (2) (In the formula, SAA and SAA1 each independently represent an amino acid having a secondary amino group. AA represents an ⁇ , ⁇ -disubstituted amino acid. AA2 represents one or two natural or non-natural amino acids. )) In the presence of a peptide catalyst containing the amino acid represented by the following formula (3):
  • R 1 and R 2 are each independently a substituted or unsubstituted alkyl group having 1 to 15 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 12 carbon atoms, and a substituted group having 6 to 18 carbon atoms. Or an unsubstituted aryl group or hydrogen.
  • R 3 is a substituted or unsubstituted alkyl group having 1 to 15 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 12 carbon atoms, a substituted or unsubstituted aryl group having 6 to 18 carbon atoms, or And a diazodicarboxylate derivative represented by the following formula (5):
  • an asymmetric ⁇ -amination reaction of an aldehyde useful as a method for synthesizing intermediates for pharmaceuticals and agricultural chemicals can be advanced with high stereoselectivity.
  • the amino acid having an asymmetric point described in the present application may be an L-isomer or a D-isomer unless otherwise specified. Moreover, the mixture of a compatible body may be sufficient.
  • the optical purity of the optically active amino acid is preferably 80% ee or more, more preferably 90% ee or more, and most preferably 95% ee or more. .
  • the amino acid side chain having a functional group may be substituted with a protecting group or the like.
  • a protecting group or the like for example, in the case of L-serine in which the side chain hydroxyl group is protected with a t-butyl group, “L-Ser (tBu)”, and in the case of L-serine in which the side chain hydroxyl group is protected with an acetyl group, “ In the case of “L-Ser (Ac)” and L-asparagine in which the side chain amide group is protected with a trityl group, it is expressed as “L-Asp (Trt)”.
  • the immobilized peptide catalyst according to the present invention comprises a peptide and a carrier, and the peptide is represented by the following formula (1): (SAA)-(AA)-(AA2) (1) Or the following formula (2): (SAA1)-(SAA)-(AA)-(AA2) (2) Is contained at the N-terminus, and the C-terminus is immobilized by binding to a carrier. More preferably, it is an immobilized peptide represented by the formula (1).
  • the N-terminal amino acid may be in the N-free form or may form a salt with the acid.
  • the acid examples include organic acids such as trifluoroacetic acid, methanesulfonic acid, p-toluenesulfonic acid and benzoic acid, and inorganic acids such as hydrochloric acid and sulfuric acid.
  • organic acids such as trifluoroacetic acid, methanesulfonic acid, p-toluenesulfonic acid and benzoic acid
  • inorganic acids such as hydrochloric acid and sulfuric acid.
  • an organic acid is preferable, trifluoroacetic acid, methanesulfonic acid, and benzoic acid are more preferable, and trifluoroacetic acid is most preferable.
  • SAA represents an amino acid having a secondary amino group.
  • amino acids having a secondary amino group include proline (Pro), 3-hydroxyproline (3-Hyp), 3-hydroxyproline derivatives, azetidine-2-carboxylic acid, and the like.
  • the 3Hyp derivative is not particularly limited, and examples thereof include protected O-TBDMS (Ot-butyldimethylsilyl-3-hydroxyproline).
  • Pro is preferable because it is inexpensive and easily available.
  • SAA1 represents an amino acid having a secondary amino group.
  • the amino acid having a secondary amino group include those described above. Among them, Pro is preferable because it can be obtained relatively inexpensively.
  • AA represents an ⁇ , ⁇ -disubstituted amino acid.
  • the substituent bonded to the ⁇ -position carbon is preferably an alkyl group or a cyclic alkylene group.
  • the total number of carbon atoms of the two substituents may be preferably 10 or less, more preferably about 5 or less.
  • Examples of ⁇ , ⁇ -disubstituted amino acids include the following formula (6):
  • ⁇ -aminoisobutyric acid (Aib) represented by the following formula (7):
  • Aib ⁇ -aminocyclohexanecarboxylic acid (Ach) represented by Of these, Aib is preferred.
  • AA2 represents 1 or 2 natural amino acids or non-natural amino acids.
  • a natural amino acid represents an amino acid constituting a protein, and when the amino acid has an asymmetric point, its absolute structure may be L-form or D-form.
  • natural amino acids having hydrophobic side chains such as Gly, Ala, Val, Leu, Ile, Met, Trp, Phe, Pro, and uncharged polar groups such as Ser, Thr, Cys, Tyr, Asn, Gln
  • natural amino acids having a chain natural amino acids having a positive charge such as Lys, His, and Arg in the side chain, and natural amino acids having a negative charge such as Asp and Glu in the side chain.
  • non-natural amino acids include amino acids other than the above-mentioned natural amino acids.
  • an amino acid has an asymmetric point, its absolute structure may be L-form or D-form.
  • Aib, Ach the following formula (8):
  • AA2 is preferably a natural amino acid having a hydrophobic side chain, a natural amino acid having an uncharged polar group in the side chain, Aib, Ach, Ala (1-Pyn), or a combination thereof, and more preferably Is a natural amino acid having a hydrophobic side chain, a natural amino acid having an uncharged polar group, or a combination thereof, more preferably Ala, Val, Ile, Trp, Phe, Ser, or a combination thereof And most preferably Ala, Trp, Phe, Ser, or a combination thereof.
  • Ser-Ser, Trp-Trp, or Ser-Trp is preferable.
  • AA2 and the carrier may be directly bonded, or a further amino acid may be present between AA2 and the carrier.
  • the number of amino acid residues present between AA2 and the carrier is not particularly limited.
  • the total number of amino acid residues constituting the peptide is preferably 27 or less, more preferably 10 or less, and most preferably 4 or less.
  • the amino acid residue present between AA2 and the carrier is preferably 0 to 24 residues, more preferably 0 to 7 residues, still more preferably 0 or 1, and most preferably 0. It is.
  • the amino acid present is not particularly limited, and may be a natural amino acid or a non-natural amino acid. Also good.
  • natural amino acids include those described above.
  • non-natural amino acids include those described above. Of these, natural amino acids are preferable because they are inexpensive and easily available.
  • the number of amino acid residues present between AA2 and the carrier is not particularly limited.
  • the total number of amino acid residues constituting the peptide is preferably 50 or less, and more preferably 40 or less. Accordingly, the number of amino acid residues present between AA2 and the carrier is preferably 0 to 46 residues, more preferably 0 to 36 residues, and most preferably 4 to 36 residues composed of the same amino acid. It is a group.
  • the existing amino acid when an amino acid is present between AA2 and the carrier, is not particularly limited, and may be a natural amino acid or a non-natural amino acid. Also good. Examples of natural amino acids include those described above. Examples of non-natural amino acids include those described above. Of these, natural amino acids are preferable because they are inexpensive and easily available. Furthermore, polyamino acids composed of the same amino acids are preferred, and among them, polyamino acids known to form ⁇ -helices are preferred, and polyleucine is most preferred.
  • the carrier is made of a resin having an amine as a functional group. By condensing the amine and the C-terminal carboxyl group of the peptide, the peptide is immobilized on the carrier.
  • the resin having an amine functional group is not particularly limited.
  • aminomethylpolystyrene aminomethylresin
  • Tentagel on a low-crosslinked polystyrene carrier, polyethylene (-O- is bonded to the ethylene moiety).
  • Preferred carriers include, for example, a resin having a polystyrene main chain and an amino group, particularly preferably a resin having a cross-linked polystyrene main chain and an amino group and a polyoxyalkylene chain (for example, a polyoxyethylene chain) in the side chain. May be included.
  • the amount of the amine functional group introduced into the carrier is not particularly limited, but is preferably 0.1 to 3.0 mmol / g, more preferably 0.2 to 2.0 mmol / g.
  • the average particle size of the carrier is not particularly limited, but is preferably 10 to 500 mesh, and more preferably 20 to 300 mesh.
  • the carrier may be cross-linked or not cross-linked. When a crosslinked carrier is used, the reagent used for crosslinking and the amount of crosslinking are not particularly limited.
  • the immobilized peptide catalyst according to the present invention can be synthesized by an ordinary solid phase synthesis method.
  • Fmoc 9-fluorenylmethyloxycarbonyl
  • HOBt hydroxybenzotriazole
  • HBTU 1- [bis (dimethylamino) methylene] -1H-benzotriazolium
  • a DMF solution consisting of -3-oxide hexafluorophosphate) and DIEA (diisopropylethylamine) is stirred for several tens of minutes at room temperature, then filtered, and the residue is washed with DMF.
  • An extended Fmoc-protected amino acid resin can be synthesized. Subsequently, a 20% (vol / vol) piperidine / DMF solution is added, stirred for several tens of minutes, filtered, and the residue is washed with DMF to obtain an N-free amino acid resin.
  • An immobilized peptide catalyst can be synthesized by performing these operations using any Fmoc amino acid and finally deprotecting the side chain protecting group as necessary.
  • the ⁇ -aminoaldehyde derivative represented by can be produced with high selectivity.
  • R 1 and R 2 are each independently a substituted or unsubstituted alkyl group having 1 to 15 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 12 carbon atoms, or a carbon number of 6 Represents -18 substituted or unsubstituted aryl groups, or hydrogen.
  • the substituted alkyl group may be an alkyl group substituted with an unsaturated hydrocarbon group, that is, an alkenyl group, an alkynyl group, or the like, and may further have another substituent.
  • Examples of the substituted or unsubstituted alkyl group having 1 to 15 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-pentyl group, Examples thereof include an n-octadecanoyl group, a 4-pentenyl group, and a 4-pentynyl group.
  • Examples of the substituted or unsubstituted aralkyl group having 7 to 12 carbon atoms include benzyl group, p-chlorobenzyl group, o-chlorobenzyl group, m-chlorobenzyl group, 3,5-dichlorobenzyl group, and p-bromobenzyl.
  • benzyl group p-chlorobenzyl group, o-chlorobenzyl group, m-chlorobenzyl group, 3,5-dichlorobenzyl group, and p-bromobenzyl.
  • Examples of the substituted or unsubstituted aryl group having 6 to 18 carbon atoms include phenyl group, p-chlorophenyl group, o-chlorophenyl group, m-chlorophenyl group, p-bromophenyl group, 3,5-dichlorophenyl group, o- Examples include bromophenyl group, m-bromophenyl group, p-nitrophenyl group, p-methoxyphenyl group, p-trifluoromethylphenyl group, 3,5-bis (trifluoromethyl) phenyl and the like.
  • the upper limit of the carbon number of the alkyl group represented by R 1 and R 2 is preferably 12 or less, more preferably 10 or less.
  • the upper limit of the carbon number of the aralkyl group is preferably 10 or less, more preferably 8 or less.
  • the upper limit of the carbon number of the aryl group is preferably 10 or less, more preferably 8 or less.
  • R 1 and R 2 are different substituents, and it is more preferable that either R 1 or R 2 is hydrogen.
  • R 3 represents a substituted or unsubstituted alkyl group having 1 to 15 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 12 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 18 carbon atoms. Represents a group or hydrogen.
  • Examples of the substituted or unsubstituted alkyl group having 1 to 15 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-pentyl group, n -Octadecyl group and the like.
  • Examples of the substituted or unsubstituted aralkyl group having 7 to 12 carbon atoms include benzyl group, p-nitrobenzyl group, p-trifluoromethylbenzyl group, p-methoxybenzyl group, 1-naphthyl group and 2-naphthyl group. Is mentioned.
  • Examples of the substituted or unsubstituted aryl group having 6 to 18 carbon atoms include a phenyl group, a p-nitrophenyl group, a p-trifluoromethylphenyl group, and a p-methoxyphenyl group.
  • a phenyl group, a p-nitrophenyl group, a p-trifluoromethylphenyl group, and a p-methoxyphenyl group include a phenyl group, a p-nitrophenyl group, a p-trifluoromethylphenyl group, and a p-methoxyphenyl group.
  • an ethyl group, an isopropyl group, a t-butyl group, and a benzyl group are preferable, and an isopropyl group, a t-butyl group, and a benzyl group are more preferable because they are easily available and can be handled relatively safely.
  • the upper limit of the carbon number of the alkyl group represented by R 3 is preferably 12 or less, more preferably 10 or less.
  • the upper limit of the carbon number of the aralkyl group is preferably 10 or less, more preferably 8 or less.
  • the upper limit of the carbon number of the aryl group is preferably 10 or less, more preferably 8 or less.
  • R 1 , R 2 and R 3 are the same as described above.
  • the amount of the immobilized peptide catalyst used for the reaction is not particularly limited, but may be 0.1 to 100 mol%, preferably 0.1 to 20 mol%, relative to the azodicarboxylate derivative (4). More preferably, it is 0.1 to 10 mol%.
  • the amount of aldehyde (3) used in the reaction is not particularly limited, but it may be used in an amount of 1.0 to 5.0 equivalents relative to the azodicarboxylate derivative (4), preferably 1.0 to 3.0 equivalents, more preferably 1.0 to 2.0 equivalents.
  • the solvent to be used is not particularly limited, and examples thereof include aprotic polar solvents such as N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N-methylpyrrolidone, and hexamethylphosphoric triamide; hexamethylbenzene, Hydrocarbon solvents such as toluene, n-hexane, cyclohexane; ether solvents such as diethyl ether, tetrahydrofuran (THF), diisopropyl ether, methyl tert-butyl ether, dimethoxyethane; chlorobenzene, methylene chloride, chloroform, 1,1,1 -Halogen solvents such as trichloroethane; ester solvents such as ethyl acetate and butyl acetate; nitrile solvents such as acetonitrile and butyronitrile; methanol, ethanol, isopropanol,
  • hydrocarbon solvents halogen solvents, nitrile solvents, ester solvents, alcohol solvents, and water are preferable, and toluene, dichloromethane, acetonitrile, ethyl acetate, isopropyl acetate, methanol, and water are more preferable. Most preferred are dichloromethane, acetonitrile, ethyl acetate, methanol and water.
  • the reaction temperature is usually in the range of ⁇ 30 to 120 ° C., preferably ⁇ 20 to 60 ° C. More preferably, it is ⁇ 20 to 40 ° C.
  • the filtrate may be concentrated after separating the immobilized peptide catalyst from the reaction solution by filtration to obtain a crude product from the reaction solution. By filtering the reaction solution in this way, the catalyst can be easily separated.
  • the separated catalyst may be washed with an organic solvent or the like.
  • the separated immobilized peptide catalyst can be reused.
  • the separated catalyst may be used for the reaction as it is, or the separated catalyst may be dried under reduced pressure and then used for the reaction.
  • the obtained reaction liquid may be processed according to a general post-treatment method.
  • the extraction operation is performed using a general extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane and the like.
  • the target compound is obtained by distilling off the reaction solvent and the extraction solvent from the resulting extract by an operation such as heating under reduced pressure.
  • the reaction solvent is distilled off or the solvent is replaced by an operation such as heating under reduced pressure, the same operation as described above may be performed.
  • the target product thus obtained is almost pure, but purification may be carried out by a general method such as crystallization purification, fractional distillation, column chromatography, etc. to further increase the purity.
  • the ⁇ -aminoaldehyde derivative that can be obtained in this way may be unstable or difficult to analyze the product. Therefore, the ⁇ -aminoaldehyde derivative may be obtained after converting the aldehyde functional group to a functional group such as alcohol or carboxylic acid. May be. For example, it can be obtained as a carboxylic acid derivative by reducing with sodium borohydride and oxidizing with sodium chlorite (NaClO 2 ) as an alcohol derivative.
  • the immobilized peptide catalyst having 27 or less amino acid residues is a novel peptide catalyst that has been found to have high selectivity in the asymmetric ⁇ -amination reaction of aldehydes. Not only can the reaction solution be easily separated from the reaction system by filtering the reaction solution, but also it can be easily synthesized by an industrially established solid-phase synthesis method, which is preferable.
  • Example 1 Tentagel (registered trademark (hereinafter, the same)) in a synthetic disposable desalting column (trade name PD-10, manufactured by GE Healthcare ) of D-Pro-Aib-L-Ser-L-Ser-Tentagel ) S-NH 2 (purchased from Aldrich) (loading capacity 0.26 mol / kg, 300 mg) was added and washed with dichloromethane (5 mL ⁇ 2) and DMF (5 mL ⁇ 2).
  • the reaction solution was separated by filtration, and the residue was washed with DMF (5 mL ⁇ 5 times) to obtain L-Ser (tBu) -Tentagel.
  • a series of the same operations are sequentially performed using Fmoc-L-Ser (tBu) -OH, Fmoc-Aib-OH, and Fmoc-D-Pro-OH, and D-Pro-Aib-L-Ser (tBu) -L- Ser (tBu) -Tentagel was obtained.
  • the obtained peptide was dried under reduced pressure (20 ° C./1 mmHg, 1 h), and water (3 drops with a dropper) and trifluoroacetic acid (5 mL) were added.
  • the reaction was allowed to proceed for 60 minutes with occasional shaking.
  • the reaction solution was separated by filtration, and the residue was dichloromethane (5 mL ⁇ 5 times), DMF (5 mL ⁇ 5 times), triethylamine (5 mL ⁇ 5 times), DMF (5 mL ⁇ 5 times), dichloromethane (5 mL ⁇ 5 times). Washed with The obtained residue was dried under reduced pressure (20 ° C./1 mmHg, 15 h) to obtain the title peptide.
  • Example 2 Synthesis of L-Pro-Aib-L-Ser-L-Ser-Tentagel According to the method described in Example 1, Tenogel S-NH 2 was converted to Fmoc-L-Ser (tBu) -OH, Fmoc- L-Ser (tBu) -OH, Fmoc-Aib-OH, and Fmoc-L-Pro-OH were sequentially condensed. The same deprotection operation as in Example 1 was performed to obtain the title compound.
  • Example 3 Synthesis of D-Pro-Aib-L-Ser-L-Trp-Tentagel According to the method described in Example 1, Tentagel S-NH 2 was converted to Fmoc-L-Trp-OH, Fmoc-L-Ser. (TBu) -OH, Fmoc-Aib-OH and Fmoc-D-Pro-OH were sequentially condensed. The same deprotection operation as in Example 1 was performed to obtain the title compound.
  • Example 4 Synthesis of D-Pro-Aib-L-Ser-L-Ser-aminomethylpolystyrene According to the method described in Example 1, aminomethylpolystyrene (loading capacity 1.5 mol / kg) was substituted for Tentagel-NH 2. ) was used to synthesize the title compound.
  • Example 5 Tentagel S-NH 2 (loading capacity 0.26 mol / kg) in a disposable desalting column (trade name PD-10, manufactured by GE Healthcare ) of D-Pro-Aib-L-Phe-Tentagel , 100 mg), and washed with dichloromethane (1 mL ⁇ 2 times) and DMF (1 mL ⁇ 2 times).
  • DMF consisting of Fmoc-L-Phe-OH (30.2 mg, 0.078 mmol), HOBt (10.5 mg, 0.078 mmol), HBTU (29.6 mg, 0.078 mmol), DIEA (27 ⁇ L, 0.156 mmol) (1 mL) solution was added and allowed to react for 30 minutes with occasional shaking.
  • reaction solution was separated by filtration, and the residue (Fmoc-L-Phe-Tentagel) was washed with DMF (5 mL ⁇ 5 times). Subsequently, 20% (vol / vol) piperidine / DMF solution (1 mL) was added and allowed to react for 30 minutes with occasional shaking. The reaction solution was separated by filtration, and the residue was washed with DMF (1 mL ⁇ 5 times) to obtain L-Phe-Tentagel. A series of the same operations were sequentially performed using Fmoc-Aib-OH and Fmoc-D-Pro-OH to obtain D-Pro-Aib-L-Phe-Tentagel. The obtained peptide was washed with dichloromethane (1 mL ⁇ 5 times). The obtained residue was dried under reduced pressure (20 ° C./1 mmHg, 15 h) to obtain the title peptide.
  • Example 6 Synthesis of D-Pro-Aib-L-Ala-Tentagel According to the method described in Example 5, Tentagel S-NH 2 was mixed with Fmoc-L-Ala-OH, Fmoc-Aib-OH, Fmoc-D. -Pro-OH was sequentially condensed to give the title compound.
  • Example 7 Synthesis of TFA / D-Pro-Aib-L-Ser-L-Ser-Tentagel
  • D-Pro-Aib-L-Ser-L-Ser-Tentagel (100 mg) obtained in Example 1 is disposable Weighed in a desalting column (trade name PD-10, manufactured by GE Healthcare), and trifluoroacetic acid (0.5 mL) was added at room temperature. The reaction was separated after 10 minutes of reaction with occasional shaking. The residue was washed successively with dichloromethane (1 mL ⁇ 3), DMF (1 mL ⁇ 3), and dichloromethane (1 mL ⁇ 3). The obtained resin was dried under reduced pressure (20 ° C./1 mmHg, 15 h) to obtain the title peptide in which N-terminal D-Pro formed a salt with trifluoroacetic acid.
  • Example 8 Synthesis of (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropan-1-ol Peptide catalyst D-Pro-Aib- obtained in Example 1 Acetonitrile (600 ⁇ L) was added to L-Ser-L-Ser-Tentagel (21.6 mg, 5.06 ⁇ 10 ⁇ 3 mmol) and cooled in an ice bath. At the same temperature, 3-phenylpropanal (13.4 ⁇ L, 0.1 mmol) and diisopropyl diazodicarboxylate (1.9 mol / L-toluene solution, 26.2 ⁇ L, 0.05 mmol) were added.
  • the catalyst was separated by a filtration operation to obtain a reaction solution.
  • the separated catalyst was washed with acetonitrile (1 mL), and the washing solution and the reaction solution were combined and concentrated.
  • the separated catalyst was recovered as it was and reused as appropriate for the same reaction.
  • the concentrate was diluted in THF (1 mL) and sodium borohydride (appropriate amount) was added at room temperature. After stirring at the same temperature for 1 hour, water (3 mL) was added, and extraction was performed with dichloromethane (15 mL ⁇ 1 + 5 mL ⁇ 1). The extract was dried using magnesium sulfate and then concentrated.
  • Example 11 Synthesis of (R) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropan-1-ol According to the method described in Example 8, described in Example 2. The same reaction was carried out using the peptide catalyst L-Pro-Aib-L-Ser-L-Ser-Tentagel obtained by the above method to obtain the title compound (yield 86%, 89% ee (R-isomer)) ).
  • Example 12 Synthesis of (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropan-1-ol According to the method described in Example 8, described in Example 3. The same reaction was carried out using the peptide catalyst D-Pro-Aib-L-Ser-L-Trp-Tentagel obtained by the above method to obtain the title compound (yield 70%, 86% ee (S-form)) ).
  • Example 13 Synthesis of (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropan-1-ol According to the method described in Example 8, described in Example 4. Using the peptide catalyst D-Pro-Aib-L-Ser-L-Ser-aminomethyl polystyrene obtained by the above method, the same reaction was carried out using dichloromethane instead of acetonitrile to obtain the title compound (yield 100). %, 91% ee (S-form)).
  • Example 14 Synthesis of (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropan-1-ol According to the method described in Example 8, described in Example 5. Using the peptide catalyst D-Pro-Aib-L-Phe-Tentagel obtained by the above method, the same reaction was carried out to obtain the title compound (yield 99%, 89% ee (S-form)).
  • Example 15 Synthesis of (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropan-1-ol According to the method described in Example 8, described in Example 6. The same reaction was carried out using the peptide catalyst D-Pro-Aib-L-Ala-Tentagel obtained by the above method to obtain the title compound (yield 100%, 88% ee (S-form)).
  • Example 16 Synthesis of (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropan-1-ol According to the method described in Example 8, described in Example 7. The same reaction was performed using the peptide catalyst TFA • D-Pro-Aib-L-Ser-L-Ser-Tentagel obtained by the above method to obtain the title compound (yield 99%, 88% ee (S- body)).
  • Diisopropyl diazodicarboxylate (1.9 mol / L-toluene solution, 13.1 ⁇ L, 0.025 mmol) was added at the same temperature. After stirring at the same temperature for 6 hours, the catalyst was separated by a filtration operation to obtain a reaction solution. The separated catalyst was washed with acetonitrile (1 mL), and the washing solution and the reaction solution were combined and concentrated. The separated catalyst was recovered as it was and reused as appropriate for the same reaction. The concentrate was diluted in THF (1 mL) and sodium borohydride (appropriate amount) was added at room temperature.
  • the catalyst was separated by a filtration operation to obtain a reaction solution.
  • the separated catalyst was washed with acetonitrile (1 mL), and the washing solution and the reaction solution were combined and concentrated.
  • the separated catalyst was recovered as it was and reused as appropriate for the same reaction.
  • the concentrate was diluted in THF (1 mL) and sodium borohydride (appropriate amount) was added at room temperature.
  • water (3 mL) was added, and extraction was performed with dichloromethane (15 mL ⁇ 1 + 5 mL ⁇ 1). The extract was dried using magnesium sulfate and then concentrated.
  • Example 21 Reuse experiment 1 of catalyst According to the method described in Example 8, the same reaction was performed using the catalyst recovered in Example 16, and (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropane- 1-ol (yield 100%, 86% ee (S-form)) was obtained.
  • Example 22 Catalyst reuse experiment 2 According to the method described in Example 8, a similar reaction was performed using the catalyst recovered in Example 21, and (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropane- 1-ol (yield 88%, 87% ee (S-form)) was obtained.
  • Example 23 Catalyst reuse experiment 3 According to the method described in Example 8, a similar reaction was performed using the catalyst recovered in Example 22, and (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropane- 1-ol (yield 90%, 91% ee (S-form)) was obtained.
  • Example 24 Catalyst reuse experiment 4 According to the method described in Example 8, the same reaction was carried out using the catalyst recovered in Example 23 to obtain (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropane- 1-ol (yield 100%, 90% ee (S-form)) was obtained.
  • Example 25 Catalyst reuse experiment 5 According to the method described in Example 8, the same reaction was performed using the catalyst recovered in Example 24, and (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropane- 1-ol (yield 98%, 92% ee (S-form)) was obtained.
  • Example 26 Catalyst reuse experiment 6 According to the method described in Example 8, the same reaction was performed using the catalyst recovered in Example 25, and (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropane- 1-ol (99% yield, 92% ee (S-form)) was obtained.
  • Example 27 Catalyst reuse experiment 7 According to the method described in Example 8, a similar reaction was performed using the catalyst recovered in Example 26, and (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropane- 1-ol (yield 84%, 92% ee (S-form)) was obtained.
  • Example 28 Catalyst Reuse Experiment 8 According to the method described in Example 8, the same reaction was performed using the catalyst recovered in Example 27, and (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropane- 1-ol (yield 92%, 91% ee (S-form)) was obtained.
  • the present invention is useful for asymmetric amination of the ⁇ -position of an aldehyde.
  • Aldehydes asymmetrically aminated at the ⁇ -position are useful as intermediates for pharmaceuticals, agricultural chemicals and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 This catalyst is composed of a peptide and a carrier, said peptide containing an amino acid represented by formula (SAA)-(AA)-(AA2) or (SAA1)-(SAA)- (AA)- (AA2) at the N-terminus thereof. (In the formula, SAA, SAA1 independently represent an amino acid having a secondary amino group; AA represents a α,α-disubstituted amino acid; SAA2 represents one or two natural or non natural amino acids.) and the C-terminus thereof being bonded to the carrier and immobilized. In the presence of the peptide catalyst, an aldhehyde is reacted with a diazodicarboxylate derivative.

