WO2013021756A1 - Screen and image display device - Google Patents

Screen and image display device Download PDF

Info

Publication number
WO2013021756A1
WO2013021756A1 PCT/JP2012/067099 JP2012067099W WO2013021756A1 WO 2013021756 A1 WO2013021756 A1 WO 2013021756A1 JP 2012067099 W JP2012067099 W JP 2012067099W WO 2013021756 A1 WO2013021756 A1 WO 2013021756A1
Authority
WO
WIPO (PCT)
Prior art keywords
screen
groove
layer
prism
light
Prior art date
Application number
PCT/JP2012/067099
Other languages
French (fr)
Japanese (ja)
Inventor
孝史 石川
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2013527932A priority Critical patent/JP5928467B2/en
Publication of WO2013021756A1 publication Critical patent/WO2013021756A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/567Projection screens for colour projection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens

Definitions

  • the present invention relates to a screen and an image display device.
  • an image display device that displays an image according to an image signal
  • a rear projector that displays an image by irradiating light from the rear side of the screen.
  • Patent Document 1 Japanese Translation of PCT International Publication No. 2009-537868
  • a rear projector is disclosed that displays an image by scanning a light beam output from a light source provided on the rear side of a screen on a screen in which a screen layer formed with a divider that blocks light is laminated.
  • Patent Document 1 discloses a prism sheet in which prisms are arranged in a certain direction on one surface of a sheet, and the prism surface on which the prisms are formed faces the opposite side of the substrate. Techniques for placement are disclosed.
  • the light output from the phosphor layer is isotropically diffused, and about half is output to the rear side of the screen. Therefore, the light extraction efficiency to the front side of the screen is deteriorated. Therefore, as disclosed in Patent Document 1, the light output from the phosphor layer to the rear side of the screen is arranged by arranging the prism sheet so that the prism surface faces the light source side arranged on the side opposite to the substrate. Is reflected to the front side of the screen by the prism, so that the light extraction efficiency can be increased.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a screen 20 having the above-described screen layer and prism sheet.
  • the screen layer 21 is laminated on the substrate 4.
  • the screen layer 21 includes a plurality of phosphor layers that output visible light of different colors, for example, a phosphor layer 211R that outputs red visible light, a phosphor layer 211G that outputs green visible light, and a blue layer A phosphor layer 211B that outputs visible light and a divider 212 that shields the beam light output from the light source are formed between adjacent phosphor layers.
  • a phosphor layer 211R that outputs red visible light
  • a phosphor layer 211G that outputs green visible light
  • a blue layer A phosphor layer 211B that outputs visible light
  • a divider 212 that shields the beam light output from the light source are formed between adjacent phosphor layers.
  • the prism sheet 22 is disposed on the screen layer 21 such that the prism surface faces the opposite side of the screen layer 21.
  • FIG. 1 it is assumed that beam light is irradiated from the vertical direction to the screen 20 at a position on the prism sheet 22 corresponding to the divider 212. As described above, the light beam applied to the prism sheet 22 is divided by the prism. Therefore, as shown in FIG. 1, the beam diameter D ⁇ b> 2 when entering the screen layer 21 is larger than the beam diameter D ⁇ b> 1 when irradiating the prism sheet 22. As shown in FIG. 2, when the screen 20 is irradiated with light beams from an oblique direction, the beam diameter D2 further increases.
  • the beam light is simultaneously incident on the adjacent phosphor layers, for example, the phosphor layer 211R and the phosphor layer 211G. So-called crosstalk may occur. When crosstalk occurs, there is a problem that visible light of different colors is simultaneously output from the respective phosphor layers, and the color purity of the display image is lowered.
  • Patent Document 1 describes that the expansion of the beam diameter can be suppressed by thinning the prism sheet.
  • a thin prism sheet having a thickness of 50 ⁇ m or less is difficult to manufacture, is easily broken, and is difficult to handle.
  • An object of the present invention is to provide a screen and an image display device capable of suppressing a decrease in color purity of a display image.
  • the screen of the present invention comprises: A substrate, A screen layer laminated on the substrate; A prism sheet disposed on the screen layer,
  • the screen layer has a plurality of phosphor layers and a black stripe disposed between adjacent ones of the phosphor layers included in the plurality of phosphor layers
  • the prism sheet has a prism surface on the side opposite to the substrate,
  • the prism surface has a plurality of prism rows and a groove portion disposed at a position corresponding to the black stripe,
  • the groove has a structure in which the width of the groove decreases toward the bottom of the groove.
  • an image display device of the present invention provides: The above screen; A light source provided on the rear side of the screen for outputting beam light; An optical scanning unit that scans the beam light output from the light source and irradiates the screen.
  • FIG. 4 is a diagram illustrating a state in which light output from the phosphor layer causes retroreflection on the screen illustrated in FIG. 4. It is a figure which shows the relationship between the inclination-angle of the slope of a groove part shown in FIG. 4, and a retroreflectance. It is a figure which shows an example of the manufacturing method of the screen shown in FIG. It is a figure which shows another example of the manufacturing method of the screen shown in FIG.
  • FIG. 3 is a diagram showing a configuration of the image display apparatus 1 according to the embodiment of the present invention.
  • the image display apparatus 1 shown in FIG. 3 includes a light source 2, an optical scanning unit 3, and a screen 10.
  • the light source 2 is provided on the rear side of the screen 10 and outputs beam light.
  • the light scanning unit 3 scans the beam light output from the light source 2 according to the image signal and irradiates the screen 10.
  • the screen 10 has a screen layer 11 and a prism sheet 12.
  • the screen layer 11 is formed with a plurality of phosphor layers that are excited by the beam light output from the light source 2 and output visible light of different colors in a stripe shape.
  • the prism sheet 12 is arranged on the light source 2 side of the screen layer 11 so that the prism surface on which the prism is formed faces the light source 2 side.
  • the surface of the prism surface is covered with a low refractive material having a refractive index lower than that of the prism member or air.
  • the laser beam output from the light source 2 is scanned by the light scanning unit 3 and enters the screen layer 11 through the prism sheet 12.
  • the beam light is incident, visible light is output from the phosphor layer of the screen layer 11 and an image is displayed.
  • about half of the light output from the phosphor layer is output to the rear side of the screen 10.
  • the light output to the rear side of the screen 10 is reflected to the front side of the screen 10 by the prism of the prism sheet 12. Therefore, the light extraction efficiency to the front side of the screen 10 can be increased.
  • FIG. 4 is a cross-sectional view of the screen 10 of the present embodiment in a direction orthogonal to the extending direction of the phosphor layer.
  • a screen layer 11 is laminated on a substrate 4 (not shown).
  • the screen layer 11 is excited by the beam light output from the light source 2, and outputs a phosphor layer 111R that outputs red visible light, a phosphor layer 111G that outputs green visible light, and blue visible light.
  • the phosphor layers 111B to be formed are formed in a stripe shape in this order.
  • the phosphor layers 111R, 111G, and 111B are not distinguished, they are referred to as the phosphor layer 111.
  • the screen layer 11 is formed with a black stripe 112 that shields the beam light between the adjacent phosphor layers 111.
  • the black stripe 112 corresponds to the divider 212 shown in FIG.
  • the color of visible light output from the phosphor layer 111, the number of phosphor layers 111 that output different colors of visible light, and the like can be changed as appropriate depending on the application of the screen 10. Further, for example, a blue light beam may be used, and instead of the phosphor layer 111B, a diffusion layer that diffuses the light beam and outputs diffused light may be formed.
  • FIG. 4 shows an example in which a low refractive index layer 113 made of air or a low refractive material is formed between the phosphor layer 111 and the prism sheet 12. 113 is not necessarily essential.
  • a prism sheet 12 is disposed on the screen layer 11.
  • the prism sheet 12 has a prism row 121 in which prisms having a width larger than the wavelength of the light beam and a width in a direction perpendicular to the extending direction of the phosphor layer 111 are smaller than the width of the phosphor layer 111 are formed in a row.
  • a plurality are formed.
  • the prism member include PET (polyethylene terephthalate), PC (polycarbonate), PMMA (polymethyl methacrylate), and COP (cycloolefin polymer).
  • the plurality of prism rows 121 are formed substantially parallel to each other along the extending direction of the phosphor layer 111.
  • the prism sheet 12 is arranged such that the prism surface on which the prism row 121 is formed faces the opposite side of the substrate 4.
  • a groove 122 is formed at a position on the prism surface corresponding to the black stripe 112 of the screen layer 11 along the extending direction of the phosphor layer 111.
  • the cross-sectional shape in the direction perpendicular to the extending direction of the phosphor layer 111 of the groove 122 is a trapezoid whose short side faces the substrate 4 side and whose long side faces the opposite side of the substrate 4 as shown in FIG.
  • the width of the groove 122 decreases toward the bottom of the groove 122.
  • the screen layer 11 and the prism sheet 12 are in contact with each other.
  • the present invention is not limited to this example.
  • an air layer is provided between the screen layer 11 and the prism sheet 12. May be present.
  • FIG. 5 is a diagram showing the irradiation state of the beam light onto the screen layer 21 of the screen 20.
  • the light beam tilted by a predetermined angle toward the phosphor layer 211R is irradiated at a position on the prism sheet 22 corresponding to the vicinity of the boundary between the phosphor layer 211G and the divider 212.
  • the light beam is split by the prism of the prism sheet 22, and the beam diameter when entering the screen layer 21 is larger than the beam diameter when irradiating the prism sheet 22 in the direction orthogonal to the extending direction of the phosphor layer 211. growing.
  • crosstalk in which the beam light is simultaneously incident on the adjacent phosphor layers 211R and 211G occurs, and visible light is simultaneously output from each phosphor layer, so that the color purity of the display image is lowered.
  • FIG. 6 is a diagram showing the irradiation state of the beam light onto the screen layer 11 of the screen 10.
  • the width in the direction orthogonal to the extending direction of the phosphor layer 111 decreases toward the bottom at the position corresponding to the black stripe 112 (the extending direction of the phosphor layer 111).
  • the groove 122 is formed in such a manner that the width in the direction orthogonal to the width increases toward the opposite side of the substrate 4. Therefore, as shown in FIG. 6, the light beam is applied to the slope of the groove 122 on the phosphor 111 ⁇ / b> G side and the bottom of the groove 122.
  • the beam light applied to the inclined surface of the groove 122 on the phosphor layer 111G side is refracted toward the phosphor layer 111G, and the beam light applied to the bottom of the groove 122 is refracted toward the black stripe 112 side.
  • the expansion of the beam diameter at the time of incidence on the screen layer 11 is suppressed, and beam light does not enter the adjacent phosphor layers 111R and 111G at the same time, so that crosstalk occurs. Therefore, it is possible to suppress a decrease in color purity of the display image.
  • FIG. 1 An example of a specific configuration (dimension) of the screen 10 is shown in FIG.
  • the width of the phosphor layer 111 is 0.48 mm, and the width of the black stripe 112 is 0.12 mm. In addition, the width of one subpixel composed of the phosphor 111 and the black stripe 112 is 0.60 mm.
  • the thickness of the prism sheet 12 is 0.20 mm.
  • the width of the prism portion which is an area where the prism row 121 is formed, sandwiched between two adjacent groove portions 122 is 0.336 mm.
  • the bottom of the groove 122 is substantially parallel to the screen layer 11 and the distance between the bottom of the groove 122 and the screen layer 11 is 0.08 mm.
  • the width of the bottom of the groove 122 is the same as the width of the black stripe 112.
  • the width of the bottom of the groove 122 is not necessarily the same as the width of the black stripe 112, and the width of the bottom of the groove 122 may be larger than the width of the black stripe 112.
  • the width of the bottom of the groove 122 is increased, the width of the prism is reduced and the effect of improving the light extraction efficiency is reduced. Therefore, the width of the bottom of the groove 122 and the width of the black stripe 112 are the same. Is preferred.
  • the slope thickness of the groove 122 (depth of the groove 122) is 0.12 mm.
  • the inclination angle of the slope of the groove 122 with respect to the bottom of the groove 122 is 59 degrees, and the width of the slope of the groove 122 is 0.072 mm.
  • the incident amount of the light beam irradiated on the prism sheet 12 to the phosphor layer 111G is 57%.
  • the amount of incident light on the phosphor layer 111R was 0%.
  • the screen 10 of this embodiment even if the irradiation position and irradiation angle of a laser beam change, it can prevent a laser beam from entering into the adjacent fluorescent substance layer 111 simultaneously.
  • FIG. 8 is a diagram showing a state in which beam light is irradiated from the vertical direction on the screen 10 of the present embodiment.
  • the state A shows a state where the beam light is irradiated to the position on the prism sheet 12 corresponding to the phosphor layer 111G
  • the state B is near the slope of the groove 122 on the phosphor layer 111G side.
  • the state in which the light beam is irradiated is shown
  • the state C shows a state in which the light beam is irradiated in the vicinity of the slope of the groove 122 on the phosphor layer 111R side.
  • the beam light is split by the prism and the beam diameter is increased, but all the beam light is incident on the phosphor layer 111G.
  • the beam light applied to the slope of the groove 122 on the phosphor layer 111G side is refracted toward the phosphor layer 111G, enters the phosphor layer 111G, and is applied to the bottom of the groove 122. Refracts toward the black stripe 112 and enters the black stripe 112.
  • the beam light applied to the slope of the groove 122 on the phosphor layer 111R side is refracted toward the phosphor layer 111R, enters the phosphor layer 111R, and is applied to the bottom of the groove 122. Refracts toward the black stripe 112 and enters the black stripe 112.
  • the beam light is not incident on the adjacent phosphor layers 111 at the same time.
  • FIG. 9 is a diagram showing a state in which the light beam in a state inclined by 30 degrees in the right direction is incident on the screen 10 of the present embodiment.
  • states A to C are the same as states A to C in FIG.
  • the beam light is split by the prism and the beam diameter is increased, but all the beam light is incident on the phosphor layer 111G.
  • the beam light applied to the slope of the groove 122 on the phosphor layer 111G side is refracted toward the phosphor layer 111G, enters the phosphor layer 111G, and is applied to the bottom of the groove 122. Refracts toward the black stripe 112 and enters the black stripe 112.
  • the beam light applied to the slope of the groove 122 on the phosphor layer 111R side is refracted toward the phosphor layer 111R, enters the phosphor layer 111R, and is applied to the bottom of the groove 122. Refracts toward the black stripe 112 and enters the black stripe 112.
  • the beam light is not incident on the adjacent phosphor layers 111 at the same time.
  • the screen 10 of this embodiment even if the irradiation position and the irradiation angle of the laser beam are changed, it is possible to prevent the laser beam from being simultaneously incident on the adjacent phosphor layers 111.
  • the laser beam irradiated to the inclined surface of the groove 122 and refracted toward the phosphor layer 111 side to the boundary surface between the prism sheet 12 and the low refractive index layer 113.
  • the incident angle exceeds the total reflection angle, the light is reflected to the light source 2 side.
  • the condition for the beam light refracted on the inclined surface of the groove 122 not to be totally reflected at the boundary surface between the prism sheet 12 and the low refractive index layer 113 is expressed by Expression (1).
  • ⁇ 1 is an inclination angle of the light beam irradiated on the inclined surface of the groove portion 122 from a direction orthogonal to the screen layer 11
  • ⁇ 2 is an inclination angle of the inclined surface of the groove portion 122 with respect to the screen layer
  • ⁇ 3 is an inclination angle of the light beam refracted on the slope of the groove 122 from a direction orthogonal to the screen layer 11
  • n 1 is a refractive index of the surface of the prism sheet 12
  • n 2 is a refractive index of the prism sheet 12
  • n 3 Is the refractive index of the low refractive index layer 113 (see FIG. 10).
  • the maximum value of the inclination angle ⁇ 2 of the inclined surface of the groove 122 is determined by the inclination angle ⁇ 1 of the light beam, that is, the maximum scanning angle of the light beam in the direction orthogonal to the direction in which the groove 122 is formed.
  • ⁇ 1 30 degrees
  • n 2 1.5
  • the groove portion inclination angle theta 2 of the inclined surface 122 is required to be 60 degrees or less.
  • the light output from the phosphor layer 111 to the light source 2 side and totally reflected by the slope of the groove 122 is reflected by the prism in accordance with the inclination angle ⁇ 2 of the slope of the groove 122.
  • the rate of returning to the front side of the screen 10 changes.
  • FIG. 12 is a diagram showing the relationship between the slope angle ⁇ 2 of the slope of the groove 122 and the retroreflectance. 12 the horizontal axis shows the inclination angle theta 2 of the inclined surface of the groove 122, and the vertical axis represents the retroreflectivity.
  • the apex angle of the prism is 90 degrees
  • the refractive index of the prism material is 1.51
  • the region in contact with the surface of the prism sheet 12 is an air layer (refractive index 1.0).
  • the retroreflective ratio is best when the inclination angle theta 2 of the inclined surface of the groove 122 is 70 degrees, it is possible to increase the light extraction efficiency.
  • the maximum value of the inclination angle ⁇ 2 of the inclined surface of the groove 122 for allowing the beam light to enter the phosphor layer 111 is the maximum scanning angle of the beam light. Determined by. Therefore, within the scope of the inclination angle theta 2 of the inclined surface of the groove 122 is determined by the maximum scan angle of the light beam, by an inclined angle theta 2 as retroreflectivity is the highest, the beam to the phosphor layer 111 The light extraction efficiency can be increased while light is incident.
  • FIG. 13 is a diagram illustrating an example of a method for manufacturing the screen 10 of the present embodiment.
  • step 1 the screen layer 11 is laminated on the substrate 4. Specifically, the phosphor layer 111 and the black stripe 112 are formed on the substrate 4, and the low refractive index layer 113 is formed on the phosphor layer 111.
  • the method for manufacturing the screen layer 11 is well known to those skilled in the art and is not directly related to the present invention, and thus detailed description thereof is omitted.
  • step 2 the prism sheet material 120 is laminated on the screen layer 11.
  • step 3 the prism row 121 is formed on the surface of the prism sheet material 120 by the imprint method using the mold 31 corresponding to the shape of the prism row 121.
  • step 4 the groove 122 is formed at a position corresponding to the black stripe 112 of the screen layer 11 using the dicer 32 corresponding to the shape of the groove 122.
  • the prism sheet 12 in which the groove 122 is formed at a position corresponding to the prism row 121 and the black stripe 112 is laminated on the screen layer 11.
  • FIG. 14 is a diagram showing another example of the method for manufacturing the screen 10 of the present embodiment.
  • Step 1 and Step 2 are the same as those in FIG.
  • step 3 a prism 33 corresponding to the shape of the prism row 121 and corresponding to the shape of the groove 122 at a position corresponding to the black stripe 112 is applied to the surface of the prism sheet material 120 by the imprint method.
  • the row 121 and the groove 122 are formed in a lump.
  • the prism sheet 12 in which the groove 122 is formed at a position corresponding to the prism row 121 and the black stripe 112 is laminated on the screen layer 11.
  • FIG. 15 is a diagram showing still another example of the method for manufacturing the screen 10 of the present embodiment.
  • Step 1 and Step 2 are the same as those in FIG.
  • step 3 using the mold 34 corresponding to the shape of the groove 122, the groove 122 is formed at a position corresponding to the black stripe 112 on the surface of the prism sheet material 120 by the imprint method.
  • the prism row 121 is formed by imprinting using a mold 31 corresponding to the shape of the prism row 121 in a region other than the region in which the groove 122 is formed in step 3 on the surface of the prism sheet material 120. Is formed. As a result, the prism sheet 12 having the groove 122 formed at the position corresponding to the prism row 121 and the black stripe 112 of the screen layer 11 is laminated on the screen layer 11.
  • the slope of the groove 122 is a curved surface that is convex toward the opposite side of the substrate 4 as shown in FIG. 16A, or a polygon that is convex toward the opposite side of the substrate 4 as shown in FIG. It may be a shape.
  • the optimum shape of the inclined surface of the groove 122 is determined by conditions on the light source 2 side (such as the incident angle of the beam light).
  • the bottom of the groove 122 is a plane
  • the present invention is not limited to this.
  • the bottom of the groove 122 is a curved surface that is convex toward the side opposite to the substrate 4 (light source 2 side), or toward the side opposite to the substrate 4 as shown in FIG. 17B. It may be a convex polygonal shape.
  • the width of the groove 122 in the direction orthogonal to the extending direction of the phosphor layer 111 may be formed so as to decrease toward the bottom of the groove 122. As shown in FIGS.
  • the screen 10 has the stripe-shaped phosphor layer 111 and the screen layer 11 in which the black stripe 112 is formed between the adjacent phosphor layers 111 stacked on the substrate 4.
  • a plurality of prism rows 121 substantially parallel to each other are formed along the extending direction of the phosphor layer 111, and the screen layer 11 is formed such that the prism surface on which the prism rows 121 are formed faces the opposite side of the substrate 4.
  • the prism sheet 12 is disposed on the prism sheet 12, and a groove 122 having a width that decreases toward the bottom is formed in the prism sheet 12 at a position corresponding to the black stripe 112 of the prism surface.
  • the beam light irradiated to the position on the prism sheet 12 corresponding to the black stripe 112 is refracted toward the phosphor layer 111 and is irradiated to the bottom part of the groove part 122.
  • the light is refracted toward the black stripe 112, so that the expansion of the beam diameter is suppressed. Therefore, it is possible to suppress the occurrence of crosstalk due to the simultaneous incidence of light beams on the adjacent phosphor layers 111 that output visible light of different colors, and to prevent the color purity from being lowered.

