WO2013021842A1 - Gas lift system and gas lift method - Google Patents

Gas lift system and gas lift method Download PDF

Info

Publication number
WO2013021842A1
WO2013021842A1 PCT/JP2012/069173 JP2012069173W WO2013021842A1 WO 2013021842 A1 WO2013021842 A1 WO 2013021842A1 JP 2012069173 W JP2012069173 W JP 2012069173W WO 2013021842 A1 WO2013021842 A1 WO 2013021842A1
Authority
WO
WIPO (PCT)
Prior art keywords
riser pipe
pipe
deaeration
pressure
gas
Prior art date
Application number
PCT/JP2012/069173
Other languages
French (fr)
Japanese (ja)
Inventor
拓樹 中村
雅樹 川瀬
章 糸島
Original Assignee
三井海洋開発株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井海洋開発株式会社 filed Critical 三井海洋開発株式会社
Publication of WO2013021842A1 publication Critical patent/WO2013021842A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F1/00Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped
    • F04F1/18Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped the fluid medium being mixed with, or generated from the liquid to be pumped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0042Degasification of liquids modifying the liquid flow
    • B01D19/0052Degasification of liquids modifying the liquid flow in rotating vessels, vessels containing movable parts or in which centrifugal movement is caused
    • B01D19/0057Degasification of liquids modifying the liquid flow in rotating vessels, vessels containing movable parts or in which centrifugal movement is caused the centrifugal movement being caused by a vortex, e.g. using a cyclone, or by a tangential inlet
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F7/00Equipment for conveying or separating excavated material
    • E02F7/005Equipment for conveying or separating excavated material conveying material from the underwater bottom

