WO2013023552A1 - Évaporateur d'eau à ultra basse température et groupe de pompes thermiques doté de celui-ci - Google Patents

Évaporateur d'eau à ultra basse température et groupe de pompes thermiques doté de celui-ci Download PDF

Info

Publication number
WO2013023552A1
WO2013023552A1 PCT/CN2012/079915 CN2012079915W WO2013023552A1 WO 2013023552 A1 WO2013023552 A1 WO 2013023552A1 CN 2012079915 W CN2012079915 W CN 2012079915W WO 2013023552 A1 WO2013023552 A1 WO 2013023552A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
evaporator
ultra
heat exchange
heat
Prior art date
Application number
PCT/CN2012/079915
Other languages
English (en)
Chinese (zh)
Inventor
王全龄
Original Assignee
Wang Quanling
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Quanling filed Critical Wang Quanling
Publication of WO2013023552A1 publication Critical patent/WO2013023552A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box

Definitions

  • the present invention relates to a water source evaporation heat exchange device, and more particularly to a low temperature evaporator capable of extracting heat of an ultra-low water temperature and a heat pump unit having the same.
  • the above heat pump system cannot be heated normally, so all the above projects will die if the water temperature in winter is below 5 °C. Even Sweden, the world's best source of seawater source heat pumps, can only extend the seawater pipelines and water intake points to a depth of a few kilometers to the sea surface, and extract 7 °C seawater. For seawater temperatures below 5 °C, Swedish experts Also helpless. In summary, the temperature of rivers, rivers, lakes, and seawater in winter is often less than 5. C. At present, the water source heat pump units produced by the prior art in the world are all products with a water temperature of 5 °C, and the water source heat pump products with a water temperature lower than 5 °C are blank.
  • the general heat pump unit includes isolated heat exchanger A, evaporator B, condenser C, refrigeration compressor D and expansion valve E.
  • I have long-term and in-depth research on the technology of "low temperature water source heat pump unit".
  • the earlier patented technology only solved the antifreeze problem from the second heat exchanger A to the B-time of the heat pump unit shown in Fig. 1, but did not solve the isolation heat exchanger once.
  • Antifreeze problems between rivers, rivers, lakes and seas In other words, when the water temperature of the river, river, lake and sea water is below 5 ° ⁇ , the temperature difference between the inlet and outlet water is 5 due to the design of the conventional heat exchanger.
  • the temperature difference between the inlet and outlet water is 5 °C.
  • the water After the water enters the evaporator, the water is installed by the water inside the evaporator.
  • the water retaining baffle forcefully completes the flow and heat transfer in the multi-water process.
  • the purpose is to enhance the heat transfer effect and reduce the water flow.
  • the minimum flow is 2, generally 8 processes.
  • the present invention is directed to the above problems, and provides an ultra-low water temperature evaporator adapted to a low-temperature water source and a heat pump unit having the same, which can solve the problem that the existing heat pump unit loses heat exchange efficiency when the inlet water temperature is lower than 5 °C. problem.
  • the ultra low water temperature evaporator of the present invention is a single water flow type evaporating heat exchanger comprising an evaporator outer casing, an evaporating heat exchange tube, a heat exchange tube sheet, an evaporator head, A water baffle, an inlet pipe, an outlet pipe, a refrigerant supply pipe, and a refrigerant return pipe.
  • the working mode of the ultra-low water temperature evaporator of the present invention is: after the water source water enters the evaporator through the inlet pipe, the water is evenly distributed through the water retaining plate, and then flows into the effluent through the pipe of the evaporating heat exchange tube in one direction.
  • another mode of operation of the ultra low water temperature evaporator of the present invention is: water source water is fed The tube enters the evaporator, passes through the water retaining plate, and flows out of the tube of the evaporating heat exchange tube to the outlet pipe.
  • the temperature difference between the inlet water source water temperature and the outlet water temperature of the evaporator is 0. 1 ⁇ 5 °C.
  • the temperature difference between the inlet water source water temperature and the outlet water temperature of the evaporator is 0. 5 °C.