Abstract

This screen has a substrate, a screen layer laminated on the substrate, and a prism sheet disposed on the screen layer. The screen layer has a plurality of phosphor layers and black stripes disposed between each of the phosphor layers included in the plurality of phosphor layers that are adjacent to each other. The prism sheet has a prism surface on the side thereof opposite from the substrate. The prism surface has a plurality of prism rows and channel parts disposed in positions corresponding to the black stripes. The channel parts have a structure such that the width of the channel part becomes smaller toward the bottom part of the channel part.

Description

スクリーンおよび画像表示装置Screen and image display device
 本発明は、スクリーンおよび画像表示装置に関する。 The present invention relates to a screen and an image display device.
 画像信号に応じた画像を表示する画像表示装置として、スクリーンのリア側から光を照射して画像を表示するリアプロジェクタがある。 As an image display device that displays an image according to an image signal, there is a rear projector that displays an image by irradiating light from the rear side of the screen.
 特許文献1(特表2009-537868号公報)には、基板上に、ビーム光により励起され異なる色の可視光を出力する複数の蛍光体層と、隣り合う蛍光体層同士の間に、ビーム光を遮蔽するデバイダとが形成されたスクリーン層と、を積層させたスクリーンに、スクリーンのリア側に設けられた光源から出力されたビーム光を走査して画像を表示するリアプロジェクタが開示されている。また、特許文献1には、シートの一方の面に、プリズムが一定方向に並んで形成されたプリズムシートを、プリズムが形成されたプリズム面が基板と反対側を向くようにしてスクリーン層上に配置させる技術が開示されている。 In Patent Document 1 (Japanese Translation of PCT International Publication No. 2009-537868), a beam between a plurality of phosphor layers that are excited by beam light and output visible light of different colors and adjacent phosphor layers are provided on a substrate. A rear projector is disclosed that displays an image by scanning a light beam output from a light source provided on the rear side of a screen on a screen in which a screen layer formed with a divider that blocks light is laminated. Yes. Patent Document 1 discloses a prism sheet in which prisms are arranged in a certain direction on one surface of a sheet, and the prism surface on which the prisms are formed faces the opposite side of the substrate. Techniques for placement are disclosed.
 蛍光体層から出力された光は、等方拡散し、半分程度はスクリーンのリア側に出力される。そのため、スクリーンのフロント側への光の取り出し効率が悪くなる。そこで、特許文献1に開示のように、プリズム面が基板と反対側に配置される光源側を向くようにしてプリズムシートを配置することで、蛍光体層からスクリーンのリア側に出力された光がプリズムによりスクリーンのフロント側に反射されるため、光の取り出し効率を上げることができる。 The light output from the phosphor layer is isotropically diffused, and about half is output to the rear side of the screen. Therefore, the light extraction efficiency to the front side of the screen is deteriorated. Therefore, as disclosed in Patent Document 1, the light output from the phosphor layer to the rear side of the screen is arranged by arranging the prism sheet so that the prism surface faces the light source side arranged on the side opposite to the substrate. Is reflected to the front side of the screen by the prism, so that the light extraction efficiency can be increased.
特開2009-537868号公報JP 2009-537868 A
 特許文献1に開示のようにプリズムシートを設けると、プリズムシートに照射されたビーム光がプリズムにより分割されてスクリーン層に入射するため、スクリーン層への入射時のビーム径は、プリズムシートへの照射時のビーム径よりも大きくなる(特許文献1の図13A参照)。 When a prism sheet is provided as disclosed in Patent Document 1, the beam light applied to the prism sheet is divided by the prism and is incident on the screen layer. It becomes larger than the beam diameter at the time of irradiation (see FIG. 13A of Patent Document 1).
 図1は、上述したスクリーン層とプリズムシートとを有するスクリーン20の概略構成を示す断面図である。 FIG. 1 is a cross-sectional view showing a schematic configuration of a screen 20 having the above-described screen layer and prism sheet.
 基板4上にスクリーン層21が積層される。 The screen layer 21 is laminated on the substrate 4.
 スクリーン層21には、異なる色の可視光を出力する複数の蛍光体層、例えば、赤色の可視光を出力する蛍光体層211R、緑色の可視光を出力する蛍光体層211G、および、青色の可視光を出力する蛍光体層211Bと、隣り合う蛍光体層同士の間に、光源から出力されるビーム光を遮蔽するデバイダ212と、が形成されている。 The screen layer 21 includes a plurality of phosphor layers that output visible light of different colors, for example, a phosphor layer 211R that outputs red visible light, a phosphor layer 211G that outputs green visible light, and a blue layer A phosphor layer 211B that outputs visible light and a divider 212 that shields the beam light output from the light source are formed between adjacent phosphor layers.
 プリズムシート22は、プリズム面がスクリーン層21と反対側を向くようにして、スクリーン層21上に配置されている。 The prism sheet 22 is disposed on the screen layer 21 such that the prism surface faces the opposite side of the screen layer 21.
 図1において、デバイダ212に対応するプリズムシート22上の位置に、スクリーン20に対して垂直方向からビーム光が照射されたとする。上述したように、プリズムシート22に照射されたビーム光は、プリズムにより分割される。そのため、図1に示すように、スクリーン層21への入射時のビーム径D2は、プリズムシート22への照射時のビーム径D1よりも大きくなる。また、図2に示すように、スクリーン20に対して斜め方向からビーム光が照射されると、ビーム径D2はさらに大きくなる。 In FIG. 1, it is assumed that beam light is irradiated from the vertical direction to the screen 20 at a position on the prism sheet 22 corresponding to the divider 212. As described above, the light beam applied to the prism sheet 22 is divided by the prism. Therefore, as shown in FIG. 1, the beam diameter D <b> 2 when entering the screen layer 21 is larger than the beam diameter D <b> 1 when irradiating the prism sheet 22. As shown in FIG. 2, when the screen 20 is irradiated with light beams from an oblique direction, the beam diameter D2 further increases.
 スクリーン層21への入射時のビーム径D2が大きくなると、図1および図2に示すように、隣り合う蛍光体層、例えば、蛍光体層211Rおよび蛍光体層211Gに同時にビーム光が入射する、いわゆるクロストークが発生することがある。クロストークが発生すると、各蛍光体層から異なる色の可視光が同時に出力され、表示画像の色純度が低下するという問題がある。 When the beam diameter D2 at the time of incidence on the screen layer 21 is increased, as shown in FIGS. 1 and 2, the beam light is simultaneously incident on the adjacent phosphor layers, for example, the phosphor layer 211R and the phosphor layer 211G. So-called crosstalk may occur. When crosstalk occurs, there is a problem that visible light of different colors is simultaneously output from the respective phosphor layers, and the color purity of the display image is lowered.
 なお、特許文献1には、プリズムシートを薄くすることで、ビーム径の拡大を抑制できる旨が記載されている。しかし、例えば、50μm以下といった薄いプリズムシートは、製造が困難であり、また、割れやすく、取扱いが困難である。 It should be noted that Patent Document 1 describes that the expansion of the beam diameter can be suppressed by thinning the prism sheet. However, for example, a thin prism sheet having a thickness of 50 μm or less is difficult to manufacture, is easily broken, and is difficult to handle.
 本発明の目的は、表示画像の色純度の低下を抑制することができるスクリーンおよび画像表示装置を提供することにある。 An object of the present invention is to provide a screen and an image display device capable of suppressing a decrease in color purity of a display image.
 上記目的を達成するために本発明のスクリーンは、
 基板と、
 前記基板上に積層されたスクリーン層と、
 前記スクリーン層上に配置されたプリズムシートと、を有し、
 前記スクリーン層は、複数の蛍光体層と、前記複数の蛍光体層に含まれるそれぞれの蛍光体層のうち隣り合うもの同士の間に配置されたブラックストライプと、を有し、
 前記プリズムシートは、前記基板とは反対側にプリズム面を有し、
 前記プリズム面は、複数のプリズム列と、前記ブラックストライプに対応する位置に配置された溝部と、を有し、
 前記溝部は、前記溝部の幅が前記溝部の底部に向かって小さくなる構造を有する。
In order to achieve the above object, the screen of the present invention comprises:
A substrate,
A screen layer laminated on the substrate;
A prism sheet disposed on the screen layer,
The screen layer has a plurality of phosphor layers and a black stripe disposed between adjacent ones of the phosphor layers included in the plurality of phosphor layers,
The prism sheet has a prism surface on the side opposite to the substrate,
The prism surface has a plurality of prism rows and a groove portion disposed at a position corresponding to the black stripe,
The groove has a structure in which the width of the groove decreases toward the bottom of the groove.
 上記目的を達成するために本発明の画像表示装置は、
 上述のスクリーンと、
 前記スクリーンのリア側に設けられ、ビーム光を出力する光源と、
 前記光源から出力されたビーム光を走査して、前記スクリーンに照射する光走査部と、を有する。
In order to achieve the above object, an image display device of the present invention provides:
The above screen;
A light source provided on the rear side of the screen for outputting beam light;
An optical scanning unit that scans the beam light output from the light source and irradiates the screen.
 本発明によれば、表示画像の色純度の低下を抑制することができる。 According to the present invention, it is possible to suppress a decrease in color purity of a display image.
関連するスクリーンに垂直方向からビーム光が照射された状態を示す図である。It is a figure which shows the state by which the light beam was irradiated to the related screen from the perpendicular direction. 関連するスクリーンに斜め方向からビーム光が照射された状態を示す図である。It is a figure which shows the state by which the beam light was irradiated to the related screen from the diagonal direction. 本発明の一実施形態の画像表示装置の構成を示す図である。It is a figure which shows the structure of the image display apparatus of one Embodiment of this invention. 図3に示すスクリーンの断面図である。It is sectional drawing of the screen shown in FIG. 関連するスクリーンへのビーム光の照射状態を示す図である。It is a figure which shows the irradiation state of the beam light to the related screen. 図4に示すスクリーンへのビーム光の照射状態を示す図である。It is a figure which shows the irradiation state of the beam light to the screen shown in FIG. 図4に示すスクリーンの具体的な構成例を示す図である。It is a figure which shows the specific structural example of the screen shown in FIG. 図4に示すスクリーンに垂直方向からビーム光が照射された状態を示す図である。It is a figure which shows the state by which the beam light was irradiated to the screen shown in FIG. 4 from the orthogonal | vertical direction. 図4に示すスクリーンに斜め方向からビーム光が照射された状態を示す図である。It is a figure which shows the state by which the beam light was irradiated to the screen shown in FIG. 4 from the diagonal direction. 図4に示す溝部の斜面の傾斜角について説明するための図である。It is a figure for demonstrating the inclination | tilt angle of the slope of the groove part shown in FIG. 図4に示すスクリーンにおいて、蛍光体層から出力された光が再帰反射を起こした状態を示す図である。FIG. 5 is a diagram illustrating a state in which light output from the phosphor layer causes retroreflection on the screen illustrated in FIG. 4. 図4示す溝部の斜面の傾斜角と再帰反射率との関係を示す図である。It is a figure which shows the relationship between the inclination-angle of the slope of a groove part shown in FIG. 4, and a retroreflectance. 図4に示すスクリーンの製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of the screen shown in FIG. 図4に示すスクリーンの製造方法の他の一例を示す図である。It is a figure which shows another example of the manufacturing method of the screen shown in FIG. 図4に示すスクリーンの製造方法のさらに他の一例を示す図である。It is a figure which shows another example of the manufacturing method of the screen shown in FIG. 図4に示す溝部の斜面の形状の一例を示す図である。It is a figure which shows an example of the shape of the slope of the groove part shown in FIG. 図4に示す溝部の斜面の形状の他の一例を示す図である。It is a figure which shows another example of the shape of the slope of the groove part shown in FIG. 図4に示す溝部の底部の形状の一例を示す図である。It is a figure which shows an example of the shape of the bottom part of the groove part shown in FIG. 図4に示す溝部の底部の形状の他の一例を示し図である。It is a figure which shows another example of the shape of the bottom part of the groove part shown in FIG.
