WO2013022385A2 - Trialkoxysilanes, method for producing a polyethylenedioxythiophene-based cathode liner with a silane substrate, and an oxide capacitor with such a cathode liner - Google Patents

Trialkoxysilanes, method for producing a polyethylenedioxythiophene-based cathode liner with a silane substrate, and an oxide capacitor with such a cathode liner Download PDF

Info

Publication number
WO2013022385A2
WO2013022385A2 PCT/RU2012/000647 RU2012000647W WO2013022385A2 WO 2013022385 A2 WO2013022385 A2 WO 2013022385A2 RU 2012000647 W RU2012000647 W RU 2012000647W WO 2013022385 A2 WO2013022385 A2 WO 2013022385A2
Authority
WO
WIPO (PCT)
Prior art keywords
sections
minutes
temperature
oalk
section
Prior art date
Application number
PCT/RU2012/000647
Other languages
French (fr)
Russian (ru)
Other versions
WO2013022385A3 (en
Inventor
Георгий Георгиевич АБАШЕВ
Алексей Александрович МАСАЛЕВ
Юрий Александрович ЧЕСНОКОВ
Виктор Петрович ЛЕБЕДЕВ
Александр Викторович СТЕПАНОВ
Владимир Сергеевич КОНЫШЕВ
Ирина Викторовна ОСОРГИНА
Владимир Иванович КИЧИГИН
Сергей Павлович ШАВКУНОВ
Елена Викторовна ШКЛЯЕВА
Original Assignee
Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования Пермский Государственный Национальный Исследовательский Университет
Открытоеакционерное Общество "Элеконд"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования Пермский Государственный Национальный Исследовательский Университет, Открытоеакционерное Общество "Элеконд" filed Critical Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования Пермский Государственный Национальный Исследовательский Университет
Publication of WO2013022385A2 publication Critical patent/WO2013022385A2/en
Publication of WO2013022385A3 publication Critical patent/WO2013022385A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • Trialkoxysilanes a method for producing a cathode plate based on polyethylene dioxithiophene with a silane sublayer and an oxide capacitor with such a cathode plate
  • the invention relates to the field of organic and physical chemistry, in particular to the use of new thiophene-containing organosilicon compounds forming on the surface of metal oxides such as aluminum, niobium and tantalum self-assembled monolayers, which in the next stage are the basis for the growth of the polythiophene chain during chemical polymerization in the presence of iron tosylate .
  • the invention also relates to the manufacture of electronic products, specifically to the production of solid polymer-based solid oxide electrolytic capacitors. State of the art
  • the disadvantage of this method is a solid electrolyte based on a semiconductor complex of organic salt TCNQ has not the highest conductivity, which affects the electrical parameters of the capacitor.
  • the objective of the invention is the synthesis of Trialkoxysilanes, for example 3, 4-ethylenedioxy 2- (3-triethoxysilylpropylimino) thiophene.
  • the proposed compounds due to the introduction of thiophene rings into trialkoxysilanes after reaction with the surface of the oxidized metal become the initiators of the polymer chain growth, which is the next stage in the formation of a polymer solid electrolyte as the cathode plate of the capacitor.
  • the diagram below shows the polymerization reaction involving a monolayer of thiophene-containing silane.
  • the objective of the invention is to develop a new method for producing a cathode wafer from a polymer electrolyte based on polyethylenedioxythiophene with a silane sublayer.
  • the method contains the following process steps: 1st. Application of silane to sections (here, oxidized volume-porous valve metal anodes) by impregnation of sections with a 5% solution of triethoxy-2-thienylsilane in ethyl alcohol for 5-10 minutes at a temperature of 25 ⁇ 5 ° ⁇ followed by drying in 2 stage: at room temperature for 15-45 minutes and in an oven at a temperature of 1 10 ⁇ 5 ° C for 15-25 minutes.
  • silane to sections (here, oxidized volume-porous valve metal anodes) by impregnation of sections with a 5% solution of triethoxy-2-thienylsilane in ethyl alcohol for 5-10 minutes at a temperature of 25 ⁇ 5 ° ⁇ followed by drying in 2 stage: at room temperature for 15-45 minutes and in an oven at a temperature of 1 10 ⁇ 5 ° C for 15-25 minutes.
  • the sections are subjected to molding work-molding in a 1% aqueous solution of p-toluenesulfonic acid, which includes keeping the sections in this solution for 5 minutes, applying to the cell with sections the initial training voltage equal to 30% of nominal molding voltage, which is discretely increased at a rate of 10% of the nominal molding voltage 3 minutes before reaching the final training voltage equal to 60% of the nominal molding voltage, Ivanov sections under tension during training 1 hour and subsequent washing sections in deionized water at 70-80 ° C for 30-40 min.
  • Example 2 the implementation of the proposed method for producing a cathode plate.
  • the re-impregnated sections were dried in an oven, first at a temperature of 30 ° C and humidity 65-75% for 40-60 minutes, then at a temperature of 60-70 ° C for 20-30 minutes, then at a temperature of 100- 105 ° C for 10-20 minutes and cooled to room temperature (20-25 ° C); washed 2 times in freshly prepared 1 -2% aqueous solution of p-toluenesulfonic acid at a temperature of 50-70 ° C for 25-40 minutes and then washed in running deionized water at a temperature of 60-80 ° C for 30-40 minutes. and subsequent drying in an oven at a temperature of 1 10 11 ° C for 30-40 minutes Repeated the process.
  • the objective of the invention is to provide an oxide capacitor with a solid electrolyte, including a chip capacitor.
  • the invention is illustrated by the scheme (see. Fig.) Where: 1 - Tantalum, 2 - Tantalum oxide, 3 - Layer of thiophene-containing silane, 4 - Electrically conductive polymer, 5 - Layer of carbon paste, 6 - Layer of silver tincture, 7 - epoxy compound.
  • the solid-state oxide capacitor (FIG.) Contains a section of a volume-porous valve metal anode, on the surface of which are successively created: an oxide layer (2), which is a dielectric; a silane monolayer (3) a cathode lining in the form of a polymer coating based on polyethylenedioxythiopheia (4) obtained by the method according to claim 2; carbon layer, which is a cathodic transition coating (5); a silver-containing layer, which is a cathode contact coating (6), and a shell created, for example, by crimping a section with plastic or filling the section with an epoxy compound (7).
  • a thienylsilane sublayer was applied, and 1-4 layers were applied, after the 4th layer, the sections were worked out, 5-8 layers were applied, and after the 8th layer, the sections were re-formed as described in the example above.
  • Capacitors with a nominal value of 20 V x 22 microfarads were manufactured with the cathode plate according to the claimed method (with a silane sublayer) and the prototype method (without a silane sublayer), while it was found that during the thermoelectric training of those and other capacitors, in a batch of capacitors with a silane sublayer the voltage across the capacitors was restored faster than in a batch of capacitors without a silane sublayer.
  • the electrical characteristics of capacitors manufactured without a silane sublayer, as well as capacitors made with a silane sublayer, are presented in the table. Table
  • a capacitor with a silane has significantly lower equivalent series resistance and leakage current than a capacitor without silane.
  • the invention will find wide application in the manufacture of electronic products, namely oxide capacitors with a solid polymer-based electrolyte.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Polyethers (AREA)
  • Silicon Polymers (AREA)
  • Primary Cells (AREA)
  • Laminated Bodies (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

