WO2013022152A1 - Method for manufacturing metal nanoparticles having surface-enhanced raman scattering activity using cyclodextrin, and biosensor including the metal nanoparticles manufactured using the method - Google Patents

Method for manufacturing metal nanoparticles having surface-enhanced raman scattering activity using cyclodextrin, and biosensor including the metal nanoparticles manufactured using the method Download PDF

Info

Publication number
WO2013022152A1
WO2013022152A1 PCT/KR2011/009517 KR2011009517W WO2013022152A1 WO 2013022152 A1 WO2013022152 A1 WO 2013022152A1 KR 2011009517 W KR2011009517 W KR 2011009517W WO 2013022152 A1 WO2013022152 A1 WO 2013022152A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal nanoparticles
cyclodextrin
nanoparticles
metal
concentration
Prior art date
Application number
PCT/KR2011/009517
Other languages
French (fr)
Korean (ko)
Inventor
게클러커트
프램쿠마타탄
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Publication of WO2013022152A1 publication Critical patent/WO2013022152A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0553Complex form nanoparticles, e.g. prism, pyramid, octahedron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/30Low melting point metals, i.e. Zn, Pb, Sn, Cd, In, Ga
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the present invention relates to a method for producing metal nanoparticles having surface enhanced Raman scattering activity, and more particularly, by using a cyclodextrin that simultaneously acts as a reducing agent and a protective agent in the process of one-pot process, the metal nanoparticles from the metal salt simply It relates to a manufacturing method.
  • Precious metal nanoparticles such as gold or silver have special electronic, optical, and mechanical properties, and as a result, researches for synthesizing precious metal nanoparticles in various sizes and shapes are possible in various applications in microelectronics, chemical sensors, catalysts, and medical fields. Actively done.
  • silver nanoparticles are of particular interest due to their unique physical and chemical properties.
  • Surface plasmon resonance and light scattering of silver nanoparticles can be used to recognize molecules or molecular labels, and the size and shape of nanoparticles play a very important role in determining their properties.
  • the shape and the like are reported to vary depending on the manufacturing method and the conditions thereof.
  • Silver nanoparticles are chemically reduced, thermally decomposed, ultrasonically irradiated with ultrasonic waves, sonochemical methods, photo-induced reactions, electrochemical reduction methods, template methods, biochemical reduction methods in aqueous and organic solutions. It is manufactured by various methods, and the chemical reduction method is a method that can produce a large amount of nanoparticles in a relatively short time.
  • organic solvents and reducing agents used in such chemical reduction methods have strong toxicity and may be harmful to the human body and may cause environmental pollution.
  • Korean Patent No. 10-1029138 describes a method for producing gold or silver nanoparticle films having surface enhanced Raman scattering activity
  • Korean Patent No. 10-0838254 describes a method for preparing silver colloids.
  • the first problem to be solved by the present invention is to use a cyclodextrin in room temperature, aqueous solution without using additional reducing agent, using a silver nitrate in a simple one-pot reaction to produce silver nanoparticles
  • the present invention also provides a method for preparing silver nanoparticles having various shapes and sizes.
  • the second problem to be solved by the present invention is to provide a biosensor using the silver nanoparticles prepared by the manufacturing method as a substrate for surface-enhanced Raman scattering (SERS).
  • SERS surface-enhanced Raman scattering
  • the present invention to achieve the first object,
  • Metal salt aqueous solution Cyclodextrin aqueous solution; And it provides a method for producing metal nanoparticles comprising the step of mixing ;.
  • the cyclodextrin may be any one selected from ⁇ -cyclodextrin, ⁇ -cyclodextrin and ⁇ -cyclodextrin
  • the base is any selected from sodium hydroxide, calcium hydroxide and magnesium hydroxide It can be one.
  • the metal salt may be a metal salt including any one metal selected from Au, Ag, Pt, Pd, Ru, Rh, Fe, Co, Ni, Cu, Zn and Ti. .
  • the metal salt is AgNO 3, AgCl, AgBr, AgI , CH 3 COOAg, AgBF 4, KAuCl 4, NaAuCl 4 ⁇ xH 2 O, NaAuBr 4 ⁇ xH 2 O, AuCl 3, AuBr 3 , AuCl and mixtures thereof.
  • the metal nanoparticles are characterized in that they are capped with cyclodextrin.
  • the concentration of the base and the reaction temperature during the reaction can be adjusted to the size and shape of the metal nanoparticles, respectively.
  • the concentration of the metal salt is 2-10 mM
  • the concentration of the cyclodextrin is 2-10 mM
  • the concentration of the base is 2-60 mM
  • the reaction temperature is 4-80 ° C. Independently adjusting the size and shape of the metal nanoparticles can be adjusted respectively.
  • the diameter of the metal nanoparticles may be 1 nm-1 ⁇ m.
  • the present invention to achieve the second object,
  • a surface-enhanced Raman scattering (SERS) substrate comprising metal nanoparticles capped with cyclodextrin prepared according to the preparation method; Raman probes; laser; And it provides a bio sensor comprising a Raman detector.
  • SERS surface-enhanced Raman scattering
  • the Raman probe may be P-aminothiophenol.
  • the method for preparing metal nanoparticles according to the present invention can be easily prepared in a one-pot process by reducing metal salts using cyclodextrins at room temperature and in aqueous solution, and thus has excellent process efficiency, and cyclodextrins are reducing agents and It is an environmentally friendly process because it does not need to add other organic reducing agents as a protective agent, and it is a metal nano having various shapes and sizes such as spheres, polygons, nanorods, nanowires, and nanoflowers by only controlling the concentration and reaction temperature of the reactants. Allows the preparation of the particles.
  • the various metal nanoparticles thus prepared have excellent surface-enhanced Raman scattering (SERS) activity, it can be used as a biosensor for detecting biomaterials in the biomedical field.
  • SERS surface-enhanced Raman scattering
  • FIG. 1A is a UV-vis absorption spectrum of silver nanoparticles prepared according to Synthesis Example 1
  • FIG. 1B is a graph showing the average size of silver nanoparticles
  • FIG. 1C is an XRD diffraction pattern.
  • FIG. 3 is a UV-vis spectrum of silver nanoparticles prepared according to Synthesis Examples 2 and 3.
  • FIG. 3 is a UV-vis spectrum of silver nanoparticles prepared according to Synthesis Examples 2 and 3.
  • FIG. 6 is a PATP Raman spectrum and a PATP Raman spectrum on a silver substrate.
  • FIG. 6A is a synthesis example 5
  • FIG. 6B is a synthesis example 4
  • FIG. 6C is a synthesis example 1
  • FIG. 6D is a Raman spectrum of the synthesis example 6.
  • the present invention is to prepare a metal nanoparticles by mixing a metal salt aqueous solution and a cyclodextrin aqueous solution, and mixed with a sodium hydroxide aqueous solution to the mixture solution at room temperature, without adding a separate reducing agent or protective agent, one-pot in an aqueous solution It is characterized in that the manufacturing simply.
  • the present invention uses a dimethyl formamide, ethanol, methanol, ethylene glycol, sodium citrate and the like as a reducing agent in the prior art, the human body that occurs when the metal nanoparticles are produced by reducing the reaction by heating at 60 °C or more in an aqueous solution, As an improvement in environmental hazards and an increase in process cost, the metal nanoparticles having different shapes and sizes are prepared using cyclodextrins which simultaneously act as reducing agents and stabilizers at room temperature.
  • Cyclodextrin used in the present invention is a water-soluble, non-toxic organic macrocyclic material, consisting of D-(+)-glucopyranose bound by ⁇ -1,4-linkage ( ⁇ -, ⁇ -, and ⁇ -cyclodextrins are usually composed of 6-8 units) to form complexes containing various guest molecular materials, followed by host-guest interactions, molecular sieve detection, drug carriers, and catalysts. Used in foods, cosmetics, pesticides, etc.
  • any one selected from ⁇ -cyclodextrin, ⁇ -cyclodextrin and ⁇ -cyclodextrin was used, and preferably, metal nanoparticles can be prepared using ⁇ -cyclodextrin.
  • Metal nanoparticles can be used in various fields depending on their shape and size.
  • polygonal and spherical nanoparticles can be used as SERS spectroscopy, flower forms as catalysts, and nanorod forms can be utilized in flexible devices.
  • the metal nanoparticles should be manufactured in various sizes and shapes.
  • the present invention can independently control one or more of the concentration of cyclodextrin, the concentration of sodium hydroxide, and the reaction temperature, respectively, to control the size and shape of the metal nanoparticles. It is characterized by being.
  • cyclodextrins can be used to prepare stable metal nanoparticles, in particular silver nanoparticles at room temperature without the use of additional reducing agents and without the consumption of additional energy, and also by using cyclodextrin at room temperature.
  • Silver nanoparticles can be produced in various shapes and sizes.
  • the synthesis of the nanoparticles according to the present invention can be easily prepared by the one-pot reaction of silver nitrate (AgNO 3 ) using cyclodextrin (CD) in room temperature, alkali aqueous solution.
  • CD is a non-toxic, biocompatible, water-soluble macrocycle organic material and prepared in a positive aqueous solution, making the reaction process simpler and more environmentally friendly.
  • silver nanoparticles of various sizes and shapes may be prepared by changing reaction conditions such as concentration of reactants and reaction temperature. That is, spherical, polygonal, rod, flower, and wire-shaped nanoparticles may be prepared in an aqueous alkali solution using ⁇ -cyclodextrin not separately treated under different reaction conditions.
  • the silver nanoparticles when silver nanoparticles are used as a substrate for surface-enhanced Raman scattering (SERS), and p-amino-thiophenol (PATP) is used as a Raman probe, the silver nanoparticles are bonded by silver nanoparticles in the composite of the silver nanoparticles. It can induce enhanced Raman scattering effect than individual silver nanoparticles, which can be utilized in biosensors capable of detecting biomaterials in the biomedical field.
  • SERS surface-enhanced Raman scattering
  • PATP p-amino-thiophenol
  • cyclodextrin ⁇ -Cyclodextrin
  • silver nitrate AgNO 3
  • PATP p-aminothiophenol
  • various metal nanoparticles as well as silver and gold nanoparticles can be synthesized by the production method of the present invention synthesized at room temperature and aqueous solution using cyclodextrin without using a separate toxic organic reducing agent and a protecting agent.
  • the CD-capped-AgNPs colloidal solution capped with CD obtained in Synthesis Example 1 was centrifuged at 4000 rpm for 15 minutes, the supernatant was discarded and the remaining residue was dispersed in 1 mL of ionized water. 500 uL of PTAP ethanol solution (0.1 M) was mixed and left at room temperature for 3 hours. The surface of the silver nanoparticles capped with CD was coated with PTAP to form silver nanoparticles coated with PATP. It was centrifuged at 4000 rpm for 10 minutes, and excess CD and PTAP were removed to separate silver nanoparticles coated with PATP.
  • the separated PTAP-AgNP was mounted on a SERS glass substrate to measure SERS.
  • UV-vis absorption spectra for the Ag-5, Ag-4, Ag-1, and Ag-6 prepared by varying NaOH concentrations of 5, 10, 20, and 40 mM, respectively, are shown in FIG. 2. That is, when the NaOH concentration was changed from 40 mM to 5 mM, the absorption peak of the silver nanoparticles shifted from 410 nm to 420 nm. This is due to the increase in particle size and dispersion.
  • the silver nanoparticles were self-assembled to have a polygonal or ant-like shape, and when the concentration was 10 mM, the nanoflower form was shown.
  • the concentration was 10 mM
  • the nanoflower form was shown in the case of 20 mM
  • a well-dispersed polygonal form was shown in the case of 40 mM
  • a flower form was shown in the case of 40 mM.
  • the flower shape is also a shape in which several polygonal nanoparticles are self-assembled when viewed in a higher resolution TEM image.
  • the nanoparticles were 24.79 ⁇ 5.14, 34.50 ⁇ 5.69, 54.46 ⁇ 12.94 and 146.49 ⁇ 28.73 nm, respectively.
  • the NaOH concentration decreased, the particle size decreased, and the peak shifted to a red color in the UV-vis absorption spectrum. This is because the nanoparticles aggregate at low concentrations to form a complex form or a branched form.
  • CD structurally has a truncated cone-like structure with a hollow, truncated cone-like structure and has a unique structure in which -OH groups on the surface are bonded to -OH groups on adjacent torus structures. It is also a substance with water-soluble properties and non-toxic. Because of these properties, CD enables the adsorption, reduction and growth of metal particles at the nanoscale.
  • the CD has a -OH group, which enables reduction of Ag + in an aqueous alkali solution.
  • NaOH serves to deprotonate the OH group of the CD and thereby stabilize it while increasing the reactivity of the nanoparticles. Reaction with only CD material without NaOH cannot reduce the silver salt to silver nanoparticles. It can be seen that the CD material reduces silver salts to silver nanoparticles in the presence of NaOH, and serves as a capping material of silver nanoparticles. In addition, silver nanoparticles do not form upon reaction with the CD material under acidic conditions.
  • CD functions as a reducing and protecting agent under basic conditions, and basic conditions deprotonate the OH group of the CD.
  • concentration of NaOH decreases, the reduction by CD material and the stabilization of nanoparticles decrease, and the size of the particles increases due to the aggregation of nanoparticles.
  • concentration of NaOH increased, the CD was less strongly coated on the silver nanoparticles, resulting in agglomeration of nanoparticles.
  • UV-vis spectra of silver nanoparticles are shown for the case where the concentration of CD is 5 mM (Synthesis Example 2) and 2.5 mM (Synthesis Example 2).
  • concentration of CD was changed from 5 mM to 2.5 mM
  • the peak of the silver nanoparticles shifted from 414 nm (FIG. 1A) to 417 nm (FIG. 3). This is due to the change in particle size and dispersibility.
  • the peak of surface plasmon resonance was lower in intensity as the concentration of silver nitrate was changed from 5 mM to 2.5 mM. This is because the size of the particles is smaller and there is a change in dispersibility.
  • Synthesis Example 3 shows that the silver nanoparticles are self-assembled to show the nanowire shape, and the wire shape is well maintained by the CD.
  • the size of the self-assembled nanoparticles is 32.24 ⁇ .
  • the wire form constitutes a pack in which polygonal nanoparticles are closely coupled.
  • the silver nanoparticles do not aggregate to form one large particle, and each nanoparticle shows a shape in which wires are aligned. This is because secondary bonding occurs between the -OH groups on the surface of the CD-coated particles, and therefore, it can be seen that CD can act as a binder with the molecular sieve.
  • the concentration of silver salt is low, whereas on the other hand, when the concentration of CD is high, the particles show a spherical shape, and the size also decreases to 9.23 ⁇ 1.35 nm. That is, as the concentration of CD increases, the binding of silver and CD increases, and CD plays a role of protecting silver nanoparticles during the growth of nanoparticles, thereby inhibiting the growth of particles and decreasing their size.
  • Synthesis Examples 1, 7, 8 were all prepared by varying the temperature at room temperature (25 ° C), 4 ° C, 65 ° C under the same conditions of AgNO 3 5 mM, CD 5 mM, NaOH 20 mM, respectively.
  • Ag-8 prepared at 65 ° C. had a size of 12.80 ⁇ 0.99 nm, which was smaller than that produced at room temperature. This is because the activity between the silver salt and the CD increases at high temperature, so crystal nuclei are formed quickly and smaller spherical particles are formed, and CD is well protected from the silver nanoparticles, thereby inhibiting the growth of the particles.
  • AG-7 manufactured at 4 ° C. small spherical particles are bonded to each other to form a rod-shaped structure (size 19.22 ⁇ 4.34 nm). This is because reaction conditions, which play an important role in the growth of metal structures, have been slowed down. During the temperature increase from 4 ° C. to 65 ° C., the size of the nanoparticles decreased and there was a shift in the weak blue light absorption peak at 500-800 nm.
  • the peaks seen at 1384 cm ⁇ 1 and 1644 cm ⁇ 1 are due to symmetric and asymmetric carboxylate ions. This is because in the absence of other reducing agents, the CD acts as a reducing agent, oxidizes itself to form carboxylic acids, and is effectively capped on the surface of the silver nanoparticles.
  • CD's own 946 cm -1 (skeletal vibration involving a-1,4 linkag), 759 cm -1 (ring-breathing-vibration), 708 cm -1 (pyranose ring vibration), 574 cm -1 (pyranose ring vibration) spectrum peak was decreased in CD-capped AgNPs because the CD was fixed and the pyranose ring vibration and skeletal vibration were inhibited.
  • -OH shift was observed from 3391 cm ⁇ 1 to 3416 cm ⁇ 1 , which is due to the interaction between CD and silver nanoparticles.
  • Cavities of CD without polarity are known to form host-guest complexes of various hydrophobic molecules.
  • Silver atoms (288 pm) or silver nanoparticles of 1 nm or less may form a complex in the cavity of the CD.
  • the silver nanoparticles according to the present invention have a size larger than 780 pm to form a complex in the internal cavity of the CD.
  • the Raman spectrum measured from the silver nanoparticles prepared according to Synthesis Example 5 has a 1 oscillation mode such as v (CC) and v (CS) at 1597 cm ⁇ 1 and 1078 cm ⁇ 1 . in-plane, in-phase modes) dominated. In addition, the peak disappeared at 467 cm ⁇ 1 , and a peak was observed at 388 cm ⁇ 1 as a vibration mode enhanced by CS coupling.
  • the shape and size of the nanoparticles vary according to the reaction conditions for preparing the silver nanoparticles, and as a result, the intensity of the SERS signal for each silver nanoparticle is changed.
  • 6A to 6D are results for silver nanoparticles produced under different conditions with NaOH concentrations of 5, 10, 20, and 40 mM, respectively.
  • NaOH concentration decreases
  • the nanoparticles agglomerate and increase in size, and the agglomeration and size change of the silver nanoparticles are confirmed by the difference in the CD concentration.
  • the SERS signal is weaker in silver nanoparticles produced at 65 ° C than silver nanoparticles produced at 4 ° C. This is also because the size of the silver nanoparticles is reduced.
  • silver nanoparticles protected by CD which can be manufactured in various sizes and shapes, can be utilized as a biosensor for efficiently detecting a label using SERS substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