 以下に、本発明を実施するための形態について図面を参照して説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
 図3は、本発明の一実施形態の画像表示装置1の構成を示す図である。 FIG. 3 is a diagram showing a configuration of the image display apparatus 1 according to the embodiment of the present invention.
 図3に示す画像表示装置1は、光源2と、光走査部3と、スクリーン10とを有する。 The image display apparatus 1 shown in FIG. 3 includes a light source 2, an optical scanning unit 3, and a screen 10.
 光源2は、スクリーン10のリア側に設けられ、ビーム光を出力する。 The light source 2 is provided on the rear side of the screen 10 and outputs beam light.
 光走査部3は、光源2から出力されたビーム光を画像信号に応じて走査し、スクリーン10に照射する。 The light scanning unit 3 scans the beam light output from the light source 2 according to the image signal and irradiates the screen 10.
 スクリーン10は、スクリーン層11とプリズムシート12とを有する。 The screen 10 has a screen layer 11 and a prism sheet 12.
 スクリーン層11には、光源2から出力されたビーム光により励起され異なる色の可視光を出力する複数の蛍光体層がストライプ状に形成されている。 The screen layer 11 is formed with a plurality of phosphor layers that are excited by the beam light output from the light source 2 and output visible light of different colors in a stripe shape.
 プリズムシート12は、プリズムが形成されたプリズム面が光源2側に向くようにして、スクリーン層11の光源2側に配置されている。プリズム面の表面は、プリズム部材よりも屈折率の低い低屈折材料または空気で覆われている。 The prism sheet 12 is arranged on the light source 2 side of the screen layer 11 so that the prism surface on which the prism is formed faces the light source 2 side. The surface of the prism surface is covered with a low refractive material having a refractive index lower than that of the prism member or air.
 図3に示す画像表示装置1において、光源2から出力されたレーザ光が光走査部3により走査され、プリズムシート12を介してスクリーン層11に入射する。ビーム光が入射すると、スクリーン層11の蛍光体層から可視光が出力され、画像が表示される。ここで、上述したように、蛍光体層から出力された光のうち、半分程度は、スクリーン10のリア側に出力される。しかし、プリズムシート12のプリズムにより、スクリーン10のリア側に出力された光がスクリーン10のフロント側に反射される。そのため、スクリーン10のフロント側への光の取り出し効率を上げることができる。 In the image display device 1 shown in FIG. 3, the laser beam output from the light source 2 is scanned by the light scanning unit 3 and enters the screen layer 11 through the prism sheet 12. When the beam light is incident, visible light is output from the phosphor layer of the screen layer 11 and an image is displayed. Here, as described above, about half of the light output from the phosphor layer is output to the rear side of the screen 10. However, the light output to the rear side of the screen 10 is reflected to the front side of the screen 10 by the prism of the prism sheet 12. Therefore, the light extraction efficiency to the front side of the screen 10 can be increased.
 次に、本実施形態のスクリーン10の構成について説明する。 Next, the configuration of the screen 10 of this embodiment will be described.
 図4は、本実施形態のスクリーン10における、蛍光体層の延在方向と直交する方向の断面図である。 FIG. 4 is a cross-sectional view of the screen 10 of the present embodiment in a direction orthogonal to the extending direction of the phosphor layer.
 図3においては不図示の基板4上にスクリーン層11が積層される。 In FIG. 3, a screen layer 11 is laminated on a substrate 4 (not shown).
 スクリーン層11には、光源2から出力されるビーム光により励起され、赤色の可視光を出力する蛍光体層111R、緑色の可視光を出力する蛍光体層111G、および、青色の可視光を出力する蛍光体層111Bがこの順に、ストライプ状に形成されている。なお、以下では、蛍光体層111R,111G,111Bを区別しない場合には、蛍光体層111と称する。また、スクリーン層11には、隣り合う蛍光体層111同士の間に、ビーム光を遮蔽するブラックストライプ112が形成されている。ブラックストライプ112は、図1に示すデバイダ212に対応する。 The screen layer 11 is excited by the beam light output from the light source 2, and outputs a phosphor layer 111R that outputs red visible light, a phosphor layer 111G that outputs green visible light, and blue visible light. The phosphor layers 111B to be formed are formed in a stripe shape in this order. Hereinafter, when the phosphor layers 111R, 111G, and 111B are not distinguished, they are referred to as the phosphor layer 111. The screen layer 11 is formed with a black stripe 112 that shields the beam light between the adjacent phosphor layers 111. The black stripe 112 corresponds to the divider 212 shown in FIG.
 なお、蛍光体層111から出力される可視光の色、異なる色の可視光を出力する蛍光体層111の数などは、スクリーン10の用途によって適宜、変更可能である。また、例えば、青色のビーム光を用い、蛍光体層111Bの代わりに、そのビーム光を拡散して拡散光を出力する拡散層を形成してもよい。また、図4においては、蛍光体層111とプリズムシート12との間に、空気あるいは低屈折材料で形成された低屈折率層113が形成されている例を示しているが、低屈折率層113は必ずしも必須ではない。 The color of visible light output from the phosphor layer 111, the number of phosphor layers 111 that output different colors of visible light, and the like can be changed as appropriate depending on the application of the screen 10. Further, for example, a blue light beam may be used, and instead of the phosphor layer 111B, a diffusion layer that diffuses the light beam and outputs diffused light may be formed. FIG. 4 shows an example in which a low refractive index layer 113 made of air or a low refractive material is formed between the phosphor layer 111 and the prism sheet 12. 113 is not necessarily essential.
 スクリーン層11上にプリズムシート12が配置される。 A prism sheet 12 is disposed on the screen layer 11.
 プリズムシート12には、ビーム光の波長より大きく、蛍光体層111の延在方向と直交する方向の幅が蛍光体層111の幅よりも小さいプリズムが列をなして形成されたプリズム列121が複数形成されている。なお、プリズム部材としては、PET(ポリエチレンテレフタレート)、PC(ポリカーボネート)、PMMA(ポリメチルメタクリレート)、COP(シクロオレフィンポリマー)などがある。 The prism sheet 12 has a prism row 121 in which prisms having a width larger than the wavelength of the light beam and a width in a direction perpendicular to the extending direction of the phosphor layer 111 are smaller than the width of the phosphor layer 111 are formed in a row. A plurality are formed. Examples of the prism member include PET (polyethylene terephthalate), PC (polycarbonate), PMMA (polymethyl methacrylate), and COP (cycloolefin polymer).
 複数のプリズム列121は、蛍光体層111の延在方向に沿って、互いに略平行に形成されている。プリズムシート12は、プリズム列121が形成されたプリズム面が、基板4と反対側を向くようにして配置されている。 The plurality of prism rows 121 are formed substantially parallel to each other along the extending direction of the phosphor layer 111. The prism sheet 12 is arranged such that the prism surface on which the prism row 121 is formed faces the opposite side of the substrate 4.
 また、プリズムシート12には、スクリーン層11のブラックストライプ112に対応するプリズム面上の位置に、蛍光体層111の延在方向に沿って溝部122が形成されている。溝部122の蛍光体層111の延在方向と直交する方向の断面形状は、図4に示すように、短辺が基板4側を向き、長辺が基板4と反対側を向く台形であり、溝部122の幅は、溝部122の底部に向かって小さくなる。 Further, in the prism sheet 12, a groove 122 is formed at a position on the prism surface corresponding to the black stripe 112 of the screen layer 11 along the extending direction of the phosphor layer 111. The cross-sectional shape in the direction perpendicular to the extending direction of the phosphor layer 111 of the groove 122 is a trapezoid whose short side faces the substrate 4 side and whose long side faces the opposite side of the substrate 4 as shown in FIG. The width of the groove 122 decreases toward the bottom of the groove 122.
 なお、図4においては、スクリーン層11とプリズムシート12とが接している例を用いて説明したが、これに限られるものではなく、例えば、スクリーン層11とプリズムシート12との間に空気層が存在していてもよい。 In FIG. 4, the screen layer 11 and the prism sheet 12 are in contact with each other. However, the present invention is not limited to this example. For example, an air layer is provided between the screen layer 11 and the prism sheet 12. May be present.
 次に、本実施形態のスクリーン10と図1に示すスクリーン20とにビーム光が照射された場合の違いについて説明する。 Next, the difference in the case where the light beam is irradiated on the screen 10 of the present embodiment and the screen 20 shown in FIG. 1 will be described.
 図5は、スクリーン20のスクリーン層21へのビーム光の照射状態を示す図である。 FIG. 5 is a diagram showing the irradiation state of the beam light onto the screen layer 21 of the screen 20.
 図5に示すように、蛍光体層211Gとデバイダ212との境界付近に対応するプリズムシート22上の位置に、蛍光体層211R側に所定の角度だけ傾いたビーム光が照射されたとする。プリズムシート22のプリズムによりビーム光が分割され、スクリーン層21への入射時のビーム径は、蛍光体層211の延在方向と直交する方向に、プリズムシート22への照射時のビーム径よりも大きくなる。その結果、隣り合う蛍光体層211R,211Gに同時にビーム光が入射されるクロストークが発生し、各蛍光体層から同時に可視光が出力されて、表示画像の色純度が低下する。表示画像の色純度の低下を防ぐためには、レーザ光の照射位置がデバイダ212に対応するプリズムシート22上の位置の周辺でレーザ光の出力をオフにすることが考えられる。しかし、レーザ光の出力をオフにすると、表示画像の輝度が低下する。 As shown in FIG. 5, it is assumed that the light beam tilted by a predetermined angle toward the phosphor layer 211R is irradiated at a position on the prism sheet 22 corresponding to the vicinity of the boundary between the phosphor layer 211G and the divider 212. The light beam is split by the prism of the prism sheet 22, and the beam diameter when entering the screen layer 21 is larger than the beam diameter when irradiating the prism sheet 22 in the direction orthogonal to the extending direction of the phosphor layer 211. growing. As a result, crosstalk in which the beam light is simultaneously incident on the adjacent phosphor layers 211R and 211G occurs, and visible light is simultaneously output from each phosphor layer, so that the color purity of the display image is lowered. In order to prevent a decrease in color purity of the display image, it is conceivable to turn off the laser light output around the position on the prism sheet 22 where the irradiation position of the laser light corresponds to the divider 212. However, when the output of the laser beam is turned off, the brightness of the display image decreases.
 図6は、スクリーン10のスクリーン層11へのビーム光の照射状態を示す図である。なお、図6においては、図5と同様に、蛍光体層111Gとブラックストライプ112との境界付近に対応するプリズムシート12上の位置に、蛍光体層111R側に所定の角度だけ傾いたビーム光が照射されたとする。 FIG. 6 is a diagram showing the irradiation state of the beam light onto the screen layer 11 of the screen 10. In FIG. 6, similarly to FIG. 5, the beam light tilted by a predetermined angle toward the phosphor layer 111 </ b> R at a position on the prism sheet 12 corresponding to the vicinity of the boundary between the phosphor layer 111 </ b> G and the black stripe 112. Is irradiated.
 上述したように、プリズムシート12には、ブラックストライプ112に対応する位置に、蛍光体層111の延在方向と直交する方向の幅が底部に向かって小さくなる(蛍光体層111の延在方向と直交する方向の幅が基板4と反対側に向かって大きくなる)溝部122が形成されている。そのため、ビーム光は、図6に示すように、溝部122の蛍光体111G側の斜面および溝部122の底部に照射される。 As described above, in the prism sheet 12, the width in the direction orthogonal to the extending direction of the phosphor layer 111 decreases toward the bottom at the position corresponding to the black stripe 112 (the extending direction of the phosphor layer 111). The groove 122 is formed in such a manner that the width in the direction orthogonal to the width increases toward the opposite side of the substrate 4. Therefore, as shown in FIG. 6, the light beam is applied to the slope of the groove 122 on the phosphor 111 </ b> G side and the bottom of the groove 122.