Definitions

  • the present invention provides a bubble lift for lifting solid or liquid substances such as deep seabeds, lake bottoms, riverbeds, etc., or sand, sediments, minerals, etc.
  • the present invention relates to a system and a bubble lift method.
  • Gas lift technology is widely used for crude oil production in order to efficiently lift heavy oil that is slightly lighter than seawater from undersea oil fields that have poor self-injection pressure.
  • this technology by injecting a gas whose mass is relatively negligible into the liquid inside the riser pipe, the liquid column pressure in the pipe is lowered by the volume ratio, and at the lower end of the riser pipe, the riser pipe This is a technology that generates indentation force due to the pressure of seawater and oil reservoir pressure. It has been confirmed that a bubble lift (including air lift or gas lift) technology can be effectively used even in minerals having a large specific gravity by making a slurry finely crushed and mixed with seawater.
  • slurries earth and sand, sludge, etc.
  • the surrounding liquid soil or water
  • slurries whose specific gravity is considerably larger than the surrounding liquid (seawater or water)
  • the average specific gravity of the mixed fluid cannot be reduced below the surrounding liquid, and an upward flow cannot be generated in the riser pipe, so that it is not possible to generate a pushing force due to a pressure difference between the inside and outside of the lower end of the riser pipe.
  • the bubbles injected into the riser pipe in the deep water region and the medium water depth region increase the volume of the bubble as the mixed fluid consisting of the bubbles and slurry rises to the shallow water depth region and the pressure decreases. Since the volume of the solid hardly increases, the volume ratio of the bubble in the mixed fluid increases at an accelerated rate. As a result, as the upper end of the riser pipe is approached, the flow velocity of the upward flow becomes too large, the ratio of the amount of the object to be lifted in the mixed fluid is relatively lowered, the pulling efficiency is deteriorated, or in the worst case The problem that the object to be lifted cannot be lifted at all occurs. This problem is due to the fact that the relationship between the volume of the bubbles and the water depth is approximately inversely proportional, and becomes more significant as the water depth where the object to be lifted exists is larger. It happens prominently when it comes to the area.
  • the bubbles injected at the lower end of the riser pipe only have a volume 10 times higher at the upper end of the riser pipe.
  • the volume of bubbles injected at the lower end of the riser pipe is 500 times as high as the upper end of the riser pipe.
  • the volume of bubbles injected at a water depth of 5,000 m increases only by 25% while it rises to a water depth of 4,000 m, but increases fivefold at a water depth of 1,000 m.
  • the water depth is 50 times at 100 m, and further 500 times near the water surface.
  • the bubble flow rate is set so that the flow velocity at the upper end of the riser pipe does not exceed, for example, 10 m / sec in consideration of erosion even when only seawater is inhaled.
  • bubble ratio the ratio of bubbles in the mixed fluid at the upper end of the riser pipe
  • the slurry when the slurry is pulled up from the seabed at a depth of 1,000 m under the same conditions, the slurry can be lifted only up to about 20% heavier than seawater. For this reason, in order to pull up minerals with a high specific gravity, the proportion of seawater in the slurry must be maintained so that the specific gravity of the slurry is 1.2 or less. It is generally not easy to manage the mixing ratio in the deep sea.
  • the present invention has been made in view of the above situation, and its purpose is to provide a degassing device for degassing the air bubbles that have been centrifuged even in the shallow water depth region in the middle of the riser pipe,
  • An object of the present invention is to provide a bubble lift system and a bubble lift method that can evenly distribute bubbles and can be used efficiently even in a deep water region.
  • a bubble lift that pulls up an object such as a slurry with an average specific gravity larger than the surrounding seawater from the deep water area, and lowers the average liquid column pressure in the riser pipe. Even if it is injected into the riser pipe in the area or the middle water depth area, the shallow water depth area, for example, about 1/10 of the upper part of the riser pipe, that is, about 100 m above the water surface, that is, about 100 m above the water surface if the water depth is 1,000 m
  • An object of the present invention is to provide a bubble lift system and a bubble lift method capable of avoiding an excessive bubble ratio such that the volume of bubbles exceeds, for example, 90% of the volume of the mixed fluid in a portion from the water surface to the vicinity of the water surface.
  • An object of the present invention is to provide a bubble lift system and a bubble lift method that are not disposed in a slurry system of a pipe or a receiving device.
  • the bubble lift system of the present invention comprises a bottom of the riser pipe for raising the bottom of the water or a solid or liquid substance below the bottom of the water through the riser pipe to the vicinity of the water surface.
  • Bubbles that inject gas raise the gas in a bubble state, suck the object to be pulled up into the riser pipe at the lower end of the riser pipe by the effect of pressure reduction of the fluid column in the riser pipe by the bubble, and pull it up on the water surface
  • the mixed fluid in the riser pipe is rotated to collect bubbles and gas in the mixed fluid at the rotation center by the centrifugal force effect, and from the rotation center.
  • a deaeration device for discharging bubbles and gas to the outside of the riser pipe is provided.
  • this deaeration device by providing this deaeration device at an appropriate position, for example, in the vicinity of a water depth of 200 m, the mixed fluid that rises with the bubbles inside the riser pipe is spirally formed at the spiral portion (volute portion).
  • the degassing pipe (vent) is inserted into the rotation center by collecting the bubbles and gas at the rotation center by centrifugal effect that induces rotation and causes the slurry containing the object to be pulled up in the mixed fluid to be pressed against the outer wall by centrifugal force.
  • the excess bubbles and gas are discharged from the tube) to the outside of the riser tube by a deaeration device, and the gas volume can be reduced at this depth.
  • the mixed fluid after reducing the bubbles is mixed well again with the slurry by a fixed vane or the like provided in the pipe so that the fluid can be efficiently lifted even above it.
  • a plurality of the deaeration devices of the present invention may be installed at different water depths, and may be deaerated (vented) little by little. With this configuration, it is possible to equalize the ratio of the volume occupied by the bubbles from the deep water region to the shallow water region, thereby further equalizing the flow velocity of the fluid and maximizing the fluid pulling efficiency.
  • the deaeration device does not need to be dynamically controlled in accordance with the state of drawing in the amount of gas injected into the lower portion of the riser pipe, and only the surrounding water is used.
  • One or more should be installed so that the flow rate of the mixed fluid is within the preset range even if the vacuum is drawn, and the specific gravity exceeds the specific gravity even if only the object to be pulled is sucked.
  • one or more deaeration devices are set so as to be within a pressure range set in advance by a calculation simulation or the like, and the pressure range is set.
  • the object to be lifted can be lifted efficiently simply by adjusting the deaeration amount so as to be inside.
  • the deaeration device is configured to cause rotation by guiding the mixed fluid in the riser pipe spirally. According to this configuration, the swirl flow can be generated with a very simple configuration.
  • bubbles or gas discharged to the outside of the riser pipe is guided to the water surface by a deaeration transfer pipe connected to the deaeration pipe and released to the atmosphere. Configured to do. According to this configuration, since the pressure at the time of opening becomes atmospheric pressure, the pressure in the deaeration transfer pipe is lowered, and deaeration in the deaeration device is facilitated.
  • the bubbles or gas discharged to the outside of the riser pipe are guided to the compressor on the water surface again by a deaeration transfer pipe connected to the deaeration pipe. It compresses and it comprises so that it may send in the lower side of the said riser pipe
  • the compressor is configured by a multistage compressor, and a plurality of the degassing devices are installed at different water depths, and the degassing transfer pipes from the respective degassing devices are compressed by the multistage compression. Configure to lead to different stages of the machine. With this configuration, it is possible to equalize the ratio of the volume occupied by the bubbles from the deep water region to the shallow water region, thereby further equalizing the flow velocity of the fluid and maximizing the fluid pulling efficiency. In addition, the energy required for compression can be reduced.
  • the deaeration transfer pipe is configured to control the deaeration amount on the water surface by providing a pressure regulating valve, a throttle valve, an orifice, etc. on the water surface.
  • the flow rate of the mixed fluid at the upper end of the riser pipe is within the design maximum flow rate and only solids are drawn even if only seawater is drawn in while maintaining a certain amount of bubble injection. It is also desirable to have the ability to be pulled up without being stuck.
  • the flow rate does not increase excessively even if a slurry lighter than the design specific gravity is drawn. For example, when pulling up solids whose specific gravity is more than twice that of seawater by bubble lift at a water depth of 5,000 m, even if the seawater concentration in the slurry becomes 100%, the solids concentration becomes 100%. However, continuous operation with the set amount of bubble injection fixed is practically possible.
  • the deaeration pipe in the deaeration device, is provided with a pressure relief valve that operates due to a pressure difference between the inside and outside of the riser pipe, and the deaeration amount is controlled by the pressure relief valve. , Configured to regulate the pressure in the riser tube.
  • the deaeration pipe of the deaeration device is provided with a pressure relief valve that opens and closes at the same 5 atm as the pressure difference inside and outside the riser pipe. Even if injected from the part, the bubbles can be discharged until a pressure difference of 5 atm is reached at a certain depth of the deaeration device, as before, before the volume of the bubbles becomes excessive at the top of the riser tube.
  • the bubble lift method of the present invention lowers the riser pipe from the vicinity of the water surface or below the water bottom, and injects the gas in the form of bubbles below the riser pipe. Due to the effect of reducing the pressure of the fluid column in the riser pipe due to the bubbles, the object to be lifted collected near the lower end of the riser pipe is sucked at the lower end side of the riser pipe and provided at the upper end of the riser pipe.
  • the bubble lift method for pulling up the mixed fluid containing the object to be pulled up to the receiving device the bubble or part of the gas in the mixed fluid is degassed by the deaeration device provided on the upper side of the riser pipe. To do.
  • an increase in the volume ratio of bubbles or gas in the mixed fluid in the vicinity of the upper end of the riser pipe can be further suppressed.
  • the flow rate is within the design range even if dynamic control according to the pull-in situation is not applied to the amount of injected air or only the seawater is pulled in (the specific gravity is minimized). Even if only the solid content having a large specific gravity is drawn in, it can be kept within the design upper limit specific gravity.
  • the place where the maximum bubble ratio is generated is not limited to the upper end portion of the riser pipe but also to a shallow water depth region. Since multiple locations can be set, the proportion of bubbles occupied by the entire riser pipe from the deep water region to the shallow water region can be equalized, so the bubble rate should be increased on average without increasing the maximum flow velocity. Can do.
  • the overall flow rate inside the riser tube especially the flow rate at the upper end of the riser tube, can be greatly reduced, so the problem of erosion can be drastically reduced, and the riser tube itself and its connection from the upper end to downstream processes can be reduced.
  • Elasticity that can absorb metal with lower hardness use lighter materials such as plastics and elastomers, and corrosion-resistant materials, and absorb coatings, liner materials, vibration-proof materials, vibration-damping materials, and bending. It is possible to use materials and the like.
  • the detachment can be performed simply by lifting the riser pipe just like the conventional drilling rig. It becomes possible to do. Also, in the unlikely event of an emergency, parts outside the hull will be separated and removed, and even if a situation occurs in which the separated objects cannot be recovered, the possibility of detaching expensive high-functional parts is excluded. Can be.
  • the riser tube is relatively thin and has the same diameter from the lower end to the upper end, it can be lifted efficiently. Therefore, while using the conventional drill rig system and the drill rig system that handles the riser tube, Can raise in the area. Therefore, the development cost can be greatly reduced.
  • FIG. 1 is a diagram schematically showing a configuration of a bubble lift system according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing the configuration of the deaeration device.
  • FIG. 3 is a diagram schematically illustrating a configuration of a receiving device including a pressurized chamber, a run-up weir, and the like.
  • FIG. 4 is a diagram showing the relationship between the set pressure of the pressurizing chamber and the maximum specific gravity of the slurry to be pulled up.
  • FIG. 5 is a diagram showing the relationship between the maximum specific gravity of the slurry pulled up by the set pressure of the pressurizing chamber and the water depth.
  • the bubble lift system 10 is configured as shown in FIG.
  • a drill ship 1 that floats on the sea surface (water surface) 2, a system that is used to lift the sea bottom (water bottom) 3 or resources under the sea bottom 3, a riser pipe 11, a collector 12, gas
  • the feeding device 13, the deaeration device 14, and the receiving device 20 are provided.
  • the bubble lift system 10 passes through a riser pipe 11 through a riser pipe 11 with a bottom 3 such as a seabed, a lake bottom, or a riverbed, or a solid or liquid substance (a target to be lifted) such as sand, sediment, or mineral below the bottom 3.
  • a gas is injected and raised at the lower part of the riser pipe 11, and the object to be lifted is surrounded at the lower end of the riser pipe 11 by the effect of reducing the pressure of the fluid column in the riser pipe 11.
  • This is a system in which the water is sucked into the riser pipe 11 together with water and the object to be pulled up is pulled up on the water surface 2 together with water and gas.
  • This drillship 1 uses a drillship equipped with an automatic ship position retention system in order to lift deep seabed sediments. Further, the riser pipe 11 of the drill ship 1 is used as the riser pipe 11 of the bubble lift system 10. The riser pipe 11 of the drill ship 1 is usually used for recovering the drilling mud during excavation using a method using the drilling mud. Note that the drilling function of the drilling rig provided in the drill ship 1 need not be used.
  • the riser pipe 11 is constituted by connecting a number of short pipes having an inner diameter of 50 cm and a length of about 27 m with flanges, for example. It is preferable to use a material resistant to erosion in the shallow water depth region where the flow velocity of the riser pipe 11 is relatively high, and to use a lightweight material in the middle water depth region and the large water depth region.
  • the riser tube 11 is provided with a collection device 12 at the lower end, a gas inlet device 13 on the lower side, and a deaeration device 14 on the upper side, respectively.
  • the upper end side of the riser pipe 11 is connected to the pressurizing chamber 21 of the receiving device 20.
  • the gas inlet device 12 As a pipe for sending compressed air for bubble lift to the gas inlet device 13 provided at the lower part of the riser pipe 11, it is usually used outside the main pipe of the riser pipe 11 for an ejection prevention device. Since a narrow tube called a kill line or a choke line is arranged and held, a high-pressure thin tube arranged and held in the same manner as these is used.
  • the gas inlet device 12 is composed of a special short tube with an air lift valve for injecting compressed air into the riser tube 11, and the short tube as the gas inlet device 13 has a deep water depth, Used for several short pipes used in deep water.
  • a special short pipe provided with a deaeration device 14 is used for several short pipes used in shallow water depths.
  • the deaeration device 14 includes an outer wall 14a, a spiral pipe 14b, a deaeration pipe 14c, and a deaeration transfer pipe (vent exclusive pipe) 14d.
  • a pressure relief valve may be provided in place of the deaeration transfer pipe (vent exclusive pipe) 14d.
  • white circles indicate bubbles
  • cross hatched portions indicate, for example, mixed slurry of seawater and an object (sand, crushed minerals, etc.), and single hatched portions are The seawater-only part is shown, and the white part is the gas part.
  • the outer wall 14a is formed with a diameter larger than that of the main pipe of the riser pipe 11, and includes a cylindrical portion, a lower tapered portion on the lower side thereof, and an upper tapered portion on the upper side of the cylindrical portion.
  • the entire outer wall 14a accommodates the entire spiral pipe 14b and a part of the deaeration pipe 14c, and is formed to have a size capable of containing the swirling flow of the mixed fluid flowing in from the short pipe of the lower riser pipe 11.
  • the spiral pipe 14b is a pipe whose lower end is connected to the main pipe of the lower riser pipe 11 and is spirally arranged along the inside of the lower taper portion of the outer wall 14a. There is an opening in the cylindrical part.
  • the mixed fluid flowing out from the spiral pipe 14b is configured to form a swirling flow along the outer wall 14a. That is, a swirling flow is generated by guiding the mixed fluid in the riser pipe 11 in a spiral shape.
  • the deaeration pipe 14c is configured by a pipe having an opening at a central portion with respect to the cross section of the cylindrical portion of the outer wall 14a and passing through the outer wall 14a and going out.
  • the deaeration pipe 14 c is connected to a deaeration transfer pipe (vent exclusive pipe) 14 d provided outside the main pipe of the riser pipe 11.
  • the deaeration device 14 generates a swirling flow in the mixed fluid that rises inside the riser pipe 11 in the upper portion of the riser pipe 11, that is, in the middle of the vicinity of the upper end of the riser pipe 11.
  • the air bubbles are collected by the rotation center, and the collected bubbles are discharged to the outside of the riser pipe 11 from a deaeration pipe 14c having an opening at the rotation center.
  • the mixed fluid that rises inside the riser pipe 11 together with the bubbles is spirally guided in the shell-shaped spiral pipe (volute) 14 b to cause rotation, and the object of pulling up slurry etc. by centrifugal force Due to the centrifugal effect of pressing the object against the outer wall 14a, the bubbles can be collected at the center of rotation, and excess bubbles can be discharged out of the deaeration device 14 from the deaeration tube 14c inserted into the center of rotation.
  • this deaeration device 14 bubbles or gas discharged to the outside of the riser pipe 11 are guided to the water surface 2 by a deaeration transfer pipe 14 d connected to the deaeration pipe 14 c and released into the atmosphere under atmospheric pressure.
  • the deaeration transfer pipe 14d connected to the deaeration pipe 14c may be led into the pressurization chamber 21 and released under pressure.
  • the energy required for the compression is obtained by circulating the discharged gas to the compressor together with the gas separated in the pressurizing chamber 21 and reusing it as air lift bubbles without expanding the discharged gas to atmospheric pressure. Can be reduced.
  • a pressure regulating valve, a throttle valve, and an orifice may be provided on the water surface 2 so that the deaeration transfer pipe 14d can adjust the deaeration amount flowing into the pressurizing chamber 21 and the compressor. With this configuration, the deaeration amount can be adjusted on the water surface 2 as necessary.
  • a compressor that compresses air is configured as a multistage compressor, and the air (gas) separated in the pressurizing chamber 21 is compressed to It is configured to be sent again to the lower side, and bubbles or gas discharged to the outside of the riser pipe 11 by the deaeration pipe 14c in the deaeration device 14 and the deaeration transfer pipe 11d connected to the deaeration pipe 11c are used for the multistage compressor.
  • the gas from the pressurized chamber 21 is led to the high pressure stage.
  • the energy required for compression can be further reduced by turning the discharged gas to the compressor with higher pressure and reusing it as bubbles for bubble lift.
  • the pressurizing chamber 21 By providing the pressurizing chamber 21 at the upper end of the riser pipe 11, a unique phenomenon that the pressure inside the riser pipe 11 becomes higher than the water pressure outside the pipe can be used. Due to the effect of the chamber 21, the pressure inside the riser pipe 11 is set in a shallow water depth region where the pressure outside the pipe is higher than the pressure outside the pipe, and bubbles or gas are introduced into the sea (underwater) outside the riser pipe 11 using the pressure difference between the inside and outside. May be discharged. In this case, the deaeration transfer pipe 14d can be dispensed with.
  • the deaeration pipe 14c is provided with a pressure relief valve (not shown) that operates due to a pressure difference between the inside and outside of the riser pipe 11, and the pressure inside the riser pipe 11 is adjusted by controlling the deaeration amount by this pressure relief valve.
  • a pressure relief valve (not shown) that operates due to a pressure difference between the inside and outside of the riser pipe 11, and the pressure inside the riser pipe 11 is adjusted by controlling the deaeration amount by this pressure relief valve.
  • the pressure in the riser pipe 11 can be adjusted with a very simple configuration.
  • a fixed vane or the like is provided inside the riser pipe 11 so that the mixed fluid after the bubbles are reduced by the degassing device 14 can be efficiently raised even above the portion where the bubbles are reduced, and the object to be lifted It is preferable that the air bubbles and the seawater are mixed well again.
  • This deaeration device 14 may be provided at a plurality of locations (two locations in FIG. 1) with different water depths so as to gradually deaerate (vent) at a plurality of stages.
  • the volume ratio of bubbles in the mixed fluid that rises inside the riser pipe 11 can be substantially equalized from the deep water area to the shallow water area, and thus the flow velocity of the mixed fluid can be more equalized. Fluid pulling efficiency can be maximized.
  • a deaeration device 14 is provided at an appropriate position, for example, in the vicinity of a water depth of 200 m, and the pressure relief in which the pressure difference between the inside and outside of the riser pipe 11 is opened and closed at the same 5 atmospheres as the initial in the deaeration pipe 14c. If a valve is provided, even if more bubbles are injected from the lower part of the riser pipe 11, the volume of the bubbles is the same as the original at a depth of 200 m before the volume of the bubbles becomes excessive at the top of the riser pipe 11. Until the pressure difference between the inside and outside reaches 5 atm, the bubbles in the deaeration device 14 can be discharged to the outside.
  • the main pipe of the riser pipe 11 is connected to the pressurizing chamber 21 of the receiving apparatus 20, and the blower side piping of the compressor for sending the compressed air to the gas inlet apparatus 12 is the main pipe of the riser pipe 11. It is connected to a high-pressure tubule placed outside the tube.
  • the ratio of the volume of bubbles in the mixed fluid rising in the riser pipe 11 in the shallow water depth region is It is configured to suppress the increase.
  • the pressurizing pressure of the pressurizing chamber 21 does not need to be dynamically controlled in accordance with the drawing state into the gas injection amount injected at the lower portion of the riser pipe 11, and only the surrounding water is sucked.
  • the flow rate of the mixed fluid is within the preset range, and even if only the object to be pulled is sucked, the pressure within the preset pressure range is set so that the specific gravity exceeds the design upper limit specific gravity.
  • the pressurization pressure of the pressurization chamber 21 is set within a pressure range set in advance by a calculation simulation or the like in consideration of the pulling depth, the specific gravity of the pulling target, and the like.
  • the object to be lifted can be efficiently lifted simply by adjusting the pressurizing pressure of the pressurizing chamber 21.
  • the pressure in the pressurizing chamber 21 is preferably adjusted to 1/50 or more and 1/3 or less, more preferably 1/50 or more and 1/10 or less of the water pressure at the lower end portion of the riser pipe 11.
  • this pressure is less than 1/50, the effect of suppressing the volume of bubbles by the pressurizing chamber 21 is reduced, and the merit for providing the pressurizing chamber 21 is lost.
  • this pressure is greater than 1/3, the pressure resistance of the pressurizing chamber 21 is increased, and the required capacity of the compressor is increased, but no further improvement in the pulling capacity can be expected.
  • the pressure resistance performance of the pressurizing chamber 21 can be lowered, the receiving device 20 as a whole can be made compact, and if necessary, by using a deaeration system together Sufficient pulling performance can be obtained.
  • the pressurized chamber 21 is formed in a cyclone shape so that the mixed fluid from the riser pipe 11 is introduced into the pressurized chamber 21 from the tangential direction, thereby generating a swirling flow.
  • separates the slurry containing gas and the pulling-up target object can be given by the centrifugal separation effect using the flow velocity of this mixed fluid.
  • the separated gas A is extracted from the top of the pressurizing chamber 21 and is rotated to a compressor while being pressurized, and is reused as compressed air for bubble lift without being expanded to atmospheric pressure. be able to.
  • white circles indicate bubbles
  • cross hatched portions indicate, for example, a slurry in which seawater and an object (sand, crushed minerals, etc.) are mixed, and a single hatched portion. Indicates only seawater, and the white part indicates the gas part.
  • the upstream weirs 22A, 22B, and 22C including the pressure vessel 22a and the slurry pipe 22b accommodated in the pressure vessel 22a are provided downstream of the pressurization chamber 21.
  • the upstream downstream weirs 22A, 22B, and 22C of the respective stages are configured to keep the pressure downstream of the slurry tube 22b within the design range by controlling the pressure in the gas phase portion of the pressure vessel 22a including the upper end of the slurry tube 22b. .
  • communication pipes 28A and 28B are provided for communicating the gas phase portion of the pressure vessel 22a of the upstream weirs 22A, 22B and 22C and the upper portions of the U seals 27A and 27B, and pressure control of the gas phase portion of the pressure vessel 22a is provided. Is configured to be performed by U seals 27A and 27B that are provided with a single stage or a plurality of stages (two stages in FIG. 3) and use the pressure of the liquid column.
  • the slurry pipes 22b of the upstream weirs 22A, 22B, and 22C communicate with the lower part of the preceding pressurization chamber 21 and the pressure vessel 22b, and the slurry introduced from these parts into the slurry pipe 22b from the lower part to the inside. It guides and overflows into the pressure vessel 22b at the upper part.
  • the amount of pressure reduction in each stage can be adjusted by the height of the slurry tube 22b and the specific gravity of the slurry.
  • the pressure in the lower portion of the slurry tube 22b is the sum of the pressure in the gas phase portion of the pressure vessel 22a and the liquid pressure of the slurry in the slurry tube 22b, the pressure in the gas phase portion of the pressure vessel 22a can be adjusted.
  • the internal pressure of the pressure chamber 21 or the pressure vessel 22b in the preceding stage can be adjusted and controlled.
  • the upper part of the pressure vessel 22a of the first stage upstream dam 22A communicates with the upper part of the first stage U-seal 27A through the communication pipe 28A, and the second stage upstream dam.
  • the upper part of the pressure vessel 22a of 22B communicates with the upper part of the second stage U-seal 27B via a communication pipe 28B, and the upper part of the pressure vessel 22a of the third stage upstream weir 22C is opened to the atmosphere by an open pipe 28C. It is open.
  • the pressure P3 inside the pressure vessel 22a of the third stage upstream weir 22C is the atmospheric pressure Po
  • P2 is the sum of the atmospheric pressure Po and the pressure Pb of the liquid column of the second stage U-seal 27B.
  • the separation tank 23 is connected to the outlet of the last upstream weir 22A, 22B, 22C, and the slurry containing the object to be lifted is temporarily stored, and the object to be lifted is settled. Let it separate from seawater.
  • the precipitate B is extracted from the lower side in consideration of the time for precipitation.
  • the precipitate B accumulates below the separation tank 23 and is pushed out from the lower outlet by the pressure due to its own weight in the separation tank 23, but may be discharged by a slurry pump (not shown).
  • the liquid (seawater) C from which the precipitate B has been removed becomes a supernatant and is discharged from the upper outlet to the outside of the separation tank 23, and after performing necessary post-treatment such as removal of the mixture, it is returned to the ocean. . Further, a part of the liquid (seawater) C is discharged from the upper side of the separation tank 23 by the U-seal liquid supply pump 24 and extracted from the U-seal liquid supply pipe 25 to the liquid reservoir 26. This liquid is used for the liquid columns of the U seals 27A and 27B.
  • the riser pipe 11 is lowered from above the sea surface 2 such as the drill ship 1 floating on the sea surface (water surface) 2 to the bottom of the seabed 3 or below the bottom of the seabed 3.
  • a gas is injected into the gas supply device 13 provided in the form of bubbles to rise, and due to the fluid column pressure reduction effect in the riser tube 11 by this gas, the collector 12 provided at the lower end of the riser tube 11
  • the collected object to be pulled is sucked at the lower end side of the riser pipe 11, and when the mixed fluid containing the object to be pulled is pulled up to the receiving device 20 provided at the upper end of the riser pipe 11,
  • a degassing device 14 is provided to degas bubbles or a part of the gas in the mixed fluid, and a riser pipe is provided by a pressurized chamber 21 provided at the upper end of the riser pipe 11. It is possible to take the bubble lift method of applying pressure to the inside of one of the upper end, it is possible to suppress the increase in the ratio of the volume of the bubble
  • the slurry goes up the slurry pipes 22b of the run-up weirs 22A, 22B, and 22C, then falls inside each pressure vessel 22a, and the slurry accumulated at the bottom of the pressure vessel 22a moves further downstream. It is pushed out to another pressure vessel 22a in the weir 22B or 22C. By repeating this, the pressure by the slurry containing the object to be pulled is finally lowered to atmospheric pressure.
  • the riser pipe 11 is lowered from the vicinity of the water surface 2 to the bottom 3 or below the bottom 3, and the gas is injected into the lower side of the riser pipe 11 to rise, Due to the effect of reducing the pressure of the fluid column in the riser pipe 11 by the bubbles, the objects to be lifted collected near the lower end of the riser pipe 11 are sucked at the lower end side of the riser pipe 11 and the receiving device 20 provided at the upper end of the riser pipe 11
  • the mixed fluid containing the object to be pulled up is pulled up, and a part of bubbles or gas in the mixed fluid is degassed by the deaeration device 14 provided on the upper side of the riser pipe 11.
  • a rotating device in the process of pulling up the object to be lifted, a rotating device, a shut-off valve, and a pressure regulator that are highly likely to fail due to breakage, biting, biting, etc. There is no need to provide valves, throttle valves, orifices, etc. in the slurry system.
  • FIG. 4 is a diagram showing the relationship between the set pressure of the pressurized chamber 21 and the maximum specific gravity of the mixed fluid to be pulled up.
  • the horizontal axis represents the set pressure of the pressurized chamber 21, and the vertical axis represents the bubble lift at a water depth of 5,000 m.
  • the specific gravity of the upper limit slurry at is shown.
  • FIG. 5 is a diagram showing the relationship between the maximum specific gravity of the slurry pulled up by the set pressure of the pressurizing chamber 21 and the water depth, the horizontal axis is the water depth, and the vertical axis is the set pressure of the pressurizing chamber 21 of 20 atm. The specific gravity of the upper limit slurry in each case is shown.
  • the pressure of the pressurizing chamber 21 and the amount of bubble injection are fixed in the bubble lift system 10 that pulls up the object from the water bottom 3.
  • the bubble injection amount is set to an upper limit amount at which the mixed fluid flow velocity at the upper end of the riser pipe 11 does not exceed 10 m / second even when the water concentration in the slurry becomes 100%. If the solid concentration is increased and the specific gravity of the slurry is increased with the setting, the flow rate is decreased, while the bubble ratio is increased. It is assumed that the slurry specific gravity at which the bubble ratio at the upper end of the riser tube 11 reaches 90% is a practical upper limit of the slurry specific gravity raised by the bubble lift system 10.
  • FIG. 4 shows a change in performance when the pressure setting of the pressurizing chamber 21 is changed at a water depth of 5,000 m.
  • the pressure of the pressurizing chamber 21 of the present invention is atmospheric pressure.
  • the slurry having a specific gravity higher than seawater is not pulled up. It can be seen that the slurry having a specific gravity of about 1.5 times that of seawater can be pulled up by setting the pressure of the pressurized chamber 21 to about 20 atmospheres.
  • FIG. 5 shows changes in performance when the bubble lift system 10 in which the pressure of the pressurizing chamber 21 is 20 atm is used at various water depths. At a water depth of 1,000 m, it is possible to pull up slurry having a specific gravity about three times that of seawater. The deeper the water depth, the lower the specific gravity of the upper limit. It shows that the slurry of the degree can be pulled up.
  • the bubble lift system 10 and the bubble lift method of the invention having the above-described configuration, by providing the pressurization chamber 21 at the upper end portion of the riser pipe 11, in the conventional technology, in a large water depth region, for example, a water depth of 5,000 m.
  • the volume ratio of the air bubbles is 500 times that of the lower end portion at the upper end portion of the riser tube 11, it can be lifted up to a slurry that is only a few percent heavier than seawater. Even in such a case, an increase in the volume ratio occupied by bubbles at the upper end of the riser tube 11 can be suppressed to a practical tens of times or less.
  • a place where the maximum bubble ratio is generated can be set not only at the upper end of the riser pipe 11 but also at a shallow water depth region. Since the ratio of the volume occupied by bubbles in the entire riser pipe 11 from the region to the shallow water region can be equalized, the ratio of bubbles can be increased on average without increasing the maximum flow velocity.
  • the flow rate of the entire riser pipe 11, particularly the flow speed at the upper end of the riser pipe 11, can be greatly suppressed, so that the problem of erosion can be drastically reduced.
  • a metal with lower hardness a light weight material such as plastic or elastomer, or a corrosion-resistant material, or a coating, liner material, vibration-proof material, vibration-damping material, or bending. It is possible to use an elastic material or the like that can absorb water.
  • the use of lightweight riser pipes can cope with greater depths of water, the cost reduction effect of using inexpensive corrosion-resistant coatings and liners, and the effect of avoiding longitudinal vibration resonance and vortex-excited vibration with the wave period by changing materials Can be played.
  • a flexible riser or bellows using a thin metal plate on the inner surface can be used, and an expensive and complicated riser tensioner or telescopic joint can be eliminated.
  • the riser pipe 11 that is relatively thin and has the same diameter from the lower end to the upper end can be efficiently lifted, so that the riser pipe 11 of the conventional drilling ship and the drill rig system that handles the riser pipe 11 are used as they are. Can be lifted in deep water. Therefore, the development cost can be greatly reduced.
  • a swirl flow is generated in the mixed fluid that rises inside the riser tube in the upper portion of the riser tube, and the bubbles and the gas are rotated about the center of rotation by the centrifugal force effect.
  • a degassing device that discharges the collected bubbles and gas from the degassing tube with an opening at the center of rotation to the outside of the riser tube can be used at the upper end of the riser tube even in a bubble lift in a deep water area.
  • submarine resources such as submarine hydrothermal deposits, manganese nodules, methane gas hydrate, rare earths, rare metals, cobalt rich crusts, diamonds, Underground at the bottom of the sea, lake, river, and below, such as dredging for sand and gravel collection, offshore structure installation work, etc.
  • Solids from can be utilized in all industrial raising liquid, a slurry.