The present invention relates to a method for manufacturing metal nanoparticles having surface-enhanced Raman scattering (SERS) activity, which is characterized in that the method comprises a step of mixing an aqueous metal salt solution, an aqueous cyclodextrin solution, and an aqueous sodium hydroxide solution. In the method for manufacturing the metal nanoparticles according to the present invention, metal salts are reduced through a one-pot process using cyclodextrin in an aqueous solution at room temperature, thereby simplifying the process and achieving superior processing efficiency. In addition, since the cyclodextrin functions as a reducing agent and as a protecting agent in the aqueous solution, making a separate organic reducing agent unnecessary, the manufacturing process is environmentally-friendly. The metal nanoparticles can be obtained in various shapes and sizes, such as a sphere, a polygon, a nanorod, a nanowire, a nanoflower, etc., simply by controlling the concentrations of reactants and the reaction temperature. Further, the thus-obtained various kinds of metal nanoparticles have superior SERS activity and can therefore be applied in a biosensor for detecting biomaterials in the field of biomedicine.

Description

사이클로덱스트린을 이용하여 표면증강라만산란 활성을 갖는 금속 나노입자의 제조방법 및 이에 따라 제조된 금속나노입자를 포함하는 바이오센서Method for producing metal nanoparticles having surface enhanced Raman scattering activity using a cyclodextrin and biosensor comprising metal nanoparticles prepared accordingly
본 발명은 표면증강라만산란 활성을 갖는 금속 나노입자의 제조방법에 관한 것으로서, 더욱 상세하게는 환원제 및 보호제의 역할을 동시에 하는 사이클로덱스트린을 이용하여 원-팟 공정 진행으로 간단히 금속염으로부터 금속 나노입자를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing metal nanoparticles having surface enhanced Raman scattering activity, and more particularly, by using a cyclodextrin that simultaneously acts as a reducing agent and a protective agent in the process of one-pot process, the metal nanoparticles from the metal salt simply It relates to a manufacturing method.
금 또는 은 등의 귀금속 나노입자는 특별한 전자적, 광학적, 기계적 특성을 가지고, 이로 인한 마이크로일렉트로닉스, 화학 센서, 촉매, 의료 분야 등에서 다양한 응용이 가능하여 귀금속 나노입자를 다양한 크기와 모양으로 합성하는 연구가 활발히 이루어지고 있다.Precious metal nanoparticles such as gold or silver have special electronic, optical, and mechanical properties, and as a result, researches for synthesizing precious metal nanoparticles in various sizes and shapes are possible in various applications in microelectronics, chemical sensors, catalysts, and medical fields. Actively done.
그 중에서도 은 나노입자는 물리화학적 성질이 특이하여 특히 관심을 받고 있다. 은 나노입자의 표면 플라즈몬 공명과 광 산란을 이용하여 분자 또는 분자 표지를 인식하데 활용할 수 있고, 나노입자의 크기와 모양이 그 특성을 결정함에 매우 중요한 역할을 하는데, 은 나노입자의 안정성, 크기, 모양 등은 제조방법과 그 조건에 따라서 달라진다고 보고되고 있다.Among them, silver nanoparticles are of particular interest due to their unique physical and chemical properties. Surface plasmon resonance and light scattering of silver nanoparticles can be used to recognize molecules or molecular labels, and the size and shape of nanoparticles play a very important role in determining their properties. The shape and the like are reported to vary depending on the manufacturing method and the conditions thereof.
은 나노입자는 수용액 및 유기 용액내에서 화학적 환원법, 열적 분해법, 초음파를 조사하는 초음파처리법, 음향화학적(sonochemical) 방법, 광유발반응법, 전기화학적 환원법, 템플리트법(template method), 생화학적 환원법 등 다양한 방법으로 제조되고 있고, 화학적 환원법이 비교적 짧은 시간내에 많은 양의 나노입자를 제조할 수 있는 방법이다. 하지만, 이러한 화학적 환원법에서 사용하는 유기 용매, 환원제는 강한 독성을 지니고 있어서 인체에 유해하고, 환경오염의 문제가 발생할 수 있다.Silver nanoparticles are chemically reduced, thermally decomposed, ultrasonically irradiated with ultrasonic waves, sonochemical methods, photo-induced reactions, electrochemical reduction methods, template methods, biochemical reduction methods in aqueous and organic solutions. It is manufactured by various methods, and the chemical reduction method is a method that can produce a large amount of nanoparticles in a relatively short time. However, organic solvents and reducing agents used in such chemical reduction methods have strong toxicity and may be harmful to the human body and may cause environmental pollution.
따라서, 환원제의 역할을 하면서 독성이 없고 생체에 적합한 물질을 이용하고, 수용액 내에서 여러 단계를 거치지 않고, 한 단계(one-pot) 공정으로 간단히 은 나노입자를 합성하는 방법의 개발이 절실히 필요한 실정이다.Therefore, there is an urgent need to develop a method of synthesizing silver nanoparticles in a one-pot process using a non-toxic and biocompatible material, and acting as a reducing agent, without going through several steps in an aqueous solution. to be.
특히, 앞서 기술한 인체, 환경적 유해를 방지하면서 제조시 비용절감뿐만 아니라 최종 물질의 순도를 향상시킬 수 있는 제조방법의 개발이 더욱 필요할 뿐만 아니라 이러한 공정으로 합성한 은 나노입자의 표면을 유기 수용체로 개질하여 생물학적 검출이 가능한 광학적 나노디바이스를 제공함이 필요한 실정이다.In particular, it is necessary to develop a manufacturing method that can improve the purity of the final material as well as cost reduction during manufacturing, while preventing the human and environmental hazards described above. It is necessary to provide an optical nanodevice that can be modified by biological detection.
종래 기술로 한국등록특허 제10-1029138호에 표면증강라만산란 활성을 가지는 금 또는 은 나노입자 필름 제조방법이 기재되어 있고, 한국등록특허 제10-0838254호에 은 콜로이드 제조방법이 기재되어 있다.In the prior art, Korean Patent No. 10-1029138 describes a method for producing gold or silver nanoparticle films having surface enhanced Raman scattering activity, and Korean Patent No. 10-0838254 describes a method for preparing silver colloids.
따라서, 본 발명이 해결하고자 하는 첫 번째 과제는 별도의 환원제를 사용하지 않고, 추가적인 에너지의 소비없이 상온, 수용액내에서 사이클로덱스트린을 이용하여 질산은을 간단히 원-팟 반응으로 진행하여 은 나노입자를 제조하는 방법을 제공하고, 또한, 다양한 모양과 크기를 가지는 은 나노입자를 제조하는 방법을 제공하는 것이다.Therefore, the first problem to be solved by the present invention is to use a cyclodextrin in room temperature, aqueous solution without using additional reducing agent, using a silver nitrate in a simple one-pot reaction to produce silver nanoparticles The present invention also provides a method for preparing silver nanoparticles having various shapes and sizes.
본 발명이 해결하고자 하는 두 번째 과제는 상기 제조방법에 의해서 제조한 은 나노입자를 표면강화라만산란(SERS)의 기재로 이용한 바이오 센서를 제공하는 것이다.The second problem to be solved by the present invention is to provide a biosensor using the silver nanoparticles prepared by the manufacturing method as a substrate for surface-enhanced Raman scattering (SERS).
본 발명은 상기 첫 번째 과제를 달성하기 위하여,The present invention to achieve the first object,
금속염 수용액; 사이클로덱스트린 수용액; 및 염기;를 혼합하는 단계를 포함하는 금속 나노입자의 제조방법을 제공한다.Metal salt aqueous solution; Cyclodextrin aqueous solution; And it provides a method for producing metal nanoparticles comprising the step of mixing ;.
본 발명의 일 실시예에 의하면, 상기 사이클로덱스트린은 α-사이클로덱스트린, β-사이클로덱스트린 및 γ-사이클로덱스트린 중에서 선택되는 어느 하나일 수 있고, 상기 염기는 수산화나트륨, 수산화칼슘 및 수산화마그네슘 중에서 선택되는 어느 하나일 수 있다.According to one embodiment of the invention, the cyclodextrin may be any one selected from α-cyclodextrin, β-cyclodextrin and γ-cyclodextrin, the base is any selected from sodium hydroxide, calcium hydroxide and magnesium hydroxide It can be one.
본 발명의 다른 일 실시예에 의하면, 상기 금속염은 Au, Ag, Pt, Pd, Ru, Rh, Fe, Co, Ni, Cu, Zn 및 Ti 중에서 선택되는 어느 하나의 금속을 포함하는 금속염일 수 있다.According to another embodiment of the present invention, the metal salt may be a metal salt including any one metal selected from Au, Ag, Pt, Pd, Ru, Rh, Fe, Co, Ni, Cu, Zn and Ti. .
본 발명의 다른 일 실시예에 의하면, 상기 금속염은 AgNO3, AgCl, AgBr, AgI, CH3COOAg, AgBF4, KAuCl4, NaAuCl4·xH2O, NaAuBr4·xH2O, AuCl3, AuBr3, AuCl 및 이들의 혼합물 중에서 선택되는 어느 하나일 수 있다.According to another embodiment of the present invention, the metal salt is AgNO 3, AgCl, AgBr, AgI , CH 3 COOAg, AgBF 4, KAuCl 4, NaAuCl 4 · xH 2 O, NaAuBr 4 · xH 2 O, AuCl 3, AuBr 3 , AuCl and mixtures thereof.
본 발명의 다른 일 실시예에 의하면, 상기 금속 나노입자는 사이클로덱스트린으로 캡핑되어 있는 것을 특징으로 한다.According to another embodiment of the present invention, the metal nanoparticles are characterized in that they are capped with cyclodextrin.