  • the evaporation heat exchange tube, the evaporator casing, the heat exchange tube sheet, the evaporator head, the water deflector, the inlet pipe and the outlet pipe of the ultra low water temperature evaporator of the present invention are salt-tolerant or other chemical elements.
  • the corrosive material is made so that the evaporator can be used for seawater or chemical plant sewage water sources.
  • the present invention also provides a heat pump unit including an isolating heat exchanger, a condenser, a refrigerant compressor, an expansion valve, and the above-described ultra low water temperature evaporator.
  • the ultra-low water temperature evaporator of the invention changes the plurality of flow heat exchange modes of the original low-temperature evaporator, adopts a single-flow heat exchange, and avoids the problem that the water is lost due to freezing in the heat exchange process of the evaporator.
  • the simple design enables the heat pump unit to work under low water temperature conditions, making it more widely used and improving the efficiency of water energy utilization.
  • FIG. 1 is a structural diagram of a prior art heat pump unit
  • FIG. 2 is a schematic structural view showing an embodiment of an ultra-low water temperature evaporator of the present invention
  • FIG. 3 is a schematic structural view showing another embodiment of the ultra-low water temperature evaporator of the present invention.
  • the ultra-low water temperature evaporator of one embodiment of the present invention comprises an evaporation heat exchange tube 2 horizontally disposed in the casing by an evaporator outer casing 1, and the evaporating heat exchange tube 2 is fixedly connected or connected.
  • the heat exchange tube sheet 3 at both ends of the outer casing 1 is spliced or flanged at both ends of the evaporator outer casing 1
  • the head 4 is equipped with a water source inlet pipe 6 and an outlet pipe 7 on the head 4, a water stop plate 5 is installed in the inlet pipe 6 side and the head 4, and a refrigerant supply pipe 8 is provided in the lower portion of the outer casing 1.
  • a refrigerant return pipe 9 is disposed above it.
  • the working principle of the ultra-low water temperature evaporator shown in Fig. 2 is: After the water source water enters the evaporator from the inlet pipe 6, the water beam is blocked by the water baffle 5 to prevent short-circuiting of the water, and the water is dispersed into a uniform water flow, It flows to the outlet pipe 7 through the inside of each evaporating heat transfer tube 2, and then flows out of the evaporator from the outlet pipe 7.
  • the refrigerant liquid enters the evaporator from the liquid supply pipe 8, and evaporates and exchanges heat with the water source water in the pipe through the outer wall of the evaporation heat exchange pipe 2.
  • the refrigerant gas formed by the evaporation is discharged from the refrigerant return pipe 9 and sucked by the compressor.
  • the temperature of the seawater is 2. 5 ° C
  • the temperature of the seawater of the outlet is 3. 0 ° C, that is, the temperature of the seawater, and the temperature of the seawater 5 °C ⁇
  • the temperature difference between the inlet and outlet water source is 0. 5 °C.
  • Fig. 3 is a schematic view showing the structure of an ultra-low water temperature evaporator according to another embodiment of the present invention.
  • the evaporating heat exchange tube 2' constitutes a U-shaped tube structure, and the water source water enters the inlet pipe 6 and forms a water flow outside the tube of the evaporating heat exchange tube 2', and the refrigerant liquid enters from the liquid supply pipe 8
  • the water flow outside the tube evaporates and exchanges with the refrigerant in the tube, and the water is discharged from the outlet pipe 7.
  • the heat exchange tube of the evaporator of the above embodiment has a horizontal structure. It should be understood that the above-mentioned evaporating heat exchange tube can also be formed into a standing structure or other structure, and the source water can be injected from below or from the upper end, specifically Not described.
  • Another embodiment of the present invention provides a heat pump unit including an isolating heat exchanger, a condenser, a refrigerant compressor, an expansion valve, and the above-described ultra low water temperature evaporator.
  • the heat pump unit can be widely applied to the heat extraction and utilization project of water source water temperature of rivers, rivers, lakes and seas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

La présente invention concerne un évaporateur d'eau à ultra basse température et un groupe de pompes thermiques doté de celui-ci. Le groupe de pompes thermiques est utilisé pour extraire la chaleur d'une source d'eau à basse température. L'évaporateur d'eau à ultra basse température comprend un logement d'évaporateur (1), des conduites d'échange de chaleur par évaporation (2), des plaques de conduite pour les conduites d'échange de chaleur (3), un raccord terminal pour l'évaporateur (4), une barrière d'eau (5), une entré d'eau (6), une sortie d'eau (7), une conduite d'alimentation en fluide frigorigène (8) et une conduite de retour de fluide frigorigène (9). Lors du fonctionnement de l'évaporateur, la source d'eau entre dans l'évaporateur par l'entrée d'eau (6) et circule ensuite à travers la barrière d'eau (5), à travers les conduites d'échange de chaleur par évaporation (2) dans un passage d'écoulement d'eau monodirectionnel et vers la sortie d'eau (7). L'évaporateur d'eau à ultra basse température modifie la manière d'échange de chaleur de l'écoulement le long de multiples passages d'écoulement dans des évaporateurs à basse température existants et adopte l'échange de chaleur dans un passage d'écoulement unique, évitant ainsi le problème de perte de la fonction d'échange de chaleur due au gel de l'eau lors de l'échange de chaleur dans l'évaporateur, permettant à un groupe de pompes thermiques doté dudit évaporateur de fonctionner dans un environnement d'eau à basse température et de bénéficier d'un plus large champ d'application. De plus, le rendement d'utilisation de la source d'énergie de l'eau est amélioré.
PCT/CN2012/079915 2011-08-18 2012-08-10 Évaporateur d'eau à ultra basse température et groupe de pompes thermiques doté de celui-ci WO2013023552A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110237214.7 2011-08-18
CN2011102372147A CN102338508A (zh) 2011-08-18 2011-08-18 超低水温蒸发器及具有所述蒸发器的热泵机组

Publications (1)

Publication Number Publication Date
WO2013023552A1 true WO2013023552A1 (fr) 2013-02-21

Family

ID=45514373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079915 WO2013023552A1 (fr) 2011-08-18 2012-08-10 Évaporateur d'eau à ultra basse température et groupe de pompes thermiques doté de celui-ci

Country Status (2)

Country Link
CN (1) CN102338508A (fr)
WO (1) WO2013023552A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104390394A (zh) * 2014-12-17 2015-03-04 广东申菱空调设备有限公司 一种低温保温型干式蒸发器及其控制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338508A (zh) * 2011-08-18 2012-02-01 王全龄 超低水温蒸发器及具有所述蒸发器的热泵机组
CN108562069A (zh) * 2018-05-07 2018-09-21 王全龄 一种江、河、湖或海水水源热泵
CN108826733B (zh) * 2018-08-01 2023-10-27 安徽欧瑞达电器科技有限公司 一种水源热水机组
CN111237840A (zh) * 2020-01-14 2020-06-05 西安交通大学 一种多热源耦合的复合蒸发器及其热泵系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2500141A1 (de) * 1974-01-23 1975-07-24 Gen Signal Corp Elektrisches anschlusstueck mit variabler laenge
CN101067539A (zh) * 2007-06-07 2007-11-07 哈尔滨工业大学 污水及地表水热泵明渠式换热槽换热方法及其装置
CN101078582A (zh) * 2007-06-27 2007-11-28 王全龄 高效能江、河、湖、海水源热泵空调
CN101324388A (zh) * 2008-07-28 2008-12-17 哈尔滨工业大学 具有快速除污功能的干式管壳式换热器
CN101762207A (zh) * 2010-01-15 2010-06-30 北京中科华誉能源技术发展有限责任公司 防沙型壳管式全逆流冷凝器
CN102338508A (zh) * 2011-08-18 2012-02-01 王全龄 超低水温蒸发器及具有所述蒸发器的热泵机组

