WO2013023594A1 - Method and device for transmitting and receiving digital audio signal in digital audio broadcasting system - Google Patents

Method and device for transmitting and receiving digital audio signal in digital audio broadcasting system Download PDF

Info

Publication number
WO2013023594A1
WO2013023594A1 PCT/CN2012/080168 CN2012080168W WO2013023594A1 WO 2013023594 A1 WO2013023594 A1 WO 2013023594A1 CN 2012080168 W CN2012080168 W CN 2012080168W WO 2013023594 A1 WO2013023594 A1 WO 2013023594A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
logical
system information
mode
physical
Prior art date
Application number
PCT/CN2012/080168
Other languages
French (fr)
Chinese (zh)
Inventor
邹峰
李锦文
申红兵
陶涛
高鹏
雷文
邢观斌
Original Assignee
国家广播电影电视总局广播科学研究院
北京泰美世纪科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家广播电影电视总局广播科学研究院, 北京泰美世纪科技有限公司 filed Critical 国家广播电影电视总局广播科学研究院
Publication of WO2013023594A1 publication Critical patent/WO2013023594A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0066Requirements on out-of-channel emissions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0059Convolutional codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03866Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using scrambling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present invention relates to the field of digital information transmission technologies, and in particular, to a digital audio signal transmission and reception method and apparatus in a digital digital audio broadcasting system. Background technique
  • the traditional FM band (87Mhz-108Mhz) is an FM broadcast band, which occupies 100KH or 200KHz. It can only provide users with the most basic broadcast services. At present, China still uses traditional analog FM radio.
  • the use of digital audio broadcasting to provide digital audio and data services, broadcast, point-to-multipoint, a little bit opposite, the cost of broadcast information is independent of the number of users and sound quality, high reception quality, strong anti-interference, low transmission power, coverage large area. Whether it's audio quality, spectrum efficiency or support for new services, it has unparalleled advantages over traditional analog broadcasts.
  • the main digital audio broadcasting technologies in the world mainly include the following:
  • DAB COFDM-based multi-carrier broadband transmission technology.
  • DAB technology has greatly improved performance against frequency selective fading caused by multipath propagation of electric waves.
  • the channel bandwidth of the 1.432MHz DAB standard is completely incompatible with analog FM/AM broadcasting.
  • New working frequency bands and frequency planning are needed, which poses a great obstacle to the promotion of DAB.
  • the terminal receiver It is difficult to control in terms of cost and power consumption.
  • HD Radio uses the carrier sidebands currently assigned to AM/FM analog stations to transmit digital audio signals and gradually achieves a smooth transition from analog to digital.
  • the same frequency compatibility with traditional analog broadcasting has enabled HD Radio technology to be rapidly promoted in the United States, but since the frequency planning of AM/FM in other countries including China is different from that in the United States, and the corresponding spectrum mask is also It is much stricter than the FCC regulations.
  • HD Radio uses fixed sideband and fixed sideband transmit power technology, which makes it interfere with existing analog coverage in other countries. It is difficult to have a large area in the world. Promotion.
  • DRM It is a medium-to-short-wave AM broadcast digitalization solution implemented by DRM organizations. It has become the ITU and ETSI standards. Currently, DRM has released its evolution version DRM+ for digital audio broadcasting in the FM band. Unlike HD Radio, DRM can broadcast on the uplink/downstream of analog broadcasts or occupy a single broadcast channel. This method is flexible, and the digital spectrum can be placed in the least interference mode according to the situation of neighboring stations. The transmission of the transmit power is adjusted to protect the existing analog broadcast from being affected.
  • the DRM system is a narrowband system like the traditional analog audio broadcasting. For frequency selective fading caused by multipath propagation of radio waves, frequency diversity cannot be achieved, and system performance is not ideal. And the DRM system can only support one broadcast channel band of lOOkhz, and can't support higher service data volume.
  • the biggest difficulty encountered in the promotion of digital audio broadcasting technology is how to fully utilize advanced digital communication technology to improve the transmission quality, while at the same time taking into account the compatibility with analog broadcasting and frequency planning to meet the business needs of different users. It provides a flexible spectrum combination mode, which not only supports single-bandwidth service transmission but also supports flexible combination of multiple bandwidths, and supports larger transmission rate requirements by supporting larger transmission bandwidth. Moreover, based on the existing FM/AM transmitting equipment, a small amount of equipment and a small amount of investment can be added, and the digital audio signal can be transmitted on the same channel as the original analog broadcast signal. In this way, the original analog system is retained. On the other hand, it is not necessary to prepare a new frequency plan to achieve the purpose of frequency reuse. Summary of the invention
  • a digital audio signal transmitting method in a digital audio broadcasting system includes the following steps: Sl: a transmitting end converts service data from an upper layer into a bit stream, performs scrambling; and then performs interference
  • the service data bit stream after the code is LDPC-encoded; the LDPC-encoded service data bit stream is constellated; the sub-carriers carrying the service data after the constellation mapping are subcarrier-interleaved to form the inter-carrier interleaving.
  • the service data subcarrier; S2 the transmitting end converts the service description information from the upper layer into a bit stream, and performs scrambling; then performs convolutional coding on the scrambled service description information bit stream;
  • the information bit stream is bit-interleaved;
  • the bit-interleaved service description information bit stream is constellated to form a service description information sub-carrier;
  • S3 the transmitting end forms the system information bit stream according to a specific format, and then performs volume Product coding; comparison of convolutionally encoded system information bitstream Special interleaving; performing constellation mapping on bit-interleaved system information bitstream to form system information subcarriers;
  • S4 generating discrete pilots in the frequency domain, and then interleaving the service description information including the service data subcarriers and the constellation mapping
  • the data subcarriers of the subcarriers and the contiguous pilot subcarriers including the system information subcarriers are multiplexed together and mapped to corresponding
  • a digital audio signal transmitting apparatus in a digital audio broadcasting system including: a scrambler for performing bit stream conversion and scrambling on upper layer service data and service description information; a constructor for composing physical layer system information into a system information bit stream according to a specific format; an encoder, an upper layer service data bit stream for the scrambler output, a service description information bit stream output by the scrambler, and system information a bit stream is encoded; a bit interleaver, configured to perform bit interleaving on the encoded service description information bit stream and the system information bit stream; a constellation mapper, configured to perform bit-interleaved service description information, system information, and after encoding
  • the service data is constellation mapping; the subcarrier interleaver is configured to perform interleaving on the subcarriers of the constellation mapped service data; the frequency domain symbol generator is used to map the discrete pilot and the constellation after the service description information and system Information, and subcarrier interleave
  • a digital audio signal receiving method in a digital audio broadcasting system comprising the steps of: Sl, transforming a signal from a radio frequency into a baseband, capturing a baseband signal, performing timing synchronization and Carrier synchronization; S2, performing physical layer frame structure frame to logical layer frame structure mapping on the synchronized signal; S3, performing frequency domain transformation, channel estimation and equalization on the logical layer frame structure; S4, mapping and decoding the bit by the constellation Interleaving and convolutional decoding, extracting system information; extracting service description information by de-constellation mapping, de-interleaving, convolutional decoding, and descrambling; solving sub-carrier interleaving, de-constellation mapping, and LDPC decoding After the descrambling, the upper layer service data is extracted; S5, the service description information and the service data are sent to the upper layer.
  • a digital audio signal receiving apparatus in a digital audio broadcasting system comprising: a timing synchronizer for timing synchronization and acquisition of a received signal; a frequency offset estimator for Frequency offset estimation on the signal on the timing synchronization; frequency offset compensator for compensating the frequency offset obtained by the frequency offset estimator back to the received signal; physical layer frame structure to logical layer frame structure inverse mapper for using the physical layer
  • the frame structure is transformed into a logical layer frame structure by mapping.
  • An OFDM demodulator configured to perform FFT transformation on the synchronized signal, and transform from the time domain to the frequency domain; a channel estimator for estimating a frequency domain channel by a discrete pilot; a channel equalizer for compensating for the received frequency domain signal according to a channel parameter obtained by the channel estimator; a pilot and a data extractor for The spectrum mode extracts the service description information, the system information, and the service data subcarriers in the frequency domain respectively; the demodulation subcarrier interleaver is used to deinterleave the service data subcarriers; the constellation mapping inverse transformer is used to convert the frequency domain The channel-equalized service description information, the system information, and the constellation mapping symbols carried on the service data sub-carriers are mapped to the bit stream; the de-interleaver is configured to solve the inverse-transformed service description information and the system information bit stream.
  • An interleaving map, the decoder, the service data bit stream inversely transformed by the constellation mapping, the service description information after decoding the bit interleaving, and the system information are decoded;
  • the system information parser is configured to parse the decoded system information. ;
  • the descrambler, the decoded service data stream and the service description information are solved .
  • the digital audio signal transmitting/receiving method and apparatus thereof in the digital audio broadcasting system of the present invention have the following advantages: Advanced encoding and modulation methods are adopted in the FM frequency band to ensure efficient and reliable transmission of audio data; And modulation combination, highly flexible, adaptable ( ⁇ kbps) to high speed ( ⁇ Mbps) range and scalability; and based on the spectrum characteristics of the existing FM band, flexible spectrum mode is designed, which does not affect the existing Analog FM broadcast signals with spectral scalability.
  • the invention has flexible system transmission parameter configuration and can be applied to single frequency network and multi frequency network mode.
  • the present invention can support multi-frequency coordinated operation, can improve spectrum utilization efficiency, and improve transmission characteristics under fading channels. And a flexible frame structure for low-power reception for controllable terminal cost and power consumption.
  • FIG. 1 is a flow chart of a digital audio signal transmitting end according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a signal baseband spectrum according to an embodiment of the present invention.
  • FIG. 4 is a structural diagram of a subframe according to an embodiment of the present invention.
  • FIG. 5 is a logical frame and physical layer frame structure diagram according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a convolutional encoder according to an embodiment of the present invention
  • '7' is a QPSK constellation according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of 16QAM constellation mapping according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a 64QAM constellation mapping according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a filling manner of a subcarrier sub-matrix according to an embodiment of the present invention
  • FIG. 12 is a schematic diagram of a beacon structure according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a synchronization signal pseudo-random sequence generator according to an embodiment of the present invention
  • FIG. 14 is an OFDM symbol configuration according to an embodiment of the present invention
  • Figure 15 is a schematic illustration of a guard interval overlap in accordance with an embodiment of the present invention.
  • 16 is a schematic diagram of selection of guard interval signals in accordance with an embodiment of the present invention.
  • FIG. 17 is a schematic diagram of a subframe mapping manner 1 according to an embodiment of the present invention.
  • FIG. 18 is a schematic diagram of a subframe mapping manner 2 according to an embodiment of the present invention.
  • FIG. 19 is a schematic diagram of a subframe mapping manner 3 according to an embodiment of the present invention.
  • 20 is a flow chart of a digital audio signal receiving end according to an embodiment of the present invention.
  • Figure 21 (a) is a schematic diagram of a subcarrier index of an OFDM symbol when transmission modes 1 and 3 are transmitted according to an embodiment of the present invention
  • Figure 21 (b) is a diagram showing the subcarrier index of the OFDM symbol in the transmission mode 2 according to an embodiment of the present invention. detailed description
  • Embodiments of the present invention are digital audio signal transmitting methods in a digital audio broadcasting system.
  • the method includes the following steps: Sl: a transmitting end converts service data from an upper layer into a bit stream, and performs scrambling; and then performs LDPC encoding on the scrambled service data bit stream; and encodes the LDPC
  • the service data bit stream performs constellation mapping; the subcarriers carrying the service data after constellation mapping are subcarrier interleaved in subcarriers to form interleaved service data subcarriers.
  • the transmitting end converts the service description information from the upper layer into a bit stream, and performs scrambling; then performs convolutional coding on the scrambled service description information bit stream; and performs bit-biting on the convolution-coded service description information bit stream. Interleaving; performing constellation mapping on the bit-interleaved service description information bitstream to form a service description information subcarrier.
  • the transmitting end groups the physical layer system information into a system information bit stream according to a specific format, and then performs convolutional coding; performs bit interleaving on the convolutionally encoded system information bit stream; performs constellation on the bit interleaved system information bit stream
  • the mapping forms the system information subcarrier.
  • the multiple OFDM time domain symbols are multiplexed together, and the beacon is inserted and connected into a logical layer frame structure.
  • the physical layer frame structure is transmitted by baseband to radio frequency conversion.
  • the number of valid subcarriers in the subband is
  • the frequency pattern is composed of up to 8 subbands having a nominal bandwidth of 100 kHz.
  • the frequency pattern specifies the number of subbands in the signal, as well as the locations of the effective subbands and the virtual subbands.
  • all subcarriers in the upper half subband or the lower half subband of some valid subbands are virtual subcarriers.
  • Figure 2 shows the baseband spectrum of the signal.
  • the 0 frequency point corresponds to the signal center frequency, which is the position of the OFDM symbol subcarrier 0.
  • This embodiment defines two types of frequency patterns, namely, a class A frequency pattern and a class B frequency pattern.
  • Figure 3 illustrates that the present invention allows for the use of 39 spectral patterns and corresponding frequency pattern index, where ⁇ represents the number of interleaved sub-blocks.
  • the bandwidth of each spectrum in the frequency mode is 50 kHz.
  • the white block represents the spectrum that is not occupied
  • the shaded block represents the lower half of the effective subband
  • the darkest gray represents the frequency band occupied by the analog station.
  • the spectrum mode index can be represented by 6 bits, and the correspondence between the bit definition and the index is as shown in Table 2.
  • Table 3 shows the correspondence between the subband nominal frequency point position and the description bit.
  • Table 4 shows the frequency pattern index corresponding to the two types of frequency patterns.
  • Figure 21 (a) and (b) show the subcarrier index of OFDM symbols in different transmission modes, respectively. These two types of frequency patterns correspond to two kinds of spectrum subcarrier mapping modes, as shown in Table 5-8.
  • Transmission mode 1 and 3 transmission mode 2 sub-frequency transmission corresponding to each sub-band center sub-band center sub-corresponding sub-plant corresponding
  • Table 7 Subcarrier Index of the Class B Frequency Pattern Synchronization Signal 0 ⁇ -50 -1 ⁇ -60 0kHz -1 ⁇ -30 0kHz
  • the superframe length is 2560 ms
  • each superframe is composed of four physical layer signal frames of length 640 ms
  • each physical layer signal frame includes four subframes having a length of 160 ms
  • each subframe includes one subframe.
  • the beacon and the OFDM symbols are shown in Figure 4.
  • Each physical layer signal frame carries data for one logical frame.
  • the logical frame structure and physical layer signal frame structure are shown in Figure 5.
  • the physical layer signals are transmitted in order from left to right as shown in FIG.
  • the system information consists of 72 bits, including two parts of 36 bits, and the system information 1 includes 36 bits.
  • the bits and corresponding information are shown in Table 9.
  • Multi-frequency point cooperative working mode indication 0 means multi-frequency point working together; 1 means non-multi-frequency point working together;
  • System information 2 includes 36 bits, and its bits and corresponding information are described in Table 10.
  • Table 10 Bit Descriptions for System Information 2
  • C° ⁇ Cl the position of the current physical layer signal frame in a superframe, 00 represents the first frame; 01 represents the second frame; 10 represents the third frame; 11 represents the fourth frame;
  • C2 ⁇ 3 current subframe position in one physical layer signal frame, 00 denotes a first sub-frame; second sub-frame represents 01; 10 denotes a third sub-frame; 11 indicates a fourth sub-frame;
  • subframe allocation mode 00 reserved; 01 means subframe allocation mode 1; 10 means subframe allocation mode 2; 11 means subframe allocation mode 3;
  • the modulation mode of the service description information 00 means QPSK; 01 means 16QAM;
  • c 8 ⁇ c 9 modulation mode of service data, 00 means QPSK; 01 means 16QAM; 10 means 64QAM; 11 reserved;
  • the coding of service data adopts the indication of uniform protection, 0 means no uniform protection; 1 means uniform protection;
  • Ci 3 ⁇ c u LDPC code rate of service data, 00 means 1/4 code rate; 01 means 1/3 code rate; 10 means 1/2 code rate; 11 means 3/4 code rate;
  • LDPC code rate of service data 00 means 1/4 code rate; 01 means 1/3 code rate; 10 means 1/2 code rate; 11 means 3/4 code rate;
  • the coding rate of the service data when the uniform protection is used is indicated by ⁇ ; if the non-uniform protection is used, the coding rate of the service data is obtained from the service description information;
  • the coded rate of the high-protected service data is indicated by ⁇ , and the coded rate of the low-protected service data is from C 15 to C 16;
  • Ci7 ⁇ C26 Retain Rfa, reserved for future expansion
  • the scrambling code for the service data bit stream and the service description information bit stream in this embodiment is specifically a binary pseudo random sequence scrambling code processing, and the binary pseudo random sequence is generated by a linear feedback shift register, and the shift register is The initial value is 000000000001 and the generator polynomial is: x n + x n + x & + x 6 + l .
  • Figure 6 shows the linear feedback shift register that generates the scrambling code, resetting the linearity at the beginning of each logical frame. Feedback shift register.
  • the scrambling code is implemented by modulo-adding the input bit information sequence and the binary pseudo-random sequence, see equation (1):
  • Forward error correction coding is performed on the scrambled bit stream.
  • Different information in the logical frame adopts different forward error correction coding modes, wherein LDPC coding is used in the service data, and the service description information and system information are convolutional coding.
  • Convolutional coding of the scrambled service description information and system information is performed by using a 1/4 convolutional code with a constraint length of 7.
  • the encoder of the convolutional code is as shown in FIG. 7, and the corresponding octal generator polynomial is: 133, 171, 145, 133.
  • the initial value of the shift register is all "0".