본 발명의 다른 일 실시예에 의하면, 상기 사이클로덱스트린의 농도, 상기 염기의 농도 및 상기 반응시의 반응온도 중의 하나 이상을 조절하여 금속 나노입자의 크기 및 형상을 각각 조절할 수 있다.According to another embodiment of the present invention, by adjusting one or more of the concentration of the cyclodextrin, the concentration of the base and the reaction temperature during the reaction can be adjusted to the size and shape of the metal nanoparticles, respectively.
본 발명의 다른 일 실시예에 의하면, 상기 금속염의 농도를 2-10 mM, 상기 사이클로덱스트린의 농도를 2-10 mM, 상기 염기의 농도를 2-60 mM, 상기 반응온도를 4-80 ℃로 각각 독립적으로 조절하여 금속 나노입자의 크기 및 형상을 각각 조절할 수 있다.According to another embodiment of the present invention, the concentration of the metal salt is 2-10 mM, the concentration of the cyclodextrin is 2-10 mM, the concentration of the base is 2-60 mM, and the reaction temperature is 4-80 ° C. Independently adjusting the size and shape of the metal nanoparticles can be adjusted respectively.
본 발명의 다른 일 실시예에 의하면, 상기 금속 나노입자의 직경 크기는 1 nm-1 ㎛일 수 있다.According to another embodiment of the present invention, the diameter of the metal nanoparticles may be 1 nm-1 μm.
본 발명은 상기 두 번째 과제를 달성하기 위하여,The present invention to achieve the second object,
상기 제조방법에 따라 제조된 사이클로덱스트린으로 캡핑된 금속 나노입자를 포함하는 표면강화라만산란(SERS) 기재; 라만 프로브; 레이져; 및 라만 검출기를 포함하는 바이오 센서를 제공한다.A surface-enhanced Raman scattering (SERS) substrate comprising metal nanoparticles capped with cyclodextrin prepared according to the preparation method; Raman probes; laser; And it provides a bio sensor comprising a Raman detector.
본 발명의 일 실시예에 의하면, 상기 라만 프로브는 P-아미노티오페놀일 수 있다.According to an embodiment of the present invention, the Raman probe may be P-aminothiophenol.
본 발명에 따른 금속 나노입자의 제조방법은 상온, 수용액내에서 사이클로덱스트린을 이용하여 금속염을 환원시켜 원-팟 공정으로 간단하게 제조가 가능하여 공정 효율이 우수하고, 사이클로덱스트린이 수용액내에서 환원제 및 보호제 역할을 하여 별도의 다른 유기 환원제를 첨가하지 않아도 되기 때문에 친환경적 공정이고, 반응물의 농도 및 반응 온도의 조절만으로도 구, 다각형, 나노로드, 나노와이어, 나노플라워 등의 다양한 형태와 크기를 가지는 금속 나노입자의 제조를 가능하게 한다. 또한, 이에 따라 제조된 다양한 금속 나노입자는 우수한 표면강화라만산란(SERS) 활성을 가지므로, 바이오 의료분야에서 생체물질을 검출하는 바이오센서로 활용할 수 있다.The method for preparing metal nanoparticles according to the present invention can be easily prepared in a one-pot process by reducing metal salts using cyclodextrins at room temperature and in aqueous solution, and thus has excellent process efficiency, and cyclodextrins are reducing agents and It is an environmentally friendly process because it does not need to add other organic reducing agents as a protective agent, and it is a metal nano having various shapes and sizes such as spheres, polygons, nanorods, nanowires, and nanoflowers by only controlling the concentration and reaction temperature of the reactants. Allows the preparation of the particles. In addition, the various metal nanoparticles thus prepared have excellent surface-enhanced Raman scattering (SERS) activity, it can be used as a biosensor for detecting biomaterials in the biomedical field.
도 1a는 합성예 1에 따라 제조한 은 나노입자의 UV-vis 흡광 스펙트럼이고, 도 1b는 은 나노입자의 평균 크기를 나타내는 그래프이고, 도 1c는 XRD 회절 패턴이다.1A is a UV-vis absorption spectrum of silver nanoparticles prepared according to Synthesis Example 1, FIG. 1B is a graph showing the average size of silver nanoparticles, and FIG. 1C is an XRD diffraction pattern.
도 2는 본 발명의 합성예 5, 4, 1, 6(각각 NaOH 농도 5, 10, 20, 40 mM)에 따라 제조된 은 나노입자의 UV-vis 스펙트럼이다. 2 is a UV-vis spectrum of silver nanoparticles prepared according to Synthesis Examples 5, 4, 1, 6 ( NaOH concentration 5, 10, 20, 40 mM, respectively) of the present invention.
도 3은 합성예 2, 3에 따라 제조된 은 나노입자의 UV-vis 스펙트럼이다. 3 is a UV-vis spectrum of silver nanoparticles prepared according to Synthesis Examples 2 and 3. FIG.
도 4는 합성예 7, 8에 따라 제조한 은 나노입자의 UV-vis 스펙트럼이다.4 is a UV-vis spectrum of silver nanoparticles prepared according to Synthesis Examples 7, 8.
도 5는 CD 자체만의 FT-IR 스펙트럼(a), 본 발명의 합성예 1에 따른 CD 캡핑 은 나노입자의 FT-IR 스펙트럼(b)이다.5 is the FT-IR spectrum (a) of the CD itself, FT-IR spectrum (b) of the CD capping silver nanoparticles according to Synthesis Example 1 of the present invention.
도 6은 PATP 라만 스펙트럼과 은 기재상의 PATP 라만스펙트럼으로서, 도 6a는 합성예 5, 도 6b는 합성예 4, 도 6c는 합성예 1, 도 6d는 합성예 6의 라만 스펙트럼이다.FIG. 6 is a PATP Raman spectrum and a PATP Raman spectrum on a silver substrate. FIG. 6A is a synthesis example 5, FIG. 6B is a synthesis example 4, FIG. 6C is a synthesis example 1, and FIG. 6D is a Raman spectrum of the synthesis example 6. FIG.
이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명은 금속염 수용액과 사이클로덱스트린 수용액을 혼합하고, 상기 혼합액에 수산화나트륨 수용액을 혼합하여 상온에서 반응시켜 금속 나노입자를 제조하는 것으로서, 별도의 환원제나 보호제를 첨가하지 아니하고, 수용액내에서 원-팟으로 간단히 제조하는 것을 특징으로 한다.The present invention is to prepare a metal nanoparticles by mixing a metal salt aqueous solution and a cyclodextrin aqueous solution, and mixed with a sodium hydroxide aqueous solution to the mixture solution at room temperature, without adding a separate reducing agent or protective agent, one-pot in an aqueous solution It is characterized in that the manufacturing simply.
본 발명은 종래에 환원제로 다이메틸 포름아미드, 에탄올, 메탄올, 에틸렌글리콜, 소듐 사이트레이트 등을 사용하거나, 수용액 내에서 60 ℃ 이상 가열하여 환원 반응시켜 금속 나노입자를 제조하는 경우에 발생하는 인체, 환경적 유해함과 공정비용의 증가 등을 개선한 것으로서, 모양, 크기가 다른 금속 나노입자를 제조함에 있어서, 상온에서 환원제와 안정화제의 역할을 동시에 하는 사이클로덱스트린을 이용하여 제조한다.The present invention uses a dimethyl formamide, ethanol, methanol, ethylene glycol, sodium citrate and the like as a reducing agent in the prior art, the human body that occurs when the metal nanoparticles are produced by reducing the reaction by heating at 60 ℃ or more in an aqueous solution, As an improvement in environmental hazards and an increase in process cost, the metal nanoparticles having different shapes and sizes are prepared using cyclodextrins which simultaneously act as reducing agents and stabilizers at room temperature.
본 발명에 사용한 사이클로덱스트린(cyclodextrin)은 수용성이며, 독성이 없는 유기 매크로사이클릭 물질로서, α-1,4-linkage에 의해서 결합된 D-(+)-글루코피라노오스(glucopyranose)로 구성(보통 α-, β-, γ-사이클로덱스트린은 6-8개의 유닛으로 구성)되어 다양한 게스트 분자 물질을 포함하여 복합체를 형성한 후, 호스트-게스트 물질의 상호작용, 분자체 감지, 약물 운반체, 촉매, 식품, 화장품, 농약 등에 사용되는 물질이다.Cyclodextrin used in the present invention is a water-soluble, non-toxic organic macrocyclic material, consisting of D-(+)-glucopyranose bound by α-1,4-linkage ( Α-, β-, and γ-cyclodextrins are usually composed of 6-8 units) to form complexes containing various guest molecular materials, followed by host-guest interactions, molecular sieve detection, drug carriers, and catalysts. Used in foods, cosmetics, pesticides, etc.
본 발명에서는 α-사이클로덱스트린, β-사이클로덱스트린 및 γ-사이클로덱스트린 중에서 선택되는 어느 하나를 사용하였고, 바람직하게는 β-사이클로덱스트린를 사용하여 금속 나노입자를 제조할 수 있다.In the present invention, any one selected from α-cyclodextrin, β-cyclodextrin and γ-cyclodextrin was used, and preferably, metal nanoparticles can be prepared using β-cyclodextrin.
금속 나노입자는 그 형상과 크기에 따라서 다양한 분야에 활용할 수 있는데, 예를 들면 다각형, 구형의 나노입자는 SERS 분광 기재로서 사용할 수 있고, 플라워 형태는 촉매로서, 나노로드 형태는 플렉시블 디바이스에 활용할 수 있다. 이처럼 다양한 크기와 형상으로 금속 나노입자를 제조하여야 하는데, 본 발명은 사이클로덱스트린의 농도, 수산화나트륨의 농도 및 반응온도 중의 하나 이상을 각각 독립적으로 조절하여 상기 금속 나노입자의 크기 및 형상을 각각 조절할 수 있는 것을 특징으로 한다.Metal nanoparticles can be used in various fields depending on their shape and size. For example, polygonal and spherical nanoparticles can be used as SERS spectroscopy, flower forms as catalysts, and nanorod forms can be utilized in flexible devices. have. As described above, the metal nanoparticles should be manufactured in various sizes and shapes. The present invention can independently control one or more of the concentration of cyclodextrin, the concentration of sodium hydroxide, and the reaction temperature, respectively, to control the size and shape of the metal nanoparticles. It is characterized by being.
본 발명에 따르면, 사이클로덱스트린을 사용하여 안정적인 금속 나노입자를, 특히 은 나노입자를 추가적인 환원제를 사용하지 않고, 또한 추가적인 에너지의 소비없이 상온에서 제조할 수 있고, 또한, 상온에서 사이클로덱스트린을 사용하여 은 나노입자의 모양과 크기를 다양하게 제조할 수 있다.According to the present invention, cyclodextrins can be used to prepare stable metal nanoparticles, in particular silver nanoparticles at room temperature without the use of additional reducing agents and without the consumption of additional energy, and also by using cyclodextrin at room temperature. Silver nanoparticles can be produced in various shapes and sizes.
