WO2013023592A1 - 一种多频点协同工作的数字音频广播信号的发送、接收方法及其系统 - Google Patents

一种多频点协同工作的数字音频广播信号的发送、接收方法及其系统 Download PDF

Info

Publication number
WO2013023592A1
WO2013023592A1 PCT/CN2012/080162 CN2012080162W WO2013023592A1 WO 2013023592 A1 WO2013023592 A1 WO 2013023592A1 CN 2012080162 W CN2012080162 W CN 2012080162W WO 2013023592 A1 WO2013023592 A1 WO 2013023592A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency point
frequency
working
digital audio
sub
Prior art date
Application number
PCT/CN2012/080162
Other languages
English (en)
French (fr)
Inventor
申红兵
陶涛
雷文
邸娜
高鹏
王伟平
Original Assignee
北京泰美世纪科技有限公司
国家广播电影电视总局广播科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京泰美世纪科技有限公司, 国家广播电影电视总局广播科学研究院 filed Critical 北京泰美世纪科技有限公司
Publication of WO2013023592A1 publication Critical patent/WO2013023592A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/65Arrangements characterised by transmission systems for broadcast
    • H04H20/71Wireless systems
    • H04H20/72Wireless systems of terrestrial networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0093Point-to-multipoint
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands

Definitions

  • the invention relates to a method for transmitting and receiving a digital audio broadcast signal and a system thereof, in particular to a method for transmitting a digital audio broadcast signal with multiple frequency points and a receiving method thereof, and a system thereof, which are applicable to a ground, a satellite, etc.
  • wireless digital broadcasting system The biggest feature of wireless digital broadcasting system is its wide coverage, diverse geographical environment, complex and variable channel characteristics, and serious noise and interference.
  • wireless digital broadcasting systems In order to ensure effective coverage and reliable transmission of signals, wireless digital broadcasting systems must be able to fully adapt to poor transmission channels. characteristic.
  • Signal diversity techniques such as frequency diversity, are used to transmit signals in a frequency band that is much larger than the channel's coherent bandwidth, and are an effective means of overcoming the multipath and frequency selective fading of wireless channels.
  • different wireless systems must perform strict frequency planning for sharing wireless spectrum resources.
  • the new wireless transmission system must also be considered compatible with the original system and frequency planning to ensure the smooth evolution of the new technology. Therefore, when designing a new wireless transmission system, it is often faced with the contradiction between transmission bandwidth requirements and frequency planning compatibility.
  • each digital program is transmitted at a fixed frequency position, due to the limitation of existing frequency planning, for example, in the digital audio broadcasting system, due to the frequency planning of the original analog FM/AM.
  • each digital audio channel can only occupy a narrow bandwidth, FM is ⁇ or 200KHz, and AM is 9KHz or 10KHz.
  • the main drawback of this kind of broadcasting scheme is that due to the spatial propagation characteristics of radio waves and multipath fading, The signal strength (or carrier-to-noise ratio) at different locations in the coverage area varies greatly. Even in the geographical position closer to the transmitting station, the signal quality may be lower than the demodulation threshold due to the frequency selective fading of multipath. .
  • the present invention provides a method and system for transmitting and receiving digital audio broadcast signals with multi-frequency coordinated operation, so as to improve spectrum utilization efficiency and ensure frequency diversity under the premise of being compatible with existing frequency planning constraints.
  • Gain which improves the system's ability to combat multipath fading in wireless transmissions, thereby improving the effective coverage of wireless broadcast systems.
  • the invention provides a method for transmitting a digital audio broadcast signal with multi-frequency coordinated operation, comprising the following steps:
  • Step 1 The transmitting end divides the digital audio broadcast data stream of each digital broadcasting station into a plurality of sub data streams according to a specific length of time;
  • Step 2 Set a specific sequence of working frequency points for each sub-stream of the digital broadcasting station, so that sub-data streams transmitted by different digital broadcasting stations at the same time do not appear at the same working frequency point, for each digital broadcasting
  • the radio station inserts multi-frequency point work information of the next sub-data stream into the sub-data stream sent at the current working frequency point;
  • Step 3 The digital audio broadcast data stream of each digital broadcast station is cyclically modulated and transmitted on its corresponding sequence of working frequency points.
  • the multi-frequency point working information comprises a multi-frequency point cooperative working mode and a multi-frequency point cooperative working frequency point.
  • the digital audio broadcast data stream of each digital broadcast station may be transmitted according to a specific frame structure, the frame structure is a super frame structure, and the super frame includes four physical layer signal frames, and each physical layer signal
  • the frame includes 4 subframes, and each subframe includes 1 beacon and multiple OFDM symbols.
  • Each sub-frame contains system information, and the working frequency of the first sub-frame of the first physical layer signal frame in each superframe in the frame structure is always fixed.
  • the system information includes 1 bit information for indicating the multi-frequency coordinated operation mode indication and 9 bits of information for indicating the next subframe multi-frequency point cooperative working frequency point.
  • a certain frequency hopping interval is set between the multiple subframes to ensure that the transceiver end has sufficient frequency stabilization time during the frequency jump.
  • the invention also provides a method for receiving a digital audio broadcast signal with multi-frequency coordinated operation, comprising the following steps:
  • Step 1 Synchronize the transmission signal timing with the carrier frequency at the receiving end
  • Step 2 extract the multi-frequency point work information of the next sub-data stream from the synchronized signal, and transmit the multi-frequency point work information to the working frequency point configuration module;
  • Step 3 The working frequency point configuration module configures the receiving working mode and the receiving working frequency of the next sub data stream according to the received multi-frequency point working information.
  • the step 2 further comprises: performing channel estimation and equalization on the synchronized signal by frequency domain transform.
  • the sub-data stream includes a sub-frame, where the sub-frame includes system information; extracting multi-frequency point work information from system information of the sub-frame, where the multi-frequency point work information includes multi-frequency point work together Mode and multi-frequency point work together.
  • the present invention also proposes a transmission system for a digital audio broadcast signal in which multi-frequency points work together, including:
  • a working frequency sequence generating module is configured to set a specific working frequency sequence for each digital broadcasting station's sub data stream, so that the sub data streams sent by different digital broadcasting stations at the same time do not appear at the same working frequency point.
  • a data scrambling module for scrambling a data stream of each digital broadcast station;
  • a channel interleaving and encoding module for channel interleaving and encoding the scrambled data stream, and enabling a code block to span in length Multiple working frequencies;
  • a sending end timing module configured to time and control the framing process
  • a physical layer framing module configured to modulate a digital audio broadcast data stream of each digital broadcast station in different subframes of a physical layer frame structure and multiplex with the frame header to form a complete frame Data, the subframe includes working frequency point information of a next subframe;
  • a carrier modulation module which performs carrier modulation on a corresponding subframe according to a specific sequence of operating frequency points
  • the combining module combines the data of each digital broadcasting station, amplifies and transmits the data.
  • the multi-frequency point working information comprises a multi-frequency point cooperative working mode and a multi-frequency point cooperative working frequency point.
