WO2013024509A1 - Object detection device - Google Patents

Object detection device Download PDF

Info

Publication number
WO2013024509A1
WO2013024509A1 PCT/JP2011/004596 JP2011004596W WO2013024509A1 WO 2013024509 A1 WO2013024509 A1 WO 2013024509A1 JP 2011004596 W JP2011004596 W JP 2011004596W WO 2013024509 A1 WO2013024509 A1 WO 2013024509A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance sensor
distance
data
unit
reflected wave
Prior art date
Application number
PCT/JP2011/004596
Other languages
French (fr)
Japanese (ja)
Inventor
井上 悟
睦生 関谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112011105533.1T priority Critical patent/DE112011105533B4/en
Priority to JP2013528846A priority patent/JP5710000B2/en
Priority to PCT/JP2011/004596 priority patent/WO2013024509A1/en
Publication of WO2013024509A1 publication Critical patent/WO2013024509A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • G01S15/876Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • G01S15/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector wherein transceivers are operated, either sequentially or simultaneously, both in bi-static and in mono-static mode, e.g. cross-echo mode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/003Bistatic sonar systems; Multistatic sonar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2015/937Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details
    • G01S2015/938Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details in the bumper area
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication
    • G08G1/163Decentralised systems, e.g. inter-vehicle communication involving continuous checking

Definitions

  • the present invention relates to an object detection device that detects an object using a distance sensor.
  • the conventional object detection device disclosed in Patent Document 1 is a distance sensor that transmits a reflected wave that is reflected by an obstacle outside the vehicle and is transmitted from a plurality of distance sensors provided in the vehicle. The presence and shape of the obstacle are determined by direct detection.
  • the reflected wave does not return in the direction of the distance sensor that is the transmission source of the ultrasonic signal, and thus there is a problem that the reflected wave cannot be directly detected by the distance sensor. there were.
  • the present invention has been made to solve the above-described problems, and can improve the detection accuracy of obstacles without causing an increase in distance sensors. Furthermore, various shapes of detected obstacles can be obtained. It is an object to obtain an object detection device capable of detecting
  • the object detection device directly receives a reflected wave from an object of a predetermined signal transmitted individually by each distance sensor in the distance sensor group by the same distance sensor that transmitted the predetermined signal.
  • a direct wave signal storage unit for storing propagation distance data and reflected wave amplitude data in transmission / reception of a predetermined signal obtained in this manner, and an object of a predetermined signal transmitted individually by each distance sensor in the distance sensor group Propagation distance data and reflected wave amplitude in transmission / reception of a predetermined signal obtained by indirectly receiving the reflected wave of the predetermined signal by any one of the distance sensors other than the distance sensor that transmitted the predetermined signal.
  • An indirect wave signal storage unit for storing data, and propagation distance data and amplitude data stored in the direct wave signal storage unit and the indirect wave signal storage unit, respectively.
  • the distance sensor data mapping unit and the distance sensor data mapping unit that map the candidate position of the reflection point of the object and the amplitude data of the reflected wave from the candidate position on the detection area of the distance sensor group are generated Based on the three-dimensional mapping data indicating the candidate position of the reflection point and the distribution of the amplitude data of the reflected wave from the candidate position, the detection object determination unit for determining the position and shape of the object, and on the detection area of the distance sensor group
  • the display coordinate conversion unit that converts the coordinate system to the display coordinate system of the monitoring range that displays the object at the position and shape determined by the detected object determination unit, and the display coordinate system that is converted by the display coordinate conversion unit.
  • the display part which displays.
  • the present invention it is possible to improve obstacle detection accuracy without causing an increase in the distance sensor, and it is possible to detect various shapes of the detected obstacle.
  • FIG. 1 is a block diagram illustrating a main configuration of an object detection device according to Embodiment 1.
  • FIG. It is a figure which shows arrangement
  • 3 is a flowchart illustrating an operation of the object detection device according to the first embodiment. It is a figure which shows an example of direct transmission / reception. It is a figure which shows an example of indirect transmission / reception. It is a figure which shows the threshold value determination of amplitude data, and determination of the maximum amplitude value.
  • FIG. 1 is a block diagram illustrating a basic configuration example of an object detection device according to Embodiment 1 of the present invention, and illustrates a case where the object detection device is mounted on a vehicle as an example of a moving body.
  • FIG. 2 is a diagram showing an example of the arrangement of distance sensor groups.
  • the object detection device 1 according to the first embodiment is a device that detects an obstacle existing around a vehicle using distance sensor groups Sg1,..., Sgn, and includes a processing unit. 2, a notification unit 3, a GPS (Global Positioning System) sensor 4, a wheel speed sensor 5, a steering angle sensor 6, and a camera 7.
  • GPS Global Positioning System
  • Each of the distance sensor groups Sg1,..., Sgn is composed of a plurality of distance sensors arranged along a predetermined direction (such as a horizontal direction or a vertical direction of the vehicle).
  • a predetermined direction such as a horizontal direction or a vertical direction of the vehicle.
  • the distance sensor is a sensor that transmits a predetermined signal to the outside of the vehicle and receives a reflected wave reflected by an object such as the obstacle 100.
  • the predetermined signal include an ultrasonic signal, a laser beam, and a radio wave. In the following description, it is assumed that the distance sensor is an ultrasonic sensor.
  • the processing unit 2 is a processing unit that calculates the position and shape of an object existing around the vehicle 8 using detection information of the distance sensor groups Sg1,..., Sgn.
  • the functional configuration includes a distance sensor data processing unit 21, a position determination unit 22, a distance sensor data mapping unit 23, a detected object determination unit 24, and a display coordinate conversion unit 25.
  • the distance sensor data processing unit 21 controls the timing of transmission / reception of ultrasonic signals by the individual distance sensors in the distance sensor groups Sg1,..., Sgn, and reflects the ultrasonic signals reflected by objects existing around the vehicle 8.
  • the reflected distance data and the amplitude data of the reflected wave are detected and stored based on the reflected wave whose amplitude exceeds the threshold.
  • the position determination unit 22 determines the movement position of the vehicle 8 (own vehicle) and the positions of the distance sensors of the distance sensor groups Sg1, ..., Sgn based on the GPS information, the wheel speed data, or the steering angle.
  • the distance sensor data mapping unit 23 based on the propagation distance data obtained by the distance sensor data processing unit 21 and the amplitude data of the reflected wave, the candidate position of the reflection point of the object reflecting the ultrasonic signal (transmission signal), and this The amplitude data of the reflected wave (received signal) from the candidate position is mapped onto the detection area of the distance sensor group.
  • the detected object determination unit 24 determines the position and shape of the object based on the candidate position of the reflection point and the three-dimensional mapping data indicating the distribution of the amplitude data of the reflected wave from the candidate position.
  • the display coordinate conversion unit 25 displays a display coordinate system (display) in an arbitrary monitoring range in which an object is set in advance at the position and shape determined by the detection object determination unit 24 from the two-dimensional coordinate system on the detection area of the distance sensor group. (Display coordinate system on the screen of the unit 31).
  • the notification unit 3 detects an object existing around the vehicle 8 such as the obstacle 100 and notifies the degree of danger according to the distance of the object from the vehicle 8.
  • the notification method includes a visual method using the display unit 31 and an auditory method using the audio output unit 32.
  • the sound output unit 32 may emit a warning such as a buzzer.
  • the display unit 31 displays the position and shape of the object in the monitoring range in the display coordinate system converted from the two-dimensional coordinate system on the detection area by the display coordinate conversion unit 25. Further, the display unit 31 may perform a display indicating the degree of danger when an object approaches within a predetermined distance from the vehicle 8. For example, when an object approaches within a predetermined distance from the vehicle 8, the object is highlighted and distinguished from that.
  • the highlighting only needs to represent the degree of danger due to the approach of the object, and may include displaying the object image itself or its outline in a different color (red or other color representing the danger or emission color). Moreover, you may display by the telop and icon which are not shown in figure.
  • the sound output unit 32 notifies, for example, that an object has approached within a predetermined distance from the vehicle 8 and the distance thereof by sound. Further, an alarm such as a buzzer may be output by changing the volume and frequency stepwise according to the distance to the vehicle 8.
  • the GPS sensor 4 receives GPS radio waves from GPS satellites and specifies the position of the vehicle 8.
  • the wheel speed sensor 5 includes a wheel speed sensor L and a wheel speed sensor R provided on the left and right rear wheels of the vehicle 8, respectively, and detects the rotational speed of each wheel (hereinafter referred to as the wheel speed).
  • the steering angle sensor 6 is a sensor that detects a steering operation angle (hereinafter referred to as a steering angle) by a driver of the vehicle 8.
  • the camera 7 is a photographing unit that photographs the situation around the vehicle 8, and includes a front camera provided in front of the vehicle 8, a rear camera provided in the rear part, and the like. In addition, the camera 7 captures the surrounding situation of the vehicle 8 using the detection area of the distance sensor group as an imaging target.
  • the display unit 31 superimposes and displays an object image at the position and shape determined by the detected object determination unit 24 on an object such as the obstacle 100 reflected in the image of the detection area captured by the camera 7.
  • FIG. 3 is a block diagram illustrating a main configuration of the object detection apparatus according to the first embodiment.
  • the distance sensor data processing unit 21 is connected to the distance sensors S1 to S4 constituting the distance sensor group Sgn, and controls the timing of transmission / reception of ultrasonic signals by the distance sensors S1 to S4. Stores propagation distance data and amplitude data of reflected waves (reception signals) in transmission / reception of sound wave signals.
  • a transmission unit 211a, a reception unit 211b, a full wave rectification unit 212, a threshold value determination unit 213, a maximum value determination unit 214, a direct wave signal storage unit 215, and an indirect wave signal storage unit 216 are provided.
  • the transmitter 211a is a component that controls transmission of ultrasonic signals by the distance sensors S1 to S4.
  • the transmission unit 211a transmits ultrasonic pulse signals to the distance sensors S1 to S4 at a predetermined transmission timing, and the distance sensors S1 to S4 transmit ultrasonic signals according to the pulse signals.
  • the reception unit 211b controls the reception timing by the distance sensors S1 to S4 according to the transmission timing of the transmission unit 211a.
  • the receiving unit 211b is connected to the distance sensors S1 to S4 via the changeover switch, and when any of the distance sensors S1 to S4 transmits an ultrasonic signal, the distance sensor S1 to S4 is used using the changeover switch.
  • the distance sensor that receives the reflected wave of the ultrasonic signal is switched from among them.
  • the case where the same distance sensor that transmits the ultrasonic signal receives the reflected wave of the ultrasonic signal is referred to as “direct transmission / reception”.
  • a case where a distance sensor other than the distance sensor that transmits the ultrasonic signal among the distance sensors of the distance sensor group receives the reflected wave of the ultrasonic signal is referred to as “indirect transmission / reception”.
  • the reception unit 211b performs indirect transmission / reception by switching a distance sensor that receives a reflected wave from among the distance sensors in the distance sensor group.
  • the full-wave rectification unit 212 performs full-wave rectification on the reflected wave amplitude data received by the distance sensors S1 to S4 under the control of the reception unit 211b, that is, converts the data to a positive value when the input signal is a negative value. It is a functional part to do.
  • the threshold value determination unit 213 transmits amplitude data exceeding the threshold value set according to the propagation distance from when the ultrasonic wave signal is transmitted to when the reflected wave is received from the reflected waves received by the distance sensors S1 to S4.
  • the reflected wave signal is determined and extracted.
  • the maximum value determination unit 214 determines, for the reflected wave signal extracted by the threshold determination unit 213, a propagation distance from when an ultrasonic signal is transmitted until the reflected wave is received and a maximum amplitude value in a preset time zone. And extract.
  • the direct wave signal storage unit 215 uses the same distance sensor that transmitted the ultrasonic wave to the reflected wave reflected by the object of the ultrasonic signal that is individually transmitted by each of the distance sensors S1 to S4 in the distance sensor group Sgn. Propagation distance data and reflected wave amplitude data in transmission / reception of ultrasonic signals obtained by direct reception are stored.
  • the indirect wave signal storage unit 216 transmits the reflected wave reflected by the object from the ultrasonic signals individually transmitted by the individual distance sensors S1 to S4 in the distance sensor group Sgn and the ultrasonic signals in the distance sensor group Sgn.
  • the propagation distance data and the amplitude data of the reflected wave in the transmission / reception of the ultrasonic signal obtained by receiving indirectly by any one distance sensor other than the distance sensor are stored.
  • the distance sensor data mapping unit 23 based on the data stored in the direct wave signal storage unit 215 and the indirect wave signal storage unit 216, reflects the candidate position of the reflection point in the object to be detected and the amplitude of the reflected wave from this candidate position. Data is mapped onto the detection area of the distance sensor group Sgn.
  • a first reflection point candidate position generation unit 231, a second reflection point candidate position generation unit 232, and an addition amplitude value calculation unit 233 are provided.
  • the first reflection point candidate position generation unit 231 determines the distance from the distance sensor to the object centered on the position of the distance sensor. Assuming that a reflection point exists on the circumference of a circle having a radius as a distance, a three-dimensional mapping is made by mapping the candidate position of the reflection point and the amplitude data of the reflected wave from the candidate position on the detection area of the distance sensor group Sgn. Generate data.
  • the second reflection point candidate position generation unit 232 based on the propagation distance data stored in the indirect wave signal storage unit 216 and the amplitude data of the reflected wave, the position of the distance sensor that transmitted the ultrasonic signal and the ultrasonic signal Assuming that the reflection point exists on the circumference of an ellipse with the position of the distance sensor that received the reflected wave as two fixed points, the reflection point candidate position and the reflection from the candidate position on the detection area of the distance sensor group Sgn Three-dimensional mapping data obtained by mapping wave amplitude data is generated.
  • the addition amplitude value calculation unit 233 combines the three-dimensional mapping data generated by the first reflection point candidate position generation unit 231 and the second reflection point candidate position generation unit 232, respectively.
  • the detected object determination unit 24 is a determination unit that determines the position and shape of an object based on the three-dimensional mapping data calculated by the addition amplitude value calculation unit 233, and includes an identification unit 241 and a position / shape determination unit 242.
  • the identification unit 241 corrects the amplitude data of the reflected wave in the three-dimensional mapping data according to the propagation distance from when the ultrasonic signal is transmitted until the reflected wave is received, and the reflection point is calculated from the three-dimensional mapping data. Identify the distribution of candidate positions.
  • the position / shape determining unit 242 distributes the candidate positions of the reflection points obtained based on the degree of concentration of the candidate positions of the reflection points in the distribution identified by the identification unit 241 and the data stored in the direct wave signal storage unit 215. And at least one of the ratio of the distribution of candidate positions of reflection points obtained based on the data stored in the indirect wave signal storage unit 216 and the degree of change in the distance data from the distance sensor to the object The position and shape of the object are determined.
  • FIG. 4 is a diagram showing the arrangement of distance sensors and their effective detection areas.
  • the conventional object detection device distance data to an object is detected based on a signal obtained by so-called direct transmission / reception in which the same distance sensor that has transmitted an ultrasonic signal generally receives the reflected wave signal.
  • the same distance sensor that has transmitted an ultrasonic signal generally receives the reflected wave signal.
  • the area A1a where the detection areas of the distance sensors S1 to S3 overlap includes an area where the detection areas of the distance sensor S3 do not overlap. In this region, direct transmission / reception is disabled by the distance sensor S3.
  • the area A2a where the detection areas of the distance sensors S1 to S3 overlap includes an area where the detection areas of the distance sensor S1 do not overlap. In this area, the distance sensor S1 cannot directly transmit and receive.
  • the detection areas of the distance sensors S1 to S3 overlap are similarly overlapped, and any of the distance sensors S1 to S3 can directly transmit and receive. Therefore, when detecting by direct transmission / reception, the area Aa including the area A3a becomes an effective detection area.
  • the object detection device 1 performs so-called indirect transmission / reception in which a distance sensor other than the distance sensor that transmits the ultrasonic signal receives the reflected wave in addition to direct transmission / reception. Based on the obtained signal, distance data to the object is detected.
  • the arrangement interval of the distance sensors S1 to S3 can be increased as shown in FIG. Thereby, the increase in the number of sensors can be suppressed compared with the case of only direct transmission / reception.
  • the distance sensors S1 and S2 can directly transmit and receive, and the distance sensors S1 and S2 can also indirectly transmit and receive.
  • the distance sensors S1 and S2 can also indirectly transmit and receive.
  • the detection areas of the distance sensors S2 and S3 overlap, direct transmission / reception is possible with the distance sensors S2 and S3, and indirect transmission / reception with the distance sensors S2 and S3 is also possible.
  • the detection area of distance sensor S2 does not overlap with the detection areas of distance sensors S1 and S3, and only direct transmission / reception by distance sensor S2 is possible.
  • FIG. 5 is a flowchart showing the operation of the object detection device according to the first embodiment, and the processing from when an ultrasonic signal (transmission signal) is transmitted until the obstacle 100 detected around the vehicle 8 is displayed. Is shown.
  • the transmitting unit 211a transmits ultrasonic pulse signals to the distance sensors S1 to S4 at a predetermined transmission timing, so that the distance sensors S1 to S4 transmit ultrasonic signals according to the pulse signals (step ST1). ).
  • FIG. 6 is a diagram illustrating an example of direct transmission / reception.
  • the receiving unit 211b directly transmits / receives the default setting of the changeover switch. That is, when the distance sensor that transmitted the ultrasonic signal is the distance sensor S1, the connection between the receiving unit 211b and the distance sensor S1 in the change-over switch is turned on, and the connections of the other distance sensors S2, S3,. ing.
  • the distance sensor S1 is selected from the reflected waves of the ultrasonic signal transmitted from the distance sensor S1.
  • the reflected wave signal received at is input to the receiver 211b.
  • the propagation distance thereof La is obtained by the following formula. That is, the reception unit 211b calculates the propagation distance from the transmission time of the ultrasonic signal and the reception time of the reflected wave.
  • FIG. 7 is a diagram illustrating an example of indirect transmission / reception.
  • the reception unit 211b turns off the connection with the distance sensor S1 and turns on the connection with the distance sensor S2 using the changeover switch.
  • the reflected wave reflected by the obstacle 100 from the ultrasonic signal transmitted from the distance sensor S1 is received by the distance sensor S2 and is received by the receiver 211b. Entered.
  • the obstacle 100 as shown in FIG. 7A the obstacle 100 as shown in FIG.
  • the receiving unit 211b turns off the connection with the distance sensor S1 using the changeover switch.
  • the connection with the distance sensor S3 is turned on.
  • the reflected wave of the ultrasonic signal transmitted from the distance sensor S1 is received by the distance sensor S3 and input to the receiving unit 211b.
  • the distance sensor S1 transmits an ultrasonic signal at time T3 and the distance sensor S2 other than the distance sensor S1 that transmitted the ultrasonic signal indirectly receives the reflected wave at time T4, the ultrasonic wave is transmitted.
  • the propagation distance in signal transmission / reception that is, the propagation distance Lb from when an ultrasonic signal is transmitted to when the reflected wave is received is obtained by the following equation as in the case of direct transmission / reception.
  • Lb (T4-T3) ⁇ V
  • the full wave rectification unit 212 receives amplitude data of reflected waves (hereinafter referred to as direct waves) obtained by direct transmission / reception and amplitude data of reflected waves (hereinafter referred to as indirect waves) obtained by indirect transmission / reception. Each amplitude data is input from 211b, and these amplitude data are full-wave rectified. That is, the receiving unit 211b detects an ultrasonic reflected wave signal of 40 to 60 kHz from the received signal, and the full-wave rectifying unit 212 performs full-wave rectification on the reflected wave signal to convert it into a pulse signal.
  • the threshold determination unit 213 compares the amplitude data of the reflected wave signal subjected to full-wave rectification with a preset threshold, and determines and extracts a reflected wave signal having an amplitude value exceeding the threshold (step ST4). ).
  • the threshold value determination unit 213 has a threshold value (propagation distance is inversely proportional to the propagation distance as shown in FIG. 8A).
  • the amplitude value is determined using a threshold value that becomes smaller as the length increases. This takes into account that the amplitude value of the ultrasonic wave attenuates according to the propagation distance.
  • the ultrasonic signal may be indirectly transmitted / received at a longer propagation distance than the direct transmission / reception.
  • an appropriate analysis can be performed by determining the amplitude with the threshold corresponding to the propagation distance as described above.
  • the threshold is determined in accordance with, for example, a relationship between the propagation distance and the attenuation amount of ultrasonic waves obtained in advance through experiments or the like.
  • the maximum value determination unit 214 determines and extracts the propagation distance and the maximum amplitude value in a preset time zone in the transmission / reception of ultrasonic signals for the reflected wave extracted by the threshold determination unit 213 (step ST5).
  • the preset time zone is the time zone when the reflected wave is received. That is, this corresponds to a time period from the time of detection (reception) timing of the reflected wave shown in FIG. 8B to the elapse of a predetermined maximum value detection time width ( ⁇ t).
  • the threshold value indicated by a broken line in FIG. 8B is the threshold value illustrated in FIG.
  • the maximum value detection time width is substantially equal to the transmission time width of the ultrasonic signal.
  • the maximum value determination unit 214 determines and extracts the maximum amplitude value of the reflected wave in the time zone ( ⁇ t) as shown in FIG.
  • the propagation distance data and the maximum amplitude value (amplitude data) extracted from the data obtained by the direct transmission / reception by the maximum value determination unit 214 are stored in the direct wave signal storage unit 215. Further, the propagation distance data and the maximum amplitude value extracted from the data obtained by direct transmission / reception are stored in the indirect wave signal storage unit 216. In the three-dimensional mapping described later, since it is necessary and sufficient to use the maximum amplitude value in the reception time zone of the reflected wave, only the maximum amplitude value of the reflected wave is stored. Thereby, the data amount which should be memorize
  • the first reflection point candidate position generation unit 231 has a reflection point candidate position and a reflection point candidate position on the detection area of the distance sensor group Sgn.
  • Three-dimensional mapping data is generated by mapping the amplitude data of the reflected wave from this candidate position (step ST6-1).
  • the first reflection point candidate position generation unit 231 obtains a circle whose center is the position of each of the distance sensors S1 to S3 and whose radius is the distance from the distance sensor to the obstacle 100. .
  • the distance from the distance sensor to the obstacle 100 is obtained by 1/2 of the propagation distance La in transmission / reception of ultrasonic signals.
  • the candidate position of the reflection point can be calculated.
  • the first reflection point candidate position generation unit 231 sets a two-dimensional coordinate system (xy plane) for the detection area of the distance sensor group Sgn, and an intersection of two circles centered on the position of the distance sensor, that is, The candidate position of the reflection point is specified by the distance from the distance sensor to the obstacle 100 and the direction of the obstacle 100 as viewed from the distance sensor. Then, three-dimensional mapping data is generated by mapping the reflection point candidate position and the amplitude data (maximum amplitude value) of the reflected wave (direct wave) from the candidate position on the detection area.
  • the second reflection point candidate position generation unit 232 based on the propagation distance data and the amplitude data stored in the indirect wave signal storage unit 216, sets the reflection point candidate position and the reflection point candidate position on the detection area of the distance sensor group Sgn.
  • Three-dimensional mapping data is generated by mapping the amplitude data of the reflected wave from the candidate position (step ST6-2).
  • the second reflection point candidate position generation unit 232 receives the position of the distance sensor S1 that transmitted the ultrasonic signal and the distance sensor S2 that received the reflected wave of the ultrasonic signal. An ellipse having two fixed points at the position of is obtained.
  • the propagation distance in the transmission / reception of the ultrasonic signal is the propagation distance from the distance sensor that transmits the ultrasonic signal with a point on the circumference of the ellipse as the reflection point to the reflection point of the obstacle 100 and the reflection point. This corresponds to the sum of the propagation distance until the reflected wave reflected by the distance sensor is received by the distance sensor.
  • the second reflection point candidate position generation unit 232 sets a two-dimensional coordinate system (xy plane) in the detection area of the distance sensor group Sgn, and performs distance measurement.
  • the candidate position of the reflection point is specified by the distance from the sensor to the object and the orientation of the object viewed from the distance sensor.
  • three-dimensional mapping data is generated by mapping the candidate position of the reflection point and the amplitude data (maximum amplitude value) of the reflected wave (indirect wave) from the candidate position on the xy plane of the detection area.
  • the candidate position of the reflection point is specified from the following equation.
  • Xa is the distance from the midpoint of the line segment connecting the distance sensor S1 on the transmission side of the ultrasonic signal and the distance sensor S2 on the reception side of the reflected wave to the distance sensor S1
  • Xb is This is the distance from the point to the distance sensor S2.
  • Y is the vertical distance from the midpoint to the obstacle 100 (the length of the short radius of the ellipse).
  • Za is the propagation distance of the ultrasonic signal (transmitted wave) from the distance sensor S1 to the obstacle 100
  • Zb is the propagation distance of the ultrasonic signal (received wave) from the obstacle 100 to the distance sensor S2.
  • FIGS. 9 to 11 are diagrams showing examples of three-dimensional mapping.
  • the first reflection point candidate position generation unit 231 and the second reflection point candidate position generation unit 232 have x set in the detection area of the distance sensor group (distance sensors S1 to S3).
  • the candidate position of the reflection point is mapped on the -y plane, and three-dimensional mapping is performed by setting the amplitude data of the reflected wave from this candidate position on the z axis.
  • FIG. 9 shows a case where the candidate positions of the reflection points determined based on the detection information of the distance sensors S1 to S3 are concentrated in a circle on the xy plane. That is, from the three-dimensional mapping data in FIG. 9, it is expected that the obstacle 100 is a cylindrical object whose shape on the plane on which the distance sensor group Sgn (distance sensors S1 to S3) is arranged is circular.
  • the distance sensor group Sgn distance sensors S1 to S3
  • the candidate positions of the reflection points determined based on the detection information of the distance sensors S1 to S3 are linear on the xy plane (a line parallel to the y axis in which the distance sensors S1 to S3 are arranged).
  • the case where it is located in a row is shown.
  • the obstacle 100 is expected to be a flat plate-like object having a linear shape on the plane on which the distance sensor group Sgn (distance sensors S1 to S3) is disposed.
  • the candidate position of the reflection point determined based on the detection information of the distance sensors S1 to S3 is on the y axis where the distance sensors S1 to S3 are arranged on the xy plane of the detection area.
  • the obstacle 100 is a flat plate-like object having a linear shape on the plane on which the distance sensor group Sgn (distance sensors S1 to S3) is arranged and inclined with respect to the distance sensors S1 to S3. It is expected that.
  • the added amplitude value calculation unit 233 synthesizes the three-dimensional mapping data generated by the first reflection point candidate position generation unit 231 and the second reflection point candidate position generation unit 232, respectively (step ST7).
  • the synthesis of the three-dimensional mapping data includes the amplitude data of the direct wave in the three-dimensional mapping data using the result received by direct transmission / reception, and the amplitude data of the indirect wave in the three-dimensional mapping data using the result received by indirect transmission / reception. Is a process of adding. In this way, when the candidate positions of the reflection points are interpolated and the same candidate position is obtained, the amplitude value of the reflected wave from there can be emphasized. Thereby, the reliability of object detection can be improved.
  • the addition amplitude value calculation unit 233 adds the amplitude data of the reflected wave of the three-dimensional mapping data generated by the first reflection point candidate position generation unit 231 and the second reflection point candidate position generation unit 232, respectively.
  • the candidate position of the reflection point and the reflected wave from this candidate position on a flat object (a flat plate parallel to the arrangement direction of the plurality of distance sensors S) existing on the detection area of the distance sensor S.
  • the three-dimensional mapping data indicating the amplitude data is added by the result obtained by direct transmission / reception (upper stage) and the result obtained by indirect transmission / reception (lower stage).
  • the candidate position of the reflection point on the flat plate-shaped object (the flat plate inclined with respect to the arrangement direction of the plurality of distance sensors S) existing on the detection area of the distance sensor S and Three-dimensional mapping data indicating the amplitude data of the reflected wave is added with the result obtained by direct transmission / reception (upper stage) and the result obtained by indirect transmission / reception (lower stage).
  • the candidate positions of the reflection points are interpolated by adding the three-dimensional mapping data using the results of receiving the reflected wave detected by the same object by direct transmission and reception and indirect transmission and reception, respectively.
  • the identification unit 241 identifies the distribution of the candidate positions of the reflection points from the three-dimensional mapping data calculated by the addition amplitude value calculation unit 233 (step ST8).
  • the identification unit 241 corrects the amplitude data of the reflected wave in the three-dimensional mapping data according to the propagation distance from when the ultrasonic signal is transmitted until the reflected wave is received. Thereafter, the identification unit 241 identifies the distribution of the candidate positions of the reflection points from the corrected three-dimensional mapping data.
  • FIG. 14 is a diagram illustrating the relationship between the propagation distance and the amplitude correction value. As shown in FIG. 14, a correction value that is a large value in proportion to the propagation distance in transmission / reception of an ultrasonic signal is set in the identification unit 241.
  • the identification unit 241 When the identification unit 241 receives the three-dimensional mapping data from the addition amplitude value calculation unit 233, the identification unit 241 converts the amplitude data of the reflected wave in the three-dimensional mapping data into a correction value corresponding to the propagation distance. By doing in this way, the attenuation of the amplitude resulting from the propagation distance can be corrected.
  • the position / shape determining unit 242 determines the position and shape of the obstacle 100 based on the distribution of the candidate positions of the reflection points identified by the identifying unit 241 (step ST9). That is, the degree of concentration of the candidate positions of the reflection points in the identified distribution, the ratio between the distribution of the candidate positions of the direct wave reflection points and the distribution of the candidate positions of the reflection points of the indirect wave, and the obstacle 100 from the distance sensor.
  • the position and shape of the obstacle 100 are determined based on at least one of the degree of change of the distance data up to.
  • the position of the obstacle 100 is specified by the distance from the distance sensor to the obstacle 100 and the direction of the obstacle 100 viewed from the distance sensor.
  • the shape of the obstacle 100 is specified by the shape and size on the plane where the distance sensor group Sgn is disposed, and whether or not the obstacle 100 is inclined with respect to the direction in which the distance sensor is disposed in the distance sensor group Sgn. .
  • FIG. 15 is a diagram illustrating an example of identifying a distribution of candidate positions of reflection points.
  • the position / shape determining unit 242 determines the position and shape of the obstacle 100 from the distribution of the position candidates of the reflection points as shown in FIG.
  • the distribution shown in FIG. 15A is obtained in a proportion similar to the distribution by the direct wave and the distribution by the indirect wave. In this case, it is expected that the obstacle 100 has a curved surface portion or a flat surface portion wider than the distance between adjacent distance sensors on the outer shape.
  • the position candidates of the reflection points are concentrated on a part, so that the obstacle 100 is not on the plane portion but on the plane on which the distance sensor group Sgn is arranged. It is determined that the shape is a circular cylindrical shape (see, for example, FIG. 6).
  • the distribution shown in FIG. 15B is only a distribution due to an indirect wave, it is expected that the obstacle 100 has a planar portion narrower than the interval between adjacent distance sensors on the outer shape.
  • the reflection point position candidates are concentrated in part, so that the obstacle 100 has a rectangular shape on the plane on which the distance sensor group Sgn is disposed. It is determined that the shape is a prismatic shape (see, for example, FIG. 7).
  • the proportion of the distribution by the indirect wave is larger than the distribution by the direct wave so as to exceed a predetermined threshold, it means that the distance sensor group Sgn has few distance sensors that can be directly transmitted and received, and the obstacle 100 A prismatic shape having a narrow flat portion is expected.
  • the plurality of distance sensors in the distance sensor group Sgn performs direct transmission and indirect transmission at the same rate.
  • the obstacle 100 is expected to have a curved surface portion or a flat surface portion wider than the distance between adjacent distance sensors on the outer shape.
  • the position candidates of the reflection points are not concentrated in part, so the obstacle 100 is not a curved surface portion but on a plane on which the distance sensor group Sgn is arranged. Is determined to be a linear flat plate shape (see, for example, FIG. 12).
  • the plurality of distance sensors in the distance sensor group Sgn performs direct transmission / reception and indirect transmission / reception at the same rate. Also, the reflection point position candidates are not concentrated in part. Therefore, it is expected that the obstacle 100 has a flat portion wider than the distance between adjacent distance sensors on the outer shape.
  • the distance data from the distance sensor to the obstacle 100 is gradually changing with respect to the direction in which the plurality of distance sensors of the distance sensor group Sgn is disposed.
  • the obstacle 100 is determined to have a flat plate shape inclined with respect to the distance sensor group Sgn.
  • a more specific example of obstacle shape determination will be described below.
  • the shape of the obstacle is that of the direct wave and reflected wave shown in FIGS. 15A, 15B, 15C, 15D after the sensors S1, S2, S3 as shown in FIG. It is determined by the ratio between the vertical Ti and horizontal Th of the distribution shape and the detection frequency of the direct wave and the indirect wave.
  • the relationship of the aspect ratio of the cylinder is as shown in the following formula (1). Th ⁇ Ti (1)
  • Th ⁇ Ti (1)
  • the display coordinate conversion unit 25 moves the obstacle 100 from the two-dimensional coordinate system on the detection area of the distance sensor group to the arbitrary monitoring range set in advance with the position and shape determined by the position / shape determination unit 242. Conversion to a display coordinate system to be displayed (display coordinate system on the screen of the display unit 31) is performed (step ST10). Subsequently, the display unit 31 displays the position and shape of the obstacle 100 in the monitoring range in the display coordinate system converted from the two-dimensional coordinate system on the detection area by the display coordinate conversion unit 25 (step ST11).
  • the present invention uses detection information of indirect transmission / reception in addition to direct transmission / reception, even if the distance sensor installation interval is widened and the number thereof is reduced, the distance sensor detection information will not be insufficient. Therefore, it is possible to determine the position and shape of the obstacle 100 with a small number of sensors. Moreover, since the detection information in indirect transmission / reception is used, the prismatic obstacle 100 can be detected as described above.
  • FIG. 16 is a diagram illustrating a monitor range display process according to the movement of the vehicle.
  • a vehicle 8 is equipped with the object detection device 1 according to the first embodiment, and includes distance sensor groups Sg ⁇ b> 1 and Sg ⁇ b> 2 and a camera 7.
  • the distance sensor group Sg ⁇ b> 1 is provided in the rear part of the vehicle 8, and the distance sensor group Sg ⁇ b> 2 is provided in the front part of the vehicle 8.
  • the camera 7 is provided as a rear camera in the rear part of the vehicle 8 and uses the detection area Ab of the distance sensor group Sg1 as a photographing range.
  • the vehicle 8 is also equipped with the GPS sensor 4, the wheel speed sensor 5, and the steering angle sensor 6 shown in FIG.
  • the detected object determination unit 24 determines the position and shape of the obstacle 100 existing in the detection area Ab of the distance sensor group Sg1 as described above, and the display unit 31 The obstacle 100 on the detection area Ab is displayed.
  • FIG. 16B a case where the driver operates the steering of the vehicle 8 and the vehicle 8 is bent by an angle ⁇ from the state of FIG.
  • the position determination unit 22 determines the movement position and distance sensor of the vehicle 8 based on the GPS information acquired by the GPS sensor 4, the wheel speed data acquired by the wheel speed sensor 5, or the steering angle acquired by the steering angle sensor 6.
  • the positions of the distance sensors of the groups Sg1 and Sg2 are determined.
  • the display coordinate conversion unit 25 displays a monitoring range in which the obstacle 100 is displayed at the position and shape determined by the detected object determination unit 24 based on the movement position of the vehicle 8 and the position of the distance sensor determined by the position determination unit 22.
  • the coordinate system is converted into a display coordinate system corresponding to the direction of the distance sensor that changes as the vehicle 8 moves.
  • the display coordinates in FIG. 16A are also tilted in accordance with the vehicle tilt angle ⁇ . In other words, the display is performed so that the display range of the detection area Ab is at a position facing the rear portion of the vehicle 8.
  • the display coordinate conversion unit 25 considers a change in the direction of the distance sensor accompanying the movement of the vehicle 8 from the movement position of the vehicle 8 and the position of the distance sensor, and the position of the obstacle 100 in the detection area Ab after the movement. Calculate coordinates. As a result, as shown in FIG. 16B, the obstacle 100 is displayed in the display range of the detection area Ab of the distance sensor group whose direction has changed by the amount the vehicle 8 is bent.
  • the display unit 31 displays the obstacle 100 in the monitoring range in the display coordinate system converted by the display coordinate conversion unit 25 and also displays video information (rear video) around the vehicle 8 taken by the camera 7. You may do it.
  • the reflected wave from the obstacle 100 of the ultrasonic signal individually transmitted by the individual distance sensors S1 to S4 in the distance sensor group Sgn is used as the ultrasonic signal.
  • a direct wave signal storage unit 215 for storing propagation distance data and reflected wave amplitude data in transmission / reception of an ultrasonic signal directly received by the same transmitted distance sensor, and individual distances in the distance sensor group Sgn The reflected wave from the obstacle 100 of the ultrasonic signal transmitted independently by each of the sensors S1 to S4 is indirectly received by any one distance sensor other than the distance sensor that transmitted the ultrasonic signal in the distance sensor group Sgn.
  • An indirect wave signal storage unit 216 for storing propagation distance data and reflected wave amplitude data in transmission / reception of ultrasonic signals obtained in this manner, and direct wave signal recording Based on the propagation distance data and the amplitude data stored in the unit 215 and the indirect wave signal storage unit 216, the reflection point candidate position and the amplitude data of the reflected wave from the candidate position are placed on the detection area of the distance sensor group Sgn.
  • the obstacle 100 Based on the distance sensor data mapping unit 23 to be mapped, and the three-dimensional mapping data indicating the distribution of the reflection point candidate position generated by the distance sensor data mapping unit 23 and the amplitude data of the reflected wave from the candidate position, the obstacle 100 From the detected object determination unit 24 that determines the position and shape of the sensor and the coordinate system on the detection area of the distance sensor group Sgn to the display coordinate system of the monitoring range that displays the object at the position and shape determined by the detected object determination unit 24 A display coordinate conversion unit 25 for conversion and a display coordinate system converted by the display coordinate conversion unit 25 display an object in the monitoring range. And a display unit 31. By comprising in this way, the obstacle of various shapes is detectable, without causing the increase in a distance sensor.
  • any component of the embodiment can be modified or any component of the embodiment can be omitted within the scope of the invention.
  • the object detection device is suitable for an obstacle detection device that detects an obstacle around the vehicle because it can detect objects of various shapes without increasing the distance sensor.
  • 1 object detection device 2 processing unit, 3 notification unit, 4 GPS sensor, 5 wheel speed sensor, 6 steering angle sensor, 7 camera, 8 vehicle, 21 distance sensor data processing unit, 22 position determination unit, 23 distance sensor data mapping Unit, 24 detection object determination unit, 25 display coordinate conversion unit, 31 display unit, 32 audio output unit, 100 obstacle, 211a transmission unit, 211b reception unit, 212 full wave rectification unit, 213 threshold determination unit, 214 maximum value determination , 215 direct wave signal storage unit, 216 indirect wave signal storage unit, 231 first reflection point candidate position generation unit, 232 second reflection point candidate position generation unit, 233 addition amplitude value calculation unit, 241 identification unit, 242 Position / shape determination unit, Sg1-Sgn distance sensor group, S, S1-S4 distance sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

A reflective wave of a transmission signal of an ultrasonic wave from an obstacle (100) is acquired through direct and indirect transceiving; a candidate position for the point of reflection and amplitude data of the reflective wave from the candidate position are mapped in 3D, on the basis of propagation distance data for the transceiving of the ultrasonic wave signal and of amplitude data of the reflective wave, on a detection area of a distance sensor group (Sgn); and a position and shape of the obstacle (100) are determined and displayed on the basis of the 3-D mapping data.

Description

物体検知装置Object detection device
 この発明は、距離センサを用いて物体を検知する物体検知装置に関する。 The present invention relates to an object detection device that detects an object using a distance sensor.
 特許文献1が開示する従来の物体検知装置は、車両に設けた複数の距離センサから送信された超音波信号が車外の障害物で反射した反射波を、当該超音波信号を送信した距離センサで直接的に検知して当該障害物の存在およびその形状を判定する。 The conventional object detection device disclosed in Patent Document 1 is a distance sensor that transmits a reflected wave that is reflected by an obstacle outside the vehicle and is transmitted from a plurality of distance sensors provided in the vehicle. The presence and shape of the obstacle are determined by direct detection.
特開平7-260933号公報JP 7-260933 A
 特許文献1に代表される従来の技術では、障害物までの距離を半径とする距離センサの位置を中心とした円を複数の距離センサでそれぞれ規定し、これらの円の交点が障害物における反射点であるものとしている。
 しかし、この方法では、少なくとも2つの距離センサによる2円が交わるように互いの検知エリアが重複している必要がある。このため、距離センサの設置間隔が広すぎると、2円の交点が得られず、障害物の位置を判定できないという課題があった。
 また、距離センサの設置間隔を詰めるためにその設置個数を増やした場合は、車両への距離センサの取り付け作業が煩雑になる上、装置全体のコストアップに繋がる。
 さらに、距離センサに対して傾斜した面を有する障害物では、超音波信号の送信元の距離センサの方向に反射波が戻らないため、当該距離センサで反射波を直接的に検知できないという課題があった。
In the conventional technique represented by Patent Document 1, circles centering on the position of a distance sensor whose radius is the distance to the obstacle are defined by a plurality of distance sensors, and the intersection of these circles is reflected on the obstacle. It is supposed to be a point.
However, this method requires that the detection areas of each other overlap so that two circles of at least two distance sensors intersect. For this reason, when the installation interval of the distance sensor is too wide, there is a problem that the intersection of two circles cannot be obtained and the position of the obstacle cannot be determined.
Further, when the number of installed distance sensors is increased in order to reduce the distance between the distance sensors, the installation work of the distance sensors to the vehicle becomes complicated and the cost of the entire apparatus increases.
Furthermore, in an obstacle having a surface inclined with respect to the distance sensor, the reflected wave does not return in the direction of the distance sensor that is the transmission source of the ultrasonic signal, and thus there is a problem that the reflected wave cannot be directly detected by the distance sensor. there were.
 この発明は、上記のような課題を解決するためになされたもので、距離センサの増加を招くことなく障害物の検知精度を向上させることができ、さらに、検知された障害物の様々な形状を検知できる物体検知装置を得ることを目的とする。 The present invention has been made to solve the above-described problems, and can improve the detection accuracy of obstacles without causing an increase in distance sensors. Furthermore, various shapes of detected obstacles can be obtained. It is an object to obtain an object detection device capable of detecting
 この発明に係る物体検知装置は、距離センサ群における個々の距離センサがそれぞれ単独で送信した所定の信号の物体からの反射波を、当該所定の信号を送信した同一の距離センサで直接的に受信して得られた所定の信号の送受信における伝搬距離データおよび反射波の振幅データを記憶する直接波信号記憶部と、距離センサ群における個々の距離センサがそれぞれ単独で送信した所定の信号の物体からの反射波を、距離センサ群における当該所定の信号を送信した距離センサ以外のいずれか一つの距離センサで間接的に受信して得られた所定の信号の送受信における伝搬距離データおよび反射波の振幅データを記憶する間接波信号記憶部と、直接波信号記憶部および間接波信号記憶部にそれぞれ記憶された伝搬距離データおよび振幅データに基づいて、物体の反射点の候補位置およびこの候補位置からの当該反射波の振幅データを、距離センサ群の検知エリア上にマッピングする距離センサデータマッピング部と、距離センサデータマッピング部が生成した反射点の候補位置およびこの候補位置からの反射波の振幅データの分布を示す3次元マッピングデータに基づいて、物体の位置および形状を判定する検知物判定部と、距離センサ群の検知エリア上の座標系から、検知物判定部が判定した位置および形状で物体を表示する監視範囲の表示座標系へ変換する表示座標変換部と、表示座標変換部が変換した表示座標系で、監視範囲の物体を表示する表示部とを備える。 The object detection device according to the present invention directly receives a reflected wave from an object of a predetermined signal transmitted individually by each distance sensor in the distance sensor group by the same distance sensor that transmitted the predetermined signal. From a direct wave signal storage unit for storing propagation distance data and reflected wave amplitude data in transmission / reception of a predetermined signal obtained in this manner, and an object of a predetermined signal transmitted individually by each distance sensor in the distance sensor group Propagation distance data and reflected wave amplitude in transmission / reception of a predetermined signal obtained by indirectly receiving the reflected wave of the predetermined signal by any one of the distance sensors other than the distance sensor that transmitted the predetermined signal. An indirect wave signal storage unit for storing data, and propagation distance data and amplitude data stored in the direct wave signal storage unit and the indirect wave signal storage unit, respectively. The distance sensor data mapping unit and the distance sensor data mapping unit that map the candidate position of the reflection point of the object and the amplitude data of the reflected wave from the candidate position on the detection area of the distance sensor group are generated Based on the three-dimensional mapping data indicating the candidate position of the reflection point and the distribution of the amplitude data of the reflected wave from the candidate position, the detection object determination unit for determining the position and shape of the object, and on the detection area of the distance sensor group The display coordinate conversion unit that converts the coordinate system to the display coordinate system of the monitoring range that displays the object at the position and shape determined by the detected object determination unit, and the display coordinate system that is converted by the display coordinate conversion unit. The display part which displays.
 この発明によれば、距離センサの増加を招くことなく障害物の検知精度を向上させることができ、さらに、検知された障害物の様々な形状を検知できるという効果がある。 According to the present invention, it is possible to improve obstacle detection accuracy without causing an increase in the distance sensor, and it is possible to detect various shapes of the detected obstacle.
この発明の実施の形態1に係る物体検知装置の基本的な構成例を示すブロック図である。It is a block diagram which shows the basic structural example of the object detection apparatus which concerns on Embodiment 1 of this invention. 距離センサ群の配置の一例を示す図である。It is a figure which shows an example of arrangement | positioning of a distance sensor group. 実施の形態1に係る物体検知装置の主要な構成を示すブロック図である。1 is a block diagram illustrating a main configuration of an object detection device according to Embodiment 1. FIG. 距離センサの配置およびその有効検知エリアを示す図である。It is a figure which shows arrangement | positioning of a distance sensor, and its effective detection area. 実施の形態1に係る物体検知装置の動作を示すフローチャートである。3 is a flowchart illustrating an operation of the object detection device according to the first embodiment. 直接送受信の一例を示す図である。It is a figure which shows an example of direct transmission / reception. 間接送受信の一例を示す図である。It is a figure which shows an example of indirect transmission / reception. 振幅データの閾値判定と最大振幅値の判定を示す図である。It is a figure which shows the threshold value determination of amplitude data, and determination of the maximum amplitude value. 3次元マッピングの例(円柱状の物体)を示す図である。It is a figure which shows the example (cylindrical object) of a three-dimensional mapping. 3次元マッピングの例(平板状の物体)を示す図である。It is a figure which shows the example (flat object) of three-dimensional mapping. 3次元マッピングの例(傾いた平板状の物体)を示す図である。It is a figure which shows the example (tilted flat object) of the three-dimensional mapping. 振幅加算処理の例(平板形状の物体)を示す図である。It is a figure which shows the example (plate-shaped object) of an amplitude addition process. 振幅加算処理の例(傾いた平板形状の物体)を示す図である。It is a figure which shows the example (inclined flat plate-shaped object) of an amplitude addition process. 伝搬距離と振幅補正値との関係を示す図である。It is a figure which shows the relationship between a propagation distance and an amplitude correction value. 反射点の候補位置の分布の識別例を示す図である。It is a figure which shows the example of identification of distribution of the candidate position of a reflective point. 車両の移動に応じた監視範囲の表示変換処理を示す図である。It is a figure which shows the display conversion process of the monitoring range according to the movement of a vehicle.
 以下、この発明をより詳細に説明するため、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明の実施の形態1に係る物体検知装置の基本的な構成例を示すブロック図であり、移動体の一例として車両に搭載した場合を示している。また、図2は距離センサ群の配置の一例を示す図である。図1に示すように、実施の形態1に係る物体検知装置1は、距離センサ群Sg1,・・・,Sgnを用いて、車両の周辺に存在する障害物を検知する装置であり、処理部2、報知部3、GPS(Global Positioning System)センサ4、車輪速センサ5、ステアリング角度センサ6、およびカメラ7を備える。
Hereinafter, in order to describe the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
FIG. 1 is a block diagram illustrating a basic configuration example of an object detection device according to Embodiment 1 of the present invention, and illustrates a case where the object detection device is mounted on a vehicle as an example of a moving body. FIG. 2 is a diagram showing an example of the arrangement of distance sensor groups. As shown in FIG. 1, the object detection device 1 according to the first embodiment is a device that detects an obstacle existing around a vehicle using distance sensor groups Sg1,..., Sgn, and includes a processing unit. 2, a notification unit 3, a GPS (Global Positioning System) sensor 4, a wheel speed sensor 5, a steering angle sensor 6, and a camera 7.
 距離センサ群Sg1,・・・,Sgnの各々は、所定の方向(車両の水平方向あるいは垂直方向など)に沿って配設した複数の距離センサから構成される。例えば、図2に示す距離センサ群Sg1,Sg2では、車両8の後方および前方のバンパ部分に車両8の水平方向に沿って複数の距離センサを配設している。
 なお、距離センサは、所定の信号を車両外に送信して、障害物100などの物体で反射した反射波を受信するセンサである。所定の信号には、超音波信号、レーザ光、電波などが挙げられる。以降では、距離センサが超音波センサであるものとして説明する。
Each of the distance sensor groups Sg1,..., Sgn is composed of a plurality of distance sensors arranged along a predetermined direction (such as a horizontal direction or a vertical direction of the vehicle). For example, in the distance sensor groups Sg <b> 1 and Sg <b> 2 shown in FIG. 2, a plurality of distance sensors are disposed along the horizontal direction of the vehicle 8 in the bumper portions at the rear and front of the vehicle 8.
The distance sensor is a sensor that transmits a predetermined signal to the outside of the vehicle and receives a reflected wave reflected by an object such as the obstacle 100. Examples of the predetermined signal include an ultrasonic signal, a laser beam, and a radio wave. In the following description, it is assumed that the distance sensor is an ultrasonic sensor.
 処理部2は、距離センサ群Sg1,・・・,Sgnの検知情報を用いて車両8の周辺に存在する物体の位置とその形状を演算する処理部である。その機能構成として、距離センサデータ処理部21、位置判定部22、距離センサデータマッピング部23、検知物判定部24、および表示座標変換部25を備える。
 距離センサデータ処理部21は、距離センサ群Sg1,・・・,Sgnにおける個々の距離センサによる超音波信号の送受信のタイミングを制御して、車両8の周辺に存在する物体で反射した超音波信号の反射波を受信し、振幅が閾値を超える反射波に基づいて超音波信号の送受信における伝搬距離データおよび反射波の振幅データを検知して記憶する。
 位置判定部22は、GPS情報、車輪速データまたは操舵角に基づいて、車両8(自車両)の移動位置、および距離センサ群Sg1,・・・,Sgnの距離センサの位置を判定する。
The processing unit 2 is a processing unit that calculates the position and shape of an object existing around the vehicle 8 using detection information of the distance sensor groups Sg1,..., Sgn. The functional configuration includes a distance sensor data processing unit 21, a position determination unit 22, a distance sensor data mapping unit 23, a detected object determination unit 24, and a display coordinate conversion unit 25.
The distance sensor data processing unit 21 controls the timing of transmission / reception of ultrasonic signals by the individual distance sensors in the distance sensor groups Sg1,..., Sgn, and reflects the ultrasonic signals reflected by objects existing around the vehicle 8. The reflected distance data and the amplitude data of the reflected wave are detected and stored based on the reflected wave whose amplitude exceeds the threshold.
The position determination unit 22 determines the movement position of the vehicle 8 (own vehicle) and the positions of the distance sensors of the distance sensor groups Sg1, ..., Sgn based on the GPS information, the wheel speed data, or the steering angle.
 距離センサデータマッピング部23は、距離センサデータ処理部21で得られた伝搬距離データおよび反射波の振幅データに基づいて、超音波信号(送信信号)を反射した物体の反射点の候補位置およびこの候補位置からの反射波(受信信号)の振幅データを、距離センサ群の検知エリア上にマッピングする。
 検知物判定部24は、反射点の候補位置およびこの候補位置からの反射波の振幅データの分布を示す3次元マッピングデータに基づいて物体の位置および形状を判定する。
 表示座標変換部25は、距離センサ群の検知エリア上の2次元座標系から、検知物判定部24が判定した位置および形状で物体を予め設定した任意の監視範囲に表示する表示座標系(表示部31の画面上の表示座標系)へ変換する。
The distance sensor data mapping unit 23, based on the propagation distance data obtained by the distance sensor data processing unit 21 and the amplitude data of the reflected wave, the candidate position of the reflection point of the object reflecting the ultrasonic signal (transmission signal), and this The amplitude data of the reflected wave (received signal) from the candidate position is mapped onto the detection area of the distance sensor group.
The detected object determination unit 24 determines the position and shape of the object based on the candidate position of the reflection point and the three-dimensional mapping data indicating the distribution of the amplitude data of the reflected wave from the candidate position.
The display coordinate conversion unit 25 displays a display coordinate system (display) in an arbitrary monitoring range in which an object is set in advance at the position and shape determined by the detection object determination unit 24 from the two-dimensional coordinate system on the detection area of the distance sensor group. (Display coordinate system on the screen of the unit 31).
 報知部3は、障害物100などの車両8の周辺に存在する物体の検知および当該物体の車両8との距離に応じた危険度合いを報知する。報知の方法には、表示部31による視覚的な方法や、音声出力部32による聴覚的な方法がある。なお、音声出力部32は、ブザー等の警報を発するものであってもよい。
 視覚的な報知方法として、表示部31が、表示座標変換部25によって検知エリア上の2次元座標系から変換された表示座標系で監視範囲の物体の位置および形状を表示する。
 また、表示部31は、車両8から所定の距離内に物体が接近した場合に、危険の度合いを示す表示を行ってもよい。例えば、車両8から所定の距離内に物体が接近すると、それまでとは区別して当該物体を強調表示する。強調表示としては、物体の接近による危険の度合いを表していればよく、物体の画像そのものあるいはその輪郭を異なる色(赤色などの危険を表す色や発光色)で表示することなどが挙げられる。また、図示しないテロップやアイコンなどで表示してもよい。
 聴覚的な報知方法としては、音声出力部32が、例えば車両8から所定の距離内に物体が接近したこと、および、その距離などを音声で報知する。また、ブザーなどの警報を、車両8までの距離に応じて段階的に音量や周波数を変えて出力してもよい。
The notification unit 3 detects an object existing around the vehicle 8 such as the obstacle 100 and notifies the degree of danger according to the distance of the object from the vehicle 8. The notification method includes a visual method using the display unit 31 and an auditory method using the audio output unit 32. The sound output unit 32 may emit a warning such as a buzzer.
As a visual notification method, the display unit 31 displays the position and shape of the object in the monitoring range in the display coordinate system converted from the two-dimensional coordinate system on the detection area by the display coordinate conversion unit 25.
Further, the display unit 31 may perform a display indicating the degree of danger when an object approaches within a predetermined distance from the vehicle 8. For example, when an object approaches within a predetermined distance from the vehicle 8, the object is highlighted and distinguished from that. The highlighting only needs to represent the degree of danger due to the approach of the object, and may include displaying the object image itself or its outline in a different color (red or other color representing the danger or emission color). Moreover, you may display by the telop and icon which are not shown in figure.
As an audible notification method, the sound output unit 32 notifies, for example, that an object has approached within a predetermined distance from the vehicle 8 and the distance thereof by sound. Further, an alarm such as a buzzer may be output by changing the volume and frequency stepwise according to the distance to the vehicle 8.
 GPSセンサ4は、GPS衛星からGPS電波を受信して車両8の位置を特定する。
 車輪速センサ5は、車輪速センサLおよび車輪速センサRが車両8の左側および右側の後車輪にそれぞれ設けられ、各車輪の回転速度(以下、車輪速と呼ぶ)を検出する。
 ステアリング角度センサ6は、車両8の運転者によるステアリングの操作角度(以下、ステアリング角度と呼ぶ)を検出するセンサである。
 カメラ7は、車両8の周辺状況を撮影する撮影部であり、車両8の前方に設けたフロントカメラや、後方部に設けたリアカメラなどが挙げられる。また、カメラ7は、距離センサ群の検知エリアを撮影対象として車両8の周辺状況を撮影する。表示部31は、カメラ7が撮影した検知エリアの映像に映る障害物100などの物体に、検知物判定部24が判定した位置および形状で物体画像を重畳表示する。
The GPS sensor 4 receives GPS radio waves from GPS satellites and specifies the position of the vehicle 8.
The wheel speed sensor 5 includes a wheel speed sensor L and a wheel speed sensor R provided on the left and right rear wheels of the vehicle 8, respectively, and detects the rotational speed of each wheel (hereinafter referred to as the wheel speed).
The steering angle sensor 6 is a sensor that detects a steering operation angle (hereinafter referred to as a steering angle) by a driver of the vehicle 8.
The camera 7 is a photographing unit that photographs the situation around the vehicle 8, and includes a front camera provided in front of the vehicle 8, a rear camera provided in the rear part, and the like. In addition, the camera 7 captures the surrounding situation of the vehicle 8 using the detection area of the distance sensor group as an imaging target. The display unit 31 superimposes and displays an object image at the position and shape determined by the detected object determination unit 24 on an object such as the obstacle 100 reflected in the image of the detection area captured by the camera 7.
 図3は、実施の形態1に係る物体検知装置の主要な構成を示すブロック図である。図3に示すように、距離センサデータ処理部21は、距離センサ群Sgnを構成する距離センサS1~S4と接続して、距離センサS1~S4による超音波信号の送受信のタイミングを制御し、超音波信号の送受信における伝搬距離データおよび反射波(受信信号)の振幅データを記憶する。
 その機能構成として、送信部211a、受信部211b、全波整流部212、閾値判定部213、最大値判定部214、直接波信号記憶部215および間接波信号記憶部216を備える。
FIG. 3 is a block diagram illustrating a main configuration of the object detection apparatus according to the first embodiment. As shown in FIG. 3, the distance sensor data processing unit 21 is connected to the distance sensors S1 to S4 constituting the distance sensor group Sgn, and controls the timing of transmission / reception of ultrasonic signals by the distance sensors S1 to S4. Stores propagation distance data and amplitude data of reflected waves (reception signals) in transmission / reception of sound wave signals.
As a functional configuration thereof, a transmission unit 211a, a reception unit 211b, a full wave rectification unit 212, a threshold value determination unit 213, a maximum value determination unit 214, a direct wave signal storage unit 215, and an indirect wave signal storage unit 216 are provided.
 送信部211aは、距離センサS1~S4による超音波信号の送信を制御する構成部である。例えば、送信部211aは、予め定めた送信タイミングで超音波のパルス信号を距離センサS1~S4に送り、距離センサS1~S4は、当該パルス信号に応じて超音波信号を送信する。
 受信部211bは、送信部211aの送信タイミングに応じて距離センサS1~S4による受信タイミングを制御する。例えば、受信部211bは、切替スイッチを介して距離センサS1~S4と接続しており、距離センサS1~S4のいずれかが超音波信号を送信すると、当該切替スイッチを用いて距離センサS1~S4の中から当該超音波信号の反射波を受信する距離センサを切り替える。
 ここで、超音波信号を送信した距離センサと同一の距離センサが、当該超音波信号の反射波を受信する場合を“直接送受信”と呼ぶ。また、距離センサ群の距離センサのうち、超音波信号を送信した距離センサ以外の距離センサが当該超音波信号の反射波を受信する場合を“間接送受信”と呼ぶ。
 なお、受信部211bが、距離センサ群における距離センサの中から反射波を受信する距離センサを切り替えることで間接送受信が実施される。
 全波整流部212は、受信部211bの制御により距離センサS1~S4で受信された反射波の振幅データを全波整流、すなわち入力された信号が負の値であるときに正の値に変換する機能部である。
The transmitter 211a is a component that controls transmission of ultrasonic signals by the distance sensors S1 to S4. For example, the transmission unit 211a transmits ultrasonic pulse signals to the distance sensors S1 to S4 at a predetermined transmission timing, and the distance sensors S1 to S4 transmit ultrasonic signals according to the pulse signals.
The reception unit 211b controls the reception timing by the distance sensors S1 to S4 according to the transmission timing of the transmission unit 211a. For example, the receiving unit 211b is connected to the distance sensors S1 to S4 via the changeover switch, and when any of the distance sensors S1 to S4 transmits an ultrasonic signal, the distance sensor S1 to S4 is used using the changeover switch. The distance sensor that receives the reflected wave of the ultrasonic signal is switched from among them.
Here, the case where the same distance sensor that transmits the ultrasonic signal receives the reflected wave of the ultrasonic signal is referred to as “direct transmission / reception”. A case where a distance sensor other than the distance sensor that transmits the ultrasonic signal among the distance sensors of the distance sensor group receives the reflected wave of the ultrasonic signal is referred to as “indirect transmission / reception”.
The reception unit 211b performs indirect transmission / reception by switching a distance sensor that receives a reflected wave from among the distance sensors in the distance sensor group.
The full-wave rectification unit 212 performs full-wave rectification on the reflected wave amplitude data received by the distance sensors S1 to S4 under the control of the reception unit 211b, that is, converts the data to a positive value when the input signal is a negative value. It is a functional part to do.
 閾値判定部213は、距離センサS1~S4で受信された反射波の中から、超音波信号が送信されて当該反射波が受信されるまでの伝搬距離に応じて設定した閾値を超える振幅データの反射波信号を判定して抽出する。
 最大値判定部214は、閾値判定部213が抽出した反射波信号について、超音波信号が送信されて当該反射波が受信されるまでの伝搬距離および予め設定した時間帯での最大振幅値を判定して抽出する。
The threshold value determination unit 213 transmits amplitude data exceeding the threshold value set according to the propagation distance from when the ultrasonic wave signal is transmitted to when the reflected wave is received from the reflected waves received by the distance sensors S1 to S4. The reflected wave signal is determined and extracted.
The maximum value determination unit 214 determines, for the reflected wave signal extracted by the threshold determination unit 213, a propagation distance from when an ultrasonic signal is transmitted until the reflected wave is received and a maximum amplitude value in a preset time zone. And extract.
 直接波信号記憶部215は、距離センサ群Sgnにおける個々の距離センサS1~S4がそれぞれ単独で送信した超音波信号が物体で反射した反射波を、当該超音波信号を送信した同一の距離センサで直接的に受信して得られた超音波信号の送受信における伝搬距離データおよび反射波の振幅データを記憶する。
 間接波信号記憶部216は、距離センサ群Sgnにおける個々の距離センサS1~S4がそれぞれ単独で送信した超音波信号が物体で反射した反射波を、距離センサ群Sgnにおける当該超音波信号を送信した距離センサ以外のいずれか一つの距離センサで間接的に受信して得られた超音波信号の送受信における伝搬距離データおよび反射波の振幅データを記憶する。
The direct wave signal storage unit 215 uses the same distance sensor that transmitted the ultrasonic wave to the reflected wave reflected by the object of the ultrasonic signal that is individually transmitted by each of the distance sensors S1 to S4 in the distance sensor group Sgn. Propagation distance data and reflected wave amplitude data in transmission / reception of ultrasonic signals obtained by direct reception are stored.
The indirect wave signal storage unit 216 transmits the reflected wave reflected by the object from the ultrasonic signals individually transmitted by the individual distance sensors S1 to S4 in the distance sensor group Sgn and the ultrasonic signals in the distance sensor group Sgn. The propagation distance data and the amplitude data of the reflected wave in the transmission / reception of the ultrasonic signal obtained by receiving indirectly by any one distance sensor other than the distance sensor are stored.
 距離センサデータマッピング部23は、直接波信号記憶部215および間接波信号記憶部216に記憶されたデータに基づいて、検知対象の物体における反射点の候補位置およびこの候補位置からの反射波の振幅データを距離センサ群Sgnの検知エリア上にマッピングする。その機能構成として、第1の反射点候補位置生成部231、第2の反射点候補位置生成部232および加算振幅値演算部233を備える。 The distance sensor data mapping unit 23, based on the data stored in the direct wave signal storage unit 215 and the indirect wave signal storage unit 216, reflects the candidate position of the reflection point in the object to be detected and the amplitude of the reflected wave from this candidate position. Data is mapped onto the detection area of the distance sensor group Sgn. As its functional configuration, a first reflection point candidate position generation unit 231, a second reflection point candidate position generation unit 232, and an addition amplitude value calculation unit 233 are provided.
 第1の反射点候補位置生成部231は、直接波信号記憶部215に記憶された伝搬距離データおよび反射波の振幅データに基づいて、距離センサの位置を中心とした当該距離センサから物体までの距離を半径とする円の円周上に反射点が存在するものとして、距離センサ群Sgnの検知エリア上に反射点の候補位置およびこの候補位置からの反射波の振幅データをマッピングした3次元マッピングデータを生成する。
 第2の反射点候補位置生成部232は、間接波信号記憶部216に記憶された伝搬距離データおよび反射波の振幅データに基づいて、超音波信号を送信した距離センサの位置と当該超音波信号の反射波を受信した距離センサの位置を2定点とした楕円の円周上に反射点が存在するものとして、距離センサ群Sgnの検知エリア上に反射点の候補位置およびこの候補位置からの反射波の振幅データをマッピングした3次元マッピングデータを生成する。
 加算振幅値演算部233は、第1の反射点候補位置生成部231および第2の反射点候補位置生成部232がそれぞれ生成した3次元マッピングデータを合成する。
Based on the propagation distance data and the reflected wave amplitude data stored in the direct wave signal storage unit 215, the first reflection point candidate position generation unit 231 determines the distance from the distance sensor to the object centered on the position of the distance sensor. Assuming that a reflection point exists on the circumference of a circle having a radius as a distance, a three-dimensional mapping is made by mapping the candidate position of the reflection point and the amplitude data of the reflected wave from the candidate position on the detection area of the distance sensor group Sgn. Generate data.
The second reflection point candidate position generation unit 232, based on the propagation distance data stored in the indirect wave signal storage unit 216 and the amplitude data of the reflected wave, the position of the distance sensor that transmitted the ultrasonic signal and the ultrasonic signal Assuming that the reflection point exists on the circumference of an ellipse with the position of the distance sensor that received the reflected wave as two fixed points, the reflection point candidate position and the reflection from the candidate position on the detection area of the distance sensor group Sgn Three-dimensional mapping data obtained by mapping wave amplitude data is generated.
The addition amplitude value calculation unit 233 combines the three-dimensional mapping data generated by the first reflection point candidate position generation unit 231 and the second reflection point candidate position generation unit 232, respectively.
 検知物判定部24は、加算振幅値演算部233が演算した3次元マッピングデータに基づいて物体の位置および形状を判定する判定部であり、識別部241および位置・形状判定部242を備える。
 識別部241は、3次元マッピングデータにおける反射波の振幅データを、超音波信号が送信されてその反射波が受信されるまでの伝搬距離に応じて補正して、当該3次元マッピングデータから反射点の候補位置の分布を識別する。
 位置・形状判定部242は、識別部241が識別した分布における、反射点の候補位置の集中度合い、直接波信号記憶部215に記憶されたデータを基に得られた反射点の候補位置の分布と間接波信号記憶部216に記憶されたデータを基に得られた反射点の候補位置の分布との割合、および距離センサから物体までの距離データの変化の度合いのうちの少なくとも一つを基準として、当該物体の位置と形状を判定する。
The detected object determination unit 24 is a determination unit that determines the position and shape of an object based on the three-dimensional mapping data calculated by the addition amplitude value calculation unit 233, and includes an identification unit 241 and a position / shape determination unit 242.
The identification unit 241 corrects the amplitude data of the reflected wave in the three-dimensional mapping data according to the propagation distance from when the ultrasonic signal is transmitted until the reflected wave is received, and the reflection point is calculated from the three-dimensional mapping data. Identify the distribution of candidate positions.
The position / shape determining unit 242 distributes the candidate positions of the reflection points obtained based on the degree of concentration of the candidate positions of the reflection points in the distribution identified by the identification unit 241 and the data stored in the direct wave signal storage unit 215. And at least one of the ratio of the distribution of candidate positions of reflection points obtained based on the data stored in the indirect wave signal storage unit 216 and the degree of change in the distance data from the distance sensor to the object The position and shape of the object are determined.
 図4は、距離センサの配置およびその有効検知エリアを示す図である。従来の物体検知装置では、一般に超音波信号を送信した同一の距離センサがその反射波信号を受信する、いわゆる直接送受信で得られた信号に基づいて、物体までの距離データを検知していた。この場合、所定の検知分解能を得るためには、図4(a)に示すように、距離センサS1~S3の配置間隔を狭くする必要があり、不可避的にセンサ数が増加する。
 また、距離センサS1~S3の各検知エリアが重なり合うエリアA1aは、距離センサS3の検知エリアが重ならない領域がある。この領域では、距離センサS3で直接送受信が不可となる。同様に、距離センサS1~S3の各検知エリアが重なり合うエリアA2aは、距離センサS1の検知エリアが重ならない領域があり、この領域では、距離センサS1で直接送受信ができない。
 一方、距離センサS1~S3の各検知エリアが重なり合うエリアA3aは、距離センサS1~S3の検知エリアが同様に重なっており、距離センサS1~S3のいずれも直接送受信が可能である。従って、直接送受信で検知する場合、エリアA3aを含むエリアAaが有効検知エリアとなる。
FIG. 4 is a diagram showing the arrangement of distance sensors and their effective detection areas. In the conventional object detection device, distance data to an object is detected based on a signal obtained by so-called direct transmission / reception in which the same distance sensor that has transmitted an ultrasonic signal generally receives the reflected wave signal. In this case, in order to obtain a predetermined detection resolution, as shown in FIG. 4A, it is necessary to narrow the arrangement interval of the distance sensors S1 to S3, and the number of sensors inevitably increases.
The area A1a where the detection areas of the distance sensors S1 to S3 overlap includes an area where the detection areas of the distance sensor S3 do not overlap. In this region, direct transmission / reception is disabled by the distance sensor S3. Similarly, the area A2a where the detection areas of the distance sensors S1 to S3 overlap includes an area where the detection areas of the distance sensor S1 do not overlap. In this area, the distance sensor S1 cannot directly transmit and receive.
On the other hand, in the area A3a where the detection areas of the distance sensors S1 to S3 overlap, the detection areas of the distance sensors S1 to S3 are similarly overlapped, and any of the distance sensors S1 to S3 can directly transmit and receive. Therefore, when detecting by direct transmission / reception, the area Aa including the area A3a becomes an effective detection area.
 これに対して、実施の形態1に係る物体検知装置1は、直接送受信に加え、超音波信号を送信した距離センサ以外の距離センサがその反射波を受信する、いわゆる間接送受信を行い、両者で得られた信号に基づいて物体までの距離データを検知する。この場合、直接送受信と間接送受信とを交互に行えば、図4(b)に示すように、距離センサS1~S3の配置間隔を広くすることができる。これにより、直接送受信のみの場合に比べて、センサ数の増加を抑えられる。
 また、距離センサS1,S2の検知エリアが重なり合うエリアA1bでは、距離センサS1,S2で直接送受信が可能であり、さらに距離センサS1と距離センサS2における間接送受信も可能である。同様に、距離センサS2,S3の検知エリアが重なり合うエリアA2bでは、距離センサS2,S3で直接送受信が可能であり、距離センサS2と距離センサS3による間接送受信もできる。
 一方、エリアA3bは、距離センサS2の検知エリアが距離センサS1,S3の検知エリアと重なりがなく、距離センサS2による直接送受信のみが可能である。
 このような距離センサの配置であっても、本発明では、直接送受信と間接送受信を交互に行うことから、エリアA1b~A3bを含むエリアAbが有効検知エリアとなる。
 従って、直接送受信のみの場合に比べて広い有効検知エリアを確保することができる。
On the other hand, the object detection device 1 according to the first embodiment performs so-called indirect transmission / reception in which a distance sensor other than the distance sensor that transmits the ultrasonic signal receives the reflected wave in addition to direct transmission / reception. Based on the obtained signal, distance data to the object is detected. In this case, if the direct transmission / reception and the indirect transmission / reception are alternately performed, the arrangement interval of the distance sensors S1 to S3 can be increased as shown in FIG. Thereby, the increase in the number of sensors can be suppressed compared with the case of only direct transmission / reception.
In the area A1b where the detection areas of the distance sensors S1 and S2 overlap, the distance sensors S1 and S2 can directly transmit and receive, and the distance sensors S1 and S2 can also indirectly transmit and receive. Similarly, in the area A2b where the detection areas of the distance sensors S2 and S3 overlap, direct transmission / reception is possible with the distance sensors S2 and S3, and indirect transmission / reception with the distance sensors S2 and S3 is also possible.
On the other hand, in area A3b, the detection area of distance sensor S2 does not overlap with the detection areas of distance sensors S1 and S3, and only direct transmission / reception by distance sensor S2 is possible.
Even with such a distance sensor arrangement, in the present invention, direct transmission / reception and indirect transmission / reception are alternately performed, and thus the area Ab including the areas A1b to A3b becomes the effective detection area.
Therefore, a wider effective detection area can be ensured than in the case of only direct transmission / reception.
 次に動作について説明する。
 図5は、実施の形態1に係る物体検知装置の動作を示すフローチャートであり、超音波信号(送信信号)を送信してから車両8周辺で検知された障害物100が表示されるまでの処理を示している。
 まず、送信部211aが、予め定めた送信タイミングで超音波のパルス信号を距離センサS1~S4に送ることにより、当該パルス信号に応じて距離センサS1~S4が超音波信号を送信する(ステップST1)。
Next, the operation will be described.
FIG. 5 is a flowchart showing the operation of the object detection device according to the first embodiment, and the processing from when an ultrasonic signal (transmission signal) is transmitted until the obstacle 100 detected around the vehicle 8 is displayed. Is shown.
First, the transmitting unit 211a transmits ultrasonic pulse signals to the distance sensors S1 to S4 at a predetermined transmission timing, so that the distance sensors S1 to S4 transmit ultrasonic signals according to the pulse signals (step ST1). ).
 次に、受信部211bが、障害物100で反射した上記超音波信号の反射波を受信する距離センサを、距離センサ群Sgnの距離センサの中から切り替えない場合(ステップST2;NO)、直接送受信が実施される(ステップST3-1)。
 図6は、直接送受信の一例を示す図である。例えば、受信部211bは、切替スイッチのデフォルトの設定を直接送受信としている。つまり、超音波信号を送信した距離センサが距離センサS1である場合、切替スイッチにおける受信部211bと距離センサS1の接続をオンとし、その他の距離センサS2,S3,・・・の接続をオフしている。
 これにより、反射波を受信する距離センサが切り替えられなければ(ステップST2;NO)、図6に矢印で示すように、距離センサS1から送信した超音波信号の反射波の中から、距離センサS1で受信された反射波信号が受信部211bに入力される。他の距離センサS2,S3についても同様である。
 また、距離センサS1が超音波信号を時刻T1に送信して障害物100で反射し、この超音波信号を送信した距離センサS1が直接的に反射波を時刻T2に受信した場合、その伝搬距離Laは、下記式で得られる。すなわち、受信部211bは、超音波信号の送信時刻と反射波の受信時刻から伝搬距離を算出する。ただし、Vは、超音波の空中伝搬速度である。なお、距離センサS1から障害物100までの距離は伝搬距離Laの1/2の値となる。
 La=(T2-T1)・V
Next, when the receiving unit 211b does not switch the distance sensor that receives the reflected wave of the ultrasonic signal reflected by the obstacle 100 from the distance sensors of the distance sensor group Sgn (step ST2; NO), direct transmission / reception is performed. Is implemented (step ST3-1).
FIG. 6 is a diagram illustrating an example of direct transmission / reception. For example, the receiving unit 211b directly transmits / receives the default setting of the changeover switch. That is, when the distance sensor that transmitted the ultrasonic signal is the distance sensor S1, the connection between the receiving unit 211b and the distance sensor S1 in the change-over switch is turned on, and the connections of the other distance sensors S2, S3,. ing.
As a result, if the distance sensor that receives the reflected wave is not switched (step ST2; NO), as shown by the arrow in FIG. 6, the distance sensor S1 is selected from the reflected waves of the ultrasonic signal transmitted from the distance sensor S1. The reflected wave signal received at is input to the receiver 211b. The same applies to the other distance sensors S2, S3.
Further, when the distance sensor S1 transmits an ultrasonic signal at time T1 and is reflected by the obstacle 100, and the distance sensor S1 that has transmitted the ultrasonic signal directly receives the reflected wave at time T2, the propagation distance thereof La is obtained by the following formula. That is, the reception unit 211b calculates the propagation distance from the transmission time of the ultrasonic signal and the reception time of the reflected wave. However, V is an ultrasonic wave propagation speed. Note that the distance from the distance sensor S1 to the obstacle 100 is a value half the propagation distance La.
La = (T2-T1) · V
 一方、反射波を受信する距離センサを切り替えた場合(ステップST2;YES)には間接送受信が実施される(ステップST3-2)。
 図7は、間接送受信の一例を示す図である。例えば、距離センサS1が超音波信号を送信した後、受信部211bが、切替スイッチを用いて距離センサS1との接続をオフし、距離センサS2との接続をオンとする。このとき、図7(a)に示すような障害物100の場合、距離センサS1から送信された超音波信号が障害物100で反射した反射波は、距離センサS2に受信されて受信部211bに入力される。
 また、図7(b)に示すような障害物100である場合、距離センサS1が超音波信号を送信した後、受信部211bが、切替スイッチを用いて距離センサS1との接続をオフし、距離センサS3との接続をオンとする。このとき、距離センサS1から送信された超音波信号の反射波は、距離センサS3で受信されて受信部211bに入力される。
 ここで、距離センサS1が超音波信号を時刻T3に送信し、この超音波信号を送信した距離センサS1以外の距離センサS2が間接的にその反射波を時刻T4に受信した場合、この超音波信号の送受信における伝搬距離、すなわち超音波信号が送信されてその反射波が受信されるまでの伝搬距離Lbは、直接送受信の場合と同様に下記式で得られる。
 Lb=(T4-T3)・V
On the other hand, when the distance sensor that receives the reflected wave is switched (step ST2; YES), indirect transmission / reception is performed (step ST3-2).
FIG. 7 is a diagram illustrating an example of indirect transmission / reception. For example, after the distance sensor S1 transmits an ultrasonic signal, the reception unit 211b turns off the connection with the distance sensor S1 and turns on the connection with the distance sensor S2 using the changeover switch. At this time, in the case of the obstacle 100 as shown in FIG. 7A, the reflected wave reflected by the obstacle 100 from the ultrasonic signal transmitted from the distance sensor S1 is received by the distance sensor S2 and is received by the receiver 211b. Entered.
In the case of the obstacle 100 as shown in FIG. 7B, after the distance sensor S1 transmits the ultrasonic signal, the receiving unit 211b turns off the connection with the distance sensor S1 using the changeover switch. The connection with the distance sensor S3 is turned on. At this time, the reflected wave of the ultrasonic signal transmitted from the distance sensor S1 is received by the distance sensor S3 and input to the receiving unit 211b.
Here, when the distance sensor S1 transmits an ultrasonic signal at time T3 and the distance sensor S2 other than the distance sensor S1 that transmitted the ultrasonic signal indirectly receives the reflected wave at time T4, the ultrasonic wave is transmitted. The propagation distance in signal transmission / reception, that is, the propagation distance Lb from when an ultrasonic signal is transmitted to when the reflected wave is received is obtained by the following equation as in the case of direct transmission / reception.
Lb = (T4-T3) · V
 全波整流部212は、直接送受信で得られた反射波(以下、直接波と呼ぶ)の振幅データおよび間接送受信で得られた反射波(以下、間接波と呼ぶ)の振幅データを、受信部211bからそれぞれ入力し、これらの振幅データを全波整流する。
 すなわち、受信部211bが、受信信号から40~60kHzの超音波の反射波信号を検波し、全波整流部212が当該反射波信号を全波整流してパルス信号に変換する。
The full wave rectification unit 212 receives amplitude data of reflected waves (hereinafter referred to as direct waves) obtained by direct transmission / reception and amplitude data of reflected waves (hereinafter referred to as indirect waves) obtained by indirect transmission / reception. Each amplitude data is input from 211b, and these amplitude data are full-wave rectified.
That is, the receiving unit 211b detects an ultrasonic reflected wave signal of 40 to 60 kHz from the received signal, and the full-wave rectifying unit 212 performs full-wave rectification on the reflected wave signal to convert it into a pulse signal.
 次に、閾値判定部213は、全波整流された反射波信号の振幅データを予め設定された閾値と比較し、当該閾値を超える振幅値を有する反射波信号を判定して抽出する(ステップST4)。このとき、閾値判定部213は、受信部211bに算出された直接波および間接波の伝搬距離La,Lbに基づいて、図8(a)に示すように伝搬距離に反比例した閾値(伝搬距離が長くなるに連れて小さな値となる閾値)を用いて振幅値の判定を行う。
 これは、超音波の振幅値が、伝搬距離に応じて減衰することを考慮している。例えば、距離センサと障害物100との直線距離が近くても、障害物100の形状によっては、超音波信号が直接送受信よりも長い伝搬距離で間接送受信される場合がある。この場合においても、上述のように伝搬距離に応じた閾値で振幅を判定することで適切な解析が可能である。なお、上記閾値は、例えば予め実験等によって伝搬距離と超音波の減衰量との関係を求めておき、この関係に応じて決定する。
Next, the threshold determination unit 213 compares the amplitude data of the reflected wave signal subjected to full-wave rectification with a preset threshold, and determines and extracts a reflected wave signal having an amplitude value exceeding the threshold (step ST4). ). At this time, based on the direct wave and indirect wave propagation distances La and Lb calculated by the receiving unit 211b, the threshold value determination unit 213 has a threshold value (propagation distance is inversely proportional to the propagation distance as shown in FIG. 8A). The amplitude value is determined using a threshold value that becomes smaller as the length increases.
This takes into account that the amplitude value of the ultrasonic wave attenuates according to the propagation distance. For example, even if the linear distance between the distance sensor and the obstacle 100 is short, depending on the shape of the obstacle 100, the ultrasonic signal may be indirectly transmitted / received at a longer propagation distance than the direct transmission / reception. Even in this case, an appropriate analysis can be performed by determining the amplitude with the threshold corresponding to the propagation distance as described above. The threshold is determined in accordance with, for example, a relationship between the propagation distance and the attenuation amount of ultrasonic waves obtained in advance through experiments or the like.
 次に、最大値判定部214は、閾値判定部213が抽出した反射波ついて、超音波信号の送受信における伝搬距離および予め設定した時間帯での最大振幅値を判定して抽出する(ステップST5)。ここで、予め設定した時間帯とは反射波を受信した時間帯である。すなわち、図8(b)に示す反射波の検知(受信)タイミングの時刻から、所定の最大値検知時間幅(Δt)を経過するまでの時間帯に相当する。
 なお、図8(b)に破線で示す閾値が、図8(a)で示した閾値である。また、最大値検知時間幅は、超音波信号の送信時間幅に略等しい。最大値判定部214は、図8(b)に示すように当該時間帯(Δt)における反射波の最大振幅値を判定して抽出する。
Next, the maximum value determination unit 214 determines and extracts the propagation distance and the maximum amplitude value in a preset time zone in the transmission / reception of ultrasonic signals for the reflected wave extracted by the threshold determination unit 213 (step ST5). . Here, the preset time zone is the time zone when the reflected wave is received. That is, this corresponds to a time period from the time of detection (reception) timing of the reflected wave shown in FIG. 8B to the elapse of a predetermined maximum value detection time width (Δt).
Note that the threshold value indicated by a broken line in FIG. 8B is the threshold value illustrated in FIG. The maximum value detection time width is substantially equal to the transmission time width of the ultrasonic signal. The maximum value determination unit 214 determines and extracts the maximum amplitude value of the reflected wave in the time zone (Δt) as shown in FIG.
 上述のように、最大値判定部214が、直接送受信で得られたデータから抽出した伝搬距離データおよび最大振幅値(振幅データ)は、直接波信号記憶部215に記憶される。また、直接送受信で得られたデータから抽出された伝搬距離データおよび最大振幅値は、間接波信号記憶部216に記憶される。なお、後述する3次元マッピングでは、反射波の受信時間帯における最大振幅値を用いれば必要十分であるので、反射波の最大振幅値のみを記憶する。これにより、記憶部215,216に記憶すべきデータ量を削減することができる。 As described above, the propagation distance data and the maximum amplitude value (amplitude data) extracted from the data obtained by the direct transmission / reception by the maximum value determination unit 214 are stored in the direct wave signal storage unit 215. Further, the propagation distance data and the maximum amplitude value extracted from the data obtained by direct transmission / reception are stored in the indirect wave signal storage unit 216. In the three-dimensional mapping described later, since it is necessary and sufficient to use the maximum amplitude value in the reception time zone of the reflected wave, only the maximum amplitude value of the reflected wave is stored. Thereby, the data amount which should be memorize | stored in the memory | storage parts 215,216 can be reduced.
 次に、第1の反射点候補位置生成部231は、直接波信号記憶部215に記憶された伝搬距離データおよび振幅データに基づいて、距離センサ群Sgnの検知エリア上に反射点の候補位置およびこの候補位置からの反射波の振幅データをマッピングした3次元マッピングデータを生成する(ステップST6-1)。
 ここで、第1の反射点候補位置生成部231は、図6に示すように距離センサS1~S3のそれぞれの位置を中心とし、距離センサから障害物100までの距離を半径とする円を求める。直接送受信の場合、距離センサから障害物100までの距離は、超音波信号の送受信における伝搬距離Laの1/2で求められる。
Next, based on the propagation distance data and the amplitude data stored in the direct wave signal storage unit 215, the first reflection point candidate position generation unit 231 has a reflection point candidate position and a reflection point candidate position on the detection area of the distance sensor group Sgn. Three-dimensional mapping data is generated by mapping the amplitude data of the reflected wave from this candidate position (step ST6-1).
Here, as shown in FIG. 6, the first reflection point candidate position generation unit 231 obtains a circle whose center is the position of each of the distance sensors S1 to S3 and whose radius is the distance from the distance sensor to the obstacle 100. . In the case of direct transmission / reception, the distance from the distance sensor to the obstacle 100 is obtained by 1/2 of the propagation distance La in transmission / reception of ultrasonic signals.
 また、障害物100における直接波の反射点が、距離センサS1~S3の位置を中心とした円のうちの少なくとも2円の交点に存在するものとみなせるので、2円の交点座標を求めれば、反射点の候補位置を算出することができる。
 第1の反射点候補位置生成部231は、距離センサ群Sgnの検知エリアに対して2次元座標系(x-y平面)を設定し、距離センサの位置を中心とした2円の交点、すなわち距離センサから障害物100までの距離および距離センサから見た障害物100の方位で反射点の候補位置を特定する。そして、検知エリア上に反射点の候補位置およびこの候補位置からの反射波(直接波)の振幅データ(最大振幅値)をマッピングした3次元マッピングデータを生成する。
Further, since the reflection point of the direct wave on the obstacle 100 can be regarded as existing at the intersection of at least two of the circles centered on the positions of the distance sensors S1 to S3, if the intersection coordinates of the two circles are obtained, The candidate position of the reflection point can be calculated.
The first reflection point candidate position generation unit 231 sets a two-dimensional coordinate system (xy plane) for the detection area of the distance sensor group Sgn, and an intersection of two circles centered on the position of the distance sensor, that is, The candidate position of the reflection point is specified by the distance from the distance sensor to the obstacle 100 and the direction of the obstacle 100 as viewed from the distance sensor. Then, three-dimensional mapping data is generated by mapping the reflection point candidate position and the amplitude data (maximum amplitude value) of the reflected wave (direct wave) from the candidate position on the detection area.
 一方、第2の反射点候補位置生成部232は、間接波信号記憶部216に記憶された伝搬距離データおよび振幅データに基づいて、距離センサ群Sgnの検知エリア上に反射点の候補位置およびこの候補位置からの反射波の振幅データをマッピングした3次元マッピングデータを生成する(ステップST6-2)。
 ここで、第2の反射点候補位置生成部232は、図7(a)に示すように、超音波信号を送信した距離センサS1の位置と当該超音波信号の反射波を受信した距離センサS2の位置とを2定点とした楕円を求める。間接送受信の場合、超音波信号の送受信における伝搬距離は、当該楕円の円周上の一点を反射点として超音波信号を送信した距離センサから障害物100の反射点までの伝搬距離と当該反射点で反射した反射波が距離センサに受信されるまでの伝搬距離との総和に相当する。
 第2の反射点候補位置生成部232は、第1の反射点候補位置生成部231と同様に、距離センサ群Sgnの検知エリアに2次元座標系(x-y平面)を設定して、距離センサから物体までの距離と距離センサから見た物体の方位とで反射点の候補位置を特定する。
 そして、検知エリアのx-y平面上に反射点の候補位置およびこの候補位置からの反射波(間接波)の振幅データ(最大振幅値)をマッピングした3次元マッピングデータが生成される。
 例えば、間接波の伝搬距離Lb、超音波信号の送信側の距離センサS1の位置、および反射波の受信側の距離センサS2の位置を用いて、下記式から反射点の候補位置を特定する。ただし、Xaは、超音波信号の送信側の距離センサS1と反射波の受信側の距離センサS2との間を結ぶ線分の中点から距離センサS1までの距離であり、Xbは、当該中点から距離センサS2までの距離である。Yは当該中点から障害物100までの垂直距離(上記楕円の短半径の長さ)である。また、Zaは距離センサS1から障害物100までの超音波信号(送信波)の伝搬距離であり、Zbは障害物100から距離センサS2までの超音波信号(受信波)の伝搬距離である。
 Xa+Y=Za
 Xb+Y=Zb
 Lb=Za+Zb
On the other hand, the second reflection point candidate position generation unit 232, based on the propagation distance data and the amplitude data stored in the indirect wave signal storage unit 216, sets the reflection point candidate position and the reflection point candidate position on the detection area of the distance sensor group Sgn. Three-dimensional mapping data is generated by mapping the amplitude data of the reflected wave from the candidate position (step ST6-2).
Here, as shown in FIG. 7A, the second reflection point candidate position generation unit 232 receives the position of the distance sensor S1 that transmitted the ultrasonic signal and the distance sensor S2 that received the reflected wave of the ultrasonic signal. An ellipse having two fixed points at the position of is obtained. In the case of indirect transmission / reception, the propagation distance in the transmission / reception of the ultrasonic signal is the propagation distance from the distance sensor that transmits the ultrasonic signal with a point on the circumference of the ellipse as the reflection point to the reflection point of the obstacle 100 and the reflection point. This corresponds to the sum of the propagation distance until the reflected wave reflected by the distance sensor is received by the distance sensor.
Similarly to the first reflection point candidate position generation unit 231, the second reflection point candidate position generation unit 232 sets a two-dimensional coordinate system (xy plane) in the detection area of the distance sensor group Sgn, and performs distance measurement. The candidate position of the reflection point is specified by the distance from the sensor to the object and the orientation of the object viewed from the distance sensor.
Then, three-dimensional mapping data is generated by mapping the candidate position of the reflection point and the amplitude data (maximum amplitude value) of the reflected wave (indirect wave) from the candidate position on the xy plane of the detection area.
For example, by using the propagation distance Lb of the indirect wave, the position of the distance sensor S1 on the transmission side of the ultrasonic signal, and the position of the distance sensor S2 on the reception side of the reflected wave, the candidate position of the reflection point is specified from the following equation. However, Xa is the distance from the midpoint of the line segment connecting the distance sensor S1 on the transmission side of the ultrasonic signal and the distance sensor S2 on the reception side of the reflected wave to the distance sensor S1, and Xb is This is the distance from the point to the distance sensor S2. Y is the vertical distance from the midpoint to the obstacle 100 (the length of the short radius of the ellipse). Za is the propagation distance of the ultrasonic signal (transmitted wave) from the distance sensor S1 to the obstacle 100, and Zb is the propagation distance of the ultrasonic signal (received wave) from the obstacle 100 to the distance sensor S2.
Xa 2 + Y 2 = Za 2
Xb 2 + Y 2 = Zb 2
Lb = Za + Zb
 図9から図11は、3次元マッピングの例を示す図である。第1の反射点候補位置生成部231および第2の反射点候補位置生成部232は、図9から図11に示すように、距離センサ群(距離センサS1~S3)の検知エリアに設定したx-y平面上に、反射点の候補位置をマッピングし、さらに、この候補位置からの反射波の振幅データをz軸に設定した3次元マッピングを行う。 9 to 11 are diagrams showing examples of three-dimensional mapping. As shown in FIGS. 9 to 11, the first reflection point candidate position generation unit 231 and the second reflection point candidate position generation unit 232 have x set in the detection area of the distance sensor group (distance sensors S1 to S3). The candidate position of the reflection point is mapped on the -y plane, and three-dimensional mapping is performed by setting the amplitude data of the reflected wave from this candidate position on the z axis.
 図9の例は、距離センサS1~S3の検知情報に基づいて決定された反射点の候補位置が、x-y平面上で円形に集中している場合を示している。すなわち、図9の3次元マッピングデータから、障害物100が、距離センサ群Sgn(距離センサS1~S3)を配設した平面上での形状が円形となる円柱形状の物体であることが予想される。 The example of FIG. 9 shows a case where the candidate positions of the reflection points determined based on the detection information of the distance sensors S1 to S3 are concentrated in a circle on the xy plane. That is, from the three-dimensional mapping data in FIG. 9, it is expected that the obstacle 100 is a cylindrical object whose shape on the plane on which the distance sensor group Sgn (distance sensors S1 to S3) is arranged is circular. The
 図10の例は、距離センサS1~S3の検知情報に基づいて決定された反射点の候補位置が、x-y平面上で線状(距離センサS1~S3が並ぶy軸に平行な線)に並んでいる場合を示している。この場合、障害物100が、距離センサ群Sgn(距離センサS1~S3)を配設した平面上での形状が線状となる平板形状の物体であることが予想される。 In the example of FIG. 10, the candidate positions of the reflection points determined based on the detection information of the distance sensors S1 to S3 are linear on the xy plane (a line parallel to the y axis in which the distance sensors S1 to S3 are arranged). The case where it is located in a row is shown. In this case, the obstacle 100 is expected to be a flat plate-like object having a linear shape on the plane on which the distance sensor group Sgn (distance sensors S1 to S3) is disposed.
 また、図11の例は、距離センサS1~S3の検知情報に基づいて決定された反射点の候補位置が、検知エリアのx-y平面上で距離センサS1~S3を配設したy軸に対して傾いて並んでいる場合を示している。この場合、障害物100が、距離センサ群Sgn(距離センサS1~S3)を配設した平面上での形状が線状となり、かつ距離センサS1~S3に対して傾いた平板形状の物体であることが予想される。 In the example of FIG. 11, the candidate position of the reflection point determined based on the detection information of the distance sensors S1 to S3 is on the y axis where the distance sensors S1 to S3 are arranged on the xy plane of the detection area. The case where it inclines with respect to is shown. In this case, the obstacle 100 is a flat plate-like object having a linear shape on the plane on which the distance sensor group Sgn (distance sensors S1 to S3) is arranged and inclined with respect to the distance sensors S1 to S3. It is expected that.
 次に、加算振幅値演算部233は、第1の反射点候補位置生成部231および第2の反射点候補位置生成部232がそれぞれ生成した3次元マッピングデータを合成する(ステップST7)。3次元マッピングデータの合成とは、直接送受信で受信した結果を用いた3次元マッピングデータにおける直接波の振幅データと、間接送受信で受信した結果を用いた3次元マッピングデータにおける間接波の振幅データとを加算する処理である。
 このようにすることで、反射点の候補位置が互いに補間され、同一の候補位置が得られた場合にはそこからの反射波の振幅値を強調することができる。これにより、物体検知の信頼性を向上させることができる。
Next, the added amplitude value calculation unit 233 synthesizes the three-dimensional mapping data generated by the first reflection point candidate position generation unit 231 and the second reflection point candidate position generation unit 232, respectively (step ST7). The synthesis of the three-dimensional mapping data includes the amplitude data of the direct wave in the three-dimensional mapping data using the result received by direct transmission / reception, and the amplitude data of the indirect wave in the three-dimensional mapping data using the result received by indirect transmission / reception. Is a process of adding.
In this way, when the candidate positions of the reflection points are interpolated and the same candidate position is obtained, the amplitude value of the reflected wave from there can be emphasized. Thereby, the reliability of object detection can be improved.
 図12および図13は振幅加算処理の例を示す図である。加算振幅値演算部233は、第1の反射点候補位置生成部231および第2の反射点候補位置生成部232がそれぞれ生成した3次元マッピングデータの反射波の振幅データを加算する。
 図12に示す例では、距離センサSの検知エリア上に存在する平板形状の物体(複数の距離センサSの配設方向に平行な平板)における反射点の候補位置およびこの候補位置からの反射波の振幅データを示す3次元マッピングデータを、直接送受信で得られた結果(上段)と間接送受信で得られた結果(下段)とで加算している。
 図13に示す例では、距離センサSの検知エリア上に存在する平板形状の物体(複数の距離センサSの配設方向に対して傾いた平板)における反射点の候補位置およびこの候補位置からの反射波の振幅データを示す3次元マッピングデータを、直接送受信で得られた結果(上段)と間接送受信で得られた結果(下段)で加算している。
 図12および図13に示すように、同じ物体を検知した反射波を直接送受信および間接送受信でそれぞれ受信した結果を用いた3次元マッピングデータを加算することで、反射点の候補位置が互いに補間される。
 また、直接波の解析で規定した円と間接波の解析で規定した楕円との交点、すなわち、双方の解析で得られた信頼性の高い候補位置については、そこでの反射波の振幅値が加算され、強調される。
12 and 13 are diagrams showing an example of the amplitude addition process. The addition amplitude value calculation unit 233 adds the amplitude data of the reflected wave of the three-dimensional mapping data generated by the first reflection point candidate position generation unit 231 and the second reflection point candidate position generation unit 232, respectively.
In the example shown in FIG. 12, the candidate position of the reflection point and the reflected wave from this candidate position on a flat object (a flat plate parallel to the arrangement direction of the plurality of distance sensors S) existing on the detection area of the distance sensor S. The three-dimensional mapping data indicating the amplitude data is added by the result obtained by direct transmission / reception (upper stage) and the result obtained by indirect transmission / reception (lower stage).
In the example shown in FIG. 13, the candidate position of the reflection point on the flat plate-shaped object (the flat plate inclined with respect to the arrangement direction of the plurality of distance sensors S) existing on the detection area of the distance sensor S and Three-dimensional mapping data indicating the amplitude data of the reflected wave is added with the result obtained by direct transmission / reception (upper stage) and the result obtained by indirect transmission / reception (lower stage).
As shown in FIGS. 12 and 13, the candidate positions of the reflection points are interpolated by adding the three-dimensional mapping data using the results of receiving the reflected wave detected by the same object by direct transmission and reception and indirect transmission and reception, respectively. The
In addition, for the intersection of the circle defined by the direct wave analysis and the ellipse defined by the indirect wave analysis, that is, for the highly reliable candidate position obtained by both analysis, the amplitude value of the reflected wave at that point is added. And emphasized.
 次に、識別部241は、加算振幅値演算部233が演算処理した3次元マッピングデータから反射点の候補位置の分布を識別する(ステップST8)。
 まず、識別部241は、3次元マッピングデータにおける反射波の振幅データを、超音波信号が送信されてその反射波が受信されるまでの伝搬距離に応じて補正する。この後、識別部241は、上記補正後の3次元マッピングデータから、反射点の候補位置の分布を識別する。
 図14は、伝搬距離と振幅補正値との関係を示す図である。図14に示すように、識別部241には、超音波信号の送受信における伝搬距離に比例して大きな値となる補正値が設定されている。識別部241は、加算振幅値演算部233から3次元マッピングデータを入力すると、3次元マッピングデータにおける反射波の振幅データを、その伝搬距離に対応する補正値に変換する。このようにすることで、伝搬距離に起因した振幅の減衰を補正することができる。
Next, the identification unit 241 identifies the distribution of the candidate positions of the reflection points from the three-dimensional mapping data calculated by the addition amplitude value calculation unit 233 (step ST8).
First, the identification unit 241 corrects the amplitude data of the reflected wave in the three-dimensional mapping data according to the propagation distance from when the ultrasonic signal is transmitted until the reflected wave is received. Thereafter, the identification unit 241 identifies the distribution of the candidate positions of the reflection points from the corrected three-dimensional mapping data.
FIG. 14 is a diagram illustrating the relationship between the propagation distance and the amplitude correction value. As shown in FIG. 14, a correction value that is a large value in proportion to the propagation distance in transmission / reception of an ultrasonic signal is set in the identification unit 241. When the identification unit 241 receives the three-dimensional mapping data from the addition amplitude value calculation unit 233, the identification unit 241 converts the amplitude data of the reflected wave in the three-dimensional mapping data into a correction value corresponding to the propagation distance. By doing in this way, the attenuation of the amplitude resulting from the propagation distance can be corrected.
 次に、位置・形状判定部242は、識別部241が識別した反射点の候補位置の分布に基づいて、障害物100の位置と形状を判定する(ステップST9)。すなわち、識別された分布における、反射点の候補位置の集中度合い、直接波の反射点の候補位置の分布と間接波の反射点の候補位置の分布との割合、および、距離センサから障害物100までの距離データの変化の度合いのうちの少なくとも一つを基準として、障害物100の位置と形状を判定する。
 障害物100の位置は、距離センサから障害物100までの距離と距離センサから見た障害物100の方位で特定される。障害物100の形状は、距離センサ群Sgnが配設された平面上での形状、大きさ、および距離センサ群Sgnにおける距離センサの配設方向に対して傾斜しているか否かで特定される。
Next, the position / shape determining unit 242 determines the position and shape of the obstacle 100 based on the distribution of the candidate positions of the reflection points identified by the identifying unit 241 (step ST9). That is, the degree of concentration of the candidate positions of the reflection points in the identified distribution, the ratio between the distribution of the candidate positions of the direct wave reflection points and the distribution of the candidate positions of the reflection points of the indirect wave, and the obstacle 100 from the distance sensor. The position and shape of the obstacle 100 are determined based on at least one of the degree of change of the distance data up to.
The position of the obstacle 100 is specified by the distance from the distance sensor to the obstacle 100 and the direction of the obstacle 100 viewed from the distance sensor. The shape of the obstacle 100 is specified by the shape and size on the plane where the distance sensor group Sgn is disposed, and whether or not the obstacle 100 is inclined with respect to the direction in which the distance sensor is disposed in the distance sensor group Sgn. .
 図15は、反射点の候補位置の分布の識別例を示す図である。位置・形状判定部242は、図15に示すような反射点の位置候補の分布から、障害物100の位置および形状を判定する。図15(a)に示す分布は、直接波による分布と間接波による分布がほぼ同様な割合で得られている。
 この場合は、障害物100が曲面部もしくは隣り合う距離センサの間隔よりも広い平面部を外形に有していることが予想される。
 ここで、図15(a)に示す分布では反射点の位置候補が一部に集中しているので、障害物100が、平面部ではなく、距離センサ群Sgnが配設された平面上での形状が円形の円柱形状であると判定される(例えば、図6参照)。
FIG. 15 is a diagram illustrating an example of identifying a distribution of candidate positions of reflection points. The position / shape determining unit 242 determines the position and shape of the obstacle 100 from the distribution of the position candidates of the reflection points as shown in FIG. The distribution shown in FIG. 15A is obtained in a proportion similar to the distribution by the direct wave and the distribution by the indirect wave.
In this case, it is expected that the obstacle 100 has a curved surface portion or a flat surface portion wider than the distance between adjacent distance sensors on the outer shape.
Here, in the distribution shown in FIG. 15A, the position candidates of the reflection points are concentrated on a part, so that the obstacle 100 is not on the plane portion but on the plane on which the distance sensor group Sgn is arranged. It is determined that the shape is a circular cylindrical shape (see, for example, FIG. 6).
 また、図15(b)に示す分布は間接波による分布のみであるので、障害物100が、隣り合う距離センサの間隔よりも狭い平面部を外形に有していることが予想される。ここで、図15(b)に示す分布では、反射点の位置候補が一部に集中しているので、障害物100が、距離センサ群Sgnが配設された平面上での形状が矩形の角柱形状であると判定される(例えば、図7参照)。
 なお、間接波による分布の割合が直接波による分布より所定の閾値を超える程度に多い場合も、距離センサ群Sgnのうち、直接送受信できる距離センサが少ないことを意味しており、障害物100が、狭い平面部を有する角柱形状であることが予想される。
Further, since the distribution shown in FIG. 15B is only a distribution due to an indirect wave, it is expected that the obstacle 100 has a planar portion narrower than the interval between adjacent distance sensors on the outer shape. Here, in the distribution shown in FIG. 15B, the reflection point position candidates are concentrated in part, so that the obstacle 100 has a rectangular shape on the plane on which the distance sensor group Sgn is disposed. It is determined that the shape is a prismatic shape (see, for example, FIG. 7).
In addition, when the proportion of the distribution by the indirect wave is larger than the distribution by the direct wave so as to exceed a predetermined threshold, it means that the distance sensor group Sgn has few distance sensors that can be directly transmitted and received, and the obstacle 100 A prismatic shape having a narrow flat portion is expected.
 図15(c)に示す分布は、図15(a)と同様に、距離センサ群Sgnにおける複数の距離センサが、直接送受信と間接送受信を同様の割合で実施している。この場合、障害物100は、曲面部もしくは隣り合う距離センサの間隔よりも広い平面部を外形に有していることが予想される。ここで、図15(c)に示す分布では、反射点の位置候補が一部に集中していないので、障害物100が、曲面部ではなく、距離センサ群Sgnが配設された平面上での形状が線状の平板形状であると判定される(例えば、図12参照)。
 なお、距離センサ群Sgnにおける各距離センサと障害物100との距離データの変化が所定の閾値未満である場合には、図15(c)に示す分布が得られ、障害物100は、距離センサ群Sgnの複数の距離センサが配設された方向に平行である。
In the distribution shown in FIG. 15C, as in FIG. 15A, the plurality of distance sensors in the distance sensor group Sgn performs direct transmission and indirect transmission at the same rate. In this case, the obstacle 100 is expected to have a curved surface portion or a flat surface portion wider than the distance between adjacent distance sensors on the outer shape. Here, in the distribution shown in FIG. 15C, the position candidates of the reflection points are not concentrated in part, so the obstacle 100 is not a curved surface portion but on a plane on which the distance sensor group Sgn is arranged. Is determined to be a linear flat plate shape (see, for example, FIG. 12).
When the change in the distance data between each distance sensor and the obstacle 100 in the distance sensor group Sgn is less than a predetermined threshold value, the distribution shown in FIG. 15C is obtained. It is parallel to the direction in which the plurality of distance sensors of the group Sgn are arranged.
 図15(d)に示す分布は、図15(c)と同様に、距離センサ群Sgnにおける複数の距離センサが、直接送受信と間接送受信を同様の割合で実施している。また、反射点の位置候補は一部に集中していない。従って、障害物100が、隣り合う距離センサの間隔よりも広い平面部を外形に有していることが予想される。ここで、図15(d)の分布では、距離センサから障害物100までの距離データが、距離センサ群Sgnの複数の距離センサが配設された方向に対して徐々に変化しているので、障害物100は、距離センサ群Sgnに対して傾斜した平板形状であると判定される。
 ここで、障害物の形状判定のより具体的な例を以下に述べる。障害物の形状は、図4に示すようなセンサS1,S2,S3を順次一巡送受信した後の図15(a)、(b)、(c)、(d)に示す直接波および反射波の分布形状の縦Tiと横Thの比率と、直接波と間接波の検知頻度で決定する。
 円柱の縦横比の関係は、下記式(1)のようになる。
 Th≒Ti   ・・・・(1)
 また、平板の場合は、下記式(2)の関係となる。
 K×Th≧Ti  ・・・・(2)
 K≒2
 よって、円柱と平板の判定では、上記式(2)における定数Kとして、K=1.2~2を用いる。
In the distribution shown in FIG. 15D, as in FIG. 15C, the plurality of distance sensors in the distance sensor group Sgn performs direct transmission / reception and indirect transmission / reception at the same rate. Also, the reflection point position candidates are not concentrated in part. Therefore, it is expected that the obstacle 100 has a flat portion wider than the distance between adjacent distance sensors on the outer shape. Here, in the distribution of FIG. 15 (d), the distance data from the distance sensor to the obstacle 100 is gradually changing with respect to the direction in which the plurality of distance sensors of the distance sensor group Sgn is disposed. The obstacle 100 is determined to have a flat plate shape inclined with respect to the distance sensor group Sgn.
Here, a more specific example of obstacle shape determination will be described below. The shape of the obstacle is that of the direct wave and reflected wave shown in FIGS. 15A, 15B, 15C, 15D after the sensors S1, S2, S3 as shown in FIG. It is determined by the ratio between the vertical Ti and horizontal Th of the distribution shape and the detection frequency of the direct wave and the indirect wave.
The relationship of the aspect ratio of the cylinder is as shown in the following formula (1).
Th≈Ti (1)
Moreover, in the case of a flat plate, it becomes a relationship of following formula (2).
K × Th ≧ Ti (2)
K ≒ 2
Therefore, in the determination of the cylinder and the flat plate, K = 1.2 to 2 is used as the constant K in the above equation (2).
 また、センサS1,S2,S3を順次一巡送受信した後の直接波の検知回数をDw、間接波の検知回数Iwとすると、円柱および幅広の平板の検知回数の関係は、下記式(3)のようになる。
 Dw≒Iw  ・・・・・(3)
 これに反して、角柱の関係は、下記式(4)となる。
 Dw<Iw   ・・・・(4)
 実用上の判定基準は、例えば、下記式(5)とする。
 2Dw<Iw  ・・・・(5)
 よって、上記式(2)、(3)、(5)の関係を用いれば、障害物の形状判定の信頼性が向上する。
 なお、図15(d)の線分Lは、反射波の分布を平面座標の単位座標ごとに量子化して求めた回帰直線を示しており、この回帰直線を基準に縦横幅を求める。
Also, assuming that the number of direct wave detections after sequentially transmitting and receiving the sensors S1, S2, and S3 is Dw and the number of indirect wave detections Iw, the relationship between the number of detections of the cylinder and the wide flat plate is expressed by the following equation (3). It becomes like this.
Dw ≒ Iw (3)
On the other hand, the relationship between the prisms is the following formula (4).
Dw <Iw (4)
The practical criterion is, for example, the following formula (5).
2Dw <Iw (5)
Therefore, if the relationship of said Formula (2), (3), (5) is used, the reliability of obstacle shape determination will improve.
Note that a line segment L in FIG. 15D shows a regression line obtained by quantizing the distribution of reflected waves for each unit coordinate of the plane coordinates, and the vertical and horizontal widths are obtained based on the regression line.
 次に、表示座標変換部25は、距離センサ群の検知エリア上の2次元座標系から、位置・形状判定部242が判定した位置および形状で障害物100を、予め設定した任意の監視範囲に表示する表示座標系(表示部31の画面上の表示座標系)へ変換する(ステップST10)。続いて、表示部31が、表示座標変換部25で検知エリア上の2次元座標系から変換された表示座標系で監視範囲の障害物100の位置および形状を表示する(ステップST11)。 Next, the display coordinate conversion unit 25 moves the obstacle 100 from the two-dimensional coordinate system on the detection area of the distance sensor group to the arbitrary monitoring range set in advance with the position and shape determined by the position / shape determination unit 242. Conversion to a display coordinate system to be displayed (display coordinate system on the screen of the display unit 31) is performed (step ST10). Subsequently, the display unit 31 displays the position and shape of the obstacle 100 in the monitoring range in the display coordinate system converted from the two-dimensional coordinate system on the detection area by the display coordinate conversion unit 25 (step ST11).
 本発明は、直接送受信に加え、間接送受信の検知情報も用いるので、従来と比べて距離センサの設置間隔を広くしその個数を低減しても、距離センサの検知情報が不足することがない。従って、少ないセンサ数で障害物100の位置および形状を判定することが可能である。また、間接送受信での検知情報を用いるので、上述したように角柱形状の障害物100を検知することができる。 Since the present invention uses detection information of indirect transmission / reception in addition to direct transmission / reception, even if the distance sensor installation interval is widened and the number thereof is reduced, the distance sensor detection information will not be insufficient. Therefore, it is possible to determine the position and shape of the obstacle 100 with a small number of sensors. Moreover, since the detection information in indirect transmission / reception is used, the prismatic obstacle 100 can be detected as described above.
 なお、障害物100の検知結果は、車両8の移動に応じた表示範囲で表示部31に表示してもよい。
 図16は、車両の移動に応じた監視範囲の表示処理を示す図である。図16において、車両8は、実施の形態1に係る物体検知装置1を搭載し、距離センサ群Sg1,Sg2、カメラ7を備える。距離センサ群Sg1は、車両8の後方部に設けられ、距離センサ群Sg2は、車両8の前方部に設けられる。また、カメラ7は、リアカメラとして車両8の後方部に設けられて、距離センサ群Sg1の検知エリアAbを撮影範囲としている。なお、図示は省略したが、車両8には、図1に示したGPSセンサ4、車輪速センサ5、およびステアリング角度センサ6も搭載されている。
The detection result of the obstacle 100 may be displayed on the display unit 31 within a display range corresponding to the movement of the vehicle 8.
FIG. 16 is a diagram illustrating a monitor range display process according to the movement of the vehicle. In FIG. 16, a vehicle 8 is equipped with the object detection device 1 according to the first embodiment, and includes distance sensor groups Sg <b> 1 and Sg <b> 2 and a camera 7. The distance sensor group Sg <b> 1 is provided in the rear part of the vehicle 8, and the distance sensor group Sg <b> 2 is provided in the front part of the vehicle 8. In addition, the camera 7 is provided as a rear camera in the rear part of the vehicle 8 and uses the detection area Ab of the distance sensor group Sg1 as a photographing range. Although not shown, the vehicle 8 is also equipped with the GPS sensor 4, the wheel speed sensor 5, and the steering angle sensor 6 shown in FIG.
 図16(a)に示す車両位置において、検知物判定部24が、上述のように距離センサ群Sg1の検知エリアAbに存在する障害物100の位置および形状を判定して、表示部31が、検知エリアAb上の障害物100を表示する。
 ここで、図16(b)のように、運転者が車両8のステアリングを操作して、図16(a)の状態から、車両8が角度θだけ曲がった場合を例に挙げる。この場合、位置判定部22は、GPSセンサ4が取得したGPS情報、車輪速センサ5が取得した車輪速データまたはステアリング角度センサ6が取得した操舵角に基づいて、車両8の移動位置および距離センサ群Sg1,Sg2の距離センサの位置を判定する。
In the vehicle position shown in FIG. 16A, the detected object determination unit 24 determines the position and shape of the obstacle 100 existing in the detection area Ab of the distance sensor group Sg1 as described above, and the display unit 31 The obstacle 100 on the detection area Ab is displayed.
Here, as shown in FIG. 16B, a case where the driver operates the steering of the vehicle 8 and the vehicle 8 is bent by an angle θ from the state of FIG. In this case, the position determination unit 22 determines the movement position and distance sensor of the vehicle 8 based on the GPS information acquired by the GPS sensor 4, the wheel speed data acquired by the wheel speed sensor 5, or the steering angle acquired by the steering angle sensor 6. The positions of the distance sensors of the groups Sg1 and Sg2 are determined.
 表示座標変換部25は、位置判定部22が判定した車両8の移動位置および距離センサの位置に基づいて、検知物判定部24が判定した位置および形状で障害物100を表示する監視範囲の表示座標系を、車両8の移動に伴って変化する距離センサの向きに応じた表示座標系に変換する。ここでは、車両8が角度θだけ傾いたので図16(a)の表示座標も車両の傾斜角度θ合わせて傾斜させて表示する。すなわち、検知エリアAbの表示範囲が車両8の後方部に対向する位置になるように表示する。このとき、表示座標変換部25が、車両8の移動位置および距離センサの位置から、車両8の移動に伴う距離センサの向きの変化を考慮して移動後の検知エリアAbにおける障害物100の位置座標を演算する。これにより、図16(b)のように、車両8が曲がった分だけ向きが変化した距離センサ群の検知エリアAbの表示範囲に障害物100が表示される。 The display coordinate conversion unit 25 displays a monitoring range in which the obstacle 100 is displayed at the position and shape determined by the detected object determination unit 24 based on the movement position of the vehicle 8 and the position of the distance sensor determined by the position determination unit 22. The coordinate system is converted into a display coordinate system corresponding to the direction of the distance sensor that changes as the vehicle 8 moves. Here, since the vehicle 8 is tilted by the angle θ, the display coordinates in FIG. 16A are also tilted in accordance with the vehicle tilt angle θ. In other words, the display is performed so that the display range of the detection area Ab is at a position facing the rear portion of the vehicle 8. At this time, the display coordinate conversion unit 25 considers a change in the direction of the distance sensor accompanying the movement of the vehicle 8 from the movement position of the vehicle 8 and the position of the distance sensor, and the position of the obstacle 100 in the detection area Ab after the movement. Calculate coordinates. As a result, as shown in FIG. 16B, the obstacle 100 is displayed in the display range of the detection area Ab of the distance sensor group whose direction has changed by the amount the vehicle 8 is bent.
 また、表示部31が、表示座標変換部25が変換した表示座標系で、監視範囲の障害物100を表示するとともに、カメラ7が撮影した車両8の周辺の映像情報(後方映像)を表示するようにしてもよい。 Further, the display unit 31 displays the obstacle 100 in the monitoring range in the display coordinate system converted by the display coordinate conversion unit 25 and also displays video information (rear video) around the vehicle 8 taken by the camera 7. You may do it.
 以上のように、この実施の形態1によれば、距離センサ群Sgnにおける個々の距離センサS1~S4がそれぞれ単独で送信した超音波信号の障害物100からの反射波を、当該超音波信号を送信した同一の距離センサで直接的に受信して得られた超音波信号の送受信における伝搬距離データおよび反射波の振幅データを記憶する直接波信号記憶部215と、距離センサ群Sgnにおける個々の距離センサS1~S4がそれぞれ単独で送信した超音波信号の障害物100からの反射波を、距離センサ群Sgnにおける当該超音波信号を送信した距離センサ以外のいずれか一つの距離センサで間接的に受信して得られた超音波信号の送受信における伝搬距離データおよび反射波の振幅データを記憶する間接波信号記憶部216と、直接波信号記憶部215および間接波信号記憶部216にそれぞれ記憶した伝搬距離データおよび振幅データに基づいて、反射点の候補位置およびこの候補位置からの反射波の振幅データを、距離センサ群Sgnの検知エリア上にマッピングする距離センサデータマッピング部23と、距離センサデータマッピング部23が生成した反射点の候補位置およびこの候補位置からの反射波の振幅データの分布を示す3次元マッピングデータに基づいて、障害物100の位置および形状を判定する検知物判定部24と、距離センサ群Sgnの検知エリア上の座標系から、検知物判定部24が判定した位置および形状で物体を表示する監視範囲の表示座標系へ変換する表示座標変換部25と、表示座標変換部25が変換した表示座標系で、監視範囲の物体を表示する表示部31とを備える。
 このように構成することにより、距離センサの増加を招くことなく、様々な形状の障害物を検知できる。
As described above, according to the first embodiment, the reflected wave from the obstacle 100 of the ultrasonic signal individually transmitted by the individual distance sensors S1 to S4 in the distance sensor group Sgn is used as the ultrasonic signal. A direct wave signal storage unit 215 for storing propagation distance data and reflected wave amplitude data in transmission / reception of an ultrasonic signal directly received by the same transmitted distance sensor, and individual distances in the distance sensor group Sgn The reflected wave from the obstacle 100 of the ultrasonic signal transmitted independently by each of the sensors S1 to S4 is indirectly received by any one distance sensor other than the distance sensor that transmitted the ultrasonic signal in the distance sensor group Sgn. An indirect wave signal storage unit 216 for storing propagation distance data and reflected wave amplitude data in transmission / reception of ultrasonic signals obtained in this manner, and direct wave signal recording Based on the propagation distance data and the amplitude data stored in the unit 215 and the indirect wave signal storage unit 216, the reflection point candidate position and the amplitude data of the reflected wave from the candidate position are placed on the detection area of the distance sensor group Sgn. Based on the distance sensor data mapping unit 23 to be mapped, and the three-dimensional mapping data indicating the distribution of the reflection point candidate position generated by the distance sensor data mapping unit 23 and the amplitude data of the reflected wave from the candidate position, the obstacle 100 From the detected object determination unit 24 that determines the position and shape of the sensor and the coordinate system on the detection area of the distance sensor group Sgn to the display coordinate system of the monitoring range that displays the object at the position and shape determined by the detected object determination unit 24 A display coordinate conversion unit 25 for conversion and a display coordinate system converted by the display coordinate conversion unit 25 display an object in the monitoring range. And a display unit 31.
By comprising in this way, the obstacle of various shapes is detectable, without causing the increase in a distance sensor.
 なお、本発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。 In the present invention, any component of the embodiment can be modified or any component of the embodiment can be omitted within the scope of the invention.
 この発明に係る物体検知装置は、距離センサの増加を招くことなく、様々な形状の物体を検知できることから、車両周辺の障害物を検知する障害物検知装置に好適である。 The object detection device according to the present invention is suitable for an obstacle detection device that detects an obstacle around the vehicle because it can detect objects of various shapes without increasing the distance sensor.
 1 物体検知装置、2 処理部、3 報知部、4 GPSセンサ、5 車輪速センサ、6 ステアリング角度センサ、7 カメラ、8 車両、21 距離センサデータ処理部、22 位置判定部、23 距離センサデータマッピング部、24 検知物判定部、25 表示座標変換部、31 表示部、32 音声出力部、100 障害物、211a 送信部、211b 受信部、212 全波整流部、213 閾値判定部、214 最大値判定部、215 直接波信号記憶部、216 間接波信号記憶部、231 第1の反射点候補位置生成部、232 第2の反射点候補位置生成部、233 加算振幅値演算部、241 識別部、242 位置・形状判定部、Sg1~Sgn 距離センサ群、S,S1~S4 距離センサ。 1 object detection device, 2 processing unit, 3 notification unit, 4 GPS sensor, 5 wheel speed sensor, 6 steering angle sensor, 7 camera, 8 vehicle, 21 distance sensor data processing unit, 22 position determination unit, 23 distance sensor data mapping Unit, 24 detection object determination unit, 25 display coordinate conversion unit, 31 display unit, 32 audio output unit, 100 obstacle, 211a transmission unit, 211b reception unit, 212 full wave rectification unit, 213 threshold determination unit, 214 maximum value determination , 215 direct wave signal storage unit, 216 indirect wave signal storage unit, 231 first reflection point candidate position generation unit, 232 second reflection point candidate position generation unit, 233 addition amplitude value calculation unit, 241 identification unit, 242 Position / shape determination unit, Sg1-Sgn distance sensor group, S, S1-S4 distance sensor.