Abstract

The upper section of a riser tube (11) in a gas lift system (10) is provided with a degassing device (14) for: creating a rotational flow in a fluid mixture rising inside the riser tube (11); causing gas and air bubbles to gather at the center of rotation due to the effect of centrifugal force; and discharging the gathered gas and air bubbles to the exterior of the riser tube (11) through a degassing tube (14c) having an opening located at the center of rotation. This degassing device (14) makes it possible to more evenly distribute the gas inside the riser tube (11) overall by degassing the centrifugally separated gas even in the shallow-water region of the riser tube (11). As a result, it is possible to provide a gas lift system (10) and gas lift method which can be efficiently used even in a deep-water region.

Description

気泡リフトシステム、及び、気泡リフト方法Bubble lift system and bubble lift method
 本発明は、水深の深い海底、湖底、川底等の水底、あるいは、更に水底の下の地中の砂、堆積物、鉱物等の固形状物質や液体状物質を水面上まで引き上げるための気泡リフトシステム、及び、気泡リフト方法に関するものである。 The present invention provides a bubble lift for lifting solid or liquid substances such as deep seabeds, lake bottoms, riverbeds, etc., or sand, sediments, minerals, etc. The present invention relates to a system and a bubble lift method.
 海水よりは若干軽い重質油を自噴圧力に乏しい海底油田から効率的に引き上げるために、ガスリフト技術が原油生産に広く利用されている。この技術は、ライザー管内部の液体中に、質量が相対的に無視できるほど小さい気体を注入することによって、その体積割合分だけ管内の液柱圧力を下げ、ライザー管の下端部において、ライザー管の外部の海水による圧力や油層圧力による押し込み力を発生させる技術である。比重の大きい鉱物などにおいても、細かく砕いて海水等と混ぜたスラリーとすることで気泡リフト(エアリフト、あるいは、ガスリフトを含む)技術を有効に使用できることが確認されている。 Gas lift technology is widely used for crude oil production in order to efficiently lift heavy oil that is slightly lighter than seawater from undersea oil fields that have poor self-injection pressure. In this technology, by injecting a gas whose mass is relatively negligible into the liquid inside the riser pipe, the liquid column pressure in the pipe is lowered by the volume ratio, and at the lower end of the riser pipe, the riser pipe This is a technology that generates indentation force due to the pressure of seawater and oil reservoir pressure. It has been confirmed that a bubble lift (including air lift or gas lift) technology can be effectively used even in minerals having a large specific gravity by making a slurry finely crushed and mixed with seawater.
 このような例として、例えば、日本出願の特開2005-291171号公報に記載されているように、海、湖、ダム、貯液タンクの底に沈殿して圧縮された土砂・汚泥等の堆積物の除去ができ、かつ、揚液能力が高い効率的な装置を目的にした、内部を水と空気が上昇するためのエアリフトライザー(ライザー管)、および、エアリフトライザーの底部に設けられた、気泡が混合された水を噴出するためのバブル噴流発生装置とからなるバブル噴流式エアリフトポンプ等が提案されている。 As an example of this, as described in Japanese Patent Application Laid-Open No. 2005-291171, for example, sediment such as sediment, sludge, and the like deposited and compressed at the bottom of a sea, lake, dam, or storage tank Air lift riser (riser pipe) for raising water and air inside for the purpose of an efficient device that can remove objects and has high pumping capacity, and provided at the bottom of the air lift riser, There has been proposed a bubble jet type air lift pump that includes a bubble jet generating device for jetting water in which bubbles are mixed.
 このような比重が周囲の液体(海水や水)と比べかなり大きいスラリーや土砂や汚泥など(以下、まとめてスラリーという)の場合には、相当量の気泡を注入しないと管内のスラリーと気体からなる混合流体の平均比重を周囲の液体以下にすることができず、ライザー管内に上昇流を発生することができないので、ライザー管の下端部における内外の圧力差による押し込み力を発生することができない。 In the case of slurries, earth and sand, sludge, etc. (hereinafter collectively referred to as slurries) whose specific gravity is considerably larger than the surrounding liquid (seawater or water), if a considerable amount of bubbles are not injected, The average specific gravity of the mixed fluid cannot be reduced below the surrounding liquid, and an upward flow cannot be generated in the riser pipe, so that it is not possible to generate a pushing force due to a pressure difference between the inside and outside of the lower end of the riser pipe. .
 一方、大水深領域、中水深領域でライザー管内に注入した気泡は、気泡とスラリーからなる混合流体が浅水深領域に上昇して、その圧力が低下するにつれて、気泡の体積が増加するが、液体や固体の体積は殆ど増加しないので、この気泡の混合流体中の体積の割合は加速度的に増加する。その結果、ライザー管の上端部に近づくにつれて上昇流の流速が大きくなり過ぎたり、混合流体中の引き上げ対象物の量の割合が相対的に下がって、引き上げ効率が悪化したり、最悪の場合は、引き上げ対象物を全く引き上げることができなくなったりするなどの問題が起こる。この問題は、気泡の体積と水深との関係が略反比例の関係にあるためであり、引き上げ対象物が存在する水深が大きい程顕著であり、しかも、ライザー管内の上下位置に関しては気泡が浅水深領域に浮上してきたところで顕著に起こる。 On the other hand, the bubbles injected into the riser pipe in the deep water region and the medium water depth region increase the volume of the bubble as the mixed fluid consisting of the bubbles and slurry rises to the shallow water depth region and the pressure decreases. Since the volume of the solid hardly increases, the volume ratio of the bubble in the mixed fluid increases at an accelerated rate. As a result, as the upper end of the riser pipe is approached, the flow velocity of the upward flow becomes too large, the ratio of the amount of the object to be lifted in the mixed fluid is relatively lowered, the pulling efficiency is deteriorated, or in the worst case The problem that the object to be lifted cannot be lifted at all occurs. This problem is due to the fact that the relationship between the volume of the bubbles and the water depth is approximately inversely proportional, and becomes more significant as the water depth where the object to be lifted exists is larger. It happens prominently when it comes to the area.
 例えば、気泡リフトで、海底100mから引き上げ対象物を引き上げる場合、ライザー管の下端部で注入した気泡は、ライザー管の上端部でも10倍の体積にしかならない。しかし、水深5,000mの海底から引き上げ対象物を引き上げる場合では、ライザー管の下端部で注入した気泡の体積は、ライザー管の上端部では500倍にもなる。これをより詳細に見てみると、水深5,000mで注入された気泡の体積は水深4,000mまで浮上する間では、25%しか増加しないが、水深1,000mになると5倍に増加し、水深100mでは50倍になり、更に、水面近傍では500倍になる。 For example, when an object to be lifted is lifted from the sea floor 100 m by a bubble lift, the bubbles injected at the lower end of the riser pipe only have a volume 10 times higher at the upper end of the riser pipe. However, when the object to be lifted is lifted from the seabed at a depth of 5,000 m, the volume of bubbles injected at the lower end of the riser pipe is 500 times as high as the upper end of the riser pipe. Looking at this in more detail, the volume of bubbles injected at a water depth of 5,000 m increases only by 25% while it rises to a water depth of 4,000 m, but increases fivefold at a water depth of 1,000 m. The water depth is 50 times at 100 m, and further 500 times near the water surface.
 このため、典型的な例で試算してみると、海水だけを吸い込んでしまった場合でもエロージョン等を考慮してライザー管上端での流速が例えば10m/秒を超えないように気泡流量を設定し固定した条件下で海水より重いスラリーを引き上げようとした場合、仮にライザー管内の上端で混合流体中に気泡が占める割合(以下、気泡割合という)を90%以下に抑えようとした場合、周囲の海水よりわずか数パーセント重いスラリーしか引き上げることができない。 For this reason, in a typical example, the bubble flow rate is set so that the flow velocity at the upper end of the riser pipe does not exceed, for example, 10 m / sec in consideration of erosion even when only seawater is inhaled. When trying to pull up a slurry heavier than seawater under fixed conditions, if the ratio of bubbles in the mixed fluid at the upper end of the riser pipe (hereinafter referred to as bubble ratio) is to be kept below 90%, Only slurries that are only a few percent heavier than seawater can be lifted.
 また、同じ条件で水深1,000mの海底からスラリーを引き上げる場合においては、最大でも、海水より約2割重たいスラリーまでしか引き上げられない。このため比重の大きい鉱物等を引き上げるためにはスラリー比重が1.2以下になるようにスラリー中の海水割合を保たなければならず、鉱物割合が大きくなってしまうとスタックしてしまうが、そのように深海での混合割合を管理するのは一般に容易ではない。 Also, when the slurry is pulled up from the seabed at a depth of 1,000 m under the same conditions, the slurry can be lifted only up to about 20% heavier than seawater. For this reason, in order to pull up minerals with a high specific gravity, the proportion of seawater in the slurry must be maintained so that the specific gravity of the slurry is 1.2 or less. It is generally not easy to manage the mixing ratio in the deep sea.
 つまり、従来技術の気泡リフトでは、ライザー管の下側で注入した気泡がライザー管上端近くまで浮上してくると水深に略反比例して体積を増すために、大水深領域では、比重が周囲の海水などより高いものを引き上げるほどの量の気泡を注入することができず、気泡リフトが成り立たないか効率が非常に悪いという欠点があった。 In other words, in the prior art bubble lift, when the bubble injected below the riser pipe rises to near the upper end of the riser pipe, the volume increases approximately in inverse proportion to the water depth. There was a drawback in that bubbles could not be injected so as to pull up something higher than seawater or the like, and bubble lift was not realized or the efficiency was very bad.
日本出願特開2005-291171号公報Japanese Application No. 2005-291171
 本発明は、上記の状況を鑑みてなされたものであり、その目的は、ライザー管途中の浅水深領域でも遠心分離した気泡を脱気する脱気装置を設け、ライザー管の内部全体で、より均等に気泡を分布させ、効率よく大水深領域でも採用可能な気泡リフトシステム及び気泡リフト方法を提供することにある。 The present invention has been made in view of the above situation, and its purpose is to provide a degassing device for degassing the air bubbles that have been centrifuged even in the shallow water depth region in the middle of the riser pipe, An object of the present invention is to provide a bubble lift system and a bubble lift method that can evenly distribute bubbles and can be used efficiently even in a deep water region.
 つまり、大水深領域から、周囲の海水等より平均比重の大きいスラリー状等の対象物を引き上げる気泡リフトで、ライザー管内の平均的な液柱圧力を下げるため、有効な量の気泡を、大水深領域又は中水深領域でライザー管内に注入しても、浅水深領域、例えば、ライザー管の上側の1/10程度の部分、すなわち、水深1,000mなら上側の100m程度の部分即ち水面下100m程度から水面近傍までの部分において、気泡の体積が混合流体の体積の例えば90%を超えるような過剰な気泡割合となることを回避できる気泡リフトシステム、及び、気泡リフト方法を提供することにある。 In other words, a bubble lift that pulls up an object such as a slurry with an average specific gravity larger than the surrounding seawater from the deep water area, and lowers the average liquid column pressure in the riser pipe. Even if it is injected into the riser pipe in the area or the middle water depth area, the shallow water depth area, for example, about 1/10 of the upper part of the riser pipe, that is, about 100 m above the water surface, that is, about 100 m above the water surface if the water depth is 1,000 m An object of the present invention is to provide a bubble lift system and a bubble lift method capable of avoiding an excessive bubble ratio such that the volume of bubbles exceeds, for example, 90% of the volume of the mixed fluid in a portion from the water surface to the vicinity of the water surface.
 また、更なる目的は、様々な大きさの粒子を含む泥や、小石程度の大きさに砕いた鉱物等を海水に混ぜたスラリー等を、連続的に引き上げる用途で使用できるようにするため、スラリー中の固形物濃度が低下して比重が海水と同じ程度になっても流速がエロージョンが問題になるほどにならず、逆に、スラリーの比重が固形物単体のそれに近づいてもスタックすることのない気泡リフトシステム、及び、気泡リフト方法を提供することにある。 In addition, in order to make it possible to use a slurry containing a mixture of particles of various sizes, a slurry mixed with minerals crushed to a size of pebbles, etc. Even if the solid concentration in the slurry decreases and the specific gravity is about the same as that of seawater, the flow rate does not become a problem of erosion, and conversely, even if the specific gravity of the slurry approaches that of the solid alone, it can be stacked. There is no bubble lift system and a bubble lift method.
 また、更なる目的は、このようなスラリーを扱うために、破損折損、噛り付き、噛みこみ等で機能しなくなる恐れの高い回転機器、遮断弁、圧力調整弁、絞り弁、オリフィス等をライザー管内や受け入れ装置のスラリー系統に配置することがない気泡リフトシステム、及び、気泡リフト方法を提供することにある。 Further, in order to handle such slurries, the riser is equipped with rotating equipment, shut-off valves, pressure regulating valves, throttle valves, orifices, etc. that are likely to fail due to breakage, biting, and biting. An object of the present invention is to provide a bubble lift system and a bubble lift method that are not disposed in a slurry system of a pipe or a receiving device.
 上記の目的を達成するための本発明の気泡リフトシステムは、水底、又は、該水底より下の固形状物質または液体状物質をライザー管を通して水面近傍まで引き上げるために前記ライザー管の下側部分で気体を注入して、この気体を気泡状態で上昇させて、この気泡によるライザー管内の流体柱圧力減圧効果によって前記ライザー管の下端部で引き上げ対象物をライザー管に吸引し、水面上に引き上げる気泡リフトシステムにおいて、前記ライザー管の上端部の近傍の途中に、前記ライザー管内の混合流体に回転を生じさせて遠心力効果によって混合流体中の気泡及び気体を回転中心に集めると共に、該回転中心から気泡及び気体を前記ライザー管の外部に排出する脱気装置を設けて構成される。 In order to achieve the above object, the bubble lift system of the present invention comprises a bottom of the riser pipe for raising the bottom of the water or a solid or liquid substance below the bottom of the water through the riser pipe to the vicinity of the water surface. Bubbles that inject gas, raise the gas in a bubble state, suck the object to be pulled up into the riser pipe at the lower end of the riser pipe by the effect of pressure reduction of the fluid column in the riser pipe by the bubble, and pull it up on the water surface In the lift system, in the middle of the vicinity of the upper end portion of the riser pipe, the mixed fluid in the riser pipe is rotated to collect bubbles and gas in the mixed fluid at the rotation center by the centrifugal force effect, and from the rotation center. A deaeration device for discharging bubbles and gas to the outside of the riser pipe is provided.
 この構成により、この脱気装置を、例えば、水深200mの近辺等の適当な位置に設けることで、ライザー管の内部を気泡と共に上昇する混合流体を、渦巻き形状部分(ボリュート部分)で螺旋状に導いて回転を生じさせ、遠心力によって混合流体中の引き上げ対象物を含んだスラリーを外壁に押しつける遠心分離効果で気泡及び気体を回転中心部に集め、その回転中心部に挿入した脱気管(ベント管)から、余剰となっている気泡及び気体を脱気装置でライザー管の外部に排出し、この深度において気体体積を落とすことができる。気泡を減じた後の混合流体は、そこより上部でも効率的に引き上げられるように管内に設けた固定ベーン等によりスラリーと気泡を再度よく混ぜておく。 With this configuration, by providing this deaeration device at an appropriate position, for example, in the vicinity of a water depth of 200 m, the mixed fluid that rises with the bubbles inside the riser pipe is spirally formed at the spiral portion (volute portion). The degassing pipe (vent) is inserted into the rotation center by collecting the bubbles and gas at the rotation center by centrifugal effect that induces rotation and causes the slurry containing the object to be pulled up in the mixed fluid to be pressed against the outer wall by centrifugal force. The excess bubbles and gas are discharged from the tube) to the outside of the riser tube by a deaeration device, and the gas volume can be reduced at this depth. The mixed fluid after reducing the bubbles is mixed well again with the slurry by a fixed vane or the like provided in the pipe so that the fluid can be efficiently lifted even above it.
 本発明の脱気装置は、異なる水深に複数個設置し、少量ずつ脱気(ベント)してもよい。この構成により、大水深領域から浅水深領域まで、気泡の占める体積の割合を均等化し、ひいては、流体の流速をより均等化することができ、流体の引き上げ効率を最大化することができる。 A plurality of the deaeration devices of the present invention may be installed at different water depths, and may be deaerated (vented) little by little. With this configuration, it is possible to equalize the ratio of the volume occupied by the bubbles from the deep water region to the shallow water region, thereby further equalizing the flow velocity of the fluid and maximizing the fluid pulling efficiency.
 また、上記の気泡リフトシステムで、前記脱気装置を、前記ライザー管の下側部分で注入する気体注入量に引き込み状況に応じた動的制御を行わなくても済み、かつ、周囲の水だけを吸引しても混合流体の流速が予め設定した範囲に収まり、かつ、前記引き上げ対象物だけを吸引しても、その比重を上回るような設計上限比重を持つように、単数または複数設置するように構成する。 In the above bubble lift system, the deaeration device does not need to be dynamically controlled in accordance with the state of drawing in the amount of gas injected into the lower portion of the riser pipe, and only the surrounding water is used. One or more should be installed so that the flow rate of the mixed fluid is within the preset range even if the vacuum is drawn, and the specific gravity exceeds the specific gravity even if only the object to be pulled is sucked. Configure.
 この構成によれば、引き上げ深度や引き上げ対象物の比重等を考慮して、事前の計算シミュレーション等で予め設定した圧力範囲内になるように、脱気装置を単数又は複数設定し、その圧力範囲内になるように、脱気量を調整するだけで、効率的に引き上げ対象物を引き上げることができる。 According to this configuration, in consideration of the lifting depth, the specific gravity of the object to be lifted, etc., one or more deaeration devices are set so as to be within a pressure range set in advance by a calculation simulation or the like, and the pressure range is set. The object to be lifted can be lifted efficiently simply by adjusting the deaeration amount so as to be inside.
 また、上記の気泡リフトシステムで、前記脱気装置において、前記ライザー管内の混合流体を螺旋状に導くことで回転を生じさせるように構成される。この構成によれば、非常に簡単な構成で旋回流を発生することができる。 Further, in the above-described bubble lift system, the deaeration device is configured to cause rotation by guiding the mixed fluid in the riser pipe spirally. According to this configuration, the swirl flow can be generated with a very simple configuration.
 また、上記の気泡リフトシステムで、前記脱気装置において、前記ライザー管の外部に排出された気泡又は気体を、前記脱気管に接続された脱気移送管で水面上に導いて大気中に開放するように構成される。この構成よれば、開放される時の圧力が大気圧となるので、脱気移送管内の圧力が低くなり、脱気装置における脱気が容易となる。 In the bubble lift system, in the deaeration device, bubbles or gas discharged to the outside of the riser pipe is guided to the water surface by a deaeration transfer pipe connected to the deaeration pipe and released to the atmosphere. Configured to do. According to this configuration, since the pressure at the time of opening becomes atmospheric pressure, the pressure in the deaeration transfer pipe is lowered, and deaeration in the deaeration device is facilitated.
 また、上記の気泡リフトシステムで、前記脱気装置において、前記ライザー管の外部に排出された気泡又は気体を、前記脱気管に接続された脱気移送管で水面上の圧縮機に導いて再度圧縮して前記ライザー管の下側に送り込むように構成する。この構成により、圧縮に必要なエネルギーを少なくできる。 In the above-described bubble lift system, in the deaeration apparatus, the bubbles or gas discharged to the outside of the riser pipe are guided to the compressor on the water surface again by a deaeration transfer pipe connected to the deaeration pipe. It compresses and it comprises so that it may send in the lower side of the said riser pipe | tube. With this configuration, the energy required for compression can be reduced.
 また、上記の気泡リフトシステムで、前記圧縮機を多段圧縮機で構成し、かつ前記脱気装置を異なる水深に複数設置し、それぞれの前記脱気装置からの前記脱気移送管を前記多段圧縮機の異なる段に導くように構成する。この構成により、大水深領域から浅水深領域まで、気泡の占める体積の割合を均等化し、ひいては、流体の流速をより均等化することができ、流体の引き上げ効率を最大化することができる。その上、圧縮に必要なエネルギーを少なくできる。 Further, in the above-described bubble lift system, the compressor is configured by a multistage compressor, and a plurality of the degassing devices are installed at different water depths, and the degassing transfer pipes from the respective degassing devices are compressed by the multistage compression. Configure to lead to different stages of the machine. With this configuration, it is possible to equalize the ratio of the volume occupied by the bubbles from the deep water region to the shallow water region, thereby further equalizing the flow velocity of the fluid and maximizing the fluid pulling efficiency. In addition, the energy required for compression can be reduced.
 また、上記の気泡リフトシステムで、前記脱気移送管において、水面上に圧力調整弁、絞り弁、オリフィス等を設けておくことで、水面上において脱気量を制御するように構成される。 In the above-described bubble lift system, the deaeration transfer pipe is configured to control the deaeration amount on the water surface by providing a pressure regulating valve, a throttle valve, an orifice, etc. on the water surface.
 これによれば、水深の深い海底、湖底、川底等、あるいは、さらにその下の地中から砂、堆積物、鉱物等の固形物を引き上げる場合には、一般に困難と考えられている、スラリー中の固形物と海水との混合割合の制御を不要とし、スラリーの比重等が時々刻々と変化する状況に対応することができる。 According to this, it is generally considered difficult to lift solid matter such as sand, sediment, minerals, etc. from deep seabed, lake bottom, riverbed, etc. Therefore, it is not necessary to control the mixing ratio between the solid matter and the seawater, and it is possible to cope with a situation in which the specific gravity of the slurry changes every moment.