  • the digital audio broadcast data stream of each digital broadcast station may be transmitted according to a specific frame structure, the frame structure is a super frame structure, and the super frame includes four physical layer signal frames, and each physical layer signal
  • the frame includes 4 subframes, each subframe includes 1 beacon and a plurality of OFDM symbols, each subframe contains system information, and the first sub-frame of the first physical layer signal frame in each superframe in the frame structure
  • the working frequency of the frame is always fixed.
  • the system information includes 1 bit information for indicating the multi-frequency coordinated operation mode indication and 9 bits of information for indicating the next subframe multi-frequency point cooperative working frequency point.
  • a certain frequency hopping interval is set between the multiple subframes to ensure that the transceiver end has sufficient frequency stabilization time during the frequency jump.
  • the present invention also provides a receiving system for a digital audio broadcasting signal that works in multiple frequencies, including:
  • a working frequency point configuration module configured to configure a receiving mode and a receiving working frequency point of a next subframe according to the received multi-frequency point working information
  • a timing and carrier frequency estimation module configured to obtain, at the receiving end, synchronization with a transmit signal timing and a carrier frequency by using a beacon signal
  • a system information data symbol extraction module configured to extract system information
  • the deinterleaving and convolutional decoding module performs deinterleaving and convolutional decoding of the system information to obtain multi-frequency point working information, and sends the information to the working frequency point configuration module.
  • the receiving system further includes a channel estimation and equalization module, configured to perform channel estimation and data equalization on the synchronized signal by frequency domain transform.
  • a channel estimation and equalization module configured to perform channel estimation and data equalization on the synchronized signal by frequency domain transform.
  • the multi-frequency point working information comprises a multi-frequency point cooperative working mode and a multi-frequency point cooperative working frequency point.
  • FIG. 1 is a schematic diagram of multi-frequency point cooperative operation according to the present invention.
  • FIG. 2 is a schematic diagram showing the structure of a digital audio broadcast signal frame suitable for the present invention
  • FIG. 3 is a structural diagram of a transmission system of the present invention.
  • Figure 5 is a schematic structural diagram of a convolutional code encoder
  • Figure 6 is a schematic diagram of constellation mapping
  • Figure 7 is a flow chart of the receiving system of the present invention.
  • a method for transmitting a digital audio broadcast signal with multi-frequency coordinated operation including the following steps:
  • Step 1 The transmitting end divides the digital audio broadcast data stream of each digital broadcasting station into a plurality of sub data streams according to a specific length of time;
  • Step 2 Set a specific sequence of working frequency points for each sub-stream of the digital broadcasting station, so that sub-data streams transmitted by different digital broadcasting stations at the same time do not appear at the same working frequency point, for each digital broadcasting
  • the radio station inserts multi-frequency point work information of the next sub-data stream into the sub-data stream sent at the current working frequency point;
  • Step 3 The digital audio broadcast data stream of each digital broadcast station is cyclically modulated and transmitted on its corresponding sequence of working frequency points.
  • FIG. 1 is a schematic diagram of multi-frequency point cooperative operation according to an embodiment of the present invention, in which four digital audio broadcasting stations are set to switch between four working frequency points as an example, which is different from the traditional transmission mode.
  • the station 1 is not only transmitted at a fixed frequency position 1, but is switched at a working frequency point in a plurality of frequency positions, as shown in Fig. 1, the working frequency of the digital station 1.
  • the dot order is frequency point 1 -> frequency point 3 -> frequency point 2 -> frequency point 4.
  • the sequence of operating frequencies is a periodic sequence and a fixed length of time is transmitted at each of the operating frequencies.
  • the transmission of other digital broadcasting stations also performs frequency switching in the same working frequency set. For example, in FIG.
  • the operating frequency order of the digital station 2 is frequency point 2 -> frequency point 1 -> frequency point 4 -> Frequency 3.
  • each digital audio broadcasting station data is modulated and transmitted at different working frequency points. Since different working frequency points undergo independent frequency selective fading, frequency diversity is realized, thereby greatly improving reception. The ability to counter the selective fading of frequency.
  • the service data information transmitted by each digital audio broadcasting station can adopt the same or different modulation modes and coding rates at different operating frequencies to meet the frequency planning requirements of the frequency band in which it is located.
  • the working frequency sequence of each station is orthogonal to each other, which can reduce mutual interference between programs, ensure the spectrum utilization rate of the system, and maximize the reuse of frequency resources.
  • the operating frequency sequence is a periodic repeating sequence, which may be fixedly configured or dynamically changed during program transmission.
  • the multi-frequency point working information includes a multi-frequency point cooperative working mode and a multi-frequency point cooperative working frequency point.
  • the digital audio broadcast data stream of each digital broadcast station may be transmitted according to a specific frame structure.
  • the frame structure is a super frame structure, and each physical layer super frame length is 2560 ms, and each super frame It consists of 4 physical layer signal frames of length 640ms.
  • Each signal frame includes 4 sub-frames with a length of 160ms.
  • Each sub-frame includes 1 beacon to ensure that the digital audio broadcasting system has enough during the working frequency switching process.
  • the frequency stabilization time and the synchronization received by the auxiliary terminal; and a plurality of OFDM symbols.
  • System information is included in each subframe.
  • the system information carried in the known subcarrier position of each OFDM symbol in each subframe is as shown in Table 1.
  • the method includes a bit information for indicating the multi-frequency point cooperative working mode indication and 9 bit information for indicating the next sub-frame multi-frequency point cooperative working frequency point, which are respectively indicated by the sum of the table 2 and the ⁇ ⁇ , and are used to assist the terminal.
  • the multi-frequency point cooperative work can support up to 16 working frequency points.
  • the frequency points of other sub-frames in the physical layer signal frame may be sequentially obtained from the system information carried in the previous sub-frame.
  • a certain frequency hopping interval is set between the multiple subframes to ensure that the transceiver end has sufficient frequency stabilization time during the frequency jump.
  • FIG. 3 is a structural diagram of a transmission system according to the present invention.
  • the working frequency sequence generation module 100 is configured to set a specific work for each sub-data stream of the digital broadcasting station. a sequence of frequency points such that sub-data streams transmitted by digital broadcasting stations 1 to n at the same time do not appear at the same working frequency point; each digital program source data stream of digital broadcasting stations 1 to n is 101-1, 101- 2, . . . .
  • the layer framing module 104 performs framing according to the frame structure as shown in FIG. 2.
  • the physical layer framing module 104 is configured to modulate the digital audio broadcast data stream of each digital broadcasting station output by the channel interleaving and encoding module 103 at the physical layer.
  • the different subframes of the frame structure are multiplexed with the frame header to form complete frame data, and the subframe includes working frequency point information of the next subframe.
  • the sender timing module 105 is used to time and control the framing process.