Trialkoxysilanes of general formula (I), where R1-Si(OAlk)3, R2=R3=H R2=R3=--OCH2CH2O-, R'=-Si(OAlk)3 R2=R3=--OCH2CH2O-, R1=-CH-N-CH2CH2CH2Si(OAlk)3, are proposed as silicon-containing additives for the formation of a monolayer on the surface of a tantalum anode made from compressed tantalum powder. A method for producing a cathode liner from a polymer electrolyte is described, which involves applying 8 (eight) layers of a polyethylenedioxythiophene-based polymerizing compound onto sections consisting of oxidized porous valve-metal anodes, with hardening and shaping and the subsequent washing of the sections in deionized water being carried out after every four layers, said method being characterized in that a trialkoxysilane of the general formula according to claim 1 is first applied to the sections by means of impregnating the sections with a 5% solution of, for example, triethoxy-2-thienylsilane in ethanol for 5 minutes at a temperature of 25±5°C and drying is subsequently carried out in two stages: at room temperature for 15 minutes, and in a drying oven at a temperature of 110±5°C for 15-20 minutes. An oxide capacitor with a solid electrolyte is proposed, which contains a section consisting of a porous valve-metal anode (1), on the surface of which the following are consecutively formed: an oxide layer (2) which constitutes a dielectric, a silane monolayer (3), a cathode liner produced using the method according to claim 2 and being in the form of a polyethylenedioxythiophene-based polymer coating (4), a carbon layer (5) which constitutes a cathode intermediate coating, a silver-containing layer (6) which constitutes a cathode contact layer, and a casing (7) produced, for example, by moulding a section into a plastic or by flooding the section with an epoxy compound.