 理想的には、ある一定の気泡注入量を保ったままで、海水のみを引き込んでしまった場合でもライザー管上端の混合流体の流速が設計最大流速内に収まり、かつ、固体ばかりを引き込んでしまってもスタック(立ち往生)することなく引き上げられる性能が望まれる。 Ideally, the flow rate of the mixed fluid at the upper end of the riser pipe is within the design maximum flow rate and only solids are drawn even if only seawater is drawn in while maintaining a certain amount of bubble injection. It is also desirable to have the ability to be pulled up without being stuck.
 本発明によれば、各脱気装置における脱気量を制御できるので、設計比重より軽いスラリーを引き込んでも過剰に流速が上がることがない。例えば、水深5,000mでの気泡リフトで比重が海水の2倍を超える固形物を引き上げる場合に、スラリー中の海水濃度が100%になっても、また、固形物の濃度が100%になっても、気泡注入量の設定量を固定したままでの連続運転が実用的に可能となる。 According to the present invention, since the amount of deaeration in each deaeration device can be controlled, the flow rate does not increase excessively even if a slurry lighter than the design specific gravity is drawn. For example, when pulling up solids whose specific gravity is more than twice that of seawater by bubble lift at a water depth of 5,000 m, even if the seawater concentration in the slurry becomes 100%, the solids concentration becomes 100%. However, continuous operation with the set amount of bubble injection fixed is practically possible.
 また、上記の気泡リフトシステムで、前記脱気装置において、前記脱気管に、前記ライザー管の管内外の圧力差により作動する圧力逃がし弁を設け、該圧力逃がし弁により脱気量を制御して、前記ライザー管内の圧力を調整するように構成される。この構成によれば、脱気装置の脱気管に、ライザー管内外の圧力差が例えば当初と同じ5気圧で開閉する圧力逃がし弁を設けておくことで、より多くの気泡をライザー管の下側部分から注入しても、その気泡の体積がライザー管上部で過剰になる前に、脱気装置のある深度において当初と同様に、5気圧の圧力差になるまで気泡を排出することができる。 In the bubble lift system, in the deaeration device, the deaeration pipe is provided with a pressure relief valve that operates due to a pressure difference between the inside and outside of the riser pipe, and the deaeration amount is controlled by the pressure relief valve. , Configured to regulate the pressure in the riser tube. According to this configuration, the deaeration pipe of the deaeration device is provided with a pressure relief valve that opens and closes at the same 5 atm as the pressure difference inside and outside the riser pipe. Even if injected from the part, the bubbles can be discharged until a pressure difference of 5 atm is reached at a certain depth of the deaeration device, as before, before the volume of the bubbles becomes excessive at the top of the riser tube.
 上記の目的を達成するための本発明の気泡リフト方法は、水面近傍から、水底、又は、該水底より下にライザー管を降下させて、前記ライザー管の下側に気体を気泡状にして注入して上昇させ、この気泡による前記ライザー管内の流体柱圧力減圧効果によって、前記ライザー管の下端近傍で集められた引き上げ対象物をライザー管の下端側で吸引し、前記ライザー管の上端に設けられた受け入れ装置に引き上げ対象物を含む混合流体を引き上げる気泡リフト方法において、前記ライザー管の上側に設けられた脱気装置により、混合流体中の気泡又は気体の一部を脱気することを特徴とする。 In order to achieve the above object, the bubble lift method of the present invention lowers the riser pipe from the vicinity of the water surface or below the water bottom, and injects the gas in the form of bubbles below the riser pipe. Due to the effect of reducing the pressure of the fluid column in the riser pipe due to the bubbles, the object to be lifted collected near the lower end of the riser pipe is sucked at the lower end side of the riser pipe and provided at the upper end of the riser pipe. In the bubble lift method for pulling up the mixed fluid containing the object to be pulled up to the receiving device, the bubble or part of the gas in the mixed fluid is degassed by the deaeration device provided on the upper side of the riser pipe. To do.
 この方法によれば、ライザー管の上端近傍における混合流体中の気泡又は気体の体積の割合の増加をより抑制することができる。また、注入空気量に対して、引き込み状況に応じた動的制御をかけなくても、また、海水だけを引き込んでしまっても(比重が最低になってしまう)流速が設計範囲におさまり、更に、比重の大きい固形分ばかりを引き込んでしまっても設計上限比重におさまるようにすることができる。 According to this method, an increase in the volume ratio of bubbles or gas in the mixed fluid in the vicinity of the upper end of the riser pipe can be further suppressed. In addition, the flow rate is within the design range even if dynamic control according to the pull-in situation is not applied to the amount of injected air or only the seawater is pulled in (the specific gravity is minimized). Even if only the solid content having a large specific gravity is drawn in, it can be kept within the design upper limit specific gravity.
 本発明の気泡リフトシステム、及び、気泡リフト方法によれば、ライザー管の途中に脱気装置を設けることにより、その最大気泡割合が発生する場所をライザー管上端部だけでなく、浅水深領域に複数個所設定することができるため、大水深領域から浅水深領域までのライザー管全体で気泡の占める体積の割合を均等化できるので、最大流速を上げることなく気泡の割合を平均的に高くすることができる。 According to the bubble lift system and the bubble lift method of the present invention, by providing a deaeration device in the middle of the riser pipe, the place where the maximum bubble ratio is generated is not limited to the upper end portion of the riser pipe but also to a shallow water depth region. Since multiple locations can be set, the proportion of bubbles occupied by the entire riser pipe from the deep water region to the shallow water region can be equalized, so the bubble rate should be increased on average without increasing the maximum flow velocity. Can do.
 これにより、ライザー管内全体の流速、特に、ライザー管の上端部における流速を大幅に抑えることができるため、エロージョンの問題を激減することができ、ライザー管そのものやその上端から下流のプロセスへのつなぎこみ部分等に、より硬度の低い金属を使用したり、プラスチック、エラストマーなどの軽量材料や耐食性材料を使用したり、コーティングやライナー材料、防振性材料、振動減衰性材料や撓みを吸収できる弾性材料等を使用したりすることが可能となる。 その結果、軽量ライザー管の使用でより大水深に対応できる効果や、安価な耐食性コーティングやライナーの使用によるコストダウン効果、材料変更により波周期との縦振動共振や渦励起振動等を回避する効果を奏することができるようになる。また、肉厚の薄い金属板を内面に使用するフレキシブルライザーやベローズの使用等が可能となり、高価で複雑なライザーテンショナーやテレスコーピックジョイント等を不要にすることができる。 As a result, the overall flow rate inside the riser tube, especially the flow rate at the upper end of the riser tube, can be greatly reduced, so the problem of erosion can be drastically reduced, and the riser tube itself and its connection from the upper end to downstream processes can be reduced. Elasticity that can absorb metal with lower hardness, use lighter materials such as plastics and elastomers, and corrosion-resistant materials, and absorb coatings, liner materials, vibration-proof materials, vibration-damping materials, and bending. It is possible to use materials and the like. As a result, the use of lightweight riser pipes can cope with greater depths of water, the cost reduction effect of using inexpensive corrosion-resistant coatings and liners, and the effect of avoiding longitudinal vibration resonance and vortex-excited vibration with the wave period by changing materials Can be played. In addition, a flexible riser or bellows using a thin metal plate on the inner surface can be used, and an expensive and complicated riser tensioner or telescopic joint can be eliminated.
 また、これにより、ライザー管内の流速が均等化されるため、ライザー管内の流れの脈動による問題や、スラリーと気泡の2相流の流動様式 (気泡流、スラグ流、環状流、噴霧流等)の変移の問題、停滞によるスラリー中の固液分離の問題などを解決し、長大なライザー管を効率的に実現できる。 This also equalizes the flow velocity in the riser pipe, so there are problems due to the pulsation of the flow in the riser pipe, and the two-phase flow mode of slurry and bubbles (bubble flow, slug flow, annular flow, spray flow, etc.) It is possible to solve the problem of transition and the problem of solid-liquid separation in the slurry due to stagnation, and to realize a long riser tube efficiently.
 これにより、従来技術の場合よりも、飛躍的に深い大水深においても、気泡リフトシステムによる引き上げ対象物の引き上げが可能になり、より比重の高い対象物の引き上げが可能になる。また流速の二乗に略比例する圧力損失を低減して効率的な引き上げが可能となる効果がある。例えば水深5,000mでの気泡リフトで、海水の2倍を超える比重の流体の引き上げが実用的に充分可能となる。 This makes it possible to lift the object to be lifted by the bubble lift system even at a significantly deeper water depth than in the case of the prior art, and it is possible to lift the object having a higher specific gravity. Further, there is an effect that the pressure loss approximately proportional to the square of the flow velocity can be reduced and efficient lifting can be achieved. For example, with a bubble lift at a water depth of 5,000 m, it is practically possible to pull up a fluid having a specific gravity more than twice that of seawater.
 そして、大水深領域での引き上げ作業を、本発明の気泡リフトシステム及び気泡リフト方法で行うことにすると、深海部や中間水深部のポンプ等、動力や制御を必要とする高機能部品や重量部品を不要にすることができ、また、気泡によりライザー管内の混合流体の比重を周囲の海水や水等の液体の比重以下に下げるため、ライザー管の自重と流体重量、潮流力などの合力を支えるリグに必要な設計荷重を大幅に抑えることができる。 And, when the lifting operation in the deep water area is performed by the bubble lift system and the bubble lift method of the present invention, high-functional parts and heavy parts that require power and control, such as pumps in the deep sea part and intermediate water depth part. Since the specific gravity of the mixed fluid in the riser pipe is lowered below the specific gravity of the liquid such as seawater and water by bubbles, the combined force of the riser pipe's own weight and fluid weight, tidal force, etc. is supported. The design load required for the rig can be greatly reduced.
 また、引き上げ作業中に海象状態が荒れた時には離脱が必要になるが、本発明の気泡リフトシステム及び気泡リフト方法によれば、従来技術のドリリングリグと全く同様にライザー管を引き上げるだけで、離脱することが可能となる。また、万一の非常時には船体外の部品は切り離して離脱し、切り離した物が回収不能となるような事態が生じても、高価な高機能部品等が切り離される可能性を排除するか最低限にすることができる。 In addition, when the sea state is rough during the pulling operation, it is necessary to detach, but according to the bubble lift system and the bubble lift method of the present invention, the detachment can be performed simply by lifting the riser pipe just like the conventional drilling rig. It becomes possible to do. Also, in the unlikely event of an emergency, parts outside the hull will be separated and removed, and even if a situation occurs in which the separated objects cannot be recovered, the possibility of detaching expensive high-functional parts is excluded. Can be.
 更に、比較的細くかつ下端から上端まで同じ径のライザー管で効率よく引き上げが可能となるため、従来技術のドリリング船のライザー管やライザー管をハンドルするドリルリグシステムをそのまま使用しながら、大水深領域での引き上げを実現できる。そのため、開発コストを大幅に削減できる。 In addition, since the riser tube is relatively thin and has the same diameter from the lower end to the upper end, it can be lifted efficiently. Therefore, while using the conventional drill rig system and the drill rig system that handles the riser tube, Can raise in the area. Therefore, the development cost can be greatly reduced.
図1は、本発明に係る実施の形態の気泡リフトシステムの構成を模式的に示す図である。FIG. 1 is a diagram schematically showing a configuration of a bubble lift system according to an embodiment of the present invention. 図2は、脱気装置の構成を模式的に示す図である。FIG. 2 is a diagram schematically showing the configuration of the deaeration device. 図3は、加圧チャンバー、遡上堰等を備えた受け入れ装置の構成を模式的に示す図である。FIG. 3 is a diagram schematically illustrating a configuration of a receiving device including a pressurized chamber, a run-up weir, and the like. 図4は、加圧チャンバーの設定圧力と引き上げられるスラリーの最大比重との関係を示す図である。FIG. 4 is a diagram showing the relationship between the set pressure of the pressurizing chamber and the maximum specific gravity of the slurry to be pulled up. 図5は、加圧チャンバーの設定圧力で引き上げられるスラリーの最大比重と水深の関係を示す図である。FIG. 5 is a diagram showing the relationship between the maximum specific gravity of the slurry pulled up by the set pressure of the pressurizing chamber and the water depth.
 以下、本発明に係る実施の形態の気泡リフトシステム、及び、気泡リフト方法について説明する。ここでは、海洋で、ドリルシップを用いて海底の資源を引き上げる例で説明するが、本発明は、海洋に限定されず、湖、川等でも適用可能である。 Hereinafter, a bubble lift system and a bubble lift method according to embodiments of the present invention will be described. Here, an example will be described in which an ocean bottom resource is raised using a drill ship in the ocean, but the present invention is not limited to the ocean, and can be applied to a lake, a river, and the like.
 本発明に係る実施の形態の気泡リフトシステム10は、図1に示すような構成をしている。海面(水面)2に浮かぶドリルシップ(掘削船)1で、海底(水底)3または海底3の下にある資源を引き上げるのに使用されるシステムであり、ライザー管11、捕集装置12、気体送入装置13、脱気装置14、受け入れ装置20を備えて構成される。 The bubble lift system 10 according to the embodiment of the present invention is configured as shown in FIG. A drill ship 1 that floats on the sea surface (water surface) 2, a system that is used to lift the sea bottom (water bottom) 3 or resources under the sea bottom 3, a riser pipe 11, a collector 12, gas The feeding device 13, the deaeration device 14, and the receiving device 20 are provided.
 この気泡リフトシステム10は、海底、湖底、川底等の水底3、又は、この水底3より下の砂、堆積物、鉱物等の固形状物質または液体状物質(引き上げ対象物)をライザー管11を通して水面2近辺まで引き上げるためにライザー管11の下側部分で気体を注入して上昇させ、この気体によるライザー管11内の流体柱圧力減圧効果によって、ライザー管11の下端部で引き上げ対象物を周囲の水と共にライザー管11に吸引し、引き上げ対象物を水、気体と共に水面2上の引き上げるシステムである。 The bubble lift system 10 passes through a riser pipe 11 through a riser pipe 11 with a bottom 3 such as a seabed, a lake bottom, or a riverbed, or a solid or liquid substance (a target to be lifted) such as sand, sediment, or mineral below the bottom 3. In order to pull up to the vicinity of the water surface 2, a gas is injected and raised at the lower part of the riser pipe 11, and the object to be lifted is surrounded at the lower end of the riser pipe 11 by the effect of reducing the pressure of the fluid column in the riser pipe 11. This is a system in which the water is sucked into the riser pipe 11 together with water and the object to be pulled up is pulled up on the water surface 2 together with water and gas.
 このドリルシップ1には、大水深の海底の堆積物を引き上げるために、自動船位保持システムを備えたドリルシップを使用する。また、気泡リフトシステム10のライザー管11として、ドリルシップ1のライザー管11を利用する。このドリルシップ1のライザー管11は、通常、ドリリングマッドを使用する工法を用いた掘削時にドリリングマッドを回収するため使用される。なお、ドリルシップ1の備えるドリリングリグの掘削機能自体は使用しなくて済む。 This drillship 1 uses a drillship equipped with an automatic ship position retention system in order to lift deep seabed sediments. Further, the riser pipe 11 of the drill ship 1 is used as the riser pipe 11 of the bubble lift system 10. The riser pipe 11 of the drill ship 1 is usually used for recovering the drilling mud during excavation using a method using the drilling mud. Note that the drilling function of the drilling rig provided in the drill ship 1 need not be used.
 このライザー管11は、例えば、内径50cm、長さ27m程度の短管をフランジで多数連結して構成される。このライザー管11の流速が比較的高い浅水深領域ではエロージョンに強い材質を使用し、中水深領域や大水深領域では軽量材料を使用することが好ましい。このライザー管11には、下端に捕集装置12が設けられ、下側に気体送入装置13が、上側に脱気装置14が、それぞれ単数又は複数個所に設けられる。このライザー管11の上端側は受け入れ装置20の加圧チャンバー21に接続される。その他、ライザー管11の最下端や中間部では、必要に応じて、補助的なポンプや粉砕機等を併用してもよい このライザー管11の下端部には、ストレーナー等の捕集装置12を設ける。この気泡リフトシステム10では、最小限の装備でよいので、ロワーマリンライザーパッケージ(LMRP)等のような重量物、高機能部品は不要になり、その重量の分だけ、ライザー管11を長くすることができるので、より深い水深に対応することができるようになる。また、潮流力等に対抗して安定性を得るために、大水深部において、ライザー管11に浮力を与える浮力体(図示しない)を減らすことが考えられる。 The riser pipe 11 is constituted by connecting a number of short pipes having an inner diameter of 50 cm and a length of about 27 m with flanges, for example. It is preferable to use a material resistant to erosion in the shallow water depth region where the flow velocity of the riser pipe 11 is relatively high, and to use a lightweight material in the middle water depth region and the large water depth region. The riser tube 11 is provided with a collection device 12 at the lower end, a gas inlet device 13 on the lower side, and a deaeration device 14 on the upper side, respectively. The upper end side of the riser pipe 11 is connected to the pressurizing chamber 21 of the receiving device 20. In addition, an auxiliary pump, a pulverizer, or the like may be used at the lowermost end or the middle part of the riser pipe 11 if necessary. A collecting device 12 such as a strainer is provided at the lower end part of the riser pipe 11. Provide. Since this bubble lift system 10 requires a minimum amount of equipment, heavy objects such as a lower marine riser package (LMRP) and high-functional parts are not required, and the riser pipe 11 is lengthened by the weight. It is possible to cope with deeper water depth. Further, in order to obtain stability against tidal forces and the like, it is conceivable to reduce buoyancy bodies (not shown) that give buoyancy to the riser pipe 11 in deep water.
 ライザー管11の下側部分に設けた気体送入装置13に、気泡リフト用の圧縮空気を送るための配管として、通常は、ライザー管11の本管の外側に、噴出防止装置のために使用する、キルラインやチョークラインと呼ばれる細管を配置及び保持しているので、これらと同様に配置及び保持される高圧細管を使用する。また、気体送入装置12は、圧縮空気をライザー管11の内部に注入するエアリフトバルブがついた特別仕様の短管で構成され、この気体送入装置13としての短管は、大水深部、中水深部で使用される短管の数本に使用される。 As a pipe for sending compressed air for bubble lift to the gas inlet device 13 provided at the lower part of the riser pipe 11, it is usually used outside the main pipe of the riser pipe 11 for an ejection prevention device. Since a narrow tube called a kill line or a choke line is arranged and held, a high-pressure thin tube arranged and held in the same manner as these is used. The gas inlet device 12 is composed of a special short tube with an air lift valve for injecting compressed air into the riser tube 11, and the short tube as the gas inlet device 13 has a deep water depth, Used for several short pipes used in deep water.
 また、図2に示すような、脱気装置14を設けた特別仕様の短管を、浅水深部に使用される短管のうち数本に使用する。この脱気装置14は、外壁14a、渦巻き状配管14b、脱気管14c、及び、脱気移送管(ベント専用管)14dを備えて構成される。なお、脱気移送管(ベント専用管)14d、の代わりに圧力逃がし弁を設ける場合もある。図2では、白丸は、気泡を示し、クロスのハッチングが施された部分は、例えば海水と対象物(砂、砕いた鉱物など)の混合したスラリーを示し、シングルのハッチングが施された部分は海水のみの部分を示し、白い部分は気体部分を示す。 Also, as shown in FIG. 2, a special short pipe provided with a deaeration device 14 is used for several short pipes used in shallow water depths. The deaeration device 14 includes an outer wall 14a, a spiral pipe 14b, a deaeration pipe 14c, and a deaeration transfer pipe (vent exclusive pipe) 14d. A pressure relief valve may be provided in place of the deaeration transfer pipe (vent exclusive pipe) 14d. In FIG. 2, white circles indicate bubbles, and cross hatched portions indicate, for example, mixed slurry of seawater and an object (sand, crushed minerals, etc.), and single hatched portions are The seawater-only part is shown, and the white part is the gas part.
 外壁14aはライザー管11の本管よりも太径に形成され、円筒部と、その下側の下側テーパー部と、円筒部の上側の上側テーパー部とから構成される。この外壁14aの内部に渦巻き状配管14bの全部と脱気管14cの一部を収容すると共に、下側のライザー管11の短管から流入してくる混合流体の旋回流を内包できる大きさに形成される
 渦巻き状配管14bは、その下端が下側のライザー管11の本管に接続され、外壁14aの下側テーパー部の内側に沿って螺旋状に配置されている配管であり、外壁14aの円筒部に入った所に開口部がある。この渦巻き状配管14bから流出する混合流体は外壁14aに沿って旋回流を形成するように構成される。つまり、ライザー管11内の混合流体を螺旋状に導くことで旋回流を生じさせる。
The outer wall 14a is formed with a diameter larger than that of the main pipe of the riser pipe 11, and includes a cylindrical portion, a lower tapered portion on the lower side thereof, and an upper tapered portion on the upper side of the cylindrical portion. The entire outer wall 14a accommodates the entire spiral pipe 14b and a part of the deaeration pipe 14c, and is formed to have a size capable of containing the swirling flow of the mixed fluid flowing in from the short pipe of the lower riser pipe 11. The spiral pipe 14b is a pipe whose lower end is connected to the main pipe of the lower riser pipe 11 and is spirally arranged along the inside of the lower taper portion of the outer wall 14a. There is an opening in the cylindrical part. The mixed fluid flowing out from the spiral pipe 14b is configured to form a swirling flow along the outer wall 14a. That is, a swirling flow is generated by guiding the mixed fluid in the riser pipe 11 in a spiral shape.
 脱気管14cは、外壁14aの円筒部の断面に関しての中心部分に開口を持ち、外壁14aを貫通して外部に出る配管で構成される。この脱気管14cは、ライザー管11の本管の外側に設けられた脱気移送管(ベント専用管)14dに接続される。 The deaeration pipe 14c is configured by a pipe having an opening at a central portion with respect to the cross section of the cylindrical portion of the outer wall 14a and passing through the outer wall 14a and going out. The deaeration pipe 14 c is connected to a deaeration transfer pipe (vent exclusive pipe) 14 d provided outside the main pipe of the riser pipe 11.
 つまり、この脱気装置14は、ライザー管11の上側部分に、すなわち、ライザー管11の上端の近傍の途中に、ライザー管11の内部を上昇する混合流体に旋回流を生じさせて遠心力効果によって気泡を回転中心に集めると共に、集めた気泡をこの回転中心に開口部を設けた脱気管14cからライザー管11の外部に排出するように構成される。 That is, the deaeration device 14 generates a swirling flow in the mixed fluid that rises inside the riser pipe 11 in the upper portion of the riser pipe 11, that is, in the middle of the vicinity of the upper end of the riser pipe 11. The air bubbles are collected by the rotation center, and the collected bubbles are discharged to the outside of the riser pipe 11 from a deaeration pipe 14c having an opening at the rotation center.
 この脱気装置14により、ライザー管11の内部を気泡と共に上昇する混合流体を巻貝形状の渦巻き状配管(ボリュート)14b内で螺旋状に導いて回転を生じさせ、遠心力によってスラリー等の引き上げ対象物を外壁14aに押しつける遠心分離効果で、気泡を回転中心部に集め、その回転中心部に挿入した脱気管14cから、過剰な気泡を脱気装置14の外部に排出することができる。 By this deaeration device 14, the mixed fluid that rises inside the riser pipe 11 together with the bubbles is spirally guided in the shell-shaped spiral pipe (volute) 14 b to cause rotation, and the object of pulling up slurry etc. by centrifugal force Due to the centrifugal effect of pressing the object against the outer wall 14a, the bubbles can be collected at the center of rotation, and excess bubbles can be discharged out of the deaeration device 14 from the deaeration tube 14c inserted into the center of rotation.
 この脱気装置14において、ライザー管11の外部に排出された気泡又は気体は、脱気管14cに接続された脱気移送管14dで水面2上に導いて大気中に大気圧下で解放してもよいが、脱気管14cに接続された脱気移送管14dで加圧チャンバー21の内部に導いて加圧下で解放してもよい。この場合には、排出された気体を大気圧まで膨張させずに、加圧チャンバー21で分離された気体とともに圧縮機に循環させてエアリフト用の気泡として再利用することにより、圧縮に必要なエネルギーを少なくすることができる。 In this deaeration device 14, bubbles or gas discharged to the outside of the riser pipe 11 are guided to the water surface 2 by a deaeration transfer pipe 14 d connected to the deaeration pipe 14 c and released into the atmosphere under atmospheric pressure. Alternatively, the deaeration transfer pipe 14d connected to the deaeration pipe 14c may be led into the pressurization chamber 21 and released under pressure. In this case, the energy required for the compression is obtained by circulating the discharged gas to the compressor together with the gas separated in the pressurizing chamber 21 and reusing it as air lift bubbles without expanding the discharged gas to atmospheric pressure. Can be reduced.
 更に、脱気移送管14dに、加圧チャンバー21や圧縮機に流入する脱気量を調節できるよう、水面2上に圧力調整弁、絞り弁、オリフィスを設けてもよい。この構成により、必要に応じて水面2上で脱気量を調節することができる。 Furthermore, a pressure regulating valve, a throttle valve, and an orifice may be provided on the water surface 2 so that the deaeration transfer pipe 14d can adjust the deaeration amount flowing into the pressurizing chamber 21 and the compressor. With this configuration, the deaeration amount can be adjusted on the water surface 2 as necessary.
 また、ライザー管11の下側に圧縮空気を注入するために、空気を圧縮する圧縮機を多段圧縮機構成し、加圧チャンバー21で分離された空気(気体)を圧縮してライザー管11の下側に再度送り込むように構成し、脱気装置14で脱気管14cによりライザー管11の外部に排出された気泡又は気体を、脱気管11cに接続された脱気移送管11dで多段圧縮機の加圧チャンバー21からの気体より高圧段に導くようにする。これにより、排出された気体をより高い圧力のまま圧縮機に回して、気泡リフト用の気泡として再利用することにより、圧縮に必要なエネルギーを更に少なくできる。 Further, in order to inject compressed air into the lower side of the riser pipe 11, a compressor that compresses air is configured as a multistage compressor, and the air (gas) separated in the pressurizing chamber 21 is compressed to It is configured to be sent again to the lower side, and bubbles or gas discharged to the outside of the riser pipe 11 by the deaeration pipe 14c in the deaeration device 14 and the deaeration transfer pipe 11d connected to the deaeration pipe 11c are used for the multistage compressor. The gas from the pressurized chamber 21 is led to the high pressure stage. As a result, the energy required for compression can be further reduced by turning the discharged gas to the compressor with higher pressure and reusing it as bubbles for bubble lift.
 ライザー管11の上端に加圧チャンバー21を設けることで、ライザー管11の内部の圧力が管外の水圧より高くなるという固有の現象を利用できるようになるので、脱気装置14を、加圧チャンバー21の効果によりライザー管11の管内の圧力が管外の圧力より高くなっている浅水深領域に設け、内外の圧力差を利用して気泡又は気体をライザー管11の外部の海中(水中)に排出してもよい。この場合は、脱気移送管14dを不要にすることができる。 By providing the pressurizing chamber 21 at the upper end of the riser pipe 11, a unique phenomenon that the pressure inside the riser pipe 11 becomes higher than the water pressure outside the pipe can be used. Due to the effect of the chamber 21, the pressure inside the riser pipe 11 is set in a shallow water depth region where the pressure outside the pipe is higher than the pressure outside the pipe, and bubbles or gas are introduced into the sea (underwater) outside the riser pipe 11 using the pressure difference between the inside and outside. May be discharged. In this case, the deaeration transfer pipe 14d can be dispensed with.
 更に、脱気管14cに、ライザー管11の管内外の圧力差により作動する圧力逃がし弁(図示しない)を設け、この圧力逃がし弁により脱気量を制御して、ライザー管11内の圧力を調整するように構成する。この構成によれば、非常に単純な構成で、ライザー管11内の圧力を調整することができる。 Further, the deaeration pipe 14c is provided with a pressure relief valve (not shown) that operates due to a pressure difference between the inside and outside of the riser pipe 11, and the pressure inside the riser pipe 11 is adjusted by controlling the deaeration amount by this pressure relief valve. To be configured. According to this configuration, the pressure in the riser pipe 11 can be adjusted with a very simple configuration.
 更に、脱気装置14で、気泡を減じた後の混合流体を、気泡を減じた部分より上側でも効率的に上昇できるように、ライザー管11の内部に固定ベーン等を設けて、引き上げ対象物と気泡と海水を再度よく混合することが好ましい。 Furthermore, a fixed vane or the like is provided inside the riser pipe 11 so that the mixed fluid after the bubbles are reduced by the degassing device 14 can be efficiently raised even above the portion where the bubbles are reduced, and the object to be lifted It is preferable that the air bubbles and the seawater are mixed well again.
 この脱気装置14は水深を異ならせて複数個所(図1では2個所)に設けて、複数の段階で徐々に脱気(ベント)するようにしてもよい。この構成により、ライザー管11の内部を上昇する混合流体中の気泡の占める体積割合を、大水深域から浅水域まで、略均等化し、ひいては、混合流体の流速をより均等化することができ、流体の引き上げ効率を最大化することができる。 This deaeration device 14 may be provided at a plurality of locations (two locations in FIG. 1) with different water depths so as to gradually deaerate (vent) at a plurality of stages. With this configuration, the volume ratio of bubbles in the mixed fluid that rises inside the riser pipe 11 can be substantially equalized from the deep water area to the shallow water area, and thus the flow velocity of the mixed fluid can be more equalized. Fluid pulling efficiency can be maximized.
 この構成により、例えば、水深200mの近辺等の適当な位置に、脱気装置14を設けて、脱気管14cに、ライザー管11の内外の圧力差が例えば当初と同じ5気圧で開閉する圧力逃がし弁を設けておくと、より多くの気泡をライザー管11の下側部分から注入しても、その気泡の体積がライザー管11上部で過剰になる前に、水深200mの位置で、当初と同等に内外の圧力差が5気圧になるまで、脱気装置14内の気泡を外部に排出することができる。 With this configuration, for example, a deaeration device 14 is provided at an appropriate position, for example, in the vicinity of a water depth of 200 m, and the pressure relief in which the pressure difference between the inside and outside of the riser pipe 11 is opened and closed at the same 5 atmospheres as the initial in the deaeration pipe 14c. If a valve is provided, even if more bubbles are injected from the lower part of the riser pipe 11, the volume of the bubbles is the same as the original at a depth of 200 m before the volume of the bubbles becomes excessive at the top of the riser pipe 11. Until the pressure difference between the inside and outside reaches 5 atm, the bubbles in the deaeration device 14 can be discharged to the outside.
 図3に示すように、ライザー管11の上端部にあたるドリルシップ1上には、加圧チャンバー21、多段の遡上堰22A、22B、22C、分離用タンク23、Uシール液体補給ポンプ24、Uシール液体補給管25、Uシール液体溜まり26、Uシール(エアトラップ)27A、27B等からなる受け入れ装置(引き上げ対象物受け取りシステム)20と、気泡リフト用の圧縮空気を発生する圧縮機(図示しない)等を搭載し、受け入れ装置20の加圧チャンバー21にライザー管11の本管を接続し、気体送入装置12に圧縮空気を送るための圧縮機の送風側の配管がライザー管11の本管の外側に配した高圧細管に接続される。 As shown in FIG. 3, on the drill ship 1 corresponding to the upper end portion of the riser pipe 11, a pressurizing chamber 21, multistage upstream weirs 22A, 22B, 22C, a separation tank 23, a U seal liquid supply pump 24, U A receiving device (pickup object receiving system) 20 including a sealing liquid supply pipe 25, a U sealing liquid reservoir 26, U seals (air traps) 27A, 27B, and the like, and a compressor (not shown) that generates compressed air for bubble lift ) Etc., the main pipe of the riser pipe 11 is connected to the pressurizing chamber 21 of the receiving apparatus 20, and the blower side piping of the compressor for sending the compressed air to the gas inlet apparatus 12 is the main pipe of the riser pipe 11. It is connected to a high-pressure tubule placed outside the tube.
 このライザー管11の上端部に加圧チャンバー21を設けて、ライザー管11の上部の内部を加圧することで、浅水深領域でのライザー管11内を上昇する混合流体における気泡の体積の割合が増加するのを抑制するように構成する。 By providing a pressurization chamber 21 at the upper end of the riser pipe 11 and pressurizing the inside of the riser pipe 11, the ratio of the volume of bubbles in the mixed fluid rising in the riser pipe 11 in the shallow water depth region is It is configured to suppress the increase.
 この加圧チャンバー21の加圧圧力を、ライザー管11の下側部分で注入する気体注入量に引き込み状況に応じた動的制御を行わなくても済み、かつ、周囲の水だけを吸引しても混合流体の流速が予め設定した範囲に収まり、かつ、引き上げ対象物だけを吸引しても、その比重を上回るような設計上限比重を持つような予め設定した圧力範囲内の圧力にするように構成する。この構成によれば、引き上げ深度や引き上げ対象物の比重等を考慮して、事前の計算シミュレーション等で予め設定した圧力範囲内に、加圧チャンバー21の加圧圧力を設定し、その圧力範囲内になるように、加圧チャンバー21の加圧圧力を調整するだけで、効率的に引き上げ対象物を引き上げることができる。 The pressurizing pressure of the pressurizing chamber 21 does not need to be dynamically controlled in accordance with the drawing state into the gas injection amount injected at the lower portion of the riser pipe 11, and only the surrounding water is sucked. The flow rate of the mixed fluid is within the preset range, and even if only the object to be pulled is sucked, the pressure within the preset pressure range is set so that the specific gravity exceeds the design upper limit specific gravity. Constitute. According to this configuration, the pressurization pressure of the pressurization chamber 21 is set within a pressure range set in advance by a calculation simulation or the like in consideration of the pulling depth, the specific gravity of the pulling target, and the like. Thus, the object to be lifted can be efficiently lifted simply by adjusting the pressurizing pressure of the pressurizing chamber 21.
 また、この加圧チャンバー21の圧力は、ライザー管11の下端部の水圧の1/50以上1/3以下、より好ましくは、1/50以上1/10以下の圧力に調整することが好ましい。この圧力が1/50より小さいと、加圧チャンバー21による気泡の体積の抑制効果が少なくなり、加圧チャンバー21を設けることに対するメリットがなくなる。また、この圧力が1/3より大きいと、加圧チャンバー21の耐圧性能が大きくなり、圧縮機の必要能力が大きくなる一方でそれ以上の引き上げ能力の向上は望めない。また、上限値を1/10にすることで、加圧チャンバー21の耐圧性能を低くすることができ、受け入れ装置20全体をコンパクトにすることができ、かつ、必要に応じ脱気システムの併用により十分な引き上げ性能を得られる。 Further, the pressure in the pressurizing chamber 21 is preferably adjusted to 1/50 or more and 1/3 or less, more preferably 1/50 or more and 1/10 or less of the water pressure at the lower end portion of the riser pipe 11. When this pressure is less than 1/50, the effect of suppressing the volume of bubbles by the pressurizing chamber 21 is reduced, and the merit for providing the pressurizing chamber 21 is lost. On the other hand, if this pressure is greater than 1/3, the pressure resistance of the pressurizing chamber 21 is increased, and the required capacity of the compressor is increased, but no further improvement in the pulling capacity can be expected. Further, by setting the upper limit to 1/10, the pressure resistance performance of the pressurizing chamber 21 can be lowered, the receiving device 20 as a whole can be made compact, and if necessary, by using a deaeration system together Sufficient pulling performance can be obtained.
 また、図3に示すように、加圧チャンバー21を、サイクロン形状にして、ライザー管11からの混合流体を接線方向から加圧チャンバー21内に導入するように構成することで、旋回流を発生し、この混合流体の流速を利用した遠心分離効果により気体と引き上げ対象物を含んだスラリーを分離する分離器としての機能を持たせることができる。この場合にも、分離された気体Aを、加圧チャンバー21の頂部から抜き出して、大気圧にして膨張させることなく、加圧したまま圧縮機に回して気泡リフト用の圧縮空気として再利用することができる。なお、図3では、白丸は、気泡を示し、クロスのハッチングが施された部分は例えば海水と対象物(砂、砕いた鉱物など)が混合したスラリーを示し、シングルのハッチングが施された部分は海水のみを示し、白い部分は気体部分を示す。 Further, as shown in FIG. 3, the pressurized chamber 21 is formed in a cyclone shape so that the mixed fluid from the riser pipe 11 is introduced into the pressurized chamber 21 from the tangential direction, thereby generating a swirling flow. And the function as a separator which isolate | separates the slurry containing gas and the pulling-up target object can be given by the centrifugal separation effect using the flow velocity of this mixed fluid. Also in this case, the separated gas A is extracted from the top of the pressurizing chamber 21 and is rotated to a compressor while being pressurized, and is reused as compressed air for bubble lift without being expanded to atmospheric pressure. be able to. In FIG. 3, white circles indicate bubbles, and cross hatched portions indicate, for example, a slurry in which seawater and an object (sand, crushed minerals, etc.) are mixed, and a single hatched portion. Indicates only seawater, and the white part indicates the gas part.
 また、加圧チャンバー21の圧力を設計範囲内に保つために、加圧チャンバー21の下流に圧力容器22aとこの圧力容器22aに収納されたスラリー管22bとからなる遡上堰22A、22B、22Cを単段又は多段(図3では3段)で設けて構成する。この各段の遡上堰22A、22B、22Cのスラリー管22bの下流の圧力を、スラリー管22bの上端を包含する圧力容器22aの気相部の圧力の制御によって設計範囲に保つように構成する。更に、遡上堰の22A、22B、22Cの圧力容器22aの気相部とUシール27A、27Bの上部とを連通する連通管28A、28Bを設け、この圧力容器22aの気相部の圧力制御を、単段又は複数段設けられた(図3では2段)、液体柱による圧力を利用するUシール27A、27Bにより行うように構成する。 Further, in order to keep the pressure of the pressurizing chamber 21 within the design range, the upstream weirs 22A, 22B, and 22C including the pressure vessel 22a and the slurry pipe 22b accommodated in the pressure vessel 22a are provided downstream of the pressurization chamber 21. Are provided in a single stage or multiple stages (three stages in FIG. 3). The upstream downstream weirs 22A, 22B, and 22C of the respective stages are configured to keep the pressure downstream of the slurry tube 22b within the design range by controlling the pressure in the gas phase portion of the pressure vessel 22a including the upper end of the slurry tube 22b. . Furthermore, communication pipes 28A and 28B are provided for communicating the gas phase portion of the pressure vessel 22a of the upstream weirs 22A, 22B and 22C and the upper portions of the U seals 27A and 27B, and pressure control of the gas phase portion of the pressure vessel 22a is provided. Is configured to be performed by U seals 27A and 27B that are provided with a single stage or a plurality of stages (two stages in FIG. 3) and use the pressure of the liquid column.
 この遡上堰22A、22B、22Cの各スラリー管22bは、前段の加圧チャンバー21や圧力容器22bの下部と連通しており、これらからの導入されるスラリーをスラリー管22bの下部から内部に導いて上部で圧力容器22b内に溢れ出させる。このスラリー管22bの高さとスラリーの比重とより、各段の圧力減少量を調整できる。また、スラリー管22bの下部の圧力は、圧力容器22aの気相部の圧力とスラリー管22bのスラリーの液圧との和になるので、圧力容器22aの気相部の圧力を調整することで、前段の圧力チャンバー21又は圧力容器22bの内部圧力を調整制御できる。 The slurry pipes 22b of the upstream weirs 22A, 22B, and 22C communicate with the lower part of the preceding pressurization chamber 21 and the pressure vessel 22b, and the slurry introduced from these parts into the slurry pipe 22b from the lower part to the inside. It guides and overflows into the pressure vessel 22b at the upper part. The amount of pressure reduction in each stage can be adjusted by the height of the slurry tube 22b and the specific gravity of the slurry. Further, since the pressure in the lower portion of the slurry tube 22b is the sum of the pressure in the gas phase portion of the pressure vessel 22a and the liquid pressure of the slurry in the slurry tube 22b, the pressure in the gas phase portion of the pressure vessel 22a can be adjusted. The internal pressure of the pressure chamber 21 or the pressure vessel 22b in the preceding stage can be adjusted and controlled.
 つまり、各遡上堰22A、22B、22Cのある各圧力容器22aの運転圧力は、各圧力容器22a内の気相圧力を制御することで保持することができる。この気相圧力の制御は気相に設けた圧力調整弁等によることもできるが、遡上堰22A、22B、22Cと段数をそろえて、液柱の圧力を利用する多段のUシール27A、27Bによることもできる。この多段のUシール27A、27Bによれば、例えば霧状に舞った砂、泥等による圧力調整弁等のトラブルを回避することができる。 That is, the operating pressure of each pressure vessel 22a having each upstream weir 22A, 22B, 22C can be maintained by controlling the gas phase pressure in each pressure vessel 22a. The control of the gas phase pressure can be performed by a pressure regulating valve or the like provided in the gas phase, but the multistage U-seal 27A, 27B that uses the pressure of the liquid column by aligning the number of stages with the upstream weirs 22A, 22B, 22C. It can also be. According to the multi-stage U-seal 27A, 27B, troubles such as a pressure regulating valve caused by mist-like sand, mud, etc. can be avoided.
 図3に示す構成では、第1段目の遡上堰22Aの圧力容器22aの上部は、連通管28Aで第1段目のUシール27Aの上部と連通し、第2段目の遡上堰22Bの圧力容器22aの上部は、連通管28Bで、第2段目のUシール27Bの上部と連通し、第3段目の遡上堰22Cの圧力容器22aの上部は、開放管28Cで大気開放となっている。 In the configuration shown in FIG. 3, the upper part of the pressure vessel 22a of the first stage upstream dam 22A communicates with the upper part of the first stage U-seal 27A through the communication pipe 28A, and the second stage upstream dam. The upper part of the pressure vessel 22a of 22B communicates with the upper part of the second stage U-seal 27B via a communication pipe 28B, and the upper part of the pressure vessel 22a of the third stage upstream weir 22C is opened to the atmosphere by an open pipe 28C. It is open.
 この構成によれば、第3段目の遡上堰22Cの圧力容器22aの内部の圧力P3は大気圧Poになっており、第2段目の遡上堰22Bの圧力容器22aの内部の圧力P2は、大気圧Poと第2段目のUシール27Bの液柱の圧力Pbとの和になっている。また、第1段目の遡上堰22Aの圧力容器22aの内部の圧力P1は、圧力P2と第1段目のUシール27Aの液柱の圧力Paとの和になっている。つまり、P3=Po、P2=Po+Pb、P1=P2+Pa=Po+Pa+Pbとなる。従って、Uシール27A、27Bの液柱の圧力Pa、Pbを制御することにより、各圧力容器22a内の圧力P1、P2を制御することができる。 According to this configuration, the pressure P3 inside the pressure vessel 22a of the third stage upstream weir 22C is the atmospheric pressure Po, and the pressure inside the pressure vessel 22a of the second stage upstream weir 22B. P2 is the sum of the atmospheric pressure Po and the pressure Pb of the liquid column of the second stage U-seal 27B. Further, the pressure P1 inside the pressure vessel 22a of the first stage upstream weir 22A is the sum of the pressure P2 and the pressure Pa of the liquid column of the first stage U seal 27A. That is, P3 = Po, P2 = Po + Pb, and P1 = P2 + Pa = Po + Pa + Pb. Therefore, the pressures P1 and P2 in each pressure vessel 22a can be controlled by controlling the pressures Pa and Pb of the liquid columns of the U seals 27A and 27B.
 この遡上堰22A、22B、22Cの最終段の遡上堰22Cの出口に、分離用タンク23を接続して設け、引き上げ対象物を含むスラリーを一時的に貯蔵すると共に、引き上げ対象物を沈殿させて海水と分離する。スラリー状の引き上げ対象物自体がスラリー状の場合には、沈殿する時間を考慮して下側から沈殿物Bを抜き出す。この沈殿物Bは、分離タンク23の下の方に溜まり、分離タンク23内の自重による圧力で下部の出口から押し出されるが、図示しないスラリーポンプなどで排出してもよい。また、沈殿物Bが除去された液体(海水)Cは、上澄みとなって上部の出口から分離タンク23の外部に排出され、混合物の除去等必要な後処理を行った後、海洋に戻される。また、分離タンク23の上側から液体(海水)Cの一部をUシール液体補給ポンプ24で排出して、Uシール液体補給管25から液体溜まり26に抜き出す。この液体はUシール27A、27Bの液柱に使用される。 The separation tank 23 is connected to the outlet of the last upstream weir 22A, 22B, 22C, and the slurry containing the object to be lifted is temporarily stored, and the object to be lifted is settled. Let it separate from seawater. When the slurry-like lifting object itself is in the form of a slurry, the precipitate B is extracted from the lower side in consideration of the time for precipitation. The precipitate B accumulates below the separation tank 23 and is pushed out from the lower outlet by the pressure due to its own weight in the separation tank 23, but may be discharged by a slurry pump (not shown). Further, the liquid (seawater) C from which the precipitate B has been removed becomes a supernatant and is discharged from the upper outlet to the outside of the separation tank 23, and after performing necessary post-treatment such as removal of the mixture, it is returned to the ocean. . Further, a part of the liquid (seawater) C is discharged from the upper side of the separation tank 23 by the U-seal liquid supply pump 24 and extracted from the U-seal liquid supply pipe 25 to the liquid reservoir 26. This liquid is used for the liquid columns of the U seals 27A and 27B.
 上記の気泡リフトシステム10によれば、海面(水面)2に浮かぶドリルシップ1等の海面2上から、海底3または海底3の下にライザー管11を降下させて、ライザー管11の下側に設けられた気体送入装置13に気体を気泡状にして注入して上昇させ、この気体によるライザー管11内の流体柱圧力減圧効果によって、ライザー管11の下端に設けられた捕集装置12により集められた引き上げ対象物を、ライザー管11の下端側で吸引し、ライザー管11の上端に設けられた受け入れ装置20に引き上げ対象物を含む混合流体を引き上げる際に、ライザー管11の上端側に設けられた脱気装置14により、混合流体中の気泡又は気体の一部を脱気するとともに、ライザー管11の上端部に設けた加圧チャンバー21によりライザー管11の上端の内部に圧力を掛ける気泡リフト方法を取ることができるので、ライザー管11の上端近傍における混合流体中の気泡又は気体の体積の割合の増加を抑制することができる。 According to the above-described bubble lift system 10, the riser pipe 11 is lowered from above the sea surface 2 such as the drill ship 1 floating on the sea surface (water surface) 2 to the bottom of the seabed 3 or below the bottom of the seabed 3. A gas is injected into the gas supply device 13 provided in the form of bubbles to rise, and due to the fluid column pressure reduction effect in the riser tube 11 by this gas, the collector 12 provided at the lower end of the riser tube 11 The collected object to be pulled is sucked at the lower end side of the riser pipe 11, and when the mixed fluid containing the object to be pulled is pulled up to the receiving device 20 provided at the upper end of the riser pipe 11, A degassing device 14 is provided to degas bubbles or a part of the gas in the mixed fluid, and a riser pipe is provided by a pressurized chamber 21 provided at the upper end of the riser pipe 11. It is possible to take the bubble lift method of applying pressure to the inside of one of the upper end, it is possible to suppress the increase in the ratio of the volume of the bubble or gas in the fluid mixture in the vicinity of the upper end of the riser pipe 11.
 また、この加圧チャンバー21の下部に溜まったスラリー等の引き上げ対象物は、加圧チャンバー21の内部の圧力によって押し出され、遡上堰22A、22B、22Cを遡上するが、すなわち、下流の専用の圧力容器22a内に設けられているスラリー管22bを遡上するが、引き上げ対象物を含むスラリーは遡上堰22A、22B、22Cの各スラリー管22bを遡上することにより、その液柱分の圧力を失い、その分減圧されるが、遡上堰専用の圧力容器22aの内部は、その減圧後のスラリーによる圧力と略釣り合うよう、加圧チャンバー21の内部圧力よりも一段低い内部圧力に保たれる。 Further, the object to be pulled up such as slurry accumulated in the lower portion of the pressurizing chamber 21 is pushed out by the pressure inside the pressurizing chamber 21 and moves up the upstream weirs 22A, 22B, 22C. The slurry pipe 22b provided in the dedicated pressure vessel 22a is run up, and the slurry containing the object to be pulled up is moved up the slurry pipes 22b of the run-up weirs 22A, 22B, and 22C. The pressure inside the pressure vessel 22a dedicated to the run-up weir is one step lower than the pressure inside the pressurizing chamber 21 so as to be substantially balanced with the pressure of the slurry after the pressure reduction. To be kept.
 スラリーは、遡上堰22A、22B、22Cの各スラリー管22bを遡上した後に、各圧力容器22aの内部を落下し、圧力容器22aの底部に溜まったスラリーは、更に下流の次の遡上堰22B又は22Cにある別の圧力容器22aに押し出される。これを繰り返し、引き上げ対象物を含むスラリーによる圧力は最終的には大気圧まで下げられる。 The slurry goes up the slurry pipes 22b of the run-up weirs 22A, 22B, and 22C, then falls inside each pressure vessel 22a, and the slurry accumulated at the bottom of the pressure vessel 22a moves further downstream. It is pushed out to another pressure vessel 22a in the weir 22B or 22C. By repeating this, the pressure by the slurry containing the object to be pulled is finally lowered to atmospheric pressure.
 次に、上記の気泡リフトシステム10を使用した本発明に係る実施の形態の気泡リフト方法について説明する。この気泡リフト方法は、水面2近傍から、水底3、又は、この水底3より下にライザー管11を降下させて、ライザー管11の下側に気体を気泡状にして注入して上昇させ、この気泡によるライザー管11内の流体柱圧力減圧効果によって、ライザー管11の下端近傍で集められた引き上げ対象物をライザー管11の下端側で吸引し、ライザー管11の上端に設けられた受け入れ装置20に引き上げ対象物を含む混合流体を引き上げる方法であり、ライザー管11の上側に設けられた脱気装置14により、混合流体中の気泡又は気体の一部を脱気する方法である。 Next, a bubble lift method according to an embodiment of the present invention using the bubble lift system 10 will be described. In this bubble lift method, the riser pipe 11 is lowered from the vicinity of the water surface 2 to the bottom 3 or below the bottom 3, and the gas is injected into the lower side of the riser pipe 11 to rise, Due to the effect of reducing the pressure of the fluid column in the riser pipe 11 by the bubbles, the objects to be lifted collected near the lower end of the riser pipe 11 are sucked at the lower end side of the riser pipe 11 and the receiving device 20 provided at the upper end of the riser pipe 11 In this method, the mixed fluid containing the object to be pulled up is pulled up, and a part of bubbles or gas in the mixed fluid is degassed by the deaeration device 14 provided on the upper side of the riser pipe 11.
 また、この気泡リフト方法において、ライザー管11の上端部に設けた加圧チャンバー21によりライザー管11の上端の内部に圧力をかける。 In this bubble lift method, pressure is applied to the inside of the upper end of the riser pipe 11 by the pressurizing chamber 21 provided at the upper end of the riser pipe 11.
 上記の構成の気泡リフトシステム10及び気泡リフト方法によれば、引き上げ対象物の引き上げの過程において、破損折損、噛り付き、噛みこみ等で機能しなくなる恐れの高い回転機器、遮断弁、圧力調整弁、絞り弁、オリフィス等をスラリー系統に設ける必要がない。 According to the bubble lift system 10 and the bubble lift method configured as described above, in the process of pulling up the object to be lifted, a rotating device, a shut-off valve, and a pressure regulator that are highly likely to fail due to breakage, biting, biting, etc. There is no need to provide valves, throttle valves, orifices, etc. in the slurry system.
 図4及び図5に計算シミュレーション結果を示す。図4は、加圧チャンバー21の設定圧力と引き上げられる混合流体の最大比重との関係を示す図であり、横軸は加圧チャンバー21の設定圧力を、縦軸は水深5,000mの気泡リフトでの上限のスラリーの比重を示す。また、図5は、加圧チャンバー21の設定圧力で引き上げられるスラリーの最大比重と水深の関係を示す図であり、横軸は水深を、縦軸は加圧チャンバー21の設定圧力が20気圧の場合での上限のスラリーの比重を示す。 Figures 4 and 5 show the simulation results. FIG. 4 is a diagram showing the relationship between the set pressure of the pressurized chamber 21 and the maximum specific gravity of the mixed fluid to be pulled up. The horizontal axis represents the set pressure of the pressurized chamber 21, and the vertical axis represents the bubble lift at a water depth of 5,000 m. The specific gravity of the upper limit slurry at is shown. FIG. 5 is a diagram showing the relationship between the maximum specific gravity of the slurry pulled up by the set pressure of the pressurizing chamber 21 and the water depth, the horizontal axis is the water depth, and the vertical axis is the set pressure of the pressurizing chamber 21 of 20 atm. The specific gravity of the upper limit slurry in each case is shown.
 この計算シミュレーションでは、上記の水底3から対象物を引き上げる気泡リフトシステム10で、加圧チャンバー21の圧力と気泡注入量は固定としている。気泡注入量は、スラリー中の水濃度が100%になってしまった場合でもライザー管11の上端での混合流体流速が10m毎秒を超えない上限量に設定している。その設定のままで固形物濃度が上がってスラリーの比重が上がると、流速は下がる、その一方で気泡割合は上がっていく。ライザー管11の上端での気泡割合が90%に達するようなスラリー比重がその気泡リフトシステム10で引き上げられるスラリー比重の実用的な上限であるとする。 In this calculation simulation, the pressure of the pressurizing chamber 21 and the amount of bubble injection are fixed in the bubble lift system 10 that pulls up the object from the water bottom 3. The bubble injection amount is set to an upper limit amount at which the mixed fluid flow velocity at the upper end of the riser pipe 11 does not exceed 10 m / second even when the water concentration in the slurry becomes 100%. If the solid concentration is increased and the specific gravity of the slurry is increased with the setting, the flow rate is decreased, while the bubble ratio is increased. It is assumed that the slurry specific gravity at which the bubble ratio at the upper end of the riser tube 11 reaches 90% is a practical upper limit of the slurry specific gravity raised by the bubble lift system 10.
 図4に、水深5,000mの場合で、加圧チャンバー21の圧力設定を変化させた場合の性能変化を示す。本発明を実施していない場合は、本発明の加圧チャンバー21の圧力が大気圧の場合に相当し、その場合には海水より比重の大きいスラリーは引き上げられないと言ってよいが、本発明の加圧チャンバー21の圧力を20気圧程度に設定すれば海水の1.5倍程度の比重のスラリーを引き上げられることがわかる。更に加圧チャンバー21の圧力を高く設定すれば海水の2倍以上の比重のスラリーを引き上げられることがわかるが、同様の効果は、加圧チャンバー21の圧力が20気圧のままでも、脱気装置14を1段設けるだけでも得ることができる(図示していない)。 FIG. 4 shows a change in performance when the pressure setting of the pressurizing chamber 21 is changed at a water depth of 5,000 m. When the present invention is not carried out, it corresponds to the case where the pressure of the pressurizing chamber 21 of the present invention is atmospheric pressure. In this case, it can be said that the slurry having a specific gravity higher than seawater is not pulled up. It can be seen that the slurry having a specific gravity of about 1.5 times that of seawater can be pulled up by setting the pressure of the pressurized chamber 21 to about 20 atmospheres. Furthermore, it can be seen that if the pressure in the pressurizing chamber 21 is set higher, a slurry having a specific gravity more than twice that of seawater can be pulled up, but the same effect can be obtained even if the pressure in the pressurizing chamber 21 remains at 20 atm. 14 can be obtained by providing only one stage (not shown).
 また、図5に、加圧チャンバー21の圧力を20気圧とした気泡リフトシステム10を、様々な水深で使用した場合の性能変化を示す。水深1,000mでは海水の3倍程度の比重のスラリーを引き上げることができ、水深がより深ければ上限比重が小さくなっていくが、水深5,000mでも前述のように水海水の1.5倍程度のスラリーを引き上げられることを示している。 FIG. 5 shows changes in performance when the bubble lift system 10 in which the pressure of the pressurizing chamber 21 is 20 atm is used at various water depths. At a water depth of 1,000 m, it is possible to pull up slurry having a specific gravity about three times that of seawater. The deeper the water depth, the lower the specific gravity of the upper limit. It shows that the slurry of the degree can be pulled up.
 上記の構成の発明の気泡リフトシステム10、及び、気泡リフト方法によれば、ライザー管11の上端部に加圧チャンバー21を設けることで、従来技術では、大水深領域、例えば水深5,000mでの気泡リフトは、気泡の占める体積割合がライザー管11の上端部において下端部の500倍にもなるために、現実的には海水よりわずか数パーセント重いスラリーまでしか引き上げることができず、実質不可能であったような場合においても、ライザー管11の上端部で気泡が占める体積割合の増加を実用的な数十倍以下に抑えることができる。 According to the bubble lift system 10 and the bubble lift method of the invention having the above-described configuration, by providing the pressurization chamber 21 at the upper end portion of the riser pipe 11, in the conventional technology, in a large water depth region, for example, a water depth of 5,000 m. In the air bubble lift, since the volume ratio of the air bubbles is 500 times that of the lower end portion at the upper end portion of the riser tube 11, it can be lifted up to a slurry that is only a few percent heavier than seawater. Even in such a case, an increase in the volume ratio occupied by bubbles at the upper end of the riser tube 11 can be suppressed to a practical tens of times or less.
 これにより、従来技術の場合よりも、飛躍的に深い大水深においても、気泡リフトシステム10による引き上げ対象物の引き上げが可能になり、より比重の高い対象物の引き上げが可能になる。また流速の二乗に略比例する圧力損失を低減して効率的な引き上げが可能となる効果がある。例えば水深5,000mでの気泡リフトで、海水の2倍を超える比重のスラリーの引き上げが実用的に充分可能となる。 This makes it possible to lift the object to be lifted by the bubble lift system 10 even at a significantly deeper depth than in the case of the prior art, and to lift the object having a higher specific gravity. Further, there is an effect that the pressure loss approximately proportional to the square of the flow velocity can be reduced and efficient lifting can be achieved. For example, with a bubble lift at a water depth of 5,000 m, it is practically possible to pull up a slurry having a specific gravity more than twice that of seawater.
 更に、ライザー管11の途中に脱気装置14を設けることにより、その最大気泡割合が発生する場所をライザー管11上端部だけでなく、浅水深領域に複数個所設定することができるため、大水深領域から浅水深領域までのライザー管11全体で気泡の占める体積の割合を均等化できるので、最大流速を上げることなく気泡の割合を平均的に高くすることができる。 Furthermore, by providing the deaeration device 14 in the middle of the riser pipe 11, a place where the maximum bubble ratio is generated can be set not only at the upper end of the riser pipe 11 but also at a shallow water depth region. Since the ratio of the volume occupied by bubbles in the entire riser pipe 11 from the region to the shallow water region can be equalized, the ratio of bubbles can be increased on average without increasing the maximum flow velocity.
 これにより、ライザー管11内全体の流速、特に、ライザー管11の上端部における流速を大幅に抑えることができるため、エロージョンの問題を激減することができ、ライザー管11そのものやその上端から下流のプロセスへのつなぎこみ部分等に、より硬度の低い金属を使用したり、プラスチック、エラストマーなどの軽量材料や耐食性材料を使用したり、コーティングやライナー材料、防振性材料、振動減衰性材料や撓みを吸収できる弾性材料等を使用したりすることが可能となる。 As a result, the flow rate of the entire riser pipe 11, particularly the flow speed at the upper end of the riser pipe 11, can be greatly suppressed, so that the problem of erosion can be drastically reduced. Use a metal with lower hardness, a light weight material such as plastic or elastomer, or a corrosion-resistant material, or a coating, liner material, vibration-proof material, vibration-damping material, or bending. It is possible to use an elastic material or the like that can absorb water.
 その結果、軽量ライザー管の使用でより大水深に対応できる効果や、安価な耐食性コーティングやライナーの使用によるコストダウン効果、材料変更により波周期との縦振動共振や渦励起振動等を回避する効果を奏することができるようになる。また、肉厚の薄い金属板を内面に使用するフレキシブルライザーやベローズの使用等が可能となり、高価で複雑なライザーテンショナーやテレスコーピックジョイント等を不要にすることができる。    As a result, the use of lightweight riser pipes can cope with greater depths of water, the cost reduction effect of using inexpensive corrosion-resistant coatings and liners, and the effect of avoiding longitudinal vibration resonance and vortex-excited vibration with the wave period by changing materials Can be played. In addition, a flexible riser or bellows using a thin metal plate on the inner surface can be used, and an expensive and complicated riser tensioner or telescopic joint can be eliminated. *
 そして、大水深領域での引き上げ作業を、上記の構成の気泡リフトシステム10及び気泡リフト方法で行うことにすると、深海部や中間水深部のポンプ等、動力や制御を必要とする高機能部品や重量部品を不要にすることができ、また、気泡によりライザー管11内の混合流体の比重を周囲の海水や水等の液体の比重以下に下げるため、ライザー管11の自重と流体重量、潮流力などの合力を支えるリグに必要な設計荷重を大幅に抑えることができる。 Then, when the lifting operation in the deep water area is performed by the bubble lift system 10 and the bubble lift method configured as described above, high-functional parts that require power and control, such as pumps in the deep sea part and the intermediate water part, Heavy components can be made unnecessary, and the specific gravity of the mixed fluid in the riser pipe 11 is reduced to below the specific gravity of the liquid such as the surrounding seawater and water by bubbles, so that the own weight of the riser pipe 11 and the fluid weight, tidal force The design load required for the rig that supports the resultant force can be greatly reduced.
 また、引き上げ作業中に海象状態が荒れた時には離脱が必要になるが、上記の構成の気泡リフトシステム10及び気泡リフト方法によれば、従来技術のドリリングリグと全く同様にライザー管11を引き上げるだけで、離脱することが可能となる。また、万一の非常時には船体外の部品は切り離して離脱し、切り離した物が回収不能となるような事態が生じても、高価な高機能部品等が切り離される可能性を排除するか最低限にすることができる。 In addition, when the sea state is rough during the pulling operation, separation is necessary. However, according to the bubble lift system 10 and the bubble lift method configured as described above, the riser pipe 11 is simply lifted in the same manner as the conventional drilling rig. It becomes possible to leave. Also, in the unlikely event of an emergency, parts outside the hull will be separated and removed, and even if a situation occurs in which the separated objects cannot be recovered, the possibility of detaching expensive high-functional parts is excluded. Can be.
 更に、比較的細くかつ下端から上端まで同じ径のライザー管11で効率よく引き上げが可能となるため、従来技術のドリリング船のライザー管11やライザー管11をハンドルするドリルリグシステムをそのまま使用しながら、大水深領域での引き上げを実現できる。そのため、開発コストを大幅に削減できる。 Furthermore, the riser pipe 11 that is relatively thin and has the same diameter from the lower end to the upper end can be efficiently lifted, so that the riser pipe 11 of the conventional drilling ship and the drill rig system that handles the riser pipe 11 are used as they are. Can be lifted in deep water. Therefore, the development cost can be greatly reduced.
 本発明の気泡リフトシステム、及び、気泡リフト方法によれば、ライザー管の上側部分に、ライザー管の内部を上昇する混合流体に旋回流を生じさせて遠心力効果によって気泡及び気体を回転中心に集めると共に、集めた気泡及び気体を回転中心に開口部を設けた脱気管からライザー管の外部に排出する脱気装置を設けることで、大水深領域における気泡リフトにおいても、ライザー管の上端部で気泡が占める体積割合の増加を実用的な数十倍以下に抑えることができるので、海底熱水鉱床、マンガンノジュール、メタンガスハイドレート、レアアース、レアメタル、コバルトリッチクラスト、ダイヤモンド等の海底資源の採集、砂や砂利等の採集、海洋構造物設置工事等のためのドレッジングなど、海底、湖底、川底やそれより下の地中等から固形物、液体、スラリーを引き上げる全ての産業において利用できる。 According to the bubble lift system and the bubble lift method of the present invention, a swirl flow is generated in the mixed fluid that rises inside the riser tube in the upper portion of the riser tube, and the bubbles and the gas are rotated about the center of rotation by the centrifugal force effect. In addition to collecting the collected bubbles and gas, a degassing device that discharges the collected bubbles and gas from the degassing tube with an opening at the center of rotation to the outside of the riser tube can be used at the upper end of the riser tube even in a bubble lift in a deep water area. Since the increase in the volume ratio occupied by bubbles can be suppressed to a practical tens of times or less, collection of submarine resources such as submarine hydrothermal deposits, manganese nodules, methane gas hydrate, rare earths, rare metals, cobalt rich crusts, diamonds, Underground at the bottom of the sea, lake, river, and below, such as dredging for sand and gravel collection, offshore structure installation work, etc. Solids from, can be utilized in all industrial raising liquid, a slurry.
1 ドリルシップ
2 海面(水面)
3 海底(水底)
10 気泡リフトシステム
11 ライザー管
12 捕集装置
13 気体供給装置
14 脱気装置(ベントシステム)
14a 外壁
14b 渦巻き形状部分(ボリュート部分)
14c 脱気管
14d 脱気移送管(ベント専用管)
20 受け入れ装置
21 加圧チャンバー(気体・スラリー分離機能を併せ持つタイプ)
22A、22B、22C 遡上堰
22a 圧力容器
22b スラリー管
23 分離タンク
24 Uシール液体補給ポンプ
25 Uシール液体補給管
26 Uシール液体溜まり
27A、27B Uシール(エアトラップ)
28A、28B 連通管
A ガス(気泡及び気体)
B 固形分
C 液体(海水)
1 Drillship 2 Sea surface (water surface)
3 Seabed (Waterbed)
DESCRIPTION OF SYMBOLS 10 Bubble lift system 11 Riser pipe 12 Collection apparatus 13 Gas supply apparatus 14 Deaeration apparatus (vent system)
14a Outer wall 14b Spiral shape part (volute part)
14c Deaeration pipe 14d Deaeration transfer pipe (vent exclusive pipe)
20 Receiving device 21 Pressurization chamber (type that has gas / slurry separation function)
22A, 22B, 22C Upstream weir 22a Pressure vessel 22b Slurry pipe 23 Separation tank 24 U seal liquid supply pump 25 U seal liquid supply pipe 26 U seal liquid reservoir 27A, 27B U seal (air trap)
28A, 28B Communication pipe A Gas (bubbles and gas)
B Solid content C Liquid (seawater)

Claims (8)

  1.  水底、又は、該水底より下の固形状物質または液体状物質をライザー管を通して水面近傍まで引き上げるために前記ライザー管の下側部分で気体を注入して、この気体を気泡状態で上昇させて、この気泡によるライザー管内の流体柱圧力減圧効果によって前記ライザー管の下端部で引き上げ対象物をライザー管に吸引し、水面上に引き上げる気泡リフトシステムにおいて、
     前記ライザー管の上側部分に、前記ライザー管の内部を上昇する混合流体に旋回流を生じさせて遠心力効果によって気泡及び気体を回転中心に集めると共に、集めた気泡及び気体を前記回転中心に開口部を設けた脱気管から前記ライザー管の外部に排出する脱気装置を設けたことを特徴とする気泡リフトシステム。
    Injecting a gas at the lower part of the riser pipe to raise the bottom of the water or a solid or liquid substance below the bottom through the riser pipe to the vicinity of the water surface, raising the gas in a bubble state, In the bubble lift system in which the object to be lifted is sucked into the riser pipe at the lower end of the riser pipe by the effect of reducing the pressure of the fluid column in the riser pipe due to the bubbles, and lifted to the water surface.
    In the upper part of the riser tube, a swirling flow is generated in the mixed fluid rising inside the riser tube, and bubbles and gas are collected at the rotation center by the centrifugal force effect, and the collected bubbles and gas are opened at the rotation center. A bubble lift system characterized in that a deaeration device is provided for discharging the deaeration pipe provided with a portion to the outside of the riser pipe.
  2.  前記脱気装置を、前記ライザー管の下側部分で注入する気体注入量に引き込み状況に応じた動的制御を行わなくても済み、かつ、周囲の水だけを吸引しても混合流体の流速が予め設定した範囲に収まり、かつ、前記引き上げ対象物だけを吸引しても、その比重を上回るような設計上限比重を持つように、単数または複数設置することを特徴とする請求項1記載の気泡リフトシステム。 The deaerator does not need to be dynamically controlled in accordance with the state of drawing into the gas injection amount injected at the lower part of the riser pipe, and the flow rate of the mixed fluid can be obtained even if only the surrounding water is sucked. 1 or 2 is installed so that it has a design upper limit specific gravity that is within a preset range and exceeds the specific gravity even if only the object to be pulled is sucked. Bubble lift system.
  3.  前記脱気装置において、前記ライザー管内の混合流体を螺旋状に導くことで旋回流を生じさせることを特徴とする請求項1又は2に記載の気泡リフトシステム。 The bubble lift system according to claim 1 or 2, wherein in the deaeration device, a swirling flow is generated by guiding the mixed fluid in the riser pipe in a spiral shape.
  4.  前記脱気装置において、前記ライザー管の外部に排出された気泡又は気体を、前記脱気管に接続された脱気移送管で水面上に導いて大気中に開放することを特徴とする請求項1~3のいずれか1項に記載の気泡リフトシステム。 2. The degassing apparatus according to claim 1, wherein bubbles or gas discharged to the outside of the riser pipe is led to the water surface by a degassing transfer pipe connected to the degassing pipe and released to the atmosphere. The bubble lift system according to any one of items 1 to 3.
  5. 前記脱気装置において、前記ライザー管の外部に排出された気泡又は気体を、前記脱気管に接続された脱気移送管で水面上の圧縮機に導いて再度圧縮して前記ライザー管の下側に送り込むように構成することを特徴とする請求項1~3のいずれか1項に記載の気泡リフトシステム。 In the deaeration device, bubbles or gas discharged to the outside of the riser pipe are led to a compressor on the water surface by a deaeration transfer pipe connected to the deaeration pipe and compressed again to be below the riser pipe The bubble lift system according to any one of claims 1 to 3, wherein the bubble lift system is configured so as to be fed into the air.
  6. 前記圧縮機を多段圧縮機で構成し、かつ前記脱気装置を異なる水深に複数設置し、それぞれの前記脱気装置からの前記脱気移送管を前記多段圧縮機の異なる段に導くことを特徴とする請求項5に記載の気泡リフトシステム。 The compressor is composed of a multistage compressor, a plurality of the deaeration devices are installed at different water depths, and the deaeration transfer pipes from the respective deaeration devices are led to different stages of the multistage compressor. The bubble lift system according to claim 5.
  7.  前記脱気装置において、前記脱気管または前記脱気移送管に、前記ライザー管の管内外の圧力差により作動する圧力逃がし弁、圧力調節弁、絞り弁、またはオリフィスで形成される脱気量調整機器を設け、該脱気量調整機器により脱気量を制御して、前記ライザー管内の圧力を調整することを特徴とする請求項1~6のいずれか1項に記載の気泡リフトシステム。 In the deaeration device, a deaeration amount adjustment formed by a pressure relief valve, a pressure control valve, a throttle valve, or an orifice that operates on the deaeration pipe or the deaeration transfer pipe by a pressure difference between the inside and outside of the riser pipe The bubble lift system according to any one of claims 1 to 6, wherein a device is provided, and the pressure in the riser pipe is adjusted by controlling a deaeration amount by the deaeration amount adjusting device.
  8.  水面近傍から、水底、又は、該水底より下にライザー管を降下させて、前記ライザー管の下側に気体を気泡状にして注入して上昇させ、この気泡による前記ライザー管内の流体柱圧力減圧効果によって、前記ライザー管の下端近傍で集められた引き上げ対象物をライザー管の下端側で吸引し、前記ライザー管の上端に設けられた受け入れ装置に引き上げ対象物を含む混合流体を引き上げる気泡リフト方法において、前記ライザー管の上側に設けられた脱気装置により、混合流体中の気泡又は気体の一部を脱気することを特徴とする気泡リフト方法。 From the vicinity of the water surface, the riser pipe is lowered to the bottom of the water or below the bottom of the water, and a gas is injected into the bottom of the riser pipe to raise the pressure, and the pressure of the fluid column in the riser pipe is reduced by the bubbles. A bubble lift method for sucking up a lifted object collected near the lower end of the riser pipe on the lower end side of the riser pipe and pulling up a mixed fluid containing the lifted object in a receiving device provided at the upper end of the riser pipe. And a deaeration device provided on the upper side of the riser tube to degas bubbles or a part of the gas in the mixed fluid.
PCT/JP2012/069173 2011-08-09 2012-07-27 Gas lift system and gas lift method WO2013021842A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-174249 2011-08-09
JP2011174249A JP2013036421A (en) 2011-08-09 2011-08-09 Bubble lift system, and bubble lift method

Publications (1)

Publication Number Publication Date
WO2013021842A1 true WO2013021842A1 (en) 2013-02-14

Family

ID=47668355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069173 WO2013021842A1 (en) 2011-08-09 2012-07-27 Gas lift system and gas lift method

Country Status (2)

Country Link
JP (1) JP2013036421A (en)
WO (1) WO2013021842A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103823251A (en) * 2014-03-27 2014-05-28 无锡同春新能源科技有限公司 Underwater exploration device for exploring gas emitted by combustible ice ore in ocean cold spring areas
CN108071373A (en) * 2017-11-21 2018-05-25 中国矿业大学 A kind of method using high-water material filling sea bed gas hydrate exploitation cavity

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015031097A (en) * 2013-08-05 2015-02-16 新日鉄住金エンジニアリング株式会社 Methane hydrate collection system, and methane hydrate collection method
JP6236347B2 (en) * 2014-04-16 2017-11-22 新日鉄住金エンジニアリング株式会社 Separation apparatus and separation method
JP6166308B2 (en) * 2015-06-09 2017-07-19 坂本 美穂 Air bubble volume control device
JP6762150B2 (en) * 2016-07-01 2020-09-30 東亜建設工業株式会社 Underwater resource collection method and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220409A (en) * 1975-08-08 1977-02-16 Mitsubishi Heavy Ind Ltd Underwater air removing device of air operative pump
JPS5838856U (en) * 1981-09-09 1983-03-14 五洋建設株式会社 Air-left dredging equipment
JPS63280900A (en) * 1987-05-12 1988-11-17 Agency Of Ind Science & Technol Energy recovering apparatus in air lift

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220409A (en) * 1975-08-08 1977-02-16 Mitsubishi Heavy Ind Ltd Underwater air removing device of air operative pump
JPS5838856U (en) * 1981-09-09 1983-03-14 五洋建設株式会社 Air-left dredging equipment
JPS63280900A (en) * 1987-05-12 1988-11-17 Agency Of Ind Science & Technol Energy recovering apparatus in air lift

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103823251A (en) * 2014-03-27 2014-05-28 无锡同春新能源科技有限公司 Underwater exploration device for exploring gas emitted by combustible ice ore in ocean cold spring areas
CN108071373A (en) * 2017-11-21 2018-05-25 中国矿业大学 A kind of method using high-water material filling sea bed gas hydrate exploitation cavity

Also Published As

Publication number Publication date
JP2013036421A (en) 2013-02-21

Similar Documents

Publication Publication Date Title
JP5638486B2 (en) Bubble lift system and bubble lift method
WO2013021842A1 (en) Gas lift system and gas lift method
EP1021231B1 (en) Improved helical separator
US20110155385A1 (en) Method and system for subsea processing of multiphase well effluents
EP1782870A1 (en) A separator tank
EA011338B1 (en) Separator to separate a liquid/liquid/gas/solid mixture
JP7289324B2 (en) pump system
EP2153024B1 (en) Particle collector for a dynamic cyclone, and systems comprising the same
NO332541B1 (en) Procedure for controlling an underwater cyclone separator
CN1277999C (en) Method for hydraulic subsea dredging
CN103899290A (en) Underwater compact type oil-gas-water-solid separation system
WO1991010808A1 (en) Pumping method for ores of deep sea mineral resources using heavy liquid
GB2403440A (en) Separator
JP4572451B2 (en) Offshore hydraulic air compressor
CN220015111U (en) Throttle well control manifold with sand control structure
CN206731331U (en) A kind of cyclone desanding device of variable volume
WO2023170542A1 (en) Pumping system
CN115197744A (en) System for removing water and sand debris from ground thickened oil and oil-water separation method thereof
JP2021036105A (en) Lift system of solid material or liquid material, lift method, resource recovery system and resource recovery method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12821402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/06/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12821402

Country of ref document: EP

Kind code of ref document: A1