Description

ペプチド触媒およびそれを用いたアルデヒドの不斉α-アミノ化Peptide catalyst and asymmetric α-amination of aldehydes using the same
 本発明は、ペプチド触媒およびそれを用いたアルデヒドのα-位を不斉アミノ化する方法に関する。 The present invention relates to a peptide catalyst and a method for asymmetric amination of an α-position of an aldehyde using the peptide catalyst.
 ペプチドは、その機能や生理活性等が注目され、様々な研究の対象となってきた。近年では、精密有機合成における反応触媒としての活性が注目され、多くの反応が開発されてきた(非特許文献1)。中でも、N-末端がプロリン誘導体であるペプチド触媒は、不斉アルドール反応等、カルボニル基のα位を不斉に官能基化する反応に利用できることから種々検討されており、アミノ酸配列が反応の選択性、収率に大きな影響を与えることは分かっているが、それぞれの反応および基質に対して適した配列を予想するのは困難である(非特許文献2,3)。 Peptides have attracted attention for their functions and physiological activities, and have been the subject of various studies. In recent years, the activity as a reaction catalyst in precision organic synthesis has attracted attention, and many reactions have been developed (Non-patent Document 1). In particular, peptide catalysts whose N-terminal is a proline derivative have been studied in various ways because they can be used for asymmetric functionalization of the α-position of the carbonyl group, such as an asymmetric aldol reaction. However, it is difficult to predict a suitable sequence for each reaction and substrate (Non-patent Documents 2 and 3).
 一方、カルボニル基のα位を不斉に官能基化する反応の中において、アルデヒドの不斉α-アミノ化反応については、その生成物が医薬品、農薬等の中間体として有用な光学活性アミノ酸誘導体であり、重要な反応であるにもかかわらず、ペプチド触媒を用いた反応例については報告されたことがなかった。 On the other hand, among the reactions in which the α-position of the carbonyl group is asymmetrically functionalized, the product of the asymmetric α-amination reaction of the aldehyde is useful as an intermediate for pharmaceuticals, agricultural chemicals, etc. In spite of this important reaction, no reaction example using a peptide catalyst has been reported.
 本発明の課題は、アルデヒドの不斉α-アミノ化反応を高立体選択的に進行させることが可能なペプチド触媒の開発にある。 The object of the present invention is to develop a peptide catalyst capable of proceeding with a highly stereoselective asymmetric α-amination reaction of an aldehyde.
 本発明者らは、鋭意検討した結果、2級アミノ基を有するアミノ酸およびα,α-ジ置換アミノ酸および1または2のアミノ酸が結合した配列をN-末端に含み、C-末端が担体と結合して固定化されたペプチド触媒の存在下で、アルデヒドとジアゾジカルボキシレート誘導体を反応させることで、上記課題を解決できることを見出した。 As a result of intensive studies, the present inventors include a sequence in which an amino acid having a secondary amino group and an α, α-disubstituted amino acid and one or two amino acids are bonded at the N-terminus, and the C-terminus is bonded to a carrier. The present inventors have found that the above problem can be solved by reacting an aldehyde with a diazodicarboxylate derivative in the presence of a peptide catalyst immobilized thereon.
 即ち、本願発明は、ペプチドと担体とからなり、当該ペプチドが、下記式(1):
(SAA)-(AA)-(AA2)   (1)
(式中、SAAは2級アミノ基を有するアミノ酸を表す。AAはα,α-ジ置換アミノ酸を表す。AA2は1または2の天然型又は非天然型のアミノ酸を表す。)で表されるアミノ酸配列をN-末端に含み、C-末端が担体と結合して固定化された、アミノ酸残基数が27以下の固定化ペプチド触媒に関する。
That is, the present invention comprises a peptide and a carrier, and the peptide is represented by the following formula (1):
(SAA)-(AA)-(AA2) (1)
(Wherein SAA represents an amino acid having a secondary amino group, AA represents an α, α-disubstituted amino acid, and AA2 represents one or two natural or non-natural amino acids). The present invention relates to an immobilized peptide catalyst having an amino acid sequence at the N-terminus and having the C-terminus bound to a carrier and immobilized and having 27 or less amino acid residues.
 また、本願発明は、ペプチドと担体とからなり、当該ペプチドが、前記式(1)または、下記式(2):
(SAA1)-(SAA)-(AA)-(AA2)   (2)
(式中、SAA、SAA1はそれぞれ独立して2級アミノ基を有するアミノ酸を表す。AAはα,α-ジ置換アミノ酸を表す。AA2は1または2の天然型又は非天然型のアミノ酸を表す。)で表されるアミノ酸をN-末端に含み、C-末端が担体と結合して固定化されたペプチド触媒存在下、下記式(3):
The present invention comprises a peptide and a carrier, and the peptide is represented by the formula (1) or the following formula (2):
(SAA1)-(SAA)-(AA)-(AA2) (2)
(In the formula, SAA and SAA1 each independently represent an amino acid having a secondary amino group. AA represents an α, α-disubstituted amino acid. AA2 represents one or two natural or non-natural amino acids. )) In the presence of a peptide catalyst containing the amino acid represented by the following formula (3):
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、R1,R2はそれぞれ独立して、炭素数1~15の置換又は無置換のアルキル基、炭素数7~12の置換又は無置換のアラルキル基、炭素数6~18の置換又は無置換のアリール基、又は水素を表す。)で表されるアルデヒドと、下記式(4): (Wherein R 1 and R 2 are each independently a substituted or unsubstituted alkyl group having 1 to 15 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 12 carbon atoms, and a substituted group having 6 to 18 carbon atoms. Or an unsubstituted aryl group or hydrogen.) And an aldehyde represented by the following formula (4):
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、R3は炭素数1~15の置換又は無置換のアルキル基、炭素数7~12の置換又は無置換のアラルキル基、炭素数6~18の置換又は無置換のアリール基、又は水素を表す。)で表されるジアゾジカルボキシレート誘導体を反応させることを特徴とする、下記式(5): (Wherein R 3 is a substituted or unsubstituted alkyl group having 1 to 15 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 12 carbon atoms, a substituted or unsubstituted aryl group having 6 to 18 carbon atoms, or And a diazodicarboxylate derivative represented by the following formula (5):
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、R1,R2,R3は前記に同じ。*は不斉炭素を表す。)で表されるα-アミノアルデヒド誘導体の製造方法に関する。 (Wherein R 1 , R 2 and R 3 are the same as above, * represents an asymmetric carbon).
 本発明にかかるペプチド触媒を用いることにより、医薬品や農薬の中間体の合成法として有用なアルデヒドの不斉α-アミノ化反応を高立体選択的に進行させることができる。 By using the peptide catalyst according to the present invention, an asymmetric α-amination reaction of an aldehyde useful as a method for synthesizing intermediates for pharmaceuticals and agricultural chemicals can be advanced with high stereoselectivity.
 以下、本発明について詳細に説明する。
本願において記載した不斉点を有するアミノ酸は、特に表記のある場合を除いてL-体であっても良いし、D-体であっても良い。また、両立体の混合物であっても良い。L-体、D-体を明記している場合は、記載の光学活性アミノ酸の光学純度は80%ee以上が好ましく、更に好ましくは90%ee以上であり、最も好ましくは95%ee以上である。
Hereinafter, the present invention will be described in detail.
The amino acid having an asymmetric point described in the present application may be an L-isomer or a D-isomer unless otherwise specified. Moreover, the mixture of a compatible body may be sufficient. When the L-form and D-form are specified, the optical purity of the optically active amino acid is preferably 80% ee or more, more preferably 90% ee or more, and most preferably 95% ee or more. .
 本願において官能基を有するアミノ酸側鎖は保護基等で置換されていても良い。例えば、側鎖ヒドロキシル基がt-ブチル基で保護されているL-セリンの場合、「L-Ser(tBu)」、側鎖ヒドロキシル基がアセチル基で保護されているL-セリンの場合、「L-Ser(Ac)」、側鎖アミド基がトリチル基で保護されているL-アスパラギンの場合、「L-Asp(Trt)」等と表す。
 本願発明にかかる固定化ペプチド触媒においては、ペプチドと担体からなり、当該ペプチドが、下記式(1):
(SAA)-(AA)-(AA2)   (1)
または、下記式(2):
(SAA1)-(SAA)-(AA)-(AA2)   (2)
で表されるアミノ酸をN-末端に含み、C-末端が担体と結合して固定化されている。より好ましくは、前記式(1)で表される固定化ペプチドである。
In the present application, the amino acid side chain having a functional group may be substituted with a protecting group or the like. For example, in the case of L-serine in which the side chain hydroxyl group is protected with a t-butyl group, “L-Ser (tBu)”, and in the case of L-serine in which the side chain hydroxyl group is protected with an acetyl group, “ In the case of “L-Ser (Ac)” and L-asparagine in which the side chain amide group is protected with a trityl group, it is expressed as “L-Asp (Trt)”.
The immobilized peptide catalyst according to the present invention comprises a peptide and a carrier, and the peptide is represented by the following formula (1):
(SAA)-(AA)-(AA2) (1)
Or the following formula (2):
(SAA1)-(SAA)-(AA)-(AA2) (2)
Is contained at the N-terminus, and the C-terminus is immobilized by binding to a carrier. More preferably, it is an immobilized peptide represented by the formula (1).
 前記式(1)および(2)において、N-末端のアミノ酸は、N-フリー体であっても良いし、酸と塩を形成していても良い。 In the above formulas (1) and (2), the N-terminal amino acid may be in the N-free form or may form a salt with the acid.
 酸としては例えば、トルフルオロ酢酸、メタンスルホン酸、p-トルエンスルホン酸、安息香酸等の有機酸、塩酸、硫酸等の無機酸が挙げられる。中でも好ましくは有機酸であり、さらに好ましくはトリフルオロ酢酸、メタンスルホン酸、安息香酸であり、最も好ましくはトリフルオロ酢酸である。 Examples of the acid include organic acids such as trifluoroacetic acid, methanesulfonic acid, p-toluenesulfonic acid and benzoic acid, and inorganic acids such as hydrochloric acid and sulfuric acid. Among them, an organic acid is preferable, trifluoroacetic acid, methanesulfonic acid, and benzoic acid are more preferable, and trifluoroacetic acid is most preferable.
 前記式(1)および(2)において、SAAは2級アミノ基を有するアミノ酸を表す。2級アミノ基を有するアミノ酸としては例えば、プロリン(Pro)、3-ヒドロキシプロリン(3-Hyp)、3-ヒドロキシプロリンの誘導体、アゼチジン-2-カルボン酸等が挙げられる。3Hyp誘導体としては特に限定せず、例えばO-TBDMS(O-t-ブチルジメチルシリル-3-ヒドロキシプロリン)保護体等が挙げられる。この中でも好ましくは安価で入手が容易であることからProである。 In the above formulas (1) and (2), SAA represents an amino acid having a secondary amino group. Examples of amino acids having a secondary amino group include proline (Pro), 3-hydroxyproline (3-Hyp), 3-hydroxyproline derivatives, azetidine-2-carboxylic acid, and the like. The 3Hyp derivative is not particularly limited, and examples thereof include protected O-TBDMS (Ot-butyldimethylsilyl-3-hydroxyproline). Among these, Pro is preferable because it is inexpensive and easily available.
 前記式(2)において、SAA1は2級アミノ基を有するアミノ酸を表す。2級アミノ基を有するアミノ酸としては例えば、前記したものが挙げられる。中でも、比較的安価に入手できるという点から、好ましくはProである。 In the above formula (2), SAA1 represents an amino acid having a secondary amino group. Examples of the amino acid having a secondary amino group include those described above. Among them, Pro is preferable because it can be obtained relatively inexpensively.
 前記式(1)および(2)において、AAはα,α-ジ置換アミノ酸を表す。このα,α-ジ置換アミノ酸は、α位の炭素に結合する置換基が、アルキル基又は環構造アルキレン基であることが好ましい。また2つの置換基の合計炭素数は、好ましくは10以下、より好ましくは5以下程度であってもよい。α,α-ジ置換アミノ酸としては、例えば、下記式(6): In the above formulas (1) and (2), AA represents an α, α-disubstituted amino acid. In this α, α-disubstituted amino acid, the substituent bonded to the α-position carbon is preferably an alkyl group or a cyclic alkylene group. The total number of carbon atoms of the two substituents may be preferably 10 or less, more preferably about 5 or less. Examples of α, α-disubstituted amino acids include the following formula (6):
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 で表されるα-アミノイソ酪酸(Aib)、下記式(7): Α-aminoisobutyric acid (Aib) represented by the following formula (7):
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 で表されるα-アミノシクロヘキサンカルボン酸(Ach)等が挙げられる。中でも好ましくはAibである。 Α-aminocyclohexanecarboxylic acid (Ach) represented by Of these, Aib is preferred.
 前記式(1)および(2)において、AA2は、1または2の天然型のアミノ酸又は非天然型のアミノ酸を表す。天然型アミノ酸はタンパク質を構成するアミノ酸を表し、アミノ酸が不斉点を有する場合、その絶対構造はL-体であっても良いし、D-体であっても良い。例えば、Gly,Ala,Val,Leu,Ile,Met,Trp,Phe,Pro等の疎水性側鎖を有する天然型アミノ酸、Ser,Thr,Cys,Tyr,Asn,Gln等の非電荷極性基を側鎖に有する天然型アミノ酸、Lys,His,Arg等の正電荷を側鎖に有する天然型アミノ酸、Asp,Glu等の負電荷を側鎖に有する天然型アミノ酸が挙げられる。 In the formulas (1) and (2), AA2 represents 1 or 2 natural amino acids or non-natural amino acids. A natural amino acid represents an amino acid constituting a protein, and when the amino acid has an asymmetric point, its absolute structure may be L-form or D-form. For example, natural amino acids having hydrophobic side chains such as Gly, Ala, Val, Leu, Ile, Met, Trp, Phe, Pro, and uncharged polar groups such as Ser, Thr, Cys, Tyr, Asn, Gln Examples include natural amino acids having a chain, natural amino acids having a positive charge such as Lys, His, and Arg in the side chain, and natural amino acids having a negative charge such as Asp and Glu in the side chain.
 非天然型アミノ酸としては、上記天然型アミノ酸以外のアミノ酸が挙げられ、アミノ酸が不斉点を有する場合、その絶対構造はL-体であっても良いし、D-体であっても良い。例えば、Aib、Ach、下記式(8): Examples of non-natural amino acids include amino acids other than the above-mentioned natural amino acids. When an amino acid has an asymmetric point, its absolute structure may be L-form or D-form. For example, Aib, Ach, the following formula (8):
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 で表されるAla(1-Pyn)、β-アラニン、フェニルグリシン、2-アミノ安息香酸、および3-アミノ安息香酸等が挙げられる。 Ala (1-Pyn), β-alanine, phenylglycine, 2-aminobenzoic acid, 3-aminobenzoic acid and the like represented by
 AA2として好ましくは、疎水性側鎖を有する天然型アミノ酸、非電荷極性基を側鎖に有する天然型アミノ酸、Aib、Ach、Ala(1-Pyn)、またはこれらを組み合わせたものであり、さらに好ましくは疎水性側鎖を有する天然型アミノ酸、非電荷極性基を有する天然型アミノ酸またはこれらを組み合わせたものであり、さらに好ましくは、Ala、Val、Ile、Trp、Phe、Ser、またはこれらを組み合わせたものであり、最も好ましくはAla、Trp、Phe、Ser、またはこれらを組み合わせたものである。2つのアミノ酸の組み合わせとしては、Ser-Ser、Trp-Trp、またはSer-Trpが好ましい。 AA2 is preferably a natural amino acid having a hydrophobic side chain, a natural amino acid having an uncharged polar group in the side chain, Aib, Ach, Ala (1-Pyn), or a combination thereof, and more preferably Is a natural amino acid having a hydrophobic side chain, a natural amino acid having an uncharged polar group, or a combination thereof, more preferably Ala, Val, Ile, Trp, Phe, Ser, or a combination thereof And most preferably Ala, Trp, Phe, Ser, or a combination thereof. As a combination of two amino acids, Ser-Ser, Trp-Trp, or Ser-Trp is preferable.
 前記式(1)、(2)において、AA2と担体とが直接結合していても、AA2と担体との間に、更なるアミノ酸が存在していてもよい。 In the above formulas (1) and (2), AA2 and the carrier may be directly bonded, or a further amino acid may be present between AA2 and the carrier.
 前記式(1)において、AA2と担体との間に存在するアミノ酸残基数としては特に限定しない。ペプチドを構成するアミノ酸の総残基数として好ましくは27以下であり、さらに好ましくは10以下であり、最も好ましくは4以下である。従って、AA2と担体との間に存在するアミノ酸残基として、好ましくは0~24残基であり、さらに好ましくは0~7残基であり、さらに好ましくは0又は1であり、最も好ましくは0である。 In the above formula (1), the number of amino acid residues present between AA2 and the carrier is not particularly limited. The total number of amino acid residues constituting the peptide is preferably 27 or less, more preferably 10 or less, and most preferably 4 or less. Accordingly, the amino acid residue present between AA2 and the carrier is preferably 0 to 24 residues, more preferably 0 to 7 residues, still more preferably 0 or 1, and most preferably 0. It is.
 前記式(1)において、AA2と担体との間にアミノ酸が存在する場合、存在するアミノ酸としては、特に限定するものではなく、天然型アミノ酸であってもよいし、非天然型アミノ酸であっても良い。天然型のアミノ酸としては前述のものが挙げられる。非天然型のアミノ酸としては前述のものが挙げられる。中でも好ましくは、安価で入手が容易であることから、天然型アミノ酸である。 In the formula (1), when an amino acid is present between AA2 and the carrier, the amino acid present is not particularly limited, and may be a natural amino acid or a non-natural amino acid. Also good. Examples of natural amino acids include those described above. Examples of non-natural amino acids include those described above. Of these, natural amino acids are preferable because they are inexpensive and easily available.
 前記式(2)において、AA2と担体との間に存在するアミノ酸残基数としては特に限定しない。ペプチドを構成するアミノ酸の総残基数として好ましくは50以下であり、さらに好ましくは40以下である。従ってAA2と担体との間に存在するアミノ酸残基数として、好ましくは0~46残基であり、さらに好ましくは0~36残基であり、最も好ましくは同一アミノ酸で構成された4~36残基である。 In the above formula (2), the number of amino acid residues present between AA2 and the carrier is not particularly limited. The total number of amino acid residues constituting the peptide is preferably 50 or less, and more preferably 40 or less. Accordingly, the number of amino acid residues present between AA2 and the carrier is preferably 0 to 46 residues, more preferably 0 to 36 residues, and most preferably 4 to 36 residues composed of the same amino acid. It is a group.
 前記式(2)において、AA2と担体との間にアミノ酸が存在する場合、存在するアミノ酸としては、特に限定するものではなく、天然型アミノ酸であってもよいし、非天然型アミノ酸であっても良い。天然型のアミノ酸としては前述のものが挙げられる。非天然型のアミノ酸としては前述のものが挙げられる。中でも好ましくは、安価で入手が容易であることから、天然型アミノ酸である。さらには、同一アミノ酸で構成されるポリアミノ酸が好ましく、中でも好ましくはα-ヘリックスを形成することが知られているポリアミノ酸であり、最も好ましくはポリロイシンである。 In the formula (2), when an amino acid is present between AA2 and the carrier, the existing amino acid is not particularly limited, and may be a natural amino acid or a non-natural amino acid. Also good. Examples of natural amino acids include those described above. Examples of non-natural amino acids include those described above. Of these, natural amino acids are preferable because they are inexpensive and easily available. Furthermore, polyamino acids composed of the same amino acids are preferred, and among them, polyamino acids known to form α-helices are preferred, and polyleucine is most preferred.
 固定化ペプチド触媒は、80%ee以上の高いエナンチオ選択性を達成できることから、
L-Pro-D-Pro-Aib-L-Trp-L-Trp-(L-Leu)6 ~ 35-(担体),
 