Description

Триалкоксисиланы, способ получения катодной обкладки на основе полиэтилендиокситиофена с силановым подслоем и оксидный конденсатор с такой катодной обкладкой  Trialkoxysilanes, a method for producing a cathode plate based on polyethylene dioxithiophene with a silane sublayer and an oxide capacitor with such a cathode plate
Область техники Technical field
Изобретение относится к области органической и физической химии, а именно к использованию новых тиофенсодержащих кремнийорганических соединений, образующих на поверхности оксидов металлов, таких как алюминий, ниобий и тантал самособирающиеся монослои, которые на следующей стадии являются основой роста политиофеновой цепочки при химической полимеризации в присутствии тозилата железа. Изобретение также относится к производству изделий электронной техники, конкретно - к производству оксидных конденсаторов с твёрдым электролитом на основе полимера. Предшествующий уровень техники The invention relates to the field of organic and physical chemistry, in particular to the use of new thiophene-containing organosilicon compounds forming on the surface of metal oxides such as aluminum, niobium and tantalum self-assembled monolayers, which in the next stage are the basis for the growth of the polythiophene chain during chemical polymerization in the presence of iron tosylate . The invention also relates to the manufacture of electronic products, specifically to the production of solid polymer-based solid oxide electrolytic capacitors. State of the art
В последние годы оцифровка электронного оборудования сопровождается ростом спроса' на конденсаторы небольшого размера с уменьшенным внутренним эквивалентным последовательным сопротивлением (ЭПС), или equivalent series resictance (ESR), в области высоких частот. Одними из первых органических материалов, использованных в производстве конденсаторов, были соли 7,7,8,8- тетрацианохинодиметана (TCNQ), растворы которых использовались для пропитки алюминиевых конденсаторов с сепаратором между слоями фольги или изготовленных из прессованных порошков танталовых анодов.  In recent years, the digitization of electronic equipment has been accompanied by an increase in demand for small capacitors with reduced internal equivalent series resistance (ESR), or equivalent series resictance (ESR), in the high-frequency region. One of the first organic materials used in the manufacture of capacitors was the salts of 7,7,8,8-tetracyanoquinodimethane (TCNQ), the solutions of which were used to impregnate aluminum capacitors with a separator between the layers of foil or made from pressed tantalum anode powders.
Широко известен также метод формирования проводящей полимерной плёнки на поверхности оксидированных алюминия, ниобия и тантала, который может осуществляться электрохимической полимеризацией или химической полимеризацией соответствующих мономеров. В последние годы в большинстве патентов описано использование полианилина (РАМ), полипиррола (Рругг) и бисэтилендиокситиофена (EDOT). Окисление последнего тозилатом железа в различных спиртовых растворах - этанол, бухано л - применяется наиболее широко. Важным моментом для образования устойчивых плёнок является введение различных добавок - силанов, поверхностно-активных веществ, стабилизаторов.  The method of forming a conductive polymer film on the surface of oxidized aluminum, niobium, and tantalum, which can be carried out by electrochemical polymerization or chemical polymerization of the corresponding monomers, is also widely known. In recent years, most patents describe the use of polyaniline (PAM), polypyrrole (Rrugg) and bisethylenedioxythiophene (EDOT). The oxidation of the latter with iron tosylate in various alcohol solutions - ethanol, l-bukhan - is used most widely. An important point for the formation of stable films is the introduction of various additives - silanes, surfactants, stabilizers.
В качестве структурного аналога предлагаемых соединений взят 3- триалкоксисилилпропилиминотиофенов, описанный в патенте US 6729694, представляющий собой аминопропилтриалкилоксисилан, который образует на поверхности оксидов алюминия, ниобия или тантала плёнки, значительно снижающие ЭПС, токи утечки и повышающие надёжность полученных конденсаторов. As a structural analogue of the proposed compounds, we used 3-trialkoxysilylpropyliminothiophenes described in US Pat. No. 6,729,694, which is an aminopropyltrialkyloxysilane that forms films on the surface of aluminum oxides, niobium or tantalum, which significantly reduce the EPS, leakage currents and increase the reliability of the obtained capacitors.
Недостаток аналога - соединение химически реагирует с поверхностью окисленных алюминия, ниобия или тантала, однако в дальнейшем процессе полимеризации с молекулами EDOT не участвует. Известен также структурный аналог 3- триалкоксисилилпропилиминотиофенов, описанный в патенте US 6920036, кл. Н 01 G 9/02, Н 01 G 5/013, Н 01 G 9/04, опубл. 15.07.2005 г., представляющий собой аминофенилпропилтриалкилоксисилан, который образует на поверхности оксидов алюминия, ниобия или тантала плёнки, значительно снижающие ЭПС, токи утечки и повышающие надёжность полученных конденсаторов. The disadvantage of this analogue is that the compound chemically reacts with the surface of oxidized aluminum, niobium or tantalum, however, it is not involved in the further polymerization with EDOT molecules. Also known is the structural analogue of 3-trialkoxysilylpropyliminothiophenes described in US Pat. No. 6,920036, class. H 01 G 9/02, H 01 G 5/013, H 01 G 9/04, publ. 07/15/2005, which is an aminophenylpropyltrialkyloxysilane that forms films on the surface of aluminum oxide, niobium or tantalum, which significantly reduce the EPS, leakage currents and increase the reliability of the obtained capacitors.
Известен также структурный аналог 3- триалкоксисилилпропилимииотиофенов, описанный в патенте US 6072694, и в заявке ЕР 2309524, представляющий собой (3- глицидилоксипропил)триметоксисилан, который образует на поверхности оксидов алюминия, ниобия или тантала плёнки, значительно снижающие ЭПС, токи утечки и повышающие надёжность полученных конденсаторов.  Also known is the structural analogue of 3-trialkoxysilylpropylimothiothiophenes described in US Pat. obtained capacitors.
Недостаток этого аналога тот же - соединение не участвует в дальнейшем процессе полимеризации.  The disadvantage of this analogue is the same - the compound is not involved in the further polymerization process.
Известен способ, описанный в патенте US 4009424, кл. Н 01 G 9/02, Н 01 G 9/032, HOIG 9/04, B01J 17/00, HOIG 9/00, опубл. 22.02.1977 г., согласно которому для пропитки конденсаторных элементов (секций) танталовых конденсаторов с анодами, изготовленными из прессованного порошка вентильного металла, например тантала, использовались растворы солей 7,7,8,8-тетрацианохинодиметана (TCNQ).  The known method described in patent US 4009424, CL. H 01 G 9/02, H 01 G 9/032, HOIG 9/04, B01J 17/00, HOIG 9/00, publ. 02.22.1977, according to which for the impregnation of capacitor elements (sections) of tantalum capacitors with anodes made of pressed valve metal powder, for example tantalum, solutions of salts of 7,7,8,8-tetracyanoquinodimethane (TCNQ) were used.