특히, 본 발명에 따른 나노입자의 합성은 상온, 알칼리 수용액내에서 사이클로덱스트린(CD)을 이용하여 질산은(AgNO3)을 원-팟 반응으로 간단하게 제조할 수 있다. CD는 독성이 없고, 생체 적합적이며, 수용성의 매크로사이클 유기 물질이고, 양성의 수용액에서 제조하였기에 그 반응 공정이 보다 간단하고 친환경적이다. 더욱이, 본 발명에서는 반응물의 농도, 반응 온도와 같은 반응 조건을 달리하여 다양한 크기와 모양의 은 나노입자를 제조할 수 있다. 즉, 구형, 다각형, 로드(rod), 플라워형태, 와이어 형태의 나노입자 등을 각각 다른 반응 조건에서 별도 처리하지 않은 β-사이클로덱스트린을 이용하여 알칼리 수용액내에서 제조할 수 있다.In particular, the synthesis of the nanoparticles according to the present invention can be easily prepared by the one-pot reaction of silver nitrate (AgNO 3 ) using cyclodextrin (CD) in room temperature, alkali aqueous solution. CD is a non-toxic, biocompatible, water-soluble macrocycle organic material and prepared in a positive aqueous solution, making the reaction process simpler and more environmentally friendly. Furthermore, in the present invention, silver nanoparticles of various sizes and shapes may be prepared by changing reaction conditions such as concentration of reactants and reaction temperature. That is, spherical, polygonal, rod, flower, and wire-shaped nanoparticles may be prepared in an aqueous alkali solution using β-cyclodextrin not separately treated under different reaction conditions.
또한, 본 발명에서는 은 나노입자를 표면 강화 라만산란(SERS)의 기재로 사용하고, 라만 프로브로서 p-amino-thiophenol(PATP)를 사용할 경우 상기 은 나노입자의 복합체에서 은 나노입자간의 결합에 의하여 개별적인 은 나노입자보다 강화된 라만산란 효과를 유도할 수 있어서, 바이오 의료 분야에서 생체 물질을 검출할 수 있는 바이오 센서에 활용할 수 있다.In addition, in the present invention, when silver nanoparticles are used as a substrate for surface-enhanced Raman scattering (SERS), and p-amino-thiophenol (PATP) is used as a Raman probe, the silver nanoparticles are bonded by silver nanoparticles in the composite of the silver nanoparticles. It can induce enhanced Raman scattering effect than individual silver nanoparticles, which can be utilized in biosensors capable of detecting biomaterials in the biomedical field.
이하, 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to preferred examples. However, these examples are intended to illustrate the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited thereby.
<실시예><Example>
본 발명에서 사용한 사이클로덱스트린(β-Cyclodextrin), 질산은(AgNO3), PATP(p-aminothiophenol)은 알드리치사에 구입하여 별다른 정제없이 사용하였으며, NaOH는 DC Chemical사에서 구입하여 별다른 처리없이 사용하였다.The cyclodextrin (β-Cyclodextrin), silver nitrate (AgNO 3 ), and PATP (p-aminothiophenol) used in the present invention were purchased from Aldrich and used without further purification, and NaOH was purchased from DC Chemical and used without any treatment.
합성예 1. 은 나노입자의 합성(Ag-1)Synthesis Example 1. Synthesis of Silver Nanoparticles (Ag-1)
질산은 (AgNO3, 5mM) 수용액 1 mL와 사이클로덱스트린(CD, 5mM) 수용액 1 mL을 상온에서 혼합한 후에, NaOH 수용액(20 mM) 2 mL을 혼합하였다. 균질화를 위하여 1 분간 부드럽게 흔들어준 후 상온에서 하루 동안 방치하였다. 최초 어두운 갈색의 용액이 12 시간 후에 노란색의 용액으로 변하였으며, 이에 의해서 용액 내에서 은 나노입자가 형성되었음을 알 수 있다.1 mL of an aqueous solution of silver nitrate (AgNO 3 , 5 mM) and 1 mL of an aqueous solution of cyclodextrin (CD, 5 mM) were mixed at room temperature, followed by mixing 2 mL of an aqueous NaOH solution (20 mM). After shaking gently for 1 minute for homogenization, it was left at room temperature for one day. The first dark brown solution turned to a yellow solution after 12 hours, indicating that silver nanoparticles were formed in the solution.
합성예 2 내지 8. 은 나노입자의 합성(Ag-2 내지 Ag-8)Synthesis Examples 2 to 8. Synthesis of Silver Nanoparticles (Ag-2 to Ag-8)
상기 합성예 1과 동일한 방법으로 제조하였고, 다만, 질산은 농도, CD의 농도, 반응 온도를 각각 하기 [표 1]과 같이 달리하여 제조하였다.It was prepared in the same manner as in Synthesis example 1, except that nitric acid was prepared by varying the concentration, the concentration of CD, and the reaction temperature as shown in Table 1 below.
각각의 합성예에 대한 반응 조건과 그에 따른 물성을 하기 [표 1]에 나타내었다.Reaction conditions and physical properties thereof for each synthesis example are shown in the following [Table 1].
표 1
구분 질산은/CD 농도(mM) NaOH 농도(mM) 반응온도(℃) 평균직경(nm) 형태
합성예 1(Ag-1) 5/5 20 25 34.50±5.69 다각형
합성예 2(Ag-2) 2.5/5 20 25 9.23±1.35 구형
합성예 3(Ag-3) 5/2.5 20 25 32.24±7.66 와이어
합성예 4(Ag-4) 5/5 10 25 54.46±12.94 플라워 형태
합성예 5(Ag-5) 5/5 5 25 146.49±28.73 Ant-like
합성예 6(Ag-6) 5/5 40 25 24.79±5.14 플라워-형태
합성예 7(Ag-7) 5/5 20 4 19.22±4.34 로드 또는 구형
합성예 8(Ag-8) 5/5 20 65 12.80±0.99 구형
Table 1
division Silver Nitrate / CD Concentration (mM) NaOH concentration (mM) Reaction temperature (℃) Average diameter (nm) shape
Synthesis Example 1 (Ag-1) 5/5 20 25 34.50 ± 5.69 polygon
Synthesis Example 2 (Ag-2) 2.5 / 5 20 25 9.23 ± 1.35 rectangle
Synthesis Example 3 (Ag-3) 5 / 2.5 20 25 32.24 ± 7.66 wire
Synthesis Example 4 (Ag-4) 5/5 10 25 54.46 ± 12.94 Flower form
Synthesis Example 5 (Ag-5) 5/5 5 25 146.49 ± 28.73 Ant-like
Synthesis Example 6 (Ag-6) 5/5 40 25 24.79 ± 5.14 Flower-form
Synthesis Example 7 (Ag-7) 5/5 20 4 19.22 ± 4.34 Rod or spherical
Synthesis Example 8 (Ag-8) 5/5 20 65 12.80 ± 0.99 rectangle
합성예 9. 금 나노입자의 합성Synthesis Example 9 Synthesis of Gold Nanoparticles
상기 은 나노입자의 제조와 동일한 방법으로 제조하였고, 전구체로서 KAuCl4를 사용하였으며, NaOH 수용액(40 mM) 4 mL을 혼합하였고, 일 주일 후에 붉은 와인색을 띄었다. 이에 의해서 금 나노입자가 형성되었음을 알 수 있었다. It was prepared in the same manner as the preparation of the silver nanoparticles, using KAuCl 4 as a precursor, 4 mL NaOH aqueous solution (40 mM) was mixed, and after one week it was red wine red. It was found that gold nanoparticles were formed by this.
이와 같이, 별도의 독성 유기 환원제 및 보호제를 사용하지 않고도, 사이클로덱스트린을 이용하여 상온, 수용액에서 합성하는 본 발명의 제조방법에 의해서 은, 금 나노입자뿐만 아니라 다양한 금속 나노입자를 합성할 수 있다.As such, various metal nanoparticles as well as silver and gold nanoparticles can be synthesized by the production method of the present invention synthesized at room temperature and aqueous solution using cyclodextrin without using a separate toxic organic reducing agent and a protecting agent.
실시예 1. PATP로 코팅된 은 나노입자(PATP-coated AgNPs)의 제조Example 1 Preparation of Silver Nanoparticles (PATP-coated AgNPs) Coated with PATP
상기 합성예 1에서 수득한 CD로 캡핑된 은 나노입자(CD-capped-AgNPs) 콜로이드 용액을 4000 rpm으로 15 분간 원심분리하였고, 상청액을 버리고 나머지 잔여물을 1 mL 이온수에 분산시켰다. 여기에 PTAP 에탄올 용액(0.1 M) 500 uL를 혼합하여 상온에 3 시간 동안 방치하였다. CD로 캡핑된 은 나노입자의 표면은 PTAP로 코팅되어 PATP로 코팅된 은 나노입자가 형성된다. 이를 4000 rpm으로 10 분간 원심분리시켰고, 과량의 CD, PTAP를 제거하여 PATP로 코팅된 은 나노입자를 분리하였다.The CD-capped-AgNPs colloidal solution capped with CD obtained in Synthesis Example 1 was centrifuged at 4000 rpm for 15 minutes, the supernatant was discarded and the remaining residue was dispersed in 1 mL of ionized water. 500 uL of PTAP ethanol solution (0.1 M) was mixed and left at room temperature for 3 hours. The surface of the silver nanoparticles capped with CD was coated with PTAP to form silver nanoparticles coated with PATP. It was centrifuged at 4000 rpm for 10 minutes, and excess CD and PTAP were removed to separate silver nanoparticles coated with PATP.
분리된 PTAP-AgNP를 SERS 유리 기판에 장착하여 SERS를 측정하였다.The separated PTAP-AgNP was mounted on a SERS glass substrate to measure SERS.
실험예 1. 은 나노입자의 물성 확인Experimental Example 1. Confirmation of physical properties of silver nanoparticles
상기 합성예 1에 따라 수득한 은 나노입자의 물성을 확인하였다. 하기 도 1a에는 414 nm에서 AgNPs의 표면 플라즈몬 공명 밴드를 나타내는 UV-vis 흡광 스펙트럼을 나타내었고, 은 나노입자의 TEM 이미지를 확인한 결과, 은 나노입자의 모양은 대부분 다각형 형태를 나타내고 있으며 자기조립되어 있음을 확인할 수 있고 은 나노입자가 면심입방구조(face-centred cubic 구조)로 되어있음을 알 수 있다. 또한, 하기 도 1b에서 보는 바와 같이, 은 나노입자의 크기는 28.81-40.19 nm이었다. 하기 도 1c는 은 나노입자에 대해서 XRD 회절을 분석한 결과로서, 이에 의해서 은 나노입자의 형태가 단일 면심입장구조인 것을 알 수 있다.The physical properties of the silver nanoparticles obtained according to Synthesis Example 1 were confirmed. 1A shows UV-vis absorption spectra representing surface plasmon resonance bands of AgNPs at 414 nm, and TEM images of silver nanoparticles show that most of the nanoparticles have a polygonal shape and are self-assembled. It can be seen that the silver nanoparticles are face-centred cubic structure (face-centred cubic structure). In addition, as shown in Figure 1b, the size of the silver nanoparticles was 28.81-40.19 nm. Figure 1c is a result of analyzing the XRD diffraction for the silver nanoparticles, it can be seen that the shape of the silver nanoparticles is a single face-centered structure.
