WO2013024509A1 - Object detection device - Google Patents
Object detection device Download PDFInfo
- Publication number
- WO2013024509A1 WO2013024509A1 PCT/JP2011/004596 JP2011004596W WO2013024509A1 WO 2013024509 A1 WO2013024509 A1 WO 2013024509A1 JP 2011004596 W JP2011004596 W JP 2011004596W WO 2013024509 A1 WO2013024509 A1 WO 2013024509A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- distance sensor
- distance
- data
- unit
- reflected wave
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/87—Combinations of sonar systems
- G01S15/876—Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
- G01S15/878—Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector wherein transceivers are operated, either sequentially or simultaneously, both in bi-static and in mono-static mode, e.g. cross-echo mode
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/93—Sonar systems specially adapted for specific applications for anti-collision purposes
- G01S15/931—Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/003—Bistatic sonar systems; Multistatic sonar systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/93—Sonar systems specially adapted for specific applications for anti-collision purposes
- G01S15/931—Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2015/937—Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details
- G01S2015/938—Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details in the bumper area
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/161—Decentralised systems, e.g. inter-vehicle communication
- G08G1/163—Decentralised systems, e.g. inter-vehicle communication involving continuous checking
Definitions
- the present invention relates to an object detection device that detects an object using a distance sensor.
- the conventional object detection device disclosed in Patent Document 1 is a distance sensor that transmits a reflected wave that is reflected by an obstacle outside the vehicle and is transmitted from a plurality of distance sensors provided in the vehicle. The presence and shape of the obstacle are determined by direct detection.
- the reflected wave does not return in the direction of the distance sensor that is the transmission source of the ultrasonic signal, and thus there is a problem that the reflected wave cannot be directly detected by the distance sensor. there were.
- the present invention has been made to solve the above-described problems, and can improve the detection accuracy of obstacles without causing an increase in distance sensors. Furthermore, various shapes of detected obstacles can be obtained. It is an object to obtain an object detection device capable of detecting
- the object detection device directly receives a reflected wave from an object of a predetermined signal transmitted individually by each distance sensor in the distance sensor group by the same distance sensor that transmitted the predetermined signal.
- a direct wave signal storage unit for storing propagation distance data and reflected wave amplitude data in transmission / reception of a predetermined signal obtained in this manner, and an object of a predetermined signal transmitted individually by each distance sensor in the distance sensor group Propagation distance data and reflected wave amplitude in transmission / reception of a predetermined signal obtained by indirectly receiving the reflected wave of the predetermined signal by any one of the distance sensors other than the distance sensor that transmitted the predetermined signal.
- An indirect wave signal storage unit for storing data, and propagation distance data and amplitude data stored in the direct wave signal storage unit and the indirect wave signal storage unit, respectively.
- the distance sensor data mapping unit and the distance sensor data mapping unit that map the candidate position of the reflection point of the object and the amplitude data of the reflected wave from the candidate position on the detection area of the distance sensor group are generated Based on the three-dimensional mapping data indicating the candidate position of the reflection point and the distribution of the amplitude data of the reflected wave from the candidate position, the detection object determination unit for determining the position and shape of the object, and on the detection area of the distance sensor group
- the display coordinate conversion unit that converts the coordinate system to the display coordinate system of the monitoring range that displays the object at the position and shape determined by the detected object determination unit, and the display coordinate system that is converted by the display coordinate conversion unit.
- the display part which displays.
- the present invention it is possible to improve obstacle detection accuracy without causing an increase in the distance sensor, and it is possible to detect various shapes of the detected obstacle.
- FIG. 1 is a block diagram illustrating a main configuration of an object detection device according to Embodiment 1.
- FIG. It is a figure which shows arrangement
- 3 is a flowchart illustrating an operation of the object detection device according to the first embodiment. It is a figure which shows an example of direct transmission / reception. It is a figure which shows an example of indirect transmission / reception. It is a figure which shows the threshold value determination of amplitude data, and determination of the maximum amplitude value.
- FIG. 1 is a block diagram illustrating a basic configuration example of an object detection device according to Embodiment 1 of the present invention, and illustrates a case where the object detection device is mounted on a vehicle as an example of a moving body.
- FIG. 2 is a diagram showing an example of the arrangement of distance sensor groups.
- the object detection device 1 according to the first embodiment is a device that detects an obstacle existing around a vehicle using distance sensor groups Sg1,..., Sgn, and includes a processing unit. 2, a notification unit 3, a GPS (Global Positioning System) sensor 4, a wheel speed sensor 5, a steering angle sensor 6, and a camera 7.
- GPS Global Positioning System
- Each of the distance sensor groups Sg1,..., Sgn is composed of a plurality of distance sensors arranged along a predetermined direction (such as a horizontal direction or a vertical direction of the vehicle).
- a predetermined direction such as a horizontal direction or a vertical direction of the vehicle.
- the distance sensor is a sensor that transmits a predetermined signal to the outside of the vehicle and receives a reflected wave reflected by an object such as the obstacle 100.
- the predetermined signal include an ultrasonic signal, a laser beam, and a radio wave. In the following description, it is assumed that the distance sensor is an ultrasonic sensor.
- the processing unit 2 is a processing unit that calculates the position and shape of an object existing around the vehicle 8 using detection information of the distance sensor groups Sg1,..., Sgn.
- the functional configuration includes a distance sensor data processing unit 21, a position determination unit 22, a distance sensor data mapping unit 23, a detected object determination unit 24, and a display coordinate conversion unit 25.
- the distance sensor data processing unit 21 controls the timing of transmission / reception of ultrasonic signals by the individual distance sensors in the distance sensor groups Sg1,..., Sgn, and reflects the ultrasonic signals reflected by objects existing around the vehicle 8.
- the reflected distance data and the amplitude data of the reflected wave are detected and stored based on the reflected wave whose amplitude exceeds the threshold.
- the position determination unit 22 determines the movement position of the vehicle 8 (own vehicle) and the positions of the distance sensors of the distance sensor groups Sg1, ..., Sgn based on the GPS information, the wheel speed data, or the steering angle.
- the distance sensor data mapping unit 23 based on the propagation distance data obtained by the distance sensor data processing unit 21 and the amplitude data of the reflected wave, the candidate position of the reflection point of the object reflecting the ultrasonic signal (transmission signal), and this The amplitude data of the reflected wave (received signal) from the candidate position is mapped onto the detection area of the distance sensor group.
- the detected object determination unit 24 determines the position and shape of the object based on the candidate position of the reflection point and the three-dimensional mapping data indicating the distribution of the amplitude data of the reflected wave from the candidate position.
- the display coordinate conversion unit 25 displays a display coordinate system (display) in an arbitrary monitoring range in which an object is set in advance at the position and shape determined by the detection object determination unit 24 from the two-dimensional coordinate system on the detection area of the distance sensor group. (Display coordinate system on the screen of the unit 31).
- the notification unit 3 detects an object existing around the vehicle 8 such as the obstacle 100 and notifies the degree of danger according to the distance of the object from the vehicle 8.
- the notification method includes a visual method using the display unit 31 and an auditory method using the audio output unit 32.
- the sound output unit 32 may emit a warning such as a buzzer.
- the display unit 31 displays the position and shape of the object in the monitoring range in the display coordinate system converted from the two-dimensional coordinate system on the detection area by the display coordinate conversion unit 25. Further, the display unit 31 may perform a display indicating the degree of danger when an object approaches within a predetermined distance from the vehicle 8. For example, when an object approaches within a predetermined distance from the vehicle 8, the object is highlighted and distinguished from that.
- the highlighting only needs to represent the degree of danger due to the approach of the object, and may include displaying the object image itself or its outline in a different color (red or other color representing the danger or emission color). Moreover, you may display by the telop and icon which are not shown in figure.
- the sound output unit 32 notifies, for example, that an object has approached within a predetermined distance from the vehicle 8 and the distance thereof by sound. Further, an alarm such as a buzzer may be output by changing the volume and frequency stepwise according to the distance to the vehicle 8.
- the GPS sensor 4 receives GPS radio waves from GPS satellites and specifies the position of the vehicle 8.
- the wheel speed sensor 5 includes a wheel speed sensor L and a wheel speed sensor R provided on the left and right rear wheels of the vehicle 8, respectively, and detects the rotational speed of each wheel (hereinafter referred to as the wheel speed).
- the steering angle sensor 6 is a sensor that detects a steering operation angle (hereinafter referred to as a steering angle) by a driver of the vehicle 8.
- the camera 7 is a photographing unit that photographs the situation around the vehicle 8, and includes a front camera provided in front of the vehicle 8, a rear camera provided in the rear part, and the like. In addition, the camera 7 captures the surrounding situation of the vehicle 8 using the detection area of the distance sensor group as an imaging target.
- the display unit 31 superimposes and displays an object image at the position and shape determined by the detected object determination unit 24 on an object such as the obstacle 100 reflected in the image of the detection area captured by the camera 7.
- FIG. 3 is a block diagram illustrating a main configuration of the object detection apparatus according to the first embodiment.
- the distance sensor data processing unit 21 is connected to the distance sensors S1 to S4 constituting the distance sensor group Sgn, and controls the timing of transmission / reception of ultrasonic signals by the distance sensors S1 to S4. Stores propagation distance data and amplitude data of reflected waves (reception signals) in transmission / reception of sound wave signals.
- a transmission unit 211a, a reception unit 211b, a full wave rectification unit 212, a threshold value determination unit 213, a maximum value determination unit 214, a direct wave signal storage unit 215, and an indirect wave signal storage unit 216 are provided.
- the transmitter 211a is a component that controls transmission of ultrasonic signals by the distance sensors S1 to S4.
- the transmission unit 211a transmits ultrasonic pulse signals to the distance sensors S1 to S4 at a predetermined transmission timing, and the distance sensors S1 to S4 transmit ultrasonic signals according to the pulse signals.
- the reception unit 211b controls the reception timing by the distance sensors S1 to S4 according to the transmission timing of the transmission unit 211a.
- the receiving unit 211b is connected to the distance sensors S1 to S4 via the changeover switch, and when any of the distance sensors S1 to S4 transmits an ultrasonic signal, the distance sensor S1 to S4 is used using the changeover switch.
- the distance sensor that receives the reflected wave of the ultrasonic signal is switched from among them.
- the case where the same distance sensor that transmits the ultrasonic signal receives the reflected wave of the ultrasonic signal is referred to as “direct transmission / reception”.
- a case where a distance sensor other than the distance sensor that transmits the ultrasonic signal among the distance sensors of the distance sensor group receives the reflected wave of the ultrasonic signal is referred to as “indirect transmission / reception”.
- the reception unit 211b performs indirect transmission / reception by switching a distance sensor that receives a reflected wave from among the distance sensors in the distance sensor group.
- the full-wave rectification unit 212 performs full-wave rectification on the reflected wave amplitude data received by the distance sensors S1 to S4 under the control of the reception unit 211b, that is, converts the data to a positive value when the input signal is a negative value. It is a functional part to do.
- the threshold value determination unit 213 transmits amplitude data exceeding the threshold value set according to the propagation distance from when the ultrasonic wave signal is transmitted to when the reflected wave is received from the reflected waves received by the distance sensors S1 to S4.
- the reflected wave signal is determined and extracted.
- the maximum value determination unit 214 determines, for the reflected wave signal extracted by the threshold determination unit 213, a propagation distance from when an ultrasonic signal is transmitted until the reflected wave is received and a maximum amplitude value in a preset time zone. And extract.
- the direct wave signal storage unit 215 uses the same distance sensor that transmitted the ultrasonic wave to the reflected wave reflected by the object of the ultrasonic signal that is individually transmitted by each of the distance sensors S1 to S4 in the distance sensor group Sgn. Propagation distance data and reflected wave amplitude data in transmission / reception of ultrasonic signals obtained by direct reception are stored.
- the indirect wave signal storage unit 216 transmits the reflected wave reflected by the object from the ultrasonic signals individually transmitted by the individual distance sensors S1 to S4 in the distance sensor group Sgn and the ultrasonic signals in the distance sensor group Sgn.
- the propagation distance data and the amplitude data of the reflected wave in the transmission / reception of the ultrasonic signal obtained by receiving indirectly by any one distance sensor other than the distance sensor are stored.
- the distance sensor data mapping unit 23 based on the data stored in the direct wave signal storage unit 215 and the indirect wave signal storage unit 216, reflects the candidate position of the reflection point in the object to be detected and the amplitude of the reflected wave from this candidate position. Data is mapped onto the detection area of the distance sensor group Sgn.
- a first reflection point candidate position generation unit 231, a second reflection point candidate position generation unit 232, and an addition amplitude value calculation unit 233 are provided.