  • System information 1 and system information 2 are independently convolutionally encoded.
  • the linear feedback shift register is reset at the beginning of each logical frame for the service description information, and the linear feedback shift register is reset at the beginning of each logical sub-frame for system information.
  • the low bit of the system information bit stream is first, or c . in front.
  • the code rate for performing LDPC encoding on the scrambled service data bit stream may be 3/4, 1/2, 1/3, and 1/4, and the output codeword length is 9216 bits, and the code rate is 3/4.
  • the corresponding input information bit length is 6912; when the code rate is 1/2, the corresponding input information bit length is 4608; when the code rate is 1/3, the corresponding input information bit length is 3072; when the code rate is 1/4, corresponding The input information bit length is 2304.
  • Table 11 LDPC Encoding Configuration
  • LDPC output code word ⁇ , ,..., ⁇ ⁇ , ⁇ ! ,... ⁇ ,/ ⁇ ,/ ⁇ ,.../ ⁇ ⁇ , where check bit P ⁇ . , ..., P — ⁇ I is obtained from the check matrix H by solving the following equation:
  • the convolutionally encoded service description information and system information are bit interleaved, and the interleaving is performed in units of interleaved blocks.
  • the interleaving algorithm is as follows: For the input sequence before interleaving
  • p(i) (5x p(i-l) + q)mods,(i ⁇ 0) .
  • the V is based on the difference between the constellation mapping mode and the transmission mode, and the value is the reference table 12, and the logical frame includes the interleaving block, that is, the binding is performed.
  • the number of sub-bands, the value of ⁇ is shown in Figure 3.
  • the system information includes system information 1 and system information 2.
  • the system information 1 and the system information 2 after convolutional coding are respectively bit interleaved by using the above method, and the lengths of the two interleaving blocks are all 144.
  • Performing constellation mapping on the LDPC-encoded service data bit stream and the bit-interleaved service description information bit stream includes performing a QPSK mapping manner, a 16QAM mapping manner, or a 64QAM mapping manner, and performing the bit-interleaved system information bit stream.
  • Constellation mapping includes QPSK mapping.
  • the modulation mode supports non-hierarchical modulation and layered modulation.
  • the mapping method is shown in the figure below.
  • the constellation mapping mode of QPSK is shown in Fig. 8.
  • the 16QAM mapping maps 4 input bits ( ⁇ , ⁇ ", ⁇ , ⁇ , 0 , 1 , 2 , ...) to I value and Q value each time.
  • the mapping mode is shown in Figure 9.
  • the power is normalized in the constellation diagram. Factor.
  • the 64QAM mapping maps 6 input bits ⁇ , ⁇ ", 7 ⁇ , ' , 7 ⁇ , ' , 0 , 1 , 2 , ... ) to I value and Q value each time.
  • the mapping method is shown in Figure 10. A power normalization factor is included.
  • Each of the active subbands and the contiguous pilots in the lower half of the subbands each hold 72 system information symbols, wherein when the subcarriers are not all virtual subcarriers, the lower subbands of the effective subbands
  • the continuous pilot places system information 1 symbol; when its subcarriers are not all virtual subcarriers, the continuous pilot of each upper subband of each effective subband places system information 2.
  • Two scattered pilots by the pseudo-random sequence ⁇ ⁇ " ⁇ 2 ' ⁇ ⁇ ⁇ ' ⁇ ⁇ 1, and ⁇ ⁇ / ⁇ , / ⁇ , ⁇ , / ⁇ ⁇ , ⁇ , / ⁇ in
  • the bit stream pair / ⁇ / ⁇ , ⁇ , / ⁇ / ⁇ is composed of symbols generated by QPSK mapping in turn, and the value of ⁇ is in transmission mode 1 and transmission mode 3 bZ ⁇ ' , when in transmission mode 2.
  • a binary pseudo-random sequence Pi of length ⁇ is generated by the linear feedback shift register shown in FIG. 13, and the generator polynomial of the linear feedback shift register is: x u + x 9 + l , the initial value is 01010100101
  • the system information is transmitted in units of one logical subframe, and the service description information and service data are transmitted in units of one logical frame.
  • the system information symbols are transmitted three times in a logical sub-frame.
  • subcarriers other than the virtual subcarrier, the contiguous pilot subcarrier, and the scattered pilot subcarrier in the OFDM symbol are data subcarriers, and the data subcarriers are placed with service description information symbols and service data symbols.
  • (4* ⁇ )* (*N valid subcarriers) are included in one logical frame.
  • the subcarrier interleaving further includes:
  • the ⁇ V is the number of OFDM symbols in each subframe, and the number of effective subcarriers included in one subband in one OFDM symbol,
  • the number of subbands participating in the bundling is as shown in FIG. 3; the number of rows and the number of columns of the subcarrier matrix are counted from 1; the subcarrier matrix is pressed from top to bottom and from left to left.
  • the right average is divided into sub-matrices ⁇ , ', where the number of rows is ⁇ V and the number of columns is:
  • discrete pilot data elements are placed in predetermined positions in each submatrix M ".
  • System information is transmitted in units of one logical sub-frame.
  • the subcarrier matrix M starting from the submatrix ⁇ 1 of the first column on the left, system information 1 and system information carried by a logical sub-frame in the order of sub-matrices from left to right and top to bottom
  • the data elements of 2 are collectively placed 3 times in a predetermined area in one of the above.
  • Service description information and service data are transmitted in units of one logical frame.
  • the subcarrier matrix M starting from the submatrix M u of the first column on the left side, the data elements of the service description information symbol carried by one logical frame are placed in order from left to right and top to bottom.
  • the logical frame bearer is placed in order from the top to the bottom and the left to the right submatrix.
  • the data elements of the service data symbols carried by one logical frame are placed in the order from left to right and top to bottom.
  • the residual data of the si , and the data elements of the service data symbol carried by the logical frame are sequentially placed in the order of the sub-matrix from top to bottom and left to right.
  • the position of the continuous pilot of the data element of the system information symbol placed in the sub-matrix is as shown in Table 13 below, depending on the transmission mode.
  • 72 system information symbols of system information 1 and system information 2 are repeated three times.
  • the position information specified in Table 8 of lines 1 to 18 of M " is placed with system information 1 and
  • the 72 system information symbols of system information 2 are placed in the designated positions of lines 19 to 36 and lines 37 to 54, respectively.
  • Table 13 Data Elements of System Information Symbols Placed in Submatrix "Continuous Pilot Locations Transfer Modes 1 and 3:
  • transmission mode 1 the 11, 55, 75, 103, 144, 164, 192, 228 columns in the 55 ⁇ 56 rows of ⁇ " are filled with the system information symbols placed in 1 ⁇ 2 rows; in transmission mode 2 : In the "109 to 111 lines, 15, 43, 84, 104 columns are filled with system information symbols placed in 1 to 3 lines; in transmission mode 3: in "55 to 61 lines, 11, 55, 75, 103, 144, 164, 192,
  • the system information symbol placed on the 228 column is filled with 1 to 7 lines.
  • the discrete pilot data elements are placed in the sub-matrix according to the transmission mode Each row; the data element of the discrete pilot is placed in the submatrix ⁇ " where the position b is:
  • Transmission mode 1 and transmission mode 3 are identical to transmission mode 1 and transmission mode 3:
  • the subcarrier matrix M is equally divided into the number of rows from the top to the bottom, and the sub-moments of the number of columns is
  • the length of the ⁇ symbol from left to right, top to bottom are sequentially filled in a manner subcarrier matrix ⁇ "on lines 1 to 3 of the discrete pilot elements, ⁇ " row 4 to row
  • the service description information after scrambling, encoding, interleaving and constellation mapping is placed on the upper finger.
  • data elements M "data element position placing table 14.
  • a service description information M" in the first to N-th row are in the service description information, row N + 1 in the first to M
  • the data element of ⁇ « ⁇ is the business description information.
  • the service description information is filled in from the left to the right and from the top to the bottom, and the data elements specified in the sub-sub-matrix Mu in the table 14 are filled in, and then the corresponding data elements in each sub-carrier sub-matrix are sequentially filled according to the direction indicated by the arrow in FIG. 11 . .
  • the subcarrier matrix M removes the data elements outside the service description information and places the service data in one logical frame.
  • the service data firstly follows the subcarrier submatrix from left to right and top to bottom.
  • the number of data elements in which the service description information is placed and the number of data elements in which the business data is placed is placed.
  • the interleaved blocks are constructed as follows:
  • V consists of consecutive P components, VC " , is the component of VC j , the data element of the business data in VC '-(TM OTSrete,; 'place M ', ie ⁇ + 1 ⁇ ⁇ , ; ' the data element of the first business data in the placement, P The number of data subcarriers in which the service data is placed within a valid subcarrier;
  • the elements are placed one by one on the data element of the business data in ', ie, the data element of the first business data in 'place M W , ', / the corresponding relationship is:
  • the bit interleaving algorithm is:
  • n 0 ⁇ n ⁇ N MUX -1
  • Each row element in the subcarrier matrix is padded to the effective subcarrier of each OFDM symbol from left to right, wherein the first element of each row in the matrix is padded to the effective subcarrier with the smallest subcarrier index in the OFDM symbol. See Table 5-8
  • the subcarriers in the corresponding effective subband are not all of the virtual subcarriers.
  • the upper/lower subbands contain ( 4 *)*( ⁇ effective subcarriers.
  • the remaining subcarriers are virtual subcarriers.
  • virtual subcarrier is 0
  • the structure of the beacon is as shown in FIG. 12, and includes a 7 ⁇ cyclic prefix and two identical synchronization signals W.
  • a random sequence of length L (see Table 16 for the value of L) is generated by the equation Nzc, where in the transmission mode 1 and the transmission mode 3 ⁇ 3 ⁇ 4 ⁇
  • the elements in the random sequence P b (n, n, are sequentially padded from left to right onto the effective subcarrier of the OFDM symbol of the synchronization signal, wherein the first element of the random sequence is filled into the OFDM symbol subcarrier of the synchronization signal On the valid subcarrier with the smallest index, see Table 5-8.
  • the structure of the OFDM symbol is shown in Figure 14. It consists of a cyclic prefix of length and an OFDM data body of length ".
  • the protection interval signal selection method is shown in Figure 16.
  • each logical frame includes 4 logical subframes, and each logical subframe includes ⁇ 0 FDM symbols and 1 beacon symbol.
  • the step of sub-frame allocation for logical sub-frames in four consecutive logical frames indicates the third logical frame Logical subframes.
  • Three different sub-frame allocation methods can be used, as shown in Figure 17, Figure 18 and Figure 19.
  • the subframe allocation mode 1 The physical frame of the 4 logical subframes in one logical frame constitutes one physical superframe. That is, the subframe allocation mode 1 does not change the original order of the four logical subframes in each logical frame.
  • subframe allocation mode 2 grouping 8 consecutive logical subframes in the two consecutive logical frames, interleaving the logical subframes in the group, and interlacing the groups
  • the logical subframe is mapped to 2 consecutive physical frames, and the 4 physical frames constitute 1 physical superframe.
  • the subframe allocation mode 3 groups the 16 consecutive logical subframes in the four consecutive logical frames, and sequentially sets the ith logical subframe in each logical frame of the group. Mapping to the i-th physical signal frame, where i is 1, 2, 3 or 4 to form 4 consecutive physical frames, and 4 of the physical frames constitute 1 physical superframe.
  • the digital audio broadcasting system may also be assigned a specific multi-frequency coordinated working sequence, wherein the frequency of the first physical subframe of the first physical frame of each physical superframe
  • the multi-frequency point cooperative work information of the next subframe is included in each physical sub-frame, and the multi-frequency point cooperative working information includes multi-frequency point cooperative working mode indication and multi-frequency point cooperation of the next sub-frame.
  • the working frequency point, the multi-frequency point cooperative working information may be carried by the system information.
  • the service data from the upper layer may be layered according to different priorities, and the multi-layer service data is converted into a bit stream, and then separately scrambled and LDPC-encoded;
  • the layer service data bit stream is respectively subjected to constellation mapping to obtain a plurality of modulation symbols; and the plurality of modulation symbols are multiplexed in the same constellation space according to a power loading manner to obtain a layered modulation symbol.
  • the first layer is a high priority data stream
  • the other layer is a low priority data stream.
  • the present invention also provides a digital audio signal transmitting apparatus in a digital audio broadcasting system, comprising: a scrambler for performing bit stream conversion and interference on upper layer service data and service description information.
  • a system information constructor for composing physical layer system information into a system information bit stream according to a specific format; an encoder, an upper layer service data bit stream for the scrambler output, and a service description information bit output by the scrambler
  • the stream and the system information bit stream are encoded;
  • the bit interleaver is configured to perform bit interleaving on the encoded service description information bit stream and the system information bit stream;
  • the constellation mapper is configured to perform bit interleaved service description information and system information.
  • the encoded service data is subjected to constellation mapping; the subcarrier interleaver is configured to perform interleaving on the subcarriers of the constellation mapped service data; and the frequency domain symbol generator is configured to map the discrete pilot and the constellation Descriptive information and system information, and subcarrier interleaved service data are multiplexed in one Mapped to the corresponding spectrum mode, the composition of the OFDM frequency domain symbols;
  • An OFDM modulator for performing an IFFT transform to the time domain of the OFDM frequency domain symbol; an OFDM time domain symbol generator for multiplexing the OFDM modulator output with the cyclic prefix to form an OFDM time domain symbol; a frame constituting unit, configured to multiplex the OFDM time domain symbol and the beacon to form a physical layer frame structure; and a mapping and framing module, configured to map and frame the logical layer frame structure to form a physical layer frame structure;
  • a transmitter configured to transmit the physical layer frame structure by baseband to radio frequency conversion.
  • the mapping and framing module includes: a time domain subframe allocator for mapping logical subframes to physical subframes; a time domain frame composing device, configured to form physical subframes into physical frames; And used to form physical frames into physical superframes.
  • the apparatus further includes: a multi-frequency coordinated operation control module, configured to specify a specific multi-frequency coordinated working sequence for the digital audio broadcasting system.
  • the scrambler separately scrambles the multi-layer service data into a bit stream; the encoder separately encodes And the constellation mapper respectively performs constellation mapping on the encoded multi-layer service data bitstream to obtain a plurality of modulation symbols, and multiplexes the plurality of modulation symbols in the same constellation space according to a power loading manner to obtain layering. Modulation symbol.
  • the embodiment of the present invention further includes a digital audio signal receiving method in a digital audio broadcasting system, comprising the steps of: Sl, transforming a signal from a radio frequency into a baseband, capturing a baseband signal, performing timing synchronization and carrier synchronization; S2: performing physical layer frame structure frame to logical layer frame structure mapping on the synchronized signal; S3, performing frequency domain transform, channel estimation, and equalization on the logical layer frame structure; S4, performing solution constellation mapping, debit interleaving, and volume Product decoding, extracting system information; extracting service description information by de-constellation mapping, de-interleaving, convolutional decoding, and descrambling; solving sub-carrier interleaving, de-constellation mapping, LDPC decoding, and descrambling After that, the upper layer service data is extracted; S5, the service description information and the service data are sent to the upper layer.
  • the step of extracting the system information in the step S4 further includes extracting current subband nominal frequency point information included in the system information and spectrum mode index information used by the current digital audio broadcast signal.
  • the receiving method further includes the following steps: adjusting the receiving end frequency point setting according to the extracted current subband nominal frequency point information and the spectrum mode index information used by the current digital audio broadcasting signal, and completing the current digital audio broadcasting signal. Frequency center point synchronization in spectrum mode; and receiving data on all valid subbands in the current spectrum mode.
  • the present invention also provides a digital audio signal receiving apparatus in a digital audio broadcasting system, as shown in FIG.
  • the method includes: a timing synchronizer for timing synchronization and acquisition of the received signal; a frequency offset estimator for performing frequency offset estimation on the signal on the timing synchronization; and a frequency offset compensator for using the frequency offset estimator The obtained frequency offset compensation back to the receiving letter No.; physical layer frame structure to logical layer frame structure inverse mapper, used to transform the physical layer frame structure into a logical layer frame structure by mapping.
  • An OFDM demodulator for performing FFT transform on the synchronized signal by time domain transform to the frequency domain; a channel estimator for estimating the frequency domain channel by the discrete pilot; and a channel equalizer for the channel estimator
  • the obtained channel parameter compensates the received frequency domain signal;
  • the pilot and data extractor is configured to separately extract the service description information, the system information, the scattered pilot, and the service data subcarrier in the frequency domain according to the spectrum mode;
  • Decomposing a subcarrier interleaver for deinterleaving a service data subcarrier; a constellation mapping inverse transformer for mapping service description information, system information, and constellation mapping symbols carried on a service data subcarrier a bit stream; a deciphering interleaver, configured to deinterleave the service description information inversely transformed by the constellation mapping and the system information bit stream;
  • the decoder the bit stream of the service data inversely transformed by the constellation mapping, and the bit interleaving
  • the system information parser is used to de
  • the position of the physical layer frame structure to the logical layer frame structure inverse mapper in the present embodiment is after synchronization, it is not limited to those before the FFT, and those skilled in the art should know that it can be placed at any position before deinterleaving.
  • the receiving device may further include a frequency point and filter setting module, configured to use the current subband nominal frequency point information included in the system information parsed by the system information parser and the spectrum mode used by the current digital audio broadcast signal. Index information, adjust the receiver front-end frequency point setting, and complete the frequency center point synchronization in the current digital audio broadcast signal spectrum mode.
  • the invention adopts advanced coding and modulation mode in the FM frequency band to ensure efficient and reliable transmission of audio data; and adopts multiple code rates and modulation combinations, and has high flexibility, adaptable ( ⁇ kbps) to high speed ( ⁇ Mbps) Scope and scalability; and based on the spectrum characteristics of the existing FM band, a flexible spectrum mode is designed, which does not affect the existing analog FM broadcast signal, but also has spectrum scalability.
  • the invention has flexible system transmission parameter configuration and can be applied to single frequency network and multi frequency network mode.
  • multi-frequency coordinated operation is supported, which can improve the spectrum utilization efficiency while improving the transmission characteristics under the fading channel.
  • Another embodiment of the present invention provides a flexible frame structure that enables low power reception and achieves controllable terminal cost and power consumption.
  • each functional unit in various embodiments of the present invention may be integrated in one processing module
  • each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as separate products, may also be stored in a computer readable storage medium.
  • the above-mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Error Detection And Correction (AREA)