 溝部122の蛍光体層111G側の斜面に照射されたビーム光は、蛍光体層111G側に屈折し、溝部122の底部に照射されたビーム光は、ブラックストライプ112側に屈折する。その結果、スクリーン20と比べて、スクリーン層11への入射時のビーム径の拡大が抑制され、隣り合う蛍光体層111R、111Gに同時にビーム光が入射することがないので、クロストークが発生せず、表示画像の色純度の低下を抑制することができる。 The beam light applied to the inclined surface of the groove 122 on the phosphor layer 111G side is refracted toward the phosphor layer 111G, and the beam light applied to the bottom of the groove 122 is refracted toward the black stripe 112 side. As a result, compared to the screen 20, the expansion of the beam diameter at the time of incidence on the screen layer 11 is suppressed, and beam light does not enter the adjacent phosphor layers 111R and 111G at the same time, so that crosstalk occurs. Therefore, it is possible to suppress a decrease in color purity of the display image.
 スクリーン10の具体的な構成(寸法)の一例を図7に示す。 An example of a specific configuration (dimension) of the screen 10 is shown in FIG.
 蛍光体層111の幅は0.48mmであり、ブラックストライプ112の幅は0.12mmである。また、蛍光体111とブラックストライプ112とからなる1つのサブピクセルの幅は0.60mmである。 The width of the phosphor layer 111 is 0.48 mm, and the width of the black stripe 112 is 0.12 mm. In addition, the width of one subpixel composed of the phosphor 111 and the black stripe 112 is 0.60 mm.
 プリズムシート12の厚さは0.20mmである。隣り合う2つの溝部122に挟まれ、プリズム列121が形成された領域であるプリズム部の幅は0.336mmである。溝部122の底部はスクリーン層11とほぼ平行であり、溝部122の底部とスクリーン層11との距離は0.08mmである。溝部122の底部の幅はブラックストライプ112の幅と同じである。なお、溝部122の底部の幅がブラックストライプ112の幅と必ずしも同じである必要はなく、溝部122の底部の幅がブラックストライプ112の幅よりも大きくてもよい。ただし、溝部122の底部の幅が大きくなると、プリズム部の幅が狭くなり、光の取り出し効率向上の効果が少なくなるので、溝部122の底部の幅とブラックストライプ112の幅とは同じにするのが好ましい。溝部122の斜面厚さ(溝部122の深さ)は、0.12mmである。また、溝部122の底部に対する溝部122の斜面の傾斜角は59度であり、溝部122の斜面の幅は0.072mmである。 The thickness of the prism sheet 12 is 0.20 mm. The width of the prism portion, which is an area where the prism row 121 is formed, sandwiched between two adjacent groove portions 122 is 0.336 mm. The bottom of the groove 122 is substantially parallel to the screen layer 11 and the distance between the bottom of the groove 122 and the screen layer 11 is 0.08 mm. The width of the bottom of the groove 122 is the same as the width of the black stripe 112. The width of the bottom of the groove 122 is not necessarily the same as the width of the black stripe 112, and the width of the bottom of the groove 122 may be larger than the width of the black stripe 112. However, if the width of the bottom of the groove 122 is increased, the width of the prism is reduced and the effect of improving the light extraction efficiency is reduced. Therefore, the width of the bottom of the groove 122 and the width of the black stripe 112 are the same. Is preferred. The slope thickness of the groove 122 (depth of the groove 122) is 0.12 mm. The inclination angle of the slope of the groove 122 with respect to the bottom of the groove 122 is 59 degrees, and the width of the slope of the groove 122 is 0.072 mm.
 図7に示すスクリーン10において、図6と同様の条件でビーム光が照射されたとしてシミュレーションを行うと、プリズムシート12に照射されたビーム光に対する蛍光体層111Gへの入射量は57%となり、蛍光体層111Rへの入射量は0%となった。 When the simulation is performed on the screen 10 shown in FIG. 7 assuming that the light beam is irradiated under the same conditions as in FIG. 6, the incident amount of the light beam irradiated on the prism sheet 12 to the phosphor layer 111G is 57%. The amount of incident light on the phosphor layer 111R was 0%.
 一方、スクリーン20において、プリズムシート22のシート厚を0.2mmとし、図6と同じ条件でビーム光が照射されたとしてシミュレーションを行うと、プリズムシート22に照射されたビーム光に対する蛍光体211Gへの入射量は75%となり、蛍光体層211Rへの入射量が11%となった。上記のシミュレーション結果からも、プリズムシート12に溝部122を設けることで、隣り合う蛍光体層111へのビーム光の同時入射を防ぐことができることがわかる。 On the other hand, when the simulation is performed on the screen 20 assuming that the prism sheet 22 has a sheet thickness of 0.2 mm and the light beam is irradiated under the same conditions as in FIG. Was 75%, and the amount of incident light on the phosphor layer 211R was 11%. From the above simulation results, it can be seen that the provision of the groove 122 in the prism sheet 12 can prevent the simultaneous incidence of the beam light to the adjacent phosphor layers 111.
 なお、本実施形態のスクリーン10においては、レーザ光の照射位置、照射角度が変わっても、隣り合う蛍光体層111に同時にレーザ光が入射するのを防ぐことができる。 In addition, in the screen 10 of this embodiment, even if the irradiation position and irradiation angle of a laser beam change, it can prevent a laser beam from entering into the adjacent fluorescent substance layer 111 simultaneously.
 図8は、本実施形態のスクリーン10に対して垂直方向からビーム光が照射された状態を示す図である。なお、図8において、状態Aは、蛍光体層111Gに対応するプリズムシート12上の位置にビーム光が照射された状態を示し、状態Bは、溝部122の蛍光体層111G側の斜面付近にビーム光が照射された状態を示し、状態Cは、溝部122の蛍光体層111R側の斜面付近にビーム光が照射された状態を示す。 FIG. 8 is a diagram showing a state in which beam light is irradiated from the vertical direction on the screen 10 of the present embodiment. In FIG. 8, the state A shows a state where the beam light is irradiated to the position on the prism sheet 12 corresponding to the phosphor layer 111G, and the state B is near the slope of the groove 122 on the phosphor layer 111G side. The state in which the light beam is irradiated is shown, and the state C shows a state in which the light beam is irradiated in the vicinity of the slope of the groove 122 on the phosphor layer 111R side.
 状態Aでは、プリズムによりビーム光が分割され、ビーム径が大きくなるが、ビーム光は全て蛍光体層111Gに入射する。 In state A, the beam light is split by the prism and the beam diameter is increased, but all the beam light is incident on the phosphor layer 111G.
 状態Bでは、溝部122の蛍光体層111G側の斜面に照射されたビーム光は、蛍光体層111G側に屈折して、蛍光体層111Gに入射し、溝部122の底部に照射されたビーム光は、ブラックストライプ112側に屈折して、ブラックストライプ112に入射する。 In the state B, the beam light applied to the slope of the groove 122 on the phosphor layer 111G side is refracted toward the phosphor layer 111G, enters the phosphor layer 111G, and is applied to the bottom of the groove 122. Refracts toward the black stripe 112 and enters the black stripe 112.
 状態Cでは、溝部122の蛍光体層111R側の斜面に照射されたビーム光は、蛍光体層111R側に屈折して、蛍光体層111Rに入射し、溝部122の底部に照射されたビーム光は、ブラックストライプ112側に屈折して、ブラックストライプ112に入射する。 In the state C, the beam light applied to the slope of the groove 122 on the phosphor layer 111R side is refracted toward the phosphor layer 111R, enters the phosphor layer 111R, and is applied to the bottom of the groove 122. Refracts toward the black stripe 112 and enters the black stripe 112.
 したがって、状態Aから状態Cのいずれの場合にも、隣り合う蛍光体層111に同時にビーム光が入射することはない。 Therefore, in any of the states A to C, the beam light is not incident on the adjacent phosphor layers 111 at the same time.
 図9は、本実施形態のスクリーン10に対して右方向に30度傾いた状態のビーム光が入射された状態を示す図である。なお、図9において、状態Aから状態Cはそれぞれ、図8における状態Aから状態Cと同じ状態である。 FIG. 9 is a diagram showing a state in which the light beam in a state inclined by 30 degrees in the right direction is incident on the screen 10 of the present embodiment. In FIG. 9, states A to C are the same as states A to C in FIG.
 状態Aでは、プリズムによりビーム光が分割され、ビーム径が大きくなるが、ビーム光は全て蛍光体層111Gに入射する。 In state A, the beam light is split by the prism and the beam diameter is increased, but all the beam light is incident on the phosphor layer 111G.
 状態Bでは、溝部122の蛍光体層111G側の斜面に照射されたビーム光は、蛍光体層111G側に屈折して、蛍光体層111Gに入射し、溝部122の底部に照射されたビーム光は、ブラックストライプ112側に屈折して、ブラックストライプ112に入射する。 In the state B, the beam light applied to the slope of the groove 122 on the phosphor layer 111G side is refracted toward the phosphor layer 111G, enters the phosphor layer 111G, and is applied to the bottom of the groove 122. Refracts toward the black stripe 112 and enters the black stripe 112.
 状態Cでは、溝部122の蛍光体層111R側の斜面に照射されたビーム光は、蛍光体層111R側に屈折して、蛍光体層111Rに入射し、溝部122の底部に照射されたビーム光は、ブラックストライプ112側に屈折して、ブラックストライプ112に入射する。 In the state C, the beam light applied to the slope of the groove 122 on the phosphor layer 111R side is refracted toward the phosphor layer 111R, enters the phosphor layer 111R, and is applied to the bottom of the groove 122. Refracts toward the black stripe 112 and enters the black stripe 112.
 したがって、状態Aから状態Cのいずれの場合にも、隣り合う蛍光体層111に同時にビーム光が入射することはない。このように、本実施形態のスクリーン10においては、レーザ光の照射位置、照射角度が変わっても、隣り合う蛍光体層111にレーザ光が同時に入射されることを防ぐことができる。 Therefore, in any of the states A to C, the beam light is not incident on the adjacent phosphor layers 111 at the same time. Thus, in the screen 10 of this embodiment, even if the irradiation position and the irradiation angle of the laser beam are changed, it is possible to prevent the laser beam from being simultaneously incident on the adjacent phosphor layers 111.
 なお、低屈折率層113が形成されている場合には、溝部122の斜面に照射され、蛍光体層111側に屈折したレーザ光の、プリズムシート12と低屈折率層113との境界面への入射角が全反射角を越えると、光源2側に反射されてしまう。溝部122の斜面で屈折したビーム光がプリズムシート12と低屈折率層113との境界面で全反射しないための条件は、式(1)のようになる。 In the case where the low refractive index layer 113 is formed, the laser beam irradiated to the inclined surface of the groove 122 and refracted toward the phosphor layer 111 side to the boundary surface between the prism sheet 12 and the low refractive index layer 113. When the incident angle exceeds the total reflection angle, the light is reflected to the light source 2 side. The condition for the beam light refracted on the inclined surface of the groove 122 not to be totally reflected at the boundary surface between the prism sheet 12 and the low refractive index layer 113 is expressed by Expression (1).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(1)において、θは溝部122の斜面に照射されるビーム光のスクリーン層11に対して直交する方向からの傾斜角、θはスクリーン層11に対する溝部122の斜面の傾斜角、θは溝部122の斜面で屈折したビーム光のスクリーン層11に対して直交する方向からの傾斜角、nはプリズムシート12の表面の屈折率、nはプリズムシート12の屈折率、nは低屈折率層113の屈折率である(図10参照)。 In Expression (1), θ 1 is an inclination angle of the light beam irradiated on the inclined surface of the groove portion 122 from a direction orthogonal to the screen layer 11, θ 2 is an inclination angle of the inclined surface of the groove portion 122 with respect to the screen layer 11, θ 3 is an inclination angle of the light beam refracted on the slope of the groove 122 from a direction orthogonal to the screen layer 11, n 1 is a refractive index of the surface of the prism sheet 12, n 2 is a refractive index of the prism sheet 12, and n 3 Is the refractive index of the low refractive index layer 113 (see FIG. 10).
 式(1)から、溝部122の斜面の傾斜角θの最大値は、ビーム光の傾斜角θ、すなわち、溝部122が形成された方向と直交する方向のビーム光の最大走査角により決定されることが分かる。したがって、例えば、式(1)において、θ=30度、n=n=1.0、n=1.5とすると、ビーム光が蛍光体層111に入射するためには、溝部122の斜面の傾斜角θが60度以下である必要がある。 From Equation (1), the maximum value of the inclination angle θ 2 of the inclined surface of the groove 122 is determined by the inclination angle θ 1 of the light beam, that is, the maximum scanning angle of the light beam in the direction orthogonal to the direction in which the groove 122 is formed. You can see that Therefore, for example, in the formula (1), when θ 1 = 30 degrees, n 1 = n 3 = 1.0, and n 2 = 1.5, in order for the beam light to enter the phosphor layer 111, the groove portion inclination angle theta 2 of the inclined surface 122 is required to be 60 degrees or less.