  • the carrier modulation module 106 performs carrier modulation on the corresponding working frequency point according to the indication of the operating frequency sequence according to the signal frame structure of each digital broadcast station data.
  • the data of each digital broadcasting station can be independently modulated by the carrier, and finally the data of the plurality of digital broadcasting stations is combined by the combining module 107, and the signals are amplified and transmitted.
  • each digital audio broadcasting station data is modulated and transmitted at different working frequency points. Since different working frequency points undergo independent frequency selective fading, frequency diversity is realized, thereby greatly improving reception. The ability to counter the selective fading of frequency.
  • the service data information transmitted by each digital audio broadcasting station can adopt the same or different modulation modes and coding rates at different operating frequencies to meet the frequency planning requirements of the frequency band in which it is located.
  • the working frequency sequence of each station is orthogonal to each other, which can reduce mutual interference between programs, ensure the spectrum utilization rate of the system, and maximize the reuse of frequency resources.
  • the operating frequency sequence is a periodic repeating sequence, which may be fixedly configured or dynamically changed during program transmission.
  • the multi-frequency point working information includes a multi-frequency point cooperative working mode and a multi-frequency point cooperative working frequency point.
  • the digital audio broadcast data stream of each digital broadcast station may be transmitted according to a specific frame structure.
  • the frame structure is a super frame structure, and each physical layer super frame length is 2560 ms, and each super frame It consists of 4 physical layer signal frames of length 640ms.
  • Each signal frame includes 4 sub-frames with a length of 160ms.
  • Each sub-frame includes 1 beacon to ensure that the digital audio broadcasting system has enough during the working frequency switching process.
  • the frequency stabilization time and the synchronization received by the auxiliary terminal; and a plurality of OFDM symbols.
  • System information is included in each subframe.
  • the system information carried on the known subcarrier position of each OFDM symbol in each subframe is as shown in Table 1. It includes 1 bit information for indicating the multi-frequency point cooperative working mode indication and 9 bit information for indicating the next sub-frame multi-frequency point cooperative working frequency point, respectively, by ⁇ of Table 2. And ⁇ ⁇ indication, used to assist the terminal to complete the signal reception in the multi-frequency coordinated mode.
  • the multi-frequency point cooperative work can support up to 16 working frequency points.
  • the frequency points of other sub-frames in the physical layer signal frame may be sequentially obtained from the system information carried in the previous sub-frame.
  • a certain frequency hopping interval is set between the multiple subframes to ensure that the transceiver end has sufficient frequency stabilization time during the frequency jump.
  • the transmitting end first converts the service data of the digital audio broadcast signal into a bit stream, and then performs scrambling; and then performs the scrambled service data bit stream.
  • LDPC encoding performing constellation mapping on the LDPC encoded service data bit stream; subcarriers carrying the service data after constellation mapping, interleaving in subcarriers to form interleaved service data subcarriers;
  • the scrambling code is performed; then, the scrambling coded service description information bit stream is convolutionally encoded; the encoded service description information bit stream is interleaved; and the bit interleaved service is performed.
  • the transmitting end forms a system information bit stream according to a specific format of the physical layer system information, and then performs convolutional coding; and performs bit interleaving on the encoded system information bit stream; Performing constellation mapping on the bit-interleaved system information bit stream to form a system information subcarrier; then, generating a discrete pilot in the frequency domain, and then interleaving the service data subcarrier, the constellation mapped service description information subcarrier, and the system Information subcarriers are multiplexed together, mapping OFDM frequency domain symbols are formed on the corresponding spectrum template; the frequency domain OFDM symbols are transformed into the time domain by the IFFT converter, and the cyclic prefix is multiplexed to generate an OFDM time domain symbol; and the plurality of OFDM time domain symbols are multiplexed Together, and insert a beacon, perform framing, and then transmit the data of multiple digital broadcasting stations after carrier-modulated the physical layer superframe
  • the channel coding of the system information bit stream adopts a 1/4 convolutional code with a constraint length of 7, and the octal generator polynomial corresponding to the encoder of the convolutional code is: 133, 171, 145, 133, the initial value of the shift register is all "0".
  • the convolutional coding is performed independently for every 36 system information shown in Table 2. Please refer to FIG. 5, which is a schematic diagram of the convolutional code encoder structure:
  • the convolutionally encoded system information is bit interleaved, and the interleaving is performed in units of interleaved blocks.
  • the interleaving algorithm is as follows: For the input sequence Z - ⁇ before interleaving, where 7 ⁇ is the length of the interleaved block, the interleaver performs interleaving
  • the present invention provides a receiving method corresponding to the above transmitting method, comprising the following steps:
  • Step 1 Synchronize the transmission signal timing with the carrier frequency at the receiving end
  • Step 2 extract the multi-frequency point work information of the next sub-data stream from the synchronized signal, and transmit the multi-frequency point work information to the working frequency point configuration module;
  • Step 3 The working frequency point configuration module configures the receiving working mode and the receiving working frequency of the next sub data stream according to the received multi-frequency point working information.
  • the step 2 further includes: performing channel estimation and equalization on the synchronized signal by frequency domain transform.
  • the sub-data stream includes a sub-frame, where the sub-frame includes system information; extracting multi-frequency point work information from system information of the sub-frame, where the multi-frequency point work information includes multi-frequency point work together Mode and multi-frequency point work together.
  • the present invention further provides a receiving system corresponding to the foregoing sending system, including: a working frequency point configuration module 201, configured to configure a receiving mode and a next sub-data stream according to the received multi-frequency point working information.
  • the receiving and working frequency point; the timing and carrier frequency estimating module 202 is configured to obtain, at the receiving end, the signal timing and the carrier frequency synchronization by using the beacon signal; the system information data symbol extraction module 204 is configured to extract system information;
  • the convolution decoding module 205 performs deinterleaving and convolutional decoding on the system information to obtain multi-frequency point operation information, and sends the information to the sub-frame frequency point configuration module.
  • the receiving system further includes a channel estimation and equalization module 203, configured to perform channel estimation and data equalization on the synchronized signal by frequency domain transform.
  • a channel estimation and equalization module 203 configured to perform channel estimation and data equalization on the synchronized signal by frequency domain transform.
  • the multi-frequency point working information comprises a multi-frequency point cooperative working mode and a multi-frequency point cooperative working frequency point.
  • the invention can improve the spectrum utilization efficiency, ensure the frequency diversity gain under the premise of being compatible with the existing frequency planning constraints, and improve the system's ability to resist multipath fading in wireless transmission, thereby improving the effective coverage of the wireless broadcasting system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