D-Pro-Aib-L-Ser-L-Ser-(担体),
L-Pro-Aib-L-Ser-L-Ser-(担体)(配列番号1),
 
D-Pro-Aib-L-Ser-L-Trp-(担体),
L-Pro-Aib-L-Ser-L-Trp-(担体)(配列番号2),
 
D-Pro-Aib-L-Ala-(担体),
L-Pro-Aib-L-Ala-(担体),
D-Pro-Aib-D-Ala-(担体),
L-Pro-Aib-D-Ala-(担体),
 
D-Pro-Aib-L-Phe-(担体),
L-Pro-Aib-L-Phe-(担体),
D-Pro-Aib-D-Phe-(担体),
L-Pro-Aib-D-Phe-(担体),
 
D-Pro-Aib-L-Trp-(担体),
L-Pro-Aib-L-Trp-(担体),
D-Pro-Aib-D-Trp-(担体),
L-Pro-Aib-D-Trp-(担体),
が好ましい。
Since the immobilized peptide catalyst can achieve a high enantioselectivity of 80% ee or higher,
L-Pro-D-Pro-Aib-L-Trp-L-Trp- (L-Leu) 6 to 35-(carrier),

D-Pro-Aib-L-Ser-L-Ser- (carrier),
L-Pro-Aib-L-Ser-L-Ser- (carrier) (SEQ ID NO: 1),

D-Pro-Aib-L-Ser-L-Trp- (carrier),
L-Pro-Aib-L-Ser-L-Trp- (carrier) (SEQ ID NO: 2),

D-Pro-Aib-L-Ala- (carrier),
L-Pro-Aib-L-Ala- (carrier),
D-Pro-Aib-D-Ala- (carrier),
L-Pro-Aib-D-Ala- (support),

D-Pro-Aib-L-Phe- (carrier),
L-Pro-Aib-L-Phe- (carrier),
D-Pro-Aib-D-Phe- (carrier),
L-Pro-Aib-D-Phe- (carrier),