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4367634A (en) * 1979-04-12 1983-01-11 Bolton Bruce E Modulating heat pump system
JP2006162086A (ja) * 2004-12-02 2006-06-22 Matsushita Electric Ind Co Ltd ヒートポンプ給湯機
CN201218668Y (zh) * 2008-06-04 2009-04-08 王承信 甲醛换热器
CN102003836B (zh) * 2010-12-27 2012-09-19 堃霖冷冻机械(上海)有限公司 低温水源热泵机组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2500141A1 (de) * 1974-01-23 1975-07-24 Gen Signal Corp Elektrisches anschlusstueck mit variabler laenge
CN101067539A (zh) * 2007-06-07 2007-11-07 哈尔滨工业大学 污水及地表水热泵明渠式换热槽换热方法及其装置
CN101078582A (zh) * 2007-06-27 2007-11-28 王全龄 高效能江、河、湖、海水源热泵空调
CN101324388A (zh) * 2008-07-28 2008-12-17 哈尔滨工业大学 具有快速除污功能的干式管壳式换热器
CN101762207A (zh) * 2010-01-15 2010-06-30 北京中科华誉能源技术发展有限责任公司 防沙型壳管式全逆流冷凝器
CN102338508A (zh) * 2011-08-18 2012-02-01 王全龄 超低水温蒸发器及具有所述蒸发器的热泵机组

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104390394A (zh) * 2014-12-17 2015-03-04 广东申菱空调设备有限公司 一种低温保温型干式蒸发器及其控制方法
CN104390394B (zh) * 2014-12-17 2016-10-26 广东申菱环境系统股份有限公司 一种低温保温型干式蒸发器及其控制方法

Also Published As

Publication number Publication date
CN102338508A (zh) 2012-02-01

Similar Documents

Publication Publication Date Title
CN103449548B (zh) 船用热管式海水淡化装置
CN106698565A (zh) 太阳能-热泵海水淡化装置
WO2013023552A1 (fr) Évaporateur d'eau à ultra basse température et groupe de pompes thermiques doté de celui-ci
CN101275791A (zh) 一种可自动反冲洗污水的水源热泵机组
CN103175324A (zh) 带热回收的平行流蒸发式冷凝制冷机组
CN111153543A (zh) 一种节能零排放低温常压蒸发结晶系统及其工作方法
CN101776400A (zh) 强制通风直接水膜蒸发空冷凝汽系统
CN104236164A (zh) 一种超高温复叠式水源热泵系统
KR101151691B1 (ko) 내부순환 복합에너지 난방제냉기술 및 장치
CN105645491A (zh) 水净化系统及工艺
CN201917140U (zh) 太阳能热泵饮用水设备
CN108800389A (zh) 一种自动除垢的海水空调系统及方法
CN202126119U (zh) 耐腐蚀壳管式蒸发器
CN103090590B (zh) 燃气发动机驱动螺杆式空气源热泵冷热水机组
CN204404414U (zh) 一种地源供暖空调热泵
CN204115294U (zh) 超高温复叠式水源热泵系统
KR20100103770A (ko) 냉매 기화열을 이용한 증기설비 복수기 시스템
CN211770781U (zh) 一种节能零排放低温常压蒸发结晶系统
CN105271458A (zh) 多效真空沸腾式海水淡化装置
CN102705928A (zh) 一种冰蓄冷蓄热空调
CN208720406U (zh) 一种自动除垢的海水空调系统
CN203132195U (zh) 空气能热水装置
CN208269456U (zh) 一种江、河、湖或海水水源热泵
CN201028868Y (zh) 可自动反冲洗污水的水源热泵机组
CN207335223U (zh) 一种利用喷射式热泵回收化肥厂造气水余热系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12823521

Country of ref document: EP

Kind code of ref document: A1