 なお、溝部122の斜面の傾斜角θに応じて、図11に示すように、蛍光体層111から光源2側に出力され、溝部122の斜面で全反射した光が、プリズムにより多重反射して、スクリーン10のフロント側に戻る率(再帰反射率)が変わる。 As shown in FIG. 11, the light output from the phosphor layer 111 to the light source 2 side and totally reflected by the slope of the groove 122 is reflected by the prism in accordance with the inclination angle θ 2 of the slope of the groove 122. Thus, the rate of returning to the front side of the screen 10 (retroreflectance) changes.
 図12は、溝部122の斜面の傾斜角θと再帰反射率との関係を示す図である。図12において、横軸は、溝部122の斜面の傾斜角θを示し、縦軸は、再帰反射率を示す。また、図12においては、プリズムの頂角を90度とし、プリズム材料の屈折率を1.51とし、プリズムシート12の表面と接する領域を空気層(屈折率1.0)とする。 FIG. 12 is a diagram showing the relationship between the slope angle θ 2 of the slope of the groove 122 and the retroreflectance. 12, the horizontal axis shows the inclination angle theta 2 of the inclined surface of the groove 122, and the vertical axis represents the retroreflectivity. In FIG. 12, the apex angle of the prism is 90 degrees, the refractive index of the prism material is 1.51, and the region in contact with the surface of the prism sheet 12 is an air layer (refractive index 1.0).
 図12に示すように、溝部122の斜面の傾斜角θが70度の場合に再帰反射率が最も高くなり、光の取り出し効率を高めることができる。 As shown in FIG. 12, the retroreflective ratio is best when the inclination angle theta 2 of the inclined surface of the groove 122 is 70 degrees, it is possible to increase the light extraction efficiency.
 上述したように、低屈折率層113が形成されている場合の、蛍光体層111にビーム光が入射するための溝部122の斜面の傾斜角θの最大値は、ビーム光の最大走査角により決定される。したがって、ビーム光の最大走査角により決定される溝部122の斜面の傾斜角θの範囲内で、再帰反射率が最も高くなるような傾斜角θとすることで、蛍光体層111にビーム光を入射させつつ、光の取り出し効率を高めることができる。 As described above, in the case where the low refractive index layer 113 is formed, the maximum value of the inclination angle θ 2 of the inclined surface of the groove 122 for allowing the beam light to enter the phosphor layer 111 is the maximum scanning angle of the beam light. Determined by. Therefore, within the scope of the inclination angle theta 2 of the inclined surface of the groove 122 is determined by the maximum scan angle of the light beam, by an inclined angle theta 2 as retroreflectivity is the highest, the beam to the phosphor layer 111 The light extraction efficiency can be increased while light is incident.
 次に、本実施形態のスクリーン10の製造方法について説明する。 Next, a method for manufacturing the screen 10 of this embodiment will be described.
 図13は、本実施形態のスクリーン10の製造方法の一例を示す図である。 FIG. 13 is a diagram illustrating an example of a method for manufacturing the screen 10 of the present embodiment.
 工程1において、基板4上にスクリーン層11が積層される。具体的には、基板4上に蛍光体層111およびブラックストライプ112が形成され、また、蛍光体層111上に低屈折率層113が形成される。なお、スクリーン層11の製造方法は当業者にとってよく知られており、また、本発明と直接関係しないので、詳細な説明を省略する。 In step 1, the screen layer 11 is laminated on the substrate 4. Specifically, the phosphor layer 111 and the black stripe 112 are formed on the substrate 4, and the low refractive index layer 113 is formed on the phosphor layer 111. The method for manufacturing the screen layer 11 is well known to those skilled in the art and is not directly related to the present invention, and thus detailed description thereof is omitted.
 工程2において、スクリーン層11上にプリズムシート材料120が積層される。 In step 2, the prism sheet material 120 is laminated on the screen layer 11.
 工程3において、プリズム列121の形状に対応する金型31を用いて、インプリント製法により、プリズムシート材料120の表面に、プリズム列121が形成される。 In step 3, the prism row 121 is formed on the surface of the prism sheet material 120 by the imprint method using the mold 31 corresponding to the shape of the prism row 121.
 工程4において、スクリーン層11のブラックストライプ112に対応する位置に、溝部122の形状に対応するダイサー32を用いて溝部122が形成させる。その結果、スクリーン層11上に、プリズム列121およびブラックストライプ112に対応する位置に溝部122が形成されたプリズムシート12が積層される。 In step 4, the groove 122 is formed at a position corresponding to the black stripe 112 of the screen layer 11 using the dicer 32 corresponding to the shape of the groove 122. As a result, the prism sheet 12 in which the groove 122 is formed at a position corresponding to the prism row 121 and the black stripe 112 is laminated on the screen layer 11.
 図14は、本実施形態のスクリーン10の製造方法の他の一例を示す図である。 FIG. 14 is a diagram showing another example of the method for manufacturing the screen 10 of the present embodiment.
 工程1および工程2は、図13と同様であるので、説明を省略する。 Step 1 and Step 2 are the same as those in FIG.
 工程3において、プリズム列121の形状に対応するとともに、ブラックストライプ112に対応する位置に溝部122の形状に対応する金型33を用いて、インプリント製法により、プリズムシート材料120の表面に、プリズム列121および溝部122が一括して形成される。その結果、スクリーン層11上に、プリズム列121およびブラックストライプ112に対応する位置に溝部122が形成されたプリズムシート12が積層される。 In step 3, a prism 33 corresponding to the shape of the prism row 121 and corresponding to the shape of the groove 122 at a position corresponding to the black stripe 112 is applied to the surface of the prism sheet material 120 by the imprint method. The row 121 and the groove 122 are formed in a lump. As a result, the prism sheet 12 in which the groove 122 is formed at a position corresponding to the prism row 121 and the black stripe 112 is laminated on the screen layer 11.
 図15は、本実施形態のスクリーン10の製造方法のさらに他の一例を示す図である。 FIG. 15 is a diagram showing still another example of the method for manufacturing the screen 10 of the present embodiment.
 工程1および工程2は、図13と同様であるので、説明を省略する。 Step 1 and Step 2 are the same as those in FIG.
 工程3において、溝部122の形状に対応する金型34を用いて、インプリント製法により、プリズムシート材料120の表面のブラックストライプ112に対応する位置に溝部122が形成される。 In step 3, using the mold 34 corresponding to the shape of the groove 122, the groove 122 is formed at a position corresponding to the black stripe 112 on the surface of the prism sheet material 120 by the imprint method.
 工程4において、プリズムシート材料120の表面のうち、工程3で溝部122が形成された領域以外の領域に、プリズム列121の形状に対応する金型31を用いて、インプリント製法によりプリズム列121が形成される。その結果、スクリーン層11上に、プリズム列121およびスクリーン層11のブラックストライプ112に対応する位置に溝部122が形成されたプリズムシート12が積層される。 In step 4, the prism row 121 is formed by imprinting using a mold 31 corresponding to the shape of the prism row 121 in a region other than the region in which the groove 122 is formed in step 3 on the surface of the prism sheet material 120. Is formed. As a result, the prism sheet 12 having the groove 122 formed at the position corresponding to the prism row 121 and the black stripe 112 of the screen layer 11 is laminated on the screen layer 11.
 なお、本実施形態においては、溝部122の斜面が平面である場合を例として説明したが、これに限られるものではない。例えば、溝部122の斜面が、図16Aに示すように、基板4と反対側に向かって凸状の曲面であったり、図16Bに示すように、基板4と反対側に向かって凸状の多角形状であったりしてもよい。なお、溝部122の斜面の最適な形状は、光源2側の条件(ビーム光の入射角など)によって定まる。 In addition, in this embodiment, although the case where the inclined surface of the groove part 122 was a plane was demonstrated as an example, it is not restricted to this. For example, the slope of the groove 122 is a curved surface that is convex toward the opposite side of the substrate 4 as shown in FIG. 16A, or a polygon that is convex toward the opposite side of the substrate 4 as shown in FIG. It may be a shape. Note that the optimum shape of the inclined surface of the groove 122 is determined by conditions on the light source 2 side (such as the incident angle of the beam light).
 また、本実施形態においては、溝部122の底部が平面である場合を例として説明したが、これに限られるものではない。例えば、溝部122の底部が、図17Aに示すように、基板4と反対側(光源2側)に向かって凸状の曲面であったり、図17Bに示すように、基板4と反対側に向かって凸状の多角形状であったりしてもよい。要は、蛍光体層111の延在方向と直交する方向の溝部122の幅が、溝部122の底部に向かって小さくなるように形成されていればよい。図17Aおよび図17Bに示すように、溝部122の底部を光源2側に向かって凸状とすることにより、溝部122の底部に照射されたビーム光がブラックストライプ112の中心部に向かって屈折しやすくなるため、よりクロストーク発生の抑制効果を高めることができる。 In the present embodiment, the case where the bottom of the groove 122 is a plane has been described as an example, but the present invention is not limited to this. For example, as shown in FIG. 17A, the bottom of the groove 122 is a curved surface that is convex toward the side opposite to the substrate 4 (light source 2 side), or toward the side opposite to the substrate 4 as shown in FIG. 17B. It may be a convex polygonal shape. In short, the width of the groove 122 in the direction orthogonal to the extending direction of the phosphor layer 111 may be formed so as to decrease toward the bottom of the groove 122. As shown in FIGS. 17A and 17B, by making the bottom of the groove 122 convex toward the light source 2 side, the beam light applied to the bottom of the groove 122 is refracted toward the center of the black stripe 112. Therefore, the effect of suppressing the occurrence of crosstalk can be further enhanced.
 このように本実施形態によれば、スクリーン10は、基板4上に、ストライプ状の蛍光体層111および隣り合う蛍光体層111同士の間にブラックストライプ112が形成されたスクリーン層11が積層され、蛍光体層111の延在方向に沿って、互いに略平行な複数のプリズム列121が形成され、プリズム列121が形成されたプリズム面が基板4と反対側を向くようにして、スクリーン層11上に配置されたプリズムシート12と、有し、プリズムシート12には、プリズム面のブラックストライプ112に対応する位置に、底部に向かって幅が小さくなる溝部122が形成されている。 As described above, according to the present embodiment, the screen 10 has the stripe-shaped phosphor layer 111 and the screen layer 11 in which the black stripe 112 is formed between the adjacent phosphor layers 111 stacked on the substrate 4. A plurality of prism rows 121 substantially parallel to each other are formed along the extending direction of the phosphor layer 111, and the screen layer 11 is formed such that the prism surface on which the prism rows 121 are formed faces the opposite side of the substrate 4. The prism sheet 12 is disposed on the prism sheet 12, and a groove 122 having a width that decreases toward the bottom is formed in the prism sheet 12 at a position corresponding to the black stripe 112 of the prism surface.
 ブラックストライプ112に対応するプリズムシート12上の位置に照射されたビーム光のうち、溝部122の斜面に照射されたビーム光は蛍光体層111側に屈折し、溝部122の底部に照射されたビーム光はブラックストライプ112側に屈折することで、ビーム径の拡大が抑制される。そのため、異なる色の可視光を出力する、隣り合う蛍光体層111に同時にビーム光が入射されることによるクロストークの発生を抑制し、色純度が低下するのを防ぐことができる。 Of the beam light irradiated to the position on the prism sheet 12 corresponding to the black stripe 112, the beam light irradiated to the inclined surface of the groove part 122 is refracted toward the phosphor layer 111 and is irradiated to the bottom part of the groove part 122. The light is refracted toward the black stripe 112, so that the expansion of the beam diameter is suppressed. Therefore, it is possible to suppress the occurrence of crosstalk due to the simultaneous incidence of light beams on the adjacent phosphor layers 111 that output visible light of different colors, and to prevent the color purity from being lowered.
 以上、実施形態を参照して本願発明を説明したが、本発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明の範囲内で当業者が理解し得る様々な変更をすることができる。 As mentioned above, although this invention was demonstrated with reference to embodiment, this invention is not limited to the said embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2011年8月8日に出願された日本出願2011-172967を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese application 2011-172967 filed on August 8, 2011, the entire disclosure of which is incorporated herein.

