WO2013020857A1 - Verdichtungsgerät sowie verfahren zum verdichten von böden - Google Patents

Verdichtungsgerät sowie verfahren zum verdichten von böden Download PDF

Info

Publication number
WO2013020857A1
WO2013020857A1 PCT/EP2012/064946 EP2012064946W WO2013020857A1 WO 2013020857 A1 WO2013020857 A1 WO 2013020857A1 EP 2012064946 W EP2012064946 W EP 2012064946W WO 2013020857 A1 WO2013020857 A1 WO 2013020857A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandage
magnetic field
stator
magnets
frame
Prior art date
Application number
PCT/EP2012/064946
Other languages
English (en)
French (fr)
Inventor
Christoph KORB
Hans-Peter PATZNER
Sebastian Villwock
Original Assignee
Hamm Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamm Ag filed Critical Hamm Ag
Publication of WO2013020857A1 publication Critical patent/WO2013020857A1/de

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/28Vibrated rollers or rollers subjected to impacts, e.g. hammering blows
    • E01C19/286Vibration or impact-imparting means; Arrangement, mounting or adjustment thereof; Construction or mounting of the rolling elements, transmission or drive thereto, e.g. to vibrator mounted inside the roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/104Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element
    • H02K49/106Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element with a radial air gap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to a compacting device for compacting trays according to the preamble of claim 1 and to a method for compacting trays according to claim 15.
  • the road rollers distinguish between a dynamic and a static mode of compression. In the dynamic mode of operation, the compression is carried out by movement of masses and in the static mode of operation, the compression is carried out by the weight of the road roller.
  • a road roller may be a self-propelled vehicle and usually has at least one bandage.
  • the bandage In an oscillation compaction, the bandage is forced on rapidly changing forward and backward rotating motion. As a result, tangential shear forces are directed into the material to be compacted.
  • the fast-changing forward and backward rotating motion may also be superimposed on a continuous forward-rotating motion such that the compactor moves forward during the oscillation compression.
  • a vibration compression of the bandage is imposed a fast changing up and down movement. In this way, rapidly successive vertical forces are directed into the soil to be compacted.
  • Object of the present invention is thus to provide a compacting device and method for compacting soils, which has a simple structural design and in which the efficiency is increased.
  • the invention advantageously provides that an electromagnetic drive is provided, which exerts a force on the bandage, so that the bandage is movable relative to the frame in a predetermined manner.
  • the electromagnetic drive may have at least one stator fixedly connected to the frame, wherein at least one magnetic field acts in the stator and at least part of the bandage, wherein the at least one magnetic field can be generated by means of an electric current and is variable such that due to this change a force acts on the bandage such that the bandage is movable relative to the stator in accordance with the at least one changing magnetic field.
  • the force exerted by the electromagnetic drive may rotate the bandage relative to the stator.
  • the force exerted by the electromagnetic drive may translate the bandage with respect to the stator, preferably vertically with respect to a ground to be compacted.
  • At least one first magnetic field can act in the stator and at least one second magnetic field can act in at least one part of the bandage.
  • the stator and the bandage can be arranged to each other such that the field lines of the at least one first magnetic field and the field lines of the at least one second magnetic field overlap at least partially.
  • the stator may comprise at least one permanent magnet, wherein the at least one permanent magnet generates the at least one first magnetic field, the bandage has at least one electromagnet, and wherein the at least one electromagnet generates the at least one second magnetic field.
  • the stator may have at least one electromagnet, wherein this at least one electromagnet generates the at least one first magnetic field.
  • the bandage may have at least one permanent magnet, wherein the at least one permanent magnet generates the at least one second magnetic field.
  • the stator may comprise at least one electromagnet, wherein the at least one electromagnet generates the at least one first magnetic field. That, at least a second magnetic field may be inducible in at least a portion of the bandage by the at least one first magnetic field.
  • the bandage may comprise at least one electromagnet, wherein the at least one electromagnet generates the at least one second magnetic field.
  • the at least one first magnetic field may be inducible in the stator by the at least one second magnetic field.
  • the stator may comprise at least one electromagnet, wherein the at least one electromagnet generates the first magnetic field.
  • the bandage may be movable relative to the stator by means of reluctance.
  • the stator may be arranged concentrically to the drum axis.
  • a bandage shaft which is mounted at the free ends in the frame, wherein at least in the free ends of the bandage shaft, the at least one magnetic field acts.
  • bandage shaft which is mounted at the free ends in the frame, wherein the bandage shafts are movably mounted by means of rubber buffers in the frame.
  • a method for compacting a soil by means of a compacting device with at least one bandage is provided, wherein the bandage is moved by means of an electromagnetic drive.
  • the bandage can be rotated about a bandage axis by means of an electromagnetic drive.
  • the bandage can be moved by means of an electromagnetic drive about a bandage axis translationally, preferably orthogonal to the soil to be compacted.
  • FIG. 3 is a detail view of the embodiment of FIG. 2,
  • FIG. 4 is a side view of the embodiment of FIG. 2,
  • FIG. 6 is a sectional view of the embodiment of FIG. 5,
  • FIG. 10 is a side view of the embodiment of FIG. 9,
  • Fig. 12 is a sectional view of the embodiment of Fig. 11, and
  • FIG. 13 shows another embodiment.
  • FIG. 1 shows a compacting device 3 with a frame 12 and two bandages 2.
  • the bandages 2 are each rotatable relative to the frame 12 about a bandage axis 1.
  • FIG. 2 shows a bandage 2 of a first exemplary embodiment.
  • FIG. 2 shows a section through one of the bandages 2.
  • the bandage 2 is mounted rotatably about the bandage axis 1 in the frame 12.
  • the bandage 2 is fixedly connected to the bandage shaft 7 via webs 70.
  • the bandage shaft 7 is movably mounted in the frame 12 by means of rubber buffer, wherein the bandage 2 is rotatable with respect to the frame 12. Furthermore, the bandage 2 is slightly movable in the vertical direction 22 due to the rubber buffer with respect to the bottom 80 to be compacted.
  • the bandage 2 has an electromagnetic drive 5, wherein the electromagnetic drive 5 can move the bandage 2 in the vertical direction 22.
  • the electromagnetic drive 5 has two fixed to the frame 12 stators 9.
  • the stators 9 each have four magnets 6. At each stator 9 two magnets 6 are arranged in the vertical direction 22 above the drum axis 1 and two magnets 6 are arranged below the drum axis 1 respectively.
  • the magnets 6 are electromagnets, wherein in each case a magnetic field can be generated with the aid of an electrical current.
  • the respective magnetic field generated by the magnets 6 acts at least in a part of the respective stator 9 and in at least part of the bandage 2.
  • These rings 4 are made of a material that is magnetizable.
  • these rings 4 are made of metal, for. Iron.
  • the rings 4 are arranged circumferentially on the inside of the bandage 2.
  • Figure 2 is shown on the left edge of the image, how the magnets are switched.
  • the magnets 6, which are located below the drum axis 1, are turned on the magnets 6, which are located above the drum axis 1, are turned off.
  • the bandage 2 is moved in the vertical direction.
  • In the vertical direction means in a direction 22 orthogonal to the bottom 80 to be compacted.
  • FIG. 3 shows a detail view from FIG. 2.
  • FIG. 3 shows the field lines 16 of the magnetic fields generated by magnets 6.