Abstract

Provided in the present invention are a method and device for transmitting and receiving a digital audio signal in a digital audio broadcasting system. At a transmitting end, a code scrambling, LDPC coding, constellation mapping, and subcarrier interleaving are performed on service data, a code scrambling, convolution coding, bit interleaving, and constellation mapping are performed on service description information, while a convolution coding, bit interleaving, and constellation mapping are performed on system information, the information is multiplexed with a discrete pilot frequency and mapped onto a corresponding spectral pattern, thus constituting an OFDM frequency-domain symbol. A conversion from frequency-domain to time-domain is performed, connected into a logic layer frame structure, then a mapping and framing from the logic layer frame structure to a physical layer frame structure are performed for emission. The present invention designs a flexible spectral pattern on the basis of spectral characteristics of existing FM frequency bands, does not affect existing analog frequency modulation broadcast signals, and at the same time provides spectral expandability. A flexible system transmission parameter configuration is also provided, applicable in modes of single-frequency network and multi-frequency network.

Description

数字音频广播系统中的数字音频信号发送和接收方法和装置 技术领域  Digital audio signal transmitting and receiving method and device in digital audio broadcasting system
本发明涉及数字信息传输技术领域, 尤其是涉及一种数字数字音频广 播系统中的数字音频信号发送和接收方法和装置。 背景技术  The present invention relates to the field of digital information transmission technologies, and in particular, to a digital audio signal transmission and reception method and apparatus in a digital digital audio broadcasting system. Background technique
传统的 FM 频段( 87Mhz-108Mhz ) 是调频广播频段, 其所占带宽为 100KH或 200KHz, 只能为用户提供最基本的广播业务, 目前中国采用的 仍然是传统的模拟调频广播。 而采用数字音频广播提供数字音频和数据业 务, 具有广播性, 一点对多点、 一点对面, 广播信息的成本与用户数量无 关且音质好、 接收质量高、 抗干扰性强、 发射功率小、 覆盖面积大。 无论 在音频质量, 频谱效率还是在对新业务的支持上, 相对于传统的模拟广播 都具有无可比拟的优势。  The traditional FM band (87Mhz-108Mhz) is an FM broadcast band, which occupies 100KH or 200KHz. It can only provide users with the most basic broadcast services. At present, China still uses traditional analog FM radio. The use of digital audio broadcasting to provide digital audio and data services, broadcast, point-to-multipoint, a little bit opposite, the cost of broadcast information is independent of the number of users and sound quality, high reception quality, strong anti-interference, low transmission power, coverage large area. Whether it's audio quality, spectrum efficiency or support for new services, it has unparalleled advantages over traditional analog broadcasts.
目前国际上主要的数字音频广播技术主要有以下几种:  At present, the main digital audio broadcasting technologies in the world mainly include the following:
( 1 ) 欧洲的 DAB标准  (1) European DAB standards
其采用基于 COFDM的多载波宽带传输技术, 与传统模拟广播中一个 载波传送一套节目的窄带传输方式相比, DAB技术在对抗电波多径传播导 致的频率选择性衰落方面性能有大幅提高。 但 DAB标准 1.536MHz的信道 带宽与模拟 FM/AM 广播完全不兼容, 需要新的工作频段和频率规划, 对 DAB的推广形成了很大的障碍, 同时由于 DAB 系统的宽带特性, 终端接 收机无论在成本和功耗上都较难控制。  It adopts COFDM-based multi-carrier broadband transmission technology. Compared with the narrowband transmission method in which one carrier transmits a program in traditional analog broadcasting, DAB technology has greatly improved performance against frequency selective fading caused by multipath propagation of electric waves. However, the channel bandwidth of the 1.432MHz DAB standard is completely incompatible with analog FM/AM broadcasting. New working frequency bands and frequency planning are needed, which poses a great obstacle to the promotion of DAB. At the same time, due to the broadband characteristics of the DAB system, the terminal receiver It is difficult to control in terms of cost and power consumption.
( 2 ) 美国数字音频广播国家标准 HD Radio  ( 2 ) National Digital Audio Broadcasting National Standard HD Radio
于 2002年由美国 FCC批准采用, 它基于 iBiquity公司的 in band on channel (IBOC)带内同频道技术。 由于 FCC对模拟 AM和 FM发射的频谱 掩模要求较为宽松, 允许载频边带有一定的功率辐射。 基于此, HD Radio 使用当前分配给 AM/FM模拟电台的载频边带传输数字音频信号, 并逐渐 实现模拟向数字的平滑过渡。 与传统模拟广播的同频兼容性促使了 HD Radio技术在美国得以迅速推广,但是由于在世界上包括中国在内的其它一 些国家 AM/FM的频率规划和美国不同, 而且相应的频谱掩模也比 FCC的 规定严格许多, 加之 HD Radio使用固定边带和固定边带发射功率的技术, 使得它在其他国家的应用中对现有的模拟覆盖形成较大的干扰, 难以在世 界范围内大面积推广。  Approved by the US FCC in 2002, it is based on iBiquity's in band on channel (IBOC) in-band co-channel technology. Since the FCC requires loose spectral masks for analog AM and FM emissions, the carrier frequency side is allowed to have a certain amount of power radiation. Based on this, HD Radio uses the carrier sidebands currently assigned to AM/FM analog stations to transmit digital audio signals and gradually achieves a smooth transition from analog to digital. The same frequency compatibility with traditional analog broadcasting has enabled HD Radio technology to be rapidly promoted in the United States, but since the frequency planning of AM/FM in other countries including China is different from that in the United States, and the corresponding spectrum mask is also It is much stricter than the FCC regulations. In addition, HD Radio uses fixed sideband and fixed sideband transmit power technology, which makes it interfere with existing analog coverage in other countries. It is difficult to have a large area in the world. Promotion.
( 3 ) DRM 它是 DRM组织实现的一种中短波调幅广播数字化方案, 已成为 ITU 和 ETSI标准, 目前 DRM又发布了其演进版本 DRM+用于 FM频段的数字 音频广播。 与 HD Radio不同, DRM既可以占用模拟广播的上 /下临频进行 广播, 也可以单独占用一个广播频道, 这种方式比较灵活, 可以根据邻近 电台情况选择干扰最小的方式放置数字频谱, 并辅以发射功率的调整, 从 而保护现有模拟广播不受影响。 但是, DRM系统与传统的模拟音频广播一 样都是窄带系统, 对于电波多径传播造成的频率选择性衰落, 无法实现频 率分集, 系统性能不够理想。 并且 DRM系统只能支持占用一个 lOOkhz的 广播频道频段, 无法支持更高业务数据量。 (3) DRM It is a medium-to-short-wave AM broadcast digitalization solution implemented by DRM organizations. It has become the ITU and ETSI standards. Currently, DRM has released its evolution version DRM+ for digital audio broadcasting in the FM band. Unlike HD Radio, DRM can broadcast on the uplink/downstream of analog broadcasts or occupy a single broadcast channel. This method is flexible, and the digital spectrum can be placed in the least interference mode according to the situation of neighboring stations. The transmission of the transmit power is adjusted to protect the existing analog broadcast from being affected. However, the DRM system is a narrowband system like the traditional analog audio broadcasting. For frequency selective fading caused by multipath propagation of radio waves, frequency diversity cannot be achieved, and system performance is not ideal. And the DRM system can only support one broadcast channel band of lOOkhz, and can't support higher service data volume.
因此, 在数字音频广播技术推广过程中碰到的最大困难在于如何既充 分运用先进的数字通信技术以提高传输质量, 又同时兼顾与模拟广播的兼 容和频率规划, 以适应不同用户的业务需求, 提供灵活的频谱组合模式, 不仅支持单个 ΙΟΟΚΗζ带宽的业务传输还能支持多个 ΙΟΟΚΗζ频带的灵活 组合, 通过获取更大的传输带宽, 以支持更高数据率业务的传输需要。 并 且在现有 FM/AM发射设备的基础上, 增加少量设备和少量投资, 就可实 现数字音频信号与原有的模拟广播信号用同一频道发射。 这样一方面保留 了原有的模拟系统, 另一方面, 不需要准备新的频率规划, 达到频率复用 的目的。 发明内容  Therefore, the biggest difficulty encountered in the promotion of digital audio broadcasting technology is how to fully utilize advanced digital communication technology to improve the transmission quality, while at the same time taking into account the compatibility with analog broadcasting and frequency planning to meet the business needs of different users. It provides a flexible spectrum combination mode, which not only supports single-bandwidth service transmission but also supports flexible combination of multiple bandwidths, and supports larger transmission rate requirements by supporting larger transmission bandwidth. Moreover, based on the existing FM/AM transmitting equipment, a small amount of equipment and a small amount of investment can be added, and the digital audio signal can be transmitted on the same channel as the original analog broadcast signal. In this way, the original analog system is retained. On the other hand, it is not necessary to prepare a new frequency plan to achieve the purpose of frequency reuse. Summary of the invention
根据本发明的一个方面, 提供了一种数字音频广播系统中的数字音频 信号发送方法, 包括如下步骤: Sl、 发射端将来自上层的业务数据转换成 比特流后, 进行扰码; 然后对扰码后的业务数据比特流进行 LDPC编码; 对 LDPC编码后的业务数据比特流进行星座映射; 对星座映射后承载业务 数据的子载波, 以子载波为单元, 进行子载波交织, 构成交织后的业务数 据子载波; S2、 发射端将来自上层的业务描述信息转换成比特流后, 进行 扰码; 然后对扰码后的业务描述信息比特流进行卷积编码; 对卷积编码后 的业务描述信息比特流进行比特交织; 对比特交织后的业务描述信息比特 流进行星座映射, 构成业务描述信息子载波; S3、 发射端将物理层系统信 息按照特定格式, 组成系统信息比特流, 然后进行卷积编码; 对卷积编码 后的系统信息比特流进行比特交织; 对比特交织后的系统信息比特流进行 星座映射, 构成系统信息子载波; S4、 频域生成离散导频, 然后和上述交 织后的包含业务数据子载波、 星座映射后的业务描述信息子载波的数据子 载波以及包含系统信息子载波的连续导频子载波复接在一起, 映射到对应 的频谱模式上, 组成 OFDM频域符号; S5、 通过 IFFT变换器将上述频域 OFDM符号变换到时域, 同时复接上循环前缀,产生 OFDM时域符号; S6、 将上述多个 OFDM时域符号复接在一起, 并且插入信标, 连接成逻辑层帧 结构; S7、 将所述逻辑层帧结构进行映射和组帧形成物理层帧结构; S8、 将所述物理层帧结构经过基带到射频变换予以发射。 According to an aspect of the present invention, a digital audio signal transmitting method in a digital audio broadcasting system is provided, which includes the following steps: Sl: a transmitting end converts service data from an upper layer into a bit stream, performs scrambling; and then performs interference The service data bit stream after the code is LDPC-encoded; the LDPC-encoded service data bit stream is constellated; the sub-carriers carrying the service data after the constellation mapping are subcarrier-interleaved to form the inter-carrier interleaving. The service data subcarrier; S2, the transmitting end converts the service description information from the upper layer into a bit stream, and performs scrambling; then performs convolutional coding on the scrambled service description information bit stream; The information bit stream is bit-interleaved; the bit-interleaved service description information bit stream is constellated to form a service description information sub-carrier; S3, the transmitting end forms the system information bit stream according to a specific format, and then performs volume Product coding; comparison of convolutionally encoded system information bitstream Special interleaving; performing constellation mapping on bit-interleaved system information bitstream to form system information subcarriers; S4, generating discrete pilots in the frequency domain, and then interleaving the service description information including the service data subcarriers and the constellation mapping The data subcarriers of the subcarriers and the contiguous pilot subcarriers including the system information subcarriers are multiplexed together and mapped to corresponding spectrum modes to form OFDM frequency domain symbols; S5, the frequency domain is adopted by the IFFT converter Transforming the OFDM symbol into the time domain, and multiplexing the cyclic prefix to generate an OFDM time domain symbol; S6, multiplexing the plurality of OFDM time domain symbols together, and inserting the beacon, and connecting into a logical layer frame structure; S7, The logical layer frame structure performs mapping and framing to form a physical layer frame structure; S8, transmitting the physical layer frame structure by baseband to radio frequency conversion.
根据本发明的另一个方面, 提供了一种数字音频广播系统中的数字音 频信号发送装置, 包括: 扰码器, 用于对上层业务数据和业务描述信息进 行比特流转换和扰码; 系统信息构造器, 用于将物理层系统信息按照特定 格式, 组成系统信息比特流; 编码器, 用于对扰码器输出的上层业务数据 比特流、扰码器输出的业务描述信息比特流以及系统信息比特流进行编码; 比特交织器, 用于对编码后的业务描述信息比特流以及系统信息比特流进 行比特交织; 星座映射器, 用于对比特交织后的业务描述信息、 系统信息, 以及编码后的业务数据进行星座映射; 子载波交织器, 用于对星座映射后 的业务数据进行子载波上的交织; 频域符号生成器, 用于将离散导频、 星 座映射后的业务描述信息和系统信息、 以及子载波交织后的业务数据复接 在一起, 映射到对应的频谱模式上, 组成 OFDM频域符号; OFDM调制器, 用于将上述 OFDM频域符号经过 IFFT变换到时域; OFDM时域符号生成器, 用于将 OFDM调制器输出与循环前缀复接在一起构成 OFDM时域符号;时域 逻辑子帧组成器, 用于将 OFDM时域符号与信标复接在一起, 构成物理层 帧结构; 映射和组帧模块, 用于将所述逻辑层帧结构进行映射和组帧形成 物理层帧结构; 发射器, 用于将所述物理层帧结构经过基带到射频变换予 以发射。  According to another aspect of the present invention, a digital audio signal transmitting apparatus in a digital audio broadcasting system is provided, including: a scrambler for performing bit stream conversion and scrambling on upper layer service data and service description information; a constructor for composing physical layer system information into a system information bit stream according to a specific format; an encoder, an upper layer service data bit stream for the scrambler output, a service description information bit stream output by the scrambler, and system information a bit stream is encoded; a bit interleaver, configured to perform bit interleaving on the encoded service description information bit stream and the system information bit stream; a constellation mapper, configured to perform bit-interleaved service description information, system information, and after encoding The service data is constellation mapping; the subcarrier interleaver is configured to perform interleaving on the subcarriers of the constellation mapped service data; the frequency domain symbol generator is used to map the discrete pilot and the constellation after the service description information and system Information, and subcarrier interleaved service data are multiplexed together Mapping to a corresponding spectral pattern to form an OFDM frequency domain symbol; an OFDM modulator for performing an IFFT transform on the OFDM frequency domain symbol into a time domain; an OFDM time domain symbol generator for outputting an OFDM modulator with a cyclic prefix Multiplexed together to form an OFDM time domain symbol; a time domain logical subframe component for multiplexing OFDM time domain symbols with beacons to form a physical layer frame structure; mapping and framing module for using the logic The layer frame structure performs mapping and framing to form a physical layer frame structure; and a transmitter is configured to transmit the physical layer frame structure by baseband to radio frequency conversion.
根据本发明的再一个方面,提供了一种数字音频广播系统中的数字音频 信号接收方法, 包括如下步骤: Sl、 将来自射频的信号经过变换到基带, 对 基带信号进行捕获, 进行定时同步和载波同步; S2、 对同步后的信号, 进行物 理层帧结构帧到逻辑层帧结构映射; S3、 对逻辑层帧结构进行频域变换、信道 估计和均衡; S4、 通过解星座映射、 解比特交织和卷积译码, 将系统信息提取 出来; 通过解星座映射、 解比特交织、 卷积译码以及解扰, 将业务描述信息提 取出来; 通过解子载波交织、 解星座映射、 LDPC译码以及解扰后, 将上层业 务数据提取出来; S5、 将业务描述信息以及业务数据发送给上层。  According to still another aspect of the present invention, a digital audio signal receiving method in a digital audio broadcasting system is provided, comprising the steps of: Sl, transforming a signal from a radio frequency into a baseband, capturing a baseband signal, performing timing synchronization and Carrier synchronization; S2, performing physical layer frame structure frame to logical layer frame structure mapping on the synchronized signal; S3, performing frequency domain transformation, channel estimation and equalization on the logical layer frame structure; S4, mapping and decoding the bit by the constellation Interleaving and convolutional decoding, extracting system information; extracting service description information by de-constellation mapping, de-interleaving, convolutional decoding, and descrambling; solving sub-carrier interleaving, de-constellation mapping, and LDPC decoding After the descrambling, the upper layer service data is extracted; S5, the service description information and the service data are sent to the upper layer.
根据本发明的又一个方面, 提供了一种数字音频广播系统中的数字音 频信号接收装置, 包括: 定时同步器, 用于对接收到的信号进行定时同步 和捕获; 频偏估计器, 用于对定时同步上的信号进行频偏估计; 频偏补偿 器, 用于将频偏估计器得到的频偏补偿回接收信号; 物理层帧结构到逻辑 层帧结构逆映射器,用于将物理层帧结构通过映射变换到逻辑层帧结构上。 OFDM解调器, 用于对同步后的信号通过 FFT变换, 由时域变换到频域; 信道估计器, 由于通过离散导频对频域信道进行估计; 信道均衡器, 用于 根据信道估计器得到的信道参数对接收到的频域信号进行补偿; 导频和数 据提取器, 用于根据频谱模式将频域上的业务描述信息、 系统信息以及业 务数据子载波分别提取出来; 解子载波交织器, 用于将业务数据子载波解 交织映射; 星座映射逆变换器, 用于将频域信道均衡后的业务描述信息、 系统信息以及业务数据子载波上携带的星座映射符号映射到比特流; 解比 特交织器, 用于将星座映射逆变换后的业务描述信息和系统信息比特流进 行解交织映射; 译码器, 将星座映射逆变换后的业务数据比特流、 解比特 交织后的业务描述信息以及系统信息进行译码; 系统信息解析器, 用于将 译码后的系统信息解析出来; 解扰器, 将译码后的业务数据流以及业务描 述信息进行解扰。 According to still another aspect of the present invention, a digital audio signal receiving apparatus in a digital audio broadcasting system is provided, comprising: a timing synchronizer for timing synchronization and acquisition of a received signal; a frequency offset estimator for Frequency offset estimation on the signal on the timing synchronization; frequency offset compensator for compensating the frequency offset obtained by the frequency offset estimator back to the received signal; physical layer frame structure to logical layer frame structure inverse mapper for using the physical layer The frame structure is transformed into a logical layer frame structure by mapping. An OFDM demodulator, configured to perform FFT transformation on the synchronized signal, and transform from the time domain to the frequency domain; a channel estimator for estimating a frequency domain channel by a discrete pilot; a channel equalizer for compensating for the received frequency domain signal according to a channel parameter obtained by the channel estimator; a pilot and a data extractor for The spectrum mode extracts the service description information, the system information, and the service data subcarriers in the frequency domain respectively; the demodulation subcarrier interleaver is used to deinterleave the service data subcarriers; the constellation mapping inverse transformer is used to convert the frequency domain The channel-equalized service description information, the system information, and the constellation mapping symbols carried on the service data sub-carriers are mapped to the bit stream; the de-interleaver is configured to solve the inverse-transformed service description information and the system information bit stream. An interleaving map, the decoder, the service data bit stream inversely transformed by the constellation mapping, the service description information after decoding the bit interleaving, and the system information are decoded; the system information parser is configured to parse the decoded system information. ; the descrambler, the decoded service data stream and the service description information are solved .