一种多频点协同工作的数字音频广播信号的发送方法,包括如下步骤:发送端将每一数字广播电台的数字音频广播数据流按特定的时间长度划分为多个子数据流;为每一数字广播电台的子数据流设置特定的工作频点序列,以使不同数字广播电台在同一时间内发送的子数据流不出现在同一工作频点上,对每一数字广播电台在当前工作频点上发送的子数据流中插入下一个子数据流的多频点工作信息;将每一数字广播电台的数字音频广播数据流在其所对应的工作频点序列上循环调制发送;还提出了一种相应的接收方法,以及发送系统和接收系统;本发明可提高频谱利用率,在兼容已有频率规划约束的同时,实现频率分集增益,从而改进无线广播系统的有效覆盖。

Description

一种多频点协同工作的数字音频广播信号的发送、 接收方法及其系统 技术领域
本发明涉及一种数字音频广播信号的发送、 接收方法及其系统, 特别 涉及一种多频点协同工作的数字音频广播信号的发送方法、 接收方法及其 系统, 适用于包括地面、 卫星等在内的无线音频数字广播系统。 背景技术
无线数字广播系统的最大特点在于其覆盖面广、 地理环境多样, 信道 特性复杂多变, 噪声和干扰情况严重, 为了保证信号的有效覆盖和可靠传 输, 无线数字广播系统必须能够充分适应恶劣的传输信道特性。 信号分集 技术, 比如说频率分集, 是将信号在一个远大于信道相干带宽的频带内进 行传输, 是克服无线信道多径和频率选择性衰落的有效手段。 然而, 不同 的无线系统共享无线频谱资源必须进行严格的频率规划, 新的无线传输系 统也必须考虑和原有的系统和频率规划兼容, 以保证新技术的平滑演进。 因此, 在设计一个新的无线传输系统时, 常常要面临传输带宽需求和频率 规划兼容的矛盾。 以数字音频广播系统为例, 为了保证与原有模拟 FM/AM 广播的频率规划兼容, 数字音频传输技术如美国的 HD-Radio 和欧洲的 DRM均采用采用窄带传输方案, 系统不具备频率分集增益, 对抗多径和衰 落的能力差,导致信号覆盖不够理想。相比之下,另一种数字音频广播 DAB 系统, 信号传输带宽为 1.536MHz, 在一定程度上实现了频率分集, 因此系 统对抗多径和衰落的能力大幅提高, 信号覆盖相应地也得到改善, 但是, DAB和原有的 FM/AM的频率规划不兼容,对 DAB系统的推广和使用造成 了一定的障碍。
在现有广播系统中, 每一台数字节目在一个固定的频率位置发送, 由 于已有频率规划的限制, 比如说在数字音频广播系统中, 由于要保证和原 有模拟 FM/AM 的频率规划兼容, 每一个数字音频频道只能占用一个较窄 的带宽, FM为 ΙΟΟΚΗζ或 200KHz, 而 AM为 9KHz或是 10KHz。 这种广 播方案的主要缺陷在于, 由于无线电波的空间传播特性和多径衰落, 导致 在覆盖区域内不同位置的信号强度(或者是载噪比) 差异很大, 即便在离 发射台较近的地理位置, 也有可能因为多径的频率选择性衰落而导致信号 质量低于解调门限。 为了保证理想的覆盖, 只能通过增加发射台的功率, 或是通过增加补点器来改善, 这又给干扰控制、 频率规划和网络架设带来 了新的问题。 无线信号的衰落特性还体现在, 在同一地理位置的不同频点, 接收的信号质量差异很大, 某些频点无法接收到足够好的信号进行解调, 然而在同一个位置, 某些频点却能接收到很强的信号。
发明内容
有鉴于此, 本发明提出了一种多频点协同工作的数字音频广播信号的 发送、 接收方法及其系统, 以提高频谱利用效率, 保证在兼容已有频率规 划约束的前提下, 实现频率分集增益, 提高系统对抗无线传输中多径衰落 的能力, 从而改进无线广播系统的有效覆盖。
本发明提出了一种多频点协同工作的数字音频广播信号的发送方法, 包括如下步骤:
步骤 1 : 发送端将每一个数字广播电台的数字音频广播数据流按照特 定的时间长度划分为多个子数据流;
步骤 2: 为每一个数字广播电台的子数据流设置特定的工作频点序列, 以使不同数字广播电台在同一时间内发送的子数据流不出现在同一工作频 点上, 对于每一个数字广播电台在当前工作频点上发送的子数据流中插入 下一个子数据流的多频点工作信息;
步骤 3: 将每一个数字广播电台的数字音频广播数据流在其所对应的 工作频点序列上循环调制发送。
优选的, 所述多频点工作信息包括多频点协同工作模式和多频点协同 工作频点。
优选的, 所述每一数字广播电台的数字音频广播数据流可依特定的帧 结构传输, 所述帧结构为超帧结构, 所述超帧包括 4个物理层信号帧, 每 个物理层信号帧包括 4个子帧,每个子帧包括 1个信标和多个 OFDM符号, 每个子帧中包含系统信息, 所述帧结构中每个超帧中第一个物理层信号帧 的第一个子帧的工作频点始终保持固定不变。
特别的, 在所述系统信息中包含 1个比特信息用于表示多频点协同工 作模式指示和 9个比特信息用于表示下一个子帧多频点协同工作频点。
特别的, 所述多个子帧间设有一定的跳频间隔, 用以保证收发端在频 点跳转过程中有足够的频率稳定时间。
本发明还提出一种多频点协同工作的数字音频广播信号的接收方法, 包括如下步骤:
步骤 1 : 在接收端进行发射信号定时与载波频率同步;
步骤 2: 对同步后的信号, 提取下一子数据流的多频点工作信息, 并 将所述多频点工作信息传送给工作频点配置模块;
步骤 3 : 工作频点配置模块根据所接收的多频点工作信息配置接收工 作模式和下一子数据流的接收工作频点。
优选的, 所述步骤 2还包括:对同步后的信号, 通过频域变换, 进行信 道估计和均衡。
优选的, 所述子数据流包括子帧, 所述子帧中包含系统信息; 从所述 子帧的系统信息中提取多频点工作信息, 所述多频点工作信息包括多频点 协同工作模式和多频点协同工作频点。
本发明同时还提出了一种多频点协同工作的数字音频广播信号的发送 系统包括:
工作频点序列产生模块, 用于为每一个数字广播电台的子数据流设置 特定的工作频点序列, 以使不同数字广播电台在同一时间内发送的子数据 流不出现在同一工作频点上;
数据加扰模块, 用于将每一数字广播电台的数据流进行加扰; 信道交织和编码模块, 用于将经加扰的数据流进行信道交织和编码, 并使得一个编码块的长度能够跨越多个工作频点;
发送端定时模块, 用于定时并控制成帧的过程;
物理层成帧模块, 用于将每一个数字广播电台的数字音频广播数据流 调制在物理层帧结构的不同子帧中并与帧头复接在一起, 以形成完整的帧 数据, 所述子帧中包含下一子帧的工作频点信息;
载波调制模块, 将每个数字广播电台的数据按照特定的工作频点序列 在对应的子帧上进行载波调制;
合路模块, 将每个数字广播电台的数据进行合路、 信号放大和发射。 优选的, 所述多频点工作信息包括多频点协同工作模式和多频点协同工作 频点。