Claims (10)

  1.  基板と、
     前記基板上に積層されたスクリーン層と、
     前記スクリーン層上に配置されたプリズムシートと、を有し、
     前記スクリーン層は、複数の蛍光体層と、前記複数の蛍光体層に含まれるそれぞれの蛍光体層のうち隣り合うもの同士の間に配置されたブラックストライプと、を有し、
     前記プリズムシートは、前記基板とは反対側にプリズム面を有し、
     前記プリズム面は、複数のプリズム列と、前記ブラックストライプに対応する位置に配置された溝部と、を有し、
     前記溝部は、前記溝部の幅が前記溝部の底部に向かって小さくなる構造を有するスクリーン。
    A substrate,
    A screen layer laminated on the substrate;
    A prism sheet disposed on the screen layer,
    The screen layer has a plurality of phosphor layers and a black stripe disposed between adjacent ones of the phosphor layers included in the plurality of phosphor layers,
    The prism sheet has a prism surface on the side opposite to the substrate,
    The prism surface has a plurality of prism rows and a groove portion disposed at a position corresponding to the black stripe,
    The said groove part is a screen which has a structure where the width | variety of the said groove part becomes small toward the bottom part of the said groove part.
  2.  請求項1記載のスクリーンにおいて、
     前記プリズム面は、前記プリズムの材料よりも低屈折率の材料または空気で覆われているスクリーン。
    The screen of claim 1.
    The prism surface is a screen covered with air or a material having a lower refractive index than the material of the prism.
  3.  請求項1または2記載のスクリーンにおいて、
     前記溝部の底部の幅は、前記ブラックストライプの幅以上であるスクリーン。
    The screen according to claim 1 or 2,
    The screen has a width at the bottom of the groove that is greater than or equal to the width of the black stripe.
  4.  請求項1から3のいずれか1項に記載のスクリーンにおいて、
     前記溝部の斜面の前記スクリーン層に対する傾斜角は、前記蛍光体層から前記基板と反対側に出力され前記溝の斜面で反射した光が、前記プリズム列により前記基板側に反射される傾斜角であるスクリーン。
    The screen according to any one of claims 1 to 3,
    The inclination angle of the inclined surface of the groove portion with respect to the screen layer is an inclination angle at which the light output from the phosphor layer to the opposite side of the substrate and reflected by the inclined surface of the groove is reflected to the substrate side by the prism row. A screen.
  5.  請求項1から4のいずれか1項に記載のスクリーンにおいて、
     前記スクリーン層と前記プリズムシートとの間に前記プリズムシートよりも屈折率の低い低屈折率層が形成され、前記溝部の斜面に照射される、前記スクリーン層に対して直交する方向からの前記蛍光体層を励起するビーム光の傾斜角をθとし、前記溝部の斜面の前記スクリーン層に対する傾斜角をθとし、前記溝部の斜面で屈折した前記ビーム光の前記スクリーン層に対して直交する方向からの傾斜角をθとし、前記プリズム面の表面の屈折率をnとし、前記プリズムシートの屈折率をnとし、前記低屈折率層の屈折率をnとすると、前記溝部の斜面の前記スクリーン層に対する傾斜角θの最大値が、式(1)を満たすように構成されているスクリーン。
    Figure JPOXMLDOC01-appb-M000001
    The screen according to any one of claims 1 to 4,
    A low refractive index layer having a lower refractive index than that of the prism sheet is formed between the screen layer and the prism sheet, and the fluorescent light from a direction orthogonal to the screen layer is irradiated to the inclined surface of the groove. The inclination angle of the beam light for exciting the body layer is θ 1 , the inclination angle of the inclined surface of the groove portion with respect to the screen layer is θ 2, and is orthogonal to the screen layer of the beam light refracted at the inclined surface of the groove portion. When the inclination angle from the direction is θ 3 , the refractive index of the surface of the prism surface is n 1 , the refractive index of the prism sheet is n 2, and the refractive index of the low refractive index layer is n 3 , the groove portion The screen is configured such that the maximum value of the inclination angle θ 2 of the inclined surface with respect to the screen layer satisfies the formula (1).
    Figure JPOXMLDOC01-appb-M000001
  6.  請求項1から5のいずれか1項に記載のスクリーンにおいて、
     前記溝部の斜面は、凸状の曲面であるスクリーン。
    The screen according to any one of claims 1 to 5,
    The screen has a convex curved surface as an inclined surface of the groove.
  7.  請求項1から5のいずれか1項に記載のスクリーンにおいて、
     前記溝部の斜面は、凸状の多角形状であるスクリーン。
    The screen according to any one of claims 1 to 5,
    The inclined surface of the groove part is a convex polygonal screen.
  8.  請求項1から7のいずれか1項に記載のスクリーンにおいて、
     前記溝部の底部は、凸状の曲面であるスクリーン。
    The screen according to any one of claims 1 to 7,
    The screen has a convex curved surface at the bottom of the groove.
  9.  請求項1から7のいずれか1項に記載のスクリーンにおいて、
     前記溝部の底部は、凸状の多角形状であるスクリーン。
    The screen according to any one of claims 1 to 7,
    The bottom of the groove is a convex polygonal screen.
  10.  請求項1から9のいずれか1項に記載のスクリーンと、
     前記スクリーンのリア側に設けられ、ビーム光を出力する光源と、
     前記光源から出力されたビーム光を走査して、前記スクリーンに照射する光走査部と、を有する画像表示装置。
    A screen according to any one of claims 1 to 9,
    A light source provided on the rear side of the screen for outputting beam light;
    And an optical scanning unit that scans the beam light output from the light source and irradiates the screen with light.
PCT/JP2012/067099 2011-08-08 2012-07-04 Screen and image display device WO2013021756A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013527932A JP5928467B2 (en) 2011-08-08 2012-07-04 Screen and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011172967 2011-08-08
JP2011-172967 2011-08-08

Publications (1)

Publication Number Publication Date
WO2013021756A1 true WO2013021756A1 (en) 2013-02-14

Family

ID=47668276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067099 WO2013021756A1 (en) 2011-08-08 2012-07-04 Screen and image display device

Country Status (2)

Country Link
JP (1) JP5928467B2 (en)
WO (1) WO2013021756A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032850A (en) * 1989-05-31 1991-01-09 Pioneer Electron Corp Fluorescent screen
JP2004354763A (en) * 2003-05-29 2004-12-16 Seiko Epson Corp Screen, image display device, and rear projector
JP2008538145A (en) * 2005-04-01 2008-10-09 スプドニック インコーポレイテッド Display system and apparatus having a screen containing optical fluorescent material
JP2009537868A (en) * 2006-05-15 2009-10-29 スプドニック インコーポレイテッド Multilayer fluorescent screen for beam display system
JP2009539120A (en) * 2006-02-15 2009-11-12 スプドニック インコーポレイテッド Servo-assisted scanning beam display system using fluorescent screen
JP2010527464A (en) * 2007-05-17 2010-08-12 プリズム インコーポレイテッド Multilayer screen with light-emitting stripes for beam display system scanning

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170674A (en) * 2007-01-11 2008-07-24 Seiko Instruments Inc Image display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032850A (en) * 1989-05-31 1991-01-09 Pioneer Electron Corp Fluorescent screen
JP2004354763A (en) * 2003-05-29 2004-12-16 Seiko Epson Corp Screen, image display device, and rear projector
JP2008538145A (en) * 2005-04-01 2008-10-09 スプドニック インコーポレイテッド Display system and apparatus having a screen containing optical fluorescent material
JP2009539120A (en) * 2006-02-15 2009-11-12 スプドニック インコーポレイテッド Servo-assisted scanning beam display system using fluorescent screen
JP2009537868A (en) * 2006-05-15 2009-10-29 スプドニック インコーポレイテッド Multilayer fluorescent screen for beam display system
JP2010527464A (en) * 2007-05-17 2010-08-12 プリズム インコーポレイテッド Multilayer screen with light-emitting stripes for beam display system scanning

Also Published As

Publication number Publication date
JPWO2013021756A1 (en) 2015-03-05
JP5928467B2 (en) 2016-06-01

Similar Documents

Publication Publication Date Title
US11307344B2 (en) Dual view zone backlight, dual-mode display, and method
CN110140008B (en) Multi-view backlighting using fluorescent multibeam elements
JP5033545B2 (en) Video display device
CN110288904B (en) Display panel and display device
JP5133356B2 (en) Wavelength separation device, planar illumination device using the same, and liquid crystal display device using the same
US20140340931A1 (en) Light intensity distribution conversion element, planar light source device, and liquid crystal display device
JP4588729B2 (en) Flat lighting device
US9658465B2 (en) Projector and screen
KR101687095B1 (en) Projection display apparatus
JP2006278251A (en) Light guide plate and surface illumination device
JP2009064775A (en) Planar lighting device, and liquid crystal display using the same
TWI474085B (en) Surface light source device and liquid crystal display device
TW201331646A (en) Illumination device and display device having the illumination device
WO2012017613A1 (en) Surface light-source apparatus and liquid crystal display apparatus
JP2010101912A (en) Liquid crystal device
JP6894014B2 (en) Microprism multi-beam element backlight and multi-view display using it
WO2012046700A1 (en) Light guide plate, illumination device, and liquid crystal display device
JP5928467B2 (en) Screen and image display device
JP2007188891A (en) Light guide plate
JP7446404B2 (en) Multi-view backlight, display, and method with multi-beam elements in a light guide
CN113552747A (en) Front light module and display device with same
JP5984363B2 (en) Light guide plate, surface light source device, and transmissive image display device
JP5669210B2 (en) Display device
JP5948128B2 (en) Light guide plate
JP2022530369A (en) Multi-zone backlight, multi-view display, and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12821645

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013527932

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12821645

Country of ref document: EP

Kind code of ref document: A1