- the first reflection point candidate position generation unit 231 determines the distance from the distance sensor to the object centered on the position of the distance sensor. Assuming that a reflection point exists on the circumference of a circle having a radius as a distance, a three-dimensional mapping is made by mapping the candidate position of the reflection point and the amplitude data of the reflected wave from the candidate position on the detection area of the distance sensor group Sgn. Generate data.
- the second reflection point candidate position generation unit 232 based on the propagation distance data stored in the indirect wave signal storage unit 216 and the amplitude data of the reflected wave, the position of the distance sensor that transmitted the ultrasonic signal and the ultrasonic signal Assuming that the reflection point exists on the circumference of an ellipse with the position of the distance sensor that received the reflected wave as two fixed points, the reflection point candidate position and the reflection from the candidate position on the detection area of the distance sensor group Sgn Three-dimensional mapping data obtained by mapping wave amplitude data is generated.
- the addition amplitude value calculation unit 233 combines the three-dimensional mapping data generated by the first reflection point candidate position generation unit 231 and the second reflection point candidate position generation unit 232, respectively.
- the detected object determination unit 24 is a determination unit that determines the position and shape of an object based on the three-dimensional mapping data calculated by the addition amplitude value calculation unit 233, and includes an identification unit 241 and a position / shape determination unit 242.
- the identification unit 241 corrects the amplitude data of the reflected wave in the three-dimensional mapping data according to the propagation distance from when the ultrasonic signal is transmitted until the reflected wave is received, and the reflection point is calculated from the three-dimensional mapping data. Identify the distribution of candidate positions.
- the position / shape determining unit 242 distributes the candidate positions of the reflection points obtained based on the degree of concentration of the candidate positions of the reflection points in the distribution identified by the identification unit 241 and the data stored in the direct wave signal storage unit 215. And at least one of the ratio of the distribution of candidate positions of reflection points obtained based on the data stored in the indirect wave signal storage unit 216 and the degree of change in the distance data from the distance sensor to the object The position and shape of the object are determined.
- FIG. 4 is a diagram showing the arrangement of distance sensors and their effective detection areas.
- the conventional object detection device distance data to an object is detected based on a signal obtained by so-called direct transmission / reception in which the same distance sensor that has transmitted an ultrasonic signal generally receives the reflected wave signal.
- the same distance sensor that has transmitted an ultrasonic signal generally receives the reflected wave signal.
- the area A1a where the detection areas of the distance sensors S1 to S3 overlap includes an area where the detection areas of the distance sensor S3 do not overlap. In this region, direct transmission / reception is disabled by the distance sensor S3.
- the area A2a where the detection areas of the distance sensors S1 to S3 overlap includes an area where the detection areas of the distance sensor S1 do not overlap. In this area, the distance sensor S1 cannot directly transmit and receive.
- the detection areas of the distance sensors S1 to S3 overlap are similarly overlapped, and any of the distance sensors S1 to S3 can directly transmit and receive. Therefore, when detecting by direct transmission / reception, the area Aa including the area A3a becomes an effective detection area.
- the object detection device 1 performs so-called indirect transmission / reception in which a distance sensor other than the distance sensor that transmits the ultrasonic signal receives the reflected wave in addition to direct transmission / reception. Based on the obtained signal, distance data to the object is detected.
- the arrangement interval of the distance sensors S1 to S3 can be increased as shown in FIG. Thereby, the increase in the number of sensors can be suppressed compared with the case of only direct transmission / reception.
- the distance sensors S1 and S2 can directly transmit and receive, and the distance sensors S1 and S2 can also indirectly transmit and receive.
- the distance sensors S1 and S2 can also indirectly transmit and receive.
- the detection areas of the distance sensors S2 and S3 overlap, direct transmission / reception is possible with the distance sensors S2 and S3, and indirect transmission / reception with the distance sensors S2 and S3 is also possible.
- the detection area of distance sensor S2 does not overlap with the detection areas of distance sensors S1 and S3, and only direct transmission / reception by distance sensor S2 is possible.
- FIG. 5 is a flowchart showing the operation of the object detection device according to the first embodiment, and the processing from when an ultrasonic signal (transmission signal) is transmitted until the obstacle 100 detected around the vehicle 8 is displayed. Is shown.
- the transmitting unit 211a transmits ultrasonic pulse signals to the distance sensors S1 to S4 at a predetermined transmission timing, so that the distance sensors S1 to S4 transmit ultrasonic signals according to the pulse signals (step ST1). ).
- FIG. 6 is a diagram illustrating an example of direct transmission / reception.
- the receiving unit 211b directly transmits / receives the default setting of the changeover switch. That is, when the distance sensor that transmitted the ultrasonic signal is the distance sensor S1, the connection between the receiving unit 211b and the distance sensor S1 in the change-over switch is turned on, and the connections of the other distance sensors S2, S3,. ing.
- the distance sensor S1 is selected from the reflected waves of the ultrasonic signal transmitted from the distance sensor S1.
- the reflected wave signal received at is input to the receiver 211b.
- the propagation distance thereof La is obtained by the following formula. That is, the reception unit 211b calculates the propagation distance from the transmission time of the ultrasonic signal and the reception time of the reflected wave.
- FIG. 7 is a diagram illustrating an example of indirect transmission / reception.
- the reception unit 211b turns off the connection with the distance sensor S1 and turns on the connection with the distance sensor S2 using the changeover switch.
- the reflected wave reflected by the obstacle 100 from the ultrasonic signal transmitted from the distance sensor S1 is received by the distance sensor S2 and is received by the receiver 211b. Entered.
- the obstacle 100 as shown in FIG. 7A the obstacle 100 as shown in FIG.
- the receiving unit 211b turns off the connection with the distance sensor S1 using the changeover switch.
- the connection with the distance sensor S3 is turned on.
- the reflected wave of the ultrasonic signal transmitted from the distance sensor S1 is received by the distance sensor S3 and input to the receiving unit 211b.
- the distance sensor S1 transmits an ultrasonic signal at time T3 and the distance sensor S2 other than the distance sensor S1 that transmitted the ultrasonic signal indirectly receives the reflected wave at time T4, the ultrasonic wave is transmitted.
- the propagation distance in signal transmission / reception that is, the propagation distance Lb from when an ultrasonic signal is transmitted to when the reflected wave is received is obtained by the following equation as in the case of direct transmission / reception.
- Lb (T4-T3) ⁇ V
- the full wave rectification unit 212 receives amplitude data of reflected waves (hereinafter referred to as direct waves) obtained by direct transmission / reception and amplitude data of reflected waves (hereinafter referred to as indirect waves) obtained by indirect transmission / reception. Each amplitude data is input from 211b, and these amplitude data are full-wave rectified. That is, the receiving unit 211b detects an ultrasonic reflected wave signal of 40 to 60 kHz from the received signal, and the full-wave rectifying unit 212 performs full-wave rectification on the reflected wave signal to convert it into a pulse signal.
- the threshold determination unit 213 compares the amplitude data of the reflected wave signal subjected to full-wave rectification with a preset threshold, and determines and extracts a reflected wave signal having an amplitude value exceeding the threshold (step ST4). ).
- the threshold value determination unit 213 has a threshold value (propagation distance is inversely proportional to the propagation distance as shown in FIG. 8A).
- the amplitude value is determined using a threshold value that becomes smaller as the length increases. This takes into account that the amplitude value of the ultrasonic wave attenuates according to the propagation distance.
- the ultrasonic signal may be indirectly transmitted / received at a longer propagation distance than the direct transmission / reception.
- an appropriate analysis can be performed by determining the amplitude with the threshold corresponding to the propagation distance as described above.
- the threshold is determined in accordance with, for example, a relationship between the propagation distance and the attenuation amount of ultrasonic waves obtained in advance through experiments or the like.
- the maximum value determination unit 214 determines and extracts the propagation distance and the maximum amplitude value in a preset time zone in the transmission / reception of ultrasonic signals for the reflected wave extracted by the threshold determination unit 213 (step ST5).
- the preset time zone is the time zone when the reflected wave is received. That is, this corresponds to a time period from the time of detection (reception) timing of the reflected wave shown in FIG. 8B to the elapse of a predetermined maximum value detection time width ( ⁇ t).
- the threshold value indicated by a broken line in FIG. 8B is the threshold value illustrated in FIG.
- the maximum value detection time width is substantially equal to the transmission time width of the ultrasonic signal.
- the maximum value determination unit 214 determines and extracts the maximum amplitude value of the reflected wave in the time zone ( ⁇ t) as shown in FIG.
- the propagation distance data and the maximum amplitude value (amplitude data) extracted from the data obtained by the direct transmission / reception by the maximum value determination unit 214 are stored in the direct wave signal storage unit 215. Further, the propagation distance data and the maximum amplitude value extracted from the data obtained by direct transmission / reception are stored in the indirect wave signal storage unit 216. In the three-dimensional mapping described later, since it is necessary and sufficient to use the maximum amplitude value in the reception time zone of the reflected wave, only the maximum amplitude value of the reflected wave is stored. Thereby, the data amount which should be memorize
- the first reflection point candidate position generation unit 231 has a reflection point candidate position and a reflection point candidate position on the detection area of the distance sensor group Sgn.
- Three-dimensional mapping data is generated by mapping the amplitude data of the reflected wave from this candidate position (step ST6-1).
- the first reflection point candidate position generation unit 231 obtains a circle whose center is the position of each of the distance sensors S1 to S3 and whose radius is the distance from the distance sensor to the obstacle 100. .
- the distance from the distance sensor to the obstacle 100 is obtained by 1/2 of the propagation distance La in transmission / reception of ultrasonic signals.
- the candidate position of the reflection point can be calculated.
- the first reflection point candidate position generation unit 231 sets a two-dimensional coordinate system (xy plane) for the detection area of the distance sensor group Sgn, and an intersection of two circles centered on the position of the distance sensor, that is, The candidate position of the reflection point is specified by the distance from the distance sensor to the obstacle 100 and the direction of the obstacle 100 as viewed from the distance sensor. Then, three-dimensional mapping data is generated by mapping the reflection point candidate position and the amplitude data (maximum amplitude value) of the reflected wave (direct wave) from the candidate position on the detection area.
- the second reflection point candidate position generation unit 232 based on the propagation distance data and the amplitude data stored in the indirect wave signal storage unit 216, sets the reflection point candidate position and the reflection point candidate position on the detection area of the distance sensor group Sgn.
- Three-dimensional mapping data is generated by mapping the amplitude data of the reflected wave from the candidate position (step ST6-2).
- the second reflection point candidate position generation unit 232 receives the position of the distance sensor S1 that transmitted the ultrasonic signal and the distance sensor S2 that received the reflected wave of the ultrasonic signal. An ellipse having two fixed points at the position of is obtained.
- the propagation distance in the transmission / reception of the ultrasonic signal is the propagation distance from the distance sensor that transmits the ultrasonic signal with a point on the circumference of the ellipse as the reflection point to the reflection point of the obstacle 100 and the reflection point. This corresponds to the sum of the propagation distance until the reflected wave reflected by the distance sensor is received by the distance sensor.
- the second reflection point candidate position generation unit 232 sets a two-dimensional coordinate system (xy plane) in the detection area of the distance sensor group Sgn, and performs distance measurement.
- the candidate position of the reflection point is specified by the distance from the sensor to the object and the orientation of the object viewed from the distance sensor.
- three-dimensional mapping data is generated by mapping the candidate position of the reflection point and the amplitude data (maximum amplitude value) of the reflected wave (indirect wave) from the candidate position on the xy plane of the detection area.
- the candidate position of the reflection point is specified from the following equation.
- Xa is the distance from the midpoint of the line segment connecting the distance sensor S1 on the transmission side of the ultrasonic signal and the distance sensor S2 on the reception side of the reflected wave to the distance sensor S1
- Xb is This is the distance from the point to the distance sensor S2.
- Y is the vertical distance from the midpoint to the obstacle 100 (the length of the short radius of the ellipse).
- Za is the propagation distance of the ultrasonic signal (transmitted wave) from the distance sensor S1 to the obstacle 100
- Zb is the propagation distance of the ultrasonic signal (received wave) from the obstacle 100 to the distance sensor S2.
- FIGS. 9 to 11 are diagrams showing examples of three-dimensional mapping.
- the first reflection point candidate position generation unit 231 and the second reflection point candidate position generation unit 232 have x set in the detection area of the distance sensor group (distance sensors S1 to S3).
- the candidate position of the reflection point is mapped on the -y plane, and three-dimensional mapping is performed by setting the amplitude data of the reflected wave from this candidate position on the z axis.
