WO2013024678A1 - Compound for forming self-assembled mono-molecular film, and organic semiconductor element containing same. - Google Patents

Compound for forming self-assembled mono-molecular film, and organic semiconductor element containing same. Download PDF

Info

Publication number
WO2013024678A1
WO2013024678A1 PCT/JP2012/068972 JP2012068972W WO2013024678A1 WO 2013024678 A1 WO2013024678 A1 WO 2013024678A1 JP 2012068972 W JP2012068972 W JP 2012068972W WO 2013024678 A1 WO2013024678 A1 WO 2013024678A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic semiconductor
compound
sam
substrate
forming
Prior art date
Application number
PCT/JP2012/068972
Other languages
French (fr)
Japanese (ja)
Inventor
竹谷純一
岡本敏宏
植村隆文
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Publication of WO2013024678A1 publication Critical patent/WO2013024678A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/191Deposition of organic active material characterised by provisions for the orientation or alignment of the layer to be deposited

Abstract

Provided is a compound for forming a self-assembled mono-molecular film which forms an organic semiconductor layer and which imparts a substrate surface with good wettability with respect to a solvent, the compound having a structure represented by chemical formula (1). In chemical formula (1), n is 1 or 8, R1 is CH3 or C2H5, and R2 and R3 are represented by any of (A) to (C). (A): A combination whereby R2 is H and R3 is CH3, C2H5, C6H13 or an aryl group. (B): R2 and R3 are the same, and are C2H5, C6H13 or an aryl group. (C): A combination whereby R2 is CH3, C2H5, C6H13 or an aryl group and R3 is CH3, C2H5, C6H13 or an aryl group (however, R2 ≠ R3). It is possible to form a self-assembled mono-molecular film, which undergoes little change over time in terms of contact angle in atmospheric air, on a surface of a substrate and form an organic semiconductor layer having good characteristics with good reproducibility.

Description

自己組織化単分子膜形成用の化合物及びそれを用いた有機半導体素子Compound for forming self-assembled monolayer and organic semiconductor device using the same
 本発明は、有機半導体層が形成される基板表面に、ぬれ性を改善する自己組織化単分子膜を形成するために用いる化合物に関する。また、その化合物からなる自己組織化単分子膜を介在させて形成された有機半導体層を有する有機半導体素子に関する。 The present invention relates to a compound used for forming a self-assembled monolayer film that improves wettability on a substrate surface on which an organic semiconductor layer is formed. The present invention also relates to an organic semiconductor element having an organic semiconductor layer formed with a self-assembled monomolecular film made of the compound interposed therebetween.
 有機半導体は、近年ではアモルファスシリコンと同等の移動度を示す例も報告されており、有機半導体をチャネル層に用いた有機半導体素子、例えば有機電界効果トランジスタ(有機FET)は、優れた電気的特性を示す。しかも、有機半導体素子は、非常に高温の製造プロセスを必要とせず、低価格、低環境負荷の製造装置で簡単に製造できるという利点を有する。すなわち、有機半導体材料は、溶液からの塗布によって薄膜として形成可能であるため、無機半導体材料に比べ、簡単なプロセスで大面積の電子デバイス作製が可能である。 In recent years, organic semiconductors have been reported to exhibit the same mobility as amorphous silicon, and organic semiconductor elements using organic semiconductors in the channel layer, such as organic field effect transistors (organic FETs), have excellent electrical characteristics. Indicates. Moreover, the organic semiconductor element has the advantage that it does not require a very high temperature manufacturing process and can be easily manufactured by a low-cost and low environmental load manufacturing apparatus. That is, since an organic semiconductor material can be formed as a thin film by application from a solution, an electronic device having a large area can be manufactured by a simple process compared to an inorganic semiconductor material.
 有機半導体材料を溶液法で再現性よく塗布するためには、基板のぬれ性が大きく、安定していることが必須である。基板のぬれ性を良好にする手法の一つとして、自己組織化単分子膜(SAM)を基板上に化学吸着法で成膜し、その膜上に有機半導体材料を塗布する方法が知られている。SAMの作用により、有機半導体層の良好な結晶性の獲得や、水分子などの影響除去など、さまざまな効果が得られる。 In order to apply organic semiconductor materials with a solution method with good reproducibility, it is essential that the substrate is highly wettable and stable. As a technique for improving the wettability of a substrate, a method of forming a self-assembled monolayer (SAM) on a substrate by a chemical adsorption method and applying an organic semiconductor material on the film is known. Yes. By the action of SAM, various effects such as acquisition of good crystallinity of the organic semiconductor layer and removal of influence of water molecules can be obtained.
 またSAMを成膜した上に有機半導体層を形成することにより、SAM分子の双極子モーメントの違いを利用して、有機半導体素子の性能の一つの指標である閾値電圧(Vth)の制御も可能となる。例えば、非特許文献1には、シリコン基板上にフッ素置換アルキルSAM(FSAM)や末端アミノアルキルSAM(NH2-SAM)を成膜し、その上に有機半導体層を蒸着することにより、閾値電圧を正方向および負方向にそれぞれシフトさせることが開示されている。また、特許文献1には、電子供与性および電子吸引性の官能基を有する有機シラン化合物を閾値制御層として、有機半導体層の閾値電圧を制御することが記載されている。 Further, by forming an organic semiconductor layer on the SAM film, the threshold voltage (V th ), which is one index of the performance of the organic semiconductor element, can be controlled by utilizing the difference in the dipole moment of the SAM molecule. It becomes possible. For example, Non-Patent Document 1 discloses that a threshold voltage is set by depositing a fluorine-substituted alkyl SAM (FSAM) or a terminal aminoalkyl SAM (NH2-SAM) on a silicon substrate and depositing an organic semiconductor layer thereon. Shifting in the positive and negative directions is disclosed. Patent Document 1 describes controlling the threshold voltage of an organic semiconductor layer using an organic silane compound having an electron donating and electron withdrawing functional group as a threshold control layer.
特開2005-228968号公報JP 2005-228968 A
 しかしながら、非特許文献1に記載のようなNH2-SAM処理を施した基板は、接触角測定の結果から、大気中で膜安定性が低いことが判った。そのため、NH2-SAM処理を施した基板に有機半導体層を再現性よく成膜して、安定したトランジスタ性能を得ることが難しいという問題点がある。 However, it was found that the substrate subjected to NH2-SAM treatment as described in Non-Patent Document 1 has low film stability in the atmosphere from the result of contact angle measurement. Therefore, there is a problem that it is difficult to obtain a stable transistor performance by forming an organic semiconductor layer on a substrate subjected to NH2-SAM treatment with good reproducibility.
 また、特許文献1における有機シラン化合物についての開示は、閾値電圧を制御する閾値制御層としての記載に限定されており、有機半導体層を再現性よく成膜するための基板表面処理の効果に関する記載はない。そのため、閾値制御層の大気中で膜安定性、すなわち接触角の経時変化を低減することに関する記載はない。 Further, the disclosure of the organosilane compound in Patent Document 1 is limited to the description as the threshold control layer for controlling the threshold voltage, and the description regarding the effect of the substrate surface treatment for forming the organic semiconductor layer with high reproducibility. There is no. Therefore, there is no description about reducing film stability in the atmosphere of the threshold control layer, that is, reducing a change in contact angle with time.
 従って本発明は、大気中での接触角の経時変化が少ないSAMを基板表面に形成して、良好な特性を有する有機半導体層を再現性よく形成することを可能とするSAM形成用の化合物を提供することを目的とする。 Therefore, the present invention provides a SAM-forming compound that can form a SAM with a small contact angle change in the atmosphere on the substrate surface and form an organic semiconductor layer having good characteristics with good reproducibility. The purpose is to provide.
 上記課題を解決するために、本発明の自己組織化単分子膜形成用の化合物は、有機半導体層を形成する溶液に対する良好なぬれ性を基板表面に与える自己組織化単分子膜を形成するための化合物であって、下記の化学式(1)で表される構造を有する。ただし、化学式(1)中、n=1または8、R=CHまたはCであって、RとRは、下記(A)~(C)により示されるいずれかである。 In order to solve the above problems, the compound for forming a self-assembled monolayer of the present invention forms a self-assembled monolayer that gives the substrate surface good wettability with respect to a solution for forming an organic semiconductor layer. Which has a structure represented by the following chemical formula (1). However, in chemical formula (1), n = 1 or 8, R 1 = CH 3 or C 2 H 5 , and R 2 and R 3 are any one of the following (A) to (C) .
 (A)R=H、かつR=CH,C,C13またはアリール基の組合せ。 (A) A combination of R 2 = H and R 3 = CH 3 , C 2 H 5 , C 6 H 13 or an aryl group.
 (B)R=R=C,C13またはアリール基。 (B) R 2 = R 3 = C 2 H 5 , C 6 H 13 or an aryl group.
 (C)R=CH,C,C13またはアリール基、かつR=CH,C,C13またはアリール基の組合せ(但し、R≠R)。 (C) A combination of R 2 = CH 3 , C 2 H 5 , C 6 H 13 or an aryl group, and R 3 = CH 3 , C 2 H 5 , C 6 H 13 or an aryl group (provided that R 2 ≠ R 3 ).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 本発明の有機半導体素子は、基板上に自己組織化単分子膜を介して形成された有機半導体層を備え、前記自己組織化単分子膜が、上記化学式(1)で表わされる自己組織化単分子膜形成用の化合物の分子により形成されていることを特徴とする。 The organic semiconductor device of the present invention includes an organic semiconductor layer formed on a substrate via a self-assembled monolayer, and the self-assembled monolayer is represented by the chemical formula (1). It is formed by molecules of a compound for forming a molecular film.
 本発明のSAM形成用の化合物によれば、新規な末端アミノ基を有するSAMを形成することにより、大気中での接触角の経時変化を十分に抑制することができる。それにより、良好な特性を有する有機半導体層を再現性よく形成することが可能である。また、SAMによる有機半導体素子の閾値電圧の制御についても、良好な特性を得ることができる。さらに、本発明の化合物の分子は気相法で容易に成膜可能なため、大面積基板上においても容易にSAMを形成して、有機半導体層を再現性良く作製することを可能とする。 According to the SAM-forming compound of the present invention, the change with time of the contact angle in the atmosphere can be sufficiently suppressed by forming a SAM having a novel terminal amino group. Thereby, an organic semiconductor layer having good characteristics can be formed with good reproducibility. Also, good characteristics can be obtained for controlling the threshold voltage of the organic semiconductor element by SAM. Furthermore, since the molecule of the compound of the present invention can be easily formed by a vapor phase method, an SAM can be easily formed even on a large area substrate, and an organic semiconductor layer can be manufactured with good reproducibility.
本発明の実施の形態における有機FETの構造を示す断面図Sectional drawing which shows the structure of organic FET in embodiment of this invention 同実施の形態における有機FETの作製のためにSAMを成膜する方法の一例を示す断面図Sectional drawing which shows an example of the method of forming into a film SAM for preparation of organic FET in the embodiment 同実施の形態におけるSAMのぬれ性について、経時変化を評価するために行った実験の結果を示すグラフThe graph which shows the result of the experiment conducted in order to evaluate a temporal change about the wettability of SAM in the same embodiment 塗布法の一例により有機半導体層を作製する工程を示す斜視図The perspective view which shows the process of producing an organic-semiconductor layer by an example of the coating method 同有機半導体層を作製する工程を示す断面図Sectional drawing which shows the process of producing the organic-semiconductor layer 本発明の実施の形態における有機FETの伝達特性を示す図The figure which shows the transfer characteristic of organic FET in embodiment of this invention 同有機FETの出力特性を示す図Diagram showing output characteristics of the organic FET 同有機FETにおける閾値電圧の制御効果を示す図The figure which shows the control effect of the threshold voltage in the same organic FET
 本発明の自己組織化単分子膜形成用の化合物は、下記化学式(1-1)~(1-4)のいずれかで表される化合物とすることができる。 The compound for forming a self-assembled monolayer of the present invention can be a compound represented by any one of the following chemical formulas (1-1) to (1-4).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 以下、本発明の実施形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 <実施の形態>
 [有機半導体素子の構造]
 本発明の実施の形態における有機半導体素子について、図1を参照して説明する。図1に示す半導体素子は、有機半導体層を伝導チャネルとする有機電界効果トランジスタ(有機FET)である。基板1は、不純物ドープシリコン層1aの表面部にSiOからなるシリコン絶縁層1bを形成した構成を有する。シリコン絶縁層1b上には、自己組織化単分子膜(SAM)2が形成され、その上に有機半導体層3が形成されている。有機半導体層3上には、相互間に間隔を設けてソース電極4、ドレイン電極5が形成されている。不純物ドープシリコン層1aがゲート電極として用いられ、シリコン絶縁層1bがゲート絶縁膜として機能する。
<Embodiment>
[Structure of organic semiconductor element]
An organic semiconductor element according to an embodiment of the present invention will be described with reference to FIG. The semiconductor element shown in FIG. 1 is an organic field effect transistor (organic FET) having an organic semiconductor layer as a conduction channel. The substrate 1 has a configuration in which a silicon insulating layer 1b made of SiO 2 is formed on the surface portion of the impurity-doped silicon layer 1a. A self-assembled monolayer (SAM) 2 is formed on the silicon insulating layer 1b, and an organic semiconductor layer 3 is formed thereon. On the organic semiconductor layer 3, a source electrode 4 and a drain electrode 5 are formed with a space between each other. The impurity-doped silicon layer 1a is used as a gate electrode, and the silicon insulating layer 1b functions as a gate insulating film.
 基板1としては、上記構成に限らず、ガラス基板等、周知のどのような材料を用いた構成としてもよい。また、有機FETの構造としても、他の種々の周知の構造を用いることができる。本発明の特徴は、SAM2が、化学式(1)で表わされるSAM形成用化合物を用いて形成されていることである。 The substrate 1 is not limited to the above configuration, and may be a configuration using any known material such as a glass substrate. Also, various other well-known structures can be used as the structure of the organic FET. A feature of the present invention is that SAM2 is formed using a SAM-forming compound represented by the chemical formula (1).
 SAM形成用化合物の、より具体的な例としては、上記化学式(1-1)~(1-4)のいずれかで表される化合物を挙げることができる。 More specific examples of the SAM-forming compound include compounds represented by any one of the above chemical formulas (1-1) to (1-4).
 本発明のSAM形成用化合物を用いることにより、シリコン絶縁層1b上に化学吸着法(気相法)でSAM2を成膜した基板1は、接触角の経時変化が実用的に十分に少なく、大気中での膜安定性が高い。従って、基板1上への溶液からの塗布膜作製により、再現性よく有機半導体層3が得られ、歩留まりが高い高性能な有機半導体デバイスを実現可能である。本発明の化合物を用いたSAM2による基板1の表面のぬれ性は十分に大きく、有機半導体層3の良好な結晶性の獲得を可能とする本来の機能を十分に発揮する。 By using the SAM-forming compound of the present invention, the substrate 1 in which the SAM2 is formed on the silicon insulating layer 1b by the chemical adsorption method (vapor phase method) has a practically sufficiently small change in contact angle with time, and the atmosphere. High film stability. Therefore, the organic semiconductor layer 3 can be obtained with high reproducibility by producing a coating film from the solution on the substrate 1, and a high-performance organic semiconductor device with a high yield can be realized. The wettability of the surface of the substrate 1 by the SAM2 using the compound of the present invention is sufficiently large, and sufficiently exhibits the original function that makes it possible to obtain good crystallinity of the organic semiconductor layer 3.
 なお、SAM2は、種々の有機溶媒に対して十分なぬれ性を有することが望ましい。有機半導体材料を溶液を用いて塗布するとき、溶媒に対する溶解性が十分に良好である必要があり、有機半導体材料の種類に応じた種々の有機溶媒が用いられるため、SAM2もそれに応じた特性が要求されるからである。本発明の上記化合物を用いてSAM2を形成した基板は、有機溶媒に対する接触角測定の結果によれば、種々の有機溶媒に対して非常にぬれ性がよく、汎用性に優れている。 SAM2 desirably has sufficient wettability with respect to various organic solvents. When the organic semiconductor material is applied using a solution, the solubility in the solvent needs to be sufficiently good. Since various organic solvents according to the type of the organic semiconductor material are used, the SAM2 also has characteristics corresponding thereto. Because it is required. The substrate on which SAM2 is formed using the above compound of the present invention has very good wettability with respect to various organic solvents and excellent versatility according to the result of contact angle measurement with respect to the organic solvent.
 また、本発明の化合物を用いれば、SAM処理による有機半導体素子の閾値電圧の制御についても、良好な特性を得ることができる。特に、アミノ系SAMの表面電位を考慮に入れると、n型半導体材料には格別な効果を得ることが可能である。 In addition, when the compound of the present invention is used, good characteristics can be obtained for controlling the threshold voltage of the organic semiconductor element by SAM treatment. In particular, when the surface potential of the amino SAM is taken into consideration, it is possible to obtain a special effect on the n-type semiconductor material.
 さらに、本発明の化合物の分子は気相法で容易に成膜可能なため、大面積基板上においても容易に自己組織化単分子膜を形成可能である。従って、大面積トランジスタの作製に好適である。 Furthermore, since the molecule of the compound of the present invention can be easily formed by a vapor phase method, a self-assembled monolayer can be easily formed even on a large-area substrate. Therefore, it is suitable for manufacturing a large area transistor.
 [SAM形成用化合物の合成方法]
 本発明のSAM形成用化合物の合成には、一例として、以下に記載するような合成法を用いることができる。
[Method for synthesizing SAM-forming compound]
For the synthesis of the SAM-forming compound of the present invention, for example, a synthesis method as described below can be used.
 <10-(N,N-ジメチルアミノ)-1-デケンの合成>
 10-ブロモ-1-デケン(4.963 g, 22.6 mmol)をジメチルアミン溶液(11 %エタノール溶液)(25 ml,50.0 mmol,2.21 mol amt.)に加え、室温で24時間撹拌した。反応溶液に10 %の水酸化ナトリウム水溶液を加えた後、ジエチルエーテルで抽出し、有機層を回収した。ジエチルエーテルを減圧留去し、残渣を真空蒸留することで10-(N,N-ジメチルアミノ)-1-デケンを得た。収量3.297 g (80%)。
<Synthesis of 10- (N, N-dimethylamino) -1-decene>
10-Bromo-1-decene (4.963 g, 22.6 mmol) was added to a dimethylamine solution (11% ethanol solution) (25 ml, 50.0 mmol, 2.21 mol amt.), And the mixture was stirred at room temperature for 24 hours. A 10% aqueous sodium hydroxide solution was added to the reaction solution, followed by extraction with diethyl ether, and the organic layer was recovered. Diethyl ether was distilled off under reduced pressure, and the residue was distilled under vacuum to obtain 10- (N, N-dimethylamino) -1-decene. Yield 3.297 g (80%).
 化合物データ:1H NMR (400 MHz, CDCl3, 25℃): δ/ppm = 1.28-1.46 (m, 12H), 2.03 (q, 2H,), 2.21-2.24 (m, 8H), 4.91-5.01 (m, 2H), 5.76-5.86 (m, 1H)。 Compound data: 1 H NMR (400 MHz, CDCl 3 , 25 ° C): δ / ppm = 1.28-1.46 (m, 12H), 2.03 (q, 2H,), 2.21-2.24 (m, 8H), 4.91-5.01 (m, 2H), 5.76-5.86 (m, 1H).
 参考文献: P. Thebault et al., Eur. J. Med. Chem. 44, 717 (2009)。 References: P. Thebault et al., Eur. J. Med. Chem. 44, 717 (2009).
 <N,N-ジメチル-10-アミノデシルトリエトキシシランの合成>
 10-(N,N-ジメチルアミノ)-1-デケン(1.846 g,10.1 mmol)にトリエトキシシラン(1.525 g,9.3 mmol)とトリス(トリフェニルホスフィン)ロジウム(I)クロリド(10 mg,1.08×10-2 mmol)、脱水トルエン(10 mL)を加えて、85℃で16時間加熱撹拌した。反応溶液を室温に戻し、トルエンを減圧留去し、真空蒸留を行うことでN,N-ジメチル-10-アミノデシルトリエトキシシランを得た。収量1.946 g (60%)。
<Synthesis of N, N-dimethyl-10-aminodecyltriethoxysilane>
10- (N, N-dimethylamino) -1-decene (1.846 g, 10.1 mmol) and triethoxysilane (1.525 g, 9.3 mmol) and tris (triphenylphosphine) rhodium (I) chloride (10 mg, 1.08 × 10 −2 mmol) and dehydrated toluene (10 mL) were added, and the mixture was stirred with heating at 85 ° C. for 16 hours. The reaction solution was returned to room temperature, toluene was distilled off under reduced pressure, and vacuum distillation was performed to obtain N, N-dimethyl-10-aminodecyltriethoxysilane. Yield 1.946 g (60%).
 化合物データ:1H NMR (400 MHz, CDCl3,25℃): δ/ppm = 0.60-0.64 (m, 2H), 1.20-1.44 (m, 25H), 2.20-2.24 (m, 8H), 3.80 (q, 6H)。 Compound data: 1 H NMR (400 MHz, CDCl 3 , 25 ° C): δ / ppm = 0.60-0.64 (m, 2H), 1.20-1.44 (m, 25H), 2.20-2.24 (m, 8H), 3.80 ( q, 6H).
 参考文献: R. Fetouaki et al., Inorg. Chim. Acta 359, 4865 (2006)。 References: R. Fetouaki et al., Inorg. Chim. Acta 359, 4865 (2006).
 <3-(N,N-ジフェニルアミノ)プロピルトリメトキシシランの合成>
 ビフェニルアミン(2.842 g,16.8 mmol)とNaH(403 mg,16.8 mmol,1.0 mol amt.)をトルエンとTHFの混合溶媒21 mL(トルエン:THF = 1:1)に溶解させ、室温で30分間撹拌した。さらに3-ヨードプロピルトリメトキシシラン(4.990 g, 17.1 mmol,1.02 mol amt.)を加え、120℃で35時間還流した。セライト濾過により無機塩を除いた後、濾液を濃縮し、真空蒸留をすることで3-(N,N-ジフェニルアミノ)プロピルトリメトキシシランを得た。収量2.445 g (44%)。
<Synthesis of 3- (N, N-diphenylamino) propyltrimethoxysilane>
Biphenylamine (2.842 g, 16.8 mmol) and NaH (403 mg, 16.8 mmol, 1.0 mol amt.) Are dissolved in 21 mL of a mixed solvent of toluene and THF (toluene: THF = 1: 1) and stirred at room temperature for 30 minutes. did. Further, 3-iodopropyltrimethoxysilane (4.990 g, 17.1 mmol, 1.02 mol amt.) Was added, and the mixture was refluxed at 120 ° C. for 35 hours. After removing inorganic salts by Celite filtration, the filtrate was concentrated and vacuum distilled to obtain 3- (N, N-diphenylamino) propyltrimethoxysilane. Yield 2.445 g (44%).
 化合物データ:1H NMR (400 MHz, CDCl3):δ/ppm = 7.27-7.23 (m, 4H), 7.05-6.75 (m, 4H), 6.93 (t, 2H,J = 7.2 Hz), 3.69 (t, 2H, J = 7.6 Hz), 3.54 (s, 9H), 1.83-1.74 (m, 2H), 0.66 (t, 2H, J = 8.4Hz)。 Compound data: 1 H NMR (400 MHz, CDCl 3 ): δ / ppm = 7.27-7.23 (m, 4H), 7.05-6.75 (m, 4H), 6.93 (t, 2H, J = 7.2 Hz), 3.69 ( t, 2H, J = 7.6 Hz), 3.54 (s, 9H), 1.83-1.74 (m, 2H), 0.66 (t, 2H, J = 8.4 Hz).
 参考文献: S. V.M. de Moraes et al., Talanta 59, 1039 (2003)。 References: S. V.M. de Moraes et al., Talanta 59, 1039 (2003).
 [SAMの成膜方法]
 本発明のSAM形成用化合物を用いて、SAMを成膜する方法の一例について、図2を参照して説明する。この方法は、気相法による密閉型システムによるものである。
[SAM deposition method]
An example of a method for forming a SAM using the SAM-forming compound of the present invention will be described with reference to FIG. This method is based on a closed system using a gas phase method.
 まず、シリコン基板(あるいはガラス基板)を、アセトンおよびイソプロピルアルコールでそれぞれ10分間、超音波洗浄する。次に、吸着水を飛ばすためシリコン基板を200℃のホットプレート上で5分間ベークする。さらに、UV-オゾンでシリコン基板を30分間処理する。 First, the silicon substrate (or glass substrate) is ultrasonically cleaned with acetone and isopropyl alcohol for 10 minutes each. Next, the silicon substrate is baked on a hot plate at 200 ° C. for 5 minutes in order to fly the adsorbed water. Further, the silicon substrate is treated with UV-ozone for 30 minutes.
 次に、図2に示すように、上述の処理を施したシリコン基板6を、上述のSAM形成用化合物7とともにテフロン(登録商標)容器8に密封する。密閉したテフロン容器8を加熱した電気炉9内に置き、120℃で加熱する。それにより、SAM形成用化合物7が気化してシリコン基板6表面の水酸基と反応し、SAMが形成される。 Next, as shown in FIG. 2, the silicon substrate 6 subjected to the above-described treatment is sealed in a Teflon (registered trademark) container 8 together with the above-described SAM-forming compound 7. The sealed Teflon container 8 is placed in a heated electric furnace 9 and heated at 120 ° C. Thereby, the SAM forming compound 7 is vaporized and reacts with the hydroxyl group on the surface of the silicon substrate 6 to form SAM.
 次に、SAM処理済のシリコン基板6を大気中に取り出して、表面上に物理吸着した過剰なSAM分子を取り除くために、アセトンおよびイソプロピルアルコールでそれぞれ5分づつ超音波洗浄する。その後、120℃でシリコン基板6をベークする。 Next, the SAM-treated silicon substrate 6 is taken out into the atmosphere, and ultrasonically washed with acetone and isopropyl alcohol for 5 minutes each to remove excess SAM molecules physically adsorbed on the surface. Thereafter, the silicon substrate 6 is baked at 120 ° C.
 [SAMのぬれ性評価]
 上記のSAM形成用化合物を用いて形成されたSAMについて、水に対するぬれ性を評価するために行った実験の結果について、(表1)を参照して説明する。実験は、下記の(化3)に示す化合物を用いてSAMを形成した基板について行った。なお、APrTS及びDTSは比較例である。また、参考のため、SAM非形成のシリコン絶縁層に対する接触角も測定した。
[Evaluation of wettability of SAM]
The results of experiments conducted for evaluating the wettability to water of the SAM formed using the above SAM-forming compound will be described with reference to (Table 1). The experiment was performed on a substrate on which a SAM was formed using a compound represented by the following (Chemical Formula 3). APrTS and DTS are comparative examples. For reference, the contact angle with respect to the silicon insulating layer without SAM was also measured.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 (表1)は、SAM形成の処理時間(h)を変えて行ったときの、各処理時間(h)で処理された基板6の水に対する接触角の測定結果を示す。処理時間(h)は、0.5h、1.0h、及び2.0hとした。接触角は、シリコン絶縁層上の3点に滴下した水についての平均値を求めた値である。なお、DTSの接触角は参考値である。 (Table 1) shows the measurement result of the contact angle with respect to water of the substrate 6 processed in each processing time (h) when the processing time (h) of SAM formation was changed. The processing time (h) was 0.5 h, 1.0 h, and 2.0 h. A contact angle is the value which calculated | required the average value about the water dripped at three points on a silicon insulating layer. In addition, the contact angle of DTS is a reference value.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 (表1)から判るように、アミノ基上のフェニル基の数が増えると、水に対する接触角が大きくなる。(APrTSの接触角)<(PhAPrTSの接触角)<(DPhAPrTSの接触角)である。また、アミノ基末端SAMは、アルキル基のみのDTSよりも接触角は小さい。 As can be seen from (Table 1), as the number of phenyl groups on the amino group increases, the contact angle with water increases. (Contact angle of APrTS) <(Contact angle of PhAPrTS) <(Contact angle of DPhAPrTS). In addition, the amino group terminal SAM has a smaller contact angle than the DTS having only an alkyl group.
 次に、SAM処理した基板の有機溶媒に対するぬれ性を評価するために行った実験の結果について、(表2)を参照して説明する。実験は、DTSを除く(化3)に示した化合物を用いてSAMを形成した基板について行った。(表2)は、SAM形成の処理時間(h)を上述の実験と同様に異ならせたときの、o-ジクロロベンゼン(oDCB)及びテトラリンに対する接触角の測定結果を示す。 Next, the results of an experiment conducted for evaluating the wettability of the SAM-treated substrate with respect to an organic solvent will be described with reference to (Table 2). The experiment was performed on a substrate on which a SAM was formed using the compound shown in (Chemical Formula 3) excluding DTS. (Table 2) shows the measurement results of contact angles with respect to o-dichlorobenzene (oDCB) and tetralin when the treatment time (h) for SAM formation was varied in the same manner as in the above-described experiment.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 (表2)から判るように、本発明の末端アミノ基を有するSAMは、溶液プロセスで用いる溶媒であるoDCBやtetralinに対するぬれ性が、SAM非形成の基板よりも良好である。従って、有機半導体層を成膜するための溶液プロセスに適している。 As can be seen from (Table 2), the SAM having a terminal amino group of the present invention has better wettability with respect to oDCB and tetralin, which are solvents used in the solution process, than a non-SAM-formed substrate. Therefore, it is suitable for a solution process for forming an organic semiconductor layer.
 次に、SAMのぬれ性について、経時変化を評価するために行った実験の結果について、図3を参照して説明する。実験は、(化3)に示した化合物を用いてSAMを形成した基板について行った。図3における横軸は、時間の経過(s)を示す。縦軸は、水に対する接触角(°)を示す。 Next, the results of experiments conducted to evaluate the change over time of the wettability of the SAM will be described with reference to FIG. The experiment was performed on a substrate on which a SAM was formed using the compound shown in (Chemical Formula 3). The horizontal axis in FIG. 3 indicates the passage of time (s). A vertical axis | shaft shows the contact angle (degree) with respect to water.
 図3から、PhAPrTSおよびDPhAPrTSを用いた場合は、APrTSまたはDTSを用いた場合と比べて、接触角の経時変化が小さいことが判る。すなわち、SAMの膜安定性が高い。また、APrTSを用いた場合は、報告されている接触角のばらつきが大きい。このように、本発明のSAM形成用化合物を用いることにより、SAMの膜安定性が改善され、SAM形成処理を施した基板に有機半導体層を再現性よく作製することができる。それにより、安定した特性を有する有機半導体素子を得ることが可能となる。 FIG. 3 shows that when PhAPrTS and DPhAPrTS are used, the change with time of the contact angle is smaller than when APrTS or DTS is used. That is, the film stability of SAM is high. In addition, when APrTS is used, the reported contact angle variation is large. Thus, by using the SAM forming compound of the present invention, the film stability of the SAM is improved, and the organic semiconductor layer can be produced on the substrate subjected to the SAM forming process with good reproducibility. Thereby, it is possible to obtain an organic semiconductor element having stable characteristics.
 [有機FETの特性]
 本発明のSAM形成用化合物を用いて半導体素子を作製し、そのFET特性を評価するための実験を行った結果について、以下に説明する。有機半導体材料としては、真空蒸着法により成膜した場合に高いFET特性を示すアルキル置換ジナフトチエノチオフェン(DNTT)(μ=8cm/Vs)を用いた。有機半導体層は、上述のようにしてSAMが形成された基板上に、塗布法により成膜した。
[Characteristics of organic FET]
A result of conducting an experiment for producing a semiconductor element using the SAM-forming compound of the present invention and evaluating its FET characteristics will be described below. As the organic semiconductor material, alkyl-substituted dinaphthothienothiophene (DNTT) (μ = 8 cm 2 / Vs), which exhibits high FET characteristics when formed by vacuum deposition, was used. The organic semiconductor layer was formed by a coating method on the substrate on which the SAM was formed as described above.
 塗布法としては、本発明者らが開発した塗布膜の作製法である「ギャップキャスト法」を用いた。ギャップキャスト法について、図4A、図4Bを参照して説明する。図4Aは斜視図、図4Bは断面図である。 As the coating method, a “gap cast method”, which is a method for producing a coating film developed by the present inventors, was used. The gap casting method will be described with reference to FIGS. 4A and 4B. 4A is a perspective view, and FIG. 4B is a cross-sectional view.
 この方法では、SAM2が形成された基板1に対して傾斜させて、平面接触部材10を配置する。すなわち、平面接触部材10の一方の端部は支持部材11上に載置され、平面接触部材10の下面である接触面10aと基板1の表面の間には、くさび状の間隙が形成される。この状態で、加熱したジクロロベンゼンなどの芳香族系溶媒に化合物を溶解させ、その原料溶液を接触面10aに接触するように供給する。これにより、接触面10aと基板1の表面の間隙中に、原料溶液をキャピラリーフォースによって展開させる。形成された原料溶液の液滴12は、接触面10aにより保持されて、一定の力が作用する状態になる。 In this method, the planar contact member 10 is disposed so as to be inclined with respect to the substrate 1 on which the SAM 2 is formed. That is, one end of the planar contact member 10 is placed on the support member 11, and a wedge-shaped gap is formed between the contact surface 10 a that is the lower surface of the planar contact member 10 and the surface of the substrate 1. . In this state, the compound is dissolved in a heated aromatic solvent such as dichlorobenzene, and the raw material solution is supplied so as to come into contact with the contact surface 10a. As a result, the raw material solution is developed by capillary force in the gap between the contact surface 10a and the surface of the substrate 1. The formed droplets 12 of the raw material solution are held by the contact surface 10a so that a certain force is applied.
 接触面10aにより液滴12が保持された状態で乾燥プロセス(基板を約120℃に保持)を行って、液滴12中の溶媒を蒸発させる。それにより、液滴12中では、接触面10aの傾斜方向(矢印Aの方向)における接触面10aの開放側の端縁部分で順次、溶媒の蒸発により原料溶液が飽和状態になり、有機半導体材料の結晶が析出し始める。溶媒の蒸発に伴い液滴12の開放側の端縁は、一点鎖線12a、12bで示すように移動し、有機半導体材料の結晶化が進展して、図4Bに示すように有機半導体層3が成長する。 A drying process (holding the substrate at about 120 ° C.) is performed in a state where the droplets 12 are held by the contact surface 10a, and the solvent in the droplets 12 is evaporated. Thereby, in the liquid droplet 12, the raw material solution is saturated by evaporation of the solvent sequentially at the edge portion on the open side of the contact surface 10a in the inclination direction (direction of arrow A) of the contact surface 10a, and the organic semiconductor material Begins to precipitate. As the solvent evaporates, the edge on the open side of the droplet 12 moves as indicated by alternate long and short dash lines 12a and 12b, and the crystallization of the organic semiconductor material progresses. As shown in FIG. grow up.
 この乾燥プロセスにおいては、原料溶液の液滴12の乾燥方向が一定になるため、液滴12と接触面10aとの接触を介して、結晶成長方向を規定する作用が働く。これにより、結晶性の制御効果が得られ、有機半導体層3の分子の配列の規則性が良好になる。 In this drying process, since the drying direction of the droplet 12 of the raw material solution is constant, the action of defining the crystal growth direction works through the contact between the droplet 12 and the contact surface 10a. Thereby, the crystallinity control effect is obtained, and the regularity of the molecular arrangement of the organic semiconductor layer 3 is improved.
 以上のようにして、有機半導体材料の高配向性な結晶性塗布膜を得た。乾燥後、図1に示したように、有機半導体層3上にAuからなるソース電極4、ドレイン電極5を形成して、トップコンタクト型のFETを作製した。 As described above, a highly oriented crystalline coating film of an organic semiconductor material was obtained. After drying, as shown in FIG. 1, a source electrode 4 and a drain electrode 5 made of Au were formed on the organic semiconductor layer 3 to produce a top contact type FET.
 有機半導体層3を形成するための有機半導体材料としては、例えば、ルブレン、DNTT(dinaphtho[2,3-b:2',3'-f]thieno [3,2-b]thiophene)、アルキル-DNTT、TIPSペンタセン(6,13-Bis(triisopropylsilylethynyl)pentacene)、PDIF-CN等の低分子材料、pBTTT(poly[2,5-bis(3-alkylthiophen-2-yl)thieno(3,2-b)thiophene])、pDA2T(poly(dialkylthieno[3,2-b]thiophene-co-bithiophene))、P3HT(poly(3-hexylthiophene))、PQT(poly[5,5'-bis(3-alkyl-2-thienyl)-2,2'-bithiophene])等の高分子材料、グラフェン、多層グラフェン、CNT(カーボンナノチューブ)等の各種有機材料等、任意の有機半導体材料を用いることができる。 Examples of the organic semiconductor material for forming the organic semiconductor layer 3 include rubrene, DNTT (dinaphtho [2,3-b: 2 ′, 3′-f] thieno [3,2-b] thiophene), alkyl- Low molecular weight materials such as DNTT, TIPS pentacene (6,13-Bis (triisopropylsilylethynyl) pentacene), PDIF-CN 2 , pBTTT (poly [2,5-bis (3-alkylthiophen-2-yl) thieno (3,2- b) thiophene]), pDA2T (poly (dialkylthieno [3,2-b] thiophene-co-bithiophene)), P3HT (poly (3-hexylthiophene)), PQT (poly [5,5'-bis (3-alkyl -2-thienyl) -2,2′-bithiophene]), and various organic materials such as graphene, multilayer graphene, and CNT (carbon nanotube) can be used.
 また、有機半導体層の作製には、上述のギャップキャスト法に限らず、他の各種のキャスト手法等の塗布手法、単結晶を気相中で作製する方法、蒸着等の気相成長手法、スピンコート、インクジェット、印刷等を用いることができる。そのような方法を用いた場合でも、本発明のSAM形成用化合物を用いることによる効果は、相応に十分に得ることが可能である。 In addition, the organic semiconductor layer is not limited to the gap casting method described above, but may be applied by other various casting methods, coating methods, a method of producing a single crystal in the vapor phase, vapor deposition methods such as vapor deposition, spin Coat, ink jet, printing or the like can be used. Even when such a method is used, the effect obtained by using the SAM-forming compound of the present invention can be sufficiently obtained.
 上述のように作製し動作させた有機TFTの、飽和領域における伝達特性を、図5Aに示す。図5Aにおいて、横軸はゲート電圧V(V)、左側の縦軸はドレイン電流-I(A)、右側の縦軸はドレイン電流の絶対値の平方根|I1/2(10-3A)である。曲線B1はドレイン電流、曲線B2はドレイン電流の絶対値の平方根を示す。図5Aによれば、DTS処理した基板を用いたものと比較して、飽和領域において同程度の移動度(μ=6~8cm/Vs)を有することが判る。図5Bは、作製された有機TFTの出力特性を示す。ゲート電圧V=-20、-40、-60、-80、-100Vの各々の場合が示される。 FIG. 5A shows the transfer characteristics in the saturation region of the organic TFT fabricated and operated as described above. In FIG. 5A, the horizontal axis is the gate voltage V G (V), the left vertical axis is the drain current −I D (A), and the right vertical axis is the square root of the absolute value of the drain current | I D | 1/2 (10 -3 A). Curve B1 shows the drain current, and curve B2 shows the square root of the absolute value of the drain current. According to FIG. 5A, it can be seen that it has the same mobility (μ = 6 to 8 cm 2 / Vs) in the saturation region as compared with the substrate using the DTS-treated substrate. FIG. 5B shows the output characteristics of the fabricated organic TFT. Each case of the gate voltage V G = −20, −40, −60, −80, −100V is shown.
 次に、本発明のSAM形成用化合物を用いて処理を施した基板上に有機半導体層を形成することにより、有機TFTの閾値電圧(Vth)を制御する効果について、図6を参照して説明する。図6は、有機FETの伝達特性を示す図であり、横軸はゲート電圧V(V)、縦軸はドレイン電流-I(μA)を示す。 Next, the effect of controlling the threshold voltage (V th ) of the organic TFT by forming an organic semiconductor layer on the substrate treated with the SAM-forming compound of the present invention will be described with reference to FIG. explain. FIG. 6 is a diagram showing the transfer characteristics of the organic FET. The horizontal axis represents the gate voltage V G (V), and the vertical axis represents the drain current −I D (μA).
 曲線C1は、本発明の化合物を用いて形成したSAMを介して有機半導体層が形成された場合、曲線C2は、SAM非形成の基板上に有機半導体層が形成された場合の、有機TFTの閾値電圧特性を示す。SAMが形成された場合(C1)、閾値電圧は約15V負側にシフトした値(Vth=-5V)を示している。すなわち、SAM非形成の場合(C2)と比べると、ゼロにより近いゲート電圧で電流が流れ始め、電流量がより大きくなるという望ましいトランジスタ特性になっている。このように、本発明のSAM形成用化合物を用いることにより、有機TFTの閾値電圧を十分に制御することが可能である。 Curve C1 shows the organic TFT when the organic semiconductor layer is formed through the SAM formed using the compound of the present invention, and curve C2 shows the organic TFT when the organic semiconductor layer is formed on the non-SAM substrate. The threshold voltage characteristic is shown. When the SAM is formed (C1), the threshold voltage is a value shifted to the negative side by about 15V (V th = −5V). That is, as compared with the case where the SAM is not formed (C2), a desirable transistor characteristic is that current starts to flow at a gate voltage closer to zero and the amount of current becomes larger. Thus, the threshold voltage of the organic TFT can be sufficiently controlled by using the SAM-forming compound of the present invention.
 本発明の自己組織化単分子膜形成用の化合物は、有機半導体層を形成する基板の表面に良好なぬれ性を経時的に安定して与えることができ、有機半導体素子の製造に有用である。 The compound for forming a self-assembled monolayer of the present invention can stably give good wettability over time to the surface of the substrate on which the organic semiconductor layer is formed, and is useful for the production of organic semiconductor elements. .
1 基板
1a 不純物ドープシリコン層
1b シリコン絶縁層
2 自己組織化単分子膜(SAM)
3 有機半導体層
4 ソース電極
5 ドレイン電極
6 シリコン基板
7 SAM形成用化合物
8 テフロン容器
9 電気炉
10 平面接触部材
10a 接触面
11 支持部材
12 液滴
DESCRIPTION OF SYMBOLS 1 Substrate 1a Impurity doped silicon layer 1b Silicon insulating layer 2 Self-assembled monolayer (SAM)
3 Organic Semiconductor Layer 4 Source Electrode 5 Drain Electrode 6 Silicon Substrate 7 SAM Forming Compound 8 Teflon Container 9 Electric Furnace 10 Flat Contact Member 10a Contact Surface 11 Support Member 12 Droplet

Claims (3)

  1.  有機半導体層を形成する溶液に対する良好なぬれ性を基板表面に与える自己組織化単分子膜を形成するための化合物であって、下記の化学式(1)で表される構造を有する自己組織化単分子膜形成用の化合物。
     ただし、化学式(1)中、n=1または8、R=CHまたはCであって、RとRは、下記(A)~(C)により示されるいずれかである。
     (A)R=H、かつR=CH,C,C13またはアリール基の組合せ。
     (B)R=R=C,C13またはアリール基。
     (C)R=CH,C,C13またはアリール基、かつR=CH,C,C13またはアリール基の組合せ(但し、R≠R)。
    Figure JPOXMLDOC01-appb-C000001
    A compound for forming a self-assembled monomolecular film that imparts good wettability to a solution for forming an organic semiconductor layer to a substrate surface, and having a structure represented by the following chemical formula (1) Compound for molecular film formation.
    However, in chemical formula (1), n = 1 or 8, R 1 = CH 3 or C 2 H 5 , and R 2 and R 3 are any one of the following (A) to (C) .
    (A) A combination of R 2 = H and R 3 = CH 3 , C 2 H 5 , C 6 H 13 or an aryl group.
    (B) R 2 = R 3 = C 2 H 5 , C 6 H 13 or an aryl group.
    (C) A combination of R 2 = CH 3 , C 2 H 5 , C 6 H 13 or an aryl group, and R 3 = CH 3 , C 2 H 5 , C 6 H 13 or an aryl group (provided that R 2 ≠ R 3 ).
    Figure JPOXMLDOC01-appb-C000001
  2.  下記化学式(1-1)~(1-4)のいずれかで表される請求項1に記載の自己組織化単分子膜形成用の化合物。
    Figure JPOXMLDOC01-appb-C000002
    The compound for forming a self-assembled monolayer according to claim 1, represented by any one of the following chemical formulas (1-1) to (1-4):
    Figure JPOXMLDOC01-appb-C000002
  3.  基板上に自己組織化単分子膜を介して形成された有機半導体層を備えた有機半導体素子であって、
     前記自己組織化単分子膜が、請求項1または2に記載の自己組織化単分子膜形成用の化合物の分子により形成されていることを特徴とする有機半導体素子。
    An organic semiconductor element comprising an organic semiconductor layer formed on a substrate via a self-assembled monolayer,
    An organic semiconductor element, wherein the self-assembled monolayer is formed of molecules of a compound for forming a self-assembled monolayer according to claim 1 or 2.
PCT/JP2012/068972 2011-08-15 2012-07-26 Compound for forming self-assembled mono-molecular film, and organic semiconductor element containing same. WO2013024678A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-177539 2011-08-15
JP2011177539A JP2013040124A (en) 2011-08-15 2011-08-15 Compound for forming self-assembled mono-molecular film and organic semiconductor element using the same

Publications (1)

Publication Number Publication Date
WO2013024678A1 true WO2013024678A1 (en) 2013-02-21

Family

ID=47715002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068972 WO2013024678A1 (en) 2011-08-15 2012-07-26 Compound for forming self-assembled mono-molecular film, and organic semiconductor element containing same.

Country Status (3)

Country Link
JP (1) JP2013040124A (en)
TW (1) TW201313731A (en)
WO (1) WO2013024678A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141838A1 (en) * 2013-03-15 2014-09-18 富士フイルム株式会社 Process for forming organic semiconductor film

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133157A1 (en) 2013-02-28 2014-09-04 株式会社フジクラ Optical fiber connection tool and method for producing optical fiber
WO2015012107A1 (en) 2013-07-23 2015-01-29 トッパン・フォームズ株式会社 Transistor
US10600964B2 (en) * 2013-12-17 2020-03-24 Rohm And Haas Electronic Materials Llc Highly crystalline electrically conducting organic materials, methods of manufacture thereof and articles comprising the same
JP6331597B2 (en) * 2014-04-02 2018-05-30 株式会社デンソー Inspection method of organic solvent
CN108558933B (en) * 2018-03-10 2019-06-18 苏州和颂生化科技有限公司 One kind has the exploitation and application of the aromatic amine material of charge storage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348442A (en) * 2000-12-28 2002-12-04 Hitachi Chem Co Ltd Sealing epoxy resin molding material and semiconductor device
JP2008042043A (en) * 2006-08-09 2008-02-21 Hitachi Ltd Display device
JP2010108818A (en) * 2008-10-31 2010-05-13 Konica Minolta Opto Inc Organic electroluminescent surface light emitter, display device using the same, and illuminating device
JP2010205848A (en) * 2009-03-02 2010-09-16 Osaka Univ Method for manufacturing flat conductive film, method for manufacturing semiconductor device, and semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348442A (en) * 2000-12-28 2002-12-04 Hitachi Chem Co Ltd Sealing epoxy resin molding material and semiconductor device
JP2008042043A (en) * 2006-08-09 2008-02-21 Hitachi Ltd Display device
JP2010108818A (en) * 2008-10-31 2010-05-13 Konica Minolta Opto Inc Organic electroluminescent surface light emitter, display device using the same, and illuminating device
JP2010205848A (en) * 2009-03-02 2010-09-16 Osaka Univ Method for manufacturing flat conductive film, method for manufacturing semiconductor device, and semiconductor device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DE MORAES, S. ET AL.: "Silica-titania sol-gel hybrid materials: synthesis, characterization and potential application in solid phase extraction", TALANTA, vol. 59, no. 5, 2003, pages 1039 - 1044 *
OKAMOTO ET AL.: "Mattan Amino-ki o Yusuru Shinki na Jiko Soshikika Tanbunshi Maku ni yoru Koseino Tofugata Yuki Transistor", DAI 72 KAI EXTENDED ABSTRACTS; THE JAPAN SOCIETY OF APPLIED PHYSICS, 16 August 2011 (2011-08-16) *
YOSHINO,T. ET AL.: "Effect of phosphorus atom in self-assembled monolayer as a drift barrier for advanced copper interconnects", APPLIED PHYSICS EXPRESS, vol. 1, no. 6, 2008, pages 065003/1 - 065003/3 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141838A1 (en) * 2013-03-15 2014-09-18 富士フイルム株式会社 Process for forming organic semiconductor film
JP2014179568A (en) * 2013-03-15 2014-09-25 Fujifilm Corp Method of forming organic semiconductor film
CN105144357A (en) * 2013-03-15 2015-12-09 富士胶片株式会社 Process for forming organic semiconductor film
EP2975636A4 (en) * 2013-03-15 2016-03-30 Fujifilm Corp Process for forming organic semiconductor film
US9472760B2 (en) 2013-03-15 2016-10-18 Fujifilm Corporation Process for forming organic semiconductor film

Also Published As

Publication number Publication date
JP2013040124A (en) 2013-02-28
TW201313731A (en) 2013-04-01

Similar Documents

Publication Publication Date Title
WO2013024678A1 (en) Compound for forming self-assembled mono-molecular film, and organic semiconductor element containing same.
TWI462359B (en) Field effect transistor
JP5562652B2 (en) Silylethynylated heteroacenes and electronic devices made therewith
CN101442105B (en) Organic field effect transistor and special source/drain electrode and preparation method thereof
JP5470763B2 (en) Carbon nanotube dispersion solution, organic semiconductor composite solution, organic semiconductor thin film, and organic field effect transistor
WO2011004869A1 (en) Substituted benzochalcogenoacene compound, thin film comprising the compound, and organic semiconductor device including the thin film
US9701698B2 (en) Self-assembled monolayers of phosphonic acids as dielectric surfaces for high-performance organic thin film transistors
WO2014061745A1 (en) Novel condensed polycyclic aromatic compound and use thereof
KR102079292B1 (en) Electronic device
Cheng et al. Novel self-assembled phosphonic acids monolayers applied in N-channel perylene diimide (PDI) organic field effect transistors
JP2010053094A (en) Bis-naphthothiophene derivative and electric field effect transistor
KR20140043649A (en) Method of manufacturing organic semiconductor film
KR101928284B1 (en) Organic compound, organic semiconductor material, organic thin-film and method for producing same, organic semiconductor composition, and organic semiconductor device
JP2015199716A (en) Polycyclic fused ring compound, organic semiconductor material, organic semiconductor device, and organic transistor
KR101190917B1 (en) Chalcogenide-CNT Hybrid Thin Film and Method for Preparing the Same
JP5655301B2 (en) Organic semiconductor materials
JP7399499B2 (en) Organic semiconductor device, method for manufacturing an organic semiconductor single crystal film, and method for manufacturing an organic semiconductor device
US20150236269A1 (en) Organic semiconductor solution and organic semiconductor film
Li et al. Application of phosphonic acid self-assembled monolayer in organic field-effect transistors
JP5035587B2 (en) Organic semiconductor device
US20100224869A1 (en) Organic semiconductor material, organic semiconductor structure and organic semiconductor apparatus
US9123899B2 (en) Semiconductor compound
JP7296068B2 (en) Chalcogen-containing organic compound, organic semiconductor material, organic semiconductor film, and organic field effect transistor
JP6143257B2 (en) Organic semiconductor material and organic semiconductor device using the same
JP7317301B2 (en) Organic semiconductor compound and its use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12824576

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12824576

Country of ref document: EP

Kind code of ref document: A1