本发明的数字音频广播系统中的数字音频信号发送 /接收方法及其装置 具有如下优点: 在 FM频段上采用了先进的编码和调制方式, 保证音频数 据的高效可靠传输; 同时采用多种码率和调制组合方式, 具有高度灵活性, 可适应 (~kbps ) 到高速 (~Mbps)的范围和可扩展性; 并且根据现有 FM 频 段频谱特性, 设计了灵活的频谱模式, 既不影响现有模拟调频广播信号, 同时又具有频谱可扩展性。 本发明具有灵活的系统传输参数配置, 可应用 于单频网与多频网模式。 此外, 本发明可支持多频点协同工作, 能够提高 频谱利用效率, 同时改善衰落信道下传输特性。 以及提供灵活的帧结构, 可实现低功耗接收, 实现可控的终端成本和功耗。 附图说明  The digital audio signal transmitting/receiving method and apparatus thereof in the digital audio broadcasting system of the present invention have the following advantages: Advanced encoding and modulation methods are adopted in the FM frequency band to ensure efficient and reliable transmission of audio data; And modulation combination, highly flexible, adaptable (~kbps) to high speed (~Mbps) range and scalability; and based on the spectrum characteristics of the existing FM band, flexible spectrum mode is designed, which does not affect the existing Analog FM broadcast signals with spectral scalability. The invention has flexible system transmission parameter configuration and can be applied to single frequency network and multi frequency network mode. In addition, the present invention can support multi-frequency coordinated operation, can improve spectrum utilization efficiency, and improve transmission characteristics under fading channels. And a flexible frame structure for low-power reception for controllable terminal cost and power consumption. DRAWINGS
本发明上述的和 /或附加的方面和优点从下面结合附图对实施例的描 述中将变得明显和容易理解, 其中:  The above and/or additional aspects and advantages of the present invention will become apparent and readily understood from
图 1为根据本发明的实施例的数字音频信号发送端流程图;  1 is a flow chart of a digital audio signal transmitting end according to an embodiment of the present invention;
图 2为根据本发明的实施例的信号基带频谱示意图;  2 is a schematic diagram of a signal baseband spectrum according to an embodiment of the present invention;
图 3为根据本发明的实施例的频谱模式和 NI取值指示图;  3 is a spectrum mode and NI value indication map in accordance with an embodiment of the present invention;
图 4为根据本发明的实施例的子帧结构图;  4 is a structural diagram of a subframe according to an embodiment of the present invention;
图 5为根据本发明的实施例的逻辑帧和物理层帧结构图; 图 7为根据本发明的 施例的卷积编码器示意图; ' 7 ' 图 8为根据本发明的实施例的 QPSK星座映射示意图;  5 is a logical frame and physical layer frame structure diagram according to an embodiment of the present invention; FIG. 7 is a schematic diagram of a convolutional encoder according to an embodiment of the present invention; '7' FIG. 8 is a QPSK constellation according to an embodiment of the present invention. Mapping diagram
图 9为根据本发明的实施例的 16QAM 星座映射示意图;  FIG. 9 is a schematic diagram of 16QAM constellation mapping according to an embodiment of the present invention; FIG.
图 10为根据本发明的实施例的 64QAM 星座映射示意图;  FIG. 10 is a schematic diagram of a 64QAM constellation mapping according to an embodiment of the present invention; FIG.
图 11为根据本发明的实施例的子载波子矩阵的填充方式示意图; 图 12为根据本发明的实施例的信标结构示意图; 11 is a schematic diagram of a filling manner of a subcarrier sub-matrix according to an embodiment of the present invention; FIG. 12 is a schematic diagram of a beacon structure according to an embodiment of the present invention; FIG.
图 13为根据本发明的实施例的同步信号伪随机序列生产器示意图; 图 14为根据本发明的实施例的 OFDM符号构成;  13 is a schematic diagram of a synchronization signal pseudo-random sequence generator according to an embodiment of the present invention; FIG. 14 is an OFDM symbol configuration according to an embodiment of the present invention;
图 15为根据本发明的实施例的保护间隔交叠的示意图;  Figure 15 is a schematic illustration of a guard interval overlap in accordance with an embodiment of the present invention;
图 16为根据本发明的实施例的保护间隔信号选取的示意图;  16 is a schematic diagram of selection of guard interval signals in accordance with an embodiment of the present invention;
图 17为根据本发明的实施例的子帧映射方式 1的示意图;  FIG. 17 is a schematic diagram of a subframe mapping manner 1 according to an embodiment of the present invention; FIG.
图 18为根据本发明的实施例的子帧映射方式 2的示意图  FIG. 18 is a schematic diagram of a subframe mapping manner 2 according to an embodiment of the present invention.
图 19为根据本发明的实施例的子帧映射方式 3的示意图  FIG. 19 is a schematic diagram of a subframe mapping manner 3 according to an embodiment of the present invention.
图 20为根据本发明的实施例的数字音频信号接收端流程图;  20 is a flow chart of a digital audio signal receiving end according to an embodiment of the present invention;
图 21 ( a ) 为根据本发明的实施例的传输模式 1和 3时的 OFDM符号的子载 波索引示意图;  Figure 21 (a) is a schematic diagram of a subcarrier index of an OFDM symbol when transmission modes 1 and 3 are transmitted according to an embodiment of the present invention;
图 21 ( b ) 为根据本发明的实施例的传输模式 2时的 OFDM符号的子载 波索引示意图。 具体实施方式  Figure 21 (b) is a diagram showing the subcarrier index of the OFDM symbol in the transmission mode 2 according to an embodiment of the present invention. detailed description
下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其 中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功 能的元件。 下面通过参考附图描述的实施例是示例性的, 仅用于解释本发 明, 而不能解释为对本发明的限制。  The embodiments of the present invention are described in detail below, and the examples of the embodiments are illustrated in the drawings, wherein the same or similar reference numerals are used to refer to the same or similar elements or elements having the same or similar functions. The embodiments described below with reference to the drawings are intended to be illustrative only and not to be construed as limiting.
本发明实施例为数字音频广播系统中的数字音频信号发送方法。参考图 1 , 所述方法包括如下步骤: Sl、 发射端将来自上层的业务数据转换成比特 流后,进行扰码;然后对扰码后的业务数据比特流进行 LDPC编码;对 LDPC 编码后的业务数据比特流进行星座映射; 对星座映射后承载业务数据的子 载波, 以子载波为单元, 进行子载波交织, 构成交织后的业务数据子载波。  Embodiments of the present invention are digital audio signal transmitting methods in a digital audio broadcasting system. Referring to FIG. 1, the method includes the following steps: Sl: a transmitting end converts service data from an upper layer into a bit stream, and performs scrambling; and then performs LDPC encoding on the scrambled service data bit stream; and encodes the LDPC The service data bit stream performs constellation mapping; the subcarriers carrying the service data after constellation mapping are subcarrier interleaved in subcarriers to form interleaved service data subcarriers.
52、 发射端将来自上层的业务描述信息转换成比特流后, 进行扰码; 然后对扰码后的业务描述信息比特流进行卷积编码; 对卷积编码后的业务 描述信息比特流进行比特交织; 对比特交织后的业务描述信息比特流进行 星座映射, 构成业务描述信息子载波。  52. The transmitting end converts the service description information from the upper layer into a bit stream, and performs scrambling; then performs convolutional coding on the scrambled service description information bit stream; and performs bit-biting on the convolution-coded service description information bit stream. Interleaving; performing constellation mapping on the bit-interleaved service description information bitstream to form a service description information subcarrier.
53、 发射端将物理层系统信息按照特定格式, 组成系统信息比特流, 然后进行卷积编码; 对卷积编码后的系统信息比特流进行比特交织; 对比 特交织后的系统信息比特流进行星座映射, 构成系统信息子载波。  53. The transmitting end groups the physical layer system information into a system information bit stream according to a specific format, and then performs convolutional coding; performs bit interleaving on the convolutionally encoded system information bit stream; performs constellation on the bit interleaved system information bit stream The mapping forms the system information subcarrier.
54、 频域生成离散导频, 然后和上述交织后的包含业务数据子载波、 星座映射后的业务描述信息子载波的数据子载波以及包含系统信息子载波 的连续导频子载波复接在一起, 映射到对应的频谱模式上, 组成 OFDM频 域符号。 55、 通过 IFFT变换器将上述频域 OFDM符号变换到时域, 同时复接 上循环前缀, 产生 OFDM时域符号。 54. Generate a discrete pilot in the frequency domain, and then multiplex the interleaved data subcarrier including the service data subcarrier, the constellation mapped service description information subcarrier, and the contiguous pilot subcarrier including the system information subcarrier. And mapping to the corresponding spectrum mode to form an OFDM frequency domain symbol. 55. The frequency domain OFDM symbol is transformed into a time domain by an IFFT converter, and the cyclic prefix is multiplexed to generate an OFDM time domain symbol.
56、 将上述多个 OFDM时域符号复接在一起, 并且插入信标, 连接成 逻辑层帧结构。  56. The multiple OFDM time domain symbols are multiplexed together, and the beacon is inserted and connected into a logical layer frame structure.
57、 将所述逻辑层帧结构进行映射和组帧形成物理层帧结构。  57. Map and frame the logical layer frame structure to form a physical layer frame structure.
58、 将所述物理层帧结构经过基带到射频变换予以发射。  58. The physical layer frame structure is transmitted by baseband to radio frequency conversion.
所述数字音频广播系统可以为采用 Fourier变换、 Walsh变换、 或小波变 换的多载波系统。 它包括三种 OFDM传输模式。 表 1给出了各传输模式的系 统参数, 在三种传输模式下子帧的长度均为 160ms。 定义单位时间 T = 1/816000秒, 各种与时间相关的参数值可以用 T的倍数或者近似的毫秒数来 表示。  The digital audio broadcasting system may be a multi-carrier system employing Fourier transform, Walsh transform, or wavelet transform. It includes three OFDM transmission modes. Table 1 shows the system parameters for each transmission mode. The length of the subframes is 160ms in all three transmission modes. Defining the unit time T = 1/816000 seconds, various time-dependent parameter values can be expressed in multiples of T or approximate milliseconds.
表 1 : 传输模式系统参数  Table 1: Transfer Mode System Parameters
Figure imgf000008_0001
上表中 为一个有效子带中上半子带中的子载波及下半子带中的子载波 均不全为虚子载波时, 该子带内的有效子载波数, 当一个有效子带中上半子带
Figure imgf000008_0001
In the above table, when the subcarriers in the upper half subband and the subcarriers in the lower half subband are not all virtual subcarriers, the number of effective subcarriers in the subband is in a valid subband. Half subband
(或下半子带) 中的子载波均为虚子载波时, 该子带内的有效子载波数为When the subcarriers in the (or lower subband) are all virtual subcarriers, the number of valid subcarriers in the subband is
Nv / 2。 N v / 2.
本实施例中频语模式由最多 8个名义带宽为 100kHz的子带组成。 频语模 式规定了信号中子带的数量,以及有效子带和虚子带的位置。部分频语模式中, 某些有效子带的上半子带或下半子带中全部子载波为虚子载波。  In this embodiment, the frequency pattern is composed of up to 8 subbands having a nominal bandwidth of 100 kHz. The frequency pattern specifies the number of subbands in the signal, as well as the locations of the effective subbands and the virtual subbands. In the partial frequency mode, all subcarriers in the upper half subband or the lower half subband of some valid subbands are virtual subcarriers.
图 2给出了信号的基带频谱示意图, 图中 0频率点对应信号中心频点, 即 OFDM符号子载波 0的位置。  Figure 2 shows the baseband spectrum of the signal. The 0 frequency point corresponds to the signal center frequency, which is the position of the OFDM symbol subcarrier 0.
本实施例定义了两类频语模式, 即 A类频语模式和 B类频语模式。 其中 A类频语模式包含 8个子带,子带标称频点为士 ( 100 + 50)W¾J = 0,1,2,3 ; B类频 语模式包含 7个子带,子带标称频点为 100kHz的整数倍,即 ± * 10(M¾J = 0,1,2,3。  This embodiment defines two types of frequency patterns, namely, a class A frequency pattern and a class B frequency pattern. The Class A frequency pattern includes 8 sub-bands, and the sub-band nominal frequency is ± (100 + 50) W3⁄4J = 0, 1, 2, 3; The B-type frequency pattern contains 7 sub-bands, and the sub-band nominal frequency It is an integer multiple of 100 kHz, ie ± * 10 (M3⁄4J = 0, 1, 2, 3.
图 3示出了本发明允许使用 39种频谱模式和相应的频语模式索引, 其中 ^表示交织子块的个数。 频语模式中的每块频谱的带宽为 50kHz。 频语模式中 白色的块表示没有占用的频谱, 阴影块表示一个有效子带的下半子带, 最深的 灰色表示模拟台占用的频带。 具体来说:  Figure 3 illustrates that the present invention allows for the use of 39 spectral patterns and corresponding frequency pattern index, where ^ represents the number of interleaved sub-blocks. The bandwidth of each spectrum in the frequency mode is 50 kHz. In the frequency mode, the white block represents the spectrum that is not occupied, the shaded block represents the lower half of the effective subband, and the darkest gray represents the frequency band occupied by the analog station. Specifically:
频语模式索引 1-39与相应的频语模式所占用子带的对应关系如下所示: The correspondence between the frequency pattern index 1-39 and the subband occupied by the corresponding frequency pattern is as follows:
01 B4 01 B4
02 A4A5  02 A4A5
03 B3B4B5  03 B3B4B5
04 A3A4A5A6  04 A3A4A5A6
05 B2B3B4B5B6  05 B2B3B4B5B6
06 A2A3A4A5A6A7  06 A2A3A4A5A6A7
07 B1B2B3B4B5B6B7  07 B1B2B3B4B5B6B7
08 A1A2A3A4A5A6A7A8  08 A1A2A3A4A5A6A7A8
09 A3A4A5A6  09 A3A4A5A6
10 B2B3B4B5B6  10 B2B3B4B5B6
11 A3A4A5A6A7  11 A3A4A5A6A7
12 A2A3A4A5A6  12 A2A3A4A5A6
13 A2A3A4A5A6A7  13 A2A3A4A5A6A7
14 B1B2B3B4B5B6  14 B1B2B3B4B5B6
15 B2B3B4B5B6B7  15 B2B3B4B5B6B7
16 A3A4A5A6A7A8  16 A3A4A5A6A7A8
17 A1A2A3A4A5A6  17 A1A2A3A4A5A6
18 B1B2B3B4B5B6B7 19 A2A3A4A5A6A7A8 18 B1B2B3B4B5B6B7 19 A2A3A4A5A6A7A8
20 A1A2A3A4A5A6A7  20 A1A2A3A4A5A6A7
21 A1A2A3A4A5A6A7A8  21 A1A2A3A4A5A6A7A8
22 B3B4B5  22 B3B4B5
23 A3A4A5A6  23 A3A4A5A6
24 B2B3B4B5  24 B2B3B4B5
25 B3B4B5B6  25 B3B4B5B6
26 B2B3B4B5B6  26 B2B3B4B5B6
27 A2A3A4A5A6  27 A2A3A4A5A6
28 A3A4A5A6A7  28 A3A4A5A6A7
29 B1B2B3B4B5  29 B1B2B3B4B5
30 B3B4B5B6B7  30 B3B4B5B6B7
31 A2A3A4A5A6A7  31 A2A3A4A5A6A7
32 B2B3B4B5B6B7  32 B2B3B4B5B6B7
33 B1B2B3B4B5B6  33 B1B2B3B4B5B6
34 A1A2A3A4A5A6  34 A1A2A3A4A5A6
35 A3A4A5A6A7A8  35 A3A4A5A6A7A8
36 A2A3A4A5A6A7A8  36 A2A3A4A5A6A7A8
37 A1A2A3A4A5A6A7  37 A1A2A3A4A5A6A7
38 B1B2B3B4B5B6B7  38 B1B2B3B4B5B6B7
39 A1A2A3A4A5A6A7A8  39 A1A2A3A4A5A6A7A8
频谱模式索引可以用 6个比特表示, 其比特定义和索引的对应关系如表 2 所示。表 3给出了子带标称频点位置与描述比特的对应关系。表 4给出了两类频 语模式对应的频语模式索引。 图 21 ( a )和(b )分别给出了不同传输模式下 OFDM符号的子载波索引示意图。 这 2类频语模式对应 2种频谱子载波映射方 式, 见表 5-8。  The spectrum mode index can be represented by 6 bits, and the correspondence between the bit definition and the index is as shown in Table 2. Table 3 shows the correspondence between the subband nominal frequency point position and the description bit. Table 4 shows the frequency pattern index corresponding to the two types of frequency patterns. Figure 21 (a) and (b) show the subcarrier index of OFDM symbols in different transmission modes, respectively. These two types of frequency patterns correspond to two kinds of spectrum subcarrier mapping modes, as shown in Table 5-8.
表 2: 比特定义与频谱模式索引的对应关系  Table 2: Correspondence between bit definition and spectral mode index
比特定义 频 模式索引  Bit definition frequency mode index
000000 保留 000000 reserved
000001 1  000001 1
000010 2  000010 2
000011 3  000011 3
000100 4  000100 4
000101 5  000101 5
000110 6  000110 6
000111 7  000111 7
001000 8  001000 8
001001 9 001010 10 001001 9 001010 10
001011 11  001011 11
001100 12  001100 12
001101 13  001101 13
001110 14  001110 14
001111 15  001111 15
010000 16  010000 16
010001 17  010001 17
010010 18  010010 18
010011 19  010011 19
010100 20  010100 20
o 010101 21  o 010101 21
o  o
010110 22  010110 22
010111 23  010111 23
011000 24  011000 24
011001 25  011001 25
011010 26  011010 26
011011 27  011011 27
011100 28  011100 28
011101 29  011101 29
011110 30  011110 30
011111 31  011111 31
100000 32  100000 32
100001 33  100001 33
100010 34  100010 34
100011 35  100011 35
100100 36  100100 36
100101 37  100101 37
100110 38  100110 38
100111 39  100111 39
保留 表 3 : 子带标称频点位置与描述比特的对应关系  Reserved Table 3: Correspondence between subband nominal frequency position and description bits
Figure imgf000011_0001
两类频谱模式对应的频谱模式索 ^ I
Figure imgf000012_0001
Figure imgf000011_0001
Spectral pattern corresponding to two types of spectral modes
Figure imgf000012_0001
表 5: B类频语模式 OFDM符号的子载波索引 Table 5: Class B Frequency Patterns Subcarrier Indexes for OFDM Symbols
Figure imgf000012_0002
表 6: A类频语模式 OFDM符号的子载波索引
Figure imgf000012_0002
Table 6: Subcarrier Indexes for Class A Frequency Pattern OFDM Symbols
传输模式 1和 3 传输模式 2 子 频傳对应 各子带中心 各子带中心子 相应的子栽 相应的  Transmission mode 1 and 3 transmission mode 2 sub-frequency transmission corresponding to each sub-band center sub-band center sub-corresponding sub-plant corresponding
带 范围 (kHz) 子栽波索引 栽波索引及频 波索引 子栽波索引  Band range (kHz) subcarrier index carrier index and frequency index subcarrier index
及频率值 率值
Figure imgf000013_0001
Frequency value rate value
Figure imgf000013_0001
表 7: B类频语模式同步信号的子载波索引
Figure imgf000013_0002
0~-50 -1 ~ -60 0kHz -1 ~ -30 0kHz
Table 7: Subcarrier Index of the Class B Frequency Pattern Synchronization Signal
Figure imgf000013_0002
0~-50 -1 ~ -60 0kHz -1 ~ -30 0kHz
-50 ~ -100 -65 ~ -124 -125 -33 ~ -62 -63-50 ~ -100 -65 ~ -124 -125 -33 ~ -62 -63
B3 B3
-100- -150 -126- -185 -99.6094kHz -64 - -93 -100.4063kHz -100- -150 -126- -185 -99.6094kHz -64 - -93 -100.4063kHz
-150 ~ -200 -191 ~ -250 -251 -95 ~ -124 -125-150 ~ -200 -191 ~ -250 -251 -95 ~ -124 -125
B2 B2
-200 ~ -250 -252- -311 -200.0156kHz -126 ~ -155 -199.2188kHz o  -200 ~ -250 -252- -311 -200.0156kHz -126 ~ -155 -199.2188kHz o
-250 ~ -300 -376 -158 ~ -187 -188 -250 ~ -300 -376 -158 ~ -187 -188
Bl Bl
-300 ~ -350 -377 ~ -436 -299.625kHz -189 ~ -218 -299.625kHz -300 ~ -350 -377 ~ -436 -299.625kHz -189 ~ -218 -299.625kHz
-350 ~ -400 ί 表 8: A类频语模式同步信号的子载波索引 -350 ~ -400 ί Table 8: Subcarrier Index of the Class A Frequency Pattern Synchronization Signal
传输模式 1和 3 传输模式 2 频 对应范 各子带中心子 相应的 各子带中心子 子带 相应的子  Transmission mode 1 and 3 transmission mode 2 frequency corresponding to each sub-band center sub-corresponding sub-band center sub-sub-band corresponding sub-