- FIG. 9 shows a case where the candidate positions of the reflection points determined based on the detection information of the distance sensors S1 to S3 are concentrated in a circle on the xy plane. That is, from the three-dimensional mapping data in FIG. 9, it is expected that the obstacle 100 is a cylindrical object whose shape on the plane on which the distance sensor group Sgn (distance sensors S1 to S3) is arranged is circular.
- the distance sensor group Sgn distance sensors S1 to S3
- the candidate positions of the reflection points determined based on the detection information of the distance sensors S1 to S3 are linear on the xy plane (a line parallel to the y axis in which the distance sensors S1 to S3 are arranged).
- the case where it is located in a row is shown.
- the obstacle 100 is expected to be a flat plate-like object having a linear shape on the plane on which the distance sensor group Sgn (distance sensors S1 to S3) is disposed.
- the candidate position of the reflection point determined based on the detection information of the distance sensors S1 to S3 is on the y axis where the distance sensors S1 to S3 are arranged on the xy plane of the detection area.
- the obstacle 100 is a flat plate-like object having a linear shape on the plane on which the distance sensor group Sgn (distance sensors S1 to S3) is arranged and inclined with respect to the distance sensors S1 to S3. It is expected that.
- the added amplitude value calculation unit 233 synthesizes the three-dimensional mapping data generated by the first reflection point candidate position generation unit 231 and the second reflection point candidate position generation unit 232, respectively (step ST7).
- the synthesis of the three-dimensional mapping data includes the amplitude data of the direct wave in the three-dimensional mapping data using the result received by direct transmission / reception, and the amplitude data of the indirect wave in the three-dimensional mapping data using the result received by indirect transmission / reception. Is a process of adding. In this way, when the candidate positions of the reflection points are interpolated and the same candidate position is obtained, the amplitude value of the reflected wave from there can be emphasized. Thereby, the reliability of object detection can be improved.
- the addition amplitude value calculation unit 233 adds the amplitude data of the reflected wave of the three-dimensional mapping data generated by the first reflection point candidate position generation unit 231 and the second reflection point candidate position generation unit 232, respectively.
- the candidate position of the reflection point and the reflected wave from this candidate position on a flat object (a flat plate parallel to the arrangement direction of the plurality of distance sensors S) existing on the detection area of the distance sensor S.
- the three-dimensional mapping data indicating the amplitude data is added by the result obtained by direct transmission / reception (upper stage) and the result obtained by indirect transmission / reception (lower stage).
- the candidate position of the reflection point on the flat plate-shaped object (the flat plate inclined with respect to the arrangement direction of the plurality of distance sensors S) existing on the detection area of the distance sensor S and Three-dimensional mapping data indicating the amplitude data of the reflected wave is added with the result obtained by direct transmission / reception (upper stage) and the result obtained by indirect transmission / reception (lower stage).
- the candidate positions of the reflection points are interpolated by adding the three-dimensional mapping data using the results of receiving the reflected wave detected by the same object by direct transmission and reception and indirect transmission and reception, respectively.
- the identification unit 241 identifies the distribution of the candidate positions of the reflection points from the three-dimensional mapping data calculated by the addition amplitude value calculation unit 233 (step ST8).
- the identification unit 241 corrects the amplitude data of the reflected wave in the three-dimensional mapping data according to the propagation distance from when the ultrasonic signal is transmitted until the reflected wave is received. Thereafter, the identification unit 241 identifies the distribution of the candidate positions of the reflection points from the corrected three-dimensional mapping data.
- FIG. 14 is a diagram illustrating the relationship between the propagation distance and the amplitude correction value. As shown in FIG. 14, a correction value that is a large value in proportion to the propagation distance in transmission / reception of an ultrasonic signal is set in the identification unit 241.
- the identification unit 241 When the identification unit 241 receives the three-dimensional mapping data from the addition amplitude value calculation unit 233, the identification unit 241 converts the amplitude data of the reflected wave in the three-dimensional mapping data into a correction value corresponding to the propagation distance. By doing in this way, the attenuation of the amplitude resulting from the propagation distance can be corrected.
- the position / shape determining unit 242 determines the position and shape of the obstacle 100 based on the distribution of the candidate positions of the reflection points identified by the identifying unit 241 (step ST9). That is, the degree of concentration of the candidate positions of the reflection points in the identified distribution, the ratio between the distribution of the candidate positions of the direct wave reflection points and the distribution of the candidate positions of the reflection points of the indirect wave, and the obstacle 100 from the distance sensor.
- the position and shape of the obstacle 100 are determined based on at least one of the degree of change of the distance data up to.
- the position of the obstacle 100 is specified by the distance from the distance sensor to the obstacle 100 and the direction of the obstacle 100 viewed from the distance sensor.
- the shape of the obstacle 100 is specified by the shape and size on the plane where the distance sensor group Sgn is disposed, and whether or not the obstacle 100 is inclined with respect to the direction in which the distance sensor is disposed in the distance sensor group Sgn. .
- FIG. 15 is a diagram illustrating an example of identifying a distribution of candidate positions of reflection points.
- the position / shape determining unit 242 determines the position and shape of the obstacle 100 from the distribution of the position candidates of the reflection points as shown in FIG.
- the distribution shown in FIG. 15A is obtained in a proportion similar to the distribution by the direct wave and the distribution by the indirect wave. In this case, it is expected that the obstacle 100 has a curved surface portion or a flat surface portion wider than the distance between adjacent distance sensors on the outer shape.
- the position candidates of the reflection points are concentrated on a part, so that the obstacle 100 is not on the plane portion but on the plane on which the distance sensor group Sgn is arranged. It is determined that the shape is a circular cylindrical shape (see, for example, FIG. 6).
- the distribution shown in FIG. 15B is only a distribution due to an indirect wave, it is expected that the obstacle 100 has a planar portion narrower than the interval between adjacent distance sensors on the outer shape.
- the reflection point position candidates are concentrated in part, so that the obstacle 100 has a rectangular shape on the plane on which the distance sensor group Sgn is disposed. It is determined that the shape is a prismatic shape (see, for example, FIG. 7).
- the proportion of the distribution by the indirect wave is larger than the distribution by the direct wave so as to exceed a predetermined threshold, it means that the distance sensor group Sgn has few distance sensors that can be directly transmitted and received, and the obstacle 100 A prismatic shape having a narrow flat portion is expected.
- the plurality of distance sensors in the distance sensor group Sgn performs direct transmission and indirect transmission at the same rate.
- the obstacle 100 is expected to have a curved surface portion or a flat surface portion wider than the distance between adjacent distance sensors on the outer shape.
- the position candidates of the reflection points are not concentrated in part, so the obstacle 100 is not a curved surface portion but on a plane on which the distance sensor group Sgn is arranged. Is determined to be a linear flat plate shape (see, for example, FIG. 12).
- the plurality of distance sensors in the distance sensor group Sgn performs direct transmission / reception and indirect transmission / reception at the same rate. Also, the reflection point position candidates are not concentrated in part. Therefore, it is expected that the obstacle 100 has a flat portion wider than the distance between adjacent distance sensors on the outer shape.
- the distance data from the distance sensor to the obstacle 100 is gradually changing with respect to the direction in which the plurality of distance sensors of the distance sensor group Sgn is disposed.
- the obstacle 100 is determined to have a flat plate shape inclined with respect to the distance sensor group Sgn.
- a more specific example of obstacle shape determination will be described below.
- the shape of the obstacle is that of the direct wave and reflected wave shown in FIGS. 15A, 15B, 15C, 15D after the sensors S1, S2, S3 as shown in FIG. It is determined by the ratio between the vertical Ti and horizontal Th of the distribution shape and the detection frequency of the direct wave and the indirect wave.
- the relationship of the aspect ratio of the cylinder is as shown in the following formula (1). Th ⁇ Ti (1)
- Th ⁇ Ti (1)
- the display coordinate conversion unit 25 moves the obstacle 100 from the two-dimensional coordinate system on the detection area of the distance sensor group to the arbitrary monitoring range set in advance with the position and shape determined by the position / shape determination unit 242. Conversion to a display coordinate system to be displayed (display coordinate system on the screen of the display unit 31) is performed (step ST10). Subsequently, the display unit 31 displays the position and shape of the obstacle 100 in the monitoring range in the display coordinate system converted from the two-dimensional coordinate system on the detection area by the display coordinate conversion unit 25 (step ST11).
- the present invention uses detection information of indirect transmission / reception in addition to direct transmission / reception, even if the distance sensor installation interval is widened and the number thereof is reduced, the distance sensor detection information will not be insufficient. Therefore, it is possible to determine the position and shape of the obstacle 100 with a small number of sensors. Moreover, since the detection information in indirect transmission / reception is used, the prismatic obstacle 100 can be detected as described above.
- FIG. 16 is a diagram illustrating a monitor range display process according to the movement of the vehicle.
- a vehicle 8 is equipped with the object detection device 1 according to the first embodiment, and includes distance sensor groups Sg ⁇ b> 1 and Sg ⁇ b> 2 and a camera 7.
- the distance sensor group Sg ⁇ b> 1 is provided in the rear part of the vehicle 8, and the distance sensor group Sg ⁇ b> 2 is provided in the front part of the vehicle 8.
- the camera 7 is provided as a rear camera in the rear part of the vehicle 8 and uses the detection area Ab of the distance sensor group Sg1 as a photographing range.
- the vehicle 8 is also equipped with the GPS sensor 4, the wheel speed sensor 5, and the steering angle sensor 6 shown in FIG.
- the detected object determination unit 24 determines the position and shape of the obstacle 100 existing in the detection area Ab of the distance sensor group Sg1 as described above, and the display unit 31 The obstacle 100 on the detection area Ab is displayed.
- FIG. 16B a case where the driver operates the steering of the vehicle 8 and the vehicle 8 is bent by an angle ⁇ from the state of FIG.
- the position determination unit 22 determines the movement position and distance sensor of the vehicle 8 based on the GPS information acquired by the GPS sensor 4, the wheel speed data acquired by the wheel speed sensor 5, or the steering angle acquired by the steering angle sensor 6.
- the positions of the distance sensors of the groups Sg1 and Sg2 are determined.
- the display coordinate conversion unit 25 displays a monitoring range in which the obstacle 100 is displayed at the position and shape determined by the detected object determination unit 24 based on the movement position of the vehicle 8 and the position of the distance sensor determined by the position determination unit 22.
- the coordinate system is converted into a display coordinate system corresponding to the direction of the distance sensor that changes as the vehicle 8 moves.
- the display coordinates in FIG. 16A are also tilted in accordance with the vehicle tilt angle ⁇ . In other words, the display is performed so that the display range of the detection area Ab is at a position facing the rear portion of the vehicle 8.
- the display coordinate conversion unit 25 considers a change in the direction of the distance sensor accompanying the movement of the vehicle 8 from the movement position of the vehicle 8 and the position of the distance sensor, and the position of the obstacle 100 in the detection area Ab after the movement. Calculate coordinates. As a result, as shown in FIG. 16B, the obstacle 100 is displayed in the display range of the detection area Ab of the distance sensor group whose direction has changed by the amount the vehicle 8 is bent.
- the display unit 31 displays the obstacle 100 in the monitoring range in the display coordinate system converted by the display coordinate conversion unit 25 and also displays video information (rear video) around the vehicle 8 taken by the camera 7. You may do it.
- the reflected wave from the obstacle 100 of the ultrasonic signal individually transmitted by the individual distance sensors S1 to S4 in the distance sensor group Sgn is used as the ultrasonic signal.
- a direct wave signal storage unit 215 for storing propagation distance data and reflected wave amplitude data in transmission / reception of an ultrasonic signal directly received by the same transmitted distance sensor, and individual distances in the distance sensor group Sgn The reflected wave from the obstacle 100 of the ultrasonic signal transmitted independently by each of the sensors S1 to S4 is indirectly received by any one distance sensor other than the distance sensor that transmitted the ultrasonic signal in the distance sensor group Sgn.
- An indirect wave signal storage unit 216 for storing propagation distance data and reflected wave amplitude data in transmission / reception of ultrasonic signals obtained in this manner, and direct wave signal recording Based on the propagation distance data and the amplitude data stored in the unit 215 and the indirect wave signal storage unit 216, the reflection point candidate position and the amplitude data of the reflected wave from the candidate position are placed on the detection area of the distance sensor group Sgn.
- the obstacle 100 Based on the distance sensor data mapping unit 23 to be mapped, and the three-dimensional mapping data indicating the distribution of the reflection point candidate position generated by the distance sensor data mapping unit 23 and the amplitude data of the reflected wave from the candidate position, the obstacle 100 From the detected object determination unit 24 that determines the position and shape of the sensor and the coordinate system on the detection area of the distance sensor group Sgn to the display coordinate system of the monitoring range that displays the object at the position and shape determined by the detected object determination unit 24 A display coordinate conversion unit 25 for conversion and a display coordinate system converted by the display coordinate conversion unit 25 display an object in the monitoring range. And a display unit 31. By comprising in this way, the obstacle of various shapes is detectable, without causing the increase in a distance sensor.