Недостаток способа твёрдый электролит на основе полупроводникового комплекса органической соли TCNQ имеет не самую высокую удельную проводимость, что отражается на электрических параметрах конденсатора.  The disadvantage of this method is a solid electrolyte based on a semiconductor complex of organic salt TCNQ has not the highest conductivity, which affects the electrical parameters of the capacitor.
Известен способ, описанный в патенте JP 05817609, кл. Н 01 G 9/02, Н 01 G 5/013, Н 01 G 9/04, опубл. 02.02.1983, согласно которому, для пропитки конденсаторных элементов (секций) алюминиевых конденсаторов с сепаратором между слоями фольги, использовались растворы солей 7,7,8,8- тетрацианохинодиметана (TCNQ).  The known method described in patent JP 05817609, cl. H 01 G 9/02, H 01 G 5/013, H 01 G 9/04, publ. 02.02.1983, according to which, for the impregnation of the capacitor elements (sections) of aluminum capacitors with a separator between the layers of the foil, salt solutions of 7,7,8,8-tetracyanoquinodimethane (TCNQ) were used.
Недостаток способа - тот же. Раскрытие изобретения  The disadvantage of the method is the same. Disclosure of invention
Задачей создания изобретения является синтез Триалкоксисиланов, например 3 ,4-этилендиокси 2-(3 -триэтоксисил илпропилимино)тиофена. Предлагаемые соединения за счёт введения тиофеновых колец в триалкоксисиланы после реакции с поверхностью оксидированного металла становятся инициаторами роста полимерной цепи, которая является следующей стадией процесса образования полимерного твёрдого электролита в качестве катодной обкладки конденсатора. The objective of the invention is the synthesis of Trialkoxysilanes, for example 3, 4-ethylenedioxy 2- (3-triethoxysilylpropylimino) thiophene. The proposed compounds due to the introduction of thiophene rings into trialkoxysilanes after reaction with the surface of the oxidized metal become the initiators of the polymer chain growth, which is the next stage in the formation of a polymer solid electrolyte as the cathode plate of the capacitor.
Поставленная задача решается с помощью Триалкоксисиланов общей формулы I где R1 -Si(OAlk)3, R2 =R3 = H The problem is solved using Trialkoxysilanes of General formula I where R 1 -Si (OAlk) 3 , R 2 = R 3 = H
R2 = R3 = - -OCH2 CH20-, Rl= -Si(OAlk)3 R 2 = R 3 = - -OCH 2 CH 2 0-, R l = -Si (OAlk) 3
R2 = R3 = - -OCH2CH20-, R1 = -CH=N-CH2CH2CH2Si(OAlk)3, R 2 = R 3 = - -OCH 2 CH 2 0-, R 1 = -CH = N-CH 2 CH 2 CH 2 Si (OAlk) 3 ,
которые используются в качестве кремнийсодержащих добавок для образования монослоя на поверхности танталового анода из спрессованного порошка тантала. which are used as silicon-containing additives to form a monolayer on the surface of the tantalum anode from a compressed tantalum powder.
Ниже на схеме приведена реакция полимеризации с участием монослоя тиофенсодержащего силана. The diagram below shows the polymerization reaction involving a monolayer of thiophene-containing silane.
Figure imgf000005_0001
Figure imgf000005_0001
где 1 ) [R]n п=0, или [СН2]П п= 3. 2) Rl = Н или -ОСН2СН20- where 1) [R] n p = 0, or [CH 2 ] P p = 3. 2) Rl = H or -OCH 2 CH 2 0-
Пример 1. Синтеза 3,4-этилендиокси Example 1. Synthesis of 3,4-ethylenedioxy
триэтоксисилилпропилимино)тиофена triethoxysilylpropylimino) thiophene
Figure imgf000005_0002
a) EtOH, reflux, 12 h, Ar
Figure imgf000005_0002
a) EtOH, reflux, 12 h, Ar
b) без растворителя, комн. т  b) without solvent, room t
Ь) В затемнённом пластиковом сосуде смешивали 3- аминопропилтриэтоксисилан (0.19 г, 0.2 мл, 0.0008 моль) и 3,4- этилендиокситиофенкарбальдегид (0.13 г, 0.0007 моль), оставили на 2 недели. Контролируя процесс с помощью тонкослойной хроматографии (ТСХ), получили продукт в виде желто-коричневого маслообразного вещества, не твердеющего при длительном стоянии). 1 H МР (CDC13, Mercury-300, δ, м.д., J, Гц): 0.59 т (2Н, CH2Si), 1.19 т(ЗН, СН3), 1.70 м (2Н, СН2), 3.46 т (2Н, -NCH2), 3.77 к ( 6Н, СН2), 4,17 τ (4Н, ОСН2СН20), 6.30 с ( IH, Th), 8.21 с (1Н, СН) B) 3-aminopropyltriethoxysilane (0.19 g, 0.2 ml, 0.0008 mol) and 3,4-ethylenedioxythiophenecarbaldehyde (0.13 g, 0.0007 mol) were mixed in a darkened plastic vessel and left for 2 weeks. Controlling the process using thin layer chromatography (TLC), the product was obtained in the form of a tan oily substance, not hardening upon prolonged standing). 1 H MR (CDC1 3 , Mercury-300, δ, ppm, J, Hz): 0.59 t (2Н, CH 2 Si), 1.19 t (ЗН, СН 3 ), 1.70 m (2Н, СН 2 ) , 3.46 t (2H, -NCH 2 ), 3.77 s (6H, CH 2 ), 4.17 t (4H, OCH 2 CH 2 0), 6.30 s (IH, Th), 8.21 s (1H, CH)
Задачей создания изобретения является разработка нового способа получения катодной обкладки из полимерного электролита на основе полиэтилендиокситиофена с силановым подслоем. The objective of the invention is to develop a new method for producing a cathode wafer from a polymer electrolyte based on polyethylenedioxythiophene with a silane sublayer.
Поставленная задача решается с помощью признаков указанных в п.2 формулы изобретения общих с прототипом, таких как способ получения катодной обкладки из полимерного электролита, который заключается в нанесении 8(восьми) слоев полимеризующегося соединения на основе полиэтилендиокситиофена на секции из оксидированных объёмно-пористых анодов из вентильных металлов и через каждые 4 нанесённых слоя тренировки-подформовки с последующей промывкой секций в деионизованной воде, и отличительных, существенных признаков таких как на секции предварительно наносят триал коксисилан общей формулы по п. 1 путём пропитки секций 5% ным раствором, например, триэтокси-2- тиенилсилана в этиловом спирте в течение 5 минут при температуре 25±5°С с последующей сушкой в 2 этапа: при комнатной температуре в течение 15 минут и в сушильном шкафу при температуре 1 10±5°С в течение 15-20 минут.  The problem is solved using the characteristics specified in paragraph 2 of the claims common to the prototype, such as a method for producing a cathode plate from a polymer electrolyte, which consists in applying 8 (eight) layers of a polymerizable compound based on polyethylene dioxiothiophene to sections of oxidized volume-porous anodes from valve metals and after every 4 applied layers of training-molding, followed by washing sections in deionized water, and distinctive, significant features such as on the section Trial coxysilane of the general formula according to claim 1 is applied appropriately by impregnating the sections with a 5% solution, for example, triethoxy-2-thienylsilane in ethanol for 5 minutes at a temperature of 25 ± 5 ° С followed by drying in 2 stages: at room temperature in for 15 minutes and in an oven at a temperature of 1 10 ± 5 ° C for 15-20 minutes.