围 (kHz) 栽波索引及频 子栽波索 栽波索引及频 栽波索引  Surrounding (kHz) carrier index and frequency carrier wave carrier index and frequency carrier index
率值 引 率值 Rate value
400 ~ 350 499 ~ 440 439 250 ~ 221 220400 ~ 350 499 ~ 440 439 250 ~ 221 220
A8 A8
350 ~ 300 438 ~ 379 349.8281kHz 219-190 350.6250kHz 350 ~ 300 438 ~ 379 349.8281kHz 219-190 350.6250kHz
300 ~ 250 374-315 314 187-158 157300 ~ 250 374-315 314 187-158 157
A7 A7
250 ~ 200 313-254 250.2188kHz 156-127 250.2188kHz 250 ~ 200 313-254 250.2188kHz 156-127 250.2188kHz
200 ~ 150 248 - 189 188 124 ~ 95 94200 ~ 150 248 - 189 188 124 ~ 95 94
A6 A6
150 ~ 100 187-128 149.8125kHz 93~64 149.8125kHz 150 ~ 100 187-128 149.8125kHz 93~64 149.8125kHz
100 ~ 50 123 ~ 64 63 61-32 31100 ~ 50 123 ~ 64 63 61-32 31
A5 A5
50~0 62~3 50.2031kHz 30~1 49.4063kHz 50~0 62~3 50.2031kHz 30~1 49.4063kHz
0~-50 -3 ~ -62 -63 -1 ~ -30 -310~-50 -3 ~ -62 -63 -1 ~ -30 -31
A4 A4
-50 ~ -100 -64~ -123 -50.2031kHz -32 ~ -61 -49.4063kHz  -50 ~ -100 -64~ -123 -50.2031kHz -32 ~ -61 -49.4063kHz
-128- -128-
-100- -150 -64 ~ -93 -100- -150 -64 ~ -93
-187 -188 -94 -187 -188 -94
A3 A3
-189- -149.8125kHz -149.8125kHz  -189- -149.8125kHz -149.8125kHz
-95 ~ -124  -95 ~ -124
-248  -248
-254 ~  -254 ~
-200 ~ -250 -314 -127- -156 -157 -200 ~ -250 -314 -127- -156 -157
A2 -313 A2 -313
-250.2188kHz -250.2188kHz -250.2188kHz -250.2188kHz
-250 - -300 -315- -158- -187 -374 -250 - -300 -315- -158- -187 -374
-379 ~  -379 ~
-300 ~ -350  -300 ~ -350
-438 -439 -220  -438 -439 -220
Al  Al
-350 ~ -400 -440 ~ -349.8281kHz -350.6250kHz  -350 ~ -400 -440 ~ -349.8281kHz -350.6250kHz
-499 本实施例中超帧长度为 2560ms, 每个超帧由 4个长度为 640ms的物理层信 号帧组成, 每个物理层信号帧包括 4个长度为 160ms的子帧, 每个子帧包括 1个 信标和 个 OFDM符号, 子帧结构如图 4所示。 每个物理层信号帧承载一个逻 辑帧的数据。逻辑帧结构和物理层信号帧结构见图 5。物理层信号按照图 5所示 从左至右的顺序依次发送。  - 499 In this embodiment, the superframe length is 2560 ms, and each superframe is composed of four physical layer signal frames of length 640 ms, and each physical layer signal frame includes four subframes having a length of 160 ms, and each subframe includes one subframe. The beacon and the OFDM symbols are shown in Figure 4. Each physical layer signal frame carries data for one logical frame. The logical frame structure and physical layer signal frame structure are shown in Figure 5. The physical layer signals are transmitted in order from left to right as shown in FIG.
系统信息由 72个比特组成, 包括分别为 36个比特的两部分, 系统信息 1 包括 36比特, 其比特位及对应的信息如表 9所示。  The system information consists of 72 bits, including two parts of 36 bits, and the system information 1 includes 36 bits. The bits and corresponding information are shown in Table 9.
表 9: 系统信息 1的比特描述  Table 9: Bit Descriptions for System Information 1
o o  o o
Figure imgf000015_0001
Figure imgf000015_0001
多频点协同工作模式指示, 0表示多频点协同工作; 1表示非多频点 协同工作;  Multi-frequency point cooperative working mode indication, 0 means multi-frequency point working together; 1 means non-multi-frequency point working together;
bi ~ b 下一个子帧多频点协同工作的频点, 〜 表示的无符号整数为 / , 下一个子帧多频点协同工作频点为( + G^5 * )^^^ , 在非多频点协同工作 时, ^ ~ 均为 其中 为最高有效位; Bi ~ b The frequency of the multi-frequency point working together in the next sub-frame, the unsigned integer represented by ~ is /, and the multi-frequency point cooperative working frequency of the next sub-frame is ( + G^ 5 * )^^^ , in the non- When multi-frequency points work together, ^ ~ is the most significant bit among them;
。 ~ 当前子带标称频点;  . ~ current subband nominal frequency point;
^14 - ^: 频语模式索引;  ^14 - ^: frequency pattern index;
H . 保留 Rfa, 保留为将来扩展使用;  H. Retain Rfa, reserved for future expansion;
27 ~ b29 - CRC校验位; 27 ~ b 29 - CRC check digit;
。 ~ ^35: 保留 Rfu, 保留为将来使用; . ~ ^ 35 : Retain Rfu, reserved for future use;
系统信息 2包括 36比特, 其比特位及对应的信息描述如表 10所示。 表 10: 系统信息 2的比特描述 System information 2 includes 36 bits, and its bits and corresponding information are described in Table 10. Table 10: Bit Descriptions for System Information 2
Figure imgf000016_0001
c° ~ Cl: 当前物理层信号帧在一个超帧中的位置, 00表示第 1帧; 01表 示第 2帧; 10表示第 3帧; 11表示第 4帧;
Figure imgf000016_0001
C° ~ Cl : the position of the current physical layer signal frame in a superframe, 00 represents the first frame; 01 represents the second frame; 10 represents the third frame; 11 represents the fourth frame;
C2 ~ 3: 当前子帧在一个物理层信号帧中的位置, 00表示第 1子帧; 01 表示第 2子帧; 10表示第 3子帧; 11表示第 4子帧; C2 ~ 3: current subframe position in one physical layer signal frame, 00 denotes a first sub-frame; second sub-frame represents 01; 10 denotes a third sub-frame; 11 indicates a fourth sub-frame;
4 ~ C5: 子帧分配方式, 00保留; 01表示子帧分配方式 1; 10表示子帧 分配方式 2; 11表示子帧分配方式 3; 4 ~ C5 : subframe allocation mode, 00 reserved; 01 means subframe allocation mode 1; 10 means subframe allocation mode 2; 11 means subframe allocation mode 3;
c6 ~ ci . 业务描述信息的调制方式, 00表示 QPSK; 01表示 16QAM;C6 ~ c i . The modulation mode of the service description information, 00 means QPSK; 01 means 16QAM;
10表示 64QAM; 11保留; 10 means 64QAM; 11 reserved;
c8 ~ c9: 业务数据的调制方式, 00表示 QPSK; 01表示 16QAM; 10表 示 64QAM; 11保留; c 8 ~ c 9: modulation mode of service data, 00 means QPSK; 01 means 16QAM; 10 means 64QAM; 11 reserved;
Cw - l 1: 业务数据的分层调制指示, 00表示不支持分层调制; 01表示 支持分层调制且 α =1 ; 10表示支持分层调制且 α =2; 11表示支持分层调制且 α =4; Cw - l 1 : hierarchical modulation indication of service data, 00 means that layered modulation is not supported; 01 means support for layered modulation and α = 1; 10 means support for layered modulation and α = 2; 11 means support for layered modulation and α = 4;
业务数据的编码采用均匀保护的指示, 0表示不采用均匀保护; 1 表示采用均匀保护;  The coding of service data adopts the indication of uniform protection, 0 means no uniform protection; 1 means uniform protection;
ci 3 ~ cu: 业务数据的 LDPC编码码率, 00表示 1/4编码码率; 01表示 1/3编码码率; 10表示 1/2编码码率; 11表示 3/4编码码率;Ci 3 ~ c u: LDPC code rate of service data, 00 means 1/4 code rate; 01 means 1/3 code rate; 10 means 1/2 code rate; 11 means 3/4 code rate;
l5 ~ Cl6: 业务数据的 LDPC编码码率, 00表示 1/4编码码率; 01表示 1/3编码码率; 10表示 1/2编码码率; 11表示 3/4编码码率; 在非分层调制时,若采用均勾保护时的业务数据的编码码率由^ ~ 指 示; 若采用不均匀保护, 则业务数据的编码码率从业务描述信息中获取; 在分 层调制时, 高保护的业务数据的编码码率由 ~ 指示, 低保护的业务数据 的编码码率由 C15 ~ C16; l 5 ~ Cl6 : LDPC code rate of service data, 00 means 1/4 code rate; 01 means 1/3 code rate; 10 means 1/2 code rate; 11 means 3/4 code rate; In the case of non-hierarchical modulation, the coding rate of the service data when the uniform protection is used is indicated by ^~; if the non-uniform protection is used, the coding rate of the service data is obtained from the service description information; The coded rate of the high-protected service data is indicated by ~, and the coded rate of the low-protected service data is from C 15 to C 16;
Ci7 ~ C26: 保留 Rfa, 保留为将来扩展使用; Ci7 ~ C26 : Retain Rfa, reserved for future expansion;
C27 ~ C29: CRC校验位; C 27 ~ C 29: CRC check digit;
保留 Rfu, 保留为将来使用。 Retain Rfu and keep it for future use.
在本实施例中对所述业务数据比特流和业务描述信息比特流进行的扰 码具体为二进制伪随机序列扰码处理, 所述二进制伪随机序列由线性反馈 移位寄存器产生, 移位寄存器的初始值为 000000000001 , 生成多项式为: xn + xn + x& + x6 + l , 图 6示出了产生扰码的线性反馈移位寄存器, 在每个逻辑帧 的起始位置重置线性反馈移位寄存器。 The scrambling code for the service data bit stream and the service description information bit stream in this embodiment is specifically a binary pseudo random sequence scrambling code processing, and the binary pseudo random sequence is generated by a linear feedback shift register, and the shift register is The initial value is 000000000001 and the generator polynomial is: x n + x n + x & + x 6 + l . Figure 6 shows the linear feedback shift register that generates the scrambling code, resetting the linearity at the beginning of each logical frame. Feedback shift register.
扰码通过将输入比特信息序列与二进制伪随机序列进行模 2加法实现, 见式 (1 ) :  The scrambling code is implemented by modulo-adding the input bit information sequence and the binary pseudo-random sequence, see equation (1):
y(c ')㊉ ( 1 ) y(c ') ten ( 1 )
式中:  In the formula:
x^——加扰前信息比特  X^——pre-scrambling information bits
γ^一一加扰后比特  γ^-one scrambled bit
对扰码后的比特流进行前向纠错编码。 逻辑帧中不同的信息采用不同 的前向纠错编码方式, 其中, 业务数据中采用 LDPC编码, 业务描述信息 和系统信息采用卷积编码。  Forward error correction coding is performed on the scrambled bit stream. Different information in the logical frame adopts different forward error correction coding modes, wherein LDPC coding is used in the service data, and the service description information and system information are convolutional coding.
对所述经扰码的业务描述信息和系统信息进行卷积编码采用约束长度 为 7的 1/4卷积码, 卷积码的编码器如图 7所示, 其对应的八进制生成多 项式为: 133 , 171 , 145 , 133。 移位寄存器初始值为全" 0"。 系统信息 1和 系统信息 2独立进行卷积编码。 对于业务描述信息在每个逻辑帧的起始位 置重置线性反馈移位寄存器, 对于系统信息在每个逻辑子帧的起始位置重 置线性反馈移位寄存器。 系统信息比特流的低位在前, 即 或者 c。在前。 Convolutional coding of the scrambled service description information and system information is performed by using a 1/4 convolutional code with a constraint length of 7. The encoder of the convolutional code is as shown in FIG. 7, and the corresponding octal generator polynomial is: 133, 171, 145, 133. The initial value of the shift register is all "0". System information 1 and system information 2 are independently convolutionally encoded. The linear feedback shift register is reset at the beginning of each logical frame for the service description information, and the linear feedback shift register is reset at the beginning of each logical sub-frame for system information. The low bit of the system information bit stream is first, or c . in front.
对所述扰码后的业务数据比特流进行 LDPC 编码的码率可以为 3/4、 1/2、 1/3和 1/4 , 输出码字长度为 9216比特, 码率为 3/4时, 对应输入信息 比特长度为 6912; 码率为 1/2时, 对应输入信息比特长度为 4608; 码率为 1/3时, 对应输入信息比特长度为 3072; 码率为 1/4时, 对应输入信息比特 长度为 2304。 其对应关系如表 11所示。 表 11: LDPC编码配置 The code rate for performing LDPC encoding on the scrambled service data bit stream may be 3/4, 1/2, 1/3, and 1/4, and the output codeword length is 9216 bits, and the code rate is 3/4. The corresponding input information bit length is 6912; when the code rate is 1/2, the corresponding input information bit length is 4608; when the code rate is 1/3, the corresponding input information bit length is 3072; when the code rate is 1/4, corresponding The input information bit length is 2304. The corresponding relationship is shown in Table 11. Table 11: LDPC Encoding Configuration
Figure imgf000018_0002
Figure imgf000018_0002
由输入信息比特 m = {m。," "," i}和校验比特 Ρ = { »,Α,···,/½15 组成By inputting information bits m = { m . , "","i} and check bits Ρ = { », Α,···, /1⁄2 15
LDPC的输出码字^^^, ,…, ^ ^,^!,…^^,/^,/^,…/^ ― , 其中校验比特 P = { 。, …, P —κ I由校验矩阵 H求解如下方程得出: LDPC output code word ^^^, ,..., ^ ^,^! ,...^^,/^,/^,.../^ ― , where check bit P = { . , ..., P —κ I is obtained from the check matrix H by solving the following equation:
HxcT =0 (2) Hxc T =0 (2)
式中:  In the formula:
0—— ( 9216-K ) 行 1列的全 0列矢量  0—— ( 9216-K ) row 1 column full 0 column vector
H—— LDPC奇偶校验矩阵  H——LDPC parity check matrix
经过卷积编码的业务描述信息和系统信息采用比特交织, 交织以交织 块为单位进行, 其交织算法如下 : 对于交织前的输入序列 The convolutionally encoded service description information and system information are bit interleaved, and the interleaving is performed in units of interleaved blocks. The interleaving algorithm is as follows: For the input sequence before interleaving
Z = (Z0,Z1,Z2,...,ZNMUS_1) ? 其中 WMra为交织块的长度, 交织后输出序列为 ζ, =
Figure imgf000018_0001
, 其中 = 通过如下方式获得:
Z = (Z 0, Z 1 , Z 2, ..., Z NMUS _ 1)? W Mra wherein the length of the interleaved block, the interleaved output sequence ζ, =
Figure imgf000018_0001
, where = is obtained by:
for(i = 0,n = 0;i < s;i + +) if (p(i)<NMUX) For(i = 0,n = 0;i <s;i + +) if (p(i)<N MUX )
R(n) = pii) R(n) = pii)
n + +;  n + +;
}  }
}  }
其中, p(0) = 0 , p(i) = (5 p(i-l) + q) mod s, (i≠ 0) ? s = 2! , < Where p(0) = 0, p(i) = (5 p(il) + q) mod s, (i≠ 0) ? s = 2! , <
为系统设置值。 Set the value for the system.
也就是说, 通过如下方式获得:  In other words, it is obtained as follows:
Ρ(0)=0, ^ = 2' , q = sl^-l.  Ρ(0)=0, ^ = 2' , q = sl^-l.
p(i) = (5x p(i-l) + q)mods,(i≠ 0) .  p(i) = (5x p(i-l) + q)mods,(i≠ 0) .
n的初始值为 0, 在 0≤ < s取值范围内, 依次计算得出 P(i)值, 如果满 足条件(Pi^Ww ), 那么 R(n)=P(i), 且令 n=n+l; 否则得出的 P(i)值舍弃 不用, n值不变, 继续使用后续计算得出的 P(i)值进行条件判断, 直到得出 所有的 R(n)值 0≤n≤ NMUX_ ; NMUX =v*N{ , 其中 V 为系统设置值, 为交织子块的个数, 也就是所占用的频谱子带的个数。 对卷积编码后的业务描述信息比特流进行比特交织时, 所述 V根据星 座映射方式和传输模式的不同其取值为参考表 12, —个逻辑帧中包括 个 交织块, 也即参与捆绑的子带个数, ^的取值见图 3。 表 12: V的取值 The initial value of n is 0. In the range of 0 ≤ < s, the P(i) value is calculated in turn. If the condition (Pi^Ww) is satisfied, then R(n)=P(i), and let n =n+l; Otherwise, the P(i) value obtained is discarded, and the value of n is unchanged. Continue to use the P(i) value obtained by subsequent calculation to judge the condition until all R(n) values are 0≤ n ≤ N MUX _ ; N MUX = v * N { , where V is the system setting value, which is the number of interleaved sub-blocks, that is, the number of occupied spectral sub-bands. When performing bit interleaving on the convolutionally encoded service description information bit stream, the V is based on the difference between the constellation mapping mode and the transmission mode, and the value is the reference table 12, and the logical frame includes the interleaving block, that is, the binding is performed. The number of sub-bands, the value of ^ is shown in Figure 3. Table 12: Value of V
Figure imgf000019_0001
Figure imgf000019_0001
所述系统信息包括系统信息 1 和系统信息 2, 对卷积编码后的系统信 息 1和系统信息 2分别采用上述方法进行比特交织, 其两个交织块的长度 取值均为 144。  The system information includes system information 1 and system information 2. The system information 1 and the system information 2 after convolutional coding are respectively bit interleaved by using the above method, and the lengths of the two interleaving blocks are all 144.
对所述 LDPC编码后的业务数据比特流和比特交织后的业务描述信息 比特流进行星座映射包括进行 QPSK映射方式、 16QAM映射方式或 64QAM 映射方式, 对所述比特交织后的系统信息比特流进行星座映射包括 QPSK 映射方式。  Performing constellation mapping on the LDPC-encoded service data bit stream and the bit-interleaved service description information bit stream includes performing a QPSK mapping manner, a 16QAM mapping manner, or a 64QAM mapping manner, and performing the bit-interleaved system information bit stream. Constellation mapping includes QPSK mapping.
经过比特交织后的比特流 v。, νι, v2…映射为 QPSK、 16QAM或 64QAM符 号流发送, 各种符号映射加入功率归一化因子, 使各种符号映射的平均功 率趋同。 调制方式支持非分层调制方式和分层调制方式。 The bit stream v after bit interleaving. , Ν ι, v 2 ... mapped to QPSK, 16QAM or 64QAM symbol streams transmitted symbols mapped added power normalization factor so that the average power of the symbols mapped convergence. The modulation mode supports non-hierarchical modulation and layered modulation.
QPSK映射每次将 2个输入比特 (V 2',V 2'", = ( 2, 映射为 I值和 Q值, 映射方式见下图, 星座图中已经包括了功率归一化因子。 图中 的取值为: 在系统信息 QPSK映射时 = ^ , 在业务数据和业务描述信息 QPSK映射 时 = 1。 QPSK的星座映射方式见图 8。 The QPSK mapping will have 2 input bits ( V 2 ', V 2 '", = ( 2 , mapped to I value and Q value each time. The mapping method is shown in the figure below. The power normalization factor is already included in the constellation diagram. The value in is: when the system information QPSK is mapped = ^, when the service data and the service description information QPSK are mapped = 1. The constellation mapping mode of QPSK is shown in Fig. 8.
16QAM映射每次将 4个输入比特 (^,^",^,^, 012,…)映射为 I值 和 Q值, 映射方式见图 9, 星座图中已经包括了功率归一化因子。 The 16QAM mapping maps 4 input bits (^, ^", ^, ^, 0 , 1 , 2 , ...) to I value and Q value each time. The mapping mode is shown in Figure 9. The power is normalized in the constellation diagram. Factor.
64QAM映射每次将 6个输入比特^,^",7^, ' ,7^, ' , 012,…)映射 为 I值和 Q值, 映射方式见图 10, 星座图中已经包括了功率归一化因子。 The 64QAM mapping maps 6 input bits ^, ^", 7 ^, ' , 7 ^, ' , 0 , 1 , 2 , ... ) to I value and Q value each time. The mapping method is shown in Figure 10. A power normalization factor is included.
每一个有效子带的上半子带和下半子带中的连续导频各放置 72 个系 统信息符号, 其中, 当其子载波不全为虚子载波时, 各有效子带的下半子 带的连续导频放置系统信息 1符号; 当其子载波不全为虚子载波时, 各有 效子带的上半子带的连续导频放置系统信息 2。  Each of the active subbands and the contiguous pilots in the lower half of the subbands each hold 72 system information symbols, wherein when the subcarriers are not all virtual subcarriers, the lower subbands of the effective subbands The continuous pilot places system information 1 symbol; when its subcarriers are not all virtual subcarriers, the continuous pilot of each upper subband of each effective subband places system information 2.
离 散 导 频 由 两 路 伪 随 机 序 列 ΡΙ= ΡΙ"ΡΙ2'··Ά··'ΡΙΡ1、 和 Ρβ^/^,/^,···,/^·,···,/^}中的比特流对 /^Ά/^,···,/^/^依次经过 QPSK映射后生成的符号构成, ^的取值在传输模式 1和传输模式 3时为 bZ Ν' , 在传输模式 2时为 。 由图 13所示线性反馈移位寄存器产生长 度为 ^的二进制伪随机序列 Pi和 , 线性反馈移位寄存器的生成多项式 为: xu + x9 + l , 初始值为 01010100101 Two scattered pilots by the pseudo-random sequence ΡΙ = ΡΙ "ΡΙ 2 '·· Ά ··' ΡΙ Ρ1, and Ρβ ^ / ^, / ^, ···, / ^ ·, ···, / ^} in The bit stream pair /^Ά/^,···, /^/^ is composed of symbols generated by QPSK mapping in turn, and the value of ^ is in transmission mode 1 and transmission mode 3 bZ Ν ' , when in transmission mode 2. A binary pseudo-random sequence Pi of length ^ is generated by the linear feedback shift register shown in FIG. 13, and the generator polynomial of the linear feedback shift register is: x u + x 9 + l , the initial value is 01010100101
所述系统信息以一个逻辑子帧为单位进行传输,所述业务描述信息和业务 数据以一个逻辑帧为单位进行传输。一个逻辑子帧内所述系统信息符号重复传 输三次。  The system information is transmitted in units of one logical subframe, and the service description information and service data are transmitted in units of one logical frame. The system information symbols are transmitted three times in a logical sub-frame.