- any component of the embodiment can be modified or any component of the embodiment can be omitted within the scope of the invention.
- the object detection device is suitable for an obstacle detection device that detects an obstacle around the vehicle because it can detect objects of various shapes without increasing the distance sensor.
- 1 object detection device 2 processing unit, 3 notification unit, 4 GPS sensor, 5 wheel speed sensor, 6 steering angle sensor, 7 camera, 8 vehicle, 21 distance sensor data processing unit, 22 position determination unit, 23 distance sensor data mapping Unit, 24 detection object determination unit, 25 display coordinate conversion unit, 31 display unit, 32 audio output unit, 100 obstacle, 211a transmission unit, 211b reception unit, 212 full wave rectification unit, 213 threshold determination unit, 214 maximum value determination , 215 direct wave signal storage unit, 216 indirect wave signal storage unit, 231 first reflection point candidate position generation unit, 232 second reflection point candidate position generation unit, 233 addition amplitude value calculation unit, 241 identification unit, 242 Position / shape determination unit, Sg1-Sgn distance sensor group, S, S1-S4 distance sensor.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Acoustics & Sound (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
Description
しかし、この方法では、少なくとも2つの距離センサによる2円が交わるように互いの検知エリアが重複している必要がある。このため、距離センサの設置間隔が広すぎると、2円の交点が得られず、障害物の位置を判定できないという課題があった。
また、距離センサの設置間隔を詰めるためにその設置個数を増やした場合は、車両への距離センサの取り付け作業が煩雑になる上、装置全体のコストアップに繋がる。
さらに、距離センサに対して傾斜した面を有する障害物では、超音波信号の送信元の距離センサの方向に反射波が戻らないため、当該距離センサで反射波を直接的に検知できないという課題があった。 In the conventional technique represented by
However, this method requires that the detection areas of each other overlap so that two circles of at least two distance sensors intersect. For this reason, when the installation interval of the distance sensor is too wide, there is a problem that the intersection of two circles cannot be obtained and the position of the obstacle cannot be determined.
Further, when the number of installed distance sensors is increased in order to reduce the distance between the distance sensors, the installation work of the distance sensors to the vehicle becomes complicated and the cost of the entire apparatus increases.
Furthermore, in an obstacle having a surface inclined with respect to the distance sensor, the reflected wave does not return in the direction of the distance sensor that is the transmission source of the ultrasonic signal, and thus there is a problem that the reflected wave cannot be directly detected by the distance sensor. there were.
実施の形態1.
図1は、この発明の実施の形態1に係る物体検知装置の基本的な構成例を示すブロック図であり、移動体の一例として車両に搭載した場合を示している。また、図2は距離センサ群の配置の一例を示す図である。図1に示すように、実施の形態1に係る物体検知装置1は、距離センサ群Sg1,・・・,Sgnを用いて、車両の周辺に存在する障害物を検知する装置であり、処理部2、報知部3、GPS(Global Positioning System)センサ4、車輪速センサ5、ステアリング角度センサ6、およびカメラ7を備える。 Hereinafter, in order to describe the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a block diagram illustrating a basic configuration example of an object detection device according to
なお、距離センサは、所定の信号を車両外に送信して、障害物100などの物体で反射した反射波を受信するセンサである。所定の信号には、超音波信号、レーザ光、電波などが挙げられる。以降では、距離センサが超音波センサであるものとして説明する。 Each of the distance sensor groups Sg1,..., Sgn is composed of a plurality of distance sensors arranged along a predetermined direction (such as a horizontal direction or a vertical direction of the vehicle). For example, in the distance sensor groups Sg <b> 1 and Sg <b> 2 shown in FIG. 2, a plurality of distance sensors are disposed along the horizontal direction of the
The distance sensor is a sensor that transmits a predetermined signal to the outside of the vehicle and receives a reflected wave reflected by an object such as the
距離センサデータ処理部21は、距離センサ群Sg1,・・・,Sgnにおける個々の距離センサによる超音波信号の送受信のタイミングを制御して、車両8の周辺に存在する物体で反射した超音波信号の反射波を受信し、振幅が閾値を超える反射波に基づいて超音波信号の送受信における伝搬距離データおよび反射波の振幅データを検知して記憶する。
位置判定部22は、GPS情報、車輪速データまたは操舵角に基づいて、車両8(自車両)の移動位置、および距離センサ群Sg1,・・・,Sgnの距離センサの位置を判定する。 The
The distance sensor
The
検知物判定部24は、反射点の候補位置およびこの候補位置からの反射波の振幅データの分布を示す3次元マッピングデータに基づいて物体の位置および形状を判定する。
表示座標変換部25は、距離センサ群の検知エリア上の2次元座標系から、検知物判定部24が判定した位置および形状で物体を予め設定した任意の監視範囲に表示する表示座標系(表示部31の画面上の表示座標系)へ変換する。 The distance sensor
The detected
The display
視覚的な報知方法として、表示部31が、表示座標変換部25によって検知エリア上の2次元座標系から変換された表示座標系で監視範囲の物体の位置および形状を表示する。
また、表示部31は、車両8から所定の距離内に物体が接近した場合に、危険の度合いを示す表示を行ってもよい。例えば、車両8から所定の距離内に物体が接近すると、それまでとは区別して当該物体を強調表示する。強調表示としては、物体の接近による危険の度合いを表していればよく、物体の画像そのものあるいはその輪郭を異なる色(赤色などの危険を表す色や発光色)で表示することなどが挙げられる。また、図示しないテロップやアイコンなどで表示してもよい。
聴覚的な報知方法としては、音声出力部32が、例えば車両8から所定の距離内に物体が接近したこと、および、その距離などを音声で報知する。また、ブザーなどの警報を、車両8までの距離に応じて段階的に音量や周波数を変えて出力してもよい。 The
As a visual notification method, the
Further, the
As an audible notification method, the
車輪速センサ5は、車輪速センサLおよび車輪速センサRが車両8の左側および右側の後車輪にそれぞれ設けられ、各車輪の回転速度(以下、車輪速と呼ぶ)を検出する。
ステアリング角度センサ6は、車両8の運転者によるステアリングの操作角度(以下、ステアリング角度と呼ぶ)を検出するセンサである。
カメラ7は、車両8の周辺状況を撮影する撮影部であり、車両8の前方に設けたフロントカメラや、後方部に設けたリアカメラなどが挙げられる。また、カメラ7は、距離センサ群の検知エリアを撮影対象として車両8の周辺状況を撮影する。表示部31は、カメラ7が撮影した検知エリアの映像に映る障害物100などの物体に、検知物判定部24が判定した位置および形状で物体画像を重畳表示する。 The GPS sensor 4 receives GPS radio waves from GPS satellites and specifies the position of the
The
The
The
その機能構成として、送信部211a、受信部211b、全波整流部212、閾値判定部213、最大値判定部214、直接波信号記憶部215および間接波信号記憶部216を備える。 FIG. 3 is a block diagram illustrating a main configuration of the object detection apparatus according to the first embodiment. As shown in FIG. 3, the distance sensor
As a functional configuration thereof, a transmission unit 211a, a reception unit 211b, a full
受信部211bは、送信部211aの送信タイミングに応じて距離センサS1~S4による受信タイミングを制御する。例えば、受信部211bは、切替スイッチを介して距離センサS1~S4と接続しており、距離センサS1~S4のいずれかが超音波信号を送信すると、当該切替スイッチを用いて距離センサS1~S4の中から当該超音波信号の反射波を受信する距離センサを切り替える。
ここで、超音波信号を送信した距離センサと同一の距離センサが、当該超音波信号の反射波を受信する場合を“直接送受信”と呼ぶ。また、距離センサ群の距離センサのうち、超音波信号を送信した距離センサ以外の距離センサが当該超音波信号の反射波を受信する場合を“間接送受信”と呼ぶ。
なお、受信部211bが、距離センサ群における距離センサの中から反射波を受信する距離センサを切り替えることで間接送受信が実施される。
全波整流部212は、受信部211bの制御により距離センサS1~S4で受信された反射波の振幅データを全波整流、すなわち入力された信号が負の値であるときに正の値に変換する機能部である。 The transmitter 211a is a component that controls transmission of ultrasonic signals by the distance sensors S1 to S4. For example, the transmission unit 211a transmits ultrasonic pulse signals to the distance sensors S1 to S4 at a predetermined transmission timing, and the distance sensors S1 to S4 transmit ultrasonic signals according to the pulse signals.
The reception unit 211b controls the reception timing by the distance sensors S1 to S4 according to the transmission timing of the transmission unit 211a. For example, the receiving unit 211b is connected to the distance sensors S1 to S4 via the changeover switch, and when any of the distance sensors S1 to S4 transmits an ultrasonic signal, the distance sensor S1 to S4 is used using the changeover switch. The distance sensor that receives the reflected wave of the ultrasonic signal is switched from among them.
Here, the case where the same distance sensor that transmits the ultrasonic signal receives the reflected wave of the ultrasonic signal is referred to as “direct transmission / reception”. A case where a distance sensor other than the distance sensor that transmits the ultrasonic signal among the distance sensors of the distance sensor group receives the reflected wave of the ultrasonic signal is referred to as “indirect transmission / reception”.
The reception unit 211b performs indirect transmission / reception by switching a distance sensor that receives a reflected wave from among the distance sensors in the distance sensor group.
The full-
最大値判定部214は、閾値判定部213が抽出した反射波信号について、超音波信号が送信されて当該反射波が受信されるまでの伝搬距離および予め設定した時間帯での最大振幅値を判定して抽出する。 The threshold
The maximum
間接波信号記憶部216は、距離センサ群Sgnにおける個々の距離センサS1~S4がそれぞれ単独で送信した超音波信号が物体で反射した反射波を、距離センサ群Sgnにおける当該超音波信号を送信した距離センサ以外のいずれか一つの距離センサで間接的に受信して得られた超音波信号の送受信における伝搬距離データおよび反射波の振幅データを記憶する。 The direct wave
The indirect wave
第2の反射点候補位置生成部232は、間接波信号記憶部216に記憶された伝搬距離データおよび反射波の振幅データに基づいて、超音波信号を送信した距離センサの位置と当該超音波信号の反射波を受信した距離センサの位置を2定点とした楕円の円周上に反射点が存在するものとして、距離センサ群Sgnの検知エリア上に反射点の候補位置およびこの候補位置からの反射波の振幅データをマッピングした3次元マッピングデータを生成する。
加算振幅値演算部233は、第1の反射点候補位置生成部231および第2の反射点候補位置生成部232がそれぞれ生成した3次元マッピングデータを合成する。 Based on the propagation distance data and the reflected wave amplitude data stored in the direct wave
The second reflection point candidate
The addition amplitude
識別部241は、3次元マッピングデータにおける反射波の振幅データを、超音波信号が送信されてその反射波が受信されるまでの伝搬距離に応じて補正して、当該3次元マッピングデータから反射点の候補位置の分布を識別する。
位置・形状判定部242は、識別部241が識別した分布における、反射点の候補位置の集中度合い、直接波信号記憶部215に記憶されたデータを基に得られた反射点の候補位置の分布と間接波信号記憶部216に記憶されたデータを基に得られた反射点の候補位置の分布との割合、および距離センサから物体までの距離データの変化の度合いのうちの少なくとも一つを基準として、当該物体の位置と形状を判定する。 The detected
The
The position /
また、距離センサS1~S3の各検知エリアが重なり合うエリアA1aは、距離センサS3の検知エリアが重ならない領域がある。この領域では、距離センサS3で直接送受信が不可となる。同様に、距離センサS1~S3の各検知エリアが重なり合うエリアA2aは、距離センサS1の検知エリアが重ならない領域があり、この領域では、距離センサS1で直接送受信ができない。
一方、距離センサS1~S3の各検知エリアが重なり合うエリアA3aは、距離センサS1~S3の検知エリアが同様に重なっており、距離センサS1~S3のいずれも直接送受信が可能である。従って、直接送受信で検知する場合、エリアA3aを含むエリアAaが有効検知エリアとなる。 FIG. 4 is a diagram showing the arrangement of distance sensors and their effective detection areas. In the conventional object detection device, distance data to an object is detected based on a signal obtained by so-called direct transmission / reception in which the same distance sensor that has transmitted an ultrasonic signal generally receives the reflected wave signal. In this case, in order to obtain a predetermined detection resolution, as shown in FIG. 4A, it is necessary to narrow the arrangement interval of the distance sensors S1 to S3, and the number of sensors inevitably increases.
The area A1a where the detection areas of the distance sensors S1 to S3 overlap includes an area where the detection areas of the distance sensor S3 do not overlap. In this region, direct transmission / reception is disabled by the distance sensor S3. Similarly, the area A2a where the detection areas of the distance sensors S1 to S3 overlap includes an area where the detection areas of the distance sensor S1 do not overlap. In this area, the distance sensor S1 cannot directly transmit and receive.
On the other hand, in the area A3a where the detection areas of the distance sensors S1 to S3 overlap, the detection areas of the distance sensors S1 to S3 are similarly overlapped, and any of the distance sensors S1 to S3 can directly transmit and receive. Therefore, when detecting by direct transmission / reception, the area Aa including the area A3a becomes an effective detection area.
また、距離センサS1,S2の検知エリアが重なり合うエリアA1bでは、距離センサS1,S2で直接送受信が可能であり、さらに距離センサS1と距離センサS2における間接送受信も可能である。同様に、距離センサS2,S3の検知エリアが重なり合うエリアA2bでは、距離センサS2,S3で直接送受信が可能であり、距離センサS2と距離センサS3による間接送受信もできる。
一方、エリアA3bは、距離センサS2の検知エリアが距離センサS1,S3の検知エリアと重なりがなく、距離センサS2による直接送受信のみが可能である。
このような距離センサの配置であっても、本発明では、直接送受信と間接送受信を交互に行うことから、エリアA1b~A3bを含むエリアAbが有効検知エリアとなる。
従って、直接送受信のみの場合に比べて広い有効検知エリアを確保することができる。 On the other hand, the
In the area A1b where the detection areas of the distance sensors S1 and S2 overlap, the distance sensors S1 and S2 can directly transmit and receive, and the distance sensors S1 and S2 can also indirectly transmit and receive. Similarly, in the area A2b where the detection areas of the distance sensors S2 and S3 overlap, direct transmission / reception is possible with the distance sensors S2 and S3, and indirect transmission / reception with the distance sensors S2 and S3 is also possible.
On the other hand, in area A3b, the detection area of distance sensor S2 does not overlap with the detection areas of distance sensors S1 and S3, and only direct transmission / reception by distance sensor S2 is possible.
Even with such a distance sensor arrangement, in the present invention, direct transmission / reception and indirect transmission / reception are alternately performed, and thus the area Ab including the areas A1b to A3b becomes the effective detection area.
Therefore, a wider effective detection area can be ensured than in the case of only direct transmission / reception.
図5は、実施の形態1に係る物体検知装置の動作を示すフローチャートであり、超音波信号(送信信号)を送信してから車両8周辺で検知された障害物100が表示されるまでの処理を示している。
まず、送信部211aが、予め定めた送信タイミングで超音波のパルス信号を距離センサS1~S4に送ることにより、当該パルス信号に応じて距離センサS1~S4が超音波信号を送信する(ステップST1)。 Next, the operation will be described.
FIG. 5 is a flowchart showing the operation of the object detection device according to the first embodiment, and the processing from when an ultrasonic signal (transmission signal) is transmitted until the
First, the transmitting unit 211a transmits ultrasonic pulse signals to the distance sensors S1 to S4 at a predetermined transmission timing, so that the distance sensors S1 to S4 transmit ultrasonic signals according to the pulse signals (step ST1). ).
図6は、直接送受信の一例を示す図である。例えば、受信部211bは、切替スイッチのデフォルトの設定を直接送受信としている。つまり、超音波信号を送信した距離センサが距離センサS1である場合、切替スイッチにおける受信部211bと距離センサS1の接続をオンとし、その他の距離センサS2,S3,・・・の接続をオフしている。
これにより、反射波を受信する距離センサが切り替えられなければ(ステップST2;NO)、図6に矢印で示すように、距離センサS1から送信した超音波信号の反射波の中から、距離センサS1で受信された反射波信号が受信部211bに入力される。他の距離センサS2,S3についても同様である。
また、距離センサS1が超音波信号を時刻T1に送信して障害物100で反射し、この超音波信号を送信した距離センサS1が直接的に反射波を時刻T2に受信した場合、その伝搬距離Laは、下記式で得られる。すなわち、受信部211bは、超音波信号の送信時刻と反射波の受信時刻から伝搬距離を算出する。ただし、Vは、超音波の空中伝搬速度である。なお、距離センサS1から障害物100までの距離は伝搬距離Laの1/2の値となる。
La=(T2-T1)・V Next, when the receiving unit 211b does not switch the distance sensor that receives the reflected wave of the ultrasonic signal reflected by the
FIG. 6 is a diagram illustrating an example of direct transmission / reception. For example, the receiving unit 211b directly transmits / receives the default setting of the changeover switch. That is, when the distance sensor that transmitted the ultrasonic signal is the distance sensor S1, the connection between the receiving unit 211b and the distance sensor S1 in the change-over switch is turned on, and the connections of the other distance sensors S2, S3,. ing.
As a result, if the distance sensor that receives the reflected wave is not switched (step ST2; NO), as shown by the arrow in FIG. 6, the distance sensor S1 is selected from the reflected waves of the ultrasonic signal transmitted from the distance sensor S1. The reflected wave signal received at is input to the receiver 211b. The same applies to the other distance sensors S2, S3.
Further, when the distance sensor S1 transmits an ultrasonic signal at time T1 and is reflected by the
La = (T2-T1) · V
図7は、間接送受信の一例を示す図である。例えば、距離センサS1が超音波信号を送信した後、受信部211bが、切替スイッチを用いて距離センサS1との接続をオフし、距離センサS2との接続をオンとする。このとき、図7(a)に示すような障害物100の場合、距離センサS1から送信された超音波信号が障害物100で反射した反射波は、距離センサS2に受信されて受信部211bに入力される。
また、図7(b)に示すような障害物100である場合、距離センサS1が超音波信号を送信した後、受信部211bが、切替スイッチを用いて距離センサS1との接続をオフし、距離センサS3との接続をオンとする。このとき、距離センサS1から送信された超音波信号の反射波は、距離センサS3で受信されて受信部211bに入力される。
ここで、距離センサS1が超音波信号を時刻T3に送信し、この超音波信号を送信した距離センサS1以外の距離センサS2が間接的にその反射波を時刻T4に受信した場合、この超音波信号の送受信における伝搬距離、すなわち超音波信号が送信されてその反射波が受信されるまでの伝搬距離Lbは、直接送受信の場合と同様に下記式で得られる。
Lb=(T4-T3)・V On the other hand, when the distance sensor that receives the reflected wave is switched (step ST2; YES), indirect transmission / reception is performed (step ST3-2).
FIG. 7 is a diagram illustrating an example of indirect transmission / reception. For example, after the distance sensor S1 transmits an ultrasonic signal, the reception unit 211b turns off the connection with the distance sensor S1 and turns on the connection with the distance sensor S2 using the changeover switch. At this time, in the case of the
In the case of the
Here, when the distance sensor S1 transmits an ultrasonic signal at time T3 and the distance sensor S2 other than the distance sensor S1 that transmitted the ultrasonic signal indirectly receives the reflected wave at time T4, the ultrasonic wave is transmitted. The propagation distance in signal transmission / reception, that is, the propagation distance Lb from when an ultrasonic signal is transmitted to when the reflected wave is received is obtained by the following equation as in the case of direct transmission / reception.
Lb = (T4-T3) · V
すなわち、受信部211bが、受信信号から40~60kHzの超音波の反射波信号を検波し、全波整流部212が当該反射波信号を全波整流してパルス信号に変換する。 The full
That is, the receiving unit 211b detects an ultrasonic reflected wave signal of 40 to 60 kHz from the received signal, and the full-
これは、超音波の振幅値が、伝搬距離に応じて減衰することを考慮している。例えば、距離センサと障害物100との直線距離が近くても、障害物100の形状によっては、超音波信号が直接送受信よりも長い伝搬距離で間接送受信される場合がある。この場合においても、上述のように伝搬距離に応じた閾値で振幅を判定することで適切な解析が可能である。なお、上記閾値は、例えば予め実験等によって伝搬距離と超音波の減衰量との関係を求めておき、この関係に応じて決定する。 Next, the
This takes into account that the amplitude value of the ultrasonic wave attenuates according to the propagation distance. For example, even if the linear distance between the distance sensor and the
なお、図8(b)に破線で示す閾値が、図8(a)で示した閾値である。また、最大値検知時間幅は、超音波信号の送信時間幅に略等しい。最大値判定部214は、図8(b)に示すように当該時間帯(Δt)における反射波の最大振幅値を判定して抽出する。 Next, the maximum
Note that the threshold value indicated by a broken line in FIG. 8B is the threshold value illustrated in FIG. The maximum value detection time width is substantially equal to the transmission time width of the ultrasonic signal. The maximum
ここで、第1の反射点候補位置生成部231は、図6に示すように距離センサS1~S3のそれぞれの位置を中心とし、距離センサから障害物100までの距離を半径とする円を求める。直接送受信の場合、距離センサから障害物100までの距離は、超音波信号の送受信における伝搬距離Laの1/2で求められる。 Next, based on the propagation distance data and the amplitude data stored in the direct wave
Here, as shown in FIG. 6, the first reflection point candidate
第1の反射点候補位置生成部231は、距離センサ群Sgnの検知エリアに対して2次元座標系(x-y平面)を設定し、距離センサの位置を中心とした2円の交点、すなわち距離センサから障害物100までの距離および距離センサから見た障害物100の方位で反射点の候補位置を特定する。そして、検知エリア上に反射点の候補位置およびこの候補位置からの反射波(直接波)の振幅データ(最大振幅値)をマッピングした3次元マッピングデータを生成する。 Further, since the reflection point of the direct wave on the
The first reflection point candidate
ここで、第2の反射点候補位置生成部232は、図7(a)に示すように、超音波信号を送信した距離センサS1の位置と当該超音波信号の反射波を受信した距離センサS2の位置とを2定点とした楕円を求める。間接送受信の場合、超音波信号の送受信における伝搬距離は、当該楕円の円周上の一点を反射点として超音波信号を送信した距離センサから障害物100の反射点までの伝搬距離と当該反射点で反射した反射波が距離センサに受信されるまでの伝搬距離との総和に相当する。
第2の反射点候補位置生成部232は、第1の反射点候補位置生成部231と同様に、距離センサ群Sgnの検知エリアに2次元座標系(x-y平面)を設定して、距離センサから物体までの距離と距離センサから見た物体の方位とで反射点の候補位置を特定する。
そして、検知エリアのx-y平面上に反射点の候補位置およびこの候補位置からの反射波(間接波)の振幅データ(最大振幅値)をマッピングした3次元マッピングデータが生成される。
例えば、間接波の伝搬距離Lb、超音波信号の送信側の距離センサS1の位置、および反射波の受信側の距離センサS2の位置を用いて、下記式から反射点の候補位置を特定する。ただし、Xaは、超音波信号の送信側の距離センサS1と反射波の受信側の距離センサS2との間を結ぶ線分の中点から距離センサS1までの距離であり、Xbは、当該中点から距離センサS2までの距離である。Yは当該中点から障害物100までの垂直距離(上記楕円の短半径の長さ)である。また、Zaは距離センサS1から障害物100までの超音波信号(送信波)の伝搬距離であり、Zbは障害物100から距離センサS2までの超音波信号(受信波)の伝搬距離である。
Xa2+Y2=Za2
Xb2+Y2=Zb2
Lb=Za+Zb On the other hand, the second reflection point candidate
Here, as shown in FIG. 7A, the second reflection point candidate
Similarly to the first reflection point candidate
Then, three-dimensional mapping data is generated by mapping the candidate position of the reflection point and the amplitude data (maximum amplitude value) of the reflected wave (indirect wave) from the candidate position on the xy plane of the detection area.
For example, by using the propagation distance Lb of the indirect wave, the position of the distance sensor S1 on the transmission side of the ultrasonic signal, and the position of the distance sensor S2 on the reception side of the reflected wave, the candidate position of the reflection point is specified from the following equation. However, Xa is the distance from the midpoint of the line segment connecting the distance sensor S1 on the transmission side of the ultrasonic signal and the distance sensor S2 on the reception side of the reflected wave to the distance sensor S1, and Xb is This is the distance from the point to the distance sensor S2. Y is the vertical distance from the midpoint to the obstacle 100 (the length of the short radius of the ellipse). Za is the propagation distance of the ultrasonic signal (transmitted wave) from the distance sensor S1 to the
Xa 2 + Y 2 = Za 2
Xb 2 + Y 2 = Zb 2
Lb = Za + Zb
このようにすることで、反射点の候補位置が互いに補間され、同一の候補位置が得られた場合にはそこからの反射波の振幅値を強調することができる。これにより、物体検知の信頼性を向上させることができる。 Next, the added amplitude
In this way, when the candidate positions of the reflection points are interpolated and the same candidate position is obtained, the amplitude value of the reflected wave from there can be emphasized. Thereby, the reliability of object detection can be improved.
図12に示す例では、距離センサSの検知エリア上に存在する平板形状の物体(複数の距離センサSの配設方向に平行な平板)における反射点の候補位置およびこの候補位置からの反射波の振幅データを示す3次元マッピングデータを、直接送受信で得られた結果(上段)と間接送受信で得られた結果(下段)とで加算している。
図13に示す例では、距離センサSの検知エリア上に存在する平板形状の物体(複数の距離センサSの配設方向に対して傾いた平板)における反射点の候補位置およびこの候補位置からの反射波の振幅データを示す3次元マッピングデータを、直接送受信で得られた結果(上段)と間接送受信で得られた結果(下段)で加算している。
図12および図13に示すように、同じ物体を検知した反射波を直接送受信および間接送受信でそれぞれ受信した結果を用いた3次元マッピングデータを加算することで、反射点の候補位置が互いに補間される。
また、直接波の解析で規定した円と間接波の解析で規定した楕円との交点、すなわち、双方の解析で得られた信頼性の高い候補位置については、そこでの反射波の振幅値が加算され、強調される。 12 and 13 are diagrams showing an example of the amplitude addition process. The addition amplitude
In the example shown in FIG. 12, the candidate position of the reflection point and the reflected wave from this candidate position on a flat object (a flat plate parallel to the arrangement direction of the plurality of distance sensors S) existing on the detection area of the distance sensor S. The three-dimensional mapping data indicating the amplitude data is added by the result obtained by direct transmission / reception (upper stage) and the result obtained by indirect transmission / reception (lower stage).
In the example shown in FIG. 13, the candidate position of the reflection point on the flat plate-shaped object (the flat plate inclined with respect to the arrangement direction of the plurality of distance sensors S) existing on the detection area of the distance sensor S and Three-dimensional mapping data indicating the amplitude data of the reflected wave is added with the result obtained by direct transmission / reception (upper stage) and the result obtained by indirect transmission / reception (lower stage).
As shown in FIGS. 12 and 13, the candidate positions of the reflection points are interpolated by adding the three-dimensional mapping data using the results of receiving the reflected wave detected by the same object by direct transmission and reception and indirect transmission and reception, respectively. The
In addition, for the intersection of the circle defined by the direct wave analysis and the ellipse defined by the indirect wave analysis, that is, for the highly reliable candidate position obtained by both analysis, the amplitude value of the reflected wave at that point is added. And emphasized.
まず、識別部241は、3次元マッピングデータにおける反射波の振幅データを、超音波信号が送信されてその反射波が受信されるまでの伝搬距離に応じて補正する。この後、識別部241は、上記補正後の3次元マッピングデータから、反射点の候補位置の分布を識別する。
図14は、伝搬距離と振幅補正値との関係を示す図である。図14に示すように、識別部241には、超音波信号の送受信における伝搬距離に比例して大きな値となる補正値が設定されている。識別部241は、加算振幅値演算部233から3次元マッピングデータを入力すると、3次元マッピングデータにおける反射波の振幅データを、その伝搬距離に対応する補正値に変換する。このようにすることで、伝搬距離に起因した振幅の減衰を補正することができる。 Next, the
First, the
FIG. 14 is a diagram illustrating the relationship between the propagation distance and the amplitude correction value. As shown in FIG. 14, a correction value that is a large value in proportion to the propagation distance in transmission / reception of an ultrasonic signal is set in the
障害物100の位置は、距離センサから障害物100までの距離と距離センサから見た障害物100の方位で特定される。障害物100の形状は、距離センサ群Sgnが配設された平面上での形状、大きさ、および距離センサ群Sgnにおける距離センサの配設方向に対して傾斜しているか否かで特定される。 Next, the position /
The position of the
この場合は、障害物100が曲面部もしくは隣り合う距離センサの間隔よりも広い平面部を外形に有していることが予想される。
ここで、図15(a)に示す分布では反射点の位置候補が一部に集中しているので、障害物100が、平面部ではなく、距離センサ群Sgnが配設された平面上での形状が円形の円柱形状であると判定される(例えば、図6参照)。 FIG. 15 is a diagram illustrating an example of identifying a distribution of candidate positions of reflection points. The position /
In this case, it is expected that the
Here, in the distribution shown in FIG. 15A, the position candidates of the reflection points are concentrated on a part, so that the
なお、間接波による分布の割合が直接波による分布より所定の閾値を超える程度に多い場合も、距離センサ群Sgnのうち、直接送受信できる距離センサが少ないことを意味しており、障害物100が、狭い平面部を有する角柱形状であることが予想される。 Further, since the distribution shown in FIG. 15B is only a distribution due to an indirect wave, it is expected that the
In addition, when the proportion of the distribution by the indirect wave is larger than the distribution by the direct wave so as to exceed a predetermined threshold, it means that the distance sensor group Sgn has few distance sensors that can be directly transmitted and received, and the obstacle 100 A prismatic shape having a narrow flat portion is expected.
なお、距離センサ群Sgnにおける各距離センサと障害物100との距離データの変化が所定の閾値未満である場合には、図15(c)に示す分布が得られ、障害物100は、距離センサ群Sgnの複数の距離センサが配設された方向に平行である。 In the distribution shown in FIG. 15C, as in FIG. 15A, the plurality of distance sensors in the distance sensor group Sgn performs direct transmission and indirect transmission at the same rate. In this case, the
When the change in the distance data between each distance sensor and the
ここで、障害物の形状判定のより具体的な例を以下に述べる。障害物の形状は、図4に示すようなセンサS1,S2,S3を順次一巡送受信した後の図15(a)、(b)、(c)、(d)に示す直接波および反射波の分布形状の縦Tiと横Thの比率と、直接波と間接波の検知頻度で決定する。
円柱の縦横比の関係は、下記式(1)のようになる。
Th≒Ti ・・・・(1)
また、平板の場合は、下記式(2)の関係となる。
K×Th≧Ti ・・・・(2)
K≒2
よって、円柱と平板の判定では、上記式(2)における定数Kとして、K=1.2~2を用いる。 In the distribution shown in FIG. 15D, as in FIG. 15C, the plurality of distance sensors in the distance sensor group Sgn performs direct transmission / reception and indirect transmission / reception at the same rate. Also, the reflection point position candidates are not concentrated in part. Therefore, it is expected that the
Here, a more specific example of obstacle shape determination will be described below. The shape of the obstacle is that of the direct wave and reflected wave shown in FIGS. 15A, 15B, 15C, 15D after the sensors S1, S2, S3 as shown in FIG. It is determined by the ratio between the vertical Ti and horizontal Th of the distribution shape and the detection frequency of the direct wave and the indirect wave.
The relationship of the aspect ratio of the cylinder is as shown in the following formula (1).
Th≈Ti (1)
Moreover, in the case of a flat plate, it becomes a relationship of following formula (2).
K × Th ≧ Ti (2)
K ≒ 2
Therefore, in the determination of the cylinder and the flat plate, K = 1.2 to 2 is used as the constant K in the above equation (2).
Dw≒Iw ・・・・・(3)
これに反して、角柱の関係は、下記式(4)となる。
Dw<Iw ・・・・(4)
実用上の判定基準は、例えば、下記式(5)とする。
2Dw<Iw ・・・・(5)
よって、上記式(2)、(3)、(5)の関係を用いれば、障害物の形状判定の信頼性が向上する。
なお、図15(d)の線分Lは、反射波の分布を平面座標の単位座標ごとに量子化して求めた回帰直線を示しており、この回帰直線を基準に縦横幅を求める。 Also, assuming that the number of direct wave detections after sequentially transmitting and receiving the sensors S1, S2, and S3 is Dw and the number of indirect wave detections Iw, the relationship between the number of detections of the cylinder and the wide flat plate is expressed by the following equation (3). It becomes like this.
Dw ≒ Iw (3)
On the other hand, the relationship between the prisms is the following formula (4).
Dw <Iw (4)
The practical criterion is, for example, the following formula (5).
2Dw <Iw (5)
Therefore, if the relationship of said Formula (2), (3), (5) is used, the reliability of obstacle shape determination will improve.
Note that a line segment L in FIG. 15D shows a regression line obtained by quantizing the distribution of reflected waves for each unit coordinate of the plane coordinates, and the vertical and horizontal widths are obtained based on the regression line.
図16は、車両の移動に応じた監視範囲の表示処理を示す図である。図16において、車両8は、実施の形態1に係る物体検知装置1を搭載し、距離センサ群Sg1,Sg2、カメラ7を備える。距離センサ群Sg1は、車両8の後方部に設けられ、距離センサ群Sg2は、車両8の前方部に設けられる。また、カメラ7は、リアカメラとして車両8の後方部に設けられて、距離センサ群Sg1の検知エリアAbを撮影範囲としている。なお、図示は省略したが、車両8には、図1に示したGPSセンサ4、車輪速センサ5、およびステアリング角度センサ6も搭載されている。 The detection result of the
FIG. 16 is a diagram illustrating a monitor range display process according to the movement of the vehicle. In FIG. 16, a
ここで、図16(b)のように、運転者が車両8のステアリングを操作して、図16(a)の状態から、車両8が角度θだけ曲がった場合を例に挙げる。この場合、位置判定部22は、GPSセンサ4が取得したGPS情報、車輪速センサ5が取得した車輪速データまたはステアリング角度センサ6が取得した操舵角に基づいて、車両8の移動位置および距離センサ群Sg1,Sg2の距離センサの位置を判定する。 In the vehicle position shown in FIG. 16A, the detected
Here, as shown in FIG. 16B, a case where the driver operates the steering of the
このように構成することにより、距離センサの増加を招くことなく、様々な形状の障害物を検知できる。 As described above, according to the first embodiment, the reflected wave from the
By comprising in this way, the obstacle of various shapes is detectable, without causing the increase in a distance sensor.
Claims (11)
- 所定の方向に配設した複数の距離センサからなる距離センサ群を用いて物体を検知する物体検知装置において、
前記距離センサ群における個々の距離センサがそれぞれ単独で送信した所定の信号の前記物体からの反射波を、当該所定の信号を送信した同一の距離センサで直接的に受信して得られた前記所定の信号の送受信における伝搬距離データおよび前記反射波の振幅データを記憶する直接波信号記憶部と、
前記距離センサ群における個々の距離センサがそれぞれ単独で送信した所定の信号の前記物体からの反射波を、前記距離センサ群における当該所定の信号を送信した距離センサ以外のいずれか一つの距離センサで間接的に受信して得られた前記所定の信号の送受信における伝搬距離データおよび前記反射波の振幅データを記憶する間接波信号記憶部と、
前記直接波信号記憶部および前記間接波信号記憶部にそれぞれ記憶された前記伝搬距離データおよび前記振幅データに基づいて、前記物体の反射点の候補位置およびこの候補位置からの反射波の振幅データを前記距離センサ群の検知エリア上にマッピングする距離センサデータマッピング部と、
前記距離センサデータマッピング部が生成した前記反射点の候補位置およびこの候補位置からの反射波の振幅データの分布を示す3次元マッピングデータに基づいて、前記物体の位置および形状を判定する検知物判定部と、
前記距離センサ群の検知エリア上の座標系から、前記検知物判定部が判定した位置および形状で前記物体を表示する監視範囲の表示座標系へ変換する表示座標変換部と、
前記表示座標変換部が変換した前記表示座標系で、前記監視範囲の前記物体を表示する表示部とを備えたことを特徴とする物体検知装置。 In an object detection device that detects an object using a distance sensor group including a plurality of distance sensors arranged in a predetermined direction,
The predetermined signal obtained by directly receiving a reflected wave from the object of a predetermined signal transmitted individually by each distance sensor in the distance sensor group by the same distance sensor that transmitted the predetermined signal. A direct wave signal storage unit for storing propagation distance data and amplitude data of the reflected wave in transmission and reception of
A reflected wave from the object of a predetermined signal transmitted individually by each distance sensor in the distance sensor group is transmitted to any one of the distance sensors other than the distance sensor that transmits the predetermined signal in the distance sensor group. An indirect wave signal storage unit that stores propagation distance data and amplitude data of the reflected wave in transmission / reception of the predetermined signal obtained by receiving indirectly;
Based on the propagation distance data and the amplitude data respectively stored in the direct wave signal storage unit and the indirect wave signal storage unit, the candidate position of the reflection point of the object and the amplitude data of the reflected wave from the candidate position are obtained. A distance sensor data mapping unit for mapping on a detection area of the distance sensor group;
Detected object determination for determining the position and shape of the object based on the candidate position of the reflection point generated by the distance sensor data mapping unit and the three-dimensional mapping data indicating the distribution of the amplitude data of the reflected wave from the candidate position And
A display coordinate conversion unit for converting from a coordinate system on the detection area of the distance sensor group to a display coordinate system of a monitoring range for displaying the object at the position and shape determined by the detection object determination unit;
An object detection apparatus comprising: a display unit configured to display the object in the monitoring range in the display coordinate system converted by the display coordinate conversion unit. - 前記距離センサが受信した反射波の中から、前記所定の信号が送信されてその反射波が受信されるまでの伝搬距離に応じて設定した閾値を超える振幅値の反射波を判定して抽出する閾値判定部と、
前記閾値判定部が抽出した反射波について、前記所定の信号が送信されてその反射波が受信されるまでの伝搬距離、および、予め設定した時間帯での最大振幅値を判定して抽出する最大値判定部とを備えたことを特徴とする請求項1記載の物体検知装置。 From the reflected waves received by the distance sensor, a reflected wave having an amplitude value exceeding a threshold set in accordance with a propagation distance from when the predetermined signal is transmitted until the reflected wave is received is determined and extracted. A threshold determination unit;
For the reflected wave extracted by the threshold determination unit, the maximum distance that is extracted by determining the propagation distance from when the predetermined signal is transmitted until the reflected wave is received, and the maximum amplitude value in a preset time zone The object detection device according to claim 1, further comprising a value determination unit. - 前記閾値判定部は、前記所定の信号が送信されてその反射波が受信されるまでの伝搬距離に反比例した閾値を用いて、当該反射波の振幅データを判定することを特徴とする請求項2記載の物体検知装置。 The threshold determination unit determines amplitude data of the reflected wave using a threshold inversely proportional to a propagation distance from when the predetermined signal is transmitted until the reflected wave is received. The object detection apparatus described.
- 前記距離センサデータマッピング部は、
前記直接波信号記憶部に記憶された伝搬距離データおよび振幅データに基づいて、前記距離センサの位置を中心とした当該距離センサから前記物体までの距離を半径とする円の円周上に反射点が存在するものとして、前記距離センサ群の検知エリア上に前記反射点の候補位置およびこの候補位置からの反射波の振幅データをマッピングした3次元マッピングデータを生成する第1の反射点候補位置生成部と、
前記間接波信号記憶部に記憶された伝搬距離データおよび振幅データに基づいて、前記所定の信号を送信した距離センサの位置と当該所定の信号の反射波を受信した距離センサの位置とを2定点とした楕円の円周上に反射点が存在するものとして、前記距離センサ群の検知エリア上に前記反射点の候補位置およびこの候補位置からの反射波の振幅データをマッピングした3次元マッピングデータを生成する第2の反射点候補位置生成部と、
前記第1の反射点候補位置生成部および前記第2の反射点候補位置生成部がそれぞれ生成した3次元マッピングデータを合成する加算振幅値演算部とを備えたことを特徴とする請求項1記載の物体検知装置。 The distance sensor data mapping unit includes:
Based on propagation distance data and amplitude data stored in the direct wave signal storage unit, reflection points on the circumference of a circle whose radius is the distance from the distance sensor to the object centered on the position of the distance sensor First reflection point candidate position generation for generating three-dimensional mapping data mapping the candidate position of the reflection point and the amplitude data of the reflected wave from the candidate position on the detection area of the distance sensor group And
Based on the propagation distance data and amplitude data stored in the indirect wave signal storage unit, two fixed points are the position of the distance sensor that has transmitted the predetermined signal and the position of the distance sensor that has received the reflected wave of the predetermined signal. Assuming that a reflection point exists on the circumference of the ellipse, three-dimensional mapping data in which the candidate position of the reflection point and the amplitude data of the reflected wave from the candidate position are mapped on the detection area of the distance sensor group A second reflection point candidate position generation unit to generate;
The addition amplitude value calculating part which synthesize | combines the three-dimensional mapping data which the said 1st reflection point candidate position production | generation part and the said 2nd reflection point candidate position production | generation part each produced | generated. Object detection device. - 前記検知物判定部は、
前記距離センサデータマッピング部が生成した3次元マッピングデータにおける反射波の振幅データを、前記所定の信号が送信されてその反射波が受信されるまでの伝搬距離に応じて補正して、当該3次元マッピングデータから反射点の候補位置の分布を識別する識別部と、
前記識別部が識別した前記反射点の候補位置の分布における、前記反射点の候補位置の集中度合い、前記直接波信号記憶部に記憶されたデータを基に得られた反射点の候補位置の分布と前記間接波信号記憶部に記憶されたデータを基に得られた反射点の候補位置の分布との割合、および前記距離センサから前記物体までの距離データの変化の度合いのうちの少なくとも一つを基準として、当該物体の位置と形状を判定する位置・形状判定部とを備えたことを特徴とする請求項1記載の物体検知装置。 The detected object determination unit
The amplitude data of the reflected wave in the three-dimensional mapping data generated by the distance sensor data mapping unit is corrected according to the propagation distance from when the predetermined signal is transmitted until the reflected wave is received, and the three-dimensional An identification unit for identifying the distribution of the candidate positions of the reflection points from the mapping data;
Distribution of candidate positions of reflection points obtained based on the degree of concentration of candidate positions of the reflection points in the distribution of candidate positions of the reflection points identified by the identification unit and data stored in the direct wave signal storage unit At least one of the ratio of the reflection point candidate position distribution obtained based on the data stored in the indirect wave signal storage unit, and the degree of change in the distance data from the distance sensor to the object The object detection apparatus according to claim 1, further comprising a position / shape determination unit that determines a position and a shape of the object with reference to. - 前記識別部は、前記所定の信号が送信されてその反射波が受信されるまでの伝搬距離に比例して大きな値となるように反射波の振幅データを補正することを特徴とする請求項5記載の物体検知装置。 The said identification part correct | amends the amplitude data of a reflected wave so that it may become a large value in proportion to the propagation distance after the said predetermined signal is transmitted and the reflected wave is received. The object detection apparatus described.
- 前記位置・形状判定部は、
前記識別部が識別した反射点の候補位置の分布において、前記直接波信号記憶部に記憶されたデータを基に得られた反射点の候補位置の分布の割合が、前記間接波信号記憶部に記憶されたデータを基に得られた反射点の候補位置の分布よりも多く、前記反射点の候補位置が一部に集中している場合、検知対象の物体が円柱形状であると判定し、
前記識別部が識別した前記反射点の候補位置の分布において、前記直接波信号記憶部に記憶されたデータを基に得られた反射点の候補位置の分布の割合が、前記間接波信号記憶部に記憶されたデータを基に得られた反射点の候補位置の分布よりも多く、かつ前記物体までの距離データの変化が所定の閾値未満である場合、検知対象の物体が平板形状であると判定し、
前記識別部が識別した前記反射点の候補位置の分布において、前記間接波信号記憶部に記憶されたデータを基に得られた反射点の候補位置の分布の割合が、前記直接波信号記憶部に記憶されたデータを基に得られた反射点の候補位置の分布よりも多く、前記反射点の候補位置が一部に集中している場合、検知対象の物体が角柱形状であると判定し、
前記識別部が識別した前記反射点の候補位置の分布において、前記直接波信号記憶部に記憶されたデータを基に得られた反射点の候補位置の分布の割合が、前記間接波信号記憶部に記憶されたデータを基に得られた反射点の候補位置の分布よりも多く、かつ前記物体までの距離データが前記複数の距離センサの配設方向に対して徐々に変化している場合、検知対象の物体が、前記距離センサ群から見て傾斜している面を有すると判定することを特徴とする請求項5記載の物体検知装置。 The position / shape determination unit
In the distribution of the candidate positions of the reflection points identified by the identification unit, the ratio of the distribution of candidate positions of the reflection points obtained based on the data stored in the direct wave signal storage unit is stored in the indirect wave signal storage unit. More than the distribution of the candidate positions of the reflection points obtained based on the stored data, and when the candidate positions of the reflection points are concentrated in part, it is determined that the object to be detected is a cylindrical shape,
In the distribution of the candidate positions of the reflection points identified by the identification unit, the ratio of the distribution of candidate positions of the reflection points obtained based on the data stored in the direct wave signal storage unit is the indirect wave signal storage unit. Is larger than the distribution of the candidate positions of the reflection points obtained based on the data stored in, and the change in the distance data to the object is less than a predetermined threshold, the object to be detected is plate-shaped Judgment,
In the distribution of the candidate positions of the reflection points identified by the identification unit, the ratio of the distribution of candidate positions of the reflection points obtained based on the data stored in the indirect wave signal storage unit is the direct wave signal storage unit. If the candidate position of the reflection point is larger than the distribution of candidate positions of the reflection point obtained based on the data stored in the data, and the candidate position of the reflection point is concentrated in part, it is determined that the object to be detected is a prismatic shape. ,
In the distribution of the candidate positions of the reflection points identified by the identification unit, the ratio of the distribution of candidate positions of the reflection points obtained based on the data stored in the direct wave signal storage unit is the indirect wave signal storage unit. More than the distribution of candidate positions of the reflection points obtained based on the data stored in, and the distance data to the object is gradually changing with respect to the direction of arrangement of the plurality of distance sensors, The object detection apparatus according to claim 5, wherein the object to be detected is determined to have a surface that is inclined as viewed from the distance sensor group. - 移動体に搭載され、当該移動体の周囲に存在する物体を検知することを特徴とする請求項1から請求項7のうちのいずれか1項記載の物体検知装置。 The object detection device according to claim 1, wherein the object detection device is mounted on a moving body and detects an object existing around the moving body.
- 前記移動体の移動位置および当該移動体の移動に伴う前記距離センサの位置を判定する位置判定部を備え、
前記表示座標変換部は、前記位置判定部が判定した前記移動体の移動位置および前記距離センサの位置に基づいて、前記検知物判定部が判定した位置および形状で前記物体を表示する監視範囲の表示座標系を、前記移動体の移動に伴って変化する前記距離センサの向きに応じた表示座標系に変換し、
前記表示部は、前記表示座標変換部が変換した前記表示座標系で、前記監視範囲の前記物体を表示することを特徴とする請求項8記載の物体検知装置。 A position determination unit that determines a moving position of the moving body and a position of the distance sensor accompanying the movement of the moving body;
The display coordinate conversion unit is configured to display a monitoring range in which the object is displayed at the position and shape determined by the detected object determination unit based on the moving position of the moving body determined by the position determination unit and the position of the distance sensor. The display coordinate system is converted into a display coordinate system corresponding to the direction of the distance sensor that changes as the moving body moves,
The object detection apparatus according to claim 8, wherein the display unit displays the object in the monitoring range in the display coordinate system converted by the display coordinate conversion unit. - 前記移動体の周辺状況を撮影する撮影部を備え、
前記表示部は、前記表示座標変換部が変換した表示座標系で、前記監視範囲の前記物体を表示するとともに、前記撮影部が撮影した前記移動体の周辺の映像情報を表示することを特徴とする請求項8記載の物体検知装置。 A photographing unit for photographing the surroundings of the moving body;
The display unit displays the object in the monitoring range in the display coordinate system converted by the display coordinate conversion unit, and displays video information around the moving object taken by the photographing unit. The object detection device according to claim 8. - 前記移動体から所定の距離内に前記物体が接近したことを報知する報知部を備えたことを特徴とする請求項8記載の物体検知装置。 The object detection apparatus according to claim 8, further comprising a notification unit that notifies that the object has approached within a predetermined distance from the moving body.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112011105533.1T DE112011105533B4 (en) | 2011-08-16 | 2011-08-16 | Object detection device |
JP2013528846A JP5710000B2 (en) | 2011-08-16 | 2011-08-16 | Object detection device |
PCT/JP2011/004596 WO2013024509A1 (en) | 2011-08-16 | 2011-08-16 | Object detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/004596 WO2013024509A1 (en) | 2011-08-16 | 2011-08-16 | Object detection device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013024509A1 true WO2013024509A1 (en) | 2013-02-21 |
Family
ID=47714855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/004596 WO2013024509A1 (en) | 2011-08-16 | 2011-08-16 | Object detection device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5710000B2 (en) |
DE (1) | DE112011105533B4 (en) |
WO (1) | WO2013024509A1 (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015055571A (en) * | 2013-09-12 | 2015-03-23 | 株式会社日本自動車部品総合研究所 | Object determination device |
JP2015191441A (en) * | 2014-03-28 | 2015-11-02 | 三菱電機株式会社 | Collision determination apparatus |
JP5843948B1 (en) * | 2014-11-27 | 2016-01-13 | 三菱電機株式会社 | Parking assistance device and parking assistance method |
JP2016080644A (en) * | 2014-10-22 | 2016-05-16 | 株式会社デンソー | Object detector |
JP2017015494A (en) * | 2015-06-30 | 2017-01-19 | 株式会社デンソー | Object detection device and object detection method |
JP2017142171A (en) * | 2016-02-10 | 2017-08-17 | 株式会社Soken | Object detection device |
CN107076850A (en) * | 2014-10-22 | 2017-08-18 | 株式会社电装 | Obstacle detector for vehicle |
JP2017146164A (en) * | 2016-02-16 | 2017-08-24 | パナソニックIpマネジメント株式会社 | Object detection system |
WO2018043028A1 (en) * | 2016-08-29 | 2018-03-08 | 株式会社デンソー | Surroundings monitoring device and surroundings monitoring method |
CN108780149A (en) * | 2016-03-18 | 2018-11-09 | 法雷奥开关和传感器有限责任公司 | Pass through the indirect method measured to improve the detection at least one object around motor vehicles of sensor, controller, driver assistance system and motor vehicles |
CN109154648A (en) * | 2016-05-19 | 2019-01-04 | 株式会社电装 | Article detection device and object detecting method |
WO2020105093A1 (en) * | 2018-11-19 | 2020-05-28 | 三菱電機株式会社 | Obstacle detection device |
WO2020115957A1 (en) * | 2018-12-04 | 2020-06-11 | 株式会社デンソー | Object detecting device, and object detecting method |
JP2020128938A (en) * | 2019-02-08 | 2020-08-27 | アイシン精機株式会社 | Object detector |
WO2020235397A1 (en) * | 2019-05-22 | 2020-11-26 | 株式会社デンソー | Three-dimensional positioning device and three-dimensional positioning method |
WO2021024481A1 (en) * | 2019-08-08 | 2021-02-11 | 三菱電機株式会社 | Obstacle detection device |
WO2021024433A1 (en) * | 2019-08-07 | 2021-02-11 | 三菱電機株式会社 | Obstacle detection device |
CN112470027A (en) * | 2018-07-27 | 2021-03-09 | 三菱电机株式会社 | Control device for object detection device, and object detection program |
CN112805589A (en) * | 2018-10-03 | 2021-05-14 | 株式会社电装 | Object detection device |
CN114067609A (en) * | 2020-08-04 | 2022-02-18 | 松下知识产权经营株式会社 | Obstacle determination device and vehicle |
CN114114277A (en) * | 2021-11-04 | 2022-03-01 | 岚图汽车科技有限公司 | Ultrasonic parking auxiliary obstacle positioning method, device, equipment and storage medium |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52112223A (en) * | 1976-03-17 | 1977-09-20 | Hitachi Medical Corp | Ultrasonic camera device |
JPH07260933A (en) * | 1994-03-18 | 1995-10-13 | Nissan Motor Co Ltd | Peripheral object detection device |
JP2003194938A (en) * | 2001-12-25 | 2003-07-09 | Denso Corp | Obstacle detector |
JP2004526976A (en) * | 2001-05-22 | 2004-09-02 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Method and apparatus for operation of a radar sensor device |
US20050052950A1 (en) * | 2001-08-02 | 2005-03-10 | Roland Klinnert | Monitoring device and method using echo signals |
JP2005077302A (en) * | 2003-09-02 | 2005-03-24 | Fujitsu Ten Ltd | Object detection device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000028717A (en) * | 1998-07-13 | 2000-01-28 | Mitsubishi Electric Corp | Device for detecting obstacle |
JP4618506B2 (en) * | 2005-10-20 | 2011-01-26 | アイシン精機株式会社 | Object recognition device |
DE102006008636A1 (en) * | 2006-02-24 | 2007-08-30 | Robert Bosch Gmbh | Sensor system for vehicle, has sensor unit arranged in vehicle, sensor data of evaluating and control unit is analyzed for object recognition, echo signals reflected by objects are received and converted into electrical signals |
JP4752686B2 (en) * | 2006-09-01 | 2011-08-17 | トヨタ自動車株式会社 | Obstacle detection device for vehicles |
-
2011
- 2011-08-16 DE DE112011105533.1T patent/DE112011105533B4/en active Active
- 2011-08-16 JP JP2013528846A patent/JP5710000B2/en active Active
- 2011-08-16 WO PCT/JP2011/004596 patent/WO2013024509A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52112223A (en) * | 1976-03-17 | 1977-09-20 | Hitachi Medical Corp | Ultrasonic camera device |
JPH07260933A (en) * | 1994-03-18 | 1995-10-13 | Nissan Motor Co Ltd | Peripheral object detection device |
JP2004526976A (en) * | 2001-05-22 | 2004-09-02 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Method and apparatus for operation of a radar sensor device |
US20050052950A1 (en) * | 2001-08-02 | 2005-03-10 | Roland Klinnert | Monitoring device and method using echo signals |
JP2003194938A (en) * | 2001-12-25 | 2003-07-09 | Denso Corp | Obstacle detector |
JP2005077302A (en) * | 2003-09-02 | 2005-03-24 | Fujitsu Ten Ltd | Object detection device |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015055571A (en) * | 2013-09-12 | 2015-03-23 | 株式会社日本自動車部品総合研究所 | Object determination device |
JP2015191441A (en) * | 2014-03-28 | 2015-11-02 | 三菱電機株式会社 | Collision determination apparatus |
CN107076850A (en) * | 2014-10-22 | 2017-08-18 | 株式会社电装 | Obstacle detector for vehicle |
JP2016080644A (en) * | 2014-10-22 | 2016-05-16 | 株式会社デンソー | Object detector |
CN107076850B (en) * | 2014-10-22 | 2023-06-20 | 株式会社电装 | Obstacle detection device for vehicle |
JP5843948B1 (en) * | 2014-11-27 | 2016-01-13 | 三菱電機株式会社 | Parking assistance device and parking assistance method |
JP2017015494A (en) * | 2015-06-30 | 2017-01-19 | 株式会社デンソー | Object detection device and object detection method |
JP2017142171A (en) * | 2016-02-10 | 2017-08-17 | 株式会社Soken | Object detection device |
WO2017141757A1 (en) * | 2016-02-16 | 2017-08-24 | パナソニックIpマネジメント株式会社 | Object detection system |
JP2017146164A (en) * | 2016-02-16 | 2017-08-24 | パナソニックIpマネジメント株式会社 | Object detection system |
JP2019512699A (en) * | 2016-03-18 | 2019-05-16 | ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー | Method for improving detection of at least one object around a motor vehicle by indirect measurement with a sensor, controller, driver assistance system, and motor vehicle |
CN108780149A (en) * | 2016-03-18 | 2018-11-09 | 法雷奥开关和传感器有限责任公司 | Pass through the indirect method measured to improve the detection at least one object around motor vehicles of sensor, controller, driver assistance system and motor vehicles |
CN109154648A (en) * | 2016-05-19 | 2019-01-04 | 株式会社电装 | Article detection device and object detecting method |
US10885354B2 (en) | 2016-08-29 | 2021-01-05 | Denso Corporation | Perimeter monitoring device and perimeter monitoring method |
JP2018037737A (en) * | 2016-08-29 | 2018-03-08 | 株式会社Soken | Periphery monitoring device and periphery monitoring method |
WO2018043028A1 (en) * | 2016-08-29 | 2018-03-08 | 株式会社デンソー | Surroundings monitoring device and surroundings monitoring method |
CN109643495A (en) * | 2016-08-29 | 2019-04-16 | 株式会社电装 | Periphery monitoring apparatus and environment monitoring method |
CN109643495B (en) * | 2016-08-29 | 2022-05-17 | 株式会社电装 | Periphery monitoring device and periphery monitoring method |
CN112470027A (en) * | 2018-07-27 | 2021-03-09 | 三菱电机株式会社 | Control device for object detection device, and object detection program |
CN112805589A (en) * | 2018-10-03 | 2021-05-14 | 株式会社电装 | Object detection device |
JPWO2020105093A1 (en) * | 2018-11-19 | 2021-02-15 | 三菱電機株式会社 | Obstacle detector |
WO2020105093A1 (en) * | 2018-11-19 | 2020-05-28 | 三菱電機株式会社 | Obstacle detection device |
JP7167675B2 (en) | 2018-12-04 | 2022-11-09 | 株式会社デンソー | Object detection device and object detection method |
JP2020091158A (en) * | 2018-12-04 | 2020-06-11 | 株式会社デンソー | Object detection device and object detection method |
WO2020115957A1 (en) * | 2018-12-04 | 2020-06-11 | 株式会社デンソー | Object detecting device, and object detecting method |
JP2020128938A (en) * | 2019-02-08 | 2020-08-27 | アイシン精機株式会社 | Object detector |
JP7167751B2 (en) | 2019-02-08 | 2022-11-09 | 株式会社アイシン | object detector |
JP7152356B2 (en) | 2019-05-22 | 2022-10-12 | 株式会社Soken | Three-dimensional positioning device and three-dimensional positioning method |
JP2020190484A (en) * | 2019-05-22 | 2020-11-26 | 株式会社Soken | Three-dimensional positioning device and three-dimensional positioning method |
WO2020235397A1 (en) * | 2019-05-22 | 2020-11-26 | 株式会社デンソー | Three-dimensional positioning device and three-dimensional positioning method |
WO2021024433A1 (en) * | 2019-08-07 | 2021-02-11 | 三菱電機株式会社 | Obstacle detection device |
JPWO2021024433A1 (en) * | 2019-08-07 | 2021-10-28 | 三菱電機株式会社 | Obstacle detector |
WO2021024481A1 (en) * | 2019-08-08 | 2021-02-11 | 三菱電機株式会社 | Obstacle detection device |
CN114067609A (en) * | 2020-08-04 | 2022-02-18 | 松下知识产权经营株式会社 | Obstacle determination device and vehicle |
CN114067609B (en) * | 2020-08-04 | 2024-02-09 | 松下知识产权经营株式会社 | Obstacle determination device and vehicle |
CN114114277A (en) * | 2021-11-04 | 2022-03-01 | 岚图汽车科技有限公司 | Ultrasonic parking auxiliary obstacle positioning method, device, equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
DE112011105533T5 (en) | 2014-05-22 |
JPWO2013024509A1 (en) | 2015-03-05 |
JP5710000B2 (en) | 2015-04-30 |
DE112011105533B4 (en) | 2016-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5710000B2 (en) | Object detection device | |
US11703587B2 (en) | Vehicle radar sensing system with enhanced angle resolution | |
US10962641B2 (en) | Vehicle radar sensing system with enhanced accuracy using interferometry techniques | |
US10962638B2 (en) | Vehicle radar sensing system with surface modeling | |
CN102906593B (en) | Vehicle rear-view observation device | |
US7164118B2 (en) | Method and system for obstacle detection | |
US20130162461A1 (en) | Environment Monitoring System for a Vehicle | |
JP5640583B2 (en) | Target detection system, detection method, and detection information processing program | |
WO2018043028A1 (en) | Surroundings monitoring device and surroundings monitoring method | |
JP2007140852A (en) | Obstruction position detector and obstruction position detecting method | |
JP6697281B2 (en) | Object detection device | |
JP2003233423A (en) | Collision avoidance method for autonomous traveling vehicle and method therefor | |
JP5148353B2 (en) | Underwater vehicle and obstacle detection device | |
US20180100921A1 (en) | Ultrasonic sensor device and sensing method of ultrasonic sensor device | |
CN112416001A (en) | Automatic following method and device for vehicle and vehicle | |
CN109229015B (en) | Method for realizing vehicle 360-degree obstacle alarm prompt based on ultrasonic sensor | |
US20180081372A1 (en) | Conveying system with an automatic tethering function | |
TWI599787B (en) | Mobile navigation method and system | |
KR101674592B1 (en) | Apparatus for warning obstacle for vehicle | |
KR101605551B1 (en) | Apparatus of detecting object and control method thereof | |
JP2017181101A (en) | Target object detection unit | |
JP6679371B2 (en) | Object detection device | |
JP2007024731A (en) | Distance measuring device, distance measuring method and distance measuring program | |
JP6679372B2 (en) | Object detection device | |
JPH02102481A (en) | Ultrasonic guidance device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11871062 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013528846 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120111055331 Country of ref document: DE Ref document number: 112011105533 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11871062 Country of ref document: EP Kind code of ref document: A1 |