Способ содержит следующие технологические этапы: 1-й. Нанесение силана на секции (здесь — оксидированные объёмно-пористые аноды из вентильного металла) путём пропитки секций 5%-ным раствором триэтокси-2-тиенилсилана в этиловом спирте в течение 5- 10 минут при температуре 25±5°С с последующей сушкой в 2 этапа: при комнатной температуре в течение 15-45 минут и в сушильном шкафу при температуре 1 10±5°С в течение 15-25 минут. The method contains the following process steps: 1st. Application of silane to sections (here, oxidized volume-porous valve metal anodes) by impregnation of sections with a 5% solution of triethoxy-2-thienylsilane in ethyl alcohol for 5-10 minutes at a temperature of 25 ± 5 ° С followed by drying in 2 stage: at room temperature for 15-45 minutes and in an oven at a temperature of 1 10 ± 5 ° C for 15-25 minutes.
2-й. Нанесение 8 слоев полимерного электролита на основе полиэтилендиокситиофена (PEDOT), где нанесение каждых двух слоев включает в себя: пропитку секций с нанесённым силаном, предварительно просушенных при температуре 105±5°С в течение 20-30 минут и охлаждённых до комнатной температуры; погружение медленное, в течение2nd. Application of 8 layers of polymer electrolyte based on polyethylenedioxythiophene (PEDOT), where the application of each two layers includes: impregnation of sections coated with silane, pre-dried at a temperature of 105 ± 5 ° C for 20-30 minutes and cooled to room temperature; slow dive during
2 минут, секций в полимеризующийся раствор (состоящий из мономера, окислителя и растворителя), при нормальных условиях с последующей просушкой в сушильном шкафу при температуре 25±5°С и влажности 50- 80% в течение 40-60 минут; повторную пропитку анодов в полимеризующемся растворе, сушку пропитанных секций в сушильном шкафу сначала при температуре 25±5°С и влажности 50 - 80% в течение 40 минут, затем - при температуре 70±5°С в течение 20 мин, затем - при температуре 105±5°С в течение 10-20 мин. с последующим охлаждением до комнатной температуры; 2-кратную промывку в свежеприготовленном 2%- ом водном растворе и-толуолсульфоновой кислоты при температуре 60±5°С в течение 20-40 мин. с последующей промывкой в проточной денонсированной воде при температуре 70-80°С в течение 30-40 мин. и последующей сушкой в сушильном шкафу при температуре 1 10±5°С в течение 30-60 мин. 2 minutes, sections into a polymerizable solution (consisting of monomer, oxidizing agent and solvent), under normal conditions, followed by drying in an oven at a temperature of 25 ± 5 ° C and a humidity of 50-80% for 40-60 minutes; re-impregnation of the anodes in the polymerizing solution, drying of the impregnated sections in an oven first at a temperature of 25 ± 5 ° C and a humidity of 50 - 80% for 40 minutes, then at a temperature of 70 ± 5 ° C for 20 minutes, then at a temperature 105 ± 5 ° C for 10-20 minutes. followed by cooling to room temperature; 2-fold washing in freshly prepared 2% aqueous solution of i-toluenesulfonic acid at a temperature of 60 ± 5 ° С within 20-40 minutes followed by washing in flowing denounced water at a temperature of 70-80 ° C for 30-40 minutes and subsequent drying in an oven at a temperature of 1 10 ± 5 ° C for 30-60 minutes
3-й. После четвертого и восьмого полимерных слоев проводится тренировка-подформовка секций в 1%-ном водном растворе п- толуолсульфоновой кислоты, которая включает в себя выдерживание секций в этом растворе в течение 5 минут, подачу на ячейку с секциями начального тренировочного напряжения, равного 30% от номинального формовочного напряжения, которое дискретно повышают со скоростью 10% от номинального формовочного напряжения за 3 минуты до достижения конечного тренировочного напряжения, равного 60% от номинального формовочного напряжения, выдерживание секций под тренировочным напряжением в течение 1 часа и последующая промывка секций в деионизованной воде при температуре 70-80°С в течение 30-40 мин. 3rd. After the fourth and eighth polymer layers, the sections are subjected to molding work-molding in a 1% aqueous solution of p-toluenesulfonic acid, which includes keeping the sections in this solution for 5 minutes, applying to the cell with sections the initial training voltage equal to 30% of nominal molding voltage, which is discretely increased at a rate of 10% of the nominal molding voltage 3 minutes before reaching the final training voltage equal to 60% of the nominal molding voltage, Ivanov sections under tension during training 1 hour and subsequent washing sections in deionized water at 70-80 ° C for 30-40 min.
Пример2. осуществления заявляемого способа получения катодной обкладки. Example 2. the implementation of the proposed method for producing a cathode plate.
Для нанесения тиенилсилана пропитали секции (аноды оксидированы в растворе ортофосфорной кислоты на напряжение 75В, емкость анодов составила от 18,3 до 18,9 мкФ) 5%-ным раствором триэтокси-2-тиенилсилана в этиловом спирте в течение 5- 10 минут при температуре 25°С, затем сушили сначала при комнатной температуре (25°С) в течение 15-30 минут, а затем - в сушильном шкафу при температуре 1 10°С в течение 15-30 минут.  For the application of thienylsilane, sections were impregnated (the anodes were oxidized in a solution of phosphoric acid at a voltage of 75 V, the capacity of the anodes was from 18.3 to 18.9 μF) with a 5% solution of triethoxy-2-thienylsilane in ethyl alcohol for 5-10 minutes at a temperature 25 ° C, then dried first at room temperature (25 ° C) for 15-30 minutes, and then in an oven at a temperature of 1 10 ° C for 15-30 minutes.
Далее для нанесения 1-4 слоев полимерного электролита на основе PEDOT секции просушили при температуре 105°С в течение 20 минут и охладили до комнатной температуры (20-25 °С), пропитали, с медленным погружением, в течение 2-5 минут в растворе полимеризации при нормальных условиях (20°С) и просушили в сушильном шкафу при температуре 30°С и влажности 65% в течение 60 минут. Затем повторно пропитанные секции сушили в сушильном шкафу, сначала при температуре 30°С и влажности 65-75% в течение 40-60 минут, затем - при температуре 60- 70°С в течение 20-30 мин, затем - при температуре 100-105°С в течение 10-20 мин. и охладили до комнатной температуры (20-25°С); промыли 2 раза в свежеприготовленном 1 -2%-ом водном растворе п-толуолсульфоновой кислоты при температуре 50-70°С в течение 25-40 мин. и затем промыли в проточной деионизированной воде при температуре 60-80°С в течение 30-40 мин. и последующей сушкой в сушильном шкафу при температуре 1 1 0- 11 °С в течение 30-40 мин. Повторили процесс.  Further, for applying 1-4 layers of a polymer electrolyte based on PEDOT sections, they were dried at a temperature of 105 ° C for 20 minutes and cooled to room temperature (20-25 ° C), impregnated, with slow immersion, for 2-5 minutes in solution polymerization under normal conditions (20 ° C) and dried in an oven at a temperature of 30 ° C and a humidity of 65% for 60 minutes. Then the re-impregnated sections were dried in an oven, first at a temperature of 30 ° C and humidity 65-75% for 40-60 minutes, then at a temperature of 60-70 ° C for 20-30 minutes, then at a temperature of 100- 105 ° C for 10-20 minutes and cooled to room temperature (20-25 ° C); washed 2 times in freshly prepared 1 -2% aqueous solution of p-toluenesulfonic acid at a temperature of 50-70 ° C for 25-40 minutes and then washed in running deionized water at a temperature of 60-80 ° C for 30-40 minutes. and subsequent drying in an oven at a temperature of 1 10 11 ° C for 30-40 minutes Repeated the process.
Далее провели тренировку-подформовку секций в 1-2%-гюм водном растворе н-толуолсульфогювой кислоты, для чего выдержали секции в этом растворе в течение 5-10 минут, затем подали на ячейку с секциями начальное тренировочное напряжение величиной - 23В, которое повышали со скоростью 7 В за 3 минуты до достижения конечного тренировочного напряжения, равного 45 В, выдержали секции под тренировочным напряжением в течение 1 -1 ,5 часа и промыли секции в деионизованной воде при температуре 60-75°С в течение 30-40 мин. Next, we conducted a section-forming training in a 1-2% -gum aqueous solution of n-toluenesulfonic acid, for which the sections were kept in this solution for 5-10 minutes, then the initial training voltage of 23 V was applied to the cell with sections, which was increased with at a speed of 7 V 3 minutes before reaching the final training voltage equal to 45 V, the sections were kept under the training voltage for 1 -1, 5 hours and the sections were washed in deionized water at a temperature of 60-75 ° C for 30-40 minutes.
Далее выполнили нанесение 5-8 слоев полимерного электролита на основе PEDOT - аналогично, нанесению 1-4 слоев и после нанесения 8-ого слоя провели тренировку-иодформовку секций, как указано выше.  Then, 5–8 layers of PEDOT-based polymer electrolyte were applied — similarly, 1–4 layers were applied and, after the 8th layer was applied, the sections were subjected to iodine training, as described above.
Задачей изобретения является создание оксидного конденсатора с твёрдым электролитом, в том числе чип-конденсатора. The objective of the invention is to provide an oxide capacitor with a solid electrolyte, including a chip capacitor.
Изобретение иллюстрируется схемой (см. Фиг.) где: 1 - Тантал, 2- Оксид тантала, 3— Слой тиофенсодержащего силана, 4- Электропроводящий полимер, 5— Слой углеродной пасты, 6 - Слой серебряной насты, 7- эпоксидный компаунд. The invention is illustrated by the scheme (see. Fig.) Where: 1 - Tantalum, 2 - Tantalum oxide, 3 - Layer of thiophene-containing silane, 4 - Electrically conductive polymer, 5 - Layer of carbon paste, 6 - Layer of silver tincture, 7 - epoxy compound.
Оксидный конденсатор (фиг) с твёрдым электролитом, содержит секцию из объёмно-пористого анода из вентильных металлов, на поверхности которого последовательно созданы: оксидный слой (2), являющийся диэлектриком; монослой силана (3) катодная обкладка в виде полимерного покрытия на основе полиэтилендиокситиофеиа (4), полученная способом по п. 2; углеродный слой, являющийся катодным переходным покрытием (5); серебросодержащий слой, являющийся катодным контактным покрытием (6), и оболочку, созданную, например, путём опрессовки секции пластмассой или заливки секции эпоксидным компаундом (7). The solid-state oxide capacitor (FIG.) Contains a section of a volume-porous valve metal anode, on the surface of which are successively created: an oxide layer (2), which is a dielectric; a silane monolayer (3) a cathode lining in the form of a polymer coating based on polyethylenedioxythiopheia (4) obtained by the method according to claim 2; carbon layer, which is a cathodic transition coating (5); a silver-containing layer, which is a cathode contact coating (6), and a shell created, for example, by crimping a section with plastic or filling the section with an epoxy compound (7).
Сравнительный пример 3. осуществления способа-прототипа Comparative example 3. the implementation of the prototype method
получения катодной обкладки приведен ниже. obtain cathode plates is given below.
Здесь не. наносили подслой из тиенилсилана, а выполнили нанесение 1-4 слоев, после 4-ого слоя тренировку-подформовку секций, нанесение 5-8 слоев и после 8-ого слоя треиировку-подформовку секций - как описано в примере выше.  Not here. a thienylsilane sublayer was applied, and 1-4 layers were applied, after the 4th layer, the sections were worked out, 5-8 layers were applied, and after the 8th layer, the sections were re-formed as described in the example above.
Были изготовлены конденсаторы номинала 20 В х 22 мкФ с катодной обкладкой по заявляемому способу (с силановым подслоем) и по способу- прототипу (без силанового подслоя), при этом при проведении термоэлектротренировки тех и других конденсаторов было обнаружено, что в партии конденсаторов с силановым подслоем напряжение на конденсаторах восстанавливалось быстрее, чем в партии конденсаторов без силанового подслоя. Электрические характеристики конденсаторов, изготовленных без силанового подслоя, а также конденсаторов, изготовленных с силановым подслоем, - представлены в таблице. Таблица Capacitors with a nominal value of 20 V x 22 microfarads were manufactured with the cathode plate according to the claimed method (with a silane sublayer) and the prototype method (without a silane sublayer), while it was found that during the thermoelectric training of those and other capacitors, in a batch of capacitors with a silane sublayer the voltage across the capacitors was restored faster than in a batch of capacitors without a silane sublayer. The electrical characteristics of capacitors manufactured without a silane sublayer, as well as capacitors made with a silane sublayer, are presented in the table. Table
Figure imgf000009_0001
Figure imgf000009_0001
Промышленная применимость  Industrial applicability
Из представленных в таблице данных видно, что конденсатор с силаном имеет существенно более низкие значения эквивалентного последовательного сопротивления и тока утечки, чем конденсатор без силана. Изобретение найдет широкое применение в производстве изделий электронной техники, а именно оксидных конденсаторов с твердым электролитом на основе полимера. It can be seen from the data presented in the table that a capacitor with a silane has significantly lower equivalent series resistance and leakage current than a capacitor without silane. The invention will find wide application in the manufacture of electronic products, namely oxide capacitors with a solid polymer-based electrolyte.
Данное описание и примеры рассматриваются как материал, иллюстрирующий изобретение, сущность которого и объем патентных притязаний определены в нижеследующей формуле изобретения, совокупностью существенных признаков и их эквивалентами.  This description and examples are considered as material illustrating the invention, the essence of which and the scope of patent claims are defined in the following claims, a combination of essential features and their equivalents.

Claims

Формула изобретения 1.Триалкоксисилаиы общей формулы I  The claims 1. Trialkoxysilane General formula I
Figure imgf000010_0001
где R1 -Si(OAlk)3, R2 =R3 = Н R2 = R3 = - -ОСН2 CH20-, R*=— Si(OAlk)3 R2 = R3 = - -OCH 2 CH г О-, R1 = -CH=N-CH2CH2CH2Si(OAlk)3 в качестве
Figure imgf000010_0001
where R 1 -Si (OAlk) 3 , R 2 = R 3 = Н R 2 = R 3 = - -ОСН 2 CH 2 0-, R * = - Si (OAlk) 3 R 2 = R 3 = - -OCH 2 CH g O-, R 1 = -CH = N-CH 2 CH 2 CH 2 Si (OAlk) 3 as
кремнийсодержащих добавок для образования монослоя на поверхности танталового анода из спрессованного порошка тантала. silicon-containing additives for the formation of a monolayer on the surface of the tantalum anode from pressed tantalum powder.
2. Способ получения катодной обкладки из полимерного электролита, который заключается в нанесении 8(восьми) слоев полимеризующегося соединения на основе полиэтилендиокситиофена на секции из 2. A method of producing a cathode plate from a polymer electrolyte, which consists in applying 8 (eight) layers of a polymerizable compound based on polyethylene dioxi thiophene to sections of
оксидированных объёмно-пористых анодов из вентильных металлов и через каждые 4 нанесённых слоя тренировки-подформовки с последующей промывкой секций в деионизованной воде, отличающийся тем, что на секции предварительно нанесён триалкоксисилан общей формулы но п. 1 путём пропитки секций 5%-ным раствором, например, триэтокси-2- тиенилсилана в этиловом спирте в течение 5 минут при температуре 25±5°С с последующей сушкой в 2 этапа: при комнатной температуре в течение 15 минут и в сушильном шкафу при температуре 1 10±5°С в течение 15-20 минут. oxidized volume-porous valve metal anodes and every 4 applied layers of the training-molding, followed by washing the sections in deionized water, characterized in that the sections are pre-coated with trialkoxysilane of the general formula but paragraph 1 by soaking the sections with a 5% solution, for example , triethoxy-2-thienylsilane in ethyl alcohol for 5 minutes at a temperature of 25 ± 5 ° С followed by drying in 2 stages: at room temperature for 15 minutes and in an oven at a temperature of 1 10 ± 5 ° С for 15- 20 minutes.
3. Оксидный конденсатор с твёрдым электролитом, содержащий секцию из объёмно-пористого анода из вентильных металлов, на поверхности которого последовательно созданы: оксидный слой, являющийся диэлектриком; монослой силана катодная обкладка в виде полимерного покрытия на основе полиэтилендиокситиофена, полученная способом но п. 2 формулы; углеродный слой, являющийся катодным переходным покрытием; серебросодержащий слой, являющийся катодным контактным покрытием, и оболочку, созданную, например, путём опрессовки секции пластмассой или заливки секции эпоксидным компаундом . 3. An oxide capacitor with a solid electrolyte, containing a section of a volume-porous valve metal anode, on the surface of which are successively created: an oxide layer, which is a dielectric; silane monolayer cathodic lining in the form of a polymeric coating based on polyethylenedioxythiophene, obtained by the method but claim 2 of the formula; carbon layer, which is a cathodic transition coating; a silver-containing layer, which is a cathode contact coating, and a shell created, for example, by crimping a section with plastic or filling the section with an epoxy compound.
PCT/RU2012/000647 2011-08-10 2012-08-09 Trialkoxysilanes, method for producing a polyethylenedioxythiophene-based cathode liner with a silane substrate, and an oxide capacitor with such a cathode liner WO2013022385A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2011133761 2011-08-10
RU2011133761/04A RU2500682C2 (en) 2011-08-10 2011-08-10 Trialkoxysilanes, method of making polyethylenedioxythiophene-based cathode plate having silane underlayer and oxide capacitor having said cathode plate

Publications (2)

Publication Number Publication Date
WO2013022385A2 true WO2013022385A2 (en) 2013-02-14
WO2013022385A3 WO2013022385A3 (en) 2013-05-30

Family

ID=47669129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2012/000647 WO2013022385A2 (en) 2011-08-10 2012-08-09 Trialkoxysilanes, method for producing a polyethylenedioxythiophene-based cathode liner with a silane substrate, and an oxide capacitor with such a cathode liner

Country Status (2)

Country Link
RU (1) RU2500682C2 (en)
WO (1) WO2013022385A2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070072362A1 (en) * 2003-12-26 2007-03-29 Industrial Technology Research Institute Solid electrolytic capacitor, fabrication method thereof, and coupling agent utilizing in the same
EP2309524A1 (en) * 2009-10-06 2011-04-13 Shin-Etsu Polymer Co. Ltd. Solid electrolytic capacitor, method for producing same, and solution for solid electrolytic capacitor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10237577A1 (en) * 2002-08-16 2004-02-26 H.C. Starck Gmbh Substituted poly (alkylenedioxythiophenes) as solid electrolytes in electrolytic capacitors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070072362A1 (en) * 2003-12-26 2007-03-29 Industrial Technology Research Institute Solid electrolytic capacitor, fabrication method thereof, and coupling agent utilizing in the same
EP2309524A1 (en) * 2009-10-06 2011-04-13 Shin-Etsu Polymer Co. Ltd. Solid electrolytic capacitor, method for producing same, and solution for solid electrolytic capacitor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TINGTING XU ET AL.: 'Self-assembled thienylsilane molecule as interfacial layer for ZnO nanowire/polymer hybrid system' JOURNAL OF PHOTONICS FOR ENERGY vol. 1, January 2011, pages 011107/1 - 011107/9 *

Also Published As

Publication number Publication date
WO2013022385A3 (en) 2013-05-30
RU2011133761A (en) 2013-02-20
RU2500682C2 (en) 2013-12-10

Similar Documents

Publication Publication Date Title
JP5484995B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US7760490B2 (en) Solid electrolytic capacitor and method of manufacturing solid electrolytic capacitor
JP2010285622A (en) Polythiophene, polythiophene dispersion and production method therefor and use thereof
JP2012244077A (en) Method for manufacturing solid electrolytic capacitor
JP4683318B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2010182426A (en) Conductive polymer composition and manufacturing method thereof, and solid electrolytic capacitor using the conductive polymer composition
JPH0473924A (en) Solid-state electrolytic capacitor and its manufacture
KR102324388B1 (en) Method for manufacturing solid electrolytic capacitors
JP6154461B2 (en) Oxidant solution for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing solid electrolytic capacitor
JP5145940B2 (en) Solid electrolyte manufacturing method and solid electrolytic capacitor
JP2009032895A (en) Solid-state electrolytic capacitor, and manufacturing method thereof
JPH11329900A (en) Manufacture of solid-state electrolytic capacitor
JP2011228636A (en) Solid-state capacitor and manufacturing method of the same
WO2013022385A2 (en) Trialkoxysilanes, method for producing a polyethylenedioxythiophene-based cathode liner with a silane substrate, and an oxide capacitor with such a cathode liner
JP2011258808A (en) Method of manufacturing solid electrolytic capacitor
JP4803750B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2004265941A (en) Solid state electrolytic capacitor and its manufacturing method
KR102486550B1 (en) 3,4-ethylenedioxythiophene copolymer, solid electrolyte including the same, solid electrolytic capacitor including the same and method for preparing the same
JP4730654B2 (en) Solid electrolyte layer forming method and composite material produced using the method
JP2014192423A (en) Oxidant solution for conductive polymer production, and method for producing solid electrolytic capacitor by use thereof
JP2012142373A (en) Solid electrolytic capacitor and method of manufacturing the same
JP2005109248A (en) Method of manufacturing solid electrolytic capacitor
JP2012077218A (en) Polymerizable monomer composition, method for producing solid electrolytic capacitor
JP5116130B2 (en) Solid electrolytic capacitor and manufacturing method thereof
KR102192467B1 (en) Solid electrolyte and Solid electrolyte capacitor including the same

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase

Ref document number: 12821804

Country of ref document: EP

Kind code of ref document: A2