对各频谱模式, OFDM符号中除虚子载波、 连续导频子载波和离散导 频子载波外的子载波为数据子载波, 数据子载波放置业务描述信息符号和 业务数据符号。 对于图 3所示的频谱模式, 在一个逻辑帧中包含 (4* ^)* ( *N 个有效子载波。  For each spectrum mode, subcarriers other than the virtual subcarrier, the contiguous pilot subcarrier, and the scattered pilot subcarrier in the OFDM symbol are data subcarriers, and the data subcarriers are placed with service description information symbols and service data symbols. For the spectrum mode shown in Figure 3, (4*^)* (*N valid subcarriers) are included in one logical frame.
特别地, 在步骤 S1中对星座映射后承载业务数据的子载波, 以子载波 为单元, 进行子载波交织还包括:  Specifically, performing subcarrier interleaving on the subcarriers carrying the service data after the constellation mapping in step S1, the subcarrier interleaving further includes:
构造行数为 4* , 列数为 * 的子载波矩阵 M , 所述^ V为每个子帧内 的 OFDM符号数, 所述 为一个 OFDM符号内一个子带上所包含的有效子 载波数, 所述 为参与捆绑的子带个数, 其取值如图 3所示; 该子载波矩阵 的行数和列数的均从 1开始计数; 将子载波矩阵按从上到下、从左到右平均分 成行数为^ V , 列数为 的子矩阵^,', 即: Constructing a subcarrier matrix M with a row number of 4 * and a column number of *, the ^V is the number of OFDM symbols in each subframe, and the number of effective subcarriers included in one subband in one OFDM symbol, The number of subbands participating in the bundling is as shown in FIG. 3; the number of rows and the number of columns of the subcarrier matrix are counted from 1; the subcarrier matrix is pressed from top to bottom and from left to left. The right average is divided into sub-matrices ^, ', where the number of rows is ^ V and the number of columns is:
M 1,1  M 1,1
Μ2 Μ 2
M  M
M3 3 Μ3 M 3 3 Μ 3
Μ 4,Ν, 其中 Ms i = (ma,fc) xΜ 4,Ν, where M si = (m a , fc ) x ,
mfl ( = l,2,… , b = l, 2,' ",Wv)表示子矩阵中的数据元素。 m fl ( = l, 2 ,... , b = l, 2 , '", W v ) denotes the data elements in the submatrix.
在所述子载波矩阵 M中, 在每个子矩阵 M "中将离散导频数据元素放置在 预定的位置。 In the subcarrier matrix M, discrete pilot data elements are placed in predetermined positions in each submatrix M ".
系统信息以一个逻辑子帧为单位传输。 在所述子载波矩阵 M中, 从左边 第一列的子矩阵^,1开始, 按照从左到右、 从上到下的子矩阵顺序, 将一个逻 辑子帧承载的系统信息 1和系统信息 2的数据元素分别重复 3次集中放置在一 个所述 中的预定区域。 System information is transmitted in units of one logical sub-frame. In the subcarrier matrix M, starting from the submatrix ^ 1 of the first column on the left, system information 1 and system information carried by a logical sub-frame in the order of sub-matrices from left to right and top to bottom The data elements of 2 are collectively placed 3 times in a predetermined area in one of the above.
业务描述信息和业务数据以一个逻辑帧为单位进行传输。在所述子载波矩 阵 M中, 从左边第一列的子矩阵 Mu开始, 将一个逻辑帧承载的所述业务描述 信息符号的数据元素按照从左到右、从上到下的顺序放置在 Ms i的第 1至 N 行中以及第 NSDiS„+l行中第 1至 AUSv^列中, 并按照从上到下、 从左到右的子 矩阵顺序依次放置该逻辑帧承载的所述业务描述信息符号的数据元素, 所述 N. 和 ^S» 为系统设置值 ( Service description information and service data are transmitted in units of one logical frame. In the subcarrier matrix M, starting from the submatrix M u of the first column on the left side, the data elements of the service description information symbol carried by one logical frame are placed in order from left to right and top to bottom. In the 1st to Nth rows of M si and in the 1st to AU Sv ^ columns in the Nth SDiS „+l row, the logical frame bearer is placed in order from the top to the bottom and the left to the right submatrix. a data element describing a service description information symbol, N. and ^ S » set values for the system (
在所述子载波矩阵 M中, 从左边第一列的子矩阵 Mu开始, 将一个逻辑帧 承载的所述业务数据符号的数据元素按照从左到右、 从上到下的顺序放置在 Msi的残余位置上, 并按照从上到下、 从左到右的子矩阵顺序依次放置该逻辑 帧承载的业务数据符号的数据元素。 In the subcarrier matrix M, starting from the submatrix M u of the first column on the left side, the data elements of the service data symbols carried by one logical frame are placed in the order from left to right and top to bottom. The residual data of the si , and the data elements of the service data symbol carried by the logical frame are sequentially placed in the order of the sub-matrix from top to bottom and left to right.
其中根据传输模式的不同, 所述系统信息符号的数据元素放置在子矩 阵 中连续导频的位置如下表 13所示。 在一个逻辑子帧内, 系统信息 1 和系统信息 2的各 72个系统信息符号重复三次,例如,传输模式 1中, M" 的第 1 ~ 18行中表 8指定的位置放置系统信息 1和系统信息 2的各 72个系 统信息符号, 第 19 ~ 36行和第 37 ~ 54行的指定位置也分别放置同样的系 统信息符号。 Wherein the position of the continuous pilot of the data element of the system information symbol placed in the sub-matrix is as shown in Table 13 below, depending on the transmission mode. Within one logical sub-frame, 72 system information symbols of system information 1 and system information 2 are repeated three times. For example, in transmission mode 1, the position information specified in Table 8 of lines 1 to 18 of M " is placed with system information 1 and The 72 system information symbols of system information 2, the same system information symbols are placed in the designated positions of lines 19 to 36 and lines 37 to 54, respectively.
表 13: 系统信息符号的数据元素放置在子矩阵 "中连续导频的位置 传输模式 1和 3:  Table 13: Data Elements of System Information Symbols Placed in Submatrix "Continuous Pilot Locations Transfer Modes 1 and 3:
Figure imgf000021_0001
Figure imgf000021_0001
在传输模式 1时: 在^ "的 55 ~ 56行中的 11, 55, 75, 103, 144, 164, 192, 228列上填充 1 ~ 2行所放置的系统信息符号;在传输模式 2时:在 "的 109~ 111行中的 15, 43, 84, 104列上填充 1 ~ 3行所放置的系统信息符号; 在传输模式 3时: 在 "的 55 ~ 61行中的 11, 55, 75, 103, 144, 164, 192, In transmission mode 1: the 11, 55, 75, 103, 144, 164, 192, 228 columns in the 55 ~ 56 rows of ^ " are filled with the system information symbols placed in 1 ~ 2 rows; in transmission mode 2 : In the "109 to 111 lines, 15, 43, 84, 104 columns are filled with system information symbols placed in 1 to 3 lines; in transmission mode 3: in "55 to 61 lines, 11, 55, 75, 103, 144, 164, 192,
228列上填充 1 ~ 7行所放置的系统信息符号。 The system information symbol placed on the 228 column is filled with 1 to 7 lines.
根据传输模式的不同,所述离散导频的数据元素放置在子矩阵 "中的 每一行; 所述离散导频的数据元素放置在子矩阵^ "中列的位置 b为: The discrete pilot data elements are placed in the sub-matrix according to the transmission mode Each row; the data element of the discrete pilot is placed in the submatrix ^" where the position b is:
传输模式 1和传输模式 3:  Transmission mode 1 and transmission mode 3:
Tf mod(a - 1, 3) == 0 T f mod(a - 1, 3) == 0
12/7 + 122 ρ = 0,1,···,10  12/7 + 122 ρ = 0,1,···,10
b  b
12ρ + 121 ρ = -10, -9,···, -1,0  12ρ + 121 ρ = -10, -9,···, -1,0
mod(a-l,3) 1  Mod(a-l,3) 1
Figure imgf000022_0001
Figure imgf000022_0001
传输模式 2:  Transmission mode 2:
? mod(a-l,3) 0  ? Mod(a-l,3) 0
Figure imgf000022_0002
Figure imgf000022_0002
mod(a-l,3)  Mod(a-l,3)
12/7 + 70 ρ = 0,1,2,3,4  12/7 + 70 ρ = 0,1,2,3,4
b  b
12/7 + 53 ρ = -4,-3,-2,-1,0  12/7 + 53 ρ = -4,-3,-2,-1,0
l<a<S  l<a<S
其中  among them
将子载波矩阵 M按从上到下平均分成行数为 , 列数为 的子矩  The subcarrier matrix M is equally divided into the number of rows from the top to the bottom, and the sub-moments of the number of columns is
Μ Μ
M  M
阵 Mu = (mc )SNX{NvXNi) (W = 1,2,3,4) , 即 M Array M u = (m c ) SNX{NvXNi) ( W = 1, 2, 3, 4) , ie M
将长度为 ^的符号按照从左到 右、 从上到下的方式依次填充在子载波子矩阵 Μ "的第 1 ~ 3行的离散导频元 素上, Μ "的第 4行至第 行的离散导频元素按如下方式填充,其中 4≤ : 如果 m。d(c-l,3)==0 , 则此行的离散导频上放置第 i行离散导频元素上的 值; The length of the ^ symbol from left to right, top to bottom are sequentially filled in a manner subcarrier matrix Μ "on lines 1 to 3 of the discrete pilot elements, Μ" row 4 to row The discrete pilot elements are filled as follows, where 4 ≤ : if m. d( c -l, 3 )==0 , then the value on the discrete pilot of the ith row is placed on the discrete pilot of the row;
如果 mod(c-l,3)==l , 则此行的离散导频上放置第 2行离散导频元素上的 值; If the scattered pilot mod (c -l, 3) == l, the frequency of this line is placed on the second row of discrete conductive elements on a frequency value;
如果 mod(C-l,3)==2, 则此行的离散导频上放置第 3行离散导频元素上的 值。 If mod( C -l, 3 )== 2 , then the value on the third row of discrete pilot elements is placed on the discrete pilot of this row.
经过扰码、 编码、 交织和星座映射后的业务描述信息别放置于 "上指 定的数据元素中, M "放置业务描述信息的数据元素位置见表 14。 M "中第 1 至 N 行中的数据元素均为业务描述信息, M 的第 N +1行中第 1至The service description information after scrambling, encoding, interleaving and constellation mapping is placed on the upper finger. Given data elements, data elements M "data element position placing table 14. A service description information M" in the first to N-th row are in the service description information, row N + 1 in the first to M
^« ^^的数据元素为业务描述信息。 业务描述信息按照从左到右、 从上到 下先将子载波子矩阵 Mu中表 14指定的数据元素填充完后,再按照图 11箭头 指示方向依次填充各个子载波子矩阵中相应的数据元素。 The data element of ^« ^^ is the business description information. The service description information is filled in from the left to the right and from the top to the bottom, and the data elements specified in the sub-sub-matrix Mu in the table 14 are filled in, and then the corresponding data elements in each sub-carrier sub-matrix are sequentially filled according to the direction indicated by the arrow in FIG. 11 . .
表 14: N SD1Sn和 NsaSvaM取值
Figure imgf000023_0002
Table 14: Values of N SD1Sn and N saSvaM
Figure imgf000023_0002
子载波矩阵 M中除去放置业务描述信息之外的数据元素放置一个逻辑 帧内的业务数据。 业务数据先按照从左到右、 从上到下先将子载波子矩阵 The subcarrier matrix M removes the data elements outside the service description information and places the service data in one logical frame. The service data firstly follows the subcarrier submatrix from left to right and top to bottom.
M"中相应的数据元素填充完后,再按照图 11箭头指示方向依次填充各个子 载波子矩阵中相应的数据元素。表 15给出了各传输模式下 4个子载波子矩阵 M "in the corresponding data element filled exhausted, and then the direction of arrow 11 indicated in FIG sequentially filling the respective sub-carriers corresponding data element in sub-matrix. Table 15 shows the transmission mode in each submatrix 4 subcarriers
Figure imgf000023_0001
内放置业务描述信息的数据元素个数和放置业务数据的 数据元素个数。
Figure imgf000023_0001
The number of data elements in which the service description information is placed and the number of data elements in which the business data is placed.
15 , 2, 3卢 4, ' =1,2,···, )内放置的业务描述信息的数据元素个 数和放置业务数据的数据元素个数 Table 15 , 2 , 3, 4, 4, '=1, 2 , ···, ) The number of data elements of the service description information placed and the number of data elements in which the business data is placed
Figure imgf000023_0003
Figure imgf000023_0003
对所述子矩阵中放置业务数据符号的数据元素进行交织, 所述交织以 交织块为单位进行, 对于传输模式 1和传输模式 2的交织块的长度 NMUX为 46080, 传输模式 3的交织块 的长度为 50688; Placing the data elements of the business data symbols are interleaved sub-matrix, the interleaving interleaved block as a unit, a transmission mode and a transmission mode of the interleaved block length N MUX 2 is 46080, the transmission mode of the interleaved block 3 The length is 50688;
交织块按如下方式进行构造:  The interleaved blocks are constructed as follows:
1 ) 将 子 载 波 矩 阵 M 的 某 一 行 记 为 Mt = [Μ;1 , Μ!·,2 , · · · , MiNi ] = [mUil,m2il,--- mN ,;1 , ml i2 , m2;2 , · · · mN ,!·,2 , · · · , mliNi , m2iN/ ,---mN ,. WJ 其中, 1) Record a row of the subcarrier matrix M as M t = [Μ ;1 , Μ!·, 2 , · · · , M iNi ] = [m Uil , m 2il , --- m N , ;1 , m l i2 , m 2; 2 , · · · m N , !·, 2 , · · · , m liNi , m 2iN/ , --- m N ,. W J where
m  m
M"由 M,中连续的 个分量构成, M" = [M",',MM"的 分量, 依次对应第 ' '行中的元素; M ", the component is constituted by a continuous M, M" = [M " , ', M is M" component, corresponding to the first order' element row;
2) 对^中的^ 12,…,^ ': 」置业务数据的数据元素进行置换, 得 ^ W 2) Replace the data elements of the business data with ^ 1 , 2 ,...,^ ': " in ^, ^ W
其中,  among them,
V 由 中连续的 P个分量构成, VC"
Figure imgf000024_0001
, 为 VC j的 分量, VC'-(™OTS„,;'放置 M "中的业务数据的数据元素, 即 ^+1^,;'放置 中的第一个业务数据的数据元素, P为 个有效子载波内的, 放置业务数 据的数据子载波个数;
V consists of consecutive P components, VC "
Figure imgf000024_0001
, is the component of VC j , the data element of the business data in VC '-(TM OTS „,; 'place M ', ie ^ + 1^ , ; ' the data element of the first business data in the placement, P The number of data subcarriers in which the service data is placed within a valid subcarrier;
其中, z与 的对应关系为:  Where the correspondence between z and is:
j = ((i-NSDISn-l-k*NSDISn)*(NI-l) + (l-l))modNI+l. j = ((iN SDISn -lk *N SDISn )*(N I -l) + (ll))modN I +l.
k = 0,1,2,3  k = 0,1,2,3
i = k*SN+NSDISn+l,k*SN+NSDISn+2,...,(k + l)*SN i = k*S N +N SDISn +l,k*S N +N SDISn +2,...,(k + l)*S N
3 ) 按照行序号依次取出 第 个子向量 , 构造以一维向量 (VC1 J '·" ) , 即第 个交织块; 3) sequentially extract the first sub-vector according to the row number, and construct a one-dimensional vector ( VC 1 J '·" ), that is, the first interleaving block;
对 按比特交织算法进行交织, 得到 =(V<^,'''VG^-A „W) , 其中Interleaving the bit-interleaving algorithm yields =(V< ^,''' V G^-A „W) , where
VC =1 ^ ^·^<^ , 将一维向量 BA' j = 1,2,… 中的 VC;d放置到矩阵 Μι7(/ = 1,2,···,^)中, VC 中的元素逐一放置在 ,'中的业务数据的数 据元素上, 即 ,' 放置 M W ,'中的第一个业务数据的数据元素, /与 的 对应关系为: VC = 1 ^ ^·^<^ , put VC in the one-dimensional vector BA' j = 1, 2,...; d into the matrix Μ ι7 (/ = 1, 2, ···, ^), in VC The elements are placed one by one on the data element of the business data in ', ie, the data element of the first business data in 'place M W , ', / the corresponding relationship is:
y = (( -l)*(Vi-l) + (/-l))modNi +1. y = (( -l)*(V i -l) + (/-l))modN i +1.
k = 0,1,2,3  k = 0,1,2,3
i = k^SN-NSDI + *(SN-NSDISn) + 2,...,(k + l)*(SN-NSDISn) . i = k^S N - N SDI + *(S N -N SDISn ) + 2,...,(k + l)*(S N -N SDISn ) .
:0  :0
其中所述比特交织算法为:  The bit interleaving algorithm is:
对于交织前的输入序列 :^ ) 其中 为交织块的长 度, 交织后输出序列为2'= ( 21' -1) , 其中 = w, 通过 如下方式获得:For the input sequence before interleaving: ^) where is the length of the interleaved block, and the output sequence after interleaving is 2 ' = ( 2 1' -1) , where = w, obtained by:
Figure imgf000024_0002
if (p(i)<NMUX)
Figure imgf000024_0002
If (p(i)<N MUX )
R(n) = pii) R(n) = pii)
n + +;
Figure imgf000024_0003
也就是说, WW通过如下方式获得:
n + +;
Figure imgf000024_0003
In other words, the WW is obtained as follows:
log  Log
P(0)=0, ^ = 2' -' , q = s/4-l.  P(0)=0, ^ = 2' -' , q = s/4-l.
p(i) = (5x p(i-l) + q) mod s, (i≠ 0) .  p(i) = (5x p(i-l) + q) mod s, (i≠ 0) .
n的初始值为 0, 在 0≤z'<s取值范围内, 依次计算得出 P(i)值, 如果满 足条件 (P(i)<^ ), 那么 R(n)=P(i), 且令 n=n+l; 否则得出的 P(i)值舍弃 不用, n值不变, 继续使用后续计算得出的 P(i)值进行条件判断, 直到得出 所有的 R(n)值 ( 0<n<NMUX -1 ) The initial value of n is 0. In the range of 0≤z'<s, the P(i) value is calculated in turn. If the condition (P(i)<^) is satisfied, then R(n)=P(i) ), and let n = n + l; otherwise the P (i) value is discarded, the n value is unchanged, continue to use the subsequent calculated P (i) value for conditional judgment, until all R ( n) value ( 0<n<N MUX -1 )
子载波矩阵中的每行元素从左到右依次填充到每个 OFDM符号的有效 子载波上, 其中矩阵中每行的第 1个元素填充到 OFDM符号中子载波索引最 小的有效子载波上, 参见表 5-8  Each row element in the subcarrier matrix is padded to the effective subcarrier of each OFDM symbol from left to right, wherein the first element of each row in the matrix is padded to the effective subcarrier with the smallest subcarrier index in the OFDM symbol. See Table 5-8
每个 OFDM 符号包含 ^个子载波, 传输模式 1 和传输模式 3 时, ^ = 2048; 传输模式 2时, =1Q24。 对应各种频谱模式, 相应的有效子带 中的子载波不全为虚子载波的上 /下半子带中包含了(4* )*(Λ^Λ^个有效 子载波。 其余子载波为虚子载波, 虚子载波为 0 Each OFDM symbol contains ^ subcarriers, when transmitting mode 1 and transmission mode 3, ^ = 2048 ; when transmitting mode 2, = 1Q24 . Corresponding to the various spectrum modes, the subcarriers in the corresponding effective subband are not all of the virtual subcarriers. The upper/lower subbands contain ( 4 *)*(Λ^Λ^ effective subcarriers. The remaining subcarriers are virtual subcarriers. , virtual subcarrier is 0
^个子载波通过 IFFT映射为 OFDM符号, 映射方式见式 (3):
Figure imgf000025_0001
^ subcarriers are mapped to OFDM symbols by IFFT, and the mapping method is shown in equation (3):
Figure imgf000025_0001
式中:  In the formula:
S-(t)——个子帧中第"个 OFDM符号 S - (t) - the "first OFDM symbol" in a subframe
第"个 OFDM符号的第''个子载波  The ''subcarriers of the first OFDM symbol
信标的结构如图 12所示, 包含长度为7 ^循环前缀和 2个相同的同步 信号 W。 为频带受限的伪随机信号, 长度为 T b =TJ2The structure of the beacon is as shown in FIG. 12, and includes a 7 ^ cyclic prefix and two identical synchronization signals W. For a band-limited pseudo-random signal, the length is T b = T J 2 .
n(n + l)/2  n(n + l)/2
Pb(n) = exp -){-\)n2nq- n = 0,l,---,L*N, -1 P b (n) = exp -){-\) n 2nq- n = 0,l,---,L*N, -1
由式 Nzc 生成长度为 ( L 的取值见表 16 ) 的随机序列, 其中在传输模式 1和传输模式 3时 Λ¾·  A random sequence of length L (see Table 16 for the value of L) is generated by the equation Nzc, where in the transmission mode 1 and the transmission mode 3 Λ3⁄4·
= 48 , 传输模式2下^¾ = 487 , = 12  = 48, in transmission mode 2 ^3⁄4 = 487 , = 12
Figure imgf000025_0002
Figure imgf000025_0002
按照频谱模式将随机序列 Pb(n、中的元素从左到右依次填充到同步信 号的 OFDM符号的有效子载波上, 其中随机序列的第 1个元素填充到同步 信号的 OFDM符号中子载波索引最小的有效子载波上, 参见表 5-8
Figure imgf000026_0001
According to the spectrum mode, the elements in the random sequence P b (n, n, are sequentially padded from left to right onto the effective subcarrier of the OFDM symbol of the synchronization signal, wherein the first element of the random sequence is filled into the OFDM symbol subcarrier of the synchronization signal On the valid subcarrier with the smallest index, see Table 5-8.
Figure imgf000026_0001
式中  In the middle
一一同步信号的子载波数  Number of subcarriers of the synchronization signal
一一同步信号的 OFDM符号的第 个子载波  The first subcarrier of the OFDM symbol of the synchronization signal
一一同步信号的子载波间隔  Subcarrier spacing of the synchronization signal
表 17: 同步信号的相关参数  Table 17: Parameters related to the synchronization signal
Figure imgf000026_0003
Figure imgf000026_0003
OFDM 符号的结构见图 14 , 由长度为 的循环前缀和长度为 "的 OFDM数据体构成。 The structure of the OFDM symbol is shown in Figure 14. It consists of a cyclic prefix of length and an OFDM data body of length ".
信标及相邻 OFDM符号之间, 通过保护间隔( GI )相互交叠, GI的长 度7^见表 13。 相邻符号经过窗函数 WW加权后, 前一个符号的尾部 GI与后 一个符号的头部 GI相互叠加, 叠加方式见图 15 , 图中7 ^在 OFDM符号时 τ =τ , 在信标时, Between adjacent OFDM symbols and the beacon by a guard interval (GI) overlap with each other, the length of the GI in Table 13 ^ 7. W W adjacent symbols after weighting window function, the tail of the previous symbol and GI after a head GI symbols are superimposed, superimposed manner shown in Figure 15, while in FIG. 7 ^ OFDM symbol τ = τ, when the beacon ,
+ Tu + Tg + T u + T g
Figure imgf000026_0002
Figure imgf000026_0002
式中  In the middle
—— 的取值见表 18  The value of —— is shown in Table 18
τ  τ
表 18: 保护间隔的长度
Figure imgf000026_0004
Table 18: Length of guard interval
Figure imgf000026_0004
保护间隔信号选取方式见图 16。  The protection interval signal selection method is shown in Figure 16.
在本实施例中, 每个逻辑帧包含 4个逻辑子帧, 每个逻辑子帧包含^个 0FDM符号和 1个信标符号。 对四个连续的逻辑帧 中的逻辑子帧 (ρ = 1'2'3'4'^ = 1' 23' 4)进行子帧分配的步骤中 表示第 Ρ个逻辑帧中第 个逻辑子帧。 可采用三种不同的子帧分配方式, 各分配方式见图 17、 图 18 和图 19。 In this embodiment, each logical frame includes 4 logical subframes, and each logical subframe includes ^0 FDM symbols and 1 beacon symbol. The step of sub-frame allocation for logical sub-frames in four consecutive logical frames ( ρ = 1 ' 2 ' 3 ' 4 '^ = 1 ' 2 , 3 ' 4 ) indicates the third logical frame Logical subframes. Three different sub-frame allocation methods can be used, as shown in Figure 17, Figure 18 and Figure 19.
如图 17所示, 子帧分配方式 1 : 按 1个所述逻辑帧内的 4个逻辑子帧的排 所述物理帧组成 1个物理超帧。、即子帧分配方式 1不改变各逻辑帧内的 4个逻 辑子帧原有的顺序。  As shown in FIG. 17, the subframe allocation mode 1: The physical frame of the 4 logical subframes in one logical frame constitutes one physical superframe. That is, the subframe allocation mode 1 does not change the original order of the four logical subframes in each logical frame.
如图 18所示, 子帧分配方式 2: 以 2个连续的所述逻辑帧内的 8个连续的 逻辑子帧为组, 将该组内的逻辑子帧相互交错, 并将该组相互交错的逻辑 子帧映射为 2个连续的物理帧, 4个所述物理帧组成 1个物理超帧。  As shown in FIG. 18, subframe allocation mode 2: grouping 8 consecutive logical subframes in the two consecutive logical frames, interleaving the logical subframes in the group, and interlacing the groups The logical subframe is mapped to 2 consecutive physical frames, and the 4 physical frames constitute 1 physical superframe.
如图 19所示, 子帧分配方式 3: 以 4个连续的所述逻辑帧内的 16个 连续的逻辑子帧为组, 将该组中每个逻辑帧中的第 i 个逻辑子帧依次映射 到第 i个物理信号帧, 其中 i为 1、 2、 3或 4以形成 4个连续的物理帧, 4 个所述物理帧组成 1个物理超帧。  As shown in FIG. 19, the subframe allocation mode 3: groups the 16 consecutive logical subframes in the four consecutive logical frames, and sequentially sets the ith logical subframe in each logical frame of the group. Mapping to the i-th physical signal frame, where i is 1, 2, 3 or 4 to form 4 consecutive physical frames, and 4 of the physical frames constitute 1 physical superframe.
此外, 在其他的实施例中, 还可以为所述数字音频广播系统指定特定的 多频点协同工作序列,其中每个物理超帧的第一个物理帧的第一个物理子帧的 频点固定不变,在每个物理子帧中包含下一子帧的多频点协同工作信息, 所述 多频点协同工作信息包括多频点协同工作模式指示和下一个子帧的多频点协 同工作频点, 可以由所述系统信息携带所述多频点协同工作信息。  In addition, in other embodiments, the digital audio broadcasting system may also be assigned a specific multi-frequency coordinated working sequence, wherein the frequency of the first physical subframe of the first physical frame of each physical superframe The multi-frequency point cooperative work information of the next subframe is included in each physical sub-frame, and the multi-frequency point cooperative working information includes multi-frequency point cooperative working mode indication and multi-frequency point cooperation of the next sub-frame. The working frequency point, the multi-frequency point cooperative working information may be carried by the system information.
更特别地, 在所述 S1 中还可以对来自上层的业务数据根据优先级不同 进行分层, 对多层业务数据转换成比特流后, 分别进行扰码和 LDPC编码; 对 LDPC编码后的多层业务数据比特流分别进行星座映射对应获得多个调 制符号;将所述多个调制符号按照功率加载方式复用在同一个星座空间内, 获得分层调制符号。 其中所述业务数据比特流中, 第一层为高优先级的数 据流, 其他层为低优先级的数据流。  More specifically, in the S1, the service data from the upper layer may be layered according to different priorities, and the multi-layer service data is converted into a bit stream, and then separately scrambled and LDPC-encoded; The layer service data bit stream is respectively subjected to constellation mapping to obtain a plurality of modulation symbols; and the plurality of modulation symbols are multiplexed in the same constellation space according to a power loading manner to obtain a layered modulation symbol. In the service data bit stream, the first layer is a high priority data stream, and the other layer is a low priority data stream.
与所述发送方法相对应地,本发明还提出了一种数字音频广播系统中 的数字音频信号发送装置, 包括: 扰码器, 用于对上层业务数据和业务描 述信息进行比特流转换和扰码; 系统信息构造器, 用于将物理层系统信息 按照特定格式, 组成系统信息比特流; 编码器, 用于对扰码器输出的上层 业务数据比特流、 扰码器输出的业务描述信息比特流以及系统信息比特流 进行编码; 比特交织器, 用于对编码后的业务描述信息比特流以及系统信 息比特流进行比特交织; 星座映射器, 用于对比特交织后的业务描述信息、 系统信息, 以及编码后的业务数据进行星座映射; 子载波交织器, 用于对 星座映射后的业务数据进行子载波上的交织; 频域符号生成器, 用于将离 散导频、 星座映射后的业务描述信息和系统信息、 以及子载波交织后的业 务数据复接在一起, 映射到对应的频谱模式上, 组成 OFDM 频域符号; OFDM调制器,用于将上述 OFDM频域符号经过 IFFT变换到时域; OFDM 时域符号生成器, 用于将 OFDM 调制器输出与循环前缀复接在一起构成 OFDM时域符号; 时域逻辑子帧组成器, 用于将 OFDM时域符号与信标复 接在一起, 构成物理层帧结构; 映射和组帧模块, 用于将所述逻辑层帧结 构进行映射和组帧形成物理层帧结构; 发射器, 用于将所述物理层帧结构 经过基带到射频变换予以发射。 Corresponding to the transmitting method, the present invention also provides a digital audio signal transmitting apparatus in a digital audio broadcasting system, comprising: a scrambler for performing bit stream conversion and interference on upper layer service data and service description information. a system information constructor for composing physical layer system information into a system information bit stream according to a specific format; an encoder, an upper layer service data bit stream for the scrambler output, and a service description information bit output by the scrambler The stream and the system information bit stream are encoded; the bit interleaver is configured to perform bit interleaving on the encoded service description information bit stream and the system information bit stream; the constellation mapper is configured to perform bit interleaved service description information and system information. And the encoded service data is subjected to constellation mapping; the subcarrier interleaver is configured to perform interleaving on the subcarriers of the constellation mapped service data; and the frequency domain symbol generator is configured to map the discrete pilot and the constellation Descriptive information and system information, and subcarrier interleaved service data are multiplexed in one Mapped to the corresponding spectrum mode, the composition of the OFDM frequency domain symbols; An OFDM modulator for performing an IFFT transform to the time domain of the OFDM frequency domain symbol; an OFDM time domain symbol generator for multiplexing the OFDM modulator output with the cyclic prefix to form an OFDM time domain symbol; a frame constituting unit, configured to multiplex the OFDM time domain symbol and the beacon to form a physical layer frame structure; and a mapping and framing module, configured to map and frame the logical layer frame structure to form a physical layer frame structure; And a transmitter, configured to transmit the physical layer frame structure by baseband to radio frequency conversion.
其中所述映射和组帧模块包括: 时域子帧分配器, 用于将逻辑子帧映 射到物理子帧; 时域帧组成器, 用于将物理子帧组成物理帧; 时域超帧组 成器, 用于将物理帧组成物理超帧。  The mapping and framing module includes: a time domain subframe allocator for mapping logical subframes to physical subframes; a time domain frame composing device, configured to form physical subframes into physical frames; And used to form physical frames into physical superframes.
此外所述装置还包括: 多频点协同工作控制模块, 用于为所述数字音 频广播系统指定特定的多频点协同工作序列。  In addition, the apparatus further includes: a multi-frequency coordinated operation control module, configured to specify a specific multi-frequency coordinated working sequence for the digital audio broadcasting system.
当所述所述来自上层的业务数据包括优先级不同的多层业务数据时,所 述扰码器对所述多层业务数据转换成比特流后分别进行扰码; 所述编码器 分别进行编码; 所述星座映射器对编码后的多层业务数据比特流分别进行 星座映射对应获得多个调制符号, 将所述多个调制符号按照功率加载方式 复用在同一个星座空间内, 获得分层调制符号。  When the service data from the upper layer includes multi-layer service data with different priorities, the scrambler separately scrambles the multi-layer service data into a bit stream; the encoder separately encodes And the constellation mapper respectively performs constellation mapping on the encoded multi-layer service data bitstream to obtain a plurality of modulation symbols, and multiplexes the plurality of modulation symbols in the same constellation space according to a power loading manner to obtain layering. Modulation symbol.
本发明的实施例还包括一种数字音频广播系统中的数字音频信号接收 方法, 包括如下步骤: Sl、 将来自射频的信号经过变换到基带, 对基带信号 进行捕获, 进行定时同步和载波同步; S2、 对同步后的信号, 进行物理层帧结 构帧到逻辑层帧结构映射; S3、 对逻辑层帧结构进行频域变换、信道估计和均 衡; S4、 通过解星座映射、 解比特交织和卷积译码, 将系统信息提取出来; 通 过解星座映射、 解比特交织、 卷积译码以及解扰, 将业务描述信息提取出来; 通过解子载波交织、 解星座映射、 LDPC译码以及解扰后, 将上层业务数据提 取出来; S5、 将业务描述信息以及业务数据发送给上层。  The embodiment of the present invention further includes a digital audio signal receiving method in a digital audio broadcasting system, comprising the steps of: Sl, transforming a signal from a radio frequency into a baseband, capturing a baseband signal, performing timing synchronization and carrier synchronization; S2: performing physical layer frame structure frame to logical layer frame structure mapping on the synchronized signal; S3, performing frequency domain transform, channel estimation, and equalization on the logical layer frame structure; S4, performing solution constellation mapping, debit interleaving, and volume Product decoding, extracting system information; extracting service description information by de-constellation mapping, de-interleaving, convolutional decoding, and descrambling; solving sub-carrier interleaving, de-constellation mapping, LDPC decoding, and descrambling After that, the upper layer service data is extracted; S5, the service description information and the service data are sent to the upper layer.
其中所述步骤 S4 中系统信息提取步骤还包括提取系统信息中包含的 当前子带标称频点信息及当前数字音频广播信号所采用的频谱模式索引信 息。  The step of extracting the system information in the step S4 further includes extracting current subband nominal frequency point information included in the system information and spectrum mode index information used by the current digital audio broadcast signal.
此外, 所述接收方法还包括如下步骤: 根据提取出的当前子带标称频 点信息及当前数字音频广播信号所采用的频谱模式索引信息, 调整接收端 频点设置, 完成当前数字音频广播信号频谱模式下的频率中心点同步; 以 及接收当前频谱模式下所有有效子带上数据。  In addition, the receiving method further includes the following steps: adjusting the receiving end frequency point setting according to the extracted current subband nominal frequency point information and the spectrum mode index information used by the current digital audio broadcasting signal, and completing the current digital audio broadcasting signal. Frequency center point synchronization in spectrum mode; and receiving data on all valid subbands in the current spectrum mode.
与所述接收方法相对应地, 本发明还提供了一种数字音频广播系统中 的数字音频信号接收装置, 如图 20所示。 它包括: 定时同步器, 用于对接 收到的信号进行定时同步和捕获; 频偏估计器, 用于对定时同步上的信号 进行频偏估计; 频偏补偿器, 用于将频偏估计器得到的频偏补偿回接收信 号; 物理层帧结构到逻辑层帧结构逆映射器, 用于将物理层帧结构通过映 射变换到逻辑层帧结构上。 OFDM解调器, 用于对同步后的信号通过 FFT 变换, 由时域变换到频域; 信道估计器, 由于通过离散导频对频域信道进 行估计; 信道均衡器, 用于根据信道估计器得到的信道参数对接收到的频 域信号进行补偿; 导频和数据提取器, 用于根据频谱模式将频域上的业务 描述信息、 系统信息、 离散导频以及业务数据子载波分别提取出来; 解子 载波交织器, 用于将业务数据子载波解交织映射; 星座映射逆变换器, 用 于将频域信道均衡后的业务描述信息、 系统信息以及业务数据子载波上携 带的星座映射符号映射到比特流; 解比特交织器, 用于将星座映射逆变换 后的业务描述信息和系统信息比特流进行解交织映射; 译码器, 将星座映 射逆变换后的业务数据比特流、 解比特交织后的业务描述信息以及系统信 息进行译码; 系统信息解析器, 用于将译码后的系统信息解析出来; 解扰 器, 将译码后的业务数据流以及业务描述信息进行解扰。 Corresponding to the receiving method, the present invention also provides a digital audio signal receiving apparatus in a digital audio broadcasting system, as shown in FIG. The method includes: a timing synchronizer for timing synchronization and acquisition of the received signal; a frequency offset estimator for performing frequency offset estimation on the signal on the timing synchronization; and a frequency offset compensator for using the frequency offset estimator The obtained frequency offset compensation back to the receiving letter No.; physical layer frame structure to logical layer frame structure inverse mapper, used to transform the physical layer frame structure into a logical layer frame structure by mapping. An OFDM demodulator for performing FFT transform on the synchronized signal by time domain transform to the frequency domain; a channel estimator for estimating the frequency domain channel by the discrete pilot; and a channel equalizer for the channel estimator The obtained channel parameter compensates the received frequency domain signal; the pilot and data extractor is configured to separately extract the service description information, the system information, the scattered pilot, and the service data subcarrier in the frequency domain according to the spectrum mode; Decomposing a subcarrier interleaver for deinterleaving a service data subcarrier; a constellation mapping inverse transformer for mapping service description information, system information, and constellation mapping symbols carried on a service data subcarrier a bit stream; a deciphering interleaver, configured to deinterleave the service description information inversely transformed by the constellation mapping and the system information bit stream; the decoder, the bit stream of the service data inversely transformed by the constellation mapping, and the bit interleaving After the service description information and system information are decoded; the system information parser is used to decode System information parsed; descrambler, the service data stream and service description information decoded descrambling.
尽管本实施例中所述物理层帧结构到逻辑层帧结构逆映射器的位置在 同步之后, 但不限于在 FFT之前, 本领域的技术人员应该知道它可以放置 在解交织前的任意位置。  Although the position of the physical layer frame structure to the logical layer frame structure inverse mapper in the present embodiment is after synchronization, it is not limited to those before the FFT, and those skilled in the art should know that it can be placed at any position before deinterleaving.
所述接收装置还可以包括频点及滤波器设置模块, 用于根据系统信息 解析器解析出的系统信息中所包含的当前子带标称频点信息及当前数字音 频广播信号所采用的频谱模式索引信息, 调整接收机前端频点设置, 完成 当前数字音频广播信号频谱模式下的频率中心点同步。  The receiving device may further include a frequency point and filter setting module, configured to use the current subband nominal frequency point information included in the system information parsed by the system information parser and the spectrum mode used by the current digital audio broadcast signal. Index information, adjust the receiver front-end frequency point setting, and complete the frequency center point synchronization in the current digital audio broadcast signal spectrum mode.
本发明在 FM频段上采用了先进的编码和调制方式, 保证音频数据的 高效可靠传输; 同时采用多种码率和调制组合方式, 具有高度灵活性, 可 适应 (~kbps ) 到高速 (~Mbps)的范围和可扩展性; 并且根据现有 FM频段 频谱特性, 设计了灵活的频谱模式, 既不影响现有模拟调频广播信号, 同 时又具有频谱可扩展性。 本发明具有灵活的系统传输参数配置, 可应用于 单频网与多频网模式。  The invention adopts advanced coding and modulation mode in the FM frequency band to ensure efficient and reliable transmission of audio data; and adopts multiple code rates and modulation combinations, and has high flexibility, adaptable (~kbps) to high speed (~Mbps) Scope and scalability; and based on the spectrum characteristics of the existing FM band, a flexible spectrum mode is designed, which does not affect the existing analog FM broadcast signal, but also has spectrum scalability. The invention has flexible system transmission parameter configuration and can be applied to single frequency network and multi frequency network mode.
此外, 根据本发明进一步的实施例支持多频点协同工作, 能够提高频 谱利用效率, 同时改善衰落信道下传输特性。  In addition, according to a further embodiment of the present invention, multi-frequency coordinated operation is supported, which can improve the spectrum utilization efficiency while improving the transmission characteristics under the fading channel.
本发明的另一实施例提供灵活的帧结构, 可实现低功耗接收, 实现可 控的终端成本和功耗。  Another embodiment of the present invention provides a flexible frame structure that enables low power reception and achieves controllable terminal cost and power consumption.
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部 或部分步骤是可以通过程序来指令相关的硬件完成, 所述的程序可以存储 于一种计算机可读存储介质中, 该程序在执行时, 包括方法实施例的步骤 之一或其组合。  One of ordinary skill in the art can understand that all or part of the steps carried by the method of implementing the above embodiments can be completed by a program to instruct related hardware, and the program can be stored in a computer readable storage medium. When executed, one or a combination of the steps of the method embodiments is included.
此外, 在本发明各个实施例中的各功能单元可以集成在一个处理模块 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在 一个模块中。 上述集成的模块既可以采用硬件的形式实现, 也可以采用软 件功能模块的形式实现。 所述集成的模块如果以软件功能模块的形式实现 并作为独立的产品销售或使用时, 也可以存储在一个计算机可读取存储介 质中。 上述提到的存储介质可以是只读存储器, 磁盘或光盘等。 Furthermore, each functional unit in various embodiments of the present invention may be integrated in one processing module In addition, each unit may exist physically separately, or two or more units may be integrated into one module. The above integrated modules can be implemented in the form of hardware or in the form of software functional modules. The integrated modules, if implemented in the form of software functional modules and sold or used as separate products, may also be stored in a computer readable storage medium. The above-mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的 普通技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进 和润饰, 这些改进和润饰也应视为本发明的保护范围。  The above description is only a preferred embodiment of the present invention, and it should be noted that those skilled in the art can also make several improvements and retouchings without departing from the principles of the present invention. It should be considered as the scope of protection of the present invention.

Claims

权 利 要 求 Rights request
1、一种数字音频广播系统中的数字音频信号发送方法, 包括如下步骤: A method for transmitting a digital audio signal in a digital audio broadcasting system, comprising the steps of:
51、 发射端将来自上层的业务数据转换成比特流后, 进行扰码; 然后 对扰码后的业务数据比特流进行 LDPC编码; 对 LDPC编码后的业务数据 比特流进行星座映射; 对星座映射后承载业务数据的子载波, 以子载波为 单元, 进行子载波交织, 构成交织后的业务数据子载波; 51. The transmitting end converts the service data from the upper layer into a bit stream, and performs scrambling; then performs LDPC encoding on the scrambled service data bit stream; performs constellation mapping on the LDPC encoded service data bit stream; After the subcarriers carrying the service data, subcarriers are interleaved to form the interleaved service data subcarriers;
52、 发射端将来自上层的业务描述信息转换成比特流后, 进行扰码; 然后对扰码后的业务描述信息比特流进行卷积编码; 对卷积编码后的业务 描述信息比特流进行比特交织; 对比特交织后的业务描述信息比特流进行 星座映射, 构成业务描述信息子载波;  52. The transmitting end converts the service description information from the upper layer into a bit stream, and performs scrambling; then performs convolutional coding on the scrambled service description information bit stream; and performs bit-biting on the convolution-coded service description information bit stream. Interleaving; performing constellation mapping on the bit-interleaved service description information bit stream to form a service description information sub-carrier;
53、 发射端将物理层系统信息按照特定格式, 组成系统信息比特流, 然后进行卷积编码; 对卷积编码后的系统信息比特流进行比特交织; 对比 特交织后的系统信息比特流进行星座映射, 构成系统信息子载波;  53. The transmitting end groups the physical layer system information into a system information bit stream according to a specific format, and then performs convolutional coding; performs bit interleaving on the convolutionally encoded system information bit stream; performs constellation on the bit interleaved system information bit stream Mapping, forming system information subcarriers;
54、 频域生成离散导频, 然后和上述交织后的包含业务数据子载波、 星座映射后的业务描述信息子载波的数据子载波以及包含系统信息子载波 的连续导频子载波复接在一起, 映射到对应的频谱模式上, 组成 OFDM频 域符号;  54. Generate a discrete pilot in the frequency domain, and then multiplex the interleaved data subcarrier including the service data subcarrier, the constellation mapped service description information subcarrier, and the contiguous pilot subcarrier including the system information subcarrier. Mapping to a corresponding spectral pattern to form an OFDM frequency domain symbol;
55、 通过 IFFT变换器将上述频域 OFDM符号变换到时域, 同时复接 上循环前缀, 产生 OFDM时域符号;  55. The frequency domain OFDM symbol is transformed into a time domain by using an IFFT transformer, and the cyclic prefix is multiplexed to generate an OFDM time domain symbol;
56、 将上述多个 OFDM时域符号复接在一起, 并且插入信标, 连接成 逻辑层帧结构;  56. multiplex the foregoing multiple OFDM time domain symbols together, and insert a beacon, and connect to a logical layer frame structure;
57、 将所述逻辑层帧结构进行映射和组帧形成物理层帧结构;  57. Mapping and framing the logical layer frame structure to form a physical layer frame structure;
58、 将所述物理层帧结构经过基带到射频变换予以发射。  58. The physical layer frame structure is transmitted by baseband to radio frequency conversion.
2、 如权利要求 1所述的方法, 其中, 所述频谱模式包括 A类频谱模式 和 B 类频谱模式; 其中 A 类频谱模式包含 8 个子带, 子带标称频点为 士 ( * 100 + 50)W¾ = 0,1,2,3 ; B 类频谱模式包含 7 个子带, 子带标称频点为 ± * 10( fcJ = 0,1,2,3 , 所述一个子带带宽为 100KHz。  2. The method according to claim 1, wherein the spectral mode comprises a class A spectral mode and a class B spectral mode; wherein the class A spectral mode comprises 8 subbands, and the subband nominal frequency is a ± (100 +) 50) W3⁄4 = 0,1,2,3 ; Class B spectrum mode consists of 7 subbands, the subband nominal frequency is ± * 10 ( fcJ = 0,1,2,3 , the subband bandwidth is 100KHz .
3、 根据权利要求 2所述的方法, 其中所述频谱模式包括 39个, 频谱 模式索引 1-39与相应的频谱模式所占用子带的对应关系如下所示:  3. The method according to claim 2, wherein the spectrum mode comprises 39, and the correspondence between the spectrum mode index 1-39 and the subband occupied by the corresponding spectrum mode is as follows:
01 B4  01 B4
02 A4A5  02 A4A5
03 B3B4B5  03 B3B4B5
04 A3A4A5A6  04 A3A4A5A6
05 B2B3B4B5B6  05 B2B3B4B5B6
06 A2A3A4A5A6A7 07 B1B2B3B4B5B6B7 06 A2A3A4A5A6A7 07 B1B2B3B4B5B6B7
08 A1A2A3A4A5A6A7A8  08 A1A2A3A4A5A6A7A8
09 A3A4A5A6  09 A3A4A5A6
10 B2B3B4B5B6  10 B2B3B4B5B6
11 A3A4A5A6A7  11 A3A4A5A6A7
12 A2A3A4A5A6  12 A2A3A4A5A6
13 A2A3A4A5A6A7  13 A2A3A4A5A6A7
14 B1B2B3B4B5B6  14 B1B2B3B4B5B6
15 B2B3B4B5B6B7  15 B2B3B4B5B6B7
16 A3A4A5A6A7A8  16 A3A4A5A6A7A8
17 A1A2A3A4A5A6  17 A1A2A3A4A5A6
18 B1B2B3B4B5B6B7  18 B1B2B3B4B5B6B7
19 A2A3A4A5A6A7A8  19 A2A3A4A5A6A7A8
20 A1A2A3A4A5A6A7  20 A1A2A3A4A5A6A7
21 A1A2A3A4A5A6A7A8  21 A1A2A3A4A5A6A7A8
22 B3B4B5  22 B3B4B5
23 A3A4A5A6  23 A3A4A5A6
24 B2B3B4B5  24 B2B3B4B5
25 B3B4B5B6  25 B3B4B5B6
26 B2B3B4B5B6  26 B2B3B4B5B6
27 A2A3A4A5A6  27 A2A3A4A5A6
28 A3A4A5A6A7  28 A3A4A5A6A7
29 B1B2B3B4B5  29 B1B2B3B4B5
30 B3B4B5B6B7  30 B3B4B5B6B7
31 A2A3A4A5A6A7  31 A2A3A4A5A6A7
32 B2B3B4B5B6B7  32 B2B3B4B5B6B7
33 B1B2B3B4B5B6  33 B1B2B3B4B5B6
34 A1A2A3A4A5A6  34 A1A2A3A4A5A6
35 A3A4A5A6A7A8  35 A3A4A5A6A7A8
36 A2A3A4A5A6A7A8  36 A2A3A4A5A6A7A8
37 A1A2A3A4A5A6A7  37 A1A2A3A4A5A6A7
38 B1B2B3B4B5B6B7  38 B1B2B3B4B5B6B7
39 A1A2A3A4A5A6A7A8  39 A1A2A3A4A5A6A7A8
其中频谱模式索引 1-8为纯数字模式, 频谱模式索引 9-21为立体声调 频同播模式, 频谱模式索引 22-39 为单声道调频同播模式; 频谱模式索引 1,3,5,7,10,14,15,18,22,24,25,26,29,30,32,33,38为 B类频谱模式,其余索引为The spectrum mode index 1-8 is a pure digital mode, the spectrum mode index 9-21 is a stereo FM simulating mode, and the spectrum mode index 22-39 is a mono frequency simulating mode; a spectrum mode index 1,3,5,7,10,14,15,18,22,24,25,26,29,30,32,33,38 are class B spectrum patterns, and the rest of the index is
A类频谱模式。 Class A spectrum mode.
4、 根据权利要求 1所述的方法, 其中将所述逻辑层帧结构进行映射和 组帧形成物理层帧结构的步骤为:  4. The method according to claim 1, wherein the step of mapping and framing the logical layer frame structure to form a physical layer frame structure is:
子帧分配方式 1 : 按 1个所述逻辑帧内的 4个逻辑子帧的排列顺序, 将所述 4个逻辑子帧依次映射为 1个物理帧中的 4个物理子帧, 4个所述 物理帧组成 1个物理超帧; 或者  Sub-frame allocation mode 1: The four logical sub-frames are sequentially mapped into four physical sub-frames of one physical frame in the order of four logical sub-frames in one logical frame, and four The physical frame constitutes one physical superframe; or
子帧分配方式 2: 以 2个连续的所述逻辑帧内的 8个连续的逻辑子帧 为组, 将该组内的逻辑子帧相互交错, 并将该组相互交错的逻辑子帧映射 为 2个连续的物理帧, 4个所述物理帧组成 1个物理超帧; 或者  Subframe allocation mode 2: The two consecutive logical sub-frames in the two consecutive logical frames are grouped, the logical sub-frames in the group are interleaved, and the set of interleaved logical sub-frames are mapped to 2 consecutive physical frames, 4 of which are composed of 1 physical superframe; or
子帧分配方式 3: 以 4个连续的所述逻辑帧内的 16个连续的逻辑子帧 为组,将该组中每个逻辑帧中的第 i个逻辑子帧依次映射到第 i个物理信号 帧, 其中 i为 1、 2、 3或 4, 形成 4个连续的物理帧, 4个所述物理帧组成 1个物理超帧。  Subframe allocation mode 3: The ith logical sub-frame in each logical frame of the group is sequentially mapped to the i-th physical group by using four consecutive logical sub-frames in the four consecutive logical frames. A signal frame, where i is 1, 2, 3 or 4, forming 4 consecutive physical frames, and 4 of the physical frames constitute 1 physical superframe.
5、 一种数字音频广播系统中的数字音频信号发送装置, 包括: 扰码器,用于对上层业务数据和业务描述信息进行比特流转换和扰码; 系统信息构造器, 用于将物理层系统信息按照特定格式, 组成系统信 息比特流;  A digital audio signal transmitting apparatus in a digital audio broadcasting system, comprising: a scrambler for performing bit stream conversion and scrambling on upper layer service data and service description information; and a system information constructor for using the physical layer The system information forms a system information bit stream according to a specific format;
编码器, 用于对扰码器输出的上层业务数据比特流、 扰码器输出的业 务描述信息比特流以及系统信息比特流进行编码;  An encoder, configured to encode an upper layer service data bit stream output by the scrambler, a service description information bit stream output by the scrambler, and a system information bit stream;
比特交织器, 用于对编码后的业务描述信息比特流以及系统信息比特 流进行比特交织;  a bit interleaver, configured to perform bit interleaving on the encoded service description information bit stream and the system information bit stream;
星座映射器, 用于对比特交织后的业务描述信息、 系统信息, 以及编 码后的业务数据进行星座映射;  a constellation mapper, configured to perform constellation mapping on bit-interleaved service description information, system information, and encoded service data;
子载波交织器, 用于对星座映射后的业务数据进行子载波上的交织; 频域符号生成器, 用于将离散导频、 星座映射后的业务描述信息和系 统信息、 以及子载波交织后的业务数据复接在一起, 映射到对应的频谱模 式上, 组成 OFDM频域符号;  a subcarrier interleaver, configured to perform interleaving on the subcarriers of the constellation-mapped service data; a frequency domain symbol generator, configured to interleave the discrete pilot, constellation mapped service description information, system information, and subcarriers The service data is multiplexed together and mapped to corresponding spectrum modes to form OFDM frequency domain symbols;
OFDM调制器, 用于将上述 OFDM频域符号经过 IFFT变换到时域; OFDM时域符号生成器,用于将 OFDM调制器输出与循环前缀复接在一 起构成 OFDM时域符号;  An OFDM modulator, configured to perform an IFFT transform on the OFDM frequency domain symbol to the time domain; and an OFDM time domain symbol generator for multiplexing the OFDM modulator output with the cyclic prefix to form an OFDM time domain symbol;
时域逻辑子帧组成器, 用于将 OFDM时域符号与信标复接在一起, 构 成物理层帧结构;  a time domain logic sub-frame multiplexer, configured to multiplex the OFDM time domain symbols with the beacon to form a physical layer frame structure;
映射和组帧模块, 用于将所述逻辑层帧结构进行映射和组帧形成物理 层帧结构; 发射器, 用于将所述物理层帧结构经过基带到射频变换予以发射。a mapping and framing module, configured to map and frame the logical layer frame structure to form a physical layer frame structure; And a transmitter, configured to transmit the physical layer frame structure by baseband to radio frequency conversion.
6、根据权利要求 5所述的装置,其中所述频谱模式包括 A类频谱模式 和 B 类频谱模式; 其中 A 类频谱模式包含 8 个子带, 子带标称频点为 士 ( *100 + 50) ^· = 0,1,2,3 ; Β 类频谱模式包含 7 个子带子带标称频点为 賺 = 0,1,2,3 , 所述一个子带带宽为 100ΚΗζ。 6. Apparatus according to claim 5 wherein said spectral pattern comprises a Class A spectral mode and a Class B spectral mode; wherein the Class A spectral mode comprises 8 subbands and the subband nominal frequency is ± (100 + 5) 0) ^· = 0,1, 2 , 3 ; Β The spectral mode consists of 7 subbands with nominal frequency points of earned = 0, 1, 2, 3, and the bandwidth of the one subband is 100 ΚΗζ.
7、 根据权利要求 6所述的装置, 其中所述频谱模式包括 39个, 频谱 模式索引 1-39与相应的频谱模式所占用子带的对应关系如下所示:  7. The apparatus according to claim 6, wherein the spectrum mode comprises 39, and the correspondence between the spectrum mode index 1-39 and the subband occupied by the corresponding spectrum mode is as follows:
01 Β4  01 Β 4
02 Α4Α5  02 Α4Α5
03 Β3Β4Β5  03 Β3Β4Β5
04 Α3Α4Α5Α6  04 Α3Α4Α5Α6
05 Β2Β3Β4Β5Β6  05 Β2Β3Β4Β5Β6
06 Α2Α3Α4Α5Α6Α7  06 Α2Α3Α4Α5Α6Α7
07 B1B2B3B4B5B6B7  07 B1B2B3B4B5B6B7
08 A1A2A3A4A5A6A7A8  08 A1A2A3A4A5A6A7A8
09 Α3Α4Α5Α6  09 Α3Α4Α5Α6
10 Β2Β3Β4Β5Β6  10 Β2Β3Β4Β5Β6
11 Α3Α4Α5Α6Α7  11 Α3Α4Α5Α6Α7
12 Α2Α3Α4Α5Α6  12 Α2Α3Α4Α5Α6
13 Α2Α3Α4Α5Α6Α7  13 Α2Α3Α4Α5Α6Α7
14 B1B2B3B4B5B6  14 B1B2B3B4B5B6
15 Β2Β3Β4Β5Β6Β7  15 Β2Β3Β4Β5Β6Β7
16 Α3Α4Α5Α6Α7Α8  16 Α3Α4Α5Α6Α7Α8
17 A1A2A3A4A5A6  17 A1A2A3A4A5A6
18 B1B2B3B4B5B6B7  18 B1B2B3B4B5B6B7
19 Α2Α3Α4Α5Α6Α7Α8  19 Α2Α3Α4Α5Α6Α7Α8
20 A1A2A3A4A5A6A7  20 A1A2A3A4A5A6A7
21 A1A2A3A4A5A6A7A8  21 A1A2A3A4A5A6A7A8
22 Β3Β4Β5  22 Β3Β4Β5
23 Α3Α4Α5Α6  23 Α3Α4Α5Α6
24 Β2Β3Β4Β5  24 Β2Β3Β4Β5
25 Β3Β4Β5Β6  25 Β3Β4Β5Β6
26 Β2Β3Β4Β5Β6  26 Β2Β3Β4Β5Β6
27 Α2Α3Α4Α5Α6  27 Α2Α3Α4Α5Α6
28 Α3Α4Α5Α6Α7 29 B1B2B3B4B5 28 Α3Α4Α5Α6Α7 29 B1B2B3B4B5
30 B3B4B5B6B7  30 B3B4B5B6B7
31 A2A3A4A5A6A7  31 A2A3A4A5A6A7
32 B2B3B4B5B6B7  32 B2B3B4B5B6B7
33 B1B2B3B4B5B6  33 B1B2B3B4B5B6
34 A1A2A3A4A5A6  34 A1A2A3A4A5A6
35 A3A4A5A6A7A8  35 A3A4A5A6A7A8
36 A2A3A4A5A6A7A8  36 A2A3A4A5A6A7A8
37 A1A2A3A4A5A6A7  37 A1A2A3A4A5A6A7
38 B1B2B3B4B5B6B7  38 B1B2B3B4B5B6B7
39 A1A2A3A4A5A6A7A8  39 A1A2A3A4A5A6A7A8
其中频谱模式索引 1-8为纯数字模式, 频谱模式索引 9-21为立体声调 频同播模式, 频谱模式索引 22-39 为单声道调频同播模式; 频谱模式索引 1,3,5,7,10,14,15,18,22,24,25,26,29,30,32,33,38为 B类频谱模式,其余索引为 A类频谱模式。  The spectrum mode index 1-8 is a pure digital mode, the spectrum mode index 9-21 is a stereo frequency simulcast mode, and the spectrum mode index 22-39 is a mono frequency simulcast mode; the spectrum mode index 1, 3, 5, 7 , 10, 14, 15, 18, 22, 24, 25, 26, 29, 30, 32, 33, 38 are Class B spectral modes, and the remaining indexes are Class A spectral modes.
8、 根据权利要求 5所述的装置, 其中所述映射和组帧模块将所述逻辑 层帧结构进行映射和组帧形成物理层帧具体为:  8. The apparatus according to claim 5, wherein the mapping and framing module maps and groups the logical layer frame structure to form a physical layer frame, specifically:
子帧分配方式 1 : 按 1个所述逻辑帧内的 4个逻辑子帧的排列顺序, 将所述 4个逻辑子帧依次映射为 1个物理帧中的 4个物理子帧, 4个所述 物理帧组成 1个物理超帧; 或者  Sub-frame allocation mode 1: The four logical sub-frames are sequentially mapped into four physical sub-frames of one physical frame in the order of four logical sub-frames in one logical frame, and four The physical frame constitutes one physical superframe; or
子帧分配方式 2: 以 2个连续的所述逻辑帧内的 8个连续的逻辑子帧 为组, 将该组内的逻辑子帧相互交错, 并将该组相互交错的逻辑子帧映射 为 2个连续的物理帧, 4个所述物理帧组成 1个物理超帧; 或者  Subframe allocation mode 2: The two consecutive logical sub-frames in the two consecutive logical frames are grouped, the logical sub-frames in the group are interleaved, and the set of interleaved logical sub-frames are mapped to 2 consecutive physical frames, 4 of which are composed of 1 physical superframe; or
子帧分配方式 3: 以 4个连续的所述逻辑帧内的 16个连续的逻辑子帧 为组,将该组中每个逻辑帧中的第 i个逻辑子帧依次映射到第 i个物理信号 帧, 其中 i为 1、 2、 3或 4。  Subframe allocation mode 3: The ith logical sub-frame in each logical frame of the group is sequentially mapped to the i-th physical group by using four consecutive logical sub-frames in the four consecutive logical frames. Signal frame, where i is 1, 2, 3 or 4.
9、 一种数字音频广播系统中的数字音频信号接收方法, 包括如下步骤: Sl、 将来自射频的信号经过变换到基带, 对基带信号进行捕获, 进行定时 同步和载波同步;  A digital audio signal receiving method in a digital audio broadcasting system, comprising the steps of: Sl, transforming a signal from a radio frequency into a baseband, capturing a baseband signal, performing timing synchronization and carrier synchronization;
S2、 对同步后的信号, 进行物理层帧结构帧到逻辑层帧结构映射; S2: performing physical layer frame structure frame to logical layer frame structure mapping on the synchronized signal;
53、 对逻辑层帧结构进行频域变换、 信道估计和均衡; 53. Perform frequency domain transform, channel estimation, and equalization on the logical layer frame structure;
54、 通过解星座映射、 解比特交织和卷积译码, 将系统信息提取出来; 通过解星座映射、 解比特交织、 卷积译码以及解扰, 将业务描述信息提取 出来;  54. Extracting system information by performing constellation mapping, de-interleaving, and convolutional decoding; extracting service description information by performing constellation mapping, de-interleaving, convolutional decoding, and descrambling;
通过解子载波交织、 解星座映射、 LDPC译码以及解扰后, 将上层业务数 据提取出来; After decomposing subcarrier interleaving, de-constellation mapping, LDPC decoding, and descrambling, the number of upper layers of services is determined. Extracted
S5、 将业务描述信息以及业务数据发送给上层。  S5. Send the service description information and the service data to the upper layer.
10、 一种数字音频广播系统中的数字音频信号接收装置, 包括: 定时同步器, 用于对接收到的信号进行定时同步和捕获;  10. A digital audio signal receiving apparatus in a digital audio broadcasting system, comprising: a timing synchronizer configured to perform timing synchronization and acquisition on a received signal;
频偏估计器, 用于对定时同步上的信号进行频偏估计;  a frequency offset estimator for performing frequency offset estimation on the signal on the timing synchronization;
频偏补偿器, 用于将频偏估计器得到的频偏补偿回接收信号; 物理层帧结构到逻辑层帧结构逆映射器, 用于将物理层帧结构通过映 射变换到逻辑层帧结构上。  a frequency offset compensator for compensating the frequency offset obtained by the frequency offset estimator back to the received signal; a physical layer frame structure to a logical layer frame structure inverse mapper, configured to transform the physical layer frame structure into a logical layer frame structure by mapping .
OFDM解调器, 用于对同步后的信号通过 FFT变换, 由时域变换到频 域;  An OFDM demodulator, configured to perform FFT transformation on the synchronized signal, and transform from the time domain to the frequency domain;
信道估计器, 由于通过离散导频对频域信道进行估计;  a channel estimator, since the frequency domain channel is estimated by discrete pilots;
信道均衡器, 用于根据信道估计器得到的信道参数对接收到的频域信 号进行补偿;  a channel equalizer, configured to compensate the received frequency domain signal according to a channel parameter obtained by the channel estimator;
导频和数据提取器, 用于根据频谱模式将频域上的业务描述信息、 系 统信息、 离散导频以及业务数据子载波分别提取出来;  a pilot and a data extractor, configured to respectively extract service description information, system information, discrete pilot, and service data subcarriers in a frequency domain according to a spectrum mode;
解子载波交织器, 用于将业务数据子载波解交织映射;  Decomposing a subcarrier interleaver for deinterleaving a service data subcarrier;
星座映射逆变换器, 用于将频域信道均衡后的业务描述信息、 系统信 息以及业务数据子载波上携带的星座映射符号映射到比特流;  a constellation mapping inverse transformer, configured to map the service description information of the frequency domain channel equalization, the system information, and the constellation mapping symbols carried on the service data subcarriers to the bit stream;
解比特交织器, 用于将星座映射逆变换后的业务描述信息和系统信息 比特流进行解交织映射;  a bit interleaver for deinterleaving the service description information inversely transformed by the constellation mapping and the system information bit stream;
译码器, 将星座映射逆变换后的业务数据比特流、 解比特交织后的业 务描述信息以及系统信息进行译码;  a decoder, which decodes the service data bit stream inversely transformed by the constellation mapping, the service description information after deinterleaving, and system information;
系统信息解析器, 用于将译码后的系统信息解析出来;  a system information parser, configured to parse the decoded system information;
解扰器, 将译码后的业务数据流以及业务描述信息进行解扰。  The descrambler descrambles the decoded service data stream and the service description information.
PCT/CN2012/080168 2011-08-17 2012-08-15 Method and device for transmitting and receiving digital audio signal in digital audio broadcasting system WO2013023594A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110238058.6 2011-08-17
CN201110238058 2011-08-17
CN201210181873.8 2012-06-04
CN201210181873.8A CN102694764B (en) 2011-08-17 2012-06-04 Digital audio and video signals method of sending and receiving and device in digital audio broadcast system

Publications (1)

Publication Number Publication Date
WO2013023594A1 true WO2013023594A1 (en) 2013-02-21

Family

ID=46860051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080168 WO2013023594A1 (en) 2011-08-17 2012-08-15 Method and device for transmitting and receiving digital audio signal in digital audio broadcasting system

Country Status (2)

Country Link
CN (1) CN102694764B (en)
WO (1) WO2013023594A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104539568A (en) * 2014-12-30 2015-04-22 成都凯腾四方数字广播电视设备有限公司 CDR modulation module and subframe distribution module thereof
CN104539391A (en) * 2014-12-30 2015-04-22 成都凯腾四方数字广播电视设备有限公司 Subcarrier interleaving method of CDR modulation model
CN109302191A (en) * 2017-12-12 2019-02-01 上海创远仪器技术股份有限公司 A kind of multiport 5G communication signal emitting platform and method
CN113015181A (en) * 2019-12-20 2021-06-22 北京华信泰科技股份有限公司 Service transmission method, device and related equipment

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102957651B (en) * 2011-08-17 2017-03-15 北京泰美世纪科技有限公司 A kind of digital audio broadcasting signal Frequency Synchronization and method of reseptance and its device
CN103036664B (en) * 2012-12-12 2016-05-25 中国国际广播电台 The multiplexing method of passage in a kind of digital audio broadcasting
CN103095620B (en) * 2013-01-21 2016-05-18 国家广播电影电视总局广播科学研究院 Sending, receiving method and the device of frequency modulation frequency band digital broadcast singal
CN103179077B (en) * 2013-04-10 2016-05-11 安徽华东光电技术研究所 A kind of band signal processor and processing method thereof
CN104065454B (en) * 2014-06-20 2017-05-24 江苏中兴微通信息科技有限公司 Dynamic symbol interweaving and de-interleaving method and device based on spatial data flow numbers
CN105450573B (en) * 2014-09-24 2018-10-30 清华大学 Frequency deviation detection method and device
EP3206352B1 (en) 2014-10-12 2019-08-07 LG Electronics Inc. -1- Broadcast signal transmission apparatus, broadcast signal reception apparatus, broadcast signal transmission method, and broadcast signal reception method
WO2016108372A1 (en) * 2014-12-29 2016-07-07 엘지전자 주식회사 Broadcasting signal transmission device, broadcasting signal reception device, broadcasting signal transmission method, and broadcasting signal reception method
CN107113088B (en) * 2015-02-04 2020-10-20 Lg 电子株式会社 Apparatus and method for transceiving broadcast signals
CN107786304A (en) * 2016-08-29 2018-03-09 国家新闻出版广电总局广播科学研究院 A kind of amplitude modulation frequency band digital audio broadcast signal generation method and system
CA3043444A1 (en) 2016-10-19 2018-04-26 Audible Reality Inc. System for and method of generating an audio image
RU2754575C2 (en) * 2016-12-27 2021-09-03 Шарп Кабусики Кайся Terminal device, base station device and communication method
CN109474895B (en) * 2017-09-07 2021-08-13 国广融合(北京)传媒科技发展有限公司 Data transmission method and apparatus for digital broadcasting system
US11606663B2 (en) 2018-08-29 2023-03-14 Audible Reality Inc. System for and method of controlling a three-dimensional audio engine
CN113765837B (en) * 2021-11-09 2022-02-11 湖南省时空基准科技有限公司 Modulation method, system, equipment and storage medium for narrow-band data broadcast
CN114095324B (en) * 2021-11-09 2023-09-12 湖南省时空基准科技有限公司 Framing method and apparatus for narrowband data broadcasting
CN114095125A (en) * 2021-11-09 2022-02-25 湖南省时空基准科技有限公司 Channel coding method and equipment for narrow-band data broadcasting
CN115396271B (en) * 2022-08-02 2023-12-08 北京睿信丰科技有限公司 Method and equipment for transmitting and receiving single-carrier double-antenna signal under multipath channel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004030224A1 (en) * 2002-09-27 2004-04-08 Ibiquity Digital Corporation Method and apparatus for interleaving signal bits in a digital audio broadcasting system
CN1960358A (en) * 2006-10-20 2007-05-09 北京泰美世纪科技有限公司 Digital information transmission method of a kind of multicarrier digital mobile multimedia broadcast system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7190732B2 (en) * 2000-04-06 2007-03-13 Lucent Technologies Inc. Multilevel coding with unequal error protection and time diversity for bandwidth efficient transmission
CN1228974C (en) * 2003-01-09 2005-11-23 北京泰美世纪科技有限公司 Transferring ssytem of signal communication in digital multimedia broadcast system and mode
CN100596129C (en) * 2005-10-13 2010-03-24 北京泰美世纪科技有限公司 Multi-carrier digital satellite broadcasting system and digital information transmission method thereof
CN101018223B (en) * 2006-10-22 2011-03-23 北京创毅视讯科技有限公司 A transmission system and method of the mobile digital multimedia broadcast signals
CN100579102C (en) * 2006-11-08 2010-01-06 北京新岸线移动多媒体技术有限公司 Method for applying layer modulation technique in T-MMB system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004030224A1 (en) * 2002-09-27 2004-04-08 Ibiquity Digital Corporation Method and apparatus for interleaving signal bits in a digital audio broadcasting system
CN1960358A (en) * 2006-10-20 2007-05-09 北京泰美世纪科技有限公司 Digital information transmission method of a kind of multicarrier digital mobile multimedia broadcast system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104539568A (en) * 2014-12-30 2015-04-22 成都凯腾四方数字广播电视设备有限公司 CDR modulation module and subframe distribution module thereof
CN104539391A (en) * 2014-12-30 2015-04-22 成都凯腾四方数字广播电视设备有限公司 Subcarrier interleaving method of CDR modulation model
CN109302191A (en) * 2017-12-12 2019-02-01 上海创远仪器技术股份有限公司 A kind of multiport 5G communication signal emitting platform and method
CN113015181A (en) * 2019-12-20 2021-06-22 北京华信泰科技股份有限公司 Service transmission method, device and related equipment
CN113015181B (en) * 2019-12-20 2022-07-29 北京华信泰科技股份有限公司 Service transmission method, device and related equipment

Also Published As

Publication number Publication date
CN102694764B (en) 2017-03-15
CN102694764A (en) 2012-09-26

Similar Documents

Publication Publication Date Title
WO2013023594A1 (en) Method and device for transmitting and receiving digital audio signal in digital audio broadcasting system
KR101964653B1 (en) Apparatus for transmitting broaodcast signals, apparatus for receiving broadcast signals, method for transmitting broaodcast signals and method for receiving broadcast signals
KR101899830B1 (en) Broadcast signal transmission apparatus, broadcast signal reception apparatus, broadcast signal transmission method, and broadcast signal reception method
CN111510245B (en) Broadcast signal transmitting apparatus, broadcast signal receiving apparatus, broadcast signal transmitting method, and broadcast signal receiving method
CN112217760B (en) Apparatus and method for transmitting and receiving broadcast signal
CN105684451B (en) Send the device and method of broadcast singal
KR101830744B1 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
CN105794166B (en) Method and apparatus for transmitting and receiving broadcast signal
CN105794215B (en) Apparatus and method for transmitting and receiving broadcast signal
CN107005522B (en) Broadcast signal transmitting and receiving apparatus and method
KR101979854B1 (en) Broadcast signal transmitting and receiving device and method
CN112468195B (en) Broadcast signal transmitting apparatus and method, and broadcast signal receiving apparatus and method
JP2016541186A (en) Broadcast signal transmitting apparatus, broadcast signal receiving apparatus, broadcast signal transmitting method, and broadcast signal receiving method
CN106464433B (en) Apparatus and method for transceiving broadcast signals
CN107251589A (en) Broadcast singal dispensing device, broadcast receiver, broadcast singal sending method and broadcast signal received method
TWI678075B (en) Apparatus and method for sending and receiving broadcast signals
CN111934818A (en) Method and apparatus for receiving broadcast signal and method and apparatus for transmitting broadcast signal
KR20170037617A (en) Method and device for transmitting and receiving broadcast signal
WO2013023600A1 (en) Method and device for transmitting and receiving service description information in digital audio broadcasting system
CN111277531B (en) Apparatus and method for transmitting and receiving broadcast signal
CN111786925B (en) Broadcast signal transmitting apparatus and method, and broadcast signal receiving apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12823786

Country of ref document: EP

Kind code of ref document: A1