  • the magnetic fields of the magnets 6 shown in Fig. 3 are superimposed on each other.
  • the north poles and 8 are designated the south poles.
  • the ring 4 of the bandage 2 is moved within the respective magnetic fields along the field lines 16.
  • FIG. 4 shows a side view of the embodiment of Figure 2 is shown. From Figure 4 shows that the magnets 6 of a stator 9 are arranged below and above the drum axis 1.
  • FIG. 5 shows a further exemplary embodiment.
  • only one bandage 2 with frame 12 is shown.
  • the frame 12 has in the direction of travel 86 in front of and behind the bandage 2, a frame member 60 and 62, respectively.
  • FIG. 6 shows a section through the bandage and through the frame elements 60 and 62 of the frame 12.
  • the bandage 2 also has at least one ring 4. Along the circumference of the ring 4 magnets 26 are arranged.
  • the magnets 24 have.
  • the magnets 24 are preferably electromagnets, which can each generate a variable magnetic field with the aid of current.
  • the magnets 26 are preferably permanent magnets.
  • the drum shaft 7 is rotatably mounted in the frame member 12 and can be driven by means of a conventional drive.
  • the magnets 24, which are preferably electromagnets, can be switched such that in each case a superimposed traveling magnetic field is generated by the magnetic fields generated by the magnets 24 in the frame elements 60 and 62.
  • the traveling magnetic field generated by the magnets 24 acts on the magnets 26, so that in each case a force is exerted on the magnets 26.
  • the magnets 26 are fixed to the at least one ring 4 of the bandage 2, so that the bandage 2 rotates due to the magnetic fields generated by the magnets 24.
  • the magnets 24 are switched such that rapidly changing forces act on the magnets 26 and thus on the bandage 2, so that the bandage 2 performs an oscillating rotational movement.
  • the bandage 2 can be additionally driven by means of a conventional drive via the shaft 7, so that the compactor moves forward.
  • the movement of the bandage 2, which is due to the magnetic fields generated by the magnet 24, can superimpose this movement, so that the bandage in the forward rotation in addition due to the magnetic fields generated by the magnet 24 performs a rotational vibration. In this way, the compacted soil can be compacted.
  • the magnets 26 may be permanent magnets as described. Alternatively, the magnets 26 may be equipped with coils, so that in each case a magnetic field is generated in the magnets 26 by induction of the magnetic field of the magnet 24.
  • the magnets 26 may be formed as electromagnets and the magnets 24 may be permanent magnets.
  • the magnets 26 may be electromagnets and the magnetic fields of the magnets 24 may be induced by the magnets 26, when the magnets 26 are electromagnets they may be powered by commutators and sliding contacts.
  • the magnets 24 each generate a first magnetic field and the magnets 26 each have a second magnetic field.
  • the first magnetic fields and the second magnetic fields at least partially overlap.
  • FIG. 7 shows a further exemplary embodiment.
  • This embodiment differs from the embodiment of FIG. 6 in that the magnets 24 are formed by superimposed windings 28, 30, 32 and 34, 36 and 38.
  • the individual windings 28, 30, 32, 34, 36, 38 each generate a magnetic field when current flows through the windings 28, 30, 32, 36, 38.
  • the windings 28, 30, 32, 34, 36, 38 may be connected such that in each case a traveling magnetic field is generated at least in the frame part 60 or 62.
  • the magnets 26 connected to the bandage 2 are preferably permanent magnets. However, the magnets 26 may also have coils, so that in each case a magnetic field in the magnet 26 can be induced.
  • FIG. 8 shows a further exemplary embodiment, which differs from the exemplary embodiment from FIG. 7 in that the bandage 2 has no magnets 26.
  • a force is exerted on the bandage 2 due to the magnetic fields generated by the windings 28, 30, 32, 34, 36, 38, which moves the bandage.
  • FIG. 9 shows a further exemplary embodiment.
  • the embodiment of Figure 9 has a frame 12.
  • two stators 9 are arranged, which have the magnets 6.
  • the magnets 6 are arranged in the same way as in the exemplary embodiment from FIG. 2.
  • the bandage 2 likewise has two rings 4, as in the exemplary embodiment of FIG.
  • the stators 9 furthermore have holding elements 54, wherein magnets 56 are arranged on the holding elements 54.
  • the magnets 56 are arranged along the circumference of the respective stator 9.
  • the bandage 2 has two rings 59, on which magnets 58 are arranged.
  • the magnets 58 and the magnets 56 each generate magnetic fields.
  • the magnetic fields generated by the magnets 56 and 58 at least partially overlap. Due to the interaction of the magnetic fields generated by the magnets 56 and 58 forces act on the bandage 2, so that the bandage 2 is kept at a distance from the stators 9, wherein between the magnets 56 and 58, an air gap remains.
  • the magnets 56 are preferably electromagnets, so that the magnetic fields of the magnets 56 are variable.
  • the magnets 56 are preferably electrically energized in such a way that a traveling electric magnetic field is created by the superposition of the magnetic fields generated by the magnets 56.
  • the traveling electric magnetic field exerts forces on the magnets 58, so that these and thus the bandage 2 are moved relative to the frame 12.
  • the magnetic field of the magnets 56 can be changed such that the bandage 2 rotates smoothly, so that the compacting device moves away.
  • the bandage 2 can rotate and at the same time an oscillating rotation can be superimposed on this rotation or only an oscillating rotation can be exerted. Further, the bandage 2 can move vertically due to the force exerted by the magnets 6 on the bandage 2 forces.
  • the bandage 2 is fixed in the horizontal direction by the magnetic forces acting between the magnets 44 and 46.
  • the magnets 44 and 46 are respectively fixed to rings 40, 42 of the bandage 2 and the frame member 48 of the frame 12 and the magnets 44 and 46 are along the entire circumference of 1
  • Rings 40, 42 arranged. In the present case, therefore, no conventional drum shaft and storage is necessary.
  • the bandage can perform a vertical vibration and / or perform a rotation and / or a rotational vibration.
  • both a vibration compression and an oscillation compression can take place.
  • Figure 10 shows a section through the bandage of Figure 9.
  • the magnets 56 and 58 are distributed uniformly along the circumference.
  • Figures 11 and 12 show a further embodiment.
  • each frame element is arranged next to the bandage 2 in relation to the direction of travel 86.
  • Windings 28, 30, 32, 34, 36 and 38 are arranged in these frame elements.
  • a ring 4 is arranged within the bandage 2.
  • the material from which the ring 4 is made should optimally be designed for magnetic properties.
  • This ring is made of magnetizable material.
  • the material may consist of ferri- or ferromagnetic material.
  • the ring is preferably made of a metal, such as. Iron.
  • FIG. 13 shows a further embodiment.
  • the embodiment shows a sectional view through the bandage 2.
  • the bandage shaft 54 is fixedly connected to the bandage 2. This can not be seen in FIG.
  • the bandage shaft 54 has teeth 66 and is designed as a rotor reluctance motor.
  • a stator 52 is further arranged as a stator of a reluctance motor with teeth 68.
  • a traveling magnetic field is generated.
  • the shaft 54 with the teeth 56 aligns in accordance with the changing magnetic field. As a result of the fact that the magnetic field acting in the stator 52 changes, the shaft 54 rotates.
  • the bandage 2 Since the shaft 54 is connected to the bandage 2, the bandage 2 likewise rotates with respect to the stator 54 and thus with respect to the frame 12.
  • the power supply in all embodiments can be done for example by a battery with inverter under the control station.
  • the electromagnets may be connected to a generator.
  • the generator may be driven for example by means of an internal combustion engine.
  • the generator may be integrated in the compaction device or alternatively may be arranged on a trailing vehicle.
  • energy eg. As the braking energy to be recovered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Machines (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

Bei einem Verdichtungsgerät (3), mit einem Rahmen (12) und mindestens einer relativ zu dem Rahmen (12) um eine Bandagenachse (1) drehbare Bandage (2), ist vorgesehen, dass ein elektromagnetischer Antrieb (5) vorgesehen ist, der elektromagnetisch eine Kraft auf die Bandage (2) ausübt, so dass die Bandage (2) in Bezug zu dem Rahmen (12) entsprechend zumindest eines von dem elektromagnetischen Antrieb erzeugten, sich verändernden Magnetfeldes bewegbar ist.

Description

Verdichtunqsqerät sowie Verfahren zum Verdichten von Böden
Die Erfindung betrifft ein Verdichtungsgerät zum Verdichten von Böden gemäß dem Oberbegriff des Anspruchs 1 sowie ein Verfahren zum Verdichten von Böden gemäß Anspruch 15.
Es sind Verdichtungsgeräte in Form von Straßenwalzen bekannt. Mit Hilfe einer Straßenwalze können großflächige Böden, z. B. Asphaltdecken oder durch Erdböden, verdichtet werden. Eine ausreichende Verdichtung ist notwendig, um die Tragfähigkeit und Dauerhaftigkeit des Bodens gewährleisten zu können. Bei den Straßenwalzen wird zwischen einer dynamischen und einer statischen Wirkungsweise bei der Verdichtung unterschieden. Bei der dynamischen Wirkungsweise erfolgt die Verdichtung durch Bewegung von Massen und bei der statischen Wirkungsweise erfolgt die Verdichtung durch das Gewicht der Straßenwalze.
Eine Straßenwalze kann ein selbstfahrendes Fahrzeug sein und weist meist zumindest eine Bandage auf. Bei der dynamischen Wirkungsweise unterscheidet man zwischen einer Ozillations- und einer Vibrationsverdichtung. Bei einer Oszillationsverdichtung wird der Bandage schnell wechselnden vorwärts- und rückwärtsrotierenden Bewegung aufgezwungen. Dadurch werden tangantiale Schubkräfte in das zu verdichtende Material geleitet. Der schnell wechselnden vorwärts- und rückwärts rotierenden Bewegung kann auch eine kontinuierliche vorwärtsrotierende Bewegung überlagert sein, so dass sich das Verdichtungsgerät während der Oszillationsverdichtung vorwärts bewegt. Bei einer Vibrationsverdichtung wird der Bandage eine schnell wechselnde Auf- und Abwärtsbewegung aufgezwungen. Auf diese Weise werden schnell aufeinander folgende vertikale Kräfte in den zu verdichtenden Boden geleitet.
Bei den bisher bestehenden Verdichtungsgeräten mit dynamischer Wirkungsweise besteht jedoch das Problem, dass ein hoher konstruktiver Aufwand vorgenommen werden muss.
Aufgabe der vorliegenden Erfindung ist es somit, ein Verdichtungsgerät und Verfahren zum Verdichten von Böden zu schaffen, das einen einfachen konstruktiven Aufbau aufweist und bei dem der Wirkungsgrad erhöht ist.
Zur Lösung dieser Aufgabe dienen die Merkmale des Anspruchs 1 und des Anspruchs 15.
Die Erfindung sieht in vorteilhafter Weise vor, dass ein elektromagnetischer Antrieb vorgesehen ist, der eine Kraft auf die Bandage ausübt, so dass die Bandage relativ zu dem Rahmen in einer vorgebebenen Weise bewegbar ist.
Dies hat den Vorteil, dass die gesamte mechanische Konstruktion eines Unwuchtereignis, wie z. B. Aufhängung, Lagerung und Versorgungsleitungen entfallen können. Zudem ist der energetische Wirkungsgrad des Verdichtungsgerätes gegenüber einem Wirkungsgrades eines Verdichtungsgerätes mit einem herkömmlichen hydraulischen Antrieb erhöht.
Ferner kann mit einem Verdichtungsgerät sowohl eine Vibrationsverdichtung als auch eine Oszillationsverdichtung vorgenommen werden. Der elektromagnetische Antrieb kann zumindest einen mit dem Rahmen fest verbundenen Stator aufweisen, wobei in dem Stator und zumindest einem Teil der Bandage zumindest ein Magnetfeld wirkt, wobei das zumindest eine Magnetfeld mit Hilfe eines elektrischen Stroms erzeugbar ist und derart veränderbar ist, dass aufgrund dieser Veränderung eine Kraft auf die Bandage wirkt, so dass die Bandage in Bezug zu dem Stator entsprechend dem zumindest einen, sich verändernden Magnetfeld bewegbar ist.
Die von dem elektromagnetischen Antrieb ausgeübte Kraft kann die Bandage in Bezug zu dem Stator drehen.
Die von dem elektromagnetischen Antrieb ausgeübte Kraft kann die Bandage in Bezug zu dem Stator translatorisch, vorzugsweise vertikal in Bezug zu einem zu verdichtenden Boden bewegen.
In dem Stator kann zumindest ein erstes Magnetfeld wirken und in zumindest einem Teil der Bandage kann zumindest ein zweites Magnetfeld wirken.
Der Stator und die Bandage können derart zueinander angeordnet sein, dass die Feldlinien des zumindest einen ersten Magnetfeldes und die Feldlinien des zumindest einen zweiten Magnetfeldes sich zumindest teilweise überschneiden.
Der Stator kann zumindest einen Permanentmagneten aufweisen, wobei der zumindest eine Permanentmagnet das zumindest eine erste Magnetfeld erzeugt, die Bandage zumindest einen Elektromagneten aufweist, und wobei der zumindest eine Elektromagnet das zumindest eine zweite Magnetfeld erzeugt.
Der Stator kann zumindest einen Elektromagneten aufweisen, wobei dieser zumindest eine Elektromagnet das zumindest eine erste Magnetfeld erzeugt. Die Bandage kann zumindest einen Permanentmagneten aufweisen, wobei der zumindest eine Permanentmagnet das zumindest eine zweite Magnetfeld erzeugt.
Der Stator kann zumindest ein Elektromagneten aufweisen, wobei der zumindest eine Elektromagnet das zumindest eine erste Magnetfeld erzeugt. Das zumindest eine zweite Magnetfeld kann in zumindest einem Teil der Bandage durch das zumindest eine erste Magnetfeld induzierbar sein.
Die Bandage kann zumindest einen Elektromagneten aufweisen, wobei der zumindest eine Elektromagnet das zumindest eine zweite Magnetfeld erzeugt. Das zumindest eine erste Magnetfeld kann in dem Stator durch das zumindest eine zweite Magnetfeld induzierbar sein.
Der Stator kann zumindest einen Elektromagneten aufweisen, wobei der zumindest ein Elektromagnet das erste Magnetfeld erzeugt. Die Bandage kann in Bezug zu dem Stator mittels Reluktanz bewegbar sein.
Der Stator kann konzentrisch zu der Bandagenachse angeordnet sein.
Es kann eine Bandagenwelle vorgesehen sein, die an den freien Enden in dem Rahmen gelagert ist, wobei zumindest in den freien Enden der Bandagenwelle das zumindest eine Magnetfeld wirkt.
Es kann eine Bandagenwelle vorgesehen sein, die an den freien Enden in dem Rahmen gelagert ist, wobei die Bandagenwellen mittels Gummipuffern in dem Rahmen bewegbar gelagert sind.
Ferner ist gemäß der vorliegenden Erfindung ein Verfahren zum Verdichten eines Bodens mittels eines Verdichtungsgerätes mit mindestens einer Bandage vorgesehen, wobei die Bandage mit Hilfe eines elektromagnetischen Antriebs bewegt wird.
Die Bandage kann mit Hilfe eines elektromagnetischen Antriebs um eine Bandagenachse gedreht werden.
Die Bandage kann mit Hilfe eines elektromagnetischen Antriebs um eine Bandagenachse translatorisch, vorzugsweise orthogonal zu dem zu verdichtenden Boden, bewegt werden. Im Folgenden werden unter Bezugnahme auf die Zeichnungen Ausführungsbeispiele der Erfindung näher erläutert.
Es zeigen schematisch
Fig. 1 ein Verdichtungsgerät,
Fig. 2 einen Schnitt durch eine Bandage gemäß einem ersten Ausführungsbeispiel,
Fig. 3 eine Detailansicht des Ausführungsbeispiels aus Fig. 2,
Fig. 4 eine Seitenansicht des Ausführungsbeispiels aus Fig. 2,
Fig. 5 ein weiteres Ausführungsbeispiel,
Fig. 6 eine Schnittansicht des Ausführungsbeispiels aus Fig. 5,
Fig. 7 ein weiteres Ausführungsbeispiel,
Fig. 8 ein weiteres Ausführungsbeispiel,
Fig. 9 ein weiteres Ausführungsbeispiel,
Fig. 10 eine Seitenansicht des Ausführungsbeispiels aus Fig. 9,
Fig. 11 ein weiteres Ausführungsbeispiel,
Fig. 12 eine Schnittansicht des Ausführungsbeispiels aus Fig. 11, und
Fig. 13 ein weiteres Ausführungsbeispiel. Figur 1 zeigt ein Verdichtungsgerät 3 mit einem Rahmen 12 und zwei Bandagen 2. Die Bandagen 2 sind jeweils relativ zu dem Rahmen 12 um jeweils eine Bandagenachse 1 drehbar.
In Figur 2 ist eine Bandage 2 eines erstes Ausführungsbeispiels dargestellt. Figur 2 zeigt einen Schnitt durch eine der Bandage 2. Die Bandage 2 ist drehbar um die Bandagenachse 1 im Rahmen 12 gelagert. Die Bandage 2 ist mit der Bandagenwelle 7 über Stege 70 fest verbunden.
Die Bandagenwelle 7 ist in dem Rahmen 12 mittels Gummipuffer bewegbar gelagert, wobei die Bandage 2 drehbar bezüglich des Rahmens 12 ist. Ferner ist die Bandage 2 in geringem Maße aufgrund der Gummipuffer im Bezug zu dem zu verdichtenden Boden 80 in vertikaler Richtung 22 bewegbar.
Die Bandage 2 weist einen elektromagnetischen Antrieb 5 auf, wobei der elektromagnetische Antrieb 5 die Bandage 2 in vertikaler Richtung 22 bewegen kann. Der elektromagnetische Antrieb 5 weist zwei mit dem Rahmen 12 fest verbundene Statoren 9 auf. Die Statoren 9 weisen jeweils vier Magnete 6 auf. An jedem Stator 9 sind jeweils zwei Magnete 6 in vertikaler Richtung 22 oberhalb der Bandagenachse 1 angeordnet und jeweils zwei Magnete 6 unterhalb der Bandagenachse 1 angeordnet.
Die Magnete 6 sind Elektromagnete, wobei mit Hilfe eines elektrischen Stroms jeweils ein Magnetfeld erzeugbar ist. Das jeweilige von den Magneten 6 erzeugte Magnetfeld wirkt zumindest in einem Teil des jeweiligen Stators 9 und in zumindest einem Teil der Bandage 2. In den jeweiligen Teilen der Bandage 2, in denen die von den Magneten 6 erzeugten Magnetfelder wirken, weist die Bandage 2 Ringe 4 auf. Diese Ringe 4 bestehen aus einem Material, das magnetisierbar ist. Vorzugsweise bestehen diese Ringe 4 aus Metall, z. B. Eisen. Die Ringe 4 sind umlaufend an der Innenseite der Bandage 2 angeordnet.
Wenn ein Magnetfeld von den jeweiligen Magneten 6 erzeugt wird, wird der Teil des Rings 4 der Bandage 2, der sich in den jeweiligen Magnetfeld befindet, von den Magneten 6 angezogen oder abgestoßen. Es wird somit aufgrund des jeweiligen Magnetfeldes der Magnete 6 eine Kraft auf den jeweiligen Ring 4 der Ban- dage 2 ausgeübt. Die Elektromagnete 6 sind derart geschaltet, dass jeweils Magnetfelder erzeugt werden, die Kräfte auf die Bandage 2 ausüben, die die Bandagen in Vertikalrichtung 22 bewegen.
In Figur 2 ist an dem linken Bildrand dargestellt, wie die Magnete geschaltet werden. So werden die Magnete 6, die in Vertikalrichtung oberhalb der Bandagenachse 1 angeordnet sind, gleichzeitig an- und ausgeschaltet.
Ebenso werden die Magnete 6, die sich in Vertikalrichtung unterhalb der Bandagenachse 1 befinden, gleichzeitig an- und ausgeschaltet. Wenn die Magnete 6, die sich unterhalb der Bandagenachse 1 befinden, angeschaltet sind, sind die Magnete 6, die sich oberhalb der Bandagenachse 1 befinden, ausgeschaltet. Genauso sind die Magnete 6, die sich unterhalb der Bandagenachse 1 befinden, ausgeschaltet, wenn die Magnete 6, die sich oberhalb der Bandagenachse 1 befinden, angeschaltet sind. Auf diese Weise wird die Bandage 2 in Vertikalrichtung bewegt. In Vertikalrichtung bedeutet in einer Richtung 22 orthogonal zu dem zu verdichtenden Boden 80.
In Figur 3 ist eine Detailansicht aus Figur 2 dargestellt. In Figur 3 sind die Feldlinien 16 der Magnetfelder, die von Magneten 6 erzeugt werden dargestellt. Die Magnetfelder der in Fig. 3 dargestellte Magnete 6 sind einander überlagert. Mit dem Bezugszeichen 10 sind jeweils die Nordpole und mit 8 die Südpole bezeichnet. Der Ring 4 der Bandage 2 wird innerhalb der jeweiligen Magnetfelder entlang der Feldlinien 16 bewegt.
In Figur 4 ist eine Seitenansicht des Ausführungsbeispiels aus Figur 2 dargestellt. Aus Figur 4 geht hervor, dass die Magnete 6 eines Stators 9 unterhalb und oberhalb der Bandagenachse 1 angeordnet sind.
Figur 5 zeigt ein weiteres Ausführungsbeispiel. In Figur 5 ist lediglich eine Bandage 2 mit Rahmen 12 dargestellt. Der Rahmen 12 weist in Fahrtrichtung 86 vor und hinter der Bandage 2 ein Rahmenelement 60 bzw. 62 auf. In Figur 6 ist ein Schnitt durch die Bandage und durch die Rahmenelemente 60 und 62 des Rahmens 12 dargestellt. Die Bandage 2 weist ebenfalls zumindest einem Ring 4 auf. Entlang des Umfangs des Rings 4 sind Magnete 26 angeordnet. In den Rahmenelementen 60, 62 des Rahmens 12 sind Statoren 9 angeordnet, die Magnete 24 aufweisen.
Die Magnete 24 sind vorzugsweise Elektromagnete, die mit Hilfe von Strom jeweils ein veränderbares Magnetfeld erzeugen können. Die Magnete 26 sind vorzugsweise Permanentmagnete. Die Bandagenwelle 7 ist in dem Rahmenelement 12 drehbar gelagert und kann mit Hilfe eines herkömmlichen Antriebs angetrieben werden.
Die Magnetfelder der Magnete 24, die in den Rahmenelementen 60 bzw. 62 angeordnet sind, überlagern sich jeweils. Die Magnete 24, die vorzugsweise Elektromagnete sind, können derart geschaltet werden, dass durch die von den Magneten 24 in den Rahmenelementen 60 bzw. 62 erzeugten Magnetfelder jeweils ein überlagertes wanderndes Magnetfeld erzeugen.
Das von den Magneten 24 erzeugte wandernde Magnetfeld wirkt auf die Magnete 26, so dass jeweils eine Kraft auf die Magnete 26 ausgeübt wird. Die Magnete 26 sind an dem mindestens einen Ring 4 der Bandage 2 befestigt, so dass die Bandage 2 sich aufgrund der von den Magneten 24 erzeugten Magnetfelder dreht. Die Magnete 24 sind derart geschaltet, dass schnell wechselnde Kräfte auf die Magnete 26 und somit auf die Bandage 2 wirken, so dass die Bandage 2 eine oszillierende Rotationsbewegung ausführt.
Die Bandage 2 kann zusätzlich mit Hilfe eines herkömmlichen Antriebs über die Welle 7 angetrieben werden, so dass sich das Verdichtungsgerät vorwärts bewegt. Die Bewegung der Bandage 2, die aufgrund des von den Magneten 24 erzeugten Magnetfelder erfolgt, kann diese Bewegung überlagern, so dass die Bandage bei der Vorwärtsdrehung zusätzlich aufgrund des von den Magneten 24 erzeugten Magnetfelder eine Rotationsschwingung ausführt. Auf diese Weise kann der zu verdichtende Boden verdichtet werden.
Die Magnete 26 können, wie beschrieben, Permanentmagnete sein. Alternativ können die Magnete 26 mit Spulen ausgestattet sein, so dass jeweils ein Magnet- feld in den Magnete 26 durch Induktion von dem Magnetfeld der Magneten 24 erzeugt wird.
Alternativ können auch die Magnete 26 als Elektromagnete ausgebildet sein und die Magnete 24 können Permanentmagnete sein. Alternativ können die Magnete 26 Elektromagnete sein und die Magnetfelder der Magneten 24 können durch die Magnete 26 induziert werden, wenn die Magnete 26 Elektromagnete sind, können diese über Kommutatoren und Schleifkontakte mit Strom versorgt werden.
In allen Fällen erzeugen die Magnete 24 jeweils ein erstes Magnetfeld und die Magnete 26 jeweils ein zweites Magnetfeld. Die ersten Magnetfelder und die zweiten Magnetfelder überschneiden sich zumindest teilweise. Durch die Veränderung der ersten und/oder der zweiten Magnetfelder, wird eine Kraft auf die Bandage 2 ausgeübt, so dass die Bandage 2 in Bezug zu dem Rahmen 12 drehbar ist.
In Figur 7 ist ein weiteres Ausführungsbeispiel dargestellt. Dieses Ausführungsbeispiel unterscheidet sich gegenüber dem Ausführungsbeispiel aus Figur 6 dadurch, dass die Magnete 24 von einander überlagerten Wicklungen 28, 30, 32 und 34, 36 und 38 gebildet sind sind. Die einzelnen Wicklungen 28, 30, 32, 34, 36, 38 erzeugen jeweils ein Magnetfeld, wenn durch die Wicklungen 28, 30, 32, 36, 38 Strom fließt. Die Wicklungen 28, 30, 32, 34, 36, 38 können derart geschaltet sein, dass jeweils ein wanderndes Magnetfeld zumindest im Rahmenteil 60 bzw. 62 erzeugt wird. Die mit der Bandage 2 verbundenen Magnete 26 sind vorzugsweise Permanentmagnete. Die Magnete 26 können jedoch auch Spulen aufweisen, so dass jeweils ein Magnetfeld in den Magneten 26 induziert werden kann.
In Figur 8 ist ein weiteres Ausführungsbeispiel dargestellt, das sich von dem Ausführungsbeispiel aus Figur 7 dadurch unterscheidet, dass die Bandage 2 keine Magnete 26 aufweist. In dem Ausführungsbeispiel aus Figur 8 wird auf die Bandage 2 aufgrund der von den Wicklungen 28, 30, 32, 34, 36, 38 erzeugten Magnetfelder eine Kraft ausgeübt, die die Bandage bewegt.
Figur 9 zeigt ein weiteres Ausführungsbeispiel. Das Ausführungsbeispiel aus Figur 9 weist einen Rahmen 12 auf. In diesem Rahmen 12 sind zwei Statoren 9 angeordnet, die die Magnete 6 aufweisen. Die Magnete 6 sind genauso angeordnet wie dem Ausführungsbeispiels aus der Figur 2. Ebenso weist die Bandage 2 genauso wie in Ausführungsbeispiel aus Fig. 2 zwei Ringe 4 auf. Die Statoren 9 weisen ferner Halteelementen 54 auf, wobei an den Halteelementen 54 Magnete 56 angeordnet sind. Die Magnete 56 sind entlang des Umfangs des jeweiligen Stators 9 angeordnet.
Die Bandage 2 weist zwei Ringe 59 auf, an denen Magnete 58 angeordnet sind. Die Magnete 58 und die Magnete 56 erzeugen jeweils Magnetfelder. Die von den Magneten 56 und 58 erzeugten Magnetfelder überschneiden sich zumindest teilweise. Aufgrund der Wechselwirkung der von den Magneten 56 und 58 erzeugten Magnetfelder wirken Kräfte auf die Bandage 2, so dass die Bandage 2 auf Abstand zu den Statoren 9 gehalten wird, wobei zwischen den Magneten 56 und 58 ein Luftspalt bestehen bleibt.
Die Magnete 56 sind vorzugsweise Elektromagnete, so dass die Magnetfelder der Magnete 56 veränderbar sind. Die Magnete 56 werden vorzugsweise derart elektrisch bestromt, dass durch die Überlagerung der von den Magneten 56 erzeugten Magnetfelder ein wanderndes elektrisches Magnetfeld entsteht. Das wandernde elektrische Magnetfeld übt Kräfte auf die Magnete 58 aus, so dass diese und somit die Bandage 2 relativ zu dem Rahmen 12 bewegt werden. Das Magnetfeld der Magnete 56 kann derart verändert werden, dass die Bandage 2 sich gleichmäßig dreht, so dass sich das Verdichtungsgerät fortbewegt. Alternativ kann die Bandage 2 sich drehen und gleichzeitig kann eine oszillierende Rotation dieser Drehung überlagert sein oder es kann lediglich eine oszillierende Rotation ausgeübt werden. Ferner kann die Bandage 2 sich vertikal aufgrund der von den Magnete 6 auf die Bandage 2 ausgeübten Kräfte bewegen.
Die Bandage 2 ist in horizontaler Richtung durch die Magnetkräfte, die zwischen den Magneten 44 und 46 wirken, fixiert. Die Magnete 44 und 46 sind jeweils an Ringen 40, 42 der Bandage 2 bzw. des Rahmenelement 48 des Rahmens 12 befestigt und die Magnete 44 und 46 sind entlang des gesamten Umfangs der 1
Ringe 40, 42 angeordnet. Im vorliegenden Fall ist daher keine herkömmliche Bandagenwelle und Lagerung nötig.
Auf diese Weise kann die Bandage eine Vertikalschwingung ausführen und/oder eine Drehung und/oder eine Rotationsschwingung ausführen. Somit kann sowohl eine Vibrationsverdichtung als auch eine Oszillationsverdichtung erfolgen.
Figur 10 zeigt einen Schnitt durch die Bandage aus Figur 9. In Figur 10 ist zu erkennen, dass die Magnete 56 und 58 entlang des Umfangs gleichmäßig verteilt sind.
Figuren 11 und 12 zeigen ein weiteres Ausführungsbeispiel.
Wie in Figur 11 zu erkennen ist, ist jeweils ein Rahmenelement bezogen auf die Fahrtrichtung 86 neben der Bandage 2 angeordnet. In diesen Rahmenelementen sind Wicklungen 28, 30, 32, 34, 36 und 38 angeordnet. Innerhalb der Bandage 2 ist ein Ring 4 angeordnet. Durch die Magnetfelder, die durch die Wicklungen 28, 30, 32, 34, 36 und 38 erzeugt werden, können Kräfte auf den Ring 4 der Bandage 2 ausgeübt werden, so dass das die Bandage 2 rotierbar ist. Der Werkstoff, aus dem der Ring 4 gefertigt ist, sollte möglichst optimal auf magnetische Eigenschaften ausgelegt sein. Dieser Ring besteht aus magnetisierbaren Material. Das Material kann aus ferri- oder ferromagnetischen Material bestehen. Der Ring besteht vorzugsweise aus einem Metall, wie z. B. Eisen.
Figur 13 zeigt ein weiteres Ausführungsbeispiel. Das Ausführungsbeispiel zeigt eine Schnittansicht durch die Bandage 2. Die Bandagewelle 54 ist fest mit der Bandage 2 verbunden. Dies ist nicht in Figur 13 zu erkennen. Die Bandagenwelle 54 weist Zähne 66 auf und ist als Läufer einen Reluktanzmotors ausgebildet. In der Bandage 2 ist ferner ein Stator 52 als Stator eines Reluktanzmotors mit Zähnen 68 angeordnet. In dem Stator 52 wird ein wanderndes Magnetfeld erzeugt. Die Welle 54 mit den Zähnen 56 richtet sich entsprechend des sich ändernden Magnetfeldes aus. Dadurch, dass das in dem Stator 52 wirkende Magnetfeld sich ändert, dreht sich die Welle 54. Da die Welle 54 mit der Bandage 2 verbunden ist, dreht sich ebenso die Bandage 2 gegenüber dem Stator 54 und somit gegenüber dem Rahmen 12. Die Stromversorgung bei allen Ausführungsbeispielen kann beispielsweise durch eine Batterie mit Wechselrichter unter dem Fahrstand erfolgen. Alternativ oder zusätzlich können die Elektromagnete an einem Generator angeschlossen sein. Der Generator kann beispielsweise mittels eines Verbrennungsmotors angetrieben sein. Der Generator kann in dem Verdichtungsgerät integriert sein oder alternativ auf einem nachlaufenden Fahrzeug angeordnet sein.
Zudem kann bei allen Ausführungsbeispielen Energie, z. B. die Bremsenergie, rückgewonnen werden.

Claims

Verdichtungsgerät (3), mit
- einem Rahmen (12) und
- mindestens einer relativ zu dem Rahmen (12) um eine Bandagenachse (1) drehbare Bandage (2), d a d u r c h g e k e n n z e i c h n e t , dass
- ein elektromagnetischer Antrieb (5) vorgesehen ist, der elektromagnetisch eine Kraft auf die Bandage (2) ausübt, so dass die Bandage (2) in Bezug zu dem Rahmen (12) entsprechend zumindest eines von dem elektromagnetischen Antrieb erzeugten, sich verändernden Magnetfeldes bewegbar ist.
Verdichtungsgerät (3) nach Anspruch 1, dadurch gekennzeichnet, dass der elektromagnetische Antrieb (5) einen mit dem Rahmen (12) fest verbundenen Stator (9) aufweist, wobei in zumindest einen Teil des Stators und in zumindest einem Teil der Bandage (2) zumindest ein Magnetfeld wirkt, wobei das zumindest eine Magnetfeld mit Hilfe eines elektrischen Stroms erzeugbar ist und derart veränderbar ist, dass aufgrund dieser Veränderung des Magnetfeldes eine Kraft auf die Bandage (2) wirkt, so dass die Bandage (2) relativ zu dem Stator (9) bewegbar ist.
Verdichtungsgerät (3) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass durch die von dem elektromagnetischen Antrieb (5) ausgeübte Kraft die Bandage (2) in Bezug zu dem Stator (9) drehbar ist.
Verdichtungsgerät (3) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass durch die von dem elektromagnetischen Antrieb (5) ausgeübte Kraft die Bandage (2) in Bezug zu dem Stator (9) translatorisch, vorzugsweise orthogonal zu einem zu verdichtenden Boden (80), bewegbar ist.
5. Verdichtungsgerät (3) nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass in dem Stator (9) zumindest ein erstes Magnetfeld wirkt und in zumindest einem Teil der Bandage (2) zumindest ein zweites Magnetfeld wirkt.
6. Verdichtungsgerät (3) nach Anspruch 5, dadurch gekennzeichnet, dass der Stator (9) und die Bandage (2) derart zueinander angeordnet sind, dass die Feldlinien des zumindest einen ersten Magnetfeldes und die Feldlinien des zumindest einen zweiten Magnetfeldes sich zumindest teilweise überschneiden.
7. Verdichtungsgerät (3) nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass der Stator (9) zumindest einen Permanentmagneten aufweist, wobei der zumindest eine Permanentmagnet das zumindest eine erste Magnetfeld erzeugt, und dass die Bandage (2) zumindest einen Elektromagneten aufweist, wobei der zumindest eine Elektromagnet das zumindest eine zweite Magnetfeld erzeugt.
8. Verdichtungsgerät (3) nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass der Stator (9) zumindest einen Elektromagneten aufweist, wobei dieser zumindest eine Elektromagnet das zumindest eine erste Magnetfeld erzeugt, und dass die Bandage zumindest einen Permanentmagneten aufweist, wobei der zumindest eine Permanentmagnet das zumindest eine zweite Magnetfeld erzeugt.
9. Verdichtungsgerät (3) nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass der Stator (9) zumindest einen Elektromagneten aufweist, wobei der zumindest eine Elektromagnet das zumindest eine erste Magnetfeld erzeugt, und wobei das zumindest eine zweite Magnetfeld in zumindest einem Teil der Bandage (2) durch das zumindest eine erste Magnetfeld induzierbar ist.
10. Verdichtungsgerät (3) nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Bandage (2) zumindest einen Elektromagneten aufweist, wobei der zumindest eine Elektromagnet das zumindest eine zweite Magnetfeld erzeugt, und wobei das zumindest eine erste Magnetfeld in dem Stator durch das zumindest eine zweite Magnetfeld induzierbar ist.
11. Verdichtungsgerät (3) nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass der Stator zumindest einen Elektromagneten aufweist, wobei der zumindest eine Elektromagnet das erstes Magnetfeld erzeugt, und wobei die Bandage (2) in Bezug zu dem Stator mittels Reluktanz bewegbar ist.
12. Verdichtungsgerät (3) nach einem der Ansprüche 2 bis 11, dadurch gekennzeichnet, dass der Stator (9) konzentrisch zu der Bandagenachse (1) angeordnet ist.
13. Verdichtungsgerät (3) nach einem der Ansprüche 2 bis 12, dadurch gekennzeichnet, dass eine Bandagenwelle (7) vorgesehen ist, die an den freien Enden in dem Rahmen (12) gelagert ist, wobei zumindest in den freien Enden der Bandagenwelle (7) das zumindest eine Magnetfeld wirkt.
14. Verdichtungsgerät (3) nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass eine Bandagenwelle (7) vorgesehen ist, die an den freien Enden in dem Rahmen (12) gelagert ist, wobei die Bandagenwelle (7) mittels Gummipuffern in dem Rahmen (12) bewegbar gelagert ist.
15. Verfahren zum Verdichten eines Bodens (8c) mittels eines Verdichtungsgerätes (3) mit Bandage (2), d a d u r c h g e k e n n z e i c h n e t , dass die Bandage (2) mit Hilfe eine elektromagnetischen Antriebs (5) translatorisch, vorzugsweise orthogonal zu dem zu verdichtenden Boden (80) und/oder rotatorisch, bewegt wird.
PCT/EP2012/064946 2011-08-08 2012-07-31 Verdichtungsgerät sowie verfahren zum verdichten von böden WO2013020857A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011109663.2 2011-08-08
DE102011109663A DE102011109663A1 (de) 2011-08-08 2011-08-08 Verdichtungsgerät sowie Verfahren zum Verdichten von Böden

Publications (1)

Publication Number Publication Date
WO2013020857A1 true WO2013020857A1 (de) 2013-02-14

Family

ID=46601823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/064946 WO2013020857A1 (de) 2011-08-08 2012-07-31 Verdichtungsgerät sowie verfahren zum verdichten von böden

Country Status (2)

Country Link
DE (1) DE102011109663A1 (de)
WO (1) WO2013020857A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106169833A (zh) * 2015-05-19 2016-11-30 通用汽车环球科技运作有限责任公司 用于线性致动器的测量和控制的方法及设备
JP2017031799A (ja) * 2015-08-05 2017-02-09 ハム アーゲーHamm AG ソイルコンパクター
CN109137682A (zh) * 2018-10-10 2019-01-04 泉州台商投资区长芳设计有限公司 一种利用重力与磁力双重作用的桥梁施工用压路机

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016121724A1 (de) * 2016-11-14 2018-05-17 Hamm Ag Baumaschine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030108389A1 (en) * 2001-12-11 2003-06-12 George Codina System for electrically powering and vibrating a compacting roller
US20040009039A1 (en) * 2002-07-09 2004-01-15 Corcoran Paul T. Vibratory compactor and method of using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1907086B1 (de) * 2005-06-27 2011-07-20 Coactive Drive Corporation Synchronisierte vibrationsvorrichtung für haptisches feedback

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030108389A1 (en) * 2001-12-11 2003-06-12 George Codina System for electrically powering and vibrating a compacting roller
US20040009039A1 (en) * 2002-07-09 2004-01-15 Corcoran Paul T. Vibratory compactor and method of using same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106169833A (zh) * 2015-05-19 2016-11-30 通用汽车环球科技运作有限责任公司 用于线性致动器的测量和控制的方法及设备
JP2017031799A (ja) * 2015-08-05 2017-02-09 ハム アーゲーHamm AG ソイルコンパクター
US10024003B2 (en) 2015-08-05 2018-07-17 Hamm Ag Soil compactor
US10794014B2 (en) 2015-08-05 2020-10-06 Hamm Ag Soil compactor
US11692317B2 (en) 2015-08-05 2023-07-04 Hamm Ag Soil compactor
CN109137682A (zh) * 2018-10-10 2019-01-04 泉州台商投资区长芳设计有限公司 一种利用重力与磁力双重作用的桥梁施工用压路机
CN109137682B (zh) * 2018-10-10 2021-06-08 青岛巨源建工集团有限公司 一种利用重力与磁力双重作用的桥梁施工用压路机

Also Published As

Publication number Publication date
DE102011109663A1 (de) 2013-02-14

Similar Documents

Publication Publication Date Title
EP2791423B1 (de) Vorrichtung zur erfassung der bewegung einer verdichterwalze eines bodenverdichters
DE1613758A1 (de) Eine mechanische Wirkung ausuebende elektromagnetische Vorrichtung
EP2088664B1 (de) Maschine mit Direktantrieb
DE102011050094A1 (de) Rotor für eine drehende elektrische Maschine
EP2639936A1 (de) Elektrische Maschine mit permanent erregtem Läufer und zugehöriger permanent erregter Läufer
DE102009038928A1 (de) Elektromotor
WO2013020857A1 (de) Verdichtungsgerät sowie verfahren zum verdichten von böden
EP3539198B1 (de) Baumaschine
DE1488074B2 (de) Elektrischer motor
DE102017008535A1 (de) Vorrichtung zur Bodenverdichtung und Betriebs- und Überwachungsverahren
WO2021121474A1 (de) Verfahren zum aktiven auswuchten eines rotors sowie vorrichtung mit einem rotor und einem dem rotor zugeordneten mechanismus zum aktiven auswuchten
EP4066354A1 (de) Transporteinrichtung
DE102016113188A1 (de) Bremssystem und Verfahren zum Betreiben eines Bremssystems
DE102017216687A1 (de) Antriebsanordnung eines elektrischen Antriebs mit einem induktiv mit Energie versorgbaren Antriebsmotor, Radträgeranordnung und Kraftfahrzeug
DE112005000419T5 (de) Mehrphasige rotierende elektrische Maschine für Kraftfahrzeuge
DE102016214838A1 (de) Ermitteln einer Drehrichtung eines Läufers einer rotierenden elektrischen Maschine
DE102015016978A1 (de) Elektrische Maschine für ein Kraftfahrzeug und Kraftfahrzeug
DE102018010156A1 (de) Bodenverdichtungsmaschine, insbesondere selbstfahrende Bodenverdichtungswalze oder handgeführte Bodenverdichtungsmaschine
DE102018205320A1 (de) Antriebssystem zum elektromechanischen Antreiben eines mehrspurigen Fahrzeugs sowie entsprechendes mehrspuriges Fahrzeug
EP2983860B1 (de) Vorrichtung und verfahren zum bremsen eines rotierenden elementes einer anordnung sowie anordnung mit einer derartigen vorrichtung
DE10334594A1 (de) Elektromotor
DE102019214051A1 (de) Trommelantrieb einer Mischtrommel eines Fahrmischers
EP3054562A1 (de) Elektrische Antriebsmaschine
DE2914554A1 (de) Magnetischer generator
EP3111535B1 (de) Magnetanordnung, insbesondere für eine elektrische maschine, sowie elektrische maschine mit einer magnetanordnung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12741341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12741341

Country of ref document: EP

Kind code of ref document: A1