실험예 2. NaOH 농도를 달리하여 제조한 은 나노입자의 물성 확인Experimental Example 2. Confirmation of physical properties of silver nanoparticles prepared by varying NaOH concentration
NaOH 농도를 5, 10, 20, 40 mM로 각각 달리하여 제조한 상기 Ag-5, Ag-4, Ag-1, Ag-6에 대한 UV-vis 흡광 스펙트럼을 하기 도 2에 나타내었다. 즉, NaOH 농도를 40 mM에서 5 mM로 바꾼 경우에 은 나노입자의 흡광 피크가 410 nm에서 420 nm로 이동하였다. 이는 입자의 크기와 분산도가 증가하였기 때문이다.UV-vis absorption spectra for the Ag-5, Ag-4, Ag-1, and Ag-6 prepared by varying NaOH concentrations of 5, 10, 20, and 40 mM, respectively, are shown in FIG. 2. That is, when the NaOH concentration was changed from 40 mM to 5 mM, the absorption peak of the silver nanoparticles shifted from 410 nm to 420 nm. This is due to the increase in particle size and dispersion.
또한, TEM 이미지를 분석한 결과 NaOH 농도를 5 mM로 한 경우에는 은 나노입자가 자기조립되어 다각형 형태를 나타내거나 ant-like 형태를 띄었으며, 10 mM로 한 경우에는 나노 플라워 형태를 나타내었다. 그리고, 20 mM인 경우에는 잘 분산된 다각형 형태였으며, 40 mM인 경우에는 플라워 형태를 나타내었다. 다만, 플라워 형태 역시 보다 높은 해상도의 TEM 이미지에서 볼 때, 수 개의 다각형의 나노입자가 자기조립되어 있는 형태임을 알 수 있다.In addition, as a result of analyzing the TEM image, when the NaOH concentration was 5 mM, the silver nanoparticles were self-assembled to have a polygonal or ant-like shape, and when the concentration was 10 mM, the nanoflower form was shown. In addition, in the case of 20 mM, a well-dispersed polygonal form was shown, and in the case of 40 mM, a flower form was shown. However, it can be seen that the flower shape is also a shape in which several polygonal nanoparticles are self-assembled when viewed in a higher resolution TEM image.
40, 20, 10, 5 mM NaOH 농도에서 나노입자의 크기는 각각 24.79±5.14, 34.50±5.69, 54.46±12.94, 146.49±28.73 nm이었다. NaOH 농도가 낮아질수록 그 입자의 크기는 감소하였고, UV-vis 흡광 스펙트럼에서 피크가 적색으로 이동하였다. 이는 낮은 농도에서 나노입자가 뭉쳐서 복합체 형태, 가지가 형성된 형태를 나타내기 때문이다.At 40, 20, 10, and 5 mM NaOH concentrations, the nanoparticles were 24.79 ± 5.14, 34.50 ± 5.69, 54.46 ± 12.94 and 146.49 ± 28.73 nm, respectively. As the NaOH concentration decreased, the particle size decreased, and the peak shifted to a red color in the UV-vis absorption spectrum. This is because the nanoparticles aggregate at low concentrations to form a complex form or a branched form.
CD는 구조상으로 공동, 끝이 잘린 콘 형태의 구조(truncated cone-like structure)를 가지고 표면의 -OH기가 인접한 토러스 구조상의 -OH기와 결합된 특유의 구조를 가지고 있다. 또한, 수용성 성질을 가지며 독성이 없는 물질이다. 이러한 특성 때문에 CD는 나노수준에서 금속 입자의 흡착, 환원, 성장을 가능하게끔 한다. CD는 -OH기를 가지고 있으므로 알칼리 수용액 내에서 Ag+의 환원을 가능하게 한다.CD structurally has a truncated cone-like structure with a hollow, truncated cone-like structure and has a unique structure in which -OH groups on the surface are bonded to -OH groups on adjacent torus structures. It is also a substance with water-soluble properties and non-toxic. Because of these properties, CD enables the adsorption, reduction and growth of metal particles at the nanoscale. The CD has a -OH group, which enables reduction of Ag + in an aqueous alkali solution.
NaOH는 CD의 OH기를 탈양성자화(deprotonation)시키고, 이에 의해서 나노입자의 반응성을 증가시키면서 안정화시키는 역할을 한다. NaOH 없이 CD 물질만으로 반응시키면 은염을 은 나노입자로 환원시킬 수가 없다. 이는 CD 물질이 NaOH의 존재하에서 은염을 은 나노입자로 환원시키고, 은 나노입자의 캡핑물질로 역할함을 알 수 있다. 또한, 산성 조건에서 CD 물질에 의해서 반응시에도 은 나노입자가 형성되지 않는다.NaOH serves to deprotonate the OH group of the CD and thereby stabilize it while increasing the reactivity of the nanoparticles. Reaction with only CD material without NaOH cannot reduce the silver salt to silver nanoparticles. It can be seen that the CD material reduces silver salts to silver nanoparticles in the presence of NaOH, and serves as a capping material of silver nanoparticles. In addition, silver nanoparticles do not form upon reaction with the CD material under acidic conditions.
따라서, CD는 염기성 조건에서 환원제 및 보호제로서 기능하고, 염기성 조건이 CD의 OH기를 탈양성자화(deprotonation)시킨다. NaOH의 농도가 감소할수록 CD 물질에 의한 환원과 나노입자의 안정화도가 감소하여 나노입자가 뭉쳐져서 입자의 크기가 증가한 것을 실험으로 확인하였다. 하지만, NaOH의 농도가 증가할수록 은 나노입자에 CD가 덜 강하게 코팅되어 나노입자의 뭉침을 가져왔다.Thus, CD functions as a reducing and protecting agent under basic conditions, and basic conditions deprotonate the OH group of the CD. As the concentration of NaOH decreases, the reduction by CD material and the stabilization of nanoparticles decrease, and the size of the particles increases due to the aggregation of nanoparticles. However, as the concentration of NaOH increased, the CD was less strongly coated on the silver nanoparticles, resulting in agglomeration of nanoparticles.
실험예 3. 금속염과 CD의 농도에 따른 은 나노입자의 물성 확인Experimental Example 3. Confirmation of physical properties of silver nanoparticles according to metal salt and CD concentration
하기 도 3에 CD의 농도를 5 mM로 한 경우(합성예 2)와 2.5 mM로 한 경우(합성예 2)에 대한 은 나노입자의 UV-vis 스펙트럼을 나타내었다. CD의 농도가 5 mM에서 2.5 mM로 변화됨에 따라 은 나노입자의 피크가 414 nm(하기 도 1a)에서 417 nm(하기 도 3)로 이동하였다. 이는 입자의 크기와 분산성이 변화되었기 때문이다. 이에 반하여, 질산은의 농도가 5 mM에서 2.5mM로 변화됨에 따라 표면 플라즈몬 공명의 피크는 강도가 보다 낮아졌다. 이는 입자의 사이즈가 보다 작아져서 분산성에 변화가 있었기 때문이다.In FIG. 3, UV-vis spectra of silver nanoparticles are shown for the case where the concentration of CD is 5 mM (Synthesis Example 2) and 2.5 mM (Synthesis Example 2). As the concentration of CD was changed from 5 mM to 2.5 mM, the peak of the silver nanoparticles shifted from 414 nm (FIG. 1A) to 417 nm (FIG. 3). This is due to the change in particle size and dispersibility. In contrast, the peak of surface plasmon resonance was lower in intensity as the concentration of silver nitrate was changed from 5 mM to 2.5 mM. This is because the size of the particles is smaller and there is a change in dispersibility.
이는 TEM 이미지에서도 확인할 수 있는데, 합성예 3은 은 나노입자가 자기조립되어 나노와이어 형태를 나타내고, 와이어 형태가 CD에 의해서 잘 유지되고 있음을 확인할 수 있으며, 자기조립된 나노입자의 크기는 32.24±7.66 nm이고, 와이어 형태는 다각형의 나노입자가 가까이 결합된 팩을 구성하고 있다.This can also be confirmed in the TEM image. Synthesis Example 3 shows that the silver nanoparticles are self-assembled to show the nanowire shape, and the wire shape is well maintained by the CD. The size of the self-assembled nanoparticles is 32.24 ±. At 7.66 nm, the wire form constitutes a pack in which polygonal nanoparticles are closely coupled.
CD의 농도가 낮아질수록 은 나노입자는 뭉쳐져서 하나의 큰 입자를 형성하지 아니하고, 각각의 나노입자가 와이어 형태로 정렬된 모양을 보인다. 이는 CD로 코팅된 입자 표면의 -OH기 사이에서 이차적인 결합이 일어나기 때문이고, 따라서, CD가 분자체와의 결합체 역할을 할 수 있음을 알 수 있다.As the concentration of CD decreases, the silver nanoparticles do not aggregate to form one large particle, and each nanoparticle shows a shape in which wires are aligned. This is because secondary bonding occurs between the -OH groups on the surface of the CD-coated particles, and therefore, it can be seen that CD can act as a binder with the molecular sieve.
합성예 2는 은 염의 농도가 낮고, 이에 반하여 CD의 농도가 높을 경우에는 입자가 구형의 형태를 나타내고, 크기도 9.23±1.35 nm로 작아짐을 알 수 있다. 즉, CD의 농도가 높아질수록 은과 CD의 결합이 증가하고, 나노입자의 성장과정에서 CD가 은 나노입자를 보호하는 역할을 하게 되어 입자의 성장이 저해되어 크기가 작아지는 것이다.In Synthesis Example 2, the concentration of silver salt is low, whereas on the other hand, when the concentration of CD is high, the particles show a spherical shape, and the size also decreases to 9.23 ± 1.35 nm. That is, as the concentration of CD increases, the binding of silver and CD increases, and CD plays a role of protecting silver nanoparticles during the growth of nanoparticles, thereby inhibiting the growth of particles and decreasing their size.
실험예 4. 반응온도에 따른 은 나노입자의 물성 확인Experimental Example 4. Confirmation of physical properties of silver nanoparticles according to reaction temperature
반응온도에 따른 은 나노입자의 크기, 분산성 등의 물성을 확인하였다. 이를 위하여 상기 합성예 1, 7, 8은 모두 AgNO3 5 mM, CD 5 mM, NaOH 20 mM의 동일한 조건에서 각각 상온(25 ℃), 4 ℃, 65 ℃에서 온도를 달리하여 제조하였다.Physical properties of silver nanoparticles according to the reaction temperature, dispersibility, etc. were confirmed. To this end, Synthesis Examples 1, 7, 8 were all prepared by varying the temperature at room temperature (25 ° C), 4 ° C, 65 ° C under the same conditions of AgNO 3 5 mM, CD 5 mM, NaOH 20 mM, respectively.
65 ℃에서 제조한 Ag-8은 크기가 12.80±0.99 nm로서, 그 크기가 상온에서 제조한 경우보다 감소하였다. 이는 높은 온도에서 은염과 CD간의 활성이 증가하여 결정핵이 빨리 형성되어 보다 작은 구형의 입자가 형성되기 때문이고, CD가 은 나노입자를 잘 보호하여 입자의 성장이 저해되기 때문이다. 이에 반하여, 4 ℃에서 제조한 AG-7의 경우에는 작은 구형의 입자가 서로 결합하여 로드 형태의 구조(크기 19.22±4.34 nm)가 형성됨을 확인할 수 있다. 이는 금속 구조의 성장에 있어서 중요한 역할을 하는 반응조건이 느려졌기 때문이다. 4 ℃에서 65 ℃로 온도가 증가하는 동안에 나노입자의 크기가 감소하였고, 500-800 nm에서 약한 청색광 흡수 피크의 이동이 있었다.Ag-8 prepared at 65 ° C. had a size of 12.80 ± 0.99 nm, which was smaller than that produced at room temperature. This is because the activity between the silver salt and the CD increases at high temperature, so crystal nuclei are formed quickly and smaller spherical particles are formed, and CD is well protected from the silver nanoparticles, thereby inhibiting the growth of the particles. In contrast, in the case of AG-7 manufactured at 4 ° C., small spherical particles are bonded to each other to form a rod-shaped structure (size 19.22 ± 4.34 nm). This is because reaction conditions, which play an important role in the growth of metal structures, have been slowed down. During the temperature increase from 4 ° C. to 65 ° C., the size of the nanoparticles decreased and there was a shift in the weak blue light absorption peak at 500-800 nm.
실험예 5. 나노입자와 CD간의 상호작용 확인Experimental Example 5. Confirmation of interaction between nanoparticles and CD
나노입자의 CD간의 상호작용을 조사하기 위하여, CD, CD가 캡핑된 은 나노입자에 대해서 각각 FT-IR 스펙트럼을 확인하였다.In order to investigate the CD interaction of the nanoparticles, the FT-IR spectra of CD and CD capped silver nanoparticles were confirmed, respectively.
은 나노입자 자체만으로는 스펙트럼에서 특징이 없고, CD 자체만의 FT-IR 스펙트럼과 CD가 캡핑된 은 나노입자의 FT-IR 스펙트럼은 하기 도 5에 나타난 바와 같다. 양 스팩트럼은 1384 cm-1에서 나타나는 CD-capped-AgNPs의 새로운 피크 등을 제외하고는 거의 유사한 모양을 보였다. 즉, CD가 나노입자에 없어서는 안 될 필수적인 요소임을 알 수 있다.The silver nanoparticles alone are not characteristic in the spectrum, and the CD FT-IR spectrum of the CD itself and the FT-IR spectrum of the silver-capped CD nanoparticles are shown in FIG. 5. Both spectra showed almost similar shapes except for new peaks of CD-capped-AgNPs appearing at 1384 cm −1 . In other words, it can be seen that CD is an indispensable element in nanoparticles.
1384 cm-1와 1644 cm-1에서 보이는 피크는 대칭적, 비대칭적인 카르복실레이트 이온에 기인하는 것이다. 별도의 다른 환원제가 없는 경우에 CD가 일부 환원제 역할을 하고, 그 자체로 산화되어 카르복실산을 형성하여 은 나노입자의 표면에 효율적으로 캡핑되기 때문이다.The peaks seen at 1384 cm −1 and 1644 cm −1 are due to symmetric and asymmetric carboxylate ions. This is because in the absence of other reducing agents, the CD acts as a reducing agent, oxidizes itself to form carboxylic acids, and is effectively capped on the surface of the silver nanoparticles.
CD자체의 946 cm-1(skeletal vibration involving a-1,4 linkag), 759 cm-1(ring-breathing-vibration), 708cm-1(pyranose ring vibration), 574cm-1(pyranose ring vibration) 스펙트럼 피크는 CD-capped AgNPs에서 감소하였는데, 이는 CD가 고정되어 pyranose ring vibration과 skeletal vibration이 저해되었기 때문이다. 그리고, CD-capped AgNPs 스펙트럼에서 3391 cm-1에서 3416 cm-1으로 -OH에 의한 이동이 관찰되었는데, 이는 CD와 은 나노입자간의 상호작용에 기인한 것이다.CD's own 946 cm -1 (skeletal vibration involving a-1,4 linkag), 759 cm -1 (ring-breathing-vibration), 708 cm -1 (pyranose ring vibration), 574 cm -1 (pyranose ring vibration) spectrum peak Was decreased in CD-capped AgNPs because the CD was fixed and the pyranose ring vibration and skeletal vibration were inhibited. In the CD-capped AgNPs spectrum, -OH shift was observed from 3391 cm −1 to 3416 cm −1 , which is due to the interaction between CD and silver nanoparticles.
극성이 없는 CD의 공동(내부직경 780 pm)은 다양한 소수성 분자의 호스트-게스트 복합체를 형성하는 것으로 알려져 있다. 은 원자(288 pm) 또는 1 nm 이하의 은 나노입자는 CD의 공동에서 복합체를 형성할 수도 있다. 그러나, 본 발명에 따른 은 나노입자의 경우 780 pm보다 큰 사이즈를 가져서 CD의 내부 공동에서 복합체를 형성할 수 없다.Cavities of CD without polarity (inner diameter 780 pm) are known to form host-guest complexes of various hydrophobic molecules. Silver atoms (288 pm) or silver nanoparticles of 1 nm or less may form a complex in the cavity of the CD. However, the silver nanoparticles according to the present invention have a size larger than 780 pm to form a complex in the internal cavity of the CD.
실험예 6. 표면강화라만산란(SERS) 활성Experimental Example 6. Surface-Enhanced Raman Scattering (SERS) Activity
은 나노입자의 SERS 활성을 측정하기 위하여 PATP를 프로브로 사용하였다. 하기 도 6은 SERS 기재에 PATP 자체의 라만스펙트럼과 은 나노입자 표면과 결합한 PATP의 티올기에 의해서 상대적으로 이동한 파장과 그 강도를 측정한 결과이다. 하기 도 6a에서 보는 바와 같이, 합성예 5에 따라 제조한 은 나노입자로부터 측정한 라만스펙트럼은 1597 cm-1과 1078 cm-1에서 v(CC), v(CS)와 같은 a1 진동 모드(in-plane, in-phase 모드)가 지배적으로 나타났다. 또한, 467 cm-1에서 피크가 사라지고, C-S 결합에 의해서 강화된 진동 모드로서 388 cm-1에서 피크가 관찰되었다. 그리고, 1489, 1179, 1003 cm-1에서 b2 진동 모드(in-plane, in-phase 모드)가 관측되었고, 이는 금속의 전하가 흡착된 분자로 이동함에 기인한 것이고, 이에 의해서 은 나노입자 표면에서 PTAP 분자가 상호작용하여 강한 Ag-S 결합이 형성되었음을 알 수 있다. 전하 이동에 의해서 금속 오비탈과 분자체의 오비탈이 결합하여 보다 낮은 에너지에서도 라만 공명 현상의 결과가 발생한다. 나노입자의 뭉침이 SERS 효과에 중요한 역할을 하는데, 분리된 개별의 은 나노입자보다 은 나노입자의 커플링에 의해서 은 나노입자의 뭉침이 발생하고, 이에 의해서 보다 강한 SERS 효과가 나타난다.PATP was used as a probe to measure SERS activity of silver nanoparticles. 6 is a result of measuring the wavelength and intensity of the relative shifted by the thiol group of PATP bonded to the surface of the silver nanoparticles and the Raman spectrum of PATP itself on the SERS substrate. As shown in FIG. 6A, the Raman spectrum measured from the silver nanoparticles prepared according to Synthesis Example 5 has a 1 oscillation mode such as v (CC) and v (CS) at 1597 cm −1 and 1078 cm −1 . in-plane, in-phase modes) dominated. In addition, the peak disappeared at 467 cm −1 , and a peak was observed at 388 cm −1 as a vibration mode enhanced by CS coupling. In addition, b 2 oscillation mode (in-plane, in-phase mode) was observed at 1489, 1179, and 1003 cm -1 , due to the transfer of the charge of the metal to the adsorbed molecules, whereby the silver nanoparticle surface It can be seen that a strong Ag-S bond was formed by the interaction of PTAP molecules at. The charge transfer couples the metal orbital and the orbital of the molecular sieve, resulting in Raman resonance at lower energy. Aggregation of nanoparticles plays an important role in the SERS effect. Aggregation of silver nanoparticles occurs by coupling of silver nanoparticles rather than separate individual silver nanoparticles, resulting in a stronger SERS effect.
이와 같이, 은 나노입자를 제조하는 반응 조건에 따라서 나노입자의 형상과 크기가 달라지고, 그 결과 각각의 은 나노입자에 대한 SERS 신호의 강도는 달라지게 된다.As such, the shape and size of the nanoparticles vary according to the reaction conditions for preparing the silver nanoparticles, and as a result, the intensity of the SERS signal for each silver nanoparticle is changed.
하기 도 6a 내지 도 6d는 각각 NaOH 농도가 5, 10, 20, 40 mM로 상이한 조건에서 생성되는 은 나노입자에 대한 결과이다. NaOH 농도가 감소할수록 나노입자가 뭉쳐져서 그 크기가 증가하고, 은 나노입자의 뭉침과 크기 변화는 CD 농도의 차이에 의해서도 발생함은 상기에서 확인하였다. 즉, NaOH 농도가 감소할수록, CD의 농도가 감소할수록 입자의 크기는 증가하고 이에 따라서 SERS 신호의 강도는 커진다. 마찬가지로 SERS 신호는 4 ℃에서 제조한 은 나노입자보다 65 ℃에서 제조한 은 나노입자에서 강도가 약해진다. 이 역시 은 나노입자의 크기가 감소하기 때문이다.6A to 6D are results for silver nanoparticles produced under different conditions with NaOH concentrations of 5, 10, 20, and 40 mM, respectively. As the NaOH concentration decreases, the nanoparticles agglomerate and increase in size, and the agglomeration and size change of the silver nanoparticles are confirmed by the difference in the CD concentration. In other words, as the NaOH concentration decreases and as the CD concentration decreases, the particle size increases and thus the intensity of the SERS signal increases. Similarly, the SERS signal is weaker in silver nanoparticles produced at 65 ° C than silver nanoparticles produced at 4 ° C. This is also because the size of the silver nanoparticles is reduced.
따라서, 본 발명에 따라 다양한 크기, 형상으로 제조 가능한 CD로 보호된 은 나노입자를 SERS 기재로서 사용하여 효율적으로 표지물질을 검출하는 바이오 센서로 활용이 가능하다.Therefore, according to the present invention, silver nanoparticles protected by CD, which can be manufactured in various sizes and shapes, can be utilized as a biosensor for efficiently detecting a label using SERS substrate.

Claims (10)

  1. 금속염 수용액; 사이클로덱스트린 수용액; 및 염기;를 혼합하는 단계를 포함하는 금속 나노입자의 제조방법.Metal salt aqueous solution; Cyclodextrin aqueous solution; And a base; mixing the metal nanoparticles.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 사이클로덱스트린은 α-사이클로덱스트린, β-사이클로덱스트린 및 γ-사이클로덱스트린 중에서 선택되는 어느 하나이고, 상기 염기는 수산화나트륨, 수산화칼슘 및 수산화마그네슘 중에서 선택되는 어느 하나인 것을 특징으로 하는 금속 나노입자의 제조방법.The cyclodextrin is any one selected from α-cyclodextrin, β-cyclodextrin and γ-cyclodextrin, the base is prepared of metal nanoparticles, characterized in that any one selected from sodium hydroxide, calcium hydroxide and magnesium hydroxide Way.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 금속염은 Au, Ag, Pt, Pd, Ru, Rh, Fe, Co, Ni, Cu, Zn 및 Ti 중에서 선택되는 어느 하나의 금속을 포함하는 금속염인 것을 특징으로 하는 금속 나노입자의 제조방법.The metal salt is a method for producing metal nanoparticles, characterized in that the metal salt containing any one metal selected from Au, Ag, Pt, Pd, Ru, Rh, Fe, Co, Ni, Cu, Zn and Ti.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 금속염은 AgNO3, AgCl, AgBr, AgI, CH3COOAg, AgBF4, KAuCl4, NaAuCl4·xH2O, NaAuBr4·xH2O, AuCl3, AuBr3, AuCl 및 이들의 혼합물 중에서 선택되는 어느 하나인 것을 특징으로 하는 금속 나노입자의 제조방법.The metal salt is selected from AgNO 3 , AgCl, AgBr, AgI, CH 3 COOAg, AgBF 4 , KAuCl 4 , NaAuCl 4 · xH 2 O, NaAuBr 4 · xH 2 O, AuCl 3 , AuBr 3 , AuCl and mixtures thereof Method for producing a metal nanoparticles, characterized in that any one.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 금속 나노입자는 사이클로덱스트린으로 캡핑되어 있는 것을 특징으로 하는 금속 나노입자의 제조방법.The metal nanoparticles are capped with cyclodextrin manufacturing method of metal nanoparticles, characterized in that.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 사이클로덱스트린의 농도, 상기 염기의 농도 및 상기 혼합 단계의 반응온도 중의 하나 이상을 조절하여 상기 금속 나노입자의 크기 및 형상을 각각 조절할 수 있는 것을 특징으로 하는 금속 나노입자의 제조방법.Method for producing a metal nanoparticles, characterized in that the size and shape of the metal nanoparticles can be adjusted by adjusting one or more of the concentration of the cyclodextrin, the concentration of the base and the reaction temperature of the mixing step.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 금속염의 농도를 2-10 mM, 상기 사이클로덱스트린의 농도를 2-10 mM, 상기 염기의 농도를 2-60 mM, 상기 반응온도를 4-80 ℃로 각각 독립적으로 조절하여 상기 금속 나노입자의 크기 및 형상을 각각 조절할 수 있는 것을 특징으로 하는 것을 특징으로 하는 금속 나노입자의 제조방법.The metal salt concentration of 2-10 mM, the cyclodextrin concentration of 2-10 mM, the base concentration of 2-60 mM, the reaction temperature is independently adjusted to 4-80 ℃ of the metal nanoparticles Method for producing metal nanoparticles, characterized in that the size and shape can be adjusted respectively.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 금속 나노입자의 직경 크기는 1 nm-1 ㎛인 것을 특징으로 하는 금속 나노입자의 제조방법.The diameter of the metal nanoparticles is a manufacturing method of metal nanoparticles, characterized in that 1 nm-1 ㎛.
  9. 제 1 항에 따라 제조된 사이클로덱스트린으로 캡핑된 금속 나노입자를 포함하는 표면강화라만산란(SERS) 기재; 라만 프로브; 레이져; 및 라만 검출기를 포함하는 바이오 센서.Surface-enhanced Raman scattering (SERS) substrate comprising metal nanoparticles capped with cyclodextrin prepared according to claim 1; Raman probes; laser; And a Raman detector.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 라만 프로브는 P-아미노티오페놀인 것을 특징으로 하는 바이오 센서.The Raman probe is a biosensor, characterized in that the P-aminothiophenol.
PCT/KR2011/009517 2011-08-09 2011-12-09 Method for manufacturing metal nanoparticles having surface-enhanced raman scattering activity using cyclodextrin, and biosensor including the metal nanoparticles manufactured using the method WO2013022152A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0079144 2011-08-09
KR1020110079144A KR20130016933A (en) 2011-08-09 2011-08-09 Prepration method of metal nanoparticle having surface-enhanced raman scattering activity using cyclodextrin and bio-sensor comprising metal nanoparticle

Publications (1)

Publication Number Publication Date
WO2013022152A1 true WO2013022152A1 (en) 2013-02-14

Family

ID=47668641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009517 WO2013022152A1 (en) 2011-08-09 2011-12-09 Method for manufacturing metal nanoparticles having surface-enhanced raman scattering activity using cyclodextrin, and biosensor including the metal nanoparticles manufactured using the method

Country Status (2)

Country Link
KR (1) KR20130016933A (en)
WO (1) WO2013022152A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406549A (en) * 2013-08-15 2013-11-27 南京邮电大学 Full-bloom flower-shaped gold nanoparticle and preparation method thereof
CN105417492A (en) * 2015-11-04 2016-03-23 安徽师范大学 Method for preparing beta-cyclodextrin-gold nano-particles and method for detecting cholesterol
CN105642915A (en) * 2016-04-06 2016-06-08 南通大学 Preparation method of nano gold solution
CN107589103A (en) * 2017-08-05 2018-01-16 北京师范大学 A step solution assemble method of the silver nano flower-like on fiber
CN108817414A (en) * 2018-06-27 2018-11-16 河南科技大学 The preparation method of Jenner's popped rice in a kind of ionic liquid aqueous solution
CN112595702A (en) * 2020-12-22 2021-04-02 云南省烟草质量监督检测站 Method for rapidly detecting hexaconazole in tobacco by surface enhanced Raman scattering
CN113203726A (en) * 2021-05-11 2021-08-03 江苏大学 Preparation method of surface-enhanced Raman substrate for rapidly detecting fluorene in haze particles
CN114166820A (en) * 2021-11-30 2022-03-11 安徽大学 Method for detecting micro/nano plastic and organic pollutant adsorbed on surface of micro/nano plastic
CN114414484A (en) * 2022-01-19 2022-04-29 山东大学 Device and method for detecting trace environmental nano pollutants by membrane filtration-surface enhanced Raman spectroscopy combination and application

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106001598B (en) * 2016-05-11 2018-06-26 北京化工大学 A kind of method of hydrotalcite layers synthesizing flaky gold nanoparticle
KR102485615B1 (en) * 2018-02-27 2023-01-09 서강대학교산학협력단 Method for Preparing Rapidly and With High-Density Self-assembed Nanoparticles Film Using Organic Solvent and Method for Oil-phase Molecular Detection Using the Same
CN113178588A (en) * 2021-03-26 2021-07-27 南通大学 Preparation method of Pd-based porous nano catalyst with strong coupling structure
CN114836717B (en) * 2022-04-13 2023-12-05 中新国际联合研究院 M@AuTi self-supporting electrode with surface enhanced Raman spectrum effect and preparation method thereof
KR20230148585A (en) 2022-04-18 2023-10-25 광운대학교 산학협력단 Biocompatible Core-Shell-Structured Si-Based NiO Nanoflowers, Making Method For The Same and Anticancer Agent
KR20230156195A (en) 2022-05-04 2023-11-14 광운대학교 산학협력단 Making Method For Si-Based Ni Nanoflower-Encapsulated Microsphere, Si-Based Ni Nanoflower-Encapsulated Microsphere Using The Same And Bactericide Method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIEXIANG, YANG.: "Synthesis and characterization of cyclodextrin capped Au and Ag nanoparticles.", MASTER'S THESIS, 2009, pages 22, 23 AND 26 *
ZHU, ZIHUA ET AL.: "Raman scattering enhancement contributed from individual gold nanoparticles and interparticle coupling.", NANOTECHNOLOGY., vol. 15, 2004, pages 357 - 364, XP020067869, DOI: doi:10.1088/0957-4484/15/3/022 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406549A (en) * 2013-08-15 2013-11-27 南京邮电大学 Full-bloom flower-shaped gold nanoparticle and preparation method thereof
CN103406549B (en) * 2013-08-15 2016-03-23 南京邮电大学 A kind of shape flower shape gold nano grain in full bloom and preparation method thereof
CN105417492A (en) * 2015-11-04 2016-03-23 安徽师范大学 Method for preparing beta-cyclodextrin-gold nano-particles and method for detecting cholesterol
CN105642915A (en) * 2016-04-06 2016-06-08 南通大学 Preparation method of nano gold solution
CN107589103A (en) * 2017-08-05 2018-01-16 北京师范大学 A step solution assemble method of the silver nano flower-like on fiber
CN108817414A (en) * 2018-06-27 2018-11-16 河南科技大学 The preparation method of Jenner's popped rice in a kind of ionic liquid aqueous solution
CN108817414B (en) * 2018-06-27 2021-10-01 河南科技大学 Preparation method of gold nanoflower in ionic liquid aqueous solution
CN112595702A (en) * 2020-12-22 2021-04-02 云南省烟草质量监督检测站 Method for rapidly detecting hexaconazole in tobacco by surface enhanced Raman scattering
CN113203726A (en) * 2021-05-11 2021-08-03 江苏大学 Preparation method of surface-enhanced Raman substrate for rapidly detecting fluorene in haze particles
CN114166820A (en) * 2021-11-30 2022-03-11 安徽大学 Method for detecting micro/nano plastic and organic pollutant adsorbed on surface of micro/nano plastic
CN114414484A (en) * 2022-01-19 2022-04-29 山东大学 Device and method for detecting trace environmental nano pollutants by membrane filtration-surface enhanced Raman spectroscopy combination and application
CN114414484B (en) * 2022-01-19 2024-01-19 山东大学 Device, method and application for detecting trace environmental nano pollutants by membrane filtration-surface enhanced Raman spectroscopy

Also Published As

Publication number Publication date
KR20130016933A (en) 2013-02-19

Similar Documents

Publication Publication Date Title
WO2013022152A1 (en) Method for manufacturing metal nanoparticles having surface-enhanced raman scattering activity using cyclodextrin, and biosensor including the metal nanoparticles manufactured using the method
Shnoudeh et al. Synthesis, characterization, and applications of metal nanoparticles
Bhattarai et al. Green synthesis of gold and silver nanoparticles: Challenges and opportunities
Han et al. Photochemical synthesis in formamide and room-temperature coulomb staircase behavior of size-controlled gold nanoparticles
Jena et al. Synthesis of branched Ag nanoflowers based on a bioinspired technique: their surface enhanced Raman scattering and antibacterial activity
Lu et al. Oriented attachment-based assembly of dendritic silver nanostructures at room temperature
Wang et al. Synthesis and biocompatibility of two-dimensional biomaterials
Yao et al. Assembly of nanoions via electrostatic interactions: ion-like behavior of charged noble metal nanoclusters
Sebastian et al. Synthesis of amine-functionalized multi-walled carbon nanotube/3D rose flower-like zinc oxide nanocomposite for sensitive electrochemical detection of flavonoid morin
Nakal-Chidiac et al. Chitosan-stabilized silver nanoclusters with luminescent, photothermal and antibacterial properties
Maity et al. Stability and binding interaction of bilirubin on a gold nano-surface: steady state fluorescence and FT-IR investigation
Wu et al. Facile synthesis of carboxymethyl curdlan-capped silver nanoparticles and their application in SERS
Liu et al. One-step shell polymerization of inorganic nanoparticles and their applications in SERS/nonlinear optical imaging, drug delivery and catalysis
Yan et al. Green synthesis of biocompatible carboxylic curdlan-capped gold nanoparticles and its interaction with protein
Politi et al. Oligopeptide–heavy metal interaction monitoring by hybrid gold nanoparticle based assay
Šimšíková et al. Anionic 11-mercaptoundecanoic acid capped ZnO nanoparticles
Xu et al. Graphene oxide-mediated synthesis of stable metal nanoparticle colloids
Viet Long et al. Synthesis and self-assembly of gold nanoparticles by chemically modified polyol methods under experimental control
Li et al. Preparation of silver nanoparticles decorated mesoporous silica nanorods with photothermal antibacterial property
Wu et al. Heterodimers of metal nanoparticles: synthesis, properties, and biological applications
Tian et al. Bifunctional au-nanorod@ Fe 3 O 4 nanocomposites: synthesis, characterization, and their use as bioprobes
Ren et al. Biosynthesis of gold nanoparticles using Catclaw Buttercup (Radix Ranunculi Ternati) and evaluation of its colloidal stability
CN113801650B (en) Sulfhydryl beta-cyclodextrin-gold nanocluster and preparation method and application thereof
Albulym et al. 5-minute synthesis of gelatinous silver nanoparticles using microwave radiation: Plasmonic optical spectroscopy and antimicrobial activity
Adokoh et al. Glyco disulfide capped gold nanoparticle synthesis: cytotoxicity studies and effects on lung cancer A549 cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870678

Country of ref document: EP

Kind code of ref document: A1