Claims (11)

  1.  所定の方向に配設した複数の距離センサからなる距離センサ群を用いて物体を検知する物体検知装置において、
     前記距離センサ群における個々の距離センサがそれぞれ単独で送信した所定の信号の前記物体からの反射波を、当該所定の信号を送信した同一の距離センサで直接的に受信して得られた前記所定の信号の送受信における伝搬距離データおよび前記反射波の振幅データを記憶する直接波信号記憶部と、
     前記距離センサ群における個々の距離センサがそれぞれ単独で送信した所定の信号の前記物体からの反射波を、前記距離センサ群における当該所定の信号を送信した距離センサ以外のいずれか一つの距離センサで間接的に受信して得られた前記所定の信号の送受信における伝搬距離データおよび前記反射波の振幅データを記憶する間接波信号記憶部と、
     前記直接波信号記憶部および前記間接波信号記憶部にそれぞれ記憶された前記伝搬距離データおよび前記振幅データに基づいて、前記物体の反射点の候補位置およびこの候補位置からの反射波の振幅データを前記距離センサ群の検知エリア上にマッピングする距離センサデータマッピング部と、
     前記距離センサデータマッピング部が生成した前記反射点の候補位置およびこの候補位置からの反射波の振幅データの分布を示す3次元マッピングデータに基づいて、前記物体の位置および形状を判定する検知物判定部と、
     前記距離センサ群の検知エリア上の座標系から、前記検知物判定部が判定した位置および形状で前記物体を表示する監視範囲の表示座標系へ変換する表示座標変換部と、
     前記表示座標変換部が変換した前記表示座標系で、前記監視範囲の前記物体を表示する表示部とを備えたことを特徴とする物体検知装置。
    In an object detection device that detects an object using a distance sensor group including a plurality of distance sensors arranged in a predetermined direction,
    The predetermined signal obtained by directly receiving a reflected wave from the object of a predetermined signal transmitted individually by each distance sensor in the distance sensor group by the same distance sensor that transmitted the predetermined signal. A direct wave signal storage unit for storing propagation distance data and amplitude data of the reflected wave in transmission and reception of
    A reflected wave from the object of a predetermined signal transmitted individually by each distance sensor in the distance sensor group is transmitted to any one of the distance sensors other than the distance sensor that transmits the predetermined signal in the distance sensor group. An indirect wave signal storage unit that stores propagation distance data and amplitude data of the reflected wave in transmission / reception of the predetermined signal obtained by receiving indirectly;
    Based on the propagation distance data and the amplitude data respectively stored in the direct wave signal storage unit and the indirect wave signal storage unit, the candidate position of the reflection point of the object and the amplitude data of the reflected wave from the candidate position are obtained. A distance sensor data mapping unit for mapping on a detection area of the distance sensor group;
    Detected object determination for determining the position and shape of the object based on the candidate position of the reflection point generated by the distance sensor data mapping unit and the three-dimensional mapping data indicating the distribution of the amplitude data of the reflected wave from the candidate position And
    A display coordinate conversion unit for converting from a coordinate system on the detection area of the distance sensor group to a display coordinate system of a monitoring range for displaying the object at the position and shape determined by the detection object determination unit;
    An object detection apparatus comprising: a display unit configured to display the object in the monitoring range in the display coordinate system converted by the display coordinate conversion unit.
  2.  前記距離センサが受信した反射波の中から、前記所定の信号が送信されてその反射波が受信されるまでの伝搬距離に応じて設定した閾値を超える振幅値の反射波を判定して抽出する閾値判定部と、
     前記閾値判定部が抽出した反射波について、前記所定の信号が送信されてその反射波が受信されるまでの伝搬距離、および、予め設定した時間帯での最大振幅値を判定して抽出する最大値判定部とを備えたことを特徴とする請求項1記載の物体検知装置。
    From the reflected waves received by the distance sensor, a reflected wave having an amplitude value exceeding a threshold set in accordance with a propagation distance from when the predetermined signal is transmitted until the reflected wave is received is determined and extracted. A threshold determination unit;
    For the reflected wave extracted by the threshold determination unit, the maximum distance that is extracted by determining the propagation distance from when the predetermined signal is transmitted until the reflected wave is received, and the maximum amplitude value in a preset time zone The object detection device according to claim 1, further comprising a value determination unit.
  3.  前記閾値判定部は、前記所定の信号が送信されてその反射波が受信されるまでの伝搬距離に反比例した閾値を用いて、当該反射波の振幅データを判定することを特徴とする請求項2記載の物体検知装置。 The threshold determination unit determines amplitude data of the reflected wave using a threshold inversely proportional to a propagation distance from when the predetermined signal is transmitted until the reflected wave is received. The object detection apparatus described.
  4.  前記距離センサデータマッピング部は、
     前記直接波信号記憶部に記憶された伝搬距離データおよび振幅データに基づいて、前記距離センサの位置を中心とした当該距離センサから前記物体までの距離を半径とする円の円周上に反射点が存在するものとして、前記距離センサ群の検知エリア上に前記反射点の候補位置およびこの候補位置からの反射波の振幅データをマッピングした3次元マッピングデータを生成する第1の反射点候補位置生成部と、
     前記間接波信号記憶部に記憶された伝搬距離データおよび振幅データに基づいて、前記所定の信号を送信した距離センサの位置と当該所定の信号の反射波を受信した距離センサの位置とを2定点とした楕円の円周上に反射点が存在するものとして、前記距離センサ群の検知エリア上に前記反射点の候補位置およびこの候補位置からの反射波の振幅データをマッピングした3次元マッピングデータを生成する第2の反射点候補位置生成部と、
     前記第1の反射点候補位置生成部および前記第2の反射点候補位置生成部がそれぞれ生成した3次元マッピングデータを合成する加算振幅値演算部とを備えたことを特徴とする請求項1記載の物体検知装置。
    The distance sensor data mapping unit includes:
    Based on propagation distance data and amplitude data stored in the direct wave signal storage unit, reflection points on the circumference of a circle whose radius is the distance from the distance sensor to the object centered on the position of the distance sensor First reflection point candidate position generation for generating three-dimensional mapping data mapping the candidate position of the reflection point and the amplitude data of the reflected wave from the candidate position on the detection area of the distance sensor group And
    Based on the propagation distance data and amplitude data stored in the indirect wave signal storage unit, two fixed points are the position of the distance sensor that has transmitted the predetermined signal and the position of the distance sensor that has received the reflected wave of the predetermined signal. Assuming that a reflection point exists on the circumference of the ellipse, three-dimensional mapping data in which the candidate position of the reflection point and the amplitude data of the reflected wave from the candidate position are mapped on the detection area of the distance sensor group A second reflection point candidate position generation unit to generate;
    The addition amplitude value calculating part which synthesize | combines the three-dimensional mapping data which the said 1st reflection point candidate position production | generation part and the said 2nd reflection point candidate position production | generation part each produced | generated. Object detection device.
  5.  前記検知物判定部は、
     前記距離センサデータマッピング部が生成した3次元マッピングデータにおける反射波の振幅データを、前記所定の信号が送信されてその反射波が受信されるまでの伝搬距離に応じて補正して、当該3次元マッピングデータから反射点の候補位置の分布を識別する識別部と、
     前記識別部が識別した前記反射点の候補位置の分布における、前記反射点の候補位置の集中度合い、前記直接波信号記憶部に記憶されたデータを基に得られた反射点の候補位置の分布と前記間接波信号記憶部に記憶されたデータを基に得られた反射点の候補位置の分布との割合、および前記距離センサから前記物体までの距離データの変化の度合いのうちの少なくとも一つを基準として、当該物体の位置と形状を判定する位置・形状判定部とを備えたことを特徴とする請求項1記載の物体検知装置。
    The detected object determination unit
    The amplitude data of the reflected wave in the three-dimensional mapping data generated by the distance sensor data mapping unit is corrected according to the propagation distance from when the predetermined signal is transmitted until the reflected wave is received, and the three-dimensional An identification unit for identifying the distribution of the candidate positions of the reflection points from the mapping data;
    Distribution of candidate positions of reflection points obtained based on the degree of concentration of candidate positions of the reflection points in the distribution of candidate positions of the reflection points identified by the identification unit and data stored in the direct wave signal storage unit At least one of the ratio of the reflection point candidate position distribution obtained based on the data stored in the indirect wave signal storage unit, and the degree of change in the distance data from the distance sensor to the object The object detection apparatus according to claim 1, further comprising a position / shape determination unit that determines a position and a shape of the object with reference to.
  6.  前記識別部は、前記所定の信号が送信されてその反射波が受信されるまでの伝搬距離に比例して大きな値となるように反射波の振幅データを補正することを特徴とする請求項5記載の物体検知装置。 The said identification part correct | amends the amplitude data of a reflected wave so that it may become a large value in proportion to the propagation distance after the said predetermined signal is transmitted and the reflected wave is received. The object detection apparatus described.
  7.  前記位置・形状判定部は、
     前記識別部が識別した反射点の候補位置の分布において、前記直接波信号記憶部に記憶されたデータを基に得られた反射点の候補位置の分布の割合が、前記間接波信号記憶部に記憶されたデータを基に得られた反射点の候補位置の分布よりも多く、前記反射点の候補位置が一部に集中している場合、検知対象の物体が円柱形状であると判定し、
     前記識別部が識別した前記反射点の候補位置の分布において、前記直接波信号記憶部に記憶されたデータを基に得られた反射点の候補位置の分布の割合が、前記間接波信号記憶部に記憶されたデータを基に得られた反射点の候補位置の分布よりも多く、かつ前記物体までの距離データの変化が所定の閾値未満である場合、検知対象の物体が平板形状であると判定し、
     前記識別部が識別した前記反射点の候補位置の分布において、前記間接波信号記憶部に記憶されたデータを基に得られた反射点の候補位置の分布の割合が、前記直接波信号記憶部に記憶されたデータを基に得られた反射点の候補位置の分布よりも多く、前記反射点の候補位置が一部に集中している場合、検知対象の物体が角柱形状であると判定し、
     前記識別部が識別した前記反射点の候補位置の分布において、前記直接波信号記憶部に記憶されたデータを基に得られた反射点の候補位置の分布の割合が、前記間接波信号記憶部に記憶されたデータを基に得られた反射点の候補位置の分布よりも多く、かつ前記物体までの距離データが前記複数の距離センサの配設方向に対して徐々に変化している場合、検知対象の物体が、前記距離センサ群から見て傾斜している面を有すると判定することを特徴とする請求項5記載の物体検知装置。
    The position / shape determination unit
    In the distribution of the candidate positions of the reflection points identified by the identification unit, the ratio of the distribution of candidate positions of the reflection points obtained based on the data stored in the direct wave signal storage unit is stored in the indirect wave signal storage unit. More than the distribution of the candidate positions of the reflection points obtained based on the stored data, and when the candidate positions of the reflection points are concentrated in part, it is determined that the object to be detected is a cylindrical shape,
    In the distribution of the candidate positions of the reflection points identified by the identification unit, the ratio of the distribution of candidate positions of the reflection points obtained based on the data stored in the direct wave signal storage unit is the indirect wave signal storage unit. Is larger than the distribution of the candidate positions of the reflection points obtained based on the data stored in, and the change in the distance data to the object is less than a predetermined threshold, the object to be detected is plate-shaped Judgment,
    In the distribution of the candidate positions of the reflection points identified by the identification unit, the ratio of the distribution of candidate positions of the reflection points obtained based on the data stored in the indirect wave signal storage unit is the direct wave signal storage unit. If the candidate position of the reflection point is larger than the distribution of candidate positions of the reflection point obtained based on the data stored in the data, and the candidate position of the reflection point is concentrated in part, it is determined that the object to be detected is a prismatic shape. ,
    In the distribution of the candidate positions of the reflection points identified by the identification unit, the ratio of the distribution of candidate positions of the reflection points obtained based on the data stored in the direct wave signal storage unit is the indirect wave signal storage unit. More than the distribution of candidate positions of the reflection points obtained based on the data stored in, and the distance data to the object is gradually changing with respect to the direction of arrangement of the plurality of distance sensors, The object detection apparatus according to claim 5, wherein the object to be detected is determined to have a surface that is inclined as viewed from the distance sensor group.
  8.  移動体に搭載され、当該移動体の周囲に存在する物体を検知することを特徴とする請求項1から請求項7のうちのいずれか1項記載の物体検知装置。 The object detection device according to claim 1, wherein the object detection device is mounted on a moving body and detects an object existing around the moving body.
  9.  前記移動体の移動位置および当該移動体の移動に伴う前記距離センサの位置を判定する位置判定部を備え、
     前記表示座標変換部は、前記位置判定部が判定した前記移動体の移動位置および前記距離センサの位置に基づいて、前記検知物判定部が判定した位置および形状で前記物体を表示する監視範囲の表示座標系を、前記移動体の移動に伴って変化する前記距離センサの向きに応じた表示座標系に変換し、
     前記表示部は、前記表示座標変換部が変換した前記表示座標系で、前記監視範囲の前記物体を表示することを特徴とする請求項8記載の物体検知装置。
    A position determination unit that determines a moving position of the moving body and a position of the distance sensor accompanying the movement of the moving body;
    The display coordinate conversion unit is configured to display a monitoring range in which the object is displayed at the position and shape determined by the detected object determination unit based on the moving position of the moving body determined by the position determination unit and the position of the distance sensor. The display coordinate system is converted into a display coordinate system corresponding to the direction of the distance sensor that changes as the moving body moves,
    The object detection apparatus according to claim 8, wherein the display unit displays the object in the monitoring range in the display coordinate system converted by the display coordinate conversion unit.
  10.  前記移動体の周辺状況を撮影する撮影部を備え、
     前記表示部は、前記表示座標変換部が変換した表示座標系で、前記監視範囲の前記物体を表示するとともに、前記撮影部が撮影した前記移動体の周辺の映像情報を表示することを特徴とする請求項8記載の物体検知装置。
    A photographing unit for photographing the surroundings of the moving body;
    The display unit displays the object in the monitoring range in the display coordinate system converted by the display coordinate conversion unit, and displays video information around the moving object taken by the photographing unit. The object detection device according to claim 8.
  11.  前記移動体から所定の距離内に前記物体が接近したことを報知する報知部を備えたことを特徴とする請求項8記載の物体検知装置。 The object detection apparatus according to claim 8, further comprising a notification unit that notifies that the object has approached within a predetermined distance from the moving body.
PCT/JP2011/004596 2011-08-16 2011-08-16 Object detection device WO2013024509A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112011105533.1T DE112011105533B4 (en) 2011-08-16 2011-08-16 Object detection device
JP2013528846A JP5710000B2 (en) 2011-08-16 2011-08-16 Object detection device
PCT/JP2011/004596 WO2013024509A1 (en) 2011-08-16 2011-08-16 Object detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/004596 WO2013024509A1 (en) 2011-08-16 2011-08-16 Object detection device

Publications (1)

Publication Number Publication Date
WO2013024509A1 true WO2013024509A1 (en) 2013-02-21

Family

ID=47714855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004596 WO2013024509A1 (en) 2011-08-16 2011-08-16 Object detection device

Country Status (3)

Country Link
JP (1) JP5710000B2 (en)
DE (1) DE112011105533B4 (en)
WO (1) WO2013024509A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055571A (en) * 2013-09-12 2015-03-23 株式会社日本自動車部品総合研究所 Object determination device
JP2015191441A (en) * 2014-03-28 2015-11-02 三菱電機株式会社 Collision determination apparatus
JP5843948B1 (en) * 2014-11-27 2016-01-13 三菱電機株式会社 Parking assistance device and parking assistance method
JP2016080644A (en) * 2014-10-22 2016-05-16 株式会社デンソー Object detector
JP2017015494A (en) * 2015-06-30 2017-01-19 株式会社デンソー Object detection device and object detection method
JP2017142171A (en) * 2016-02-10 2017-08-17 株式会社Soken Object detection device
CN107076850A (en) * 2014-10-22 2017-08-18 株式会社电装 Obstacle detector for vehicle
JP2017146164A (en) * 2016-02-16 2017-08-24 パナソニックIpマネジメント株式会社 Object detection system
WO2018043028A1 (en) * 2016-08-29 2018-03-08 株式会社デンソー Surroundings monitoring device and surroundings monitoring method
CN108780149A (en) * 2016-03-18 2018-11-09 法雷奥开关和传感器有限责任公司 Pass through the indirect method measured to improve the detection at least one object around motor vehicles of sensor, controller, driver assistance system and motor vehicles
CN109154648A (en) * 2016-05-19 2019-01-04 株式会社电装 Article detection device and object detecting method
WO2020105093A1 (en) * 2018-11-19 2020-05-28 三菱電機株式会社 Obstacle detection device
WO2020115957A1 (en) * 2018-12-04 2020-06-11 株式会社デンソー Object detecting device, and object detecting method
JP2020128938A (en) * 2019-02-08 2020-08-27 アイシン精機株式会社 Object detector
WO2020235397A1 (en) * 2019-05-22 2020-11-26 株式会社デンソー Three-dimensional positioning device and three-dimensional positioning method
WO2021024481A1 (en) * 2019-08-08 2021-02-11 三菱電機株式会社 Obstacle detection device
WO2021024433A1 (en) * 2019-08-07 2021-02-11 三菱電機株式会社 Obstacle detection device
CN112470027A (en) * 2018-07-27 2021-03-09 三菱电机株式会社 Control device for object detection device, and object detection program
CN112805589A (en) * 2018-10-03 2021-05-14 株式会社电装 Object detection device
CN114067609A (en) * 2020-08-04 2022-02-18 松下知识产权经营株式会社 Obstacle determination device and vehicle
CN114114277A (en) * 2021-11-04 2022-03-01 岚图汽车科技有限公司 Ultrasonic parking auxiliary obstacle positioning method, device, equipment and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52112223A (en) * 1976-03-17 1977-09-20 Hitachi Medical Corp Ultrasonic camera device
JPH07260933A (en) * 1994-03-18 1995-10-13 Nissan Motor Co Ltd Peripheral object detection device
JP2003194938A (en) * 2001-12-25 2003-07-09 Denso Corp Obstacle detector
JP2004526976A (en) * 2001-05-22 2004-09-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for operation of a radar sensor device
US20050052950A1 (en) * 2001-08-02 2005-03-10 Roland Klinnert Monitoring device and method using echo signals
JP2005077302A (en) * 2003-09-02 2005-03-24 Fujitsu Ten Ltd Object detection device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028717A (en) * 1998-07-13 2000-01-28 Mitsubishi Electric Corp Device for detecting obstacle
JP4618506B2 (en) * 2005-10-20 2011-01-26 アイシン精機株式会社 Object recognition device
DE102006008636A1 (en) * 2006-02-24 2007-08-30 Robert Bosch Gmbh Sensor system for vehicle, has sensor unit arranged in vehicle, sensor data of evaluating and control unit is analyzed for object recognition, echo signals reflected by objects are received and converted into electrical signals
JP4752686B2 (en) * 2006-09-01 2011-08-17 トヨタ自動車株式会社 Obstacle detection device for vehicles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52112223A (en) * 1976-03-17 1977-09-20 Hitachi Medical Corp Ultrasonic camera device
JPH07260933A (en) * 1994-03-18 1995-10-13 Nissan Motor Co Ltd Peripheral object detection device
JP2004526976A (en) * 2001-05-22 2004-09-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for operation of a radar sensor device
US20050052950A1 (en) * 2001-08-02 2005-03-10 Roland Klinnert Monitoring device and method using echo signals
JP2003194938A (en) * 2001-12-25 2003-07-09 Denso Corp Obstacle detector
JP2005077302A (en) * 2003-09-02 2005-03-24 Fujitsu Ten Ltd Object detection device

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055571A (en) * 2013-09-12 2015-03-23 株式会社日本自動車部品総合研究所 Object determination device
JP2015191441A (en) * 2014-03-28 2015-11-02 三菱電機株式会社 Collision determination apparatus
CN107076850A (en) * 2014-10-22 2017-08-18 株式会社电装 Obstacle detector for vehicle
JP2016080644A (en) * 2014-10-22 2016-05-16 株式会社デンソー Object detector
CN107076850B (en) * 2014-10-22 2023-06-20 株式会社电装 Obstacle detection device for vehicle
JP5843948B1 (en) * 2014-11-27 2016-01-13 三菱電機株式会社 Parking assistance device and parking assistance method
JP2017015494A (en) * 2015-06-30 2017-01-19 株式会社デンソー Object detection device and object detection method
JP2017142171A (en) * 2016-02-10 2017-08-17 株式会社Soken Object detection device
WO2017141757A1 (en) * 2016-02-16 2017-08-24 パナソニックIpマネジメント株式会社 Object detection system
JP2017146164A (en) * 2016-02-16 2017-08-24 パナソニックIpマネジメント株式会社 Object detection system
JP2019512699A (en) * 2016-03-18 2019-05-16 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー Method for improving detection of at least one object around a motor vehicle by indirect measurement with a sensor, controller, driver assistance system, and motor vehicle
CN108780149A (en) * 2016-03-18 2018-11-09 法雷奥开关和传感器有限责任公司 Pass through the indirect method measured to improve the detection at least one object around motor vehicles of sensor, controller, driver assistance system and motor vehicles
CN109154648A (en) * 2016-05-19 2019-01-04 株式会社电装 Article detection device and object detecting method
US10885354B2 (en) 2016-08-29 2021-01-05 Denso Corporation Perimeter monitoring device and perimeter monitoring method
JP2018037737A (en) * 2016-08-29 2018-03-08 株式会社Soken Periphery monitoring device and periphery monitoring method
WO2018043028A1 (en) * 2016-08-29 2018-03-08 株式会社デンソー Surroundings monitoring device and surroundings monitoring method
CN109643495A (en) * 2016-08-29 2019-04-16 株式会社电装 Periphery monitoring apparatus and environment monitoring method
CN109643495B (en) * 2016-08-29 2022-05-17 株式会社电装 Periphery monitoring device and periphery monitoring method
CN112470027A (en) * 2018-07-27 2021-03-09 三菱电机株式会社 Control device for object detection device, and object detection program
CN112805589A (en) * 2018-10-03 2021-05-14 株式会社电装 Object detection device
JPWO2020105093A1 (en) * 2018-11-19 2021-02-15 三菱電機株式会社 Obstacle detector
WO2020105093A1 (en) * 2018-11-19 2020-05-28 三菱電機株式会社 Obstacle detection device
JP7167675B2 (en) 2018-12-04 2022-11-09 株式会社デンソー Object detection device and object detection method
JP2020091158A (en) * 2018-12-04 2020-06-11 株式会社デンソー Object detection device and object detection method
WO2020115957A1 (en) * 2018-12-04 2020-06-11 株式会社デンソー Object detecting device, and object detecting method
JP2020128938A (en) * 2019-02-08 2020-08-27 アイシン精機株式会社 Object detector
JP7167751B2 (en) 2019-02-08 2022-11-09 株式会社アイシン object detector
JP7152356B2 (en) 2019-05-22 2022-10-12 株式会社Soken Three-dimensional positioning device and three-dimensional positioning method
JP2020190484A (en) * 2019-05-22 2020-11-26 株式会社Soken Three-dimensional positioning device and three-dimensional positioning method
WO2020235397A1 (en) * 2019-05-22 2020-11-26 株式会社デンソー Three-dimensional positioning device and three-dimensional positioning method
WO2021024433A1 (en) * 2019-08-07 2021-02-11 三菱電機株式会社 Obstacle detection device
JPWO2021024433A1 (en) * 2019-08-07 2021-10-28 三菱電機株式会社 Obstacle detector
WO2021024481A1 (en) * 2019-08-08 2021-02-11 三菱電機株式会社 Obstacle detection device
CN114067609A (en) * 2020-08-04 2022-02-18 松下知识产权经营株式会社 Obstacle determination device and vehicle
CN114067609B (en) * 2020-08-04 2024-02-09 松下知识产权经营株式会社 Obstacle determination device and vehicle
CN114114277A (en) * 2021-11-04 2022-03-01 岚图汽车科技有限公司 Ultrasonic parking auxiliary obstacle positioning method, device, equipment and storage medium

Also Published As

Publication number Publication date
DE112011105533T5 (en) 2014-05-22
JPWO2013024509A1 (en) 2015-03-05
JP5710000B2 (en) 2015-04-30
DE112011105533B4 (en) 2016-10-06

Similar Documents

Publication Publication Date Title
JP5710000B2 (en) Object detection device
US11703587B2 (en) Vehicle radar sensing system with enhanced angle resolution
US10962641B2 (en) Vehicle radar sensing system with enhanced accuracy using interferometry techniques
US10962638B2 (en) Vehicle radar sensing system with surface modeling
CN102906593B (en) Vehicle rear-view observation device
US7164118B2 (en) Method and system for obstacle detection
US20130162461A1 (en) Environment Monitoring System for a Vehicle
JP5640583B2 (en) Target detection system, detection method, and detection information processing program
WO2018043028A1 (en) Surroundings monitoring device and surroundings monitoring method
JP2007140852A (en) Obstruction position detector and obstruction position detecting method
JP6697281B2 (en) Object detection device
JP2003233423A (en) Collision avoidance method for autonomous traveling vehicle and method therefor
JP5148353B2 (en) Underwater vehicle and obstacle detection device
US20180100921A1 (en) Ultrasonic sensor device and sensing method of ultrasonic sensor device
CN112416001A (en) Automatic following method and device for vehicle and vehicle
CN109229015B (en) Method for realizing vehicle 360-degree obstacle alarm prompt based on ultrasonic sensor
US20180081372A1 (en) Conveying system with an automatic tethering function
TWI599787B (en) Mobile navigation method and system
KR101674592B1 (en) Apparatus for warning obstacle for vehicle
KR101605551B1 (en) Apparatus of detecting object and control method thereof
JP2017181101A (en) Target object detection unit
JP6679371B2 (en) Object detection device
JP2007024731A (en) Distance measuring device, distance measuring method and distance measuring program
JP6679372B2 (en) Object detection device
JPH02102481A (en) Ultrasonic guidance device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871062

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013528846

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120111055331

Country of ref document: DE

Ref document number: 112011105533

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871062

Country of ref document: EP

Kind code of ref document: A1