优选的, 所述每一数字广播电台的数字音频广播数据流可依特定的帧 结构传输, 所述帧结构为超帧结构, 所述超帧包括 4个物理层信号帧, 每 个物理层信号帧包括 4个子帧,每个子帧包括 1个信标和多个 OFDM符号, 每个子帧中包含系统信息, 所述帧结构中每个超帧中第一个物理层信号帧 的第一个子帧的工作频点始终保持固定不变。
特别的, 在所述系统信息中包含 1个比特信息用于表示多频点协同工 作模式指示和 9个比特信息用于表示下一个子帧多频点协同工作频点。
特别的, 所述多个子帧间设有一定的跳频间隔, 用以保证收发端在频 点跳转过程中有足够的频率稳定时间。
本发明还提出了一种多频点协同工作的数字音频广播信号的接收系 统, 包括:
工作频点配置模块, 用于根据所接收的多频点工作信息配置接收模式 和下一子帧的接收工作频点;
定时与载波频率估计模块, 用于在接收端通过信标信号获得与发射信 号定时与载波频率同步;
系统信息数据符号提取模块, 用于提取系统信息;
解交织及卷积译码模块, 对系统信息进行解交织和卷积译码从而获得 多频点工作信息, 并发送给工作频点配置模块。
优选的, 所述接收系统的还包括信道估计与均衡模块, 用于对同步后 的信号, 通过频域变换, 进行信道估计与数据均衡。
优选的, 所述多频点工作信息包括多频点协同工作模式和多频点协同 工作频点。 附图说明
本发明上述的和 /或附加的方面和优点从下面结合附图对实施例的描述中 将变得明显和容易理解, 其中:
图 1为本发明多频点协同工作的示意图;
图 2为适于本发明的数字音频广播信号帧结构示意图;
图 3为本发明发送系统的结构图;
图 4为本发明发送系统的另一结构图;
图 5为卷积码编码器结构示意图;
图 6为星座映射示意图;
图 7为本发明接收系统的流程图。
具体实施方式
下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其 中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功 能的元件。 下面通过参考附图以数字音频广播为例描述本发明的实施例, 该说明是示例性的, 仅用于解释本发明, 而不能解释为对本发明的限制。
根据本发明的一个实施例, 提供了一种多频点协同工作的数字音频广 播信号的发送方法, 包括如下步骤:
步骤 1 : 发送端将每一个数字广播电台的数字音频广播数据流按照特 定的时间长度划分为多个子数据流;
步骤 2: 为每一个数字广播电台的子数据流设置特定的工作频点序列, 以使不同数字广播电台在同一时间内发送的子数据流不出现在同一工作频 点上, 对于每一个数字广播电台在当前工作频点上发送的子数据流中插入 下一个子数据流的多频点工作信息;
步骤 3 : 将每一个数字广播电台的数字音频广播数据流在其所对应的 工作频点序列上循环调制发送。
图 1为本发明实施例的多频点协同工作的示意图, 以设置 4个数字音 频广播电台在 4个工作频点上互相切换为例, 与传统传输方式不同, 数字 台 1不是只在一个固定的频率位置 1传送, 而是在若干个频点位置中以一 个设定的工作频点次序进行一次工作频点切换, 如在图 1 中, 数字台 1的 工作频点次序为频点 1->频点 3->频点 2->频点 4。通常,该工作频点序列为 一周期性序列, 并且在每一个工作频点传输固定长度的时间。 于此同时其 他数字广播电台的传输也在同样的工作频率集合中进行频点切换, 如在图 1中, 数字台 2的工作频点次序为频点 2->频点 1->频点 4->频点 3。 采用多 工作频点, 每一个数字音频广播电台数据在不同的工作频点上进行调制发 送, 由于不同的工作频点经历各自独立的频率选择性衰落, 实现了频率分 集, 从而大幅度提高了接收端对抗频率选择性衰落的能力。 此外, 每一个 数字音频广播电台所发送的业务数据信息在不同工作频点上可以采用相同 或不同的调制方式及编码速率, 以满足所在频带的频率规划要求。 其中, 每个台的工作频点序列相互正交, 这样可以降低节目间的相互干扰, 保证 系统的频谱使用率, 并且可以最大化地重复利用频率资源。 所述工作频点 次序为周期重复序列, 其可为固定配置的, 也可为节目传输过程中动态变 化的。
所述多频点工作信息包括多频点协同工作模式和多频点协同工作频 点。所述每一数字广播电台的数字音频广播数据流可依特定的帧结构传输, 参照图 2所示, 所述帧结构为超帧结构, 每个物理层超帧长度为 2560ms , 每个超帧由 4个长度为 640ms的物理层信号帧组成, 每个信号帧包括 4个 长度为 160ms的子帧, 每个子帧包括 1个信标用于保证数字音频广播系统 在工作频率切换过程中有足够的频率稳定时间以及辅助终端接收的同步; 以及多个 OFDM符号。 每个子帧中包含系统信息。 特别的, 每一个子帧中 每个 OFDM符号的已知子载波位置上携带的系统信息如表 1所示。 其中包 含 1个比特信息用于表示多频点协同工作模式指示和 9个比特信息用于表 示下一个子帧多频点协同工作频点, 分别由表 2 的 和 〜 ^指示, 用来 辅助终端完成多频点协同工作模式下的信号接收。 比特 信息描述
多频点协同工作模式指示 \ 〜 下一个子帧多频点协同工作频点
〜 当前子带标称频点
K 〜 频谱模式索引
h h 保留 Rfa
CRC校验位
〜 保留 Rfu
表 1. 系统信息比特描述
当多个数字音频广播电台工作于多频点协同工作模式时, 每个数字音 频广播电台的每个超帧中第一个物理层信号帧的第一个子帧的工作频点始 终保持固定不变, 因此本实施例中多频点协同工作最大可支持 16个工作频 点。 物理层信号帧内的其他子帧的频点可依次由前一个子帧携带的系统信 息得到。
特别的, 所述多个子帧间设有一定的跳频间隔, 用以保证收发端在频 点跳转过程中有足够的频率稳定时间。
本发明还提出了一种基于上述发送方法的发送系统, 图 3为本发明发 送系统的结构图, 工作频点序列产生模块 100 , 用于为每一个数字广播电 台的子数据流设置特定的工作频点序列, 以使数字广播电台 1至 n在同一 时间内发送的子数据流不出现在同一工作频点上; 数字广播电台 1至 n的 每一个数字节目源数据流 101- 1 , 101-2 , . . . ..101 -n首先通过数据加扰模块 102进行加扰, 然后将加扰的节目数据通过信道交织和编码模块 103 进行 信道交织和编码, 经编码后的节目数据交由物理层成帧模块 104按如图 2 所示的帧结构进行组帧, 物理层成帧模块 104用于将信道交织和编码模块 103 输出的每一个数字广播电台的数字音频广播数据流调制在物理层帧结 构的不同子帧中并与帧头复接在一起, 形成完整的帧数据, 所述子帧中包 含下一子帧的工作频点信息。 发送端定时模块 105 , 用来定时并控制成帧 的过程。 载波调制模块 106将对应每一数字广播电台数据的信号帧结构按 照工作频点序列的指示在对应的工作频点上进行载波调制。 每一个数字广 播电台的数据可如此进行各自独立的载波调制, 最终多个数字广播电台的 数据经合路模块 107进行合路, 信号放大和发送。 采用多工作频点, 每一个数字音频广播电台数据在不同的工作频点上 进行调制发送, 由于不同的工作频点经历各自独立的频率选择性衰落, 实 现了频率分集, 从而大幅度提高了接收端对抗频率选择性衰落的能力。 此 外, 每一个数字音频广播电台所发送的业务数据信息在不同工作频点上可 以采用相同或不同的调制方式及编码速率, 以满足所在频带的频率规划要 求。 其中, 每个台的工作频点序列相互正交, 这样可以降低节目间的相互 干扰, 保证系统的频谱使用率, 并且可以最大化地重复利用频率资源。 所 述工作频点次序为周期重复序列, 其可为固定配置的, 也可为节目传输过 程中动态变化的。
此外, 所述多频点工作信息包括多频点协同工作模式和多频点协同工 作频点。 所述每一数字广播电台的数字音频广播数据流可依特定的帧结构 传输, 参照图 2 所示, 所述帧结构为超帧结构, 每个物理层超帧长度为 2560ms, 每个超帧由 4个长度为 640ms的物理层信号帧组成, 每个信号帧 包括 4个长度为 160ms的子帧, 每个子帧包括 1个信标用于保证数字音频 广播系统在工作频率切换过程中有足够的频率稳定时间以及辅助终端接收 的同步; 以及多个 OFDM符号。 每个子帧中包含系统信息。 特别的, 每一 个子帧中每个 OFDM符号的已知子载波位置上携带的系统信息如表 1 所 示。 其中包含 1个比特信息用于表示多频点协同工作模式指示和 9个比特 信息用于表示下一个子帧多频点协同工作频点,分别由表 2的 ^。和 ~ ^指 示, 用来辅助终端完成多频点协同工作模式下的信号接收。
当多个数字音频广播电台工作于多频点协同工作模式时, 每个数字音 频广播电台的每个超帧中第一个物理层信号帧的第一个子帧的工作频点始 终保持固定不变, 因此本实施例中多频点协同工作最大可支持 16个工作频 点。 物理层信号帧内的其他子帧的频点可依次由前一个子帧携带的系统信 息得到。
特别的, 所述多个子帧间设有一定的跳频间隔, 用以保证收发端在频 点跳转过程中有足够的频率稳定时间。
更具体而言, 参照图 4所示, 发射端首先将数字音频广播信号的业务 数据转换成比特流后, 进行扰码; 然后对扰码后的业务数据比特流进行 LDPC编码; 对 LDPC编码后的业务数据比特流进行星座映射; 对星座映 射后承载业务数据的子载波, 以子载波为单元, 进行交织, 构成交织后的 业务数据子载波; 发射端对数字音频广播信号的业务描述信息转换成比特 流后, 进行扰码; 然后对扰码后的业务描述信息比特流进行卷积编码; 对 编码后的业务描述信息比特流进行交织; 对比特交织后的业务描述信息比 特流进行星座映射, 构成业务描述信息子载波; 发射端对物理层系统信息 按照特定格式, 组成系统信息比特流, 然后进行卷积编码; 对编码后的系 统信息比特流进行比特交织; 对比特交织后的系统信息比特流进行星座映 射, 构成系统信息子载波; 之后, 频域生成离散导频, 然后和上述交织后 的业务数据子载波、 星座映射后的业务描述信息子载波以及系统信息子载 波复接在一起,映射到对应的频谱模板上,组成 OFDM频域符号;通过 IFFT 变换器将上述频域 OFDM 符号变换到时域, 同时复接上循环前缀, 产生 OFDM时域符号;将上述多个 OFDM时域符号复接在一起,并且插入信标, 进行组帧, 之后将物理层超帧经过载波调制后将多个数字广播电台的数据 发送出去。
其中, 系统信息比特流的信道编码采用约束长度为 7的 1/4卷积码, 卷积码的编码器对应的八进制生成多项式为: 133 , 171 , 145 , 133, 移位 寄存器初始值为全" 0"。 每 36个表 2中所示的系统信息独立进行卷积编码。 请参看图 5所示, 为卷积码编码器结构示意图:
经过卷积编码的系统信息采用比特交织, 交织以交织块为单位进行, 其交织算法如下: 对于交织前的输入序列 Z -^ , 其中7^^ 为 交 织 块 的 长度 , 所 述 交 织 器 进行 交 织 后 输 出 序 列 为 Ζ , = J , 其中 通过如下方式获得: for(i = 0, n = 0; i < s; i + +) if (p(i) < N MUX )
R{n) = p(i);
n + +; 其中, ρ(0) = 0, p(i) = (5 p(i-l) + q)mod ,(i≠0) ? s = 2l 2 , g = 4- 1。 系统信息固定采用 QPSK 映射方式。 经过比特交织后的比特流 νο,ν^νζ...映射为 QPSK符号流发送, 各种符号映射加入功率归一化因子, 使各种符号映射的平均功率趋同。
星座图中已经包括了功率归一化因子 β , QPSK映射时 β=7ϊ。 参看 图 6, 为星座映射示意图。
进一步, 本发明提出一种与上述发送方法相对应的接收方法, 包括如 下步骤:
步骤 1: 在接收端进行发射信号定时与载波频率同步;
步骤 2: 对同步后的信号, 提取下一子数据流的多频点工作信息, 并 将所述多频点工作信息传送给工作频点配置模块;
步骤 3: 工作频点配置模块根据所接收的多频点工作信息配置接收工 作模式和下一子数据流的接收工作频点。
优选的, 所述步骤 2还包括: 对同步后的信号, 通过频域变换, 进行 信道估计和均衡。
优选的, 所述子数据流包括子帧, 所述子帧中包含系统信息; 从所述 子帧的系统信息中提取多频点工作信息, 所述多频点工作信息包括多频点 协同工作模式和多频点协同工作频点。
参看图 7, 本发明还提出了一种与上述发送系统相对应的接收系统, 包括, 工作频点配置模块 201, 用于根据所接收的多频点工作信息配置接 收模式和下一子数据流的接收工作频点; 定时与载波频率估计模块 202, 用于在接收端通过信标信号获得与发射信号定时与载波频率同步; 系统信 息数据符号提取模块 204,用于提取系统信息;解交织及卷积译码模块 205, 对系统信息进行解交织和卷积译码而获得多频点工作信息, 并发送给子帧 频点配置模块。
优选的, 所述接收系统的还包括信道估计与均衡模块 203, 用于对同 步后的信号, 通过频域变换, 进行信道估计与数据均衡。
优选的, 所述多频点工作信息包括多频点协同工作模式和多频点协同 工作频点。 本发明可提高频谱利用效率,保证在兼容已有频率规划约束的前提下, 实现频率分集增益, 提高系统对抗无线传输中多径衰落的能力, 从而改进 无线广播系统的有效覆盖。
尽管已经示出和描述了本发明的实施例, 对于本领域的普通技术人员 而言, 可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例 进行多种变化、 修改、 替换和变型, 本发明的范围由所附权利要求及其等 同限定。

Claims

权 利 要 求
1.一种多频点协同工作的数字音频广播信号的发送方法, 其特征在于, 包括如下步骤:
步骤 1 : 发送端将每一个数字广播电台的数字音频广播数据流按照特 定的时间长度划分为多个子数据流;
步骤 2: 为每一个数字广播电台的子数据流设置特定的工作频点序列, 以使不同数字广播电台在同一时间内发送的子数据流不出现在同一工作频 点上, 对于每一个数字广播电台在当前工作频点上发送的子数据流中插入 下一个子数据流的多频点工作信息;
步骤 3: 将每一个数字广播电台的数字音频广播数据流在其所对应的 工作频点序列上循环调制发送。
2.—种如权利要求 1 所述的基于多频点协同工作的数字音频广播信号 的发送方法, 其特征在于, 所述多频点工作信息包括多频点协同工作模式 和多频点协同工作频点。
3.—种如权利要求 1 所述的多频点协同工作的数字音频广播信号的发 送方法, 其特征在于, 所述每一个数字广播电台的数字音频广播数据流可 依特定的帧结构传输。
4.一种如权利要求 3 所述多频点协同工作的数字音频广播信号的发送 方法, 其特征在于, 所述帧结构为超帧结构, 所述超帧包括 4个物理层信 号帧, 每个物理层信号帧包括 4 个子帧, 每个子帧包括 1 个信标和多个 OFDM符号, 每个子帧中包含系统信息。
5.—种如权利要求 4 所述的多频点协同工作的数字音频广播信号的发 送方法, 其特征在于, 所述帧结构中每个超帧中第一个物理层信号帧的第 一个子帧的工作频点始终保持固定不变。
6. 一种如权利要求 4所述的多频点协同工作的数字音频广播信号的发 送方法, 其特征在于, 在所述系统信息中包含 1个比特信息用于表示多频 点协同工作模式指示和 9个比特信息用于表示下一个子帧多频点协同工作 频点。
7. 一种如权利要求 4所述的多频点协同工作的数字音频广播信号的发 送方法, 其特征在于, 所述多个子帧间设有一定的跳频间隔, 用以保证收 发端在频点跳转过程中有足够的频率稳定时间。
8.—种多频点协同工作的数字音频广播信号的接收方法, 其特征在于, 包括如下步骤:
步骤 1 : 在接收端进行发射信号定时与载波频率同步;
步骤 2: 对同步后的信号, 提取下一子数据流的多频点工作信息, 并 将所述多频点工作信息传送给工作频点配置模块;
步骤 3 : 工作频点配置模块根据所接收的多频点工作信息配置接收工 作模式和下一子数据流的接收工作频点。
9. 一种如权利要求 8所述的多频点协同工作的数字音频广播信号的接 收方法, 其特征在于, 所述步骤 2还包括:对同步后的信号, 通过频域变换, 进行信道估计和均衡。
10.—种如权利要求 8所述的多频点协同工作的数字音频广播信号的接 收方法, 其特征在于, 所述子数据流包括子帧, 所述子帧中包含系统信息。
11.一种如权利要求 10 所述的多频点协同工作的数字音频广播信号的 接收方法, 其特征在于, 从所述子帧的系统信息中提取多频点工作信息, 所述多频点工作信息包括多频点协同工作模式和多频点协同工作频点。
12.—种多频点协同工作的数字音频广播信号的发送系统, 其特征在 于, 包括:
工作频点序列产生模块, 用于为每一个数字广播电台的子数据流设置 特定的工作频点序列, 以使不同数字广播电台在同一时间内发送的子数据 流不出现在同一工作频点上;
数据加扰模块, 用于将每一个数字广播电台的数据流进行加扰; 信道交织和编码模块, 用于将经加扰的数据流进行信道交织和编码, 并使得一个编码块的长度能够跨越多个工作频点;
发送端定时模块, 用于定时并控制成帧的过程;
物理层成帧模块, 用于将每一个数字广播电台的数字音频广播数据流 调制在物理层帧结构的不同子帧中并与帧头复接在一起, 以形成完整的帧 数据, 所述子帧中包含下一子帧的工作频点信息; 载波调制模块, 将每个数字广播电台的数据按照特定的工作频点序列 在对应的子帧上进行载波调制;
合路模块, 将每个数字广播电台的数据进行合路、 信号放大和发射。
13.—种如权利要求 12 所述的多频点协同工作的数字音频广播信号的 发送系统, 其特征在于, 所述多频点工作信息包括多频点协同工作模式和 多频点协同工作频点。
14.一种如权利要求 12 所述的多频点协同工作的数字音频广播信号的 发送系统, 其特征在于, 所述每一数字广播电台的数字音频广播数据流可 依特定的帧结构传输。
15.—种如权利要求 14 所述的多频点协同工作的数字音频广播信号的 发送系统, 其特征在于, 所述帧结构为超帧结构, 所述超帧包括 4个物理 层信号帧, 每个物理层信号帧包括 4个子帧, 每个子帧包括 1个信标和多 个 OFDM符号, 每个子帧中包含系统信息。
16.—种如权利要求 15 所述的多频点协同工作的数字音频广播信号的 发送系统, 其特征在于, 所述帧结构中每个超帧中第一个物理层信号帧的 第一个子帧的工作频点始终保持固定不变。
17.—种如权利要求 15 所述的多频点协同工作的数字音频广播信号的 发送系统, 其特征在于, 在所述系统信息中包含 1 个比特信息用于表示多 频点协同工作模式指示和 9个比特信息用于表示下一个子帧多频点协同工 作频点。
18. 一种如权利要求 15所述的多频点协同工作的数字音频广播信号的 发送系统, 其特征在于, 所述多个子帧间设有一定的跳频间隔, 用以保证 收发端在频点跳转过程中有足够的频率稳定时间。
19.一种多频点协同工作的数字音频广播信号的接收系统, 其特征在 于, 包括:
工作频点配置模块, 用于根据所接收的多频点工作信息配置接收模式 和下一子帧的接收工作频点;
定时与载波频率估计模块, 用于在接收端通过信标信号获得与发射信 号定时与载波频率同步; 系统信息数据符号提取模块, 用于提取系统信息;
解交织及卷积译码模块, 对系统信息进行解交织和译码从而获得多频 点工作信息, 并发送给工作频点配置模块。
20.—种如权利要求 19 所述多频点协同工作的数字音频广播信号的接 收系统, 其特征在于, 还包括信道估计与均衡模块, 用于对同步后的信号, 通过频域变换, 进行信道估计与数据均衡。
21.—种如权利要求 19 所述多频点协同工作的数字音频广播信号的接 收系统, 其特征在于, 所述多频点工作信息包括多频点协同工作模式和多 频点协同工作频点。
PCT/CN2012/080162 2011-08-17 2012-08-15 一种多频点协同工作的数字音频广播信号的发送、接收方法及其系统 WO2013023592A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110240315.X 2011-08-17
CN201110240315.XA CN102857314B (zh) 2011-08-17 2011-08-17 一种多频点协同工作的数字音频广播信号的发送、接收方法及其系统

Publications (1)

Publication Number Publication Date
WO2013023592A1 true WO2013023592A1 (zh) 2013-02-21

Family

ID=47403531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080162 WO2013023592A1 (zh) 2011-08-17 2012-08-15 一种多频点协同工作的数字音频广播信号的发送、接收方法及其系统

Country Status (3)

Country Link
CN (1) CN102857314B (zh)
HK (1) HK1176179A1 (zh)
WO (1) WO2013023592A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282266A (zh) * 2018-01-22 2018-07-13 福建飞通通讯科技股份有限公司 语音信号处理方法、装置及系统
CN114095324B (zh) * 2021-11-09 2023-09-12 湖南省时空基准科技有限公司 窄带数据广播的成帧方法及其设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1213472A (zh) * 1996-03-14 1999-04-07 德国电信股份有限公司 数字广播信号的正交频分复用多载波传输方法和系统
CN1879321A (zh) * 2003-10-24 2006-12-13 韩国电子通信研究院 移动通信系统中的下行链路信号配置方法与设备、以及使用其的同步与小区搜索方法与设备
US20090124242A1 (en) * 2007-11-12 2009-05-14 Samsung Electronics Co., Ltd. Mobile terminal and multimedia message processing method thereof
CN101640841A (zh) * 2008-07-31 2010-02-03 中兴通讯股份有限公司 多媒体广播多播业务资源分配方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100382465C (zh) * 2004-10-21 2008-04-16 大唐移动通信设备有限公司 时分双工移动通信系统终端工作在副载波时的同步方法
CN101730257B (zh) * 2008-10-13 2013-12-18 电信科学技术研究院 信号发送方法及设备、系统随机接入方法及用户设备
CN102045862B (zh) * 2009-10-22 2014-10-01 中国移动通信集团公司 一种载波聚合实现方法、装置与系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1213472A (zh) * 1996-03-14 1999-04-07 德国电信股份有限公司 数字广播信号的正交频分复用多载波传输方法和系统
CN1879321A (zh) * 2003-10-24 2006-12-13 韩国电子通信研究院 移动通信系统中的下行链路信号配置方法与设备、以及使用其的同步与小区搜索方法与设备
US20090124242A1 (en) * 2007-11-12 2009-05-14 Samsung Electronics Co., Ltd. Mobile terminal and multimedia message processing method thereof
CN101640841A (zh) * 2008-07-31 2010-02-03 中兴通讯股份有限公司 多媒体广播多播业务资源分配方法和装置

Also Published As

Publication number Publication date
HK1176179A1 (zh) 2013-07-19
CN102857314A (zh) 2013-01-02
CN102857314B (zh) 2014-08-27

Similar Documents

Publication Publication Date Title
US9941985B2 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
US10334310B2 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
US9979498B2 (en) Broadcast-signal transmitter/receiver and method for transmitting/receiving broadcast signals
US8194796B2 (en) Methods and apparatus for transmitting layered and non-layered data via layered modulation
JP4732808B2 (ja) 無線パラメータ群を生成する装置
CN107078847B (zh) 收发广播信号的装置和方法
KR101710616B1 (ko) 업링크 송신 다이버시티를 위한 시그널링 및 채널 추정
CN105794215B (zh) 发送和接收广播信号的装置和方法
CN107005522B (zh) 广播信号发送和接收装置和方法
JP2002185422A (ja) 送信装置、受信装置、および通信システム
KR20020031009A (ko) 동일대역 인접채널 방식의 디지털 오디오 방송 전송 시스템
JP2008527927A (ja) 階層化された変調システムにおいてデータを復号する方法および装置
CN101313490A (zh) 广播正交频分多路复用系统中基于多重接收天线的切换分集
JP2009544257A (ja) 無線通信システムにおいて使用される符号化および復号の方法および装置
KR102052378B1 (ko) 방송 신호 송신 장치, 방송 신호 수신 장치, 방송 신호 송신 방법, 및 방송 신호 수신 방법
US11211996B2 (en) Techniques for expanding communication range between wireless devices
Gozálvez et al. Time diversity in mobile DVB-T2 systems
CN102484878A (zh) 用于无线系统的上行链路控制信号设计
JP2011250451A (ja) マルチキャリア通信における符号化信号を送信する情報送信方法
WO2013023592A1 (zh) 一种多频点协同工作的数字音频广播信号的发送、接收方法及其系统
CN101252682B (zh) 交互式数字电视前端高清音视频接口系统
JP4409722B2 (ja) 無線送信装置及び無線送信方法
Pan et al. Results of the DTMB-A Field Trials in Hong Kong
KR101406321B1 (ko) 신호 전송 방법 및 중계국
GB2514083A (en) Data processing apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12824587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12824587

Country of ref document: EP

Kind code of ref document: A1