D-Pro-Aib-L-Trp- (carrier),
L-Pro-Aib-L-Trp- (carrier),
D-Pro-Aib-D-Trp- (carrier),
L-Pro-Aib-D-Trp- (carrier),
Is preferred.
 固定化ペプチド触媒において、担体は、アミンを官能基として有する樹脂からなる。このアミンとペプチドのC-末端カルボキシル基とが縮合することにより、ペプチドが担体上に固定化される。 In the immobilized peptide catalyst, the carrier is made of a resin having an amine as a functional group. By condensing the amine and the C-terminal carboxyl group of the peptide, the peptide is immobilized on the carrier.
 アミン官能基を有する樹脂としては、特に限定するものではないが、例えば、アミノメチルポリスチレン(アミノメチルレジン)、Tentagel(低架橋ポリスチレン担体上に、ポリエチレン(エチレン部分に-O-が結合することで形成されるポリオキシエチレンを含む)がグラフト結合された樹脂、Rapp Polymere社製、登録商標)-NH2レジン、PEGA(ポリエチレングリコール-ポリアクリルアミド共重合体)-NH2レジン(アミノPEGAレジン)、MBHA(4-メチルベンズヒドリルアミン)レジン、リンクアミドレジン(4-(2',4'-ジメトキシフェニル-Fmoc-アミノメチル)-フェノキシレジン)、リンクアミドMBHAレジン等が挙げられる。中でも、入手が容易で安価であることから、好ましくはアミノメチルポリスチレン(アミノメチルレジン)、Tentagel(登録商標)-NH2レジンである。
 好ましい担体には、例えば、ポリスチレン主鎖とアミノ基を有する樹脂、特に好ましくは架橋ポリスチレン主鎖とアミノ基を有し、側鎖にポリオキシアルキレン鎖(例えば、ポリオキシエチレン鎖)を有する樹脂などが含まれてもよい。
The resin having an amine functional group is not particularly limited. For example, aminomethylpolystyrene (aminomethylresin), Tentagel (on a low-crosslinked polystyrene carrier, polyethylene (-O- is bonded to the ethylene moiety). (Including polyoxyethylene formed) graft-bonded resin, manufactured by Rapp Polymere, registered trademark) -NH 2 resin, PEGA (polyethylene glycol-polyacrylamide copolymer) -NH 2 resin (aminoPEGA resin), Examples include MBHA (4-methylbenzhydrylamine) resin, rinkamide resin (4- (2 ′, 4′-dimethoxyphenyl-Fmoc-aminomethyl) -phenoxyresin), rinkamide MBHA resin, and the like. Among these, aminomethyl polystyrene (aminomethyl resin) and Tentagel (registered trademark) -NH 2 resin are preferable because they are easily available and inexpensive.
Preferred carriers include, for example, a resin having a polystyrene main chain and an amino group, particularly preferably a resin having a cross-linked polystyrene main chain and an amino group and a polyoxyalkylene chain (for example, a polyoxyethylene chain) in the side chain. May be included.
 上記担体のアミン官能基の導入量(Loading capacity)は特に限定するものではないが、0.1~3.0mmol/gが好ましく、さらに好ましくは0.2~2.0mmol/gである。 The amount of the amine functional group introduced into the carrier (loading capacity) is not particularly limited, but is preferably 0.1 to 3.0 mmol / g, more preferably 0.2 to 2.0 mmol / g.
 上記担体の平均粒径は、特に限定するものではないが、好ましくは10~500meshであり、さらに好ましくは20~300meshである。
上記担体は、架橋されていても、架橋されていなくてもよい。また、架橋された担体を用いる場合、架橋に用いる試剤や架橋の量も特に限定するものではない。
The average particle size of the carrier is not particularly limited, but is preferably 10 to 500 mesh, and more preferably 20 to 300 mesh.
The carrier may be cross-linked or not cross-linked. When a crosslinked carrier is used, the reagent used for crosslinking and the amount of crosslinking are not particularly limited.
 本発明にかかる固定化ペプチド触媒は、通常の固相合成法により合成することができる。例えば、Tentagel-NHレジン、9-フルオレニルメチルオキシカルボニル(以下、Fmoc)-アミノ酸、HOBt(ヒドロキシベンゾトリアゾール)、HBTU(1-〔ビス(ジメチルアミノ)メチレン〕-1H-ベンゾトリアゾリウム-3-オキシドヘキサフルオロホスファート)、およびDIEA(ジイソプロピルエチルアミン)からなるDMF溶液を、室温で、数十分攪拌した後、ろ過し、残渣をDMFにて洗浄することで、アミノ酸残基が1つ伸びたFmoc保護アミノ酸樹脂を合成できる。続いて20%(vol/vol)ピペリジン/DMF溶液を加え、数十分攪拌した後、ろ過して、残渣をDMFにて洗浄することにより、N-フリー体のアミノ酸樹脂が取得できる。これら操作を任意のFmocアミノ酸を用いて行い、最後に必要に応じて側鎖保護基の脱保護操作を行うことで、固定化ペプチド触媒を合成することができる。 The immobilized peptide catalyst according to the present invention can be synthesized by an ordinary solid phase synthesis method. For example, Tentagel-NH 2 resin, 9-fluorenylmethyloxycarbonyl (hereinafter Fmoc) -amino acid, HOBt (hydroxybenzotriazole), HBTU (1- [bis (dimethylamino) methylene] -1H-benzotriazolium A DMF solution consisting of -3-oxide hexafluorophosphate) and DIEA (diisopropylethylamine) is stirred for several tens of minutes at room temperature, then filtered, and the residue is washed with DMF. An extended Fmoc-protected amino acid resin can be synthesized. Subsequently, a 20% (vol / vol) piperidine / DMF solution is added, stirred for several tens of minutes, filtered, and the residue is washed with DMF to obtain an N-free amino acid resin. An immobilized peptide catalyst can be synthesized by performing these operations using any Fmoc amino acid and finally deprotecting the side chain protecting group as necessary.
 前記ペプチド触媒の存在下で、下記式(3): In the presence of the peptide catalyst, the following formula (3):
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 で表されるアルデヒドと、下記式(4): And an aldehyde represented by the following formula (4):
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 で表されるジアゾジカルボキシレート誘導体を反応させることにより、下記式(5): By reacting the diazodicarboxylate derivative represented by the following formula (5):
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 で表されるα-アミノアルデヒド誘導体を高選択的に製造することが可能である。 The α-aminoaldehyde derivative represented by can be produced with high selectivity.
 前記式(3)において、R1,R2はそれぞれ独立しており、炭素数1~15の置換又は無置換のアルキル基、炭素数7~12の置換又は無置換のアラルキル基、炭素数6~18の置換又は無置換のアリール基、又は水素を表す。前記置換アルキル基は、不飽和炭化水素基が置換したアルキル基、即ちアルケニル基やアルキニル基などであってもよく、さらに別の置換基を有していてもよい。炭素数1~15の置換又は無置換のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-オクタデカノイル基、4-ペンテニル基、4-ペンチニル基等が挙げられる。炭素数7~12の置換又は無置換のアラルキル基としては例えば、ベンジル基、p-クロロベンジル基、o-クロロベンジル基、m-クロロベンジル基、3,5-ジクロロベンジル基、p-ブロモベンジル基、o-ブロモベンジル基、m-ブロモベンジル基、p-ニトロベンジル基、p-メトキシフェニル基、p-トリフルオロメチルベンジル、3,5-ビス(トリフルオロメチル)ベンジル基等が挙げられる。炭素数6~18の置換又は無置換のアリール基としては例えば、フェニル基、p-クロロフェニル基、o-クロロフェニル基、m-クロロフェニル基、p-ブロモフェニル基、3,5-シ゛クロロフェニル基、o-ブロモフェニル基、m-ブロモフェニル基、p-ニトロフェニル基、p-メトキシフェニル基、p-トリフルオロメチルフェニル基、3,5-ビス(トリフルオロメチル)フェニル等が挙げられる。
 R1、R2で表される前記アルキル基の炭素数の上限は、好ましくは12以下、さらに好ましくは10以下である。前記アラルキル基の炭素数の上限は、好ましくは10以下、さらに好ましくは8以下である。前記アリール基の炭素数の上限は、好ましくは10以下、さらに好ましくは8以下である。
In the above formula (3), R 1 and R 2 are each independently a substituted or unsubstituted alkyl group having 1 to 15 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 12 carbon atoms, or a carbon number of 6 Represents -18 substituted or unsubstituted aryl groups, or hydrogen. The substituted alkyl group may be an alkyl group substituted with an unsaturated hydrocarbon group, that is, an alkenyl group, an alkynyl group, or the like, and may further have another substituent. Examples of the substituted or unsubstituted alkyl group having 1 to 15 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-pentyl group, Examples thereof include an n-octadecanoyl group, a 4-pentenyl group, and a 4-pentynyl group. Examples of the substituted or unsubstituted aralkyl group having 7 to 12 carbon atoms include benzyl group, p-chlorobenzyl group, o-chlorobenzyl group, m-chlorobenzyl group, 3,5-dichlorobenzyl group, and p-bromobenzyl. Group, o-bromobenzyl group, m-bromobenzyl group, p-nitrobenzyl group, p-methoxyphenyl group, p-trifluoromethylbenzyl, 3,5-bis (trifluoromethyl) benzyl group and the like. Examples of the substituted or unsubstituted aryl group having 6 to 18 carbon atoms include phenyl group, p-chlorophenyl group, o-chlorophenyl group, m-chlorophenyl group, p-bromophenyl group, 3,5-dichlorophenyl group, o- Examples include bromophenyl group, m-bromophenyl group, p-nitrophenyl group, p-methoxyphenyl group, p-trifluoromethylphenyl group, 3,5-bis (trifluoromethyl) phenyl and the like.
The upper limit of the carbon number of the alkyl group represented by R 1 and R 2 is preferably 12 or less, more preferably 10 or less. The upper limit of the carbon number of the aralkyl group is preferably 10 or less, more preferably 8 or less. The upper limit of the carbon number of the aryl group is preferably 10 or less, more preferably 8 or less.
 生成物が不斉点を有することから、RとRは異なる置換基である場合が好ましく、さらにはR1,R2のいずれかが水素である場合が好ましい。 Since the product has an asymmetric point, it is preferable that R 1 and R 2 are different substituents, and it is more preferable that either R 1 or R 2 is hydrogen.
 前記式(4)において、R3は炭素数1~15の置換又は無置換のアルキル基、炭素数7~12の置換又は無置換のアラルキル基、炭素数6~18の置換又は無置換のアリール基、又は水素を表す。炭素数1~15の置換又は無置換のアルキル基としては例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-オクタデシル基等が挙げられる。炭素数7~12の置換又は無置換のアラルキル基としては例えば、ベンジル基、p-ニトロベンジル基、p-トリフルオロメチルベンジル基、p-メトキシベンジル基、1-ナフチル基、2-ナフチル基等が挙げられる。炭素数6~18の置換又は無置換のアリール基としては例えば、フェニル基、p-ニトロフェニル基、p-トリフルオロメチルフェニル基、p-メトキシフェニル基等が挙げられる。中でも好ましくはエチル基、イソプロピル基、t-ブチル基、ベンジル基であり、さらに好ましくは、入手が容易であり、比較的安全に取り扱えることから、イソプロピル基、t-ブチル基、ベンジル基であり、最も好ましくはイソプロピル基、ベンジル基である。
 R3で表される前記アルキル基の炭素数の上限は、好ましくは12以下、さらに好ましくは10以下である。前記アラルキル基の炭素数の上限は、好ましくは10以下、さらに好ましくは8以下である。前記アリール基の炭素数の上限は、好ましくは10以下、さらに好ましくは8以下である。
In the formula (4), R 3 represents a substituted or unsubstituted alkyl group having 1 to 15 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 12 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 18 carbon atoms. Represents a group or hydrogen. Examples of the substituted or unsubstituted alkyl group having 1 to 15 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-pentyl group, n -Octadecyl group and the like. Examples of the substituted or unsubstituted aralkyl group having 7 to 12 carbon atoms include benzyl group, p-nitrobenzyl group, p-trifluoromethylbenzyl group, p-methoxybenzyl group, 1-naphthyl group and 2-naphthyl group. Is mentioned. Examples of the substituted or unsubstituted aryl group having 6 to 18 carbon atoms include a phenyl group, a p-nitrophenyl group, a p-trifluoromethylphenyl group, and a p-methoxyphenyl group. Among them, an ethyl group, an isopropyl group, a t-butyl group, and a benzyl group are preferable, and an isopropyl group, a t-butyl group, and a benzyl group are more preferable because they are easily available and can be handled relatively safely. Most preferred are isopropyl group and benzyl group.
The upper limit of the carbon number of the alkyl group represented by R 3 is preferably 12 or less, more preferably 10 or less. The upper limit of the carbon number of the aralkyl group is preferably 10 or less, more preferably 8 or less. The upper limit of the carbon number of the aryl group is preferably 10 or less, more preferably 8 or less.
 前記式(5)において、R1,R2,R3は前記に同じである。 In the formula (5), R 1 , R 2 and R 3 are the same as described above.
 前記式(5)において、*は不斉点を表す。その絶対配置は(S)-体であっても良いし、(R)-体であっても良い。それぞれの絶対配置を有する(5)は、触媒のアミノ酸残基の絶対配置を全く反対にしたり、またアミノ酸配列を変えたりすることによって選択的に得ることができる。 In the above formula (5), * represents an asymmetric point. Its absolute configuration may be (S) -isomer or (R) -isomer. (5) having each absolute configuration can be selectively obtained by completely inverting the absolute configuration of the amino acid residues of the catalyst or changing the amino acid sequence.
 反応に用いる固定化ペプチド触媒の量は、特に限定するものではないが、アゾジカルボキシレート誘導体(4)に対して0.1~100mol%使用すれば良く、好ましくは0.1~20mol%であり、さらに好ましくは0.1~10mol%である。 The amount of the immobilized peptide catalyst used for the reaction is not particularly limited, but may be 0.1 to 100 mol%, preferably 0.1 to 20 mol%, relative to the azodicarboxylate derivative (4). More preferably, it is 0.1 to 10 mol%.
 反応に用いるアルデヒド(3)の量は特に限定するものではないが、アゾジカルボキシレート誘導体(4)に対して、1.0~5.0当量使用すれば良く、好ましくは、1.0~3.0当量であり、さらに好ましくは1.0~2.0当量である。 The amount of aldehyde (3) used in the reaction is not particularly limited, but it may be used in an amount of 1.0 to 5.0 equivalents relative to the azodicarboxylate derivative (4), preferably 1.0 to 3.0 equivalents, more preferably 1.0 to 2.0 equivalents.
 用いる溶媒としては、特に限定されず、例えば、N,N-ジメチルホルムアミド(DMF),ジメチルスルホキシド(DMSO),N-メチルピロリドン、ヘキサメチルリン酸トリアミド等の非プロトン性極性溶媒;ヘキサメチルベンゼン、トルエン、n-ヘキサン、シクロヘキサン等の炭化水素系溶媒;ジエチルエーテル、テトラヒドロフラン(THF),ジイソプロピルエーテル、メチルtert-ブチルエーテル、ジメトキシエタン等のエーテル系溶媒;クロロベンゼン、塩化メチレン、クロロホルム、1,1,1-トリクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;アセトニトリル、ブチロニトリル等のニトリル系溶媒;メタノール、エタノール、イソプロパノール、n-プロパノール、ブタノール、オクタノール等のアルコール系溶媒;水などが挙げられる。これらは単独で用いてもよく、2種以上を併用しても良い。中でも、炭化水素系溶媒、ハロゲン系溶媒、ニトリル系溶媒、エステル系溶媒、アルコール系溶媒、および水が好ましく、さらに好ましくは、トルエン、ジクロロメタン、アセトニトリル、酢酸エチル、酢酸イソプロピル、メタノール、および水であり、最も好ましくはジクロロメタン、アセトニトリル、酢酸エチル、メタノールおよび水である。 The solvent to be used is not particularly limited, and examples thereof include aprotic polar solvents such as N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N-methylpyrrolidone, and hexamethylphosphoric triamide; hexamethylbenzene, Hydrocarbon solvents such as toluene, n-hexane, cyclohexane; ether solvents such as diethyl ether, tetrahydrofuran (THF), diisopropyl ether, methyl tert-butyl ether, dimethoxyethane; chlorobenzene, methylene chloride, chloroform, 1,1,1 -Halogen solvents such as trichloroethane; ester solvents such as ethyl acetate and butyl acetate; nitrile solvents such as acetonitrile and butyronitrile; methanol, ethanol, isopropanol, n-propanol, butano Le, alcohol solvents octanol and the like; and water. These may be used alone or in combination of two or more. Of these, hydrocarbon solvents, halogen solvents, nitrile solvents, ester solvents, alcohol solvents, and water are preferable, and toluene, dichloromethane, acetonitrile, ethyl acetate, isopropyl acetate, methanol, and water are more preferable. Most preferred are dichloromethane, acetonitrile, ethyl acetate, methanol and water.
 反応温度は、通常-30~120℃の範囲内であり、好ましくは-20~60℃である。さらに好ましくは-20~40℃である。 The reaction temperature is usually in the range of −30 to 120 ° C., preferably −20 to 60 ° C. More preferably, it is −20 to 40 ° C.
 反応終了後は、反応液から粗生成物を取得するために、ろ過操作により、反応液から固定化ペプチド触媒を分離した後、ろ液を濃縮すれば良い。このように反応液をろ過することで、容易に触媒を分離することが可能である。 After completion of the reaction, the filtrate may be concentrated after separating the immobilized peptide catalyst from the reaction solution by filtration to obtain a crude product from the reaction solution. By filtering the reaction solution in this way, the catalyst can be easily separated.
 分離した触媒は、有機溶媒等を用いて洗浄しても良い。分離した固定化ペプチド触媒は、再利用することが可能であり、例えば、分離した触媒をそのまま反応に使用しても良いし、分離した触媒を減圧乾燥した後、反応に使用しても良い。 The separated catalyst may be washed with an organic solvent or the like. The separated immobilized peptide catalyst can be reused. For example, the separated catalyst may be used for the reaction as it is, or the separated catalyst may be dried under reduced pressure and then used for the reaction.
 得られた反応液は、一般的な後処理法に従って処理しても良い。例えば、一般的な抽出溶媒、例えば、酢酸エチル、ジエチルエーテル、塩化メチレン、トルエン、ヘキサン等を用いて抽出操作を行う。得られた抽出液から、減圧加熱等の操作により反応溶媒および抽出溶媒を留去すると、目的化合物が得られる。さらに、反応液を減圧加熱等の操作により反応溶媒を留去もしくは溶媒置換等をおこなってから、上記と同様の操作を行っても良い。 The obtained reaction liquid may be processed according to a general post-treatment method. For example, the extraction operation is performed using a general extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane and the like. The target compound is obtained by distilling off the reaction solvent and the extraction solvent from the resulting extract by an operation such as heating under reduced pressure. Furthermore, after the reaction solvent is distilled off or the solvent is replaced by an operation such as heating under reduced pressure, the same operation as described above may be performed.
 このようにして得られる目的物は、ほぼ純粋なものであるが、晶析精製、分別蒸留、カラムクロマトグラフィー等、一般的な手法により精製を加え、さらに純度を高めても良い。 The target product thus obtained is almost pure, but purification may be carried out by a general method such as crystallization purification, fractional distillation, column chromatography, etc. to further increase the purity.
 このように取得できるα-アミノアルデヒド誘導体は、不安定であったり、製品分析が困難であったりすることがあるので、アルデヒド官能基をアルコール、カルボン酸等の官能基に変換させた後に取得しても良い。例えば、水素化ホウ素ナトリウムを用いて還元することで、アルコール誘導体として、亜塩素酸ナトリウム(NaClO2)を用いて酸化することで、カルボン酸誘導体とて取得することができる。 The α-aminoaldehyde derivative that can be obtained in this way may be unstable or difficult to analyze the product. Therefore, the α-aminoaldehyde derivative may be obtained after converting the aldehyde functional group to a functional group such as alcohol or carboxylic acid. May be. For example, it can be obtained as a carboxylic acid derivative by reducing with sodium borohydride and oxidizing with sodium chlorite (NaClO 2 ) as an alcohol derivative.
 前記式(1)において、特にアミノ酸残基数が27以下の固定化ペプチド触媒については、アルデヒドの不斉α-アミノ化反応において、高い選択性を有することが認められた新規ペプチド触媒であり、反応液をろ過することで簡便に反応系から分離が可能であるだけでなく、工業的にも確立されている固相合成法により容易に合成可能であるため、好ましい。  In the above formula (1), in particular, the immobilized peptide catalyst having 27 or less amino acid residues is a novel peptide catalyst that has been found to have high selectivity in the asymmetric α-amination reaction of aldehydes. Not only can the reaction solution be easily separated from the reaction system by filtering the reaction solution, but also it can be easily synthesized by an industrially established solid-phase synthesis method, which is preferable. *
 本願は、2011年8月12日に出願された日本国特許出願第2011-177167号に基づく優先権の利益を主張するものである。2011年8月12日に出願された日本国特許出願第2011-177167号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2011-177167 filed on August 12, 2011. The entire content of the specification of Japanese Patent Application No. 2011-177167 filed on August 12, 2011 is incorporated herein by reference.
 以下に例を挙げて本発明を更に詳しく説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
 (実施例1) D-Pro-Aib-L-Ser-L-Ser-Tentagelの合成
 ディスポーザブル脱塩カラム(商品名 PD-10、GEヘルスケア製)中に、Tentagel(登録商標(以下、同じ))S-NH2(Aldrich社より購入)(loading capacity 0.26mol/kg,300mg)を加え、ジクロロメタン(5mL×2回)、DMF(5mL×2回)で洗浄した。Fmoc-L-Ser(tBu)-OH(89.7mg,0.23mmol)、HOBt(31.6mg,0.23mmol)、HBTU(88.7mg,0.23mmol)、DIEA(82μL,0.47mmol)からなるDMF(5mL)溶液を添加し、時々振とうしながら、30分間反応させた。ろ過操作により反応液を分離し、残渣(Fmoc-L-Ser(tBu)-Tentagel)をDMF(5mL×5回)にて洗浄した。続いて20%(vol/vol)ピペリジン/DMF溶液(5mL)を添加し、時々振とうしながら、30分間反応させた。ろ過操作により反応液を分離し、残渣をDMF(5mL×5回)にて洗浄し、L-Ser(tBu)-Tentagelを得た。一連の同操作をFmoc-L-Ser(tBu)-OH,Fmoc-Aib-OH,Fmoc-D-Pro-OHを用いて順次行い、D-Pro-Aib-L-Ser(tBu)-L-Ser(tBu)-Tentagelを得た。得られたペプチドを減圧乾燥(20℃/1mmHg,1h)した後、水(スポイトで3滴)およびトリフルオロ酢酸(5mL)を添加した。時々振とうしながら60分間反応させた。ろ過操作により反応液を分離し、残渣をジクロロメタン(5mL×5回)、DMF(5mL×5回)、トリエチルアミン(5mL×5回)、DMF(5mL×5回)、ジクロロメタン(5mL×5回)にて洗浄した。得られた残渣を減圧乾燥(20℃/1mmHg,15h)し、表題ペプチドを得た。
Example 1 Tentagel (registered trademark (hereinafter, the same)) in a synthetic disposable desalting column (trade name PD-10, manufactured by GE Healthcare ) of D-Pro-Aib-L-Ser-L-Ser-Tentagel ) S-NH 2 (purchased from Aldrich) (loading capacity 0.26 mol / kg, 300 mg) was added and washed with dichloromethane (5 mL × 2) and DMF (5 mL × 2). Fmoc-L-Ser (tBu) -OH (89.7 mg, 0.23 mmol), HOBt (31.6 mg, 0.23 mmol), HBTU (88.7 mg, 0.23 mmol), DIEA (82 μL, 0.47 mmol) A DMF (5 mL) solution consisting of was added and allowed to react for 30 minutes with occasional shaking. The reaction solution was separated by filtration, and the residue (Fmoc-L-Ser (tBu) -Tentagel) was washed with DMF (5 mL × 5 times). Subsequently, 20% (vol / vol) piperidine / DMF solution (5 mL) was added and allowed to react for 30 minutes with occasional shaking. The reaction solution was separated by filtration, and the residue was washed with DMF (5 mL × 5 times) to obtain L-Ser (tBu) -Tentagel. A series of the same operations are sequentially performed using Fmoc-L-Ser (tBu) -OH, Fmoc-Aib-OH, and Fmoc-D-Pro-OH, and D-Pro-Aib-L-Ser (tBu) -L- Ser (tBu) -Tentagel was obtained. The obtained peptide was dried under reduced pressure (20 ° C./1 mmHg, 1 h), and water (3 drops with a dropper) and trifluoroacetic acid (5 mL) were added. The reaction was allowed to proceed for 60 minutes with occasional shaking. The reaction solution was separated by filtration, and the residue was dichloromethane (5 mL × 5 times), DMF (5 mL × 5 times), triethylamine (5 mL × 5 times), DMF (5 mL × 5 times), dichloromethane (5 mL × 5 times). Washed with The obtained residue was dried under reduced pressure (20 ° C./1 mmHg, 15 h) to obtain the title peptide.
 (実施例2)L-Pro-Aib-L-Ser-L-Ser-Tentagelの合成
 実施例1に記載の方法に従い、Tentagel S-NH2にFmoc-L-Ser(tBu)-OH,Fmoc-L-Ser(tBu)-OH,Fmoc-Aib-OH,Fmoc-L-Pro-OHを順次縮合させた。実施例1と同様の脱保護操作を行い、表題化合物を得た。
Example 2 Synthesis of L-Pro-Aib-L-Ser-L-Ser-Tentagel According to the method described in Example 1, Tenogel S-NH 2 was converted to Fmoc-L-Ser (tBu) -OH, Fmoc- L-Ser (tBu) -OH, Fmoc-Aib-OH, and Fmoc-L-Pro-OH were sequentially condensed. The same deprotection operation as in Example 1 was performed to obtain the title compound.
 (実施例3)D-Pro-Aib-L-Ser-L-Trp-Tentagelの合成
 実施例1に記載の方法に従い、Tentagel S-NH2にFmoc-L-Trp-OH,Fmoc-L-Ser(tBu)-OH,Fmoc-Aib-OH,Fmoc-D-Pro-OHを順次縮合させた。実施例1と同様の脱保護操作を行い、表題化合物を得た。
Example 3 Synthesis of D-Pro-Aib-L-Ser-L-Trp-Tentagel According to the method described in Example 1, Tentagel S-NH 2 was converted to Fmoc-L-Trp-OH, Fmoc-L-Ser. (TBu) -OH, Fmoc-Aib-OH and Fmoc-D-Pro-OH were sequentially condensed. The same deprotection operation as in Example 1 was performed to obtain the title compound.
 (実施例4)D-Pro-Aib-L-Ser-L-Ser-アミノメチルポリスチレンの合成
 実施例1に記載の方法に従い、Tentagel-NH2に替えアミノメチルポリスチレン(loading capacity 1.5mol/kg)を用いて、表題化合物を合成した。
Example 4 Synthesis of D-Pro-Aib-L-Ser-L-Ser-aminomethylpolystyrene According to the method described in Example 1, aminomethylpolystyrene (loading capacity 1.5 mol / kg) was substituted for Tentagel-NH 2. ) Was used to synthesize the title compound.
 (実施例5)D-Pro-Aib-L-Phe-Tentagelの合成
 ディスポーザブル脱塩カラム(商品名 PD-10、GEヘルスケア製)中に、Tentagel S-NH2 (loading capacity 0.26mol/kg,100mg)を加え、ジクロロメタン(1mL×2回)、DMF(1mL×2回)で洗浄した。Fmoc-L-Phe-OH(30.2mg,0.078mmol)、HOBt(10.5mg,0.078mmol)、HBTU(29.6mg,0.078mmol)、DIEA(27μL,0.156mmol)からなるDMF(1mL)溶液を添加し、時々振とうしながら、30分間反応させた。ろ過操作により反応液を分離し、残渣(Fmoc-L-Phe-Tentagel)をDMF(5mL×5回)にて洗浄した。続いて20%(vol/vol)ピペリジン/DMF溶液(1mL)を添加し、時々振とうしながら、30分間反応させた。ろ過操作により反応液を分離し、残渣をDMF(1mL×5回)にて洗浄し、L-Phe-Tentagelを得た。一連の同操作をFmoc-Aib-OH,Fmoc-D-Pro-OHを用いて順次行い、D-Pro-Aib-L-Phe-Tentagelを得た。得られたペプチドをジクロロメタン(1mL×5回)にて洗浄した。得られた残渣を減圧乾燥(20℃/1mmHg,15h)し、表題ペプチドを得た。
(Example 5) Tentagel S-NH 2 (loading capacity 0.26 mol / kg) in a disposable desalting column (trade name PD-10, manufactured by GE Healthcare ) of D-Pro-Aib-L-Phe-Tentagel , 100 mg), and washed with dichloromethane (1 mL × 2 times) and DMF (1 mL × 2 times). DMF consisting of Fmoc-L-Phe-OH (30.2 mg, 0.078 mmol), HOBt (10.5 mg, 0.078 mmol), HBTU (29.6 mg, 0.078 mmol), DIEA (27 μL, 0.156 mmol) (1 mL) solution was added and allowed to react for 30 minutes with occasional shaking. The reaction solution was separated by filtration, and the residue (Fmoc-L-Phe-Tentagel) was washed with DMF (5 mL × 5 times). Subsequently, 20% (vol / vol) piperidine / DMF solution (1 mL) was added and allowed to react for 30 minutes with occasional shaking. The reaction solution was separated by filtration, and the residue was washed with DMF (1 mL × 5 times) to obtain L-Phe-Tentagel. A series of the same operations were sequentially performed using Fmoc-Aib-OH and Fmoc-D-Pro-OH to obtain D-Pro-Aib-L-Phe-Tentagel. The obtained peptide was washed with dichloromethane (1 mL × 5 times). The obtained residue was dried under reduced pressure (20 ° C./1 mmHg, 15 h) to obtain the title peptide.
 (実施例6)D-Pro-Aib-L-Ala-Tentagelの合成
 実施例5に記載の方法に従い、Tentagel S-NH2にFmoc-L-Ala-OH,Fmoc-Aib-OH,Fmoc-D-Pro-OHを順次縮合させ、表題化合物を得た。
Example 6 Synthesis of D-Pro-Aib-L-Ala-Tentagel According to the method described in Example 5, Tentagel S-NH 2 was mixed with Fmoc-L-Ala-OH, Fmoc-Aib-OH, Fmoc-D. -Pro-OH was sequentially condensed to give the title compound.
 (実施例7)TFA・D-Pro-Aib-L-Ser-L-Ser-Tentagelの合成
 実施例1で取得したD-Pro-Aib-L-Ser-L-Ser-Tentagel(100mg)をディスポーザブル脱塩カラム(商品名 PD-10、GEヘルスケア製)中に秤量し、室温下、トリフルオロ酢酸(0.5mL)を添加した。時々振とうさせながら、10分間反応させたのち、反応液を分離した。残渣をジクロロメタン(1mL×3)、DMF(1mL×3)、ジクロロメタン(1mL×3)にて順次洗浄を行った。得られた樹脂を減圧乾燥(20℃/1mmHg,15h)し、N末端のD-Proがトリフルオロ酢酸と塩を形成した、表題ペプチドを得た。
Example 7 Synthesis of TFA / D-Pro-Aib-L-Ser-L-Ser-Tentagel D-Pro-Aib-L-Ser-L-Ser-Tentagel (100 mg) obtained in Example 1 is disposable Weighed in a desalting column (trade name PD-10, manufactured by GE Healthcare), and trifluoroacetic acid (0.5 mL) was added at room temperature. The reaction was separated after 10 minutes of reaction with occasional shaking. The residue was washed successively with dichloromethane (1 mL × 3), DMF (1 mL × 3), and dichloromethane (1 mL × 3). The obtained resin was dried under reduced pressure (20 ° C./1 mmHg, 15 h) to obtain the title peptide in which N-terminal D-Pro formed a salt with trifluoroacetic acid.
 (実施例8)(S)-2-〔N,N’-ジ(イソプロピルオキシカルボニル)ヒドラジノ〕-3-フェニルプロパン-1-オールの合成
 実施例1で取得したペプチド触媒D-Pro-Aib-L-Ser-L-Ser-Tentagel(21.6mg,5.06×10-3mmol)にアセトニトリル(600μL)を添加し、氷浴にて冷却した。同温にて3-フェニルプロパナール(13.4μL,0.1mmol)、ジイソプロピルジアゾジカルボキシレート(1.9mol/L-トルエン溶液,26.2μL,0.05mmol)を添加した。同温にて6時間攪拌した後、ろ過操作により触媒を分離し、反応液を取得した。アセトニトリル(1mL)を用いて分離した触媒を洗浄し、この洗浄液と反応液を合わせて濃縮した。分離した触媒はそのまま回収し、適宜同様の反応へ再利用した。濃縮液をTHF(1mL)に希釈し、水素化ホウ素ナトリウム(適量)を室温下に添加した。同温にて1時間の攪拌を行った後、水(3mL)を添加し、ジクロロメタン(15mL×1回+5mL×1回)で抽出を行った。抽出液を、硫酸マグネシウムを用いて乾燥させた後、濃縮を行った。得られた粗生成物をプレパレイティブTLC(シリカゲル,酢酸エチル:ヘキサン=3:7)にて精製し、表題化合物を得た(15.2mg,収率:90%)。HPLCを用いた光学純度分析の結果、94%eeであった。
 1H-NMR(400MHz,CDCl3)σ0.92-1.41(12H,m),2.81-2.48(2H,m),3.57(2H,s),4.02-5.11(4H,m),6.65(1H,d),7.06-7.35(5H,m)
 カラム;キラルセルOD-H(250×4.6mm),溶離液;イソプロパノール:ヘキサン=5:95,流速;0.5mL/min,検出器;UV220nm,カラム温度;25℃,保持時間;15.2min(S-体),18.4min(R-体)
 なお前記キラルセルOD-Hは、株式会社ダイセルの製品名である(以下、同じ)。
Example 8 Synthesis of (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropan-1-ol Peptide catalyst D-Pro-Aib- obtained in Example 1 Acetonitrile (600 μL) was added to L-Ser-L-Ser-Tentagel (21.6 mg, 5.06 × 10 −3 mmol) and cooled in an ice bath. At the same temperature, 3-phenylpropanal (13.4 μL, 0.1 mmol) and diisopropyl diazodicarboxylate (1.9 mol / L-toluene solution, 26.2 μL, 0.05 mmol) were added. After stirring at the same temperature for 6 hours, the catalyst was separated by a filtration operation to obtain a reaction solution. The separated catalyst was washed with acetonitrile (1 mL), and the washing solution and the reaction solution were combined and concentrated. The separated catalyst was recovered as it was and reused as appropriate for the same reaction. The concentrate was diluted in THF (1 mL) and sodium borohydride (appropriate amount) was added at room temperature. After stirring at the same temperature for 1 hour, water (3 mL) was added, and extraction was performed with dichloromethane (15 mL × 1 + 5 mL × 1). The extract was dried using magnesium sulfate and then concentrated. The obtained crude product was purified by preparative TLC (silica gel, ethyl acetate: hexane = 3: 7) to obtain the title compound (15.2 mg, yield: 90%). As a result of optical purity analysis using HPLC, it was 94% ee.
1 H-NMR (400 MHz, CDCl 3 ) σ0.92-1.41 (12H, m), 2.81-2.48 (2H, m), 3.57 (2H, s), 4.02-5 .11 (4H, m), 6.65 (1H, d), 7.06-7.35 (5H, m)
Column: Chiralcel OD-H (250 × 4.6 mm), eluent: isopropanol: hexane = 5: 95, flow rate: 0.5 mL / min, detector; UV 220 nm, column temperature: 25 ° C., retention time: 15.2 min (S-isomer), 18.4 min (R-isomer)
The chiral cell OD-H is a product name of Daicel Corporation (hereinafter the same).
 (実施例9)(S)-2-〔N,N’-ジ(イソプロピルオキシカルボニル)ヒドラジノ〕-3-フェニルプロパン-1-オールの合成
 実施例8に記載の方法に従い、アセトニトリルに替えジクロロメタンを用いて同様の反応を行い、表題化合物を得た(収率94%,83%ee(S-体))。
Example 9 Synthesis of (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropan-1-ol According to the method described in Example 8, dichloromethane was replaced with dichloromethane. The title compound was obtained in the same manner as above (yield 94%, 83% ee (S-form)).
 (実施例10)(S)-2-〔N,N’-ジ(イソプロピルオキシカルボニル)ヒドラジノ〕-3-フェニルプロパン-1-オールの合成
 実施例8に記載の方法に従い、アセトニトリルに替え酢酸エチルを用いて同様の反応を行い、表題化合物を得た(収率100%,84%ee(S-体))。
Example 10 Synthesis of (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropan-1-ol According to the method described in Example 8, ethyl acetate was changed to acetonitrile. Was used for the same reaction to obtain the title compound (yield 100%, 84% ee (S-form)).
 (実施例11)(R)-2-〔N,N’-ジ(イソプロピルオキシカルボニル)ヒドラジノ〕-3-フェニルプロパン-1-オールの合成
 実施例8に記載の方法に従い、実施例2に記載の方法で取得したペプチド触媒L-Pro-Aib-L-Ser-L-Ser-Tentagelを用いて同様の反応を行い、表題化合物を得た(収率86%,89%ee(R-体))。
Example 11 Synthesis of (R) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropan-1-ol According to the method described in Example 8, described in Example 2. The same reaction was carried out using the peptide catalyst L-Pro-Aib-L-Ser-L-Ser-Tentagel obtained by the above method to obtain the title compound (yield 86%, 89% ee (R-isomer)) ).
 (実施例12)(S)-2-〔N,N’-ジ(イソプロピルオキシカルボニル)ヒドラジノ〕-3-フェニルプロパン-1-オールの合成
 実施例8に記載の方法に従い、実施例3に記載の方法で取得したペプチド触媒D-Pro-Aib-L-Ser-L-Trp-Tentagelを用いて同様の反応を行い、表題化合物を得た(収率70%,86%ee(S-体))。
Example 12 Synthesis of (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropan-1-ol According to the method described in Example 8, described in Example 3. The same reaction was carried out using the peptide catalyst D-Pro-Aib-L-Ser-L-Trp-Tentagel obtained by the above method to obtain the title compound (yield 70%, 86% ee (S-form)) ).
 (実施例13)(S)-2-〔N,N’-ジ(イソプロピルオキシカルボニル)ヒドラジノ〕-3-フェニルプロパン-1-オールの合成
 実施例8に記載の方法に従い、実施例4に記載の方法で取得したペプチド触媒D-Pro-Aib-L-Ser-L-Ser-アミノメチルポリスチレンを用いて、アセトニトリルに替えジクロロメタンを用いて同様の反応を行い、表題化合物を得た(収率100%,91%ee(S-体))。
Example 13 Synthesis of (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropan-1-ol According to the method described in Example 8, described in Example 4. Using the peptide catalyst D-Pro-Aib-L-Ser-L-Ser-aminomethyl polystyrene obtained by the above method, the same reaction was carried out using dichloromethane instead of acetonitrile to obtain the title compound (yield 100). %, 91% ee (S-form)).
 (実施例14)(S)-2-〔N,N’-ジ(イソプロピルオキシカルボニル)ヒドラジノ〕-3-フェニルプロパン-1-オールの合成
 実施例8に記載の方法に従い、実施例5に記載の方法で取得したペプチド触媒D-Pro-Aib-L-Phe-Tentagelを用いて同様の反応を行い、表題化合物を得た(収率99%,89%ee(S-体))。
Example 14 Synthesis of (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropan-1-ol According to the method described in Example 8, described in Example 5. Using the peptide catalyst D-Pro-Aib-L-Phe-Tentagel obtained by the above method, the same reaction was carried out to obtain the title compound (yield 99%, 89% ee (S-form)).
 (実施例15)(S)-2-〔N,N’-ジ(イソプロピルオキシカルボニル)ヒドラジノ〕-3-フェニルプロパン-1-オールの合成
 実施例8に記載の方法に従い、実施例6に記載の方法で取得したペプチド触媒D-Pro-Aib-L-Ala-Tentagelを用いて同様の反応を行い、表題化合物を得た(収率100%,88%ee(S-体))。
Example 15 Synthesis of (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropan-1-ol According to the method described in Example 8, described in Example 6. The same reaction was carried out using the peptide catalyst D-Pro-Aib-L-Ala-Tentagel obtained by the above method to obtain the title compound (yield 100%, 88% ee (S-form)).
 (実施例16)(S)-2-〔N,N’-ジ(イソプロピルオキシカルボニル)ヒドラジノ〕-3-フェニルプロパン-1-オールの合成
 実施例8に記載の方法に従い、実施例7に記載の方法で取得したペプチド触媒TFA・D-Pro-Aib-L-Ser-L-Ser-Tentagelを用いて同様の反応を行い、表題化合物を得た(収率99%,88%ee(S-体))。
Example 16 Synthesis of (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropan-1-ol According to the method described in Example 8, described in Example 7. The same reaction was performed using the peptide catalyst TFA • D-Pro-Aib-L-Ser-L-Ser-Tentagel obtained by the above method to obtain the title compound (yield 99%, 88% ee (S- body)).
 (実施例17)(S)-2-〔N,N’-ジ(イソプロピルオキシカルボニル)ヒドラジノ〕-3-フェニルプロパン-1-オールの合成
 Org.Lett.2008,10,2035記載の方法にて製造したL-Pro-D-Pro-Aib-L-Trp-L-Trp-(L-Leu)33-Tentagel(20.3mg,2.53×10-3mmol)に水(210μL)、MeOH(90μL)、3-フェニルプロパナール(6.7μL,0.05mmol)を加え、低温バスを用い-12℃に冷却した。同温にてジイソプロピルジアゾジカルボキシレート(1.9mol/L-トルエン溶液,13.1μL,0.025mmol)を添加した。同温にて6時間攪拌した後、ろ過操作により触媒を分離し、反応液を取得した。アセトニトリル(1mL)を用いて分離した触媒を洗浄し、この洗浄液と反応液を合わせて濃縮した。分離した触媒はそのまま回収し、適宜同様の反応へ再利用した。濃縮液をTHF(1mL)に希釈し、水素化ホウ素ナトリウム(適量)を室温下に添加した。同温にて1時間の攪拌を行った後、水(3mL)を添加し、ジクロロメタン(15mL×1回+5mL×1回)で抽出を行った。抽出液を、硫酸マグネシウムを用いて乾燥させた後、濃縮を行った。得られた粗生成物をプレパレイティブTLC(シリカゲル,酢酸エチル:ヘキサン=3:7)にて精製し、表題化合物を得た(6.9mg,収率:82%)。HPLCを用いた光学純度分析の結果、85%eeであった。
Example 17 Synthesis of (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropan-1-ol Org. Lett. L-Pro-D-Pro-Aib-L-Trp-L-Trp- (L-Leu) 33 -Tentagel (20.3 mg, 2.53 × 10 −3 ) produced by the method described in 2008, 10, 2035 mmol) was added water (210 μL), MeOH (90 μL), 3-phenylpropanal (6.7 μL, 0.05 mmol), and cooled to −12 ° C. using a low temperature bath. Diisopropyl diazodicarboxylate (1.9 mol / L-toluene solution, 13.1 μL, 0.025 mmol) was added at the same temperature. After stirring at the same temperature for 6 hours, the catalyst was separated by a filtration operation to obtain a reaction solution. The separated catalyst was washed with acetonitrile (1 mL), and the washing solution and the reaction solution were combined and concentrated. The separated catalyst was recovered as it was and reused as appropriate for the same reaction. The concentrate was diluted in THF (1 mL) and sodium borohydride (appropriate amount) was added at room temperature. After stirring at the same temperature for 1 hour, water (3 mL) was added, and extraction was performed with dichloromethane (15 mL × 1 + 5 mL × 1). The extract was dried using magnesium sulfate and then concentrated. The obtained crude product was purified by preparative TLC (silica gel, ethyl acetate: hexane = 3: 7) to obtain the title compound (6.9 mg, yield: 82%). As a result of optical purity analysis using HPLC, it was 85% ee.
 (実施例18)(S)-2-〔N,N’-ジ(ベンジルオキシカルボニル)ヒドラジノ〕-3-メチルブタン-1-オールの合成
 実施例1で取得したペプチド触媒D-Pro-Aib-L-Ser-L-Ser-Tentagel(31.4mg,7.29×10-3mmol)にアセトニトリル(860μL)を添加した。室温(26℃)下、3-メチルブタナール(イソバレルアルデヒド)(15.7μL,0.15mmol)、ジベンジルジアゾジカルボキシレート(90wt%含量,26.1mg,0.08mmol)を添加した。同温にて6時間攪拌した後、ろ過操作により触媒を分離し、反応液を取得した。アセトニトリル(1mL)を用いて分離した触媒を洗浄し、この洗浄液と反応液を合わせて濃縮した。分離した触媒はそのまま回収し、適宜同様の反応へ再利用した。濃縮液をTHF(1mL)に希釈し、水素化ホウ素ナトリウム(適量)を室温下に添加した。同温にて6時間の攪拌を行った後、水(3mL)を添加し、ジクロロメタン(15mL×1回+5mL×1回)で抽出を行った。抽出液を硫酸マグネシウムを用いて乾燥させた後、濃縮を行った。得られた粗生成物をプレパレイティブTLC(シリカゲル,酢酸エチル:ヘキサン=3:7)にて精製し、表題化合物を得た(26.5mg,収率:90%)。HPLCを用いた光学純度分析の結果、94%eeであった。
 1H-NMR(400MHz,CDCl3)σ0.76-0.94(6H,m),1.55-1.70(1H,m),3.40-3.45(1H,m),3.63-3.79(1H,m),3.88-4.45(2H,m),5.04-5.26(4H,m),6.85(1H,s),7.20-7.40(10H,m)
カラム;キラルセルOD-H(250×4.6mm),溶離液;イソプロパノール:ヘキサン=5:95,流速;1.0mL/min,検出器;UV220nm,カラム温度;25℃,保持時間;24.0min(R-体),29.8min(S-体)
Example 18 Synthesis of (S) -2- [N, N′-di (benzyloxycarbonyl) hydrazino] -3-methylbutan-1-ol Peptide catalyst D-Pro-Aib-L obtained in Example 1 To Ser-L-Ser-Tentagel (31.4 mg, 7.29 × 10 −3 mmol) was added acetonitrile (860 μL). At room temperature (26 ° C.), 3-methylbutanal (isovaleraldehyde) (15.7 μL, 0.15 mmol) and dibenzyldiazodicarboxylate (90 wt% content, 26.1 mg, 0.08 mmol) were added. After stirring at the same temperature for 6 hours, the catalyst was separated by a filtration operation to obtain a reaction solution. The separated catalyst was washed with acetonitrile (1 mL), and the washing solution and the reaction solution were combined and concentrated. The separated catalyst was recovered as it was and reused as appropriate for the same reaction. The concentrate was diluted in THF (1 mL) and sodium borohydride (appropriate amount) was added at room temperature. After stirring at the same temperature for 6 hours, water (3 mL) was added, and extraction was performed with dichloromethane (15 mL × 1 + 5 mL × 1). The extract was dried using magnesium sulfate and then concentrated. The obtained crude product was purified by preparative TLC (silica gel, ethyl acetate: hexane = 3: 7) to obtain the title compound (26.5 mg, yield: 90%). As a result of optical purity analysis using HPLC, it was 94% ee.
1 H-NMR (400 MHz, CDCl 3 ) σ0.76-0.94 (6H, m), 1.55-1.70 (1H, m), 3.40-3.45 (1H, m), 3 .63-3.79 (1H, m), 3.88-4.45 (2H, m), 5.04-5.26 (4H, m), 6.85 (1H, s), 7.20 -7.40 (10H, m)
Column: Chiralcel OD-H (250 × 4.6 mm), eluent: isopropanol: hexane = 5: 95, flow rate: 1.0 mL / min, detector; UV 220 nm, column temperature; 25 ° C., retention time: 24.0 min (R-isomer), 29.8 min (S-isomer)
 (実施例19)(S)-2-〔N,N’-ジ(ベンジルオキシカルボニル)ヒドラジノ〕-ヘキサン-1-オールの合成
 実施例18に記載の方法に従い、3-メチルブタナールに替え1-ヘキサナールを用いて同様の反応を行い、表題化合物を得た(収率100%,96%ee(S-体))。
1H-NMR(400MHz,CDCl3)σ0.80-0.90(3H,m),1.04-1.30(6H,m),3.35-3.55(2H,m),4.10-4.45(2H,m),5.02-5.30(4H,m),6.80(1H,s),7.20-7.40(10H,m)
 カラム;キラルセルOJ-H(250×4.6mm),溶離液;イソプロパノール:ヘキサン=10:90,流速;1.0mL/min,検出器;UV220nm,カラム温度;25℃,保持時間;15.0min(R-体),17.6min(S-体)
 なお前記キラルセルOJ-Hは、株式会社ダイセルの製品名である。
Example 19 Synthesis of (S) -2- [N, N′-di (benzyloxycarbonyl) hydrazino] -hexane-1-ol In accordance with the method described in Example 18, instead of 3-methylbutanal The same reaction was carried out using hexanal to obtain the title compound (yield 100%, 96% ee (S-form)).
1 H-NMR (400 MHz, CDCl 3 ) σ0.80-0.90 (3H, m), 1.04-1.30 (6H, m), 3.35-3.55 (2H, m), 4 .10-4.45 (2H, m), 5.02-5.30 (4H, m), 6.80 (1H, s), 7.20-7.40 (10H, m)
Column: Chiralcel OJ-H (250 × 4.6 mm), eluent: isopropanol: hexane = 10: 90, flow rate: 1.0 mL / min, detector; UV 220 nm, column temperature; 25 ° C., retention time: 15.0 min (R-isomer), 17.6 min (S-isomer)
The chiral cell OJ-H is a product name of Daicel Corporation.
 (実施例20)(S)-2-〔N,N’-ジ(ベンジルオキシカルボニル)ヒドラジノ〕-3-フェニルプロパン-1-オールの合成
 実施例18に記載の方法に従い、3-メチルブタナールに替え3-フェニルプロパナールを用いて同様の反応を行い、表題化合物を得た(収率100%,90%ee(S-体))。
 1H-NMR(400MHz,CDCl3)σ2.50-2.70(2H,m),3.52-3.65(2H,m),3.96-4.91(2H,m),4.92-5.25(4H,m),6.63(1H,d),7.10-7.40(15H,m)
カラム;キラルパックAS(250×4.6mm),溶離液;イソプロパノール:ヘキサン=10:90,流速;1.0mL/min,検出器;UV210nm,カラム温度;25℃,保持時間;20.6min(S-体),45.3min(R-体)
 なお前記キラルパックASは、株式会社ダイセルの製品名である。
Example 20 Synthesis of (S) -2- [N, N′-di (benzyloxycarbonyl) hydrazino] -3-phenylpropan-1-ol According to the method described in Example 18, 3-methylbutanal Instead, the same reaction was carried out using 3-phenylpropanal to obtain the title compound (yield 100%, 90% ee (S-form)).
1 H-NMR (400 MHz, CDCl 3 ) σ2.50-2.70 (2H, m), 3.52-3.65 (2H, m), 3.96-4.91 (2H, m), 4 .92-5.25 (4H, m), 6.63 (1H, d), 7.10-7.40 (15H, m)
Column: Chiralpak AS (250 × 4.6 mm), eluent: isopropanol: hexane = 10: 90, flow rate: 1.0 mL / min, detector; UV 210 nm, column temperature; 25 ° C., retention time; 20.6 min ( S-form), 45.3 min (R-form)
The chiral pack AS is a product name of Daicel Corporation.
 (実施例21)触媒の再利用実験1
 実施例8記載の方法に従い、実施例16で回収した触媒を用いて同様の反応を行い、(S)-2-〔N,N’-ジ(イソプロピルオキシカルボニル)ヒドラジノ〕-3-フェニルプロパン-1-オール(収率100%,86%ee(S-体))を得た。
(Example 21) Reuse experiment 1 of catalyst
According to the method described in Example 8, the same reaction was performed using the catalyst recovered in Example 16, and (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropane- 1-ol (yield 100%, 86% ee (S-form)) was obtained.
 (実施例22)触媒の再利用実験2
 実施例8記載の方法に従い、実施例21で回収した触媒を用いて同様の反応を行い、(S)-2-〔N,N’-ジ(イソプロピルオキシカルボニル)ヒドラジノ〕-3-フェニルプロパン-1-オール(収率88%,87%ee(S-体))を得た。
(Example 22) Catalyst reuse experiment 2
According to the method described in Example 8, a similar reaction was performed using the catalyst recovered in Example 21, and (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropane- 1-ol (yield 88%, 87% ee (S-form)) was obtained.
 (実施例23)触媒の再利用実験3
 実施例8記載の方法に従い、実施例22で回収した触媒を用いて同様の反応を行い、(S)-2-〔N,N’-ジ(イソプロピルオキシカルボニル)ヒドラジノ〕-3-フェニルプロパン-1-オール(収率90%,91%ee(S-体))を得た。
(Example 23) Catalyst reuse experiment 3
According to the method described in Example 8, a similar reaction was performed using the catalyst recovered in Example 22, and (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropane- 1-ol (yield 90%, 91% ee (S-form)) was obtained.
 (実施例24)触媒の再利用実験4
 実施例8記載の方法に従い、実施例23で回収した触媒を用いて同様の反応を行い、(S)-2-〔N,N’-ジ(イソプロピルオキシカルボニル)ヒドラジノ〕-3-フェニルプロパン-1-オール(収率100%,90%ee(S-体))を得た。
(Example 24) Catalyst reuse experiment 4
According to the method described in Example 8, the same reaction was carried out using the catalyst recovered in Example 23 to obtain (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropane- 1-ol (yield 100%, 90% ee (S-form)) was obtained.
 (実施例25)触媒の再利用実験5
 実施例8記載の方法に従い、実施例24で回収した触媒を用いて同様の反応を行い、(S)-2-〔N,N’-ジ(イソプロピルオキシカルボニル)ヒドラジノ〕-3-フェニルプロパン-1-オール(収率98%,92%ee(S-体))を得た。
(Example 25) Catalyst reuse experiment 5
According to the method described in Example 8, the same reaction was performed using the catalyst recovered in Example 24, and (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropane- 1-ol (yield 98%, 92% ee (S-form)) was obtained.
 (実施例26)触媒の再利用実験6
 実施例8記載の方法に従い、実施例25で回収した触媒を用いて同様の反応を行い、(S)-2-〔N,N’-ジ(イソプロピルオキシカルボニル)ヒドラジノ〕-3-フェニルプロパン-1-オール(収率99%,92%ee(S-体))を得た。
(Example 26) Catalyst reuse experiment 6
According to the method described in Example 8, the same reaction was performed using the catalyst recovered in Example 25, and (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropane- 1-ol (99% yield, 92% ee (S-form)) was obtained.
 (実施例27)触媒の再利用実験7
 実施例8記載の方法に従い、実施例26で回収した触媒を用いて同様の反応を行い、(S)-2-〔N,N’-ジ(イソプロピルオキシカルボニル)ヒドラジノ〕-3-フェニルプロパン-1-オール(収率84%,92%ee(S-体))を得た。
(Example 27) Catalyst reuse experiment 7
According to the method described in Example 8, a similar reaction was performed using the catalyst recovered in Example 26, and (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropane- 1-ol (yield 84%, 92% ee (S-form)) was obtained.
 (実施例28)触媒の再利用実験8
 実施例8記載の方法に従い、実施例27で回収した触媒を用いて同様の反応を行い、(S)-2-〔N,N’-ジ(イソプロピルオキシカルボニル)ヒドラジノ〕-3-フェニルプロパン-1-オール(収率92%,91%ee(S-体))を得た。
Example 28 Catalyst Reuse Experiment 8
According to the method described in Example 8, the same reaction was performed using the catalyst recovered in Example 27, and (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropane- 1-ol (yield 92%, 91% ee (S-form)) was obtained.
 (比較例1)D-Pro-L-Ala-L-Phe-Tentagelの合成
 実施例5に記載の方法に従い、Tentagel S-NH2にFmoc-L-Phe-OH,Fmoc-L-Ala-OH,Fmoc-D-Pro-OHを順次縮合させ、表題化合物を得た。
(Comparative Example 1) Synthesis of D-Pro-L-Ala-L-Phe-Tentagel According to the method described in Example 5, Tentagel S-NH 2 was converted to Fmoc-L-Phe-OH, Fmoc-L-Ala-OH. , Fmoc-D-Pro-OH were sequentially condensed to give the title compound.
 (比較例2)D-Pro-L-Phe-L-Phe-Tentagelの合成
 実施例5に記載の方法に従い、Tentagel S-NH2にFmoc-L-Phe-OH,Fmoc-L-Phe-OH,Fmoc-D-Pro-OHを順次縮合させ、表題化合物を得た。
(Comparative Example 2) Synthesis of D-Pro-L-Phe-L-Phe-Tentagel According to the method described in Example 5, Tentagel S-NH 2 was mixed with Fmoc-L-Phe-OH, Fmoc-L-Phe-OH. , Fmoc-D-Pro-OH were sequentially condensed to give the title compound.
 (比較例3)D-Pro-L-Trp-L-Phe-Tentagelの合成
 実施例5に記載の方法に従い、Tentagel S-NH2にFmoc-L-Phe-OH,Fmoc-L-Trp-OH,Fmoc-D-Pro-OHを順次縮合させ、表題化合物を得た。
(Comparative Example 3) Synthesis of D-Pro-L-Trp-L-Phe-Tentagel According to the method described in Example 5, Tentagel S-NH 2 was mixed with Fmoc-L-Phe-OH, Fmoc-L-Trp-OH. , Fmoc-D-Pro-OH were sequentially condensed to give the title compound.
 (比較例4)D-Pro-L-Tyr(tBu)-L-Phe-Tentagelの合成
 実施例5に記載の方法に従い、Tentagel S-NH2にFmoc-L-Phe-OH,Fmoc-L-Tyr(tBu)-OH,Fmoc-D-Pro-OHを順次縮合させ、表題化合物を得た。
(Comparative Example 4) Synthesis of D-Pro-L-Tyr (tBu) -L-Phe-Tentagel According to the method described in Example 5, Tentagel S-NH 2 was mixed with Fmoc-L-Phe-OH, Fmoc-L- Tyr (tBu) -OH and Fmoc-D-Pro-OH were sequentially condensed to obtain the title compound.
 (比較例5)(S)-2-〔N,N’-ジ(イソプロピルオキシカルボニル)ヒドラジノ〕-3-フェニルプロパン-1-オールの合成
 実施例8に記載の方法に従い、比較例1に記載の方法で取得したペプチド触媒D-Pro-L-Ala-L-Phe-Tentagelを用いて同様の反応を行い、表題化合物を得た(収率17%,63%ee(S-体))。
Comparative Example 5 Synthesis of (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropan-1-ol According to the method described in Example 8, described in Comparative Example 1. The same reaction was carried out using the peptide catalyst D-Pro-L-Ala-L-Phe-Tentagel obtained by the above method to obtain the title compound (yield 17%, 63% ee (S-form)).
 (比較例6)(S)-2-〔N,N’-ジ(イソプロピルオキシカルボニル)ヒドラジノ〕-3-フェニルプロパン-1-オールの合成
 実施例8に記載の方法に従い、比較例2に記載の方法で取得したペプチド触媒D-Pro-L-Phe-L-Phe-Tentagelを用いて同様の反応を行い、表題化合物を得た(収率25%,57%ee(S-体))。
Comparative Example 6 Synthesis of (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropan-1-ol According to the method described in Example 8, described in Comparative Example 2. The same reaction was performed using the peptide catalyst D-Pro-L-Phe-L-Phe-Tentagel obtained by the above method to obtain the title compound (yield 25%, 57% ee (S-form)).
 (比較例7)(S)-2-〔N,N’-ジ(イソプロピルオキシカルボニル)ヒドラジノ〕-3-フェニルプロパン-1-オールの合成
 実施例8に記載の方法に従い、比較例3に記載の方法で取得したペプチド触媒D-Pro-L-Trp-L-Phe-Tentagelを用いて同様の反応を行い、表題化合物を得た(収率36%,52%ee(S-体))。
Comparative Example 7 Synthesis of (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropan-1-ol According to the method described in Example 8, described in Comparative Example 3. The same reaction was carried out using the peptide catalyst D-Pro-L-Trp-L-Phe-Tentagel obtained by the above method to obtain the title compound (yield 36%, 52% ee (S-form)).
 (比較例8)(S)-2-〔N,N’-ジ(イソプロピルオキシカルボニル)ヒドラジノ〕-3-フェニルプロパン-1-オールの合成
 実施例8に記載の方法に従い、比較例4に記載の方法で取得したペプチド触媒D-Pro-L-Tyr(tBu)-L-Phe-Tentagelを用いて同様の反応を行い、表題化合物を得た(収率32%,53%ee(S-体))。
Comparative Example 8 Synthesis of (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropan-1-ol According to the method described in Example 8, described in Comparative Example 4. Using the peptide catalyst D-Pro-L-Tyr (tBu) -L-Phe-Tentagel obtained by the above method, the same reaction was carried out to obtain the title compound (yield 32%, 53% ee (S-form) )).
 (比較例9)D-Pro-Aib-Tentagelの合成
 実施例5に記載の方法に従い、Tentagel S-NHにFmoc-Aib-OH,Fmoc-D-Pro-OHを順次縮合させ、表題化合物を得た。
(Comparative Example 9) Synthesis of D-Pro-Aib-Tentagel According to the method described in Example 5, Fmoc-Aib-OH and Fmoc-D-Pro-OH were sequentially condensed to Tentagel S-NH 2 to give the title compound. Obtained.
 (比較例10)D-Pro-Tentagelの合成
 実施例5に記載の方法に従い、Tentagel S-NH2にFmoc-D-Pro-OHを順次縮合させ、表題化合物を得た。
(Comparative Example 10) Synthesis of D-Pro-Tentagel According to the method described in Example 5, Fmoc-D-Pro-OH was sequentially condensed with Tentagel S-NH 2 to obtain the title compound.
 (比較例11)(S)-2-〔N,N’-ジ(イソプロピルオキシカルボニル)ヒドラジノ〕-3-フェニルプロパン-1-オールの合成
 実施例8に記載の方法に従い、比較例9に記載の方法で取得したペプチド触媒D-Pro-Aib-Tentagelを用いて同様の反応を行い、表題化合物を得た(収率92%,72%ee(S-体))。
Comparative Example 11 Synthesis of (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropan-1-ol According to the method described in Example 8, described in Comparative Example 9. The same reaction was carried out using the peptide catalyst D-Pro-Aib-Tentagel obtained by the above method to obtain the title compound (yield 92%, 72% ee (S-form)).
 (比較例12)(S)-2-〔N,N’-ジ(イソプロピルオキシカルボニル)ヒドラジノ〕-3-フェニルプロパン-1-オールの合成
 実施例8に記載の方法に従い、比較例10に記載の方法で取得したペプチド触媒D-Pro-Tentagelを用いて同様の反応を行い、表題化合物を得た(収率93%,61%ee(S-体))。
Comparative Example 12 Synthesis of (S) -2- [N, N′-di (isopropyloxycarbonyl) hydrazino] -3-phenylpropan-1-ol According to the method described in Example 8, described in Comparative Example 10. The same reaction was carried out using the peptide catalyst D-Pro-Tentagel obtained by the above method to obtain the title compound (yield 93%, 61% ee (S-form)).
 本発明は、アルデヒドのα-位を不斉アミノ化するのに有用である。α-位が不斉アミノ化されたアルデヒドは、医薬品、農薬等の中間体として有用である。 The present invention is useful for asymmetric amination of the α-position of an aldehyde. Aldehydes asymmetrically aminated at the α-position are useful as intermediates for pharmaceuticals, agricultural chemicals and the like.

Claims (15)

  1.  ペプチドと担体とからなり、当該ペプチドが、下記式(1):
    (SAA)-(AA)-(AA2)   (1)
    または、下記式(2):
    (SAA1)-(SAA)-(AA)-(AA2)   (2)
    (式中、SAA,SAA1はそれぞれ独立して2級アミノ基を有するアミノ酸を表す。AAはα,α-ジ置換アミノ酸を表す。AA2は、1または2の天然型又は非天然型のアミノ酸を表す。)で表されるアミノ酸をN-末端に含み、C-末端が担体と結合して固定化されたペプチド触媒存在下、下記式(3):
    Figure JPOXMLDOC01-appb-C000001
     (式中、R1,R2はそれぞれ独立して、炭素数1~15の置換又は無置換のアルキル基、炭素数7~12の置換又は無置換のアラルキル基、炭素数6~18の置換又は無置換のアリール基、又は水素を表す。)で表されるアルデヒドと、下記式(4):
    Figure JPOXMLDOC01-appb-C000002
     (式中、R3は炭素数1~15の置換又は無置換のアルキル基、炭素数7~12の置換又は無置換のアラルキル基、炭素数6~18の置換又は無置換のアリール基、又は水素を表す。)で表されるジアゾジカルボキシレート誘導体を反応させることを特徴とする、下記式(5):
    Figure JPOXMLDOC01-appb-C000003
     (式中、R1,R2,R3は前記に同じ。*は不斉炭素を表す。)で表されるα-アミノアルデヒド誘導体の製造方法。
    It consists of a peptide and a carrier, and the peptide is represented by the following formula (1):
    (SAA)-(AA)-(AA2) (1)
    Or the following formula (2):
    (SAA1)-(SAA)-(AA)-(AA2) (2)
    (Wherein SAA and SAA1 each independently represent an amino acid having a secondary amino group. AA represents an α, α-disubstituted amino acid. AA2 represents one or two natural or non-natural amino acids. In the presence of a peptide catalyst in which the C-terminus is bound to a carrier and immobilized, in the presence of the amino acid represented by formula (3):
    Figure JPOXMLDOC01-appb-C000001
    Wherein R 1 and R 2 are each independently a substituted or unsubstituted alkyl group having 1 to 15 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 12 carbon atoms, or a substitution having 6 to 18 carbon atoms. Or an unsubstituted aryl group or hydrogen.) And an aldehyde represented by the following formula (4):
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 3 is a substituted or unsubstituted alkyl group having 1 to 15 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 12 carbon atoms, a substituted or unsubstituted aryl group having 6 to 18 carbon atoms, or And a diazodicarboxylate derivative represented by the following formula (5):
    Figure JPOXMLDOC01-appb-C000003
    (Wherein R 1 , R 2 and R 3 are the same as above, * represents an asymmetric carbon).
  2.  SAA1がプロリンである請求項1記載の製造方法。 The production method according to claim 1, wherein SAA1 is proline.
  3.  SAAがプロリンである請求項1又は2記載の製造方法。 The method according to claim 1 or 2, wherein SAA is proline.
  4.  AAがα-アミノイソ酪酸である請求項1~3のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 3, wherein AA is α-aminoisobutyric acid.
  5.  担体が、低架橋ポリスチレン担体上に、ポリエチレンがグラフト結合されたアミノ基を有する樹脂又はアミノメチルポリスチレンである請求項1~4のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the carrier is a resin having an amino group in which polyethylene is graft-bonded on a low cross-linked polystyrene carrier or aminomethyl polystyrene.
  6.  AA2が天然型アミノ酸である請求項1~5のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 5, wherein AA2 is a natural amino acid.
  7.  AA2が、疎水性側鎖を有する天然型アミノ酸又は非電荷極性基を有する天然型アミノ酸である請求項6記載の製造方法。 The production method according to claim 6, wherein AA2 is a natural amino acid having a hydrophobic side chain or a natural amino acid having an uncharged polar group.
  8.  R1,R2のいずれかが水素である請求項1~7のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 7, wherein either R 1 or R 2 is hydrogen.
  9.  ペプチド触媒が式(1)で表されるペプチドを有する請求項1~8のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 8, wherein the peptide catalyst has a peptide represented by the formula (1).
  10.  下記式(1):
    (SAA)-(AA)-(AA2)   (1)
    (式中、SAAは2級アミノ基を有するアミノ酸を表す。AAはα,α-ジ置換アミノ酸を表す。AA2は1または2の天然型又は非天然型のアミノ酸を表す。)で表されるアミノ酸配列をN-末端に含み、C-末端が担体と結合して固定化されている、アミノ酸残基数が27以下の固定化ペプチド触媒。
    Following formula (1):
    (SAA)-(AA)-(AA2) (1)
    (Wherein SAA represents an amino acid having a secondary amino group, AA represents an α, α-disubstituted amino acid, and AA2 represents one or two natural or non-natural amino acids). An immobilized peptide catalyst having an amino acid sequence at the N-terminus and having a C-terminus bound to a carrier and immobilized, wherein the number of amino acid residues is 27 or less.
  11.  AAがα-アミノイソ酪酸である請求項10記載の固定化ペプチド触媒。 The immobilized peptide catalyst according to claim 10, wherein AA is α-aminoisobutyric acid.
  12.  担体が低架橋ポリスチレン担体上に、ポリエチレンがグラフト結合されたアミノ基を有する樹脂又はアミノメチルポリスチレンである請求項10又は11記載の固定化ペプチド触媒。 The immobilized peptide catalyst according to claim 10 or 11, wherein the carrier is a resin or aminomethylpolystyrene having an amino group in which polyethylene is graft-bonded on a low cross-linked polystyrene carrier.
  13.  AA2が担体と直接結合している請求項10~12のいずれかに記載の固定化ペプチド触媒。 The immobilized peptide catalyst according to any one of claims 10 to 12, wherein AA2 is directly bonded to the carrier.
  14.  AA2が天然型アミノ酸である請求項10~13のいずれかに記載の固定化ペプチド触媒。 The immobilized peptide catalyst according to any one of claims 10 to 13, wherein AA2 is a natural amino acid.
  15.  AA2が疎水性側鎖を有する天然型アミノ酸又は非電荷極性基を有する天然型アミノ酸である請求項14記載の製造方法。 The process according to claim 14, wherein AA2 is a natural amino acid having a hydrophobic side chain or a natural amino acid having an uncharged polar group.
PCT/JP2012/069864 2011-08-12 2012-08-03 PEPTIDE CATALYST AND ALDEHYDE ASYMMETRIC α-AMINATION USING SAME WO2013024720A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-177167 2011-08-12
JP2011177167A JP2014197984A (en) 2011-08-12 2011-08-12 PEPTIDE CATALYST AND ALDEHYDE ASYMMETRIC α-AMINATION USING SAME

Publications (1)

Publication Number Publication Date
WO2013024720A1 true WO2013024720A1 (en) 2013-02-21

Family

ID=47715042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069864 WO2013024720A1 (en) 2011-08-12 2012-08-03 PEPTIDE CATALYST AND ALDEHYDE ASYMMETRIC α-AMINATION USING SAME

Country Status (2)

Country Link
JP (1) JP2014197984A (en)
WO (1) WO2013024720A1 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOFOED, JACOB ET AL.: "Discovery of new peptide-based catalysts for the direct asymmetric aldol reaction", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 13, no. 15, 2003, pages 2445 - 2447 *
MASSI, ALESSANDRO ET AL.: "Toward the optimization of continuous-flow aldol and a-amination reactions by means of proline-functionalized silicon packed-bed microreactors", TETRAHEDRON LETTERS, vol. 52, no. 5, 2011, pages 619 - 622 *

Also Published As

Publication number Publication date
JP2014197984A (en) 2014-10-23

Similar Documents

Publication Publication Date Title
JP6560382B2 (en) Amatoxin building block and method for synthesizing amatoxin
US9845287B2 (en) Disubstituted amino acids and methods of preparation and use thereof
WO2005105826A1 (en) Tyropeptin a analogue
JP6842471B2 (en) Systems and methods for liquid phase GAP peptide synthesis
JP2023052381A (en) Method for liquid-phase peptide synthesis and protection strategy therefor
CN106459150B (en) Method for producing synthetic pentapeptide
US11827660B2 (en) Synthesis strategy for gap protecting group
JP4913077B2 (en) Process for producing optically active homoallyl hydrazino esters
WO2014057495A1 (en) A process for industrial preparation of [(s)-n-tert butoxycarbonyl-3-hydroxy]adamantylglycine
KR100722079B1 (en) Novel method for the synthesis of s-indoline-2-carboxylic acid and application thereof in the synthesis of perindopril
CN110015978B (en) Synthesis method of O- [2- [ [ (tert-butyloxycarbonyl) amino ] ethyl ] -N- [ fluorenylmethoxycarbonyl ] -L-tyrosine
JP3165698B2 (en) Thioacylating reagents and intermediates, thiopeptides, and their preparation and use
WO2013024720A1 (en) PEPTIDE CATALYST AND ALDEHYDE ASYMMETRIC α-AMINATION USING SAME
FR2675804A1 (en) PROCESS FOR THE SYNTHESIS OF PEPTIDES, NEW DERIVATIVES OF AMINO ACIDS USED IN THIS PROCESS AND THEIR PREPARATION PROCESSES.
JP3410683B2 (en) Method for producing S-arylcysteine and derivatives
KR101890979B1 (en) Methods for preparing amide compounds using alkynes and methods for preparing peptides using the same
Mansour Dipeptide Analogues: Synthesis of C-Terminal p-Nitrobenzyl-3-ketoesters of N-Protected Amino Acids
WO2008059141A1 (en) Aminobenzocycloheptene derivatives, methods for preparing the same and uses thereof in therapy
WO2002048095A1 (en) Process for producing a-aminohalomethyl ketone derivatives
JP2004175703A (en) METHOD FOR PRODUCING N-ALKOXYCARBONYL-tert-LEUCINE
WO2022149612A1 (en) Method for producing peptide
FR3016879A1 (en) PROCESS FOR THE PREPARATION OF N-ACYL BENZOTRIAZOLE
JP2001031635A (en) Production of optically active n-protected-n-methyl- phenylalanine derivative
WO2015033781A1 (en) Method for producing dipeptide derivative containing disubstituted amino acid residue
CN1435408A (en) Process of one-step hydrogenation synthesis of alpha-substd. beta-amino acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12823468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP