WO2013021570A1 - Bacteria inhibition method, bacteria inhibition device, and air purification device - Google Patents

Bacteria inhibition method, bacteria inhibition device, and air purification device Download PDF

Info

Publication number
WO2013021570A1
WO2013021570A1 PCT/JP2012/004791 JP2012004791W WO2013021570A1 WO 2013021570 A1 WO2013021570 A1 WO 2013021570A1 JP 2012004791 W JP2012004791 W JP 2012004791W WO 2013021570 A1 WO2013021570 A1 WO 2013021570A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
bacteria
fine particle
charged fine
discharge electrode
Prior art date
Application number
PCT/JP2012/004791
Other languages
French (fr)
Japanese (ja)
Inventor
藤井 泰樹
辻 紀子
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013021570A1 publication Critical patent/WO2013021570A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0042Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater characterised by the application of thermo-electric units or the Peltier effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/192Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by electrical means, e.g. by applying electrostatic fields or high voltages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to a bacteria suppression method, a bacteria suppression apparatus, and an air purification apparatus.
  • the air purification device includes a main body case provided with an air outlet and an air inlet, and an electrostatic atomizer in the air passage from the air inlet to the air outlet in the main body case (see, for example, Patent Document 1). .
  • the problem of the above conventional example was further improvement of the bacteria suppression performance. That is, the conventional air purification device generates charged fine particle water by applying a high voltage to water, and the charged fine particle water is released into the air and comes into contact with bacteria in the air, thereby suppressing the bacteria. .
  • the suppression performance of the bacteria is improved, so that it is a problem to increase the contact probability between the charged fine particle water and the bacteria.
  • the present invention is a method for suppressing bacteria in the air in a room, which generates charged fine particle water by applying a charged fine particle water generation voltage to moisture, and discharges ions having a polarity opposite to that of the charged fine particle water into the room.
  • FIG. 1 is a schematic view of an air purification device according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the air purification device.
  • FIG. 3 is a schematic view of the air blowing unit of the air purification device.
  • FIG. 4 is a schematic view of an electrostatic atomization unit of the bacteria-suppressing device.
  • FIG. 5 is a schematic diagram of an ion generation unit of the bacteria-inhibiting device.
  • FIG. 1 is a schematic view of an air purification device according to an embodiment of the present invention.
  • the air purifying apparatus according to the embodiment of the present invention includes a horizontally rectangular air outlet 3 on an upper surface of a substantially box-shaped main body case 1 and an air inlet 2 on a front surface.
  • a blower unit 4 is provided in an air passage communicating the air inlet 2 and the air outlet 3 in the main body case 1.
  • An air purification filter 20 is provided in the air path between the air inlet 2 of the main body case 1 and the air blowing unit 4.
  • FIG. 2 is a schematic cross-sectional view of the air purification device according to the embodiment of the present invention.
  • the air blowing unit 4 includes a scroll-shaped casing unit 5, a motor unit 6 fixed to the casing unit 5, and a blade unit 7 that is rotated by the motor unit 6.
  • the motor unit 6 is provided in the casing unit 5.
  • FIG. 3 is a schematic view of the air blowing unit of the air purification device according to the embodiment of the present invention.
  • the casing portion 5 is formed by a tongue piece forming surface 9, a tongue piece facing surface 10, a first side surface 11, and a second side surface 12.
  • the tongue piece forming surface 9 has a tongue piece 8.
  • the tongue piece facing surface 10 faces the tongue piece forming surface 9.
  • a first side surface 11 connecting both sides of the tongue piece forming surface 9 and the tongue piece facing surface 10 is provided with a circular suction port 13.
  • the suction port 13 faces the front side in the main body case 1 of FIG.
  • a horizontally elongated discharge port 14 surrounded by a tongue piece forming surface 9, a tongue piece facing surface 10, a first side surface 11, and a second side surface 12 is provided.
  • the space between the tongue piece forming surface 9 at the upper part of the casing part 5 and the main body case 1 includes an electrostatic atomization part 15 and an ion generation part 16 that constitute a bacteria suppression device. ing.
  • the electrostatic atomization part 15 is arrange
  • the ion generation part 16 is located in the hollow part 18 recessed from the tongue piece forming surface 9 to the outside of the casing part 5.
  • the air 30 a in the room 30 sucked from the air inlet 2 of the main body case 1 by the air blower 4 is removed by the air cleaning filter 20, and the inside of the casing 5 Flow into.
  • the air 30a from which the dust has been removed is discharged from the casing part 5 by the blade part 7 of the air blowing part 4 together with the charged fine particle water 29 generated from the electrostatic atomizing part 15 and the ions 31 generated from the ion generating part 16.
  • the air is blown from the air outlet 3 of the main body case 1 to the room 30 through the outlet 14.
  • the fungus suppression device is characterized by an electrostatic atomizer 15 that generates charged fine particle water 29 by applying a high voltage to moisture 19, and charged fine particle water 29. Is a point provided with an ion generator 16 that emits ions 31 having opposite polarities.
  • the ion generator 16 emits ions 31 having a polarity opposite to that of the charged fine particle water 29. For this reason, the ions 31 generated from the ion generator 16 come into contact with the bacteria in the air 30 a, so that the bacteria in the air 30 a are charged with a polarity opposite to that of the charged fine particle water 29.
  • the charged fine particle water 29 generated from the electrostatic atomizer 15 is easily brought into contact with bacteria charged to the opposite polarity to the charged fine particle water 29, and the contact probability between the charged fine particle water 29 and the bacteria is increased.
  • FIG. 4 is a schematic diagram of an electrostatic atomization unit of the bacteria-suppressing device according to the embodiment of the present invention.
  • the electrostatic atomizer 15 includes a first discharge electrode 21, a first counter electrode 22, a first high voltage application unit 23, a Peltier element 24, and a radiation fin 25.
  • the first counter electrode 22 is disposed to face the first discharge electrode 21.
  • the first high voltage application unit 23 applies a high voltage (3.5 KV in the present embodiment) between the first counter electrode 22 and the first discharge electrode 21.
  • the Peltier element 24 is disposed as a cooling unit that cools the first discharge electrode 21.
  • the radiation fins 25 radiate the heat of the Peltier element 24.
  • a voltage of about 0.1 V to 2.8 V is applied to the Peltier element 24.
  • the first discharge electrode 21 side is set to a low temperature and the radiation fin 25 side is set to a high temperature.
  • the air 30a is cooled in the first discharge electrode 21 portion to form condensation, negatively charged charged fine particle water 29 is generated.
  • negatively charged charged fine particle water 29 is blown out of the main body case 1 from the blowout port 3.
  • the negatively charged charged fine particle water 29 contains active species such as hydroxyl radicals. When the hydroxyl radicals come into contact with bacteria or the like, the bacterial activity is suppressed and sterilized by the oxidation action.
  • the hydroxyl radical is a radical that reacts with a hydroxy group (hydroxyl group).
  • This radical is electrically very unstable because there is usually only one electron that should be rotating in orbit by a set of two. Therefore, radicals have a very strong oxidizing power in order to take away missing electrons from surrounding atoms and molecules, and this oxidization action suppresses bacterial activities and disinfects them.
  • the bacteria-suppressing device includes the electrostatic atomization unit 15, the ion generation unit 16, the cooling unit that cools the first discharge electrode 21 and condenses the moisture 19 in the air 30a. And a first high voltage application unit 23. Then, a charged fine particle water 29 negatively charged is generated by applying a voltage of 2 KV or more and 6 KV or less as a charged fine particle water generation voltage to the moisture 19 condensed on the first discharge electrode 21.
  • the ion generator 16 shown in FIG. 2 emits ions 31 having a positive polarity.
  • the first high voltage application unit 23 applies a voltage between 2 KV and 10 KV as an interelectrode voltage between the first discharge electrode 21 and the first counter electrode 22.
  • FIG. 5 is a schematic diagram of an ion generation unit of the bacteria-suppressing device according to the embodiment of the present invention.
  • the ion generation unit 16 includes a needle-like second discharge electrode 26, a nail-like second counter electrode 27 disposed to face the second discharge electrode 26, and a second And a high voltage application unit 28.
  • the second high voltage application unit 28 applies a high voltage (4.4 KV in the present embodiment) between the second discharge electrode 26 and the second counter electrode 27.
  • ions 31 are released from the needle tip of the second discharge electrode 26 to which a high voltage is applied.
  • the second counter electrode 27 has a nail shape, the amount of the released ions 31 reaching the second counter electrode 27 and absorbed is small, and is efficiently discharged into the air 30a. Thereby, a large amount of ions 31 are released into the space, and the floating bacteria are more easily charged. That is, the contact probability between the charged fine particle water 29 and the bacteria is improved, and the bactericidal effect is improved.
  • the recess 18 is positioned in the vicinity of the tongue piece 8 on the tongue piece forming surface 9 at the upper part of the casing portion 5 and on the downstream side of the tongue piece 8.
  • the communication path 17 is located in the vicinity of the outlet 3 of the main body case 1 on the tongue piece forming surface 9 at the upper part of the casing part 5 and on the downstream side from the recessed part 18.
  • the distance between the electrostatic atomizing unit 15 and the tongue piece forming surface 9 is longer than the distance between the ion generating unit 16 and the tongue piece forming surface 9 due to the communication passage 17 that is the wind speed adjusting unit. Therefore, the flow speed of the air 30a to the electrostatic atomization part 15 by the blade
  • the ion generating part 16 is arranged in a part where the flow velocity of the air 30a that is downstream from the blade part 7 of the casing part 5 is faster.
  • a communication path 17 that is a wind speed adjusting section that attracts air 30 a from the outside of the blower section 4 is disposed in the vicinity of the air outlet 3 of the blower section 4, and the electrostatic atomization section 15 is disposed in the communication path 17.
  • the ion generation unit 16 is disposed in a portion where the flow velocity of the air 30 a of the blade portion 7 of the blowing unit 4 is high. Therefore, as shown in FIG. 5, the ions 31 that have jumped out of the second discharge electrode 26 are released into the air 30a before reaching the second counter electrode 27 by the physical diffusion action of the air 30a. Thereby, the reduction
  • the electrostatic atomization unit 15 shown in FIG. 2 is provided in the communication path 17 which is a wind speed adjustment unit so that the flow rate of the air 30a becomes slow. That is, the electrostatic atomizer 15 is disposed in a gentle flow of air 30 a due to attraction in the communication path 17. Thereby, sufficient dew condensation occurs in the first discharge electrode 21 and the moisture 19 is replenished.
  • the air purification device of the present invention includes a bacteria suppression device, a main body case 1, and an air blowing unit 4 that blows air 30 a sucked from the air inlet 2 from the air outlet 3.
  • a wind speed adjusting unit is provided so that the flow rate of the air 30 a flowing through the electrostatic atomization unit 15 by the blade unit 7 is slower than the flow rate of the air 30 a flowing through the ion generation unit 16 by the blade unit 7. That is, by providing the communication path 17, the generation efficiency of the ions 31 and the generation efficiency of the charged fine particle water 29 are improved, and the bacteria suppression effect is improved.
  • the present invention is expected to be used as a method for suppressing bacteria, a device for suppressing bacteria, and an air purification device for home use and office use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Sustainable Development (AREA)
  • Dispersion Chemistry (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

A method for inhibiting bacteria in indoor air, comprising applying a voltage for generating charged fine water droplets to moisture to generate charged fine water droplets and then releasing ions having a polarity opposite to that of the charged fine water droplets into a room.

Description

菌抑制方法、菌抑制装置、および空気浄化装置Bacteria suppression method, bacteria suppression device, and air purification device
 本発明は、菌抑制方法、菌抑制装置、および空気浄化装置に関する。 The present invention relates to a bacteria suppression method, a bacteria suppression apparatus, and an air purification apparatus.
 水に高電圧を印加することにより帯電微粒子水を生成する従来の空気浄化装置の構成は、以下のようになっていた。すなわち空気浄化装置は、吹出口と吸気口とを設けた本体ケースと、本体ケース内の吸気口から吹出口への風路に静電霧化部を備えていた(例えば、特許文献1参照)。 The configuration of a conventional air purification device that generates charged fine particle water by applying a high voltage to water has been as follows. In other words, the air purification device includes a main body case provided with an air outlet and an air inlet, and an electrostatic atomizer in the air passage from the air inlet to the air outlet in the main body case (see, for example, Patent Document 1). .
 上記従来例の課題は、細菌の抑制性能の更なる向上であった。すなわち従来の空気浄化装置は、水に高電圧を印加することにより帯電微粒子水を生成し、この帯電微粒子水が空気中へ放出され、空気中の細菌と接触することにより、細菌の抑制を行なう。ここで、帯電微粒子水がより多くの空気中の細菌に接触できると、細菌の抑制性能が向上するため、帯電微粒子水と細菌との接触確率を高めることが課題であった。 The problem of the above conventional example was further improvement of the bacteria suppression performance. That is, the conventional air purification device generates charged fine particle water by applying a high voltage to water, and the charged fine particle water is released into the air and comes into contact with bacteria in the air, thereby suppressing the bacteria. . Here, when the charged fine particle water can come into contact with more bacteria in the air, the suppression performance of the bacteria is improved, so that it is a problem to increase the contact probability between the charged fine particle water and the bacteria.
特開2011-033305号公報JP 2011-033305 A
 本発明は室内の空気中の細菌の抑制方法であって、水分に帯電微粒子水生成電圧を印加して帯電微粒子水を生成し、帯電微粒子水と逆の極性をもつイオンを室内へ放出させる。 The present invention is a method for suppressing bacteria in the air in a room, which generates charged fine particle water by applying a charged fine particle water generation voltage to moisture, and discharges ions having a polarity opposite to that of the charged fine particle water into the room.
 帯電微粒子水と逆の極性をもつイオンが放出され、空気中の細菌と接触することにより、空気中の細菌が帯電微粒子水と逆の極性に帯電する。帯電微粒子水と逆の極性に帯電した細菌には、帯電微粒子水が接触し易くなり、帯電微粒子水と細菌との接触確率が高くなる。 ・ Ions having the opposite polarity to the charged fine particle water are released and come into contact with the bacteria in the air, so that the bacteria in the air are charged to the opposite polarity to the charged fine particle water. Bacteria charged with the opposite polarity to the charged fine particle water are easily contacted with the charged fine particle water, and the probability of contact between the charged fine particle water and the bacteria is increased.
図1は、本発明の実施の形態の空気浄化装置の概略図である。FIG. 1 is a schematic view of an air purification device according to an embodiment of the present invention. 図2は、同空気浄化装置の概略断面図である。FIG. 2 is a schematic cross-sectional view of the air purification device. 図3は、同空気浄化装置の送風部の概略図である。FIG. 3 is a schematic view of the air blowing unit of the air purification device. 図4は、同菌抑制装置の静電霧化部の概略図である。FIG. 4 is a schematic view of an electrostatic atomization unit of the bacteria-suppressing device. 図5は、同菌抑制装置のイオン発生部の概略図である。FIG. 5 is a schematic diagram of an ion generation unit of the bacteria-inhibiting device.
 以下、本発明の実施の形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (実施の形態)
 図1は、本発明の実施の形態の空気浄化装置の概略図である。図1に示すように本発明の実施の形態の空気浄化装置は、略箱形状の本体ケース1の上面に横長四角形状の吹出口3を、前面に吸気口2を備えている。本体ケース1内の吸気口2と吹出口3とを連通する風路には、送風部4を設けている。本体ケース1の吸気口2と送風部4との間の風路には、空気清浄フィルター20を有している。
(Embodiment)
FIG. 1 is a schematic view of an air purification device according to an embodiment of the present invention. As shown in FIG. 1, the air purifying apparatus according to the embodiment of the present invention includes a horizontally rectangular air outlet 3 on an upper surface of a substantially box-shaped main body case 1 and an air inlet 2 on a front surface. A blower unit 4 is provided in an air passage communicating the air inlet 2 and the air outlet 3 in the main body case 1. An air purification filter 20 is provided in the air path between the air inlet 2 of the main body case 1 and the air blowing unit 4.
 図2は、本発明の実施の形態の空気浄化装置の概略断面図である。図2に示すように送風部4は、スクロール形状のケーシング部5と、ケーシング部5に固定されたモータ部6と、モータ部6によって回転する羽根部7とから構成されている。モータ部6は、ケーシング部5内に設けられている。 FIG. 2 is a schematic cross-sectional view of the air purification device according to the embodiment of the present invention. As shown in FIG. 2, the air blowing unit 4 includes a scroll-shaped casing unit 5, a motor unit 6 fixed to the casing unit 5, and a blade unit 7 that is rotated by the motor unit 6. The motor unit 6 is provided in the casing unit 5.
 図3は、本発明の実施の形態の空気浄化装置の送風部の概略図である。図3に示すようにケーシング部5は、舌片形成面9と、舌片対向面10と、第1の側面11と、第2の側面12とにより形成されている。舌片形成面9は、舌片8を有する。舌片対向面10は、舌片形成面9に対向する。舌片形成面9と舌片対向面10との両側を結ぶ第1の側面11は、円形状の吸込口13を備えている。吸込口13は、図1の本体ケース1における前面側に対向している。ケーシング部5の本体ケース1における天面側には、舌片形成面9、舌片対向面10、第1の側面11、および第2の側面12に囲まれた横長四角形状の吐出口14を有している。 FIG. 3 is a schematic view of the air blowing unit of the air purification device according to the embodiment of the present invention. As shown in FIG. 3, the casing portion 5 is formed by a tongue piece forming surface 9, a tongue piece facing surface 10, a first side surface 11, and a second side surface 12. The tongue piece forming surface 9 has a tongue piece 8. The tongue piece facing surface 10 faces the tongue piece forming surface 9. A first side surface 11 connecting both sides of the tongue piece forming surface 9 and the tongue piece facing surface 10 is provided with a circular suction port 13. The suction port 13 faces the front side in the main body case 1 of FIG. On the top surface side of the main body case 1 of the casing portion 5, a horizontally elongated discharge port 14 surrounded by a tongue piece forming surface 9, a tongue piece facing surface 10, a first side surface 11, and a second side surface 12 is provided. Have.
 図2に示すようにケーシング部5上部の舌片形成面9と、本体ケース1との間の空間には、菌抑制装置を構成する静電霧化部15と、イオン発生部16とを備えている。静電霧化部15は、舌片形成面9から伸びた連通路17に配置され、連通路17とケーシング部5とが連通している。イオン発生部16は、舌片形成面9からケーシング部5の外方へ窪んだ窪み部18内に位置している。 As shown in FIG. 2, the space between the tongue piece forming surface 9 at the upper part of the casing part 5 and the main body case 1 includes an electrostatic atomization part 15 and an ion generation part 16 that constitute a bacteria suppression device. ing. The electrostatic atomization part 15 is arrange | positioned at the communicating path 17 extended from the tongue piece formation surface 9, and the communicating path 17 and the casing part 5 are connecting. The ion generation part 16 is located in the hollow part 18 recessed from the tongue piece forming surface 9 to the outside of the casing part 5.
 以上の構成において図1~図3に示すように、送風部4によって本体ケース1の吸気口2から吸い込まれた室内30の空気30aは、空気清浄フィルター20において粉塵が除去され、ケーシング部5内へ流れ込む。そして粉塵が除去された空気30aは、静電霧化部15から発生する帯電微粒子水29と、イオン発生部16から発生するイオン31と共に、送風部4の羽根部7によって、ケーシング部5の吐出口14を介して、本体ケース1の吹出口3から室内30へ送風される。 In the above configuration, as shown in FIGS. 1 to 3, the air 30 a in the room 30 sucked from the air inlet 2 of the main body case 1 by the air blower 4 is removed by the air cleaning filter 20, and the inside of the casing 5 Flow into. The air 30a from which the dust has been removed is discharged from the casing part 5 by the blade part 7 of the air blowing part 4 together with the charged fine particle water 29 generated from the electrostatic atomizing part 15 and the ions 31 generated from the ion generating part 16. The air is blown from the air outlet 3 of the main body case 1 to the room 30 through the outlet 14.
 本発明の実施の形態における菌抑制装置の特徴は図2に示すように、水分19に高電圧を印加することにより帯電微粒子水29を生成する静電霧化部15と、帯電微粒子水29とは逆の極性をもつイオン31を放出するイオン発生部16とを備えた点である。 As shown in FIG. 2, the fungus suppression device according to the embodiment of the present invention is characterized by an electrostatic atomizer 15 that generates charged fine particle water 29 by applying a high voltage to moisture 19, and charged fine particle water 29. Is a point provided with an ion generator 16 that emits ions 31 having opposite polarities.
 すなわちイオン発生部16は、帯電微粒子水29と逆の極性をもつイオン31を放出する。そのため、イオン発生部16から発生したイオン31が空気30a中の細菌と接触することにより、空気30a中の細菌が帯電微粒子水29と逆の極性に帯電する。帯電微粒子水29と逆の極性に帯電した細菌には、静電霧化部15から発生した帯電微粒子水29が接触し易くなり、帯電微粒子水29と細菌との接触確率が高くなる。 That is, the ion generator 16 emits ions 31 having a polarity opposite to that of the charged fine particle water 29. For this reason, the ions 31 generated from the ion generator 16 come into contact with the bacteria in the air 30 a, so that the bacteria in the air 30 a are charged with a polarity opposite to that of the charged fine particle water 29. The charged fine particle water 29 generated from the electrostatic atomizer 15 is easily brought into contact with bacteria charged to the opposite polarity to the charged fine particle water 29, and the contact probability between the charged fine particle water 29 and the bacteria is increased.
 図4は、本発明の実施の形態の菌抑制装置の静電霧化部の概略図である。図4に示すように静電霧化部15は、第1の放電電極21と、第1の対向電極22と、第1の高電圧印加部23と、ペルチェ素子24と、放熱フィン25とを備えている。ここで第1の対向電極22は、第1の放電電極21に対向して配置されている。第1の高電圧印加部23は、第1の対向電極22と第1の放電電極21との間に高電圧(本実施の形態では3.5KV)を印加する。ペルチェ素子24は、第1の放電電極21を冷却する冷却部として配置されている。放熱フィン25は、ペルチェ素子24の熱を放熱する。 FIG. 4 is a schematic diagram of an electrostatic atomization unit of the bacteria-suppressing device according to the embodiment of the present invention. As shown in FIG. 4, the electrostatic atomizer 15 includes a first discharge electrode 21, a first counter electrode 22, a first high voltage application unit 23, a Peltier element 24, and a radiation fin 25. I have. Here, the first counter electrode 22 is disposed to face the first discharge electrode 21. The first high voltage application unit 23 applies a high voltage (3.5 KV in the present embodiment) between the first counter electrode 22 and the first discharge electrode 21. The Peltier element 24 is disposed as a cooling unit that cools the first discharge electrode 21. The radiation fins 25 radiate the heat of the Peltier element 24.
 ペルチェ素子24には、0.1V~2.8V程度の電圧が印加される。本発明の実施の形態では、第1の放電電極21側を低温に、放熱フィン25側を高温にする。第1の放電電極21部分において空気30aが冷却されることにより結露すると、負に帯電した帯電微粒子水29が発生する。 A voltage of about 0.1 V to 2.8 V is applied to the Peltier element 24. In the embodiment of the present invention, the first discharge electrode 21 side is set to a low temperature and the radiation fin 25 side is set to a high temperature. When the air 30a is cooled in the first discharge electrode 21 portion to form condensation, negatively charged charged fine particle water 29 is generated.
 そして図1に示すように負に帯電した帯電微粒子水29が、吹出口3から本体ケース1外に吹出される。負に帯電した帯電微粒子水29にはヒドロキシルラジカルなどの活性種が含まれ、そのヒドロキシルラジカルが細菌などと接触すると、その酸化作用により細菌の活動が抑制され除菌される。 Then, as shown in FIG. 1, negatively charged charged fine particle water 29 is blown out of the main body case 1 from the blowout port 3. The negatively charged charged fine particle water 29 contains active species such as hydroxyl radicals. When the hydroxyl radicals come into contact with bacteria or the like, the bacterial activity is suppressed and sterilized by the oxidation action.
 なおヒドロキシルラジカルは、ヒドロキシ基(水酸基)に反応するラジカルである。このラジカルは、通常2個1組により軌道上を回転しているはずの電子が一つしかないので、電気的に非常に不安定である。そのためラジカルは、周りの原子、および分子から欠けた電子を奪おうとするために、酸化力が非常に強く、この酸化作用により細菌の活動が抑制され、除菌される。 The hydroxyl radical is a radical that reacts with a hydroxy group (hydroxyl group). This radical is electrically very unstable because there is usually only one electron that should be rotating in orbit by a set of two. Therefore, radicals have a very strong oxidizing power in order to take away missing electrons from surrounding atoms and molecules, and this oxidization action suppresses bacterial activities and disinfects them.
 このように本発明の実施の形態の菌抑制装置は、静電霧化部15と、イオン発生部16と、第1の放電電極21を冷却し空気30a中の水分19を結露させる冷却部と、第1の高電圧印加部23とを有している。そして第1の放電電極21に結露した水分19に、帯電微粒子水生成電圧として2KV以上6KV以下の電圧を印加することにより負に帯電した帯電微粒子水29が生成される。そして図2に示すイオン発生部16は、正の極性をもつイオン31を放出する。第1の高電圧印加部23は、第1の放電電極21と第1の対向電極22との間に電極間電圧として2KV以上10KV以下の電圧を印加する。 As described above, the bacteria-suppressing device according to the embodiment of the present invention includes the electrostatic atomization unit 15, the ion generation unit 16, the cooling unit that cools the first discharge electrode 21 and condenses the moisture 19 in the air 30a. And a first high voltage application unit 23. Then, a charged fine particle water 29 negatively charged is generated by applying a voltage of 2 KV or more and 6 KV or less as a charged fine particle water generation voltage to the moisture 19 condensed on the first discharge electrode 21. The ion generator 16 shown in FIG. 2 emits ions 31 having a positive polarity. The first high voltage application unit 23 applies a voltage between 2 KV and 10 KV as an interelectrode voltage between the first discharge electrode 21 and the first counter electrode 22.
 図5は、本発明の実施の形態の菌抑制装置のイオン発生部の概略図である。図5に示すようにイオン発生部16は、針状の第2の放電電極26と、第2の放電電極26に対向して配置された釘状の第2の対向電極27と、第2の高電圧印加部28とから構成されている。ここで第2の高電圧印加部28は、第2の放電電極26と第2の対向電極27との間に高電圧(本実施の形態では4.4KV)を印加する。 FIG. 5 is a schematic diagram of an ion generation unit of the bacteria-suppressing device according to the embodiment of the present invention. As shown in FIG. 5, the ion generation unit 16 includes a needle-like second discharge electrode 26, a nail-like second counter electrode 27 disposed to face the second discharge electrode 26, and a second And a high voltage application unit 28. Here, the second high voltage application unit 28 applies a high voltage (4.4 KV in the present embodiment) between the second discharge electrode 26 and the second counter electrode 27.
 このように、高電圧を印加した第2の放電電極26の針先からイオン31が放出される。しかし第2の対向電極27が釘形状であるので、放出したイオン31が第2の対向電極27に到達して吸収される量が少なく、空気30a中に効率よく放出される。これにより、大量のイオン31が空間に放出され、浮遊細菌がより帯電されやすくなる。すなわち帯電微粒子水29と細菌との接触確率が向上し、殺菌効果が向上する。 Thus, ions 31 are released from the needle tip of the second discharge electrode 26 to which a high voltage is applied. However, since the second counter electrode 27 has a nail shape, the amount of the released ions 31 reaching the second counter electrode 27 and absorbed is small, and is efficiently discharged into the air 30a. Thereby, a large amount of ions 31 are released into the space, and the floating bacteria are more easily charged. That is, the contact probability between the charged fine particle water 29 and the bacteria is improved, and the bactericidal effect is improved.
 図2に示すように窪み部18は、ケーシング部5上部の舌片形成面9の舌片8の近傍に、舌片8より下流側に位置している。また連通路17は、ケーシング部5上部の舌片形成面9の本体ケース1の吹出口3の近傍に、窪み部18より下流側に位置している。風速調整部である連通路17によって、静電霧化部15と舌片形成面9との距離は、イオン発生部16と舌片形成面9との距離より長くなる。そのため、羽根部7による静電霧化部15への空気30aの流速が、羽根部7によるイオン発生部16への空気30aの流速より遅くなる。 As shown in FIG. 2, the recess 18 is positioned in the vicinity of the tongue piece 8 on the tongue piece forming surface 9 at the upper part of the casing portion 5 and on the downstream side of the tongue piece 8. Further, the communication path 17 is located in the vicinity of the outlet 3 of the main body case 1 on the tongue piece forming surface 9 at the upper part of the casing part 5 and on the downstream side from the recessed part 18. The distance between the electrostatic atomizing unit 15 and the tongue piece forming surface 9 is longer than the distance between the ion generating unit 16 and the tongue piece forming surface 9 due to the communication passage 17 that is the wind speed adjusting unit. Therefore, the flow speed of the air 30a to the electrostatic atomization part 15 by the blade | wing part 7 becomes slower than the flow speed of the air 30a to the ion generating part 16 by the blade | wing part 7. FIG.
 このように、ケーシング部5の羽根部7より後流の空気30aの流速の速い部分にイオン発生部16が配置される。そして送風部4の外部から空気30aを誘引する風速調整部である連通路17が、送風部4の吹出口3近傍に配置され、連通路17に静電霧化部15が配置される。 In this way, the ion generating part 16 is arranged in a part where the flow velocity of the air 30a that is downstream from the blade part 7 of the casing part 5 is faster. A communication path 17 that is a wind speed adjusting section that attracts air 30 a from the outside of the blower section 4 is disposed in the vicinity of the air outlet 3 of the blower section 4, and the electrostatic atomization section 15 is disposed in the communication path 17.
 すなわち図2に示すようにイオン発生部16は、送風部4の羽根部7の空気30aの流速の速い部分に配置されている。そのため図5に示すように第2の放電電極26から飛び出したイオン31は、空気30aの物理的な拡散作用により、第2の対向電極27に到達する前に空気30a中に放出される。これにより、室内30の空気30a中に放出されるイオン31の減少が抑制される。 That is, as shown in FIG. 2, the ion generation unit 16 is disposed in a portion where the flow velocity of the air 30 a of the blade portion 7 of the blowing unit 4 is high. Therefore, as shown in FIG. 5, the ions 31 that have jumped out of the second discharge electrode 26 are released into the air 30a before reaching the second counter electrode 27 by the physical diffusion action of the air 30a. Thereby, the reduction | decrease of the ion 31 discharge | released in the air 30a of the room | chamber 30 is suppressed.
 一方、図4に示すように静電霧化部15では第1の放電電極21にて水分19が結露する。そのため、過度の空気30aの流速は結露の妨げになり、帯電微粒子水29の生成効率が低下する。そこで図2に示す静電霧化部15は、空気30aの流速が遅くなるように風速調整部である連通路17に設けられている。すなわち、連通路17内の誘引による緩やかな空気30aの流れの中に静電霧化部15が配置されている。これにより、第1の放電電極21にて十分な結露が生じ、水分19が補給される。 On the other hand, as shown in FIG. 4, in the electrostatic atomizer 15, moisture 19 is condensed on the first discharge electrode 21. For this reason, the excessive flow rate of the air 30a hinders condensation, and the generation efficiency of the charged fine particle water 29 is reduced. Therefore, the electrostatic atomization unit 15 shown in FIG. 2 is provided in the communication path 17 which is a wind speed adjustment unit so that the flow rate of the air 30a becomes slow. That is, the electrostatic atomizer 15 is disposed in a gentle flow of air 30 a due to attraction in the communication path 17. Thereby, sufficient dew condensation occurs in the first discharge electrode 21 and the moisture 19 is replenished.
 図2に示すように本発明の空気浄化装置は菌抑制装置と、本体ケース1と、吸気口2から吸い込んだ空気30aを吹出口3から送風する送風部4とを備えている。羽根部7によって静電霧化部15に流れる空気30aの流速が、羽根部7によってイオン発生部16に流れる空気30aの流速より遅くなるように風速調整部が設けられている。すなわち連通路17が設けられることにより、イオン31の発生効率と帯電微粒子水29の発生効率とが向上し、細菌抑制効果が向上する。 As shown in FIG. 2, the air purification device of the present invention includes a bacteria suppression device, a main body case 1, and an air blowing unit 4 that blows air 30 a sucked from the air inlet 2 from the air outlet 3. A wind speed adjusting unit is provided so that the flow rate of the air 30 a flowing through the electrostatic atomization unit 15 by the blade unit 7 is slower than the flow rate of the air 30 a flowing through the ion generation unit 16 by the blade unit 7. That is, by providing the communication path 17, the generation efficiency of the ions 31 and the generation efficiency of the charged fine particle water 29 are improved, and the bacteria suppression effect is improved.
 本発明は家庭用および事務所用などの、菌抑制方法、菌抑制装置、及び空気浄化装置として活用が期待される。 The present invention is expected to be used as a method for suppressing bacteria, a device for suppressing bacteria, and an air purification device for home use and office use.
 1  本体ケース
 2  吸気口
 3  吹出口
 4  送風部
 5  ケーシング部
 6  モータ部
 7  羽根部
 8  舌片
 9  舌片形成面
 10  舌片対向面
 11  第1の側面
 12  第2の側面
 13  吸込口
 14  吐出口
 15  静電霧化部
 16  イオン発生部
 17  連通路(風量調節部)
 18  窪み部
 19  水分
 20  空気清浄フィルター
 21  第1の放電電極
 22  第1の対向電極
 23  第1の高電圧印加部
 24  ペルチェ素子(冷却部)
 25  放熱フィン
 26  第2の放電電極
 27  第2の対向電極
 28  第2の高電圧印加部
 29  帯電微粒子水
 30  室内
 30a  空気
 31  イオン
DESCRIPTION OF SYMBOLS 1 Main body case 2 Air inlet 3 Air outlet 4 Air blower 5 Casing part 6 Motor part 7 Blade | wing part 8 Tongue piece 9 Tongue piece formation surface 10 Tongue piece opposing surface 11 1st side surface 12 2nd side surface 13 Inlet port 14 Discharge port 15 Electrostatic atomization part 16 Ion generation part 17 Communication path (air volume adjustment part)
DESCRIPTION OF SYMBOLS 18 Depression part 19 Water | moisture content 20 Air purifying filter 21 1st discharge electrode 22 1st counter electrode 23 1st high voltage application part 24 Peltier device (cooling part)
25 Radiation Fin 26 Second Discharge Electrode 27 Second Counter Electrode 28 Second High Voltage Application Unit 29 Charged Particulate Water 30 Indoor 30a Air 31 Ion

Claims (5)

  1. 室内の空気中の細菌の抑制方法であって、水分に帯電微粒子水生成電圧を印加して帯電微粒子水を生成し、前記帯電微粒子水と逆の極性をもつイオンを前記室内へ放出させることを特徴とする菌抑制方法。 A method for suppressing bacteria in indoor air, comprising generating charged fine particle water by applying a charged fine particle water generation voltage to moisture, and releasing ions having a polarity opposite to that of the charged fine particle water into the room. A method for suppressing bacteria.
  2. 第1の放電電極および第1の対向電極を備えた静電霧化部と、
    第2の放電電極および前記第2の放電電極に対向して配置された第2の対向電極を備えたイオン発生部と、
    前記第1の放電電極を冷却し空気中の水分を結露させる冷却部と、
    前記第1の放電電極と前記第1の対向電極との間に電極間電圧を印加する第1の高電圧印加部と
    を有し、前記第1の放電電極に結露した前記水分に帯電微粒子水生成電圧を印加することにより負に帯電した帯電微粒子水を生成し、前記イオン発生部は正の極性をもつイオンを放出することを特徴とする菌抑制装置。
    An electrostatic atomizer comprising a first discharge electrode and a first counter electrode;
    An ion generator comprising a second discharge electrode and a second counter electrode disposed opposite to the second discharge electrode;
    A cooling unit for cooling the first discharge electrode to condense moisture in the air;
    A first high voltage application unit that applies an inter-electrode voltage between the first discharge electrode and the first counter electrode, and charged fine particle water to the moisture condensed on the first discharge electrode A bacteria-suppressing device, wherein negatively charged charged fine particle water is generated by applying a generation voltage, and the ion generator emits ions having a positive polarity.
  3. 前記第2の放電電極部は針状であり、前記第2の対向電極は釘状であることを特徴とする請求項2記載の菌抑制装置。 The bacteria-suppressing device according to claim 2, wherein the second discharge electrode portion has a needle shape, and the second counter electrode has a nail shape.
  4. 請求項2記載の菌抑制装置と、
    吸気口と吹出口とを設けた本体ケースと、
    前記吸気口から吸い込んだ前記空気を前記吹出口から送風する送風部とを備え、
    前記送風部は吸込口と吐出口とを備えたケーシング部と、
    前記ケーシング部内に設けたモータ部と、
    前記モータ部により回転する羽根部とからなり、
    前記羽根部によって前記静電霧化部に流れる前記空気の流速が、前記羽根部によって前記イオン発生部に流れる前記空気の流速より遅くなるように風速調整部を設けることを特徴とする空気浄化装置。
    A bacteria-suppressing device according to claim 2;
    A main body case provided with an inlet and an outlet;
    A blower that blows the air sucked from the air intake through the air outlet;
    The air blowing part is a casing part provided with a suction port and a discharge port;
    A motor part provided in the casing part;
    It consists of a blade part rotated by the motor part,
    An air purification device comprising a wind speed adjusting unit so that a flow velocity of the air flowing to the electrostatic atomization unit by the blade portion is slower than a flow velocity of the air flowing to the ion generation unit by the blade portion. .
  5. 前記イオン発生部は前記羽根部の後流の前記ケーシング部の外方へ窪んだ窪み部内に、前記静電霧化部は前記風速調整部に、前記風速調整部は前記吹出口近傍にそれぞれ配置されることを特徴とする請求項4記載の空気浄化装置。 The ion generating part is disposed in a hollow part recessed outward of the casing part in the wake of the blade part, the electrostatic atomizing part is disposed in the wind speed adjusting part, and the wind speed adjusting part is disposed in the vicinity of the outlet. The air purification device according to claim 4, wherein
PCT/JP2012/004791 2011-08-11 2012-07-27 Bacteria inhibition method, bacteria inhibition device, and air purification device WO2013021570A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011175824 2011-08-11
JP2011-175824 2011-08-11

Publications (1)

Publication Number Publication Date
WO2013021570A1 true WO2013021570A1 (en) 2013-02-14

Family

ID=47668110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004791 WO2013021570A1 (en) 2011-08-11 2012-07-27 Bacteria inhibition method, bacteria inhibition device, and air purification device

Country Status (1)

Country Link
WO (1) WO2013021570A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019063492A (en) * 2017-09-28 2019-04-25 パナソニックIpマネジメント株式会社 dishwasher

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068711A (en) * 2004-09-06 2006-03-16 Matsushita Electric Works Ltd Electrostatic atomizing device
JP2007253055A (en) * 2006-03-23 2007-10-04 Matsushita Electric Ind Co Ltd Dust collector and air-conditioning equipment
JP2007260627A (en) * 2006-03-29 2007-10-11 Matsushita Electric Works Ltd Electrostatic atomizing device
JP2009018221A (en) * 2007-07-10 2009-01-29 Panasonic Corp Air cleaner
JP2009193793A (en) * 2008-02-13 2009-08-27 Keyence Corp Static eliminator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068711A (en) * 2004-09-06 2006-03-16 Matsushita Electric Works Ltd Electrostatic atomizing device
JP2007253055A (en) * 2006-03-23 2007-10-04 Matsushita Electric Ind Co Ltd Dust collector and air-conditioning equipment
JP2007260627A (en) * 2006-03-29 2007-10-11 Matsushita Electric Works Ltd Electrostatic atomizing device
JP2009018221A (en) * 2007-07-10 2009-01-29 Panasonic Corp Air cleaner
JP2009193793A (en) * 2008-02-13 2009-08-27 Keyence Corp Static eliminator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019063492A (en) * 2017-09-28 2019-04-25 パナソニックIpマネジメント株式会社 dishwasher

Similar Documents

Publication Publication Date Title
JP6581661B2 (en) Plasma source containing porous dielectric
KR101165546B1 (en) Fine particle diffusion device
KR20160021242A (en) Sanitization device using electrical discharge
US8663570B2 (en) Sterilizing apparatus and ion generating apparatus
JP4551288B2 (en) Air conditioner
JP4368408B1 (en) Fine particle diffusion device
JP2013079755A (en) Ion delivery device and air conditioner with the same
WO2013021570A1 (en) Bacteria inhibition method, bacteria inhibition device, and air purification device
JP5301798B2 (en) Air conditioner
JP2006097960A (en) Air purifier, air cleaner, and humidifier
JP5471553B2 (en) Ion generator
KR101116213B1 (en) An ion making device
JP2009030911A (en) Air conditioner, and refrigeration cycle device
JP4368409B1 (en) Ion diffusion device
JP2011183015A (en) Electrostatic atomizing device
JP2013074998A (en) Air cleaner device
CN101219233B (en) High pressure ionization air disinfection machine of air conditioner for automobile
JP2007305436A (en) Ion emitting device and air conditioner equipped with it
JP4716927B2 (en) refrigerator
JP5323544B2 (en) Hair dryer with electrostatic atomizer
JP2009123564A (en) Ion generator, electrostatic atomizer, and air-conditioner using them
JP5484259B2 (en) Ion generator and electrical equipment
JP2005168534A (en) Purification method and purifier
JP2012115798A (en) Air cleaning device
WO2013114713A1 (en) Ion generator and ion generation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12822202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP