JP4913077B2 - Process for producing optically active homoallyl hydrazino esters - Google Patents

Process for producing optically active homoallyl hydrazino esters Download PDF

Info

Publication number
JP4913077B2
JP4913077B2 JP2008021964A JP2008021964A JP4913077B2 JP 4913077 B2 JP4913077 B2 JP 4913077B2 JP 2008021964 A JP2008021964 A JP 2008021964A JP 2008021964 A JP2008021964 A JP 2008021964A JP 4913077 B2 JP4913077 B2 JP 4913077B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
ion
general formula
substituent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008021964A
Other languages
Japanese (ja)
Other versions
JP2008255094A (en
Inventor
修 小林
知香子 小川
高志 永野
シュナイダー ウーヴェ
麻里 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2008021964A priority Critical patent/JP4913077B2/en
Publication of JP2008255094A publication Critical patent/JP2008255094A/en
Application granted granted Critical
Publication of JP4913077B2 publication Critical patent/JP4913077B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、水と有機溶媒との混合溶媒中で、亜鉛化合物及びキラルなジアミン配位子とを混合させて得られる触媒の存在下で、α−ヒドラゾノエステルとアリルボラン誘導体とを反応させて、対応する光学活性ホモアリルヒドラジノエステル類を製造する方法に関する。   In the present invention, an α-hydrazonoester and an allylborane derivative are reacted in the presence of a catalyst obtained by mixing a zinc compound and a chiral diamine ligand in a mixed solvent of water and an organic solvent. And a process for producing the corresponding optically active homoallyl hydrazino esters.

光学活性なホモアリルアミン誘導体は、その二重結合を種々変換することが可能なことから、天然物や生理活性物質などの合成中間体として重要な化合物である。光学活性ホモアリルアミン誘導体は、通常はイミン類に対する不斉アリル化反応によって合成されており、中でもα−イミノエステルへの触媒的不斉アリル化反応は光学活性α−アミノ酸誘導体を直接合成できることから、非常に期待されている手法の一つである。
しかしながら、これまでにα−イミノエステルを含むイミン類に対する触媒的不斉アリル化反応は幾つか報告がなされているが、そのほとんどが厳密な無水条件下での反応であり(非特許文献1〜10参照)、水中または水と有機溶媒の混合溶媒中などの穏和な条件下での高選択的不斉アリル化反応の例は限られている。
山本らのグループはパラジウム触媒を用いる水共存下でのイミンの高選択的なアリル化反応を報告しているが、α−イミノエステル類を基質とする検討例がないことや用いているアリルスズ誘導体に強い有害性があることなどにおいて改善の余地がある(非特許文献11参照)。
An optically active homoallylamine derivative is an important compound as a synthetic intermediate for natural products and physiologically active substances because it can convert the double bond in various ways. The optically active homoallylamine derivative is usually synthesized by an asymmetric allylation reaction on imines, and among them, the catalytic asymmetric allylation reaction to α-iminoester can directly synthesize an optically active α-amino acid derivative. This is one of the highly anticipated methods.
However, several catalytic asymmetric allylation reactions to imines containing an α-imino ester have been reported so far, most of which are reactions under strict anhydrous conditions (Non-Patent Documents 1 to 3). 10), and examples of highly selective asymmetric allylation reactions under mild conditions such as in water or a mixed solvent of water and an organic solvent are limited.
Yamamoto et al. Have reported a highly selective allylation reaction of imine in the presence of water using a palladium catalyst, but there are no studies using α-iminoesters as substrates and allyltin derivatives used. There is room for improvement in the fact that there is a strong harmfulness to the skin (see Non-Patent Document 11).

また、本発明者らは光学活性亜鉛触媒存在下アリルシラン誘導体を用いる水と有機溶媒の混合溶媒中でのα−ヒドラゾノエステルの不斉アリル化反応を報告している(特許文献1、及び非特許文献12参照)。この手法では得られるヒドラジノエステルはその窒素−窒素結合を切断することによりアミノエステルに導けることから(非特許文献12)、光学活性α−アミノ酸誘導体合成法として有効である。しかしながら、その反応自体の選択性に改善の余地を残している。一方、クック(Cook)らはアシルヒドラゾンの不斉アリル化を報告しているが、有機溶媒中での反応であり、またインジウムを過剰量必要とする(非特許文献13)。   In addition, the present inventors have reported an asymmetric allylation reaction of α-hydrazonoester in a mixed solvent of water and an organic solvent using an allylsilane derivative in the presence of an optically active zinc catalyst (Patent Document 1 and Non-Patent Document 1). (See Patent Document 12). This method is effective as a method for synthesizing optically active α-amino acid derivatives because the hydrazino ester obtained can be converted to an amino ester by cleaving its nitrogen-nitrogen bond (Non-patent Document 12). However, there remains room for improvement in the selectivity of the reaction itself. On the other hand, Cook et al. Have reported the asymmetric allylation of acylhydrazone, but this is a reaction in an organic solvent and requires an excessive amount of indium (Non-patent Document 13).

特開2004−262873号公報JP 2004-262873 A H. Nakamura, K. Nakamura, Y. Yamamoto, J. Am. Chem. Soc. 1998, 120, 4242-4243.H. Nakamura, K. Nakamura, Y. Yamamoto, J. Am. Chem. Soc. 1998, 120, 4242-4243. D. Ferraris, T. Dudding, B. Young, W. J. Drury III, T. Lectka, J. Org. Chem. 1999, 64, 2168-2169.D. Ferraris, T. Dudding, B. Young, W. J. Drury III, T. Lectka, J. Org. Chem. 1999, 64, 2168-2169. K. Nakamura, H. Nakamura, Y. Yamamoto, J. Org. Chem. 1999, 64, 2614-2615.K. Nakamura, H. Nakamura, Y. Yamamoto, J. Org. Chem. 1999, 64, 2614-2615. X. Fang, M. Johannsen, S. Yao, N. Gathergood, R. G. Hazell, K. A. Jφrgensen, J. Org. Chem. 1999, 64, 4844-4849.X. Fang, M. Johannsen, S. Yao, N. Gathergood, R. G. Hazell, K. A. Jφrgensen, J. Org. Chem. 1999, 64, 4844-4849. T. Gastner, H. Ishitani, R. Akiyama, S. Kobayashi, Angew. Chem. Int. Ed. 2001, 40, 1896-1898.T. Gastner, H. Ishitani, R. Akiyama, S. Kobayashi, Angew. Chem. Int. Ed. 2001, 40, 1896-1898. D. Ferraris, B. Young, C. Cox, T. Dudding, W. J. Drury III, L. Ryzhkov, A. E. Taggi, T. Lectka, J. Am. Chem. Soc. 2002, 124, 67-77.D. Ferraris, B. Young, C. Cox, T. Dudding, W. J. Drury III, L. Ryzhkov, A. E. Taggi, T. Lectka, J. Am. Chem. Soc. 2002, 124, 67-77. R. A. Fernandes, Y. Yamamoto, J. Org. Chem. 2004, 69, 735-738.R. A. Fernandes, Y. Yamamoto, J. Org. Chem. 2004, 69, 735-738. G. R. Cook, R. Kargbo, B. Maity, Org. Lett. 2005, 7, 2767-2770.G. R. Cook, R. Kargbo, B. Maity, Org. Lett. 2005, 7, 2767-2770. R. Wada, T. Shibuguchi, S. Makino, K. Oisaki, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2006, 128, 7687-7691.R. Wada, T. Shibuguchi, S. Makino, K. Oisaki, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2006, 128, 7687-7691. K. L. Tan, E. N. Jacobsen, Angew. Chem. Int. Ed. 2007, 46, 1315-1317K. L. Tan, E. N. Jacobsen, Angew. Chem. Int. Ed. 2007, 46, 1315-1317 R. A. Fernandes, A. Stimac, Y. Yamamoto, J. Am. Chem. Soc. 2003, 125, 14133-14139.R. A. Fernandes, A. Stimac, Y. Yamamoto, J. Am. Chem. Soc. 2003, 125, 14133-14139. T. Hamada, K. Manabe, S. Kobayashi, Angew. Chem. Int. Ed. 2003, 42, 3927-3930.T. Hamada, K. Manabe, S. Kobayashi, Angew. Chem. Int. Ed. 2003, 42, 3927-3930. R. Kargbo, Y. Takahashi, S. Bhor, G. R. Cook, G. C. Lloyd-Jones, I. R. Shepperson, J. Am.Chem. Soc. 2007, 129, 3846-3847R. Kargbo, Y. Takahashi, S. Bhor, G. R. Cook, G. C. Lloyd-Jones, I. R. Shepperson, J. Am. Chem. Soc. 2007, 129, 3846-3847

本発明は、水と有機溶媒との混合溶媒中でのアリルボラン誘導体を用いるα−ヒドラゾノエステルに対する触媒的不斉アリル化反応において、より高収率で、かつ高立体選択的に光学活性ホモアリルヒドラジノエステルを製造する方法を提供する。   In the catalytic asymmetric allylation reaction for α-hydrazonoester using an allylborane derivative in a mixed solvent of water and an organic solvent, the present invention is capable of optically active homoallyl with higher yield and higher stereoselectivity. A method for producing a hydrazino ester is provided.

本発明者らは、より高収率で、かつ高立体選択的に光学活性ホモアリルヒドラジノエステルを製造する方法を検討してきた。従来のアリルシラン誘導体を用いる方法は、アリルスズ誘導体に比べ毒性は低く、優れた方法であったが、収率や立体選択性が必ずしも充分ではなく、さらなる改良が求められていた。本発明者らは、アリル化剤として種々のものを検討してきたところ、かつアリルシラン誘導体よりも反応性が高い特徴を有しているアリル化剤である、アリルボラン誘導体が亜鉛触媒を用いる方法において極めて優れた特性を有していることを見出し、有機溶媒と水との混合溶媒中でのアリルボラン誘導体を用いるヒドラゾンの高エナンチオ選択的触媒的不斉アリル化反応についての発明を完成した。   The present inventors have studied a method for producing an optically active homoallyl hydrazino ester with higher yield and higher stereoselectivity. Conventional methods using allylsilane derivatives are less toxic than allyltin derivatives and are excellent methods, but yields and stereoselectivity are not always sufficient, and further improvements have been demanded. The inventors of the present invention have studied various allylating agents and are allylating agents having characteristics that are more reactive than allylsilane derivatives. The inventors have found that it has excellent characteristics, and have completed an invention about a highly enantioselective catalytic asymmetric allylation reaction of hydrazone using an allylborane derivative in a mixed solvent of an organic solvent and water.

即ち、本発明は、水と有機溶媒との混合溶媒中で、亜鉛化合物及びキラルなジアミン配位子とを混合させて得られる触媒の存在下で、α−ヒドラゾノエステルとアリルボラン誘導体とを反応させて、対応する光学活性ホモアリルヒドラジノエステル類を製造する方法に関する。
また、本発明は、前記した方法で製造された光学活性ホモアリルヒドラジノエステル類の窒素−窒素結合を切断して対応するアミノエステル類を製造する方法に関する。
That is, the present invention reacts an α-hydrazonoester with an allylborane derivative in the presence of a catalyst obtained by mixing a zinc compound and a chiral diamine ligand in a mixed solvent of water and an organic solvent. And a process for producing the corresponding optically active homoallyl hydrazino esters.
The present invention also relates to a method for producing the corresponding amino ester by cleaving the nitrogen-nitrogen bond of the optically active homoallyl hydrazino ester produced by the above-described method.

本発明をより詳細に説明すれば以下のとおりとなる。
(1) 水と有機溶媒との混合溶媒中で、亜鉛化合物及びキラルなジアミン配位子とを混合させて得られる触媒の存在下で、α−ヒドラゾノエステルとアリルボラン誘導体とを反応させて、対応する光学活性ホモアリルヒドラジノエステル類を製造する方法。
(2) キラルなジアミン配位子が、次の一般式(1)、
The present invention will be described in more detail as follows.
(1) In the presence of a catalyst obtained by mixing a zinc compound and a chiral diamine ligand in a mixed solvent of water and an organic solvent, an α-hydrazonoester and an allylborane derivative are reacted, A process for producing the corresponding optically active homoallyl hydrazino esters.
(2) A chiral diamine ligand is represented by the following general formula (1),

Figure 0004913077
Figure 0004913077

(式中、Rは、それぞれ独立して置換基を有していてもよい炭化水素基を表すか、2個のR同士が一緒になって隣接する炭素原子と共に5〜10員の環を形成してもよく、Rは、置換基を有していてもよい芳香族炭化水素基を示す。)
で表されるジアミン誘導体である前記(1)に記載の方法。
(3) 前記一般式(1)におけるRが、置換基を有していてもよいアリール基である前記(2)に記載の方法。
(4) α−ヒドラゾノエステルが、次の一般式(2)、
(In the formula, each R 1 independently represents a hydrocarbon group which may have a substituent, or two R 1 groups together to form a 5- to 10-membered ring together with adjacent carbon atoms. And R 2 represents an aromatic hydrocarbon group which may have a substituent.)
The method as described in said (1) which is a diamine derivative represented by these.
(3) The method according to (2), wherein R 1 in the general formula (1) is an aryl group which may have a substituent.
(4) α-hydrazono ester is represented by the following general formula (2),

Figure 0004913077
Figure 0004913077

(式中、R及びRは、それぞれ独立して置換基を有していてもよい炭化水素基を示す。)
で表されるα−ヒドラゾノエステルである前記(1)〜(3)のいずれかに記載の方法。
(5) 一般式(2)におけるRが、炭素数1〜30のアルキル基であり、Rが置換基を有していてもよいアリール基である前記(4)に記載の方法。
(6) アリルボラン誘導体が、次の一般式(3)、
(In the formula, R 3 and R 4 each independently represent a hydrocarbon group which may have a substituent.)
The method according to any one of (1) to (3) above, which is an α-hydrazonoester represented by the formula:
(5) The method according to (4), wherein R 3 in the general formula (2) is an alkyl group having 1 to 30 carbon atoms, and R 4 is an aryl group which may have a substituent.
(6) An allylborane derivative is represented by the following general formula (3):

Figure 0004913077
Figure 0004913077

(式中、R及びRは、それぞれ独立して水素原子又は置換基を有していてもよい炭化水素基を示し、R、R、及びRは、それぞれ独立して水素原子又は置換基を有していてもよい脂肪族炭化水素基を示し、R10は水素原子、置換基を有していてもよい脂肪族炭化水素基、ハロゲン基、保護されていてもよい水酸基、保護されていてもよいアミノ基、又は保護されていてもよいメルカプト基を示す。)
で表されるアリルボラン誘導体である前記(1)〜(5)のいずれかに記載の方法。
(7) 前記一般式(3)におけるR及びRが、炭素数1〜30のアルキル基であり、R、R、及びRが水素原子であり、R10が水素原子、炭素数1〜30のアルキル基、ハロゲン基、保護されていてもよい水酸基、又は保護されていてもよいアミノ基である前記(6)に記載の方法。
(8) 亜鉛化合物が、亜鉛塩又は酸化亜鉛である前記(1)〜(7)のいずれかに記載の方法。
(9) 亜鉛塩が、ZnX(式中、Xはハロゲン原子からなる陰イオン、アルキルスルホン酸イオン、アリールスルホン酸イオン、パーフルオロアルキルスルホン酸イオン、アルキル硫酸イオン、アリール硫酸イオン、パーフルオロアルキル硫酸イオン、硝酸イオン、過塩素酸イオン、酢酸イオン、又は水酸化物イオンを示す。)である前記(8)に記載の方法。
(10) 光学活性ホモアリルヒドラジノエステル類が、次の一般式(4)、
(In the formula, R 5 and R 6 each independently represent a hydrogen atom or a hydrocarbon group which may have a substituent, and R 7 , R 8 and R 9 each independently represent a hydrogen atom. Or an optionally substituted aliphatic hydrocarbon group, R 10 represents a hydrogen atom, an optionally substituted aliphatic hydrocarbon group, a halogen group, an optionally protected hydroxyl group, An amino group which may be protected or a mercapto group which may be protected is shown.)
The method in any one of said (1)-(5) which is an allyl borane derivative represented by these.
(7) R 5 and R 6 in the general formula (3) are alkyl groups having 1 to 30 carbon atoms, R 7 , R 8 , and R 9 are hydrogen atoms, R 10 is a hydrogen atom, carbon The method as described in said (6) which is a C1-C30 alkyl group, a halogen group, the hydroxyl group which may be protected, or the amino group which may be protected.
(8) The method according to any one of (1) to (7), wherein the zinc compound is a zinc salt or zinc oxide.
(9) Zinc salt is ZnX 2 (wherein X is an anion comprising a halogen atom, alkyl sulfonate ion, aryl sulfonate ion, perfluoroalkyl sulfonate ion, alkyl sulfate ion, aryl sulfate ion, perfluoroalkyl) (Showing sulfate ion, nitrate ion, perchlorate ion, acetate ion, or hydroxide ion).
(10) The optically active homoallyl hydrazino ester is represented by the following general formula (4):

Figure 0004913077
Figure 0004913077

(式中、R、R、R、R、R、及びR10は、前記したものと同じものを示し、*印が不斉炭素原子であることを示す。)
で表される光学活性ホモアリルヒドラジノエステル類又はこの異性体である前記(1)〜(9)のいずれかに記載の方法。
(11) 前記(1)〜(10)のいずれかの方法で製造された光学活性ホモアリルヒドラジノエステル類の窒素−窒素結合を切断して対応するアミノエステル類を製造する方法。
(12) 窒素−窒素結合の切断が、還元的切断である前記(11)に記載の方法。
(In the formula, R 3 , R 4 , R 7 , R 8 , R 9 , and R 10 are the same as described above, and the * mark indicates an asymmetric carbon atom.)
The method in any one of said (1)-(9) which is optically active homoallyl hydrazino ester represented by these, or this isomer.
(11) A method for producing a corresponding amino ester by cleaving a nitrogen-nitrogen bond of the optically active homoallyl hydrazino ester produced by any one of the methods (1) to (10).
(12) The method according to (11) above, wherein the breaking of the nitrogen-nitrogen bond is reductive cleavage.

以下に、本発明の態様をさらに詳細に説明する。
本発明のα−ヒドラゾノエステルとしては、カルボン酸エステル類のα位がヒドラゾン化されたもので、好ましくはヒドラゾンの他方の窒素原子がアシル化されたものが挙げられる。好ましいα−ヒドラゾノエステルとしては、前記した一般式(2)で表されるα−ヒドラゾノエステルが挙げられる。
本発明の一般式(2)で表されるα−ヒドラゾノエステルにおける基R及び基Rの「炭化水素基」としては、炭素数1〜30、好ましくは炭素数1〜20、炭素数1〜10の直鎖状又は分枝状のアルキル基;炭素数2〜20、好ましくは炭素数2〜15、炭素数2〜10の直鎖状又は分枝状のアルケニル基;炭素数3〜15、好ましくは炭素数3〜10の飽和又は不飽和の単環式、多環式又は縮合環式の脂環式炭化水素基;炭素数6〜36、好ましくは炭素数6〜18、炭素数6〜12の単環式、多環式、又は縮合環式の炭素環式芳香族基;炭素数6〜36、好ましくは炭素数6〜18、炭素数6〜12の単環式、多環式、又は縮合環式の炭素環式芳香族基(アリール基)に、前記した炭素数1〜20のアルキル基が結合した、炭素数7〜40、好ましくは炭素数7〜20、炭素数7〜15のアリールアルキル基(炭素環式芳香脂肪族基)などが挙げられ、このようなアルキル基の例としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、などが挙げられ、脂環式炭化水素基としては、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、ビシクロ[1.1.0]ブチル基、トリシクロ[2.2.1.0]ヘプチル基、ビシクロ[3.2.1]オクチル基、ビシクロ[2.2.2.]オクチル基、アダマンチル基(トリシクロ[3.3.1.1]デカニル基)、ビシクロ[4.3.2]ウンデカニル基、トリシクロ[5.3.1.1]ドデカニル基、などが挙げられ、炭素環式芳香族基としては、例えば、フェニル基、ナフチル基、ビフェニル基、フェナントリル基、アントリル基、などが挙げられ、アリールアルキル基(炭素環式芳香脂肪族基)としては、例えば、ベンジル基、フェネチル基、α−ナフチル−メチル基などが挙げられる。好ましい炭化水素基としては、炭素数1〜10の直鎖状又は分枝状のアルキル基、炭素数6〜12の単環式、多環式、又は縮合環式のアリール基、又は炭素数7〜15のアリールアルキル基が挙げられ、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、フェニル基、ナフチル基、ベンジル基などが挙げられる。これらの基は適宜置換基を有してもよい。
特に好ましい基Rとしては、炭素数1〜10の直鎖状又は分枝状のアルキル基、又は炭素数7〜15のアリールアルキル基が挙げられ、基Rとしてはメチル基などのアルキル基、メトキシ基などのアルコキシ基、塩素原子などのハロゲン原子、水酸基、ニトロ基、ジメチルアミノ基などのジアルキルアミノ基などの置換基で置換されてもよい炭素数6〜12の単環式、多環式、又は縮合環式のアリール基が挙げられる。さらに好ましい基Rとしてはフェニル基、p−ジメチルアミノフェニル基、p−メトキシフェニル基、p−ニトロフェニル基、p−ヒドロキシフェニル基などが挙げられる。
Below, the aspect of this invention is demonstrated in detail.
The α-hydrazono ester of the present invention includes those in which the α-position of carboxylic acid esters is hydrazoned, and preferably the other nitrogen atom of hydrazone is acylated. Preferred α-hydrazonoesters include α-hydrazonoesters represented by the general formula (2).
The “hydrocarbon group” of the group R 3 and the group R 4 in the α-hydrazono ester represented by the general formula (2) of the present invention has 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms, A linear or branched alkyl group having 1 to 10 carbon atoms; a linear or branched alkenyl group having 2 to 20 carbon atoms, preferably 2 to 15 carbon atoms and 2 to 10 carbon atoms; 15, preferably a saturated or unsaturated monocyclic, polycyclic or condensed cyclic alicyclic hydrocarbon group having 3 to 10 carbon atoms; 6 to 36 carbon atoms, preferably 6 to 18 carbon atoms, 6-12 monocyclic, polycyclic, or fused-ring carbocyclic aromatic groups; 6-36 carbon atoms, preferably 6-18 carbon atoms, 6-12 carbon atoms monocyclic, polycyclic The above-mentioned alkyl group having 1 to 20 carbon atoms is bonded to the carbocyclic aromatic group (aryl group) of the formula or condensed ring, and the carbon number is 7 Arylalkyl groups (carbocyclic araliphatic groups) having 7 to 20 carbon atoms, preferably 7 to 20 carbon atoms and 7 to 15 carbon atoms. Examples of such alkyl groups include, for example, methyl group, ethyl Group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, octyl group, etc., and examples of the alicyclic hydrocarbon group For example, cyclopropyl group, cyclopentyl group, cyclohexyl group, cyclooctyl group, bicyclo [1.1.0] butyl group, tricyclo [2.2.1.0] heptyl group, bicyclo [3.2.1] octyl The group bicyclo [2.2.2. Octyl group, adamantyl group (tricyclo [3.3.1.1] decanyl group), bicyclo [4.3.2] undecanyl group, tricyclo [5.3.1.1] dodecanyl group, and the like. Examples of the carbocyclic aromatic group include a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, and an anthryl group. Examples of the arylalkyl group (carbocyclic araliphatic group) include a benzyl group. , A phenethyl group, an α-naphthyl-methyl group, and the like. Preferred hydrocarbon groups include linear or branched alkyl groups having 1 to 10 carbon atoms, monocyclic, polycyclic or condensed cyclic aryl groups having 6 to 12 carbon atoms, or 7 carbon atoms. To 15 arylalkyl groups, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, phenyl group, naphthyl group, benzyl group and the like. These groups may have a substituent as appropriate.
Particularly preferred group R 3 includes a linear or branched alkyl group having 1 to 10 carbon atoms, or an arylalkyl group having 7 to 15 carbon atoms, and group R 4 includes an alkyl group such as a methyl group. Monocyclic or polycyclic having 6 to 12 carbon atoms which may be substituted with a substituent such as an alkoxy group such as a methoxy group, a halogen atom such as a chlorine atom, a dialkylamino group such as a hydroxyl group, a nitro group or a dimethylamino group And an aryl group of the formula or condensed cyclic. Further preferred groups R 4 include phenyl group, p-dimethylaminophenyl group, p-methoxyphenyl group, p-nitrophenyl group, p-hydroxyphenyl group and the like.

本発明のアリルボラン誘導体としては、炭素−炭素二重結合におけるアリル位にホウ素原子が結合したボラン化合物が挙げられるが、好ましいアリルボラン誘導体としては、前記した一般式(3)で表されるアリルボラン誘導体が挙げられる。
本発明の一般式(3)で表されるアリルボラン誘導体におけるR及びRの「炭化水素基」としては、前記した炭化水素基が挙げられ、これらの炭化水素基は前記した置換基で置換されていてもよい。一般式(3)で表されるアリルボラン誘導体におけるR及びRの好ましい基としては、炭素数1〜30、好ましくは炭素数1〜20、炭素数1〜10の直鎖状又は分枝状のアルキル基、例えば、メチル基、エチル基等が挙げられる。これらのR及びRは同一であっても異なっていてもよい。
本発明の一般式(3)で表されるアリルボラン誘導体におけるR、R、R、及びR10の「脂肪族炭化水素基」としては、炭素数1〜30、好ましくは炭素数1〜20、炭素数1〜10の直鎖状又は分枝状のアルキル基;炭素数2〜20、好ましくは炭素数2〜15、炭素数2〜10の直鎖状又は分枝状のアルケニル基、炭素数3〜15、好ましくは炭素数3〜10の飽和又は不飽和の単環式、多環式又は縮合環式の脂環式炭化水素基などが挙げられるが、好ましくは炭素数1〜10の直鎖状又は分枝状のアルキル基が挙げられる。好ましいR、R及びRとしては、水素原子が挙げられ、R10としては、水素原子又は炭素数1〜30、好ましくは炭素数1〜20、炭素数1〜10の直鎖状又は分枝状のアルキル基が挙げられる。
Examples of the allylborane derivative of the present invention include a borane compound in which a boron atom is bonded to an allyl position in a carbon-carbon double bond. As a preferable allylborane derivative, an allylborane derivative represented by the above general formula (3) is used. Can be mentioned.
Examples of the “hydrocarbon group” of R 5 and R 6 in the allylborane derivative represented by the general formula (3) of the present invention include the above-described hydrocarbon groups, and these hydrocarbon groups are substituted with the above-described substituents. May be. Preferred groups of R 5 and R 6 in the allylborane derivative represented by the general formula (3) are linear or branched having 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms and 1 to 10 carbon atoms. Alkyl groups such as a methyl group and an ethyl group. These R 5 and R 6 may be the same or different.
The “aliphatic hydrocarbon group” of R 7 , R 8 , R 9 and R 10 in the allylborane derivative represented by the general formula (3) of the present invention has 1 to 30 carbon atoms, preferably 1 to 1 carbon atoms. 20, a linear or branched alkyl group having 1 to 10 carbon atoms; a linear or branched alkenyl group having 2 to 20 carbon atoms, preferably 2 to 15 carbon atoms, and 2 to 10 carbon atoms; Examples include saturated or unsaturated monocyclic, polycyclic or condensed cyclic alicyclic hydrocarbon groups having 3 to 15 carbon atoms, preferably 3 to 10 carbon atoms, preferably 1 to 10 carbon atoms. Or a linear or branched alkyl group. Preferred examples of R 7 , R 8 and R 9 include a hydrogen atom, and R 10 represents a hydrogen atom or a straight chain having 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms and 1 to 10 carbon atoms. A branched alkyl group can be mentioned.

また、本発明の一般式(3)で表されるアリルボラン誘導体におけるR10のハロゲン基としては、塩素原子、臭素原子、ヨウ素原子、フッ素原子などが挙げられる。
本発明の一般式(3)で表されるアリルボラン誘導体におけるR10の水酸基、アミノ基、又はメルカプト基は必要により適当な保護基で保護されていてもよく、このような保護基としては、本発明の方法における化学反応においては反応に関与しないように化学的に変性することができる基であって、当該反応の後は加水分解や加水素分解などにより容易に脱離してもとの官能基に復元することができる基であればよく、例えば、ペプチド合成などに使用されるおける水酸基、アミノ基、又はメルカプト基の保護基などが挙げられる。このような保護基としては、より具体的には、例えば、メチル基、エチル基等の炭素数1〜30、好ましくは炭素数1〜20、炭素数1〜10の直鎖状又は分枝状のアルキル基;ベンジル基などの炭素数7〜30、好ましくは炭素数7〜20、炭素数7〜12のアラルキル基;t−ブチルカルボニル基などの炭素数1〜30、好ましくは炭素数1〜20、炭素数1〜10の直鎖状又は分枝状のアルキル基からなるアルキルアシル基;例えば、フェニルカルボニル基などの炭素数6〜36、好ましくは炭素数6〜18、炭素数6〜12の単環式、多環式、又は縮合環式のアリール基からなるアリールカルボニル基;例えばベンジルカルボニル基などの炭素数7〜30、好ましくは炭素数7〜20、炭素数7〜12のアラルキル基からなるアラルキルカルボニル基;例えば、t−ブトキシカルボニル基などの炭素数1〜30、好ましくは炭素数1〜20、炭素数1〜10の直鎖状又は分枝状のアルキル基からなるアルキルオキシカルボニル基;例えば、ベンジルオキシカルボニル基などの炭素数7〜30、好ましくは炭素数7〜20、炭素数7〜12のアラルキル基からなるアラルキルオキシカルボニル基などが挙げられる。また、これらのアルキル基、アリール基、アラルキル基は、フッ素原子などのハロゲン基などで適宜置換されていてもよい。R10における好ましい「保護されていてもよい水酸基」としては、炭素数7〜30、好ましくは炭素数7〜20、炭素数7〜12のアラルキルオキシ基、より具体的にはベンジルオキシ基などが挙げられる。
In addition, examples of the halogen group of R 10 in the allylborane derivative represented by the general formula (3) of the present invention include a chlorine atom, a bromine atom, an iodine atom, and a fluorine atom.
In the allylborane derivative represented by the general formula (3) of the present invention, the hydroxyl group, amino group, or mercapto group of R 10 may be protected with an appropriate protecting group as necessary. In the chemical reaction in the method of the invention, it is a group that can be chemically modified so as not to participate in the reaction, and after the reaction, the functional group can be easily eliminated by hydrolysis or hydrogenolysis Any group can be used as long as it can be reconstituted, and examples thereof include a protective group for a hydroxyl group, an amino group, or a mercapto group used in peptide synthesis. More specifically, as such a protecting group, for example, a straight chain or branched chain having 1 to 30 carbon atoms such as a methyl group or an ethyl group, preferably 1 to 20 carbon atoms, or 1 to 10 carbon atoms. An aralkyl group having 7 to 30 carbon atoms such as a benzyl group, preferably 7 to 20 carbon atoms, and 7 to 12 carbon atoms; 1 to 30 carbon atoms such as a t-butylcarbonyl group, preferably 1 to 1 carbon atom. 20, an alkylacyl group composed of a linear or branched alkyl group having 1 to 10 carbon atoms; for example, 6 to 36 carbon atoms such as a phenylcarbonyl group, preferably 6 to 18 carbon atoms, 6 to 12 carbon atoms An arylcarbonyl group consisting of a monocyclic, polycyclic or condensed cyclic aryl group; an aralkyl group having 7 to 30 carbon atoms, such as a benzylcarbonyl group, preferably 7 to 20 carbon atoms and 7 to 12 carbon atoms Aral consisting of An alkyloxycarbonyl group consisting of a linear or branched alkyl group having 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms and 1 to 10 carbon atoms, such as a t-butoxycarbonyl group; Examples thereof include an aralkyloxycarbonyl group composed of an aralkyl group having 7 to 30 carbon atoms, preferably 7 to 20 carbon atoms and 7 to 12 carbon atoms, such as a benzyloxycarbonyl group. In addition, these alkyl groups, aryl groups, and aralkyl groups may be appropriately substituted with a halogen group such as a fluorine atom. Preferred “optionally protected hydroxyl group” for R 10 includes an aralkyloxy group having 7 to 30 carbon atoms, preferably 7 to 20 carbon atoms and 7 to 12 carbon atoms, more specifically a benzyloxy group. Can be mentioned.

本発明の方法において使用されるキラルなジアミン配位子としては、2個の飽和の窒素原子を有するキラルな化合物が挙げられる。好ましいキラルなジアミン配位子としては前記一般式(1)で表されるキラルなジアミン配位子が挙げられる。
本発明の一般式(1)で表されるジアミン誘導体における基Rの「炭化水素基」としては、前記した炭化水素基と同じものが挙げられる。例えば、炭素数1〜30、好ましくは炭素数1〜20、炭素数3〜20の直鎖状又は分枝状のアルキル基;炭素数2〜20、好ましくは炭素数2〜15、炭素数3〜15の直鎖状又は分枝状のアルケニル基;炭素数3〜15、好ましくは炭素数3〜10の飽和又は不飽和の単環式、多環式又は縮合環式の脂環式炭化水素基;炭素数6〜36、好ましくは炭素数6〜18、炭素数6〜12の単環式、多環式、又は縮合環式の炭素環式芳香族基;炭素数6〜36、好ましくは炭素数6〜18、炭素数6〜12の単環式、多環式、又は縮合環式の炭素環式芳香族基(アリール基)に、前記した炭素数1〜20のアルキル基が結合した、炭素数7〜40、好ましくは炭素数7〜20、炭素数7〜15のアリールアルキル基(炭素環式芳香脂肪族基)などが挙げられる。
また、これらの炭化水素基は前記した置換基で置換されていてもよい。好ましいRとしては、炭素数6〜36、好ましくは炭素数6〜18、炭素数6〜12の単環式、多環式、又は縮合環式のアリール基、例えば、フェニル基、ナフチル基等が挙げられる。これらのアリール基は適宜前記してきたような置換基を有してもよい。
本発明の一般式(1)で表されるジアミン誘導体の基Rにおける「R同士が一緒になって隣接する炭素原子と共に単環式、多環式、又は縮合環式の5〜10員の環を形成する場合としては、隣接する炭素原子に結合している2個のR基が一緒になって炭素数1〜8、好ましくは炭素数3〜8、炭素数3〜6の直鎖状又は分岐状のアルキレン基を形成し、隣接する2個の炭素原子と共に5〜10員の脂肪族環式基を形成するものが挙げられる。形成される環は飽和であっても不飽和であってもよいが、好ましくは飽和環が挙げられる。また、このように形成された環にさらに他の環が結合または縮合したものであってもよい。好ましい例としては、R同士が一緒になって隣接する炭素原子と共にシクロヘキサン環を形成する場合が挙げられる。
The chiral diamine ligand used in the method of the present invention includes a chiral compound having two saturated nitrogen atoms. Preferred chiral diamine ligands include chiral diamine ligands represented by the general formula (1).
Examples of the “hydrocarbon group” of the group R 1 in the diamine derivative represented by the general formula (1) of the present invention include the same hydrocarbon groups as those described above. For example, a linear or branched alkyl group having 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms and 3 to 20 carbon atoms; 2 to 20 carbon atoms, preferably 2 to 15 carbon atoms, 3 carbon atoms -15 linear or branched alkenyl groups; saturated or unsaturated monocyclic, polycyclic or condensed alicyclic hydrocarbons having 3 to 15 carbon atoms, preferably 3 to 10 carbon atoms Group: C6-C36, preferably C6-C18, C6-C12 monocyclic, polycyclic or condensed cyclic carbocyclic aromatic group; C6-C36, preferably The above-described alkyl group having 1 to 20 carbon atoms is bonded to a monocyclic, polycyclic or condensed cyclic carbocyclic aromatic group (aryl group) having 6 to 18 carbon atoms or 6 to 12 carbon atoms. An arylalkyl group (carbocyclic araliphatic group) having 7 to 40 carbon atoms, preferably 7 to 20 carbon atoms and 7 to 15 carbon atoms. And the like.
Moreover, these hydrocarbon groups may be substituted with the above-described substituents. Preferable R 1 is a monocyclic, polycyclic or condensed cyclic aryl group having 6 to 36 carbon atoms, preferably 6 to 18 carbon atoms and 6 to 12 carbon atoms, such as a phenyl group or a naphthyl group. Is mentioned. These aryl groups may have a substituent as described above.
In the group R 1 of the diamine derivative represented by the general formula (1) of the present invention, “R 1 together with the adjacent carbon atom together with the monocyclic, polycyclic or condensed cyclic 5 to 10 member In the case of forming a ring, the two R 1 groups bonded to adjacent carbon atoms are combined to form a straight chain having 1 to 8, preferably 3 to 8, and 3 to 6 carbon atoms. Examples include those that form a chain or branched alkylene group and form a 5- to 10-membered aliphatic cyclic group with two adjacent carbon atoms. may be, but preferably include saturated ring. as the thus yet another ring the ring formed or may be connected to or fused. preferred examples, R 1 each other In some cases, they together form a cyclohexane ring with adjacent carbon atoms. I can get lost.

本発明の一般式(1)で表されるジアミン誘導体における基Rの「芳香族炭化水素基」としては、炭素数6〜36、好ましくは炭素数6〜18、炭素数6〜12の単環式、多環式、又は縮合環式の芳香族炭化水素基(アリール基)が挙げられる。より具体的には、フェニル基、ナフチル基などが挙げられる。これらの芳香族炭化水素基(アリール基)は適宜前記してきたような置換基を有してもよい。好ましい置換基としては、メチル基などの炭素数1〜6のアルキル基、メトキシ基などの炭素数1〜6のアルコキシ基、塩素原子などのハロゲン原子、水酸基、ニトロ基、ジメチルアミノ基などの炭素数1〜6のジアルキルアミノ基などが挙げられる。
これらの中で、さらに好ましい不斉炭素原子を含有するジアミンとしては、次のものが挙げられる。
The “aromatic hydrocarbon group” of the group R 2 in the diamine derivative represented by the general formula (1) of the present invention is a C6-C36, preferably C6-C18, C6-C12 single unit. A cyclic, polycyclic, or condensed cyclic aromatic hydrocarbon group (aryl group) may be mentioned. More specifically, a phenyl group, a naphthyl group, etc. are mentioned. These aromatic hydrocarbon groups (aryl groups) may have a substituent as described above. Preferred substituents include alkyl groups having 1 to 6 carbon atoms such as methyl groups, alkoxy groups having 1 to 6 carbon atoms such as methoxy groups, halogen atoms such as chlorine atoms, carbons such as hydroxyl groups, nitro groups, and dimethylamino groups. Examples thereof include dialkylamino groups of 1 to 6.
Among these, more preferable examples of the diamine containing an asymmetric carbon atom include the following.

Figure 0004913077
Figure 0004913077

(式中、Rは、それぞれ独立して炭素数1〜20の直鎖状又は分岐状のアルキル基、又は置換基を有してもよい炭素数6〜36のアリール基を示す。)
で表されるアルキレンジアミン誘導体又はシクロヘキシルジアミン誘導体が挙げられる。前記式中におけるアリール基は、1個又は2個以上の置換基を有していてもよく、このような置換基としては、メチル基やエチル基やi−プロピル基やt−ブチル基などの炭素数1〜10の直鎖状又は分枝状のアルキル基;メトキシ基やエトキシ基などの炭素数1〜10の直鎖状又は分枝状のアルコキシ基;塩素原子、フッ素原子、臭素原子などのハロゲン原子などが挙げられる。より好ましいアリール基としては無置換のフェニル基、p−ブロムフェニル基などのハロゲン置換フェニル基、3,5−キシリル基などのアルキル置換フェニル基などが挙げられる。特に好ましいアリール基の例としてはp−ブロムフェニル基、フェニル基又は3,5−キシリル基などが挙げられる。
本発明のキラルなジアミン配位子は公知であり、例えば、Hamada, T.; Manabe, K.; Kobayashi, S. Angew. Chem. Int. Ed. 2003, 42, 3927-3930.に記載の方法又はこの方法に準じて製造することができる。
(In formula, R shows a C1-C20 linear or branched alkyl group each independently, or a C6-C36 aryl group which may have a substituent.)
The diamine diamine derivative or cyclohexyl diamine derivative represented by these is mentioned. The aryl group in the above formula may have one or more substituents, and examples of such substituents include methyl group, ethyl group, i-propyl group, and t-butyl group. A linear or branched alkyl group having 1 to 10 carbon atoms; a linear or branched alkoxy group having 1 to 10 carbon atoms such as a methoxy group or an ethoxy group; a chlorine atom, a fluorine atom, a bromine atom, etc. And the like. More preferred aryl groups include unsubstituted phenyl groups, halogen-substituted phenyl groups such as p-bromophenyl groups, and alkyl-substituted phenyl groups such as 3,5-xylyl groups. Particularly preferred examples of the aryl group include a p-bromophenyl group, a phenyl group, and a 3,5-xylyl group.
The chiral diamine ligands of the present invention are known, for example, Hamada, T .; Manabe, K .; Kobayashi, S. Angew. Chem. Int. Ed. 2003, 42, 3927-3930. Or can be produced according to this method.

亜鉛化合物としては、亜鉛塩、酸化亜鉛、水酸化亜鉛、亜鉛錯塩、有機金属化合物等の各種のものから選択されてよいが、なかでも、酸化亜鉛又は有機酸若しくは無機酸との塩、又はこの塩との錯体や有機複合体が好適なものとして挙げられる。好ましい亜鉛塩としては、酸との塩、例えばパーフルオロアルキルスルホン酸や過塩素酸、硫酸等の塩、それらの錯体や有機複合体が挙げられ、次の一般式
ZnX
(式中、Xはハロゲン原子からなる陰イオン、アルキルスルホン酸イオン、アリールスルホン酸イオン、パーフルオロアルキルスルホン酸イオン、アルキル硫酸イオン、アリール硫酸イオン、パーフルオロアルキル硫酸イオントリフルオロメタンスルホン酸イオン、硝酸イオン、過塩素酸イオン、酢酸イオン、又は水酸化物イオンを示す。)
で表される亜鉛塩が挙げられる。前記したアルキルスルホン酸イオン、パーフルオロアルキルスルホン酸イオン、アルキル硫酸イオン、及びパーフルオロアルキル硫酸イオンにおけるアルキル基としては、前記してきたアルキル基が挙げられる。好ましいアルキル基としては炭素数1〜10、好ましくは炭素数1〜5のアルキル基が挙げられる。また、前記してきたアリールスルホン酸イオン、及びアリール硫酸イオンにおけるアリール基としては、前記してきたアリール基が挙げられる。好ましいアリール基としてはメチル基、エチル基などの炭素数1〜5のアルキル基、メトキシ基やエトキシ基などの炭素数1〜5のアルコキシ基などの置換基で置換されていてもよい炭素数6〜12のアリール基が挙げられる。
本発明における亜鉛化合物としては、例えば、酸化亜鉛、水酸化亜鉛、塩化亜鉛、フッ化亜鉛、硝酸亜鉛、過塩素酸亜鉛、トリフルオロメタンスルホン酸亜鉛、酢酸亜鉛などが挙げられる。好ましい亜鉛化合物としては、フッ化亜鉛、水酸化亜鉛などが挙げられる。
本発明の方法における亜鉛化合物は、前記したような亜鉛化合物とキラルなジアミン配位子とを、あらかじめ混合して錯体を調製してから、これを触媒として用いてもよいし、あるいは反応系において亜鉛化合物とキラルなジアミン配位子とを混合して使用するようにしてもよい。触媒としての使用割合については、亜鉛化合物とキラルなジアミン配位子をほぼ当量、好ましくは配位子がやや過剰になるような量で使用される。また、α−ヒドラゾノエステルに対して、通常は、0.1〜50モル%、好ましくは0.5〜20モル%程度の割合とすることができる。
The zinc compound may be selected from various compounds such as zinc salt, zinc oxide, zinc hydroxide, zinc complex salt, organometallic compound, etc. Among them, zinc oxide or salt with organic acid or inorganic acid, or this A complex with a salt or an organic complex is preferable. Preferred zinc salts include salts with acids, such as perfluoroalkylsulfonic acid, perchloric acid, sulfuric acid, and the like, and complexes and organic complexes thereof.
ZnX 2
(Wherein X is an anion comprising a halogen atom, alkyl sulfonate ion, aryl sulfonate ion, perfluoroalkyl sulfonate ion, alkyl sulfate ion, aryl sulfate ion, perfluoroalkyl sulfate ion trifluoromethane sulfonate ion, nitric acid. Ion, perchlorate ion, acetate ion, or hydroxide ion.)
The zinc salt represented by these is mentioned. Examples of the alkyl group in the aforementioned alkyl sulfonate ion, perfluoroalkyl sulfonate ion, alkyl sulfate ion, and perfluoroalkyl sulfate ion include the alkyl groups described above. Preferred alkyl groups include alkyl groups having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms. Examples of the aryl group in the aryl sulfonate ion and aryl sulfate ion described above include the aryl groups described above. The aryl group is preferably an alkyl group having 1 to 5 carbon atoms such as a methyl group or an ethyl group, or an optionally substituted substituent such as an alkoxy group having 1 to 5 carbon atoms such as a methoxy group or an ethoxy group. ˜12 aryl groups.
Examples of the zinc compound in the present invention include zinc oxide, zinc hydroxide, zinc chloride, zinc fluoride, zinc nitrate, zinc perchlorate, zinc trifluoromethanesulfonate, and zinc acetate. Preferred zinc compounds include zinc fluoride and zinc hydroxide.
The zinc compound in the method of the present invention may be prepared by mixing a zinc compound as described above and a chiral diamine ligand in advance to prepare a complex, which may be used as a catalyst or in a reaction system. A zinc compound and a chiral diamine ligand may be mixed and used. About the use ratio as a catalyst, a zinc compound and a chiral diamine ligand are used substantially in an equivalent amount, Preferably it is used in the quantity that a ligand becomes a little excess. Moreover, it can be set as the ratio of about 0.1-50 mol% normally with respect to (alpha) -hydrazonoester, Preferably about 0.5-20 mol%.

本発明の方法は、水と有機溶媒の混合溶媒中で行うことができる。有機溶媒としては、水と相溶性のある有機溶媒として均一系で行うことが好ましい。このような有機溶媒としては、アセトン、アセトニトリル、テトラヒドロフラン(THF)、ジオキサン、メタノール、エタノール、エチレングリコールなどが挙げられ、好ましくは水−アセトン系、水−THF系の溶媒が挙げられる。また、有機溶媒としてトルエン、キシレン、メシチレン、ヘキサン、デカンなどの炭化水素系溶媒;塩化メチレン、ジクロロエタン、クロロベンゼン、ジクロロベンゼン、ブロムベンゼン、四塩化炭素などのハロゲン化炭化水素系溶媒:ブタノール、オクタノールなどの高級アルコール系溶媒などの水と難溶性又は不溶性の有機溶媒を使用することもできる。この場合には、溶媒系は相分離した二相系になるが、相間移動触媒などの使用により反応を行うことができるので、このような溶媒系も本発明の方法における好ましい溶媒系の例とすることができる。
反応温度としては、好ましくは−20℃〜溶媒の沸点、−20℃〜40℃程度の範囲で適宜選択することができる。雰囲気は大気中もしくはアルゴンガスなどの不活性雰囲気とすることができる。
前記したような本発明の触媒を使用することにより、光学活性ホモアリルヒドラジノエステル類の一方のエナンチオマーがが立体選択的に生成し、原料のα−ヒドラゾノエステルのα位の炭素原子において(R)又は(S)のいずれか一方の鏡像体が優位に生成する。本明細書ではこの位置における(R)体又は(S)体のいずれか一方の過剰率をエナンチオマー過剰率(ee)(%)として表す。このエナンチオマー過剰率は、((R)−(S))/((R)+(S))×100、又は((S)−(R))/((R)+(S))×100として計算される値である。
The method of the present invention can be carried out in a mixed solvent of water and an organic solvent. As an organic solvent, it is preferable to carry out in a homogeneous system as an organic solvent compatible with water. Examples of such an organic solvent include acetone, acetonitrile, tetrahydrofuran (THF), dioxane, methanol, ethanol, ethylene glycol, and the like, and preferably a water-acetone solvent and a water-THF solvent. In addition, hydrocarbon solvents such as toluene, xylene, mesitylene, hexane, decane as organic solvents; halogenated hydrocarbon solvents such as methylene chloride, dichloroethane, chlorobenzene, dichlorobenzene, bromobenzene, carbon tetrachloride: butanol, octanol, etc. It is also possible to use a water-insoluble or insoluble organic solvent such as a higher alcohol solvent. In this case, the solvent system is a phase-separated two-phase system, but since the reaction can be carried out by using a phase transfer catalyst or the like, such a solvent system is also an example of a preferable solvent system in the method of the present invention. can do.
The reaction temperature can be appropriately selected within the range of preferably −20 ° C. to the boiling point of the solvent and about −20 ° C. to 40 ° C. The atmosphere can be air or an inert atmosphere such as argon gas.
By using the catalyst of the present invention as described above, one enantiomer of the optically active homoallyl hydrazino ester is stereoselectively formed, and at the carbon atom at the α-position of the raw α-hydrazono ester ( Either one of R) or (S) is preferentially generated. In this specification, the excess of either the (R) isomer or the (S) isomer at this position is expressed as an enantiomeric excess (ee) (%). This enantiomeric excess is ((R) − (S)) / ((R) + (S)) × 100 or ((S) − (R)) / ((R) + (S)) × 100 Is calculated as

本発明の方法により製造される光学活性ホモアリルヒドラジノエステル類の代表的なものとしては、前記した一般式(4)で表されるエステル類が挙げられるが、本発明の方法における反応条件によっては、この異性体が生成物となることもある。異性体としては、一般式(4)に示されるようにアリル基がボロン側から反応したものではなく、いわゆるアリル転移が起こってボロン側と反対側のR及びRが結合している炭素原子側から反応したものが挙げられる。
これらの本発明の方法により製造される光学活性ホモアリルヒドラジノエステル類は、エステル基のα位に特定の立体配置を有する窒素原子が結合したものであり、ヒドラジノ基の窒素−窒素結合は還元的方法により簡単かつ立体配置を保持ままで切断できることから、本発明の方法で得られた光学活性ホモアリルヒドラジノエステル類から光学活性α−アミノ酸類を製造することができることになる。
したがって、本発明は、本発明の方法により製造された光学活性ホモアリルヒドラジノエステル類を還元して、対応する光学活性α−アミノ−α−アリルエステル化合物を製造する方法を提供するものである。また、本発明の方法により製造される光学活性ホモアリルヒドラジノエステル類は、β位に特定の立体配置を有する炭素原子を有する化合物とすることができる。
Representative examples of the optically active homoallyl hydrazino esters produced by the method of the present invention include esters represented by the general formula (4) described above, depending on the reaction conditions in the method of the present invention. This isomer may be the product. As an isomer, as shown in the general formula (4), an allyl group does not react from the boron side, but a carbon in which R 7 and R 8 on the opposite side to the boron side are bonded by so-called allyl transition occurs. What reacted from the atom side is mentioned.
The optically active homoallyl hydrazino esters produced by the method of the present invention are those in which a nitrogen atom having a specific configuration is bonded to the α-position of the ester group, and the nitrogen-nitrogen bond of the hydrazino group is reduced. Therefore, optically active α-amino acids can be produced from optically active homoallyl hydrazino esters obtained by the method of the present invention.
Accordingly, the present invention provides a method for producing the corresponding optically active α-amino-α-allyl ester compound by reducing the optically active homoallyl hydrazino ester produced by the method of the present invention. . Further, the optically active homoallyl hydrazino esters produced by the method of the present invention can be compounds having a carbon atom having a specific configuration at the β-position.

本発明は、水と有機溶媒との混合溶媒中でのアリルボラン誘導体を用いるα−ヒドラゾノエステルに対する触媒的不斉アリル化反応を、高収率で、かつ高立体選択的に行うことができる方法を提供するものであり、本発明の方法によれば高純度の生成物を効率的に製造することができ、副生物が少なく生成物の分離が容易なだけでなく、水性溶媒中で行うことができるので、有機溶媒による環境等への問題も少なく、工業的にも優れた方法を提供するものである。
本発明の方法によって製造される光学活性ホモアリルヒドラジノエステル類は、その窒素−窒素結合を切断することにより、対応する光学活性アミノ酸誘導体に誘導することができ、様々な光学活性α−アミノ酸誘導体を合成できることから光学活性医薬品や食品類などや、その中間体の製造方法として有用となる。
The present invention is a method capable of performing a catalytic asymmetric allylation reaction on α-hydrazonoester using an allylborane derivative in a mixed solvent of water and an organic solvent with high yield and high stereoselectivity. According to the method of the present invention, a high-purity product can be efficiently produced, and there are few by-products and the separation of the product is easy. Therefore, the present invention provides an industrially excellent method with few problems to the environment due to the organic solvent.
The optically active homoallyl hydrazino esters produced by the method of the present invention can be derived into corresponding optically active amino acid derivatives by cleaving the nitrogen-nitrogen bond, and various optically active α-amino acid derivatives. Is useful as a method for producing optically active pharmaceuticals and foods, and intermediates thereof.

以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited at all by these Examples.

次に示す反応式にしたがって、ヒドラゾノエステル(1)とアリルボラン誘導体(2)とを、不斉配位子(3)の存在下に反応させて、光学活性ホモアリルヒドラジノエステル(4)を製造した。   According to the following reaction formula, hydrazonoester (1) and allylborane derivative (2) are reacted in the presence of asymmetric ligand (3) to give optically active homoallylhydrazinoester (4). Manufactured.

Figure 0004913077
Figure 0004913077

フッ化亜鉛水和物(2.1mg,0.020mmol)および不斉配位子(3)(Hamada, T.; Manabe, K.; Kobayashi, S. Angew. Chem. Int. Ed. 2003, 42, 3927-3930.)(10.8mg,0.024mmol)の混合物を純水(3mL)とアセトン(5mL)を順次加えて溶解し、ヒドラゾノエステル(1)(49.9mg,0.200mmol)を加えて氷冷した。これにアリルホウ素試薬(2)(45mL,0.240mmol)を加えて撹拌(9時間)した後に飽和重曹水(1mL)で反応を終結させ、水層をジクロロメタンで抽出(10mL×3)した。得られた有機層は減圧濃縮後に分取薄層クロマトグラフィ(展開溶媒;n−ヘキサン/酢酸エチル=4/1)に付し、所望のアリル化体(4)(57.2mg,0.196mmol,収率98%)を得たのちHPLC分析を行った。   Zinc fluoride hydrate (2.1 mg, 0.020 mmol) and asymmetric ligand (3) (Hamada, T .; Manabe, K .; Kobayashi, S. Angew. Chem. Int. Ed. 2003, 42 , 3927-3930.) (10.8 mg, 0.024 mmol) was dissolved by sequentially adding pure water (3 mL) and acetone (5 mL) to obtain the hydrazonoester (1) (49.9 mg, 0.200 mmol). And then ice-cooled. To this was added allylboron reagent (2) (45 mL, 0.240 mmol) and stirred (9 hours), then the reaction was terminated with saturated aqueous sodium hydrogen carbonate (1 mL), and the aqueous layer was extracted with dichloromethane (10 mL × 3). The obtained organic layer was concentrated under reduced pressure and subjected to preparative thin layer chromatography (developing solvent; n-hexane / ethyl acetate = 4/1) to obtain the desired allylated product (4) (57.2 mg, 0.196 mmol, After obtaining a yield of 98%, HPLC analysis was performed.

メチル 2−[N’−(p−ジメチルアミノベンゾイル)ヒドラジノ]−4−ペンテノエート(4).
H−NMR (CDCl) δ:
2.43-2.51 (m, 1H), 2.59-2.65 (m, 1H), 3.01 (s, 6H), 3.75(s, 3H),
3.85 (m, 1H), 5.09 (brs, 1H), 5.18 (d, 1H, J = 10.4 Hz),
5.22 (d, 1H, J = 20.4 Hz), 5.89 (ddt, 1H, J = 20.4, 10.4, 5.0 Hz),
6.65 (d, 2H, J = 8.0 Hz), 7.64 (d, 2H, J = 8.4 Hz), 7.84 (brs, 1H);
13C−NMR (CDCl) δ:
35.2, 40.0, 52.0, 62.3, 111.0, 118.7, 118.9 128.4, 133.0, 152.7,
167.2,173.1;
HPLC (Daicel Chiralcel OD, ヘキサン/i−PrOH=4/1,
流速 = 1.0 mL/分)
tR=13.0分 (R),
tR=17.9分 (S).
Methyl 2- [N '-(p-dimethylaminobenzoyl) hydrazino] -4-pentenoate (4).
1 H-NMR (CDCl 3 ) δ:
2.43-2.51 (m, 1H), 2.59-2.65 (m, 1H), 3.01 (s, 6H), 3.75 (s, 3H),
3.85 (m, 1H), 5.09 (brs, 1H), 5.18 (d, 1H, J = 10.4 Hz),
5.22 (d, 1H, J = 20.4 Hz), 5.89 (ddt, 1H, J = 20.4, 10.4, 5.0 Hz),
6.65 (d, 2H, J = 8.0 Hz), 7.64 (d, 2H, J = 8.4 Hz), 7.84 (brs, 1H);
13 C-NMR (CDCl 3 ) δ:
35.2, 40.0, 52.0, 62.3, 111.0, 118.7, 118.9 128.4, 133.0, 152.7,
167.2, 173.1;
HPLC (Daicel Chiralcel OD, hexane / i-PrOH = 4/1,
(Flow rate = 1.0 mL / min)
tR = 13.0 minutes (R),
tR = 17.9 minutes (S).

ヒドラゾノエステル(1)に代えて、2−(N’−ベンゾイルヒドラゾノ)−酢酸エチル(1a)を用いたほかは、前記した実施例1と同様にして対応するエチル 2−(N’−ベンゾイルヒドラジノ)−4−ペンテノエート(4a)を製造した。
[α] 21 +34.8(c 0.83,CHCl,74%ee);
IR(neat) 3289, 3070, 2979, 1735, 1650, 1530, 1464, 1303, 1201,
694 cm−1
H−NMR (CDCl) δ:
1.26 (t, 3H, J = 7.2 Hz), 2.39-2.54 (m, 1H), 2.55-2.69 (m, 1H),
3.85 (dd, 1H, J = 7.6, 5.2 Hz), 4.20 (t, 2H, J = 7.1 Hz),
4.93 (brs, 1H), 5.10-5.24 (m, 2H),
5.87 (ddt, 1H, J = 16.8, 12.5, 5.0 Hz), 7.37-7.55 (m, 3H),
7.73-7.81 (m, 2H), 8.46 (brs, 1H);
13C−NMR (CDCl) δ:
14.1, 35.1, 61.0, 62.0, 118.7, 126.9, 128.5, 131.7, 132.5, 132.8,
167.0, 172.5;
HRMS (ESI−TOF) C1419 ([M+H])として:
計算値 263.1396,
実測値 263.1383;
HPLC (Daicel Chiralcel OD, ヘキサン/i−PrOH=9/1,
流速=1.0mL/分)
tR=10.1分 (R),
tR=13.8分 (S).
The corresponding ethyl 2- (N'-) was used in the same manner as in Example 1 except that 2- (N'-benzoylhydrazono) -ethyl acetate (1a) was used in place of the hydrazonoester (1). Benzoylhydrazino) -4-pentenoate (4a) was prepared.
[Α] D 21 +34.8 (c 0.83, CHCl 3 , 74% ee);
IR (neat) 3289, 3070, 2979, 1735, 1650, 1530, 1464, 1303, 1201,
694 cm -1 ;
1 H-NMR (CDCl 3 ) δ:
1.26 (t, 3H, J = 7.2 Hz), 2.39-2.54 (m, 1H), 2.55-2.69 (m, 1H),
3.85 (dd, 1H, J = 7.6, 5.2 Hz), 4.20 (t, 2H, J = 7.1 Hz),
4.93 (brs, 1H), 5.10-5.24 (m, 2H),
5.87 (ddt, 1H, J = 16.8, 12.5, 5.0 Hz), 7.37-7.55 (m, 3H),
7.73-7.81 (m, 2H), 8.46 (brs, 1H);
13 C-NMR (CDCl 3 ) δ:
14.1, 35.1, 61.0, 62.0, 118.7, 126.9, 128.5, 131.7, 132.5, 132.8,
167.0, 172.5;
As HRMS (ESI-TOF) C 14 H 19 N 2 O 3 ([M + H] + ):
Calculated value 263.1396,
Measured value 263. 1383;
HPLC (Daicel Chiralcel OD, hexane / i-PrOH = 9/1,
(Flow rate = 1.0 mL / min)
tR = 10.1 minutes (R),
tR = 13.8 minutes (S).

ヒドラゾノエステル(1)に代えて、2−(N’−ベンゾイルヒドラゾノ)−酢酸ベンジル(1b)を用いたほかは、前記した実施例1と同様にして対応するベンジル 2−(N’−ベンゾイルヒドラジノ)−4−ペンテノエート(4b)を製造した。
H−NMR (CDCl) δ:
2.44-2.51 (m, 1H), 2.61-2.67 (m, 1H), 3.90 (m, 1H), 5.12 (brs, 1H),
5.13-5.28 (m, 4H), 5.85 (m, 1H), 7.34-7.54 (m, 8H),
7.67 (d, 2H, J = 7.2 Hz), 8.12 (brs, 1H);
13C−NMR (CDCl) δ:
35.1, 62.1, 66.8, 119.0, 126.9, 128.3, 128.4, 128.6, 131.9, 132.4,
132.7, 135.4, 166.9, 172.4;
HPLC (Daicel Chiralcel OD, ヘキサン/i−PrOH=9/1,
流速 = 1.0mL/分)
tR=15.9分 (R),
tR=20.3分 (S).
The corresponding benzyl 2- (N′-) was used in the same manner as in Example 1 except that 2- (N′-benzoylhydrazono) -benzyl acetate (1b) was used in place of the hydrazono ester (1). Benzoylhydrazino) -4-pentenoate (4b) was prepared.
1 H-NMR (CDCl 3 ) δ:
2.44-2.51 (m, 1H), 2.61-2.67 (m, 1H), 3.90 (m, 1H), 5.12 (brs, 1H),
5.13-5.28 (m, 4H), 5.85 (m, 1H), 7.34-7.54 (m, 8H),
7.67 (d, 2H, J = 7.2 Hz), 8.12 (brs, 1H);
13 C-NMR (CDCl 3 ) δ:
35.1, 62.1, 66.8, 119.0, 126.9, 128.3, 128.4, 128.6, 131.9, 132.4,
132.7, 135.4, 166.9, 172.4;
HPLC (Daicel Chiralcel OD, hexane / i-PrOH = 9/1,
Flow rate = 1.0 mL / min)
tR = 15.9 minutes (R),
tR = 20.3 minutes (S).

ヒドラゾノエステル(1)に代えて、2−(N’−ベンゾイルヒドラゾノ)−酢酸メチル(1c)を用いたほかは、前記した実施例1と同様にして対応するメチル 2−(N’−ベンゾイルヒドラジノ)−4−ペンテノエート(4c)を製造した。
H−NMR (CDCl) δ:
2.43-2.51 (m, 1H), 2.61-2.65 (m, 1H), 3.75 (s, 3H),
3.87 (t, 1H, J = 5.2 Hz), 5.12 (brs, 1H), 5.18 (d, 1H, J = 10.0 Hz),
5.21 (d, 1H, J = 16.8 Hz), 5.89 (ddt, 1H, J = 16.8, 10.0, 5.0 Hz),
7.28-7.54 (m, 3H), 7.74-7.75 (m, 2H), 8.25 (brs, 1H);
13C−NMR (CDCl) δ:
35.1, 52.0, 62.1, 118.9, 126.9, 128.5, 131.8, 132.4, 132.7, 167.1,
173.1;
HPLC (Daicel Chiralcel OD, ヘキサン/i−PrOH=9/1,
流速 = 1.0mL/分)
tR=12.1分 (R),
tR=16.5分 (S).
The corresponding methyl 2- (N′-) was used in the same manner as in Example 1 except that 2- (N′-benzoylhydrazono) -methyl acetate (1c) was used in place of the hydrazonoester (1). Benzoylhydrazino) -4-pentenoate (4c) was prepared.
1 H-NMR (CDCl 3 ) δ:
2.43-2.51 (m, 1H), 2.61-2.65 (m, 1H), 3.75 (s, 3H),
3.87 (t, 1H, J = 5.2 Hz), 5.12 (brs, 1H), 5.18 (d, 1H, J = 10.0 Hz),
5.21 (d, 1H, J = 16.8 Hz), 5.89 (ddt, 1H, J = 16.8, 10.0, 5.0 Hz),
7.28-7.54 (m, 3H), 7.74-7.75 (m, 2H), 8.25 (brs, 1H);
13 C-NMR (CDCl 3 ) δ:
35.1, 52.0, 62.1, 118.9, 126.9, 128.5, 131.8, 132.4, 132.7, 167.1,
173.1;
HPLC (Daicel Chiralcel OD, hexane / i-PrOH = 9/1,
Flow rate = 1.0 mL / min)
tR = 12.1 minutes (R),
tR = 16.5 minutes (S).

ヒドラゾノエステル(1)に代えて、2−[N’−(p−ニトロベンゾイル)ヒドラゾノ]−酢酸エチル(1d)を用いたほかは、前記した実施例1と同様にして対応するエチル 2−[N’−(p−ニトロベンゾイル)ヒドラジノ]−4−ペンテノエート(4d)を製造した。
H−NMR (CDCl) δ:
1.29 (t, 3H, J = 7.2 Hz), 2.40-2.54 (m, 1H), 2.57-2.70 (m, 1H),
3.86 (ddd, 1H, J = 7.6, 4.7, 2.9 Hz), 4.12-4.31 (m, 2H),
5.12-5.25 (m, 2H), 5.17 (brs, 1H), 5.77-5.93 (m, 1H),
7.94-8.00 (m, 2H), 8.24-8.31 (m, 2H), 8.73 (brd, 1H, J = 5.3 Hz);
13C−NMR (CDCl) δ:
14.1, 35.1, 61.3, 61.9, 119.0, 123.7, 128.3, 132.5, 138.1, 149.7,
164.9, 172.7;
HPLC (Daicel Chiralcel OD, ヘキサン/i−PrOH=4/1,
流速 = 1.0mL/分)
tR=11.3分 (R),
tR=15.4分 (S).
2- [N ′-(p-nitrobenzoyl) hydrazono] -ethyl acetate (1d) was used instead of the hydrazono ester (1) in the same manner as in Example 1, except that the corresponding ethyl 2- [N ′-(p-nitrobenzoyl) hydrazino] -4-pentenoate (4d) was prepared.
1 H-NMR (CDCl 3 ) δ:
1.29 (t, 3H, J = 7.2 Hz), 2.40-2.54 (m, 1H), 2.57-2.70 (m, 1H),
3.86 (ddd, 1H, J = 7.6, 4.7, 2.9 Hz), 4.12-4.31 (m, 2H),
5.12-5.25 (m, 2H), 5.17 (brs, 1H), 5.77-5.93 (m, 1H),
7.94-8.00 (m, 2H), 8.24-8.31 (m, 2H), 8.73 (brd, 1H, J = 5.3 Hz);
13 C-NMR (CDCl 3 ) δ:
14.1, 35.1, 61.3, 61.9, 119.0, 123.7, 128.3, 132.5, 138.1, 149.7,
164.9, 172.7;
HPLC (Daicel Chiralcel OD, hexane / i-PrOH = 4/1,
Flow rate = 1.0 mL / min)
tR = 11.3 minutes (R),
tR = 15.4 minutes (S).

ヒドラゾノエステル(1)に代えて、2−[N’−(p−メトキシベンゾイル)ヒドラゾノ]−酢酸エチル(1e)を用いたほかは、前記した実施例1と同様にして対応するエチル 2−[N’−(p−メトキシベンゾイルヒドラジノ]−4−ペンテノエート(4e)を製造した。
[α] 24 +23.5(c 1.11,CHCl,81%ee);
IR(neat) 3288, 2983, 1734, 1642, 1606, 1510, 1463, 1297, 1260, 1190,
1030, 815 cm−1
H−NMR (CDCl) δ:
1.27 (t, 3H, J = 7.2 Hz), 2.43-2.52 (m, 1H), 2.57-2.66 (m, 1H),
3.79-3.88 (m, 1H), 3.84 (s, 3H), 4.14-4.28 (m, 2H), 5.12 (brs, 1H),
5.17 (d, 1H, J = 10.4 Hz), 5.21 (d, 1H, J = 17.1 Hz),
5.82-5.93 (m, 1H), 6.91 (d, 2H, J = 8.8 Hz), 7.73 (d, 2H, J = 8.8 Hz),
8.16 (brs, 1H);
13C−NMR (CDCl) δ:
14.1, 35.2, 55.3, 61.0, 62.1, 113.8, 118.7, 124.7, 128.7, 132.9,
162.4, 166.6, 172.6;
HRMS (EI) C1520として: 計算値 292.1423,
実測値 292.1443;
HPLC (Daicel Chiralcel OD, ヘキサン/i−PrOH=4/1,
流速 = 1.0mL/分)
tR= 8.0分 (R),
tR=10.8分 (S).
2- [N ′-(p-methoxybenzoyl) hydrazono] -ethyl acetate (1e) was used in place of the hydrazonoester (1) in the same manner as in Example 1, except that the corresponding ethyl 2- [N ′-(p-methoxybenzoylhydrazino] -4-pentenoate (4e) was prepared.
[Α] D 24 +23.5 (c 1.11, CHCl 3 , 81% ee);
IR (neat) 3288, 2983, 1734, 1642, 1606, 1510, 1463, 1297, 1260, 1190,
1030, 815 cm −1 ;
1 H-NMR (CDCl 3 ) δ:
1.27 (t, 3H, J = 7.2 Hz), 2.43-2.52 (m, 1H), 2.57-2.66 (m, 1H),
3.79-3.88 (m, 1H), 3.84 (s, 3H), 4.14-4.28 (m, 2H), 5.12 (brs, 1H),
5.17 (d, 1H, J = 10.4 Hz), 5.21 (d, 1H, J = 17.1 Hz),
5.82-5.93 (m, 1H), 6.91 (d, 2H, J = 8.8 Hz), 7.73 (d, 2H, J = 8.8 Hz),
8.16 (brs, 1H);
13 C-NMR (CDCl 3 ) δ:
14.1, 35.2, 55.3, 61.0, 62.1, 113.8, 118.7, 124.7, 128.7, 132.9,
162.4, 166.6, 172.6;
HRMS (EI) as C 15 H 20 N 2 O 4 : Calculated 292.1423,
Measured value 292.1443;
HPLC (Daicel Chiralcel OD, hexane / i-PrOH = 4/1,
Flow rate = 1.0 mL / min)
tR = 8.0 minutes (R),
tR = 10.8 minutes (S).

ヒドラゾノエステル(1)に代えて、2−[N’−(p−ヒドロキシベンゾイル)ヒドラゾノ]−酢酸エチル(1f)を用いたほかは、前記した実施例1と同様にして対応するエチル 2−[N’−(p−ヒドロキシベンゾイルヒドラジノ]−4−ペンテノエート(4f)を製造した。
mp: 94−99℃;
[α] 28 +30.4(c 1.17,CHCl,84%ee);
IR(KBr)3172, 1737, 1637, 1603, 1441, 1287, 1245, 1203, 1169 cm−1
H−NMR (CDCl) δ:
1.25 (t, 3H, J = 7.2 Hz), 2.37-2.68 (m, 2H),
3.82 (dd, 1H, J = 6.1, 6.1 Hz), 4.10-4.29 (m, 2H), 5.07-5.23 (m, 2H),
5.70-5.93 (m, 1H), 6.87 (d, 2H, J = 8.6 Hz), 7.60 (d, 2H, J = 8.6 Hz),
8.33 (brs, 1H);
13C−NMR (CDCl) δ:
14.1, 35.1, 61.3, 62.2, 115.7, 119.0, 123.3, 129.0, 132.6, 160.5,
167.6, 173.0;
HRMS (ESI−TOF) C1419 ([M+H])として:
計算値 279.1345,
実測値 279.1361;
HPLC (Daicel Chiralcel OD, ヘキサン/i−PrOH=4/1,
流速 = 0.4mL/分)
tR=20.2分 (R),
tR=23.3分 (S).
2- [N ′-(p-hydroxybenzoyl) hydrazono] -ethyl acetate (1f) was used in place of the hydrazonoester (1) in the same manner as in Example 1, except that the corresponding ethyl 2- [N ′-(p-hydroxybenzoylhydrazino] -4-pentenoate (4f) was prepared.
mp: 94-99 ° C;
[Α] D 28 +30.4 (c 1.17, CHCl 3 , 84% ee);
IR (KBr) 3172, 1737, 1637, 1603, 1441, 1287, 1245, 1203, 1169 cm −1 ;
1 H-NMR (CDCl 3 ) δ:
1.25 (t, 3H, J = 7.2 Hz), 2.37-2.68 (m, 2H),
3.82 (dd, 1H, J = 6.1, 6.1 Hz), 4.10-4.29 (m, 2H), 5.07-5.23 (m, 2H),
5.70-5.93 (m, 1H), 6.87 (d, 2H, J = 8.6 Hz), 7.60 (d, 2H, J = 8.6 Hz),
8.33 (brs, 1H);
13 C-NMR (CDCl 3 ) δ:
14.1, 35.1, 61.3, 62.2, 115.7, 119.0, 123.3, 129.0, 132.6, 160.5,
167.6, 173.0;
As HRMS (ESI-TOF) C 14 H 19 N 2 O 4 ([M + H] + ):
Calculated value 279.1345,
Measured value 279.1361;
HPLC (Daicel Chiralcel OD, hexane / i-PrOH = 4/1,
Flow rate = 0.4mL / min)
tR = 20.2 minutes (R),
tR = 23.3 minutes (S).

ヒドラゾノエステル(1)に代えて、2−[N’−(p−ジメチルアミノベンゾイル)ヒドラゾノ]−酢酸エチル(1g)を用いたほかは、前記した実施例1と同様にして対応するエチル 2−[N’−(p−ジメチルアミノベンゾイルヒドラジノ]−4−ペンテノエート(4g)を製造した。
[α] 27 +3.76(c 1.67,CHCl,84%ee);
IR(neat) 3291, 2979, 2910, 1735, 1605, 1525, 1449, 1371, 1303,
1202 cm−1
H−NMR (CDCl) δ:
1.27 (t, 3H, J = 7.1 Hz), 2.42-2.53 (m, 1H), 2.57-2.67 (m, 1H),
3.01 (s, 6H), 3.83 (dd, 1H, J = 7.8, 5.0 Hz), 4.00 (brs, 1H),
4.14-4.28 (m, 2H), 5.13-5.25 (m, 2H), 5.83-5.95 (m, 1H),
6.65 (d, 2H, J = 9.0 Hz), 7.64 (d, 2H, J = 9.0 Hz), 7.89 (s, 1H);
13C−NMR (CDCl) δ:
14.2, 35.2, 40.0, 60.9, 62.2, 111.0, 118.6, 119.1, 128.4, 133.1,
152.7, 167.1, 172.6;
HRMS (ESI−TOF) C1624 ([M+H])として:
計算値 306.1818,
実測値 306.1813;
HPLC (Daicel Chiralcel OD, ヘキサン/i−PrOH=4/1,
流速 = 1.0mL/分)
tR= 9.7分 (R),
tR=12.9分 (S).
The corresponding ethyl 2 was used in the same manner as in Example 1 except that 2- [N ′-(p-dimethylaminobenzoyl) hydrazono] -ethyl acetate (1 g) was used instead of the hydrazono ester (1). -[N '-(p-dimethylaminobenzoylhydrazino] -4-pentenoate (4 g) was prepared.
[Α] D 27 +3.76 (c 1.67, CHCl 3 , 84% ee);
IR (neat) 3291, 2979, 2910, 1735, 1605, 1525, 1449, 1371, 1303,
1202 cm −1 ;
1 H-NMR (CDCl 3 ) δ:
1.27 (t, 3H, J = 7.1 Hz), 2.42-2.53 (m, 1H), 2.57-2.67 (m, 1H),
3.01 (s, 6H), 3.83 (dd, 1H, J = 7.8, 5.0 Hz), 4.00 (brs, 1H),
4.14-4.28 (m, 2H), 5.13-5.25 (m, 2H), 5.83-5.95 (m, 1H),
6.65 (d, 2H, J = 9.0 Hz), 7.64 (d, 2H, J = 9.0 Hz), 7.89 (s, 1H);
13 C-NMR (CDCl 3 ) δ:
14.2, 35.2, 40.0, 60.9, 62.2, 111.0, 118.6, 119.1, 128.4, 133.1,
152.7, 167.1, 172.6;
As HRMS (ESI-TOF) C 16 H 24 N 3 O 3 ([M + H] + ):
Calculated value 306.1818,
Measured value 306.1818;
HPLC (Daicel Chiralcel OD, hexane / i-PrOH = 4/1,
Flow rate = 1.0 mL / min)
tR = 9.7 minutes (R),
tR = 12.9 minutes (S).

以下の実施例においては、フッ化亜鉛(ZnF)水和物および水酸化亜鉛(Zn(OH))はそれぞれAldrich (株)及び添川理化学(株)より購入した。 水はMILLIPORE Gradient A10 で精製したものを用い、アセトンは関東化学(株)より購入した。キラルジアミンである不斉配位子(3)は文献(Hamada, T.; Manabe, K.; Kobayashi, S. Angew. Chem. Int. Ed. 2003, 42, 3927)に記載の方法にしたがって製造した。 In the following examples, zinc fluoride (ZnF 2 ) hydrate and zinc hydroxide (Zn (OH) 2 ) were purchased from Aldrich Corp. and Soekawa Riken Corp., respectively. Water purified using MILLIPORE Gradient A10 was used, and acetone was purchased from Kanto Chemical Co., Inc. The chiral ligand (3), which is a chiral diamine, is produced according to the method described in the literature (Hamada, T .; Manabe, K .; Kobayashi, S. Angew. Chem. Int. Ed. 2003, 42, 3927). did.

(1)ZnF溶液の調製
ZnF水和物(319.0mg)を水(300mL)に加え、5分撹拌した。超音波照射を10分間行い、溶液を桐山ろ紙(No.4 and No.5B) で濾過した。溶液の濃度はICP分析により決定した。 溶液は4℃で保存した。
(2)
前記(1)で調製したZnF溶液(0.159mM,1.86mL,0.015mmol)を水(0.36mL)で希釈し、キラルジアミン(3)(16.2mg,0.036mmol)とアセトン(3.75mL)を加え、30分間撹拌した。実施例1で用いたヒドラゾノエステル(1)(75.0mg,0.30mmol)を加えて、0℃で20分間撹拌し、実施例1で用いたアリルボロネート(2)(69μL,0.36mmol)を加えた。36時間後、飽和炭素水素ナトリウム水溶液を加えて反応を停止し、塩化メチレン(CHCl)で4回抽出し、有機層を合わせて無水硫酸ナトリウムで乾燥した。溶媒を留去し、残さを分取薄層クロマトグラフィー (シリカゲル、ヘキサン/酢酸エチル=1/4)で精製し、メチル 2−[N’−(p−ジメチルアミノベンゾイル)ヒドラジノ]−4−ペンテノエート(4)を定量的に得た。生成物のエナンチオマー過剰率(ee)はHPLC分析により決定した(90%ee)。
(1) ZnF 2 A solution of ZnF 2 hydrate (319.0mg) was added to water (300 mL), and stirred for 5 minutes. Ultrasonic irradiation was performed for 10 minutes, and the solution was filtered through Kiriyama filter paper (No. 4 and No. 5B). The concentration of the solution was determined by ICP analysis. The solution was stored at 4 ° C.
(2)
The ZnF 2 solution (0.159 mM, 1.86 mL, 0.015 mmol) prepared in (1) above was diluted with water (0.36 mL), and the chiral diamine (3) (16.2 mg, 0.036 mmol) and acetone (3.75 mL) was added and stirred for 30 minutes. The hydrazonoester (1) (75.0 mg, 0.30 mmol) used in Example 1 was added and stirred at 0 ° C. for 20 minutes, and the allyl boronate (2) used in Example 1 (69 μL, 0. 36 mmol) was added. After 36 hours, the reaction was stopped by adding a saturated aqueous sodium hydrogencarbonate solution, extracted four times with methylene chloride (CH 2 Cl 2 ), and the organic layers were combined and dried over anhydrous sodium sulfate. The solvent was distilled off, and the residue was purified by preparative thin layer chromatography (silica gel, hexane / ethyl acetate = 1/4) and methyl 2- [N ′-(p-dimethylaminobenzoyl) hydrazino] -4-pentenoate. (4) was obtained quantitatively. The enantiomeric excess (ee) of the product was determined by HPLC analysis (90% ee).

H−NMR (CDCl) δ:
2.43-2.51 (m, 1H), 2.59-2.65 (m, 1H), 3.01 (s, 6H), 3.75 (s, 3H),
3.85 (m, 1H), 5.09 (brs, 1H), 5.18 (d, 1H, J = 10.4 Hz),
5.22 (d, 1H, J = 20.4 Hz), 5.89 (ddt, 1H, J = 20.4, 10.4, 5.0 Hz),
6.65 (d, 2H, J = 8.0 Hz), 7.64 (d, 2H, J = 8.4 Hz), 7.84 (brs, 1H).
13C−NMR (CDCl) δ:
35.2, 40.0, 52.0, 62.3, 111.0, 118.7, 118.9 128.4, 133.0, 152.7,
167.2, 173.1.
IR(neat) 3734, 3648, 3283, 2951, 1738, 1608, 1520, 1437, 1363,
1300, 1219, 921, 828, 772 cm−1.
[α] 23+6.50(c1.44,CHCl,90%ee).
HRMS:C1522として、計算値:[M+H] 292.1656,
実測値: 292.1650.
HPLC(Daicel Chiralcel OD, ヘキサン/i−PrOH=4/1,
流速 =1.0mL/分)
=13.0分(R),
=17.9分(S).
1 H-NMR (CDCl 3 ) δ:
2.43-2.51 (m, 1H), 2.59-2.65 (m, 1H), 3.01 (s, 6H), 3.75 (s, 3H),
3.85 (m, 1H), 5.09 (brs, 1H), 5.18 (d, 1H, J = 10.4 Hz),
5.22 (d, 1H, J = 20.4 Hz), 5.89 (ddt, 1H, J = 20.4, 10.4, 5.0 Hz),
6.65 (d, 2H, J = 8.0 Hz), 7.64 (d, 2H, J = 8.4 Hz), 7.84 (brs, 1H).
13 C-NMR (CDCl 3 ) δ:
35.2, 40.0, 52.0, 62.3, 111.0, 118.7, 118.9 128.4, 133.0, 152.7,
167.2, 173.1.
IR (neat) 3734, 3648, 3283, 2951, 1738, 1608, 1520, 1437, 1363,
1300, 1219, 921, 828, 772 cm -1 .
[Α] D 23 +6.50 (c1.44, CHCl 3 , 90% ee).
HRMS: Calculated as C 15 H 22 N 3 O 3 : [M + H] + 292.156,
Actual value: 292.1650.
HPLC (Daicel Chiralcel OD, hexane / i-PrOH = 4/1,
(Flow rate = 1.0 mL / min)
t R = 13.0 minutes (R),
t R = 17.9 min (S).

実施例9におけるアリルボロネート(2)に代えて、1−メチル−アリルボロネート (2a)を用いたほかは、前記した実施例9と同様にして対応する(2R,3R)−メチル 2−[N’−(p−ジメチルアミノベンゾイル)ヒドラジノ]−3−メチル−4−ペンテノエート(4i)を製造した。収率:定量的。シン/アンチ比:1%未満/99%超。ee:88%。
H−NMR (CDCl) δ:
1.15 (d, 3H, J = 6.8), 2.64 (td, 1H, J = 14.8, 7.1 Hz)), 3.05 (s, 6H),
3.68 (m, 1H), 3.76 (s, 3H), 5.10 (brs, 1H), 5.14 (dd, 1H, J = 6.9, 1.3 Hz), 5.17 (dd, 1H, J = 12.6, 1.3 Hz), 5.86 (ddd, 1H, J = 17.9, 9.6, 7.6 Hz),
6.64 (d, 2H, J = 8.9 Hz), 7.62 (d, 2H, J = 8.9 Hz),
7.69 (d, 1H, J = 5.5 Hz).
13C−NMR (CDCl) δ:
16.9, 39.9, 40.0, 51.8, 67.7, 111.0, 116.5, 118.9, 128.3, 139.1,
152.7, 167.4, 173.0.
IR (neat) 3283, 2952, 1737, 1608, 1520, 1444, 1363, 1298, 1204,
1162, 1063, 946, 827, 768 cm−1
[α] 23−2.20(c1.27,CHCl,88%ee).
HRMS:C1624として、計算値:[M+H] 306.1812,
実測値: 306.1814.
HPLC(Daicel Chiralcel OD-H, ヘキサン/i−PrOH=19/1,
流速 =0.5mL/分)
=66.3分(2R,3R),
=77.8分(2S,3S).
Instead of allyl boronate (2) in Example 9, 1-methyl-allyl boronate (2a) was used, except that corresponding (2R, 3R) -methyl 2- [N ′-(p-dimethylaminobenzoyl) hydrazino] -3-methyl-4-pentenoate (4i) was prepared. Yield: quantitative. Thin / anti ratio: less than 1% / greater than 99%. ee: 88%.
1 H-NMR (CDCl 3 ) δ:
1.15 (d, 3H, J = 6.8), 2.64 (td, 1H, J = 14.8, 7.1 Hz)), 3.05 (s, 6H),
3.68 (m, 1H), 3.76 (s, 3H), 5.10 (brs, 1H), 5.14 (dd, 1H, J = 6.9, 1.3 Hz), 5.17 (dd, 1H, J = 12.6, 1.3 Hz), 5.86 (ddd, 1H, J = 17.9, 9.6, 7.6 Hz),
6.64 (d, 2H, J = 8.9 Hz), 7.62 (d, 2H, J = 8.9 Hz),
7.69 (d, 1H, J = 5.5 Hz).
13 C-NMR (CDCl 3 ) δ:
16.9, 39.9, 40.0, 51.8, 67.7, 111.0, 116.5, 118.9, 128.3, 139.1,
152.7, 167.4, 173.0.
IR (neat) 3283, 2952, 1737, 1608, 1520, 1444, 1363, 1298, 1204,
1162, 1063, 946, 827, 768 cm −1 .
[Α] D 23 -2.20 (c1.27 , CHCl 3, 88% ee).
HRMS: Calculated as C 16 H 24 N 3 O 3 : [M + H] + 306.1812,
Actual value: 306.1814.
HPLC (Daicel Chiralcel OD-H, hexane / i-PrOH = 19/1
(Flow rate = 0.5 mL / min)
t R = 66.3 min (2R, 3R),
t R = 77.8 min (2S, 3S).

実施例9におけるアリルボロネート(2)に代えて、1−エチル−アリルボロネート (2b)を用いたほかは、前記した実施例9と同様にして対応する(2R,3R)−メチル 2−[N’−(p−ジメチルアミノベンゾイル)ヒドラジノ]−3−エチル−4−ペンテノエート(4j)を製造した。収率:98%。シン/アンチ比:1%未満/99%超。ee:87%。
H−NMR (CDCl) δ:
0.95 (t, 3H, J = 7.2 Hz), 1.42-1.49 (m, 1H), 1.58-1.65 (m, 1H),
2.43-2.38 (m, 1H), 3.02 (s, 6H), 3.76 (s, 3H), 5.10 (brs, 1H, J = 2.7 Hz), 5.15 (dd, 1H, J = 16.8, 1.9 Hz), 5.22 (dd, 1H, J = 12.6, 1.9 Hz),
5.75 (dt, 1H, J = 18.8, 8.6 Hz), 6.65 (d, 2H, J = 8.9 Hz), 7.59 (brs, 1H), 7.61 (d, 2H, J = 9.0 Hz).
13C−NMR (CDCl) δ:
11.6, 24.1, 40.1, 47.7, 51.9, 66.7, 111.0, 118.4, 118.9, 128.3, 137.3,
152.7, 167.3, 173.3.
IR (neat) 3303, 2969, 1737, 1637, 1608, 1520, 1460, 1362, 1205,
772 cm−1
[α] 22+20.3(c0.66,CHCl,87%ee).
HRMS:C1725NaOとして、計算値:[M+H]342.1788,
実測値: 342.1787.
HPLC(Daicel Chiralcel OJ-H, ヘキサン/i−PrOH=9/1,
流速 =0.5mL/分)
=42.3分(2R,3R),
=59.1分(2S,3S).
(2R, 3R) -Methyl 2- in the same manner as in Example 9 except that 1-ethyl-allylboronate (2b) was used instead of allylboronate (2) in Example 9. [N ′-(p-dimethylaminobenzoyl) hydrazino] -3-ethyl-4-pentenoate (4j) was prepared. Yield: 98%. Thin / anti ratio: less than 1% / greater than 99%. ee: 87%.
1 H-NMR (CDCl 3 ) δ:
0.95 (t, 3H, J = 7.2 Hz), 1.42-1.49 (m, 1H), 1.58-1.65 (m, 1H),
2.43-2.38 (m, 1H), 3.02 (s, 6H), 3.76 (s, 3H), 5.10 (brs, 1H, J = 2.7 Hz), 5.15 (dd, 1H, J = 16.8, 1.9 Hz), 5.22 (dd, 1H, J = 12.6, 1.9 Hz),
5.75 (dt, 1H, J = 18.8, 8.6 Hz), 6.65 (d, 2H, J = 8.9 Hz), 7.59 (brs, 1H), 7.61 (d, 2H, J = 9.0 Hz).
13 C-NMR (CDCl 3 ) δ:
11.6, 24.1, 40.1, 47.7, 51.9, 66.7, 111.0, 118.4, 118.9, 128.3, 137.3,
152.7, 167.3, 173.3.
IR (neat) 3303, 2969, 1737, 1637, 1608, 1520, 1460, 1362, 1205,
772 cm −1 .
[Α] D 22 +20.3 (c 0.66, CHCl 3 , 87% ee).
HRMS: Calculated as C 17 H 25 N 3 NaO 3 : [M + H] + 342.1788,
Actual value: 342.1787.
HPLC (Daicel Chiralcel OJ-H, hexane / i-PrOH = 9/1,
(Flow rate = 0.5 mL / min)
t R = 42.3 minutes (2R, 3R),
t R = 59.1 min (2S, 3S).

実施例9におけるアリルボロネート(2)に代えて、1−ブチル−アリルボロネート (2c)を用いたほかは、前記した実施例9と同様にして対応する(2R,3R)−メチル 2−[N’−(p−ジメチルアミノベンゾイル)ヒドラジノ]−3−ブチル−4−ペンテノエート(4k)を製造した。収率:88%。シン/アンチ比:1%未満/99%超。ee:87%。
H−NMR (CDCl) δ:
0.89 (t, 3H, J = 6.9 Hz), 1.24-1.38 (m, 2H), 1.40-1.46 (m, 1H),
1.50-1.56 (m, 1H), 2.45-2.50 (m, 1H), 3.01 (s, 6H), 3.74 (brs, 1H),
3.76 (s, 3H), 5.12 (brs, 1H), 5.12 (dd, 1H, J = 18.0, 1.4 Hz),
5.18 (dd, 1H, J = 10.2, 1.4 Hz), 5.75 (dt, 1H, J = 19.0, 8.6 Hz),
6.65 (d, 2H, J = 8.9 Hz), 7.62 (d, 2H, J = 8.9 Hz), 7.71 (brs, 1H).
13C−NMR (CDCl) δ:
13.9, 22.4, 29.2, 30.6, 40.0, 46.0, 51.9, 67.0, 111.0, 118.1, 119.0,
128.3, 137.7, 152.7, 167.3, 173.2.
IR (neat) 3852, 3648, 3299, 2928, 1736, 1608, 1507, 1457, 1362,
1299, 1205 cm−1
[α] 21+13.1(c1.06,CHCl,87%ee).
HRMS:C1930として、計算値:[M+H] 348.2282,
実測値: 348.2278.
HPLC(Daicel Chiralcel OD-H, ヘキサン/i−PrOH=9/1,
流速 =0.5mL/分)
=42.6分(2R,3R),
=54.9分(2S,3S).
(2R, 3R) -Methyl 2- in the same manner as in Example 9 except that 1-butyl-allylboronate (2c) was used instead of allylboronate (2) in Example 9. [N ′-(p-dimethylaminobenzoyl) hydrazino] -3-butyl-4-pentenoate (4k) was prepared. Yield: 88%. Thin / anti ratio: less than 1% / greater than 99%. ee: 87%.
1 H-NMR (CDCl 3 ) δ:
0.89 (t, 3H, J = 6.9 Hz), 1.24-1.38 (m, 2H), 1.40-1.46 (m, 1H),
1.50-1.56 (m, 1H), 2.45-2.50 (m, 1H), 3.01 (s, 6H), 3.74 (brs, 1H),
3.76 (s, 3H), 5.12 (brs, 1H), 5.12 (dd, 1H, J = 18.0, 1.4 Hz),
5.18 (dd, 1H, J = 10.2, 1.4 Hz), 5.75 (dt, 1H, J = 19.0, 8.6 Hz),
6.65 (d, 2H, J = 8.9 Hz), 7.62 (d, 2H, J = 8.9 Hz), 7.71 (brs, 1H).
13 C-NMR (CDCl 3 ) δ:
13.9, 22.4, 29.2, 30.6, 40.0, 46.0, 51.9, 67.0, 111.0, 118.1, 119.0,
128.3, 137.7, 152.7, 167.3, 173.2.
IR (neat) 3852, 3648, 3299, 2928, 1736, 1608, 1507, 1457, 1362,
1299, 1205 cm −1 .
[Α] D 21 +13.1 (c 1.06, CHCl 3 , 87% ee).
HRMS: Calculated as [C 19 H 30 N 3 O 3 : [M + H] + 348.2282,
Found: 348.2278.
HPLC (Daicel Chiralcel OD-H, hexane / i-PrOH = 9/1,
(Flow rate = 0.5 mL / min)
t R = 42.6 minutes (2R, 3R),
t R = 54.9 min (2S, 3S).

実施例9におけるアリルボロネート(2)に代えて、1−(3−メチルブチル)−アリルボロネート (2d)を用いたほかは、前記した実施例9と同様にして対応する(2R,3R)−メチル 2−[N’−(p−ジメチルアミノベンゾイル)ヒドラジノ]−3−(3−メチルブチル)−4−ペンテノエート(4l)を製造した。収率:76%。シン/アンチ比:1%未満/99%超。ee:87%。
H−NMR (CDCl) δ:
0.87 (t, 6H, J = 6.2 Hz), 1.29-1.13 (m, 2H), 1.37-1.49 (m, 1H),
1.50-1.59 (m, 2H), 2.41-2.49 (m, 1H), 3.01 (s, 6H), 3.74 (brs, 1H),
3.76 (s, 3H), 5.13 (brs, 1H), 5.13 (dd, 1H, J = 17.2, 1.7 Hz),
5.19 (dd, 1H, J = 10.8, 1.7 Hz), 5.75 (dt, 1H, J = 18.8, 8.5 Hz),
6.65 (d, 2H, J = 9.2 Hz), 7.64 (d, brs, 3H, J = 9.2 Hz).
13C−NMR (CDCl) δ:
22.3, 22.8, 27.8, 28.8, 36.2, 40.0, 46.2, 51.9, 67.1, 111.0, 118.2,
119.0, 128.3, 137.7, 152.7, 167.3, 173.2.
IR (neat) 3865, 3750, 3278, 2938, 1740, 1648, 1612, 1516, 1462,
1364, 1305, 1209 cm−1
[α] 21+3.00(c0.71,CHCl,87%ee).
HRMS:C2032として、計算値:[M+H] 362.2438,
実測値: 362.2427.
HPLC(Daicel Chiralcel OD-H, ヘキサン/i−PrOH=9/1,
流速 = 1.0mL/分)
=16.9分(2R,3R),
=23.2分(2S,3S).
Corresponding in the same manner as in Example 9 except that 1- (3-methylbutyl) -allylboronate (2d) was used instead of allylboronate (2) in Example 9 (2R, 3R) -Methyl 2- [N '-(p-dimethylaminobenzoyl) hydrazino] -3- (3-methylbutyl) -4-pentenoate (4l) was prepared. Yield: 76%. Thin / anti ratio: less than 1% / greater than 99%. ee: 87%.
1 H-NMR (CDCl 3 ) δ:
0.87 (t, 6H, J = 6.2 Hz), 1.29-1.13 (m, 2H), 1.37-1.49 (m, 1H),
1.50-1.59 (m, 2H), 2.41-2.49 (m, 1H), 3.01 (s, 6H), 3.74 (brs, 1H),
3.76 (s, 3H), 5.13 (brs, 1H), 5.13 (dd, 1H, J = 17.2, 1.7 Hz),
5.19 (dd, 1H, J = 10.8, 1.7 Hz), 5.75 (dt, 1H, J = 18.8, 8.5 Hz),
6.65 (d, 2H, J = 9.2 Hz), 7.64 (d, brs, 3H, J = 9.2 Hz).
13 C-NMR (CDCl 3 ) δ:
22.3, 22.8, 27.8, 28.8, 36.2, 40.0, 46.2, 51.9, 67.1, 111.0, 118.2,
119.0, 128.3, 137.7, 152.7, 167.3, 173.2.
IR (neat) 3865, 3750, 3278, 2938, 1740, 1648, 1612, 1516, 1462,
1364, 1305, 1209 cm −1 .
[Α] D 21 +3.00 (c 0.71, CHCl 3 , 87% ee).
HRMS: as C 20 H 32 N 3 O 3 , Calcd: [M + H] + 362.2438 ,
Actual value: 362.2427.
HPLC (Daicel Chiralcel OD-H, hexane / i-PrOH = 9/1,
Flow rate = 1.0 mL / min)
t R = 16.9 minutes (2R, 3R),
t R = 23.2 minutes (2S, 3S).

実施例9におけるアリルボロネート(2)に代えて、1−ベンジルオキシ−アリルボロネート(2a)を用い、キラルジアミン(3)に代えて次式   Instead of allyl boronate (2) in Example 9, 1-benzyloxy-allyl boronate (2a) was used, and instead of chiral diamine (3), the following formula

Figure 0004913077
Figure 0004913077

で表されるキラルジアミン(3a)を不斉配位子として用いたほかは、前記した実施例9と同様にして対応する(2S,3S)−メチル 2−[N’−(p−ジメチルアミノベンゾイル)ヒドラジノ]−3−ベンジルオキシ−4−ペンテノエート(4m)を製造した。収率:65%。シン/アンチ比:1%未満/99%超。ee:82%。
H−NMR (CDCl) δ:
2.99 (s, 6H), 3.73 (s, 3H), 4.11 (dd, 1H, J = 2.8, 4.0 Hz),
4.24 (dd, 1H, J = 4.0, 7.6 Hz), 4.56 (d, 1H, J = 12.0),
4.64 (d, 1H, J = 12.0), 5.37-5.31 (m, 2H), 5.46 (brm, 1H),
5.98 (ddd, 1H, J = 8.0, 10.0, 17.0), 6.61 (d, 2H, J = 8.8 Hz),
7.35-7.26 (m, 5H), 7.59 (d, 2H, J = 8.8 Hz), 7.78 (brd, 1H, J = 6.4 Hz).
13C−NMR (CDCl) δ:
40.0, 52.0, 66.1, 70.4, 79.8, 110.0, 119.0, 120.0, 127.5, 127.7, 128.3,
128.3, 134.2, 137.7, 152.6, 166.9, 171.0.
IR (KBr) : 3298, 3257, 3024, 2887, 1739, 1610, 1523, 1346, 1323,
1207, 1159, 1092, 984, 829, 739, 698, 617 cm−1.
[α] 22−0.32(c0.53,CHCl,82%ee).
HRMS:C2227として、計算値:[M+Na] 420.1894,
実測値: 420.1888.
HPLC(Daicel Chiralcel OJ-H, ヘキサン/EtOH=4/1,
流速 = 1.0mL/分)
=20.6分(2S,3S),
=27.0分(2R,3R).
(2S, 3S) -methyl 2- [N ′-(p-dimethylamino) is prepared in the same manner as in Example 9 except that the chiral diamine (3a) represented by Benzoyl) hydrazino] -3-benzyloxy-4-pentenoate (4m) was prepared. Yield: 65%. Thin / anti ratio: less than 1% / greater than 99%. ee: 82%.
1 H-NMR (CDCl 3 ) δ:
2.99 (s, 6H), 3.73 (s, 3H), 4.11 (dd, 1H, J = 2.8, 4.0 Hz),
4.24 (dd, 1H, J = 4.0, 7.6 Hz), 4.56 (d, 1H, J = 12.0),
4.64 (d, 1H, J = 12.0), 5.37-5.31 (m, 2H), 5.46 (brm, 1H),
5.98 (ddd, 1H, J = 8.0, 10.0, 17.0), 6.61 (d, 2H, J = 8.8 Hz),
7.35-7.26 (m, 5H), 7.59 (d, 2H, J = 8.8 Hz), 7.78 (brd, 1H, J = 6.4 Hz).
13 C-NMR (CDCl 3 ) δ:
40.0, 52.0, 66.1, 70.4, 79.8, 110.0, 119.0, 120.0, 127.5, 127.7, 128.3,
128.3, 134.2, 137.7, 152.6, 166.9, 171.0.
IR (KBr): 3298, 3257, 3024, 2887, 1739, 1610, 1523, 1346, 1323,
1207, 1159, 1092, 984, 829, 739, 698, 617 cm −1 .
[Α] D 22 -0.32 (c 0.53, CHCl 3 , 82% ee).
HRMS: Calculated as: C 22 H 27 N 3 O 4 : [M + + Na] 420.1894
Found: 420.1888.
HPLC (Daicel Chiralcel OJ-H, hexane / EtOH = 4/1,
Flow rate = 1.0 mL / min)
t R = 20.6 minutes (2S, 3S),
t R = 27.0 min (2R, 3R).

Zn(OH)を用いる触媒的不斉アリル化:
Zn(OH)(3.0mg,0.030mmol)を水(3.5mL)に加え、10分間撹拌した。キラルジアミン(3)(32.7mg,0.072mmol)とアセトン(7.5mL)を加え、10分間撹拌した。ヒドラゾノエステル(1)(149.7mg,0.60mmol)を加えて、0℃で15分間撹拌し、アリルボロネート(2)(92μL,0.36mmol)を加えた。36時間後、飽和炭素水素ナトリウム水溶液を加えて反応を停止し、塩化メチレン(CHCl)で4回抽出し、有機層を合わせて無水硫酸ナトリウムで乾燥した。溶媒を留去し、残さを分取薄層クロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル=1/4)で精製し、メチル 2−[N’−(p−ジメチルアミノベンゾイル)ヒドラジノ]−4−ペンテノエート(4)を80%で得た。生成物のエナンチオマー過剰率(ee)はHPLC分析により決定した(85%ee)。
Catalytic asymmetric allylation with Zn (OH) 2 :
Zn (OH) 2 (3.0 mg, 0.030 mmol) was added to water (3.5 mL) and stirred for 10 minutes. Chiral diamine (3) (32.7 mg, 0.072 mmol) and acetone (7.5 mL) were added and stirred for 10 minutes. The hydrazono ester (1) (149.7 mg, 0.60 mmol) was added, and the mixture was stirred at 0 ° C. for 15 minutes, and allyl boronate (2) (92 μL, 0.36 mmol) was added. After 36 hours, the reaction was stopped by adding a saturated aqueous sodium hydrogencarbonate solution, extracted four times with methylene chloride (CH 2 Cl 2 ), and the organic layers were combined and dried over anhydrous sodium sulfate. The solvent was distilled off, and the residue was purified by preparative thin layer chromatography (silica gel, hexane / ethyl acetate = 1/4) and methyl 2- [N ′-(p-dimethylaminobenzoyl) hydrazino] -4-pentenoate. (4) was obtained at 80%. The enantiomeric excess (ee) of the product was determined by HPLC analysis (85% ee).

メチル (S)−2−[N−(ベンジルオキシカルボニル)アミノ]−4−ペンテノエート(6)[文献(Abbott, S. D.; Lane-Bell, P.; Sidhu, K. P. S.; Vederas, J. C. J. Am. Chem. Soc. 1994, 116, 6513.)記載の化合物]の製造
メチル 2−[N’−(p−ジメチルアミノベンゾイル)ヒドラジノ]−4−ペンテノエート(4)を、炭酸水素ナトリウムの存在下でベンジルオキシカルボニルクロライド(Cbz−Cl)で処理した(収率:81%)後、次いでヨウ化サマリウム(SmI)で処理して(収率:75%)、標記目的物を得た。
H−NMR (CDCl) δ:
2.47-2.61 (m, 2H), 3.76 (s, 3H), 4.46 (dd, 1H, J = 13.5, 5.7 Hz),
5.13 (m, 4H), 5.31 (m, 1H), 5.68 (td, 1H, J = 17.2, 7.5 Hz),
7.30-7.36 (m, 5H).
13C−NMR (CDCl) δ:
36.7, 52.3, 53.2, 67.0, 119.4, 128.1, 128.2, 128.5, 131.9, 136.2,
155.7, 172.1.
IR (neat) 3861, 3743, 3358, 2948, 1724, 1645, 1516, 1467, 1342,
1216, 1049 cm−1.
[α] 20−13.7(c0.18,CHCl).
Methyl (S) -2- [N- (benzyloxycarbonyl) amino] -4-pentenoate (6) [literature (Abbott, SD; Lane-Bell, P .; Sidhu, KPS; Vederas, JCJ Am. Chem. Soc 1994, 116, 6513.)] Methyl 2- [N ′-(p-dimethylaminobenzoyl) hydrazino] -4-pentenoate (4) was converted to benzyloxycarbonyl chloride in the presence of sodium bicarbonate. After treatment with (Cbz-Cl) (yield: 81%), treatment with samarium iodide (SmI 2 ) (yield: 75%) gave the title product.
1 H-NMR (CDCl 3 ) δ:
2.47-2.61 (m, 2H), 3.76 (s, 3H), 4.46 (dd, 1H, J = 13.5, 5.7 Hz),
5.13 (m, 4H), 5.31 (m, 1H), 5.68 (td, 1H, J = 17.2, 7.5 Hz),
7.30-7.36 (m, 5H).
13 C-NMR (CDCl 3 ) δ:
36.7, 52.3, 53.2, 67.0, 119.4, 128.1, 128.2, 128.5, 131.9, 136.2,
155.7, 172.1.
IR (neat) 3861, 3743, 3358, 2948, 1724, 1645, 1516, 1467, 1342,
1216, 1049 cm -1 .
[Α] D 20 -13.7 (c0.18 , CHCl 3).

(2R,3R)−メチル 2−[N−(ベンジルオキシカルボニル)アミノ]−3−メチル−4−ペンテノエート(7)[文献(Kazmaier, U.; Mues, H.; Krebs, A. Chem. Eur. J. 2002, 8, 1850.)記載の化合物]の製造
実施例10で製造した(2R,3R)−メチル 2−[N’−(p−ジメチルアミノベンゾイル)ヒドラジノ]−3−メチル−4−ペンテノエート(4i)を、炭酸水素ナトリウムの存在下でベンジルオキシカルボニルクロライドで処理した(収率:75%)後、次いでヨウ化サマリウム(SmI)で処理して(収率:95%)、標記目的物を得た。
H−NMR (CDCl, main rotamer) δ:
1.03 (d, 3H, J = 6.9 Hz), 2.71 (m, 1H), 3.67 (s, 3H),
4.29 (dd, 1H, J = 4.6 Hz), 4.99-5.10 (m, 4H), 5.11 (d, 1H, J = 8.2 Hz),
5.56-5.52 (m, 1H), 7.25-7.29 (m, 5H); (selected signals)
0.85 (t, 3H, J = 7.2 Hz), 2.60-2.70 (m, 1H), 3.59 (s, 3H),
4.40 (dd, 1H, J = 4.6 Hz), 5.42-5.48 (m, 1H).
13C−NMR (CDCl, main rotamer) δ:
16.0, 40.0, 52.2, 58.2, 67.1, 117.0, 128.1, 128.2, 128.5, 136.2,
137.5, 156.2, 172.0; (selected signals) 11.7, 23.5, 48.0, 56.9,
118.4, 136.2.
IR (neat) 3750, 3344, 2960, 1724, 1517, 1449, 1347, 1267, 1216,
1096, 1055, 1017, 931, 771, 701 cm−1.
[α] 21−8.2(c0.32,CHCl).
(2R, 3R) -methyl 2- [N- (benzyloxycarbonyl) amino] -3-methyl-4-pentenoate (7) [literature (Kazmaier, U .; Mues, H .; Krebs, A. Chem. Eur J. 2002, 8, 1850.)]] (2R, 3R) -methyl 2- [N ′-(p-dimethylaminobenzoyl) hydrazino] -3-methyl-4 prepared in Example 10 - pentenoate (4i), in the presence of sodium bicarbonate was treated with benzyloxycarbonyl chloride (yield: 75%) after and then treated with samarium iodide (SmI 2) (yield: 95%), The title product was obtained.
1 H-NMR (CDCl 3 , main rotamer) δ:
1.03 (d, 3H, J = 6.9 Hz), 2.71 (m, 1H), 3.67 (s, 3H),
4.29 (dd, 1H, J = 4.6 Hz), 4.99-5.10 (m, 4H), 5.11 (d, 1H, J = 8.2 Hz),
5.56-5.52 (m, 1H), 7.25-7.29 (m, 5H); (selected signals)
0.85 (t, 3H, J = 7.2 Hz), 2.60-2.70 (m, 1H), 3.59 (s, 3H),
4.40 (dd, 1H, J = 4.6 Hz), 5.42-5.48 (m, 1H).
13 C-NMR (CDCl 3 , main rotamer) δ:
16.0, 40.0, 52.2, 58.2, 67.1, 117.0, 128.1, 128.2, 128.5, 136.2,
137.5, 156.2, 172.0; (selected signals) 11.7, 23.5, 48.0, 56.9,
118.4, 136.2.
IR (neat) 3750, 3344, 2960, 1724, 1517, 1449, 1347, 1267, 1216,
1096, 1055, 1017, 931, 771, 701 cm -1 .
[Α] D 21 -8.2 (c 0.32, CHCl 3 ).

(2S,3S)−メチル 2−[N−(tert−ブトキシカルボニル)アミノ]−3−ヒドロキシ−4−ペンタノエート(8)[文献(Kandula, S. R. V.; Kumar, P. Tetrahedron: Asym. 2005, 16, 3268; delle Monache, Monache, G.; Giovanni, M. C. D.; Misiti, D.; Zappia, G. Tetrahedron: Asym. 1997, 8, 231.)記載の化合物]の製造
実施例14で製造した(2S,3S)−メチル 2−[N’−(p−ジメチルアミノベンゾイル)ヒドラジノ]−3−ベンジルオキシ−4−ペンテノエート(4m)を、炭酸水素ナトリウムの存在下でベンジルオキシカルボニルクロライドで処理し(収率:90%)、次いでヨウ化サマリウム(SmI)で処理した(収率:71%)後、tert−ブトキシカルボニル無水物(BocO)の存在下でPd/Cを用いて接触還元して(収率:71%)、標記目的物を得た。
H−NMR (CDCl) δ:
1.00 (t, 3H, J = 7.2 Hz), 1.45 (s, 9H), 1.51 (m, 2H), 2.83 (br, 1H),
3.78 (s, 3H), 3.81 (br, 1H), 4.39 (br, 1H), 5.48 (br, 1H).
13C−NMR (CDCl) δ:
10.2, 26.4, 28.3, 52.4, 58.0, 74.5, 80.4, 155.9, 171.3.
IR (neat) 3435, 2977, 1714, 1505, 1165, 734 cm−1
HRMS:C1122NOとして、計算値:[M+H] 248.1492,
実測値: 248.1496.
[α] 22=−15.1(c1.6,CHCl).
(2S, 3S) -methyl 2- [N- (tert-butoxycarbonyl) amino] -3-hydroxy-4-pentanoate (8) [literature (Kandula, SRV; Kumar, P. Tetrahedron: Asym. 2005, 16, 3268; delle Monache, Monache, G .; Giovanni, MCD; Misiti, D .; Zappia, G. Tetrahedron: Asym. 1997, 8, 231.)]] The compound prepared in Example 14 (2S, 3S ) -Methyl 2- [N '-(p-dimethylaminobenzoyl) hydrazino] -3-benzyloxy-4-pentenoate (4m) was treated with benzyloxycarbonyl chloride in the presence of sodium bicarbonate (yield: 90%) followed by treatment with samarium iodide (SmI 2 ) (yield: 71%) followed by catalytic reduction with Pd / C in the presence of tert-butoxycarbonyl anhydride (Boc 2 O) ( (Yield: 71%) and the title product was obtained.
1 H-NMR (CDCl 3 ) δ:
1.00 (t, 3H, J = 7.2 Hz), 1.45 (s, 9H), 1.51 (m, 2H), 2.83 (br, 1H),
3.78 (s, 3H), 3.81 (br, 1H), 4.39 (br, 1H), 5.48 (br, 1H).
13 C-NMR (CDCl 3 ) δ:
10.2, 26.4, 28.3, 52.4, 58.0, 74.5, 80.4, 155.9, 171.3.
IR (neat) 3435, 2977, 1714, 1505, 1165, 734 cm −1 .
HRMS: Calculated as: C 11 H 22 NO 5 : [M + + H] 248.1492,
Found: 248.1497.
[Α] D 22 = −15.1 (c1.6, CHCl 3 ).

本発明は、高収率で、かつ高立体選択的に光学活性ホモアリルヒドラジノエステル類を製造するための工業的に優れた方法を提供するものである。
本発明の方法によって製造される光学活性ホモアリルヒドラジノエステル類は、その窒素−窒素結合を切断することにより、対応する光学活性アミノ酸誘導体に誘導することができ、様々な光学活性α−アミノ酸誘導体を合成できることから光学活性医薬品や食品類などや、その中間体の製造方法として有用であり、本発明は産業上の利用可能性を有している。
The present invention provides an industrially excellent method for producing optically active homoallyl hydrazino esters with high yield and high stereoselectivity.
The optically active homoallyl hydrazino esters produced by the method of the present invention can be derived into corresponding optically active amino acid derivatives by cleaving the nitrogen-nitrogen bond, and various optically active α-amino acid derivatives. Is useful as a method for producing optically active pharmaceuticals, foods, and the like and intermediates thereof, and the present invention has industrial applicability.

Claims (8)

水と有機溶媒との混合溶媒中で、亜鉛化合物及び次の一般式(1)、
Figure 0004913077
(式中、R は、それぞれ独立して置換基を有していてもよい炭化水素基を表すか、2個のR 同士が一緒になって隣接する炭素原子と共に5〜10員の環を形成してもよく、R は、置換基を有していてもよい芳香族炭化水素基を示す。)
で表されるキラルなジアミン配位子とを混合させて得られる触媒の存在下で、次の一般式(2)、
Figure 0004913077
(式中、R 及びR は、それぞれ独立して置換基を有していてもよい炭化水素基を示す。)
で表されるα−ヒドラゾノエステルと次の一般式(3)、
Figure 0004913077
(式中、R 及びR は、それぞれ独立して水素原子又は置換基を有していてもよい炭化水素基を示し、R 、R 、及びR は、それぞれ独立して水素原子又は置換基を有していてもよい脂肪族炭化水素基を示し、R 10 は水素原子、置換基を有していてもよい脂肪族炭化水素基、ハロゲン基、保護されていてもよい水酸基、保護されていてもよいアミノ基、又は保護されていてもよいメルカプト基を示す。)
で表されるアリルボラン誘導体とを反応させて、次の一般式(4)、
Figure 0004913077
(式中、R 、R 、R 、R 、R 、及びR 10 は、前記したものと同じものを示し、*印が不斉炭素原子であることを示す。)
で表される光学活性ホモアリルヒドラジノエステル類又はこの異性体を製造する方法。
In a mixed solvent of water and an organic solvent, a zinc compound and the following general formula (1),
Figure 0004913077
(In the formula , each R 1 independently represents a hydrocarbon group which may have a substituent, or two R 1 groups together to form a 5- to 10-membered ring together with adjacent carbon atoms. And R 2 represents an aromatic hydrocarbon group which may have a substituent.)
In the presence of a catalyst obtained by mixing with a chiral diamine ligand represented by the following general formula (2),
Figure 0004913077
(In the formula, R 3 and R 4 each independently represent a hydrocarbon group which may have a substituent.)
Α-hydrazonoester represented by the following general formula (3),
Figure 0004913077
(In the formula, R 5 and R 6 each independently represent a hydrogen atom or a hydrocarbon group which may have a substituent, and R 7 , R 8 and R 9 each independently represent a hydrogen atom. Or an optionally substituted aliphatic hydrocarbon group, R 10 represents a hydrogen atom, an optionally substituted aliphatic hydrocarbon group, a halogen group, an optionally protected hydroxyl group, An amino group which may be protected or a mercapto group which may be protected is shown.)
Is reacted with an allylborane derivative represented by the following general formula (4),
Figure 0004913077
(In the formula, R 3 , R 4 , R 7 , R 8 , R 9 , and R 10 are the same as described above , and the * mark indicates an asymmetric carbon atom.)
The optically active homoallyl hydrazino ester represented by these , or the method of manufacturing this isomer .
前記一般式(1)におけるRが、置換基を有していてもよいアリール基である請求項に記載の方法。 The method according to claim 1 , wherein R 1 in the general formula (1) is an aryl group which may have a substituent. 一般式(2)におけるRが、炭素数1〜30のアルキル基であり、Rが置換基を有していてもよいアリール基である請求項1又は2に記載の方法。 The method according to claim 1 or 2 , wherein R 3 in the general formula (2) is an alkyl group having 1 to 30 carbon atoms, and R 4 is an aryl group which may have a substituent. 前記一般式(3)におけるR及びRが、炭素数1〜30のアルキル基であり、R、R、及びRが水素原子であり、R10が水素原子、炭素数1〜30のアルキル基、ハロゲン基、保護されていてもよい水酸基、又は保護されていてもよいアミノ基である請求項1〜3のいずれかに記載の方法。 R 5 and R 6 in the general formula (3) are alkyl groups having 1 to 30 carbon atoms, R 7 , R 8 , and R 9 are hydrogen atoms, R 10 is a hydrogen atom, and 1 to C carbon atoms. The method according to any one of claims 1 to 3, which is 30 alkyl groups, a halogen group, an optionally protected hydroxyl group, or an optionally protected amino group. 亜鉛化合物が、亜鉛塩又は酸化亜鉛である請求項1〜4のいずれかに記載の方法。 The method according to any one of claims 1 to 4 , wherein the zinc compound is a zinc salt or zinc oxide. 亜鉛塩が、ZnX(式中、Xはハロゲン原子からなる陰イオン、アルキルスルホン酸イオン、アリールスルホン酸イオン、パーフルオロアルキルスルホン酸イオン、アルキル硫酸イオン、アリール硫酸イオン、パーフルオロアルキル硫酸イオン、硝酸イオン、過塩素酸イオン、酢酸イオン、又は水酸化物イオンを示す。)である請求項に記載の方法。 The zinc salt is ZnX 2 (wherein X is an anion comprising a halogen atom, an alkyl sulfonate ion, an aryl sulfonate ion, a perfluoroalkyl sulfonate ion, an alkyl sulfate ion, an aryl sulfate ion, a perfluoroalkyl sulfate ion, It represents nitrate ion, perchlorate ion, acetate ion, or hydroxide ion.) The method according to claim 5 . 請求項1〜のいずれかの方法で製造された光学活性ホモアリルヒドラジノエステル類の窒素−窒素結合を切断して対応するアミノエステル類を製造する方法。 A method for producing a corresponding amino ester by cleaving a nitrogen-nitrogen bond of the optically active homoallyl hydrazino ester produced by the method according to any one of claims 1 to 6 . 窒素−窒素結合の切断が、還元的切断である請求項に記載の方法。 The method according to claim 7 , wherein the breaking of the nitrogen-nitrogen bond is a reductive cleavage.
JP2008021964A 2007-03-10 2008-01-31 Process for producing optically active homoallyl hydrazino esters Expired - Fee Related JP4913077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008021964A JP4913077B2 (en) 2007-03-10 2008-01-31 Process for producing optically active homoallyl hydrazino esters

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007061130 2007-03-10
JP2007061130 2007-03-10
JP2008021964A JP4913077B2 (en) 2007-03-10 2008-01-31 Process for producing optically active homoallyl hydrazino esters

Publications (2)

Publication Number Publication Date
JP2008255094A JP2008255094A (en) 2008-10-23
JP4913077B2 true JP4913077B2 (en) 2012-04-11

Family

ID=39979025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008021964A Expired - Fee Related JP4913077B2 (en) 2007-03-10 2008-01-31 Process for producing optically active homoallyl hydrazino esters

Country Status (1)

Country Link
JP (1) JP4913077B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5072026B2 (en) * 2007-03-09 2012-11-14 独立行政法人科学技術振興機構 Method for producing homoallyl alcohol or homoallyl hydrazide
JP5120962B2 (en) * 2008-03-11 2013-01-16 独立行政法人科学技術振興機構 Method for producing homoallyl hydrazide and asymmetric catalyst used therefor
JP5046213B2 (en) * 2009-03-12 2012-10-10 独立行政法人科学技術振興機構 Process for producing optically active alcohol compounds
JP5372556B2 (en) * 2009-03-12 2013-12-18 独立行政法人科学技術振興機構 Production method of selective homoallylic alcohol derivatives by α-addition type allylation reaction
JP5392614B2 (en) * 2009-10-19 2014-01-22 国立大学法人高知大学 Asymmetric reaction catalyst and asymmetric synthesis method using the same
JP5184565B2 (en) * 2010-03-10 2013-04-17 独立行政法人科学技術振興機構 Method for producing nitrogen-containing compound in aqueous solvent
CN109731526B (en) * 2018-12-25 2021-01-15 中国石油大学(华东) Fluorine-containing surfactant compound, preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3697045B2 (en) * 1998-01-28 2005-09-21 独立行政法人科学技術振興機構 Process for producing β-hydrazino esters and pyrazolidinones, pyrazolones and β-amino acid derivatives
JP2004262873A (en) * 2003-03-03 2004-09-24 Japan Science & Technology Agency Method for synthesizing asymmetrically allylated acylhydrazine compound
JP4860509B2 (en) * 2007-03-10 2012-01-25 独立行政法人科学技術振興機構 Method for producing optically active hydrazino keto ester compound

Also Published As

Publication number Publication date
JP2008255094A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
JP4913077B2 (en) Process for producing optically active homoallyl hydrazino esters
JP5113118B2 (en) Reagent for organic synthesis, and organic synthesis reaction method using the reagent
Lu et al. Highly enantioselective catalytic alkynylation of ketones–A convenient approach to optically active propargylic alcohols
EP2376411B1 (en) Aluminium complexes and use thereof as a catalyst in intramolecular ring closure reactions
WO2014057495A1 (en) A process for industrial preparation of [(s)-n-tert butoxycarbonyl-3-hydroxy]adamantylglycine
US10179330B2 (en) Chiral N-substituted allylic amine compounds
US20210238200A1 (en) Chiral n-substituted allylic amine compounds
JP5372556B2 (en) Production method of selective homoallylic alcohol derivatives by α-addition type allylation reaction
JP4126763B2 (en) Optically active bisoxazoline compound, production method thereof and use thereof
JP5569938B2 (en) Pyrrolidine derivative and method for producing the same
WO2020220651A1 (en) Method for synthesizing chiral 2-hydroxy-1,4-dicarbonyl compound and pantolactone
JP4918257B2 (en) Asymmetric reduction method
JP4029671B2 (en) Method for producing optically active saldoimine copper complex
JPH1045692A (en) Production of cyclohexylamino acids
JP2003261490A (en) NEW CHIRAL ZIRCONIUM CATALYST AND METHOD FOR PRODUCING OPTICALLY ACTIVE ANTI-alpha-METHYL-beta-AMINOCARBONYL COMPOUND
EP4249470A1 (en) Method for preparing alpha-amino acids
US8791294B2 (en) Method for the stereoselective preparation of amino acid derivatives
WO2004103990A1 (en) Process for producing optically active n-monoalkyl-3­hydroxy-3-arylpropylamine compound and intermediate
JP4732180B2 (en) Stereoselective production method of 1,3-aminoalcohol derivatives
EP3411355A1 (en) Process for the preparation of trans-4-amino-1-cyclohexanecarboxilic acid and its derivatives
JP4076969B2 (en) Method for asymmetric synthesis of optically active β-hydroxy-α-substituted carboxylic acid ester
JP5762288B2 (en) Method for producing allylamine
JP5184565B2 (en) Method for producing nitrogen-containing compound in aqueous solvent
KR100298145B1 (en) Cinchona alkaloid catalysts for heterogeneous asymmetric aminohydroxylation of olefins
JP4714730B2 (en) Method for asymmetric allylation of α-imino acids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120118

R150 Certificate of patent or registration of utility model

Ref document number: 4913077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees