WO2013020490A1 - 定时提前量ta的确定方法、信息发送方法和设备 - Google Patents

定时提前量ta的确定方法、信息发送方法和设备 Download PDF

Info

Publication number
WO2013020490A1
WO2013020490A1 PCT/CN2012/079729 CN2012079729W WO2013020490A1 WO 2013020490 A1 WO2013020490 A1 WO 2013020490A1 CN 2012079729 W CN2012079729 W CN 2012079729W WO 2013020490 A1 WO2013020490 A1 WO 2013020490A1
Authority
WO
WIPO (PCT)
Prior art keywords
transceiver
terminal
transceiver node
nodes
node
Prior art date
Application number
PCT/CN2012/079729
Other languages
English (en)
French (fr)
Inventor
周明宇
曲秉玉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12822102.5A priority Critical patent/EP2728946A1/en
Publication of WO2013020490A1 publication Critical patent/WO2013020490A1/zh
Priority to US14/167,525 priority patent/US20140148186A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method for determining a timing advance TA, a method for transmitting information, and a device.
  • each cell includes a plurality of transceiver nodes having transceivers that are geographically dispersed so that wireless signals are in user equipment accessing the cell (User Equipment).
  • the distance transmitted between the UE and the transceiver node becomes smaller, which in turn makes the channel condition superior to the conventional wireless communication system.
  • Timing Advance is used to indicate the advance amount of each UE to send an uplink signal.
  • the value of TA is D/c, D is the distance that the wireless signal transmits between the UE and the transceiver node, and c is the electromagnetic wave. Transmission speed. Since the UE has mobility, the distance D of the wireless signal transmitted between the UE and the transceiver node is constantly changing. Therefore, the UE needs to continuously adjust the value of the TA to ensure that the uplink signal sent by the UE arrives at the transceiver node and the transceiver node expects. The error at the moment of arrival is within an acceptable range.
  • the UE determines the TA value according to the first arrival time of the downlink signal sent by the transceiver node.
  • the UE receives the downlink signals according to the received downlink signals.
  • the first arrival time of the number to determine the TA value will affect the accuracy of the TA, so that the uplink signal transmitted by the UE is difficult to reach the receiving and receiving node receiving the uplink signal at the desired time, thereby affecting the performance of the transmitting and receiving nodes.
  • the embodiment of the present invention provides a method for determining the timing advance TA, an information sending method, and a device, so as to improve the accuracy of the uplink signal sent by the UE to the receiving and receiving node that receives the uplink signal at a desired time.
  • the embodiment of the present invention provides a method for determining a timing advance TA, which includes: receiving, by a receiving terminal, downlink signal feature information of each transceiver node in a first transceiver node set in a cell, where the first transceiver node set is in the set Including one or more transceiver nodes;
  • the embodiment of the invention further provides an information sending method, including:
  • the embodiment of the invention further provides an information sending method, including:
  • a first control command where the first control command is used to send, to the terminal, downlink signal feature information of one or more transceiver nodes in the first set of transceiver nodes, where the first transceiver node set One or more transceiver nodes are included, and the first transceiver node set includes a local transceiver node or does not include a local transceiver node;
  • the embodiment of the present invention further provides a terminal, including:
  • a receiver configured to receive downlink signal feature information of each transceiver node in the first transceiver node set in the cell accessing the cell, where the first transceiver node set includes one or more transceiver nodes;
  • a monitor configured to detect, according to the downlink signal feature information of each transceiver node in the first transceiver node set, a time when the downlink signal sent by each transceiver node in the first transceiver node set reaches the terminal;
  • the processor is configured to determine, according to a time when the downlink signal sent by each transceiver node in the first transceiver node set arrives at the terminal, a timing advance TA to send an uplink signal to each transceiver node in the first transceiver node set.
  • the embodiment of the invention further provides a base station, including:
  • a processor configured to determine a first transceiver node that receives an uplink signal of the terminal, where the first transceiver node set includes one or more transceiver nodes;
  • a transmitter configured to send a first control command to one or more transceiver nodes in the terminal access cell, where the first control command is used to indicate sending one of the first set of transceiver nodes to the terminal or Downlink signal characteristic information of multiple transceiver nodes.
  • the embodiment of the present invention further provides a transceiver node, including: a receiver, configured to receive a first control command sent by a base station, where the first control command is used to send, to the terminal, one of the first set of transceiver nodes Or the downlink signal feature information of the multiple transceiver nodes, the first transceiver node set includes one or more transceiver nodes, and the first transceiver node set includes the local transceiver node or does not include the local transceiver node; And transmitting, to the terminal, downlink signal feature information of one or more transceiver nodes in the first set of transceiver nodes.
  • a transceiver node including: a receiver, configured to receive a first control command sent by a base station, where the first control command is used to send, to the terminal, one of the first set of transceiver nodes Or the downlink signal feature information of the multiple transceiver nodes, the first transceiver node set includes one or
  • the terminal detects the arrival time of the corresponding one or more downlink signals according to the downlink signal characteristic information of one or more transceiver nodes in the access cell, Therefore, the timing advance TA of the uplink signal is sent to the one or more transceiver nodes, so that the determined TA is more accurate, and the accuracy of the uplink signal sent by the UE reaches the receiving node that receives the uplink signal at the desired time is improved, and the transmitting and receiving node is improved. performance.
  • FIG. 1 is a flowchart of an embodiment of a method for determining timing advance TA according to the present invention
  • FIG. 2 is a flowchart of an embodiment of an information sending method provided by the present invention
  • FIG. 3 is a flowchart of still another embodiment of an information sending method provided by the present invention.
  • FIG. 4 is a flowchart of another embodiment of a method for determining a timing advance TA according to the present invention
  • FIG. 5 is a timing diagram of a terminal receiving a CRS and a CSI-RS
  • FIG. 6 is a flowchart of still another embodiment of a method for determining a timing advance amount TA according to the present invention
  • FIG. 7 is a flowchart of still another embodiment of a method for determining a timing advance amount TA according to the present invention
  • FIG. 8 is a flowchart of still another embodiment of a method for determining a timing advance amount TA according to the present invention
  • FIG. 10 is a schematic structural diagram of an embodiment of a base station for performing the foregoing information sending method according to an embodiment of the present disclosure
  • FIG. 11 is a schematic structural diagram of still another embodiment of a base station for performing the foregoing information sending method according to an embodiment of the present disclosure
  • FIG. 12 is a schematic structural diagram of an embodiment of a transmitting and receiving node for performing the above information sending method according to the present invention.
  • FIG. 1 is a flowchart of an embodiment of a method for determining a timing advance TA according to the present invention. As shown in FIG. 1, the method includes:
  • S102 Detect, according to the downlink signal feature information of each transceiver node in the first transceiver node set, a time when the downlink signal sent by each transceiver node in the first transceiver node set arrives at the terminal;
  • a plurality of transceiver nodes in the access cell of the terminal send downlink signals to the terminal, and the transceiver nodes that send the downlink signals can be used to receive uplink signals sent by the terminal, or the downlink signals are sent by the terminal.
  • a part of the transceiver nodes (which may be one or more) of the transceiver nodes are used to receive uplink signals sent by the terminal.
  • the plurality of transceiver nodes in the terminal accessing the cell may be an access point (AP), a remote radio equipment (RRE), a remote radio head (RRH), and a remote radio unit. (Remote Radio Unit, RRU), base station or home base station, etc., which have transceiver functions, are not listed here.
  • each transceiver node in the first transceiver node set may be a transceiver node that receives the uplink signal of the terminal.
  • Each of the first transceiver nodes may send the downlink signal feature information of the local end to the terminal; or may be any one of the first transceiver node set, and the local end and the first transceiver node set are other
  • the downlink signal feature information of the transceiver node is sent to the terminal. It can be understood that one or more of the first transceiver node sets may be sent to the terminal through other transceiver nodes other than the first transceiver node set in the terminal access cell.
  • Downlink signal characteristic information of the transceiver node That is, in the embodiment of the present invention, there is no limitation on the transmitting and receiving node that transmits the downlink signal characteristic information to the terminal.
  • the downlink signal feature information may be an antenna number or an antenna port number used by the transceiver node to transmit the reference signal. This is because the antenna or antenna port corresponding to each transceiver node is different, and the reference signals transmitted by different antennas or antenna ports are different. The number of the reference signal sent by each antenna or antenna port is corresponding to the antenna number or antenna. The port number is the same. Therefore, the antenna number or the antenna port number used for transmitting the reference signal in the transceiver node may be sent to the terminal, and the terminal may detect the arrival time of the reference signal sent by the corresponding antenna or the antenna port, thereby determining to each of the first transceiver nodes. The timing advance TA of the uplink signal sent by the transceiver node.
  • the feature information of the downlink signal may also be sent by the transceiver node.
  • a timing advance TA of each of the transceiver nodes in the set of transceiver nodes transmits an uplink signal.
  • the downlink signal feature information can also be other types of feature information, and the feature information can be used to distinguish the downlink signals sent by different transceiver nodes. List.
  • the terminal may detect the time when the downlink signal sent by the transceiver node reaches the terminal, and determine, according to the time when the downlink signal sent by the transceiver node arrives at the terminal, send an uplink signal to the transceiver node. TA.
  • the terminal when the terminal accesses a cell, the terminal sends an uplink signal on the shared channel of the cell within a short time after receiving the downlink signal sent by the transceiver node in the cell for the first time.
  • the first transceiver node that receives the uplink signal of the terminal transmits an initial TA to the terminal according to the time when the uplink signal arrives at the local end and the time when the desired uplink signal arrives at the local end, and the wireless signal is transmitted between the terminal and the transceiver node.
  • the terminal uses the initial TA as a reference, according to the arrival time of the downlink signal of the transceiver node before and after the distance change. Time difference, the sum of the initial TA to determine the TA after the distance change. As long as the distance between the terminal and the transceiver node changes, the terminal determines the TA after the distance change by the sum of the time difference between the TA determined last time and the arrival time of the downlink signal of the transceiver node before and after the change.
  • the terminal may determine the timing advance of the downlink signal that arrives at the terminal first among the downlink signals sent by the transceiver nodes, and determine a timing advance TA for transmitting the uplink signal to the multiple transceiver nodes.
  • the first transceiver node set includes the transceiver node 1 and the transceiver node 2. If the downlink signal sent by the transceiver node 1 reaches the terminal first, the terminal may The TA that transmits the uplink signal to the transmitting and receiving node 1 and the transmitting and receiving node 2 is determined based on the earliest arriving signal among the downlink signals transmitted by the transmitting and receiving node 1.
  • the terminal may determine the timing advance of transmitting the uplink signal to the plurality of transceiver nodes by the time of reaching the terminal of the downlink signal with the strongest power among the downlink signals sent by the transceiver nodes.
  • each transceiver node that receives the uplink signal sent by the terminal the radio channel between the terminal and the terminal is usually the best, or the distance between the terminal and the terminal is the smallest, and each transceiver node receives the uplink signal sent by the terminal first. . Since the channel conditions experienced by the uplink signal and the downlink signal transmission generally have the same characteristics, the terminal may first arrive at the downlink signal or the strongest downlink signal of the terminal among the downlink signals sent by the transceiver nodes in the first transceiver node set. The time at which the terminal arrives to determine the TA that sends the uplink signal to each of the transceiver nodes in the first set of transceiver nodes.
  • the method for determining the timing advance amount TA provided by the embodiment of the present invention, the terminal detects the arrival time of the corresponding one or more downlink signals according to the downlink signal characteristic information of one or more transceiver nodes in the access cell, thereby determining to the one or The plurality of transceiver nodes send the timing advance TA of the uplink signal to make the determined TA more accurate, and improve the accuracy of the uplink signal sent by the UE to the transmitting and receiving node that receives the uplink signal at a desired time, and improve the performance of the transmitting and receiving node.
  • FIG. 2 is a flowchart of an embodiment of an information sending method provided by the present invention. As shown in FIG. 2, the method includes:
  • S201 Determine a first transceiver node set that receives an uplink signal of the terminal, where the first transceiver node set includes one or more transceiver nodes.
  • S202 Send a control command to one or more transceiver nodes in the terminal access cell, where the control command is used to send the downlink signal feature information of the one or more transceiver nodes in the first transceiver node set to the terminal.
  • the execution body of the above steps is a base station.
  • the terminal usually sends a sounding reference signal to each transceiver node in the access cell (Sounding) Reference Signal, SRS), correspondingly, each transceiver node can send the detected terminal
  • the SRS is reported to the base station, and the base station can determine one or more transceiver nodes for receiving the uplink signal of the terminal according to the quality of the SRS detected by each transceiver node, that is, determine the first transceiver node set.
  • each transceiver node in the terminal access cell also sends a channel state information reference signal CSI-RS to the terminal, and the terminal may recommend to the base station for receiving uplink according to the quality of the CSI-RS sent by each transceiver node.
  • the transmitting and receiving node of the signal that is, the terminal may send the suggestion information of the first set of the transmitting and receiving nodes to the base station, and the base station may determine the receiving according to the suggestion information of the first set of the transmitting and receiving nodes, and integrate the signal transmission conditions of the sending and receiving nodes and the terminal. a set of first transceiver nodes of the uplink signal of the terminal.
  • the base station may send a first control command to one or more transceiver nodes in the terminal accessing cell, instructing the one or more transceiver nodes to send one or more of the first transceiver node set to the terminal.
  • a first control command to one or more transceiver nodes in the terminal accessing cell, instructing the one or more transceiver nodes to send one or more of the first transceiver node set to the terminal.
  • the transceiver node that sends the downlink signal feature information to the terminal may be a transceiver node in the first transceiver group, or may be a node other than the first transceiver group in the terminal access cell.
  • the transceiver node may send the downlink signal feature information of the one or more transceiver nodes in the first transceiver set to the terminal, so that the terminal detects the first transceiver node set according to the downlink signal feature information of each transceiver node in the first transceiver node set.
  • the time when the downlink signal sent by each transceiver node arrives at the terminal and determines the timing advance of transmitting the uplink signal to each transceiver node in the first transceiver node set according to the time when the downlink signal sent by each transceiver node in the first transceiver node set arrives at the terminal.
  • the amount TA The amount of TA.
  • the downlink signal characteristic information of the transceiver node may be an antenna number or an antenna port number used for transmitting the reference signal in the transceiver node, and may also be a CSI-RS number sent by the transceiver node. It can also be other feature information that can distinguish the downlink signals sent by different transceiver nodes.
  • Each of the receiving and receiving nodes in the terminal accessing the cell periodically reports the SRS sent by the detected terminal to the base station, and the quality of the SRS sent by the terminal to each transceiver node may also change. Therefore, the base station may further access the cell according to the terminal. The quality of the SRS reported by each transceiver node is determined.
  • the transceiver node that receives the uplink signal of the terminal is changed from the first transceiver node set to the second transceiver node set, and the second transceiver node set includes one or more transceiver nodes.
  • each transceiver node in the terminal access cell sends a channel state information reference signal to the terminal.
  • the CSI-RS may also change.
  • the receiving and receiving node recommended by the terminal to the base station for receiving the uplink signal of the terminal may change. Therefore, the base station may further perform the recommendation information of the first sending and receiving node set sent by the terminal. And synthesizing the signal transmission situation of each transceiver node and the terminal, and determining that the transceiver node of the uplink signal of the receiving terminal is changed from the first transceiver node set to the second transceiver node set.
  • the base station After the base station determines that the node that receives the uplink signal of the terminal becomes the second transceiver node set, it may send a second control command to one or more transceiver nodes in the terminal access cell, and instruct the terminal to send one or more of the second transceiver node set to the terminal. Downlink signal characteristic information of the transceiver nodes.
  • the transceiver node that receives the second control command may be a transceiver node in the first transceiver node set, or may be a transceiver node in the second transceiver node set, or may be a terminal access cell in addition to the first transceiver node set. And other transceiver nodes other than the second set of transceiver nodes.
  • the downlink signal characteristic information of each transceiver node in the second transceiver node set may also be an antenna number or an antenna port number used for transmitting the reference signal in the transceiver node, and may also be a CSI-RS number sent by the transceiver node. It can also be used to distinguish feature information of downlink signals transmitted by different transceiver nodes.
  • the base station determines a set of transmitting and receiving nodes that receive the uplink signal of the terminal, and instructs one or more transceiver nodes in the terminal accessing the cell to send the downlink signal feature information of each transceiver node in the set of the transmitting and receiving nodes to the terminal. So that the terminal can detect the arrival time of the corresponding downlink signal according to the downlink signal characteristic information of the transceiver nodes, thereby determining the timing advance TA of transmitting the uplink signal to each node in the transceiver node set, so that the determined TA is more accurate.
  • the uplink signal sent by the UE is increased to the accuracy of the transmitting and receiving node that receives the uplink signal at a desired time, and the performance of the transmitting and receiving node is improved.
  • FIG. 3 is a flowchart of still another embodiment of an information sending method according to the present invention.
  • the method includes: S301: Receive a first control command sent by the base station, where the first control command is used to send, to the terminal, downlink signal feature information of one or more transceiver nodes in the first transceiver node set, where the first transceiver node set includes one or more a transceiver node, where the first transceiver node set includes a local transceiver node or does not include a local transceiver node;
  • the execution body of the step is a transceiver node
  • the transceiver node may be a device having a transceiver function, such as an AP, an RRE, an RRH, an RRU, a base station, or a home base station, and is not enumerated here.
  • the transceiver node may be a transceiver node in the first transceiver set, or may be a node other than the first transceiver set in the terminal access cell. After receiving the first control command sent by the base station, the transceiver node may send downlink signal feature information of one or more transceiver nodes in the first transceiver set to the terminal, so that the terminal performs downlink according to each transceiver node in the first transceiver node set.
  • the signal characteristic information is used to detect the time when the downlink signal sent by each transceiver node in the first transceiver node set arrives at the terminal, and determine the time to reach the terminal according to the time when the downlink signal sent by each transceiver node in the first transceiver node set arrives at the terminal.
  • the timing advance TA of the uplink signal is sent by each transceiver node.
  • the downlink signal characteristic information sent by the transceiver node to the terminal may be an antenna number or an antenna port number used for transmitting the reference signal in the transceiver node, and may also be a CSI-RS number sent by the transceiver node. It can also be other feature information that can distinguish the downlink signals sent by different transceiver nodes.
  • the downlink signal feature information sent by the transceiver node can be carried in the media access control (Media Access Control, MAC M command, or Radio Resource Control (RRC) signaling sent to the terminal. It can be understood that The transceiver node may also carry downlink signal feature information in other signaling that interacts with the terminal.
  • media access control Media Access Control, MAC M command, or Radio Resource Control (RRC) signaling sent to the terminal.
  • RRC Radio Resource Control
  • the base station may send a second control command to one or more transceiver nodes in the terminal access cell for indicating to the terminal.
  • the signal characteristic information may include one or more transceiver nodes in the second transceiver node set.
  • the transceiver node may send downlink signal feature information of one or more transceiver nodes in the second transceiver node set to the terminal.
  • the downlink signal feature information of each node in the second transceiver node may be an antenna number or an antenna port number used by the transceiver node to transmit the reference signal, and may also be a CSI-RS number sent by the transceiver node. It can also be other feature information that can distinguish the downlink signals sent by different transceiver nodes.
  • Each downlink signal feature information may be carried in a MAC signaling sent to the terminal, or in an RRC signaling. It can be understood that the transceiver node can also carry the downlink signal feature information in other signaling interactions with the terminal.
  • the receiving and receiving node may send the downlink signal feature information of one or more transceiver nodes in the terminal accessing the cell to the terminal, and the terminal detects one or more corresponding signals.
  • the arrival time of the downlink signals so as to determine the timing advance TA of the uplink signal sent to the one or more transceiver nodes, so that the determined TA is more accurate, and the uplink signal sent by the UE arrives at the receiving and receiving node that receives the uplink signal at the desired time. Accuracy, improve the performance of the transceiver node.
  • a first transceiver node includes a transceiver node and a first transceiver node as an example.
  • the method for determining the timing advance amount TA provided by the present invention is described. The method specifically includes:
  • S402 Detect, according to the downlink signal feature information of the first transceiver node, a time when the downlink signal sent by the first transceiver node reaches the terminal;
  • S403. Determine, according to a time when the downlink signal of the first transceiver node reaches the terminal, determine a timing advance TA of the uplink signal sent by the first transceiver node.
  • the characteristic information of the downlink signal of the first transceiver node may be that the first transceiver node sends the reference signal Antenna number or antenna port number. This is because the antenna or antenna port corresponding to each transceiver node is different, and the reference signals transmitted by different antennas or antenna ports are different. Therefore, the antenna number or antenna used to transmit the reference signal in the first transceiver node can be used.
  • the port number is sent to the terminal, and the terminal can detect the arrival time of the reference signal sent by the corresponding antenna or the antenna port, thereby determining the timing advance TA of transmitting the uplink signal to the first transceiver node.
  • the downlink signal feature information with the reference signal number 1 can be sent to the terminal, and the terminal can determine by determining the arrival time of the reference signal with the number 1.
  • the TA value of the uplink signal is sent to the first transceiver node.
  • the characteristic information of the downlink signal of the first transceiver node may also be the number of the CSI-RS sent by the first transceiver node, and the terminal may determine the TA that sends the uplink signal to the transceiver node 1 by detecting the numbered CSI-RS. This is because the CSI-RSs sent by different transceiver nodes are different. Therefore, the number of CSI-RSs sent by the first transceiver node can be sent to the terminal. The terminal can determine the direction by detecting the CSI-RS corresponding to the number of the CSI-RS. The TA value of the uplink of the first transceiver node.
  • the transmitting and receiving nodes transmit CSI-RS at a lower frequency, usually at least 5 ms, and the transmitting and receiving nodes send CRS at a frequency of about 1 Send ms once. Therefore, as another preferred embodiment, after receiving the number of the CSI-RS sent by the first transceiver node, the terminal may detect the time when the CSI-RS corresponding to the CRS number reaches the terminal, and further, the terminal may The time when the CSI-RS arrives at the terminal and the time difference between the CSI-RS number and the corresponding common reference signal CRS, and detects the time when the CRS corresponding to the CSI-RS number arrives at the terminal.
  • LTE-A Long Term Evolution Advanced
  • both the transmitting and receiving node 1 and the transmitting and receiving node 2 transmit downlink signals to the terminal, and the transmitting and receiving nodes 1 and the transmitting and receiving nodes 2 transmit the same CRS, but the transmitted CSI-RSs are different.
  • the time difference between the CRS and the CSI-RS transmitted by each transceiver node to the terminal is usually a fixed value d.
  • the terminal receives the CRS signals sent by the transceiver node 1 and the transceiver node 2 at time t1 and time t3, and the terminal does not know. Which transceiver node the CRS received at these two moments comes from.
  • the CSI-RS is different, so the terminal can detect which transceiver node the received CSI-RS is from. As shown in FIG. 4, the terminal can learn the received CSI detected at time t2 according to the number of the received CSI-RS.
  • the -RS is from the transmitting node 1
  • the CSI-RS received at time t4 is from the transmitting and receiving node 2. Since the time difference between the CRS and the CSI-RS transmitted by each transceiver node is d, the terminal can determine that the CRS received at time t1 is from the transceiver node 1, and the CRS received at time t3 is from the transceiver node 2.
  • the terminal can detect the time of receiving the CRS at time t-d+n (n takes a value of 1 to 4). It can be seen that after receiving the CSI-RS of the first transceiver node, the terminal can determine the adjustment amount of the TA by using the frequency of 1 ms, thereby improving the TA adjustment precision of the terminal.
  • the terminal When the terminal accesses the cell where the first transceiver node is located, the terminal sends an uplink signal on the shared channel of the cell within a short time after receiving the downlink signal sent by the transceiver node in the cell for the first time.
  • the first transceiver node sends an initial TA to the terminal according to the arrival time of the uplink signal and the expected arrival time of the uplink signal.
  • the terminal uses the initial TA as a reference and changes according to the distance. The time difference between the arrival times of the downlink signals of the first transmitting and receiving nodes before and after, and the sum of the initial TAs to determine the TA after the distance change.
  • the terminal determines the TA after the distance change by the sum of the time difference between the TA determined last time and the arrival time of the downlink signal of the first transceiver node before and after the change.
  • the distance between the signal transmitted between the terminal and the first transceiver node is D
  • the downlink signal sent by the first transceiver node to the terminal is in! ⁇
  • the distance transmitted by the signal between the terminal and the first transceiver node becomes D 2
  • the terminal can detect the change of the arrival time change value IV1 of the downlink signal sent by the first transceiver node, thereby determining the uplink signal after the distance change
  • the timing advance is Therefore, it can be ensured that the uplink signal sent by the terminal arrives at the first transceiver node at a desired moment.
  • FIG. 6 is a flowchart of still another embodiment of a method for determining timing advance ⁇ according to the present invention.
  • a transceiver node that receives an uplink signal of a terminal is changed from a first transceiver node set to a second transceiver.
  • S601 Receive downlink signal characteristic information of the second transceiver node.
  • the time of the downlink signal sent by the second transceiver node to the terminal is detected according to the downlink signal feature information of the second transceiver node.
  • the terminal may separately acquire the time difference of the downlink signal sent by the transmitting and receiving node 1 and the transmitting and receiving node 2 to the terminal as T DIFF , and the terminal may send and receive according to the first sending and receiving.
  • T DIFF time difference of the downlink signal sent by the transmitting and receiving node 1 and the transmitting and receiving node 2
  • the terminal may send and receive according to the first sending and receiving.
  • FIG. 7 is a flowchart of still another embodiment of a method for determining timing advance TA according to the present invention. As shown in FIG. 7 , in the present embodiment, a plurality of transceiver nodes are included in a first transceiver node set, and timing advance provided by the present invention is provided. The method of determining the amount TA is explained. The method specifically includes:
  • S703. Determine, according to a time when the first arriving signal or the strongest signal in the downlink signal sent by the multiple transceiver nodes in the first transceiver node set arrives at the terminal, and determine a timing advance TA to send the uplink signal to the multiple transceiver nodes.
  • the terminal access cell includes four transceiver nodes, and all the transceiver nodes send downlink signals to the terminal.
  • the first transceiver node set includes the transceiver node 1 and the transceiver node 2.
  • U E can determine the TA transmitting the uplink signal to the transmitting and receiving node 1 and the transmitting and receiving node 1 by using the earliest arriving downlink signal among the downlink signals transmitted by the transmitting and receiving node 1 and the transmitting and receiving node 2.
  • the downlink signal sent by the transceiver node 1 arrives at the terminal earlier than the downlink signal sent by the transceiver node 2, and the terminal can determine the TA according to the arrival time of the downlink signal sent by the transceiver node 1.
  • the terminal determines the TA that sends the uplink signal to the transmitting and receiving node 2 according to the arrival time of the downlink signal sent by the transmitting and receiving node 1, the uplink signal sent by the terminal may be sent and received after the desired time of the transmitting and receiving node 2.
  • Node 2. This problem can be solved by the Cycllic Prefix (CP) technology in some existing Orthogonal Frequency Division Multiplexing (OFDM) systems. Specifically: if the terminal needs to send an uplink signal with an OFDM symbol length of N: a(1), a(2), ..., a(N), then after using the CP technology, the terminal is assumed to increase the length in the uplink signal.
  • CP Cycllic Prefix
  • OFDM Orthogonal Frequency Division Multiplexing
  • the uplink signal sent by the terminal is: a(N-K+1), a(N-K+2), ..., a(N), a(1), a(2) , ..., a(N) , and the transmitting and receiving node 1 and the transmitting and receiving node 2 that receive the uplink signal transmitted by the terminal only need to receive the uplink signal from the K+1 OFDM symbol.
  • the terminal When the terminal transmits a plurality of uplink signals after increasing the length of the CP of the above K, even if the signal is delayed to reach the transmitting and receiving node, as long as the length of the delayed arrival is less than the length K of the CP, the length from the K+1 OFDM symbol is
  • the signals of N include all the required signals in a(1) ⁇ a(N), so that each uplink signal can be guaranteed not to be interfered by any symbols.
  • the terminal may determine to send an uplink signal to the transceiver node 1 and the transceiver node 2 at the time of arrival of the terminal with the strongest downlink signal in the downlink signal sent by the transceiver node 1 and the transceiver node 2. Timing advance TA.
  • each transceiver node that receives the uplink signal sent by the terminal the radio channel between the terminal and the terminal is usually the best, or the distance between the terminal and the terminal is the smallest, and each transceiver node receives the uplink signal sent by the terminal first. . Since the channel conditions experienced by the uplink signal and the downlink signal transmission generally have the same characteristics, the terminal can reach the terminal according to the downlink signal or the strongest downlink signal that reaches the terminal first among the downlink signals sent by the transceiver node 1 and the transceiver node 2. The time to determine the TA that sends the uplink signal to the transceiver node 1 and the transceiver node 2.
  • FIG. 8 is a flowchart of still another embodiment of a method for determining a timing advance amount TA according to the present invention.
  • a transceiver node that receives an uplink signal of a terminal is changed from a first transceiver node set to a second transceiver.
  • the method of determining a method for determining the timing advance TA provided by the present invention includes:
  • S803 in the present embodiment will be described in detail with a specific example. If the receiving and receiving node receiving the uplink signal of the terminal is changed from the transmitting and receiving node 1 and the transmitting and receiving node 2 to the transmitting and receiving node 3 and the transmitting and receiving node 4, the downlink signal sent by the transmitting and receiving node 1 arrives at the terminal before the downlink and downlink signals sent by the transmitting and receiving node 2.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
  • FIG. 9 is a schematic structural diagram of an embodiment of a terminal for performing the foregoing method for determining a timing advance amount TA according to the present invention.
  • the terminal includes: a receiver 1 1 , a monitor 12 , and a processor 13 ;
  • the receiver 1 1 is configured to receive downlink signal feature information of each transceiver node in the first transceiver node set in the terminal access cell, where the first transceiver node set includes one or more transceiver nodes, and the monitor 12 is configured to The downlink signal characteristic information of each transceiver node in the first transceiver node set detects the time when the downlink signal sent by each transceiver node in the first transceiver node set arrives at the terminal; and the processor 13 is configured to: according to each transceiver node in the first transceiver node set The timing at which the transmitted downlink signal arrives at the terminal determines the timing advance TA of transmitting the uplink signal to each of the transmitting and receiving nodes
  • the present invention also provides another embodiment of a terminal for performing the above-described method for determining the timing advance TA, which is a feasible implementation on the basis of the previous embodiment:
  • the processor 13 may be specifically configured to: determine, according to a time when the first arriving signal or the strongest signal of the downlink signals sent by the multiple sending and receiving nodes arrives at the terminal, the timing advance TA of transmitting the uplink signal to the multiple sending and receiving nodes.
  • the receiver 11 may be further configured to: receive downlink signal feature information of each node in the second transceiver node set;
  • the monitor 12 is further configured to: detect, according to the downlink signal feature information of each node in the second transceiver node set, a time when the downlink signal sent by each transceiver node in the second transceiver node set arrives at the terminal.
  • the processor 13 may be further configured to: send the downlink signal sent by the second transceiver node to the terminal and the first transceiver node The time difference between the time when the transmitted downlink signal arrives at the terminal and the TA determined last time during the transmission of the uplink signal to the first transmitting and receiving node are determined as the TA transmitting the uplink signal to the second transmitting and receiving node.
  • the processor 13 may be further configured to: time and a downlink signal sent by each node in the second transceiver node set to the terminal The minimum of the time difference between the time when the downlink signal sent by the third transceiver node arrives at the terminal, and the last determined TA in the process of transmitting the uplink signal to the first transceiver node set, and determining to send the uplink signal to the second node set.
  • TA the third transceiver node is the node where the downlink signal first arrives at the terminal.
  • the downlink signal feature information is an antenna number or an antenna port number of the reference signal sent by the transceiver node
  • the monitor 12 can be specifically configured to: detect the time when the reference number corresponding to the antenna number or the antenna port number reaches the terminal.
  • the downlink signal feature information is a number of a channel state information reference signal CSI-RS sent by the transceiver node;
  • the monitor 12 may be specifically configured to: detect a time when the CSI-RS corresponding to the CSI-RS number arrives at the terminal; or, detect a time when the CSI-RS corresponding to the CRS number arrives at the terminal, and time to reach the terminal according to the CSI-RS. And detecting a time difference between the CSI-RS number and the corresponding common reference signal CRS, and detecting a time when the CRS corresponding to the CSI-RS number reaches the terminal.
  • the downlink signal feature information may be carried by the media access control MAC signaling or the radio resource control RRC signaling sent by the any one or more transceiver nodes in the access cell to the terminal.
  • the terminal provided by the embodiment of the present invention corresponds to the method for determining the timing advance amount TA provided by the embodiment of the present invention, and is the execution device of the method for determining the timing advance amount TA.
  • the specific process of the terminal execution method refer to the method embodiment, Let me repeat.
  • the terminal detects the arrival time of the corresponding one or more downlink signals according to the downlink signal feature information of one or more transceiver nodes in the access cell, thereby determining to send the uplink to the one or more transceiver nodes.
  • the timing advance TA of the signal is to make the determined TA more accurate, and improve the accuracy of the uplink signal sent by the UE to the transmitting and receiving node receiving the uplink signal at the desired time, and improve the performance of the transmitting and receiving node.
  • FIG. 10 is a schematic structural diagram of an embodiment of a base station for performing the foregoing information sending method according to the present invention.
  • the base station includes: a processor 21 and a transmitter 22;
  • the processor 21 is configured to determine a first transceiver node set that receives an uplink signal of the terminal, where the first transceiver node set includes one or more transceiver nodes;
  • the transmitter 22 is configured to send a first control command to one or more transceiver nodes in the terminal accessing cell, where the first control command is used to send, to the terminal, a downlink signal of one or more transceiver nodes in the first transceiver node set. Feature information.
  • FIG. 1 is a schematic structural diagram of another embodiment of a base station for performing the foregoing information sending method according to the present invention.
  • the base station includes: a processor 21 and a transmitter 22;
  • the base station may further include:
  • the receiver 23 is configured to receive a sounding reference signal reported by each transceiver node in the terminal access cell
  • SRS is an SRS sent by a terminal detected by each transceiver node in the terminal access cell
  • the processor 21 is specifically configured to: determine, according to the SRS quality reported by each transceiver node in the terminal accessing cell, the first transceiver node set that receives the uplink signal of the terminal.
  • the processor 21 is further configured to: according to the SRS quality reported by each transceiver node in the terminal accessing the cell, The transceiver node that determines the uplink signal of the receiving terminal is changed from the first transceiver node set to the second transceiver node set, and the second transceiver node set includes one or more transceiver nodes;
  • the transmitter 22 is further configured to: send a second control command to one or more transceiver nodes in the terminal access cell, where the second control command is used to indicate to the terminal to send the downlink of one or more transceiver nodes in the second transceiver node set. Signal characteristic information.
  • the downlink signal characteristic information is an antenna number or an antenna port number of the reference signal sent by the transceiver node, or a number of the channel state information reference signal CSI-RS sent by the transceiver node.
  • the base station provided by the embodiment of the present invention corresponds to the information sending method provided by the embodiment of the present invention, and is an execution device of the information sending method.
  • the specific process of the method performed by the base station refer to the method embodiment, and details are not described herein.
  • the embodiment of the present invention provides a base station, configured to determine a set of receiving and transmitting nodes of an uplink signal of a receiving terminal, and instruct one or more transceiver nodes in the terminal accessing cell to send downlink signal feature information of each transceiver node in the set of receiving and transmitting nodes to the terminal, In order to enable the terminal to detect the arrival time of the corresponding downlink signal according to the downlink signal feature information of the transceiver nodes, thereby determining the timing advance amount TA for transmitting the uplink signal to each node in the transceiver node set, so that the determined TA is more accurate and improved.
  • the uplink signal sent by the UE reaches the accuracy of the transmitting and receiving node that receives the uplink signal at the desired time, and improves the performance of the transmitting and receiving node.
  • FIG. 12 is a schematic structural diagram of an embodiment of a transceiver node for performing the foregoing information sending method according to the present invention. As shown in FIG. 12, the transceiver node includes:
  • the receiver 31 is configured to receive a first control command sent by the base station, where the first control command is used to send, to the terminal, downlink signal feature information of one or more transceiver nodes in the first transceiver node set, where the first transceiver node set includes One or more transceiver nodes, the first transceiver node set includes the local transceiver node or does not include the local transceiver node;
  • the transmitter 32 is configured to send, to the terminal, downlink signal feature information of one or more transceiver nodes in the first set of transceiver nodes.
  • the receiver 31 is further configured to: receive a second control command sent by the base station, and second control The command is used to send the downlink signal feature information of the one or more transceiver nodes in the second set of transceiver nodes to the terminal, where the second transceiver node set includes one or more transceiver nodes, and the second transceiver node set includes the local transceiver.
  • the node does not include the local transceiver node, and the second transceiver node sets the set of transceiver nodes that are the uplink signals of the received terminal after the change;
  • the transmitter may be further configured to: send, to the terminal, downlink signal feature information of one or more transceiver nodes in the second set of transceiver nodes.
  • the transceiver node provided by the embodiment of the present invention is related to the information sending method provided by the embodiment of the present invention, and is an execution device of the information sending method.
  • the specific process of the method for executing the sending and receiving node refer to the method embodiment, and details are not described herein.
  • the transceiver node provided by the embodiment of the present invention sends the downlink signal feature information of one or more transceiver nodes in the cell accessing the cell to the terminal according to the control command of the base station, and the terminal detects the arrival time of the corresponding one or more downlink signals. Therefore, the timing advance TA of the uplink signal is sent to the one or more transceiver nodes, so that the determined TA is more accurate, and the accuracy of the uplink signal sent by the UE reaches the receiving node that receives the uplink signal at the desired time is improved, and the transmitting and receiving node is improved. performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种定时提前量TA的确定方法、信息发送方法和设备。一种方法包括:接收终端接入小区中的第一收发节点集合中各收发节点的下行信号特征信息,第一收发节点集合中包括一个或多个收发节点;根据第一收发节点集合中各收发节点的下行信号特征信息,检测第一收发节点集合中各收发节点发送的下行信号到达终端的时间;根据第一收发节点集合中各收发节点发送的下行信号到达终端的时间,确定向第一收发节点集合中各收发节点发送上行信号的定时提前量TA。本发明实施例使确定的TA更加准确,提高UE发送的上行信号在期望时刻到达接收上行信号的收发节点的准确度,提高收发节点性能。

Description

定时提前量 TA的确定方法、 信息发送方法和设备
本申请要求于 2011 年 08 月 05 日提交中国专利局、 申请号为
201110223793.X,发明名称为"定时提前量 TA的确定方法、信息发送方法和设 备"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域, 特别涉及一种定时提前量 TA的确定方法、 信 息发送方法和设备。
背景技术
在分布式天线系统( Distributed Antenna System, DAS ) 中, 每个小区 包括多个具有收发装置的收发节点, 这些收发节点在地理上分散设置,从而使 无线信号在接入小区的用户设备( User Equipment, UE )与收发节点之间传输 的距离变小, 进而使信道状况优于传统无线通信系统。
由于一个收发节点会接收多个 UE发送的上行信号, 为了避免多个 UE的上 行信号互相干扰, 通常需要向同一收发节点发送上行信号的多个 UE发送的上 行信号在同一时刻到达该收发节点。 其中, 定时提前(Timing Advance, TA ) 用于表示每个 UE发送上行信号的提前量, TA的取值为 D/c, D为无线信号在 UE 与收发节点之间传输的距离, c为电磁波的传输速度。 由于 UE具有移动性, 无 线信号在 UE与收发节点之间传输的距离 D会不断变化, 因此, UE需要不断调 整 TA的取值, 以保证 UE发送的上行信号到达收发节点的时刻与收发节点期望 其到达时刻的误差在可接受范围之内。
现有技术中, 当小区内只有一个收发节点向 UE发送下行信号并接收 UE发 送的上行信号时, UE根据该收发节点发送的下行信号的最先到达时刻来确定 TA值。 然而, 当小区内有多个收发节点向 UE发送下行信号, 但这多个收发节 点中仅有一部分收发节点接收 UE发送的上行信号时, UE根据接收到的下行信 号的最先到达的时刻来确定 TA值, 将影响 TA的准确性, 使 UE发送的上行信号 难于在期望时刻到达接收上行信号的收发节点, 进而影响这些收发节点的性 能。 发明内容
本发明实施例提供了一种定时提前量 TA的确定方法、 信息发送方法和设 备, 以提高 UE发送的上行信号在期望时刻到达接收上行信号的收发节点的准 确度。
一方面, 本发明实施例提供一种定时提前量 TA的确定方法, 包括: 接收终端接入小区中的第一收发节点集合中各收发节点的下行信号特征 信息, 所述第一收发节点集合中包括一个或多个收发节点;
根据所述第一收发节点集合中各收发节点的下行信号特征信息,检测所述 第一收发节点集合中各收发节点发送的下行信号到达所述终端的时间;
根据所述第一收发节点集合中各收发节点发送的下行信号到达所述终端 的时间,确定向所述第一收发节点集合中各收发节点发送上行信号的定时提前 量 TA。 本发明实施例还提供一种信息发送方法, 包括:
确定接收终端上行信号的第一收发节点集合,所述第一收发节点集合中包 括一个或多个收发节点;
向所述终端接入小区中的一个或多个收发节点发送第一控制命令,所述第 一控制命令用于指示向所述终端发送所述第一收发节点集合中一个或多个收 发节点的下行信号特征信息。 本发明实施例还提供一种信息发送方法, 包括:
接收基站发送的第一控制命令,所述第一控制命令用于指示向所述终端发 送所述第一收发节点集合中一个或多个收发节点的下行信号特征信息,所述第 一收发节点集合中包括一个或多个收发节点,所述第一收发节点集合中包括本 端收发节点或不包括本端收发节点;
向所述终端发送第一收发节点集合中一个或多个收发节点的下行信号特 征信息。
另一方面, 本发明实施例还提供一种终端, 包括:
接收器,用于接收终端接入小区中的第一收发节点集合中各收发节点的下 行信号特征信息, 所述第一收发节点集合中包括一个或多个收发节点;
监测器 ,用于根据所述第一收发节点集合中各收发节点的下行信号特征信 息,检测所述第一收发节点集合中各收发节点发送的下行信号到达所述终端的 时间;
处理器,用于根据所述第一收发节点集合中各收发节点发送的下行信号到 达所述终端的时间,确定向所述第一收发节点集合中各收发节点发送上行信号 的定时提前量 TA。
本发明实施例还提供一种基站, 包括:
处理器, 用于确定接收终端上行信号的第一收发节点集合, 所述第一收发 节点集合中包括一个或多个收发节点;
发送器,用于向所述终端接入小区中的一个或多个收发节点发送第一控制 命令,所述第一控制命令用于指示向所述终端发送所述第一收发节点集合中一 个或多个收发节点的下行信号特征信息。 本发明实施例还提供一种收发节点, 包括: 接收器, 用于接收基站发送的第一控制命令, 所述第一控制命令用于指示 向所述终端发送所述第一收发节点集合中一个或多个收发节点的下行信号特 征信息, 所述第一收发节点集合中包括一个或多个收发节点, 所述第一收发节 点集合中包括本端收发节点或不包括本端收发节点; 发送器,用于向所述终端发送第一收发节点集合中一个或多个收发节点的 下行信号特征信息。
本发明实施例提供的定时提前量 TA的确定方法、 信息发送方法和设备, 终端根据接入小区中一个或多个收发节点的下行信号特征信息检测对应的一 个或多个下行信号的到达时间,从而确定向该一个或多个收发节点发送上行信 号的定时提前量 TA, 以使确定的 TA更加准确,提高 UE发送的上行信号在期 望时刻到达接收上行信号的收发节点的准确度, 提高收发节点性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下面描 述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出 创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明提供的定时提前量 TA的确定方法一个实施例的流程图; 图 2为本发明提供的信息发送方法一个实施例的流程图;
图 3为本发明提供的信息发送方法又一个实施例的流程图;
图 4为本发明提供的定时提前量 TA的确定方法另一个实施例的流程图; 图 5为终端接收 CRS和 CSI-RS的时序示意图;
图 6为本发明提供的定时提前量 TA的确定方法再一个实施例的流程图; 图 7为本发明提供的定时提前量 TA的确定方法再一个实施例的流程图; 图 8为本发明提供的定时提前量 TA的确定方法再一个实施例的流程图; 图 9为本发明提供的执行上述定时提前量 TA的确定方法的终端一个实施 例的结构示意图;
图 10为本发明实施例提供的执行上述信息发送方法的基站的一个实施例 的结构示意图;
图 11为本发明实施例提供的执行上述信息发送方法的基站的又一个实施 例的结构示意图;
图 12为本发明提供的执行上述信息发送方法的收发节点一个实施例的结 构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚, 下面将结合本发明 实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。基于本发明中 的实施例 ,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其 他实施例, 都属于本发明保护的范围。
图 1为本发明提供的定时提前量 TA的确定方法一个实施例的流程图, 如 图 1所示, 该方法包括:
S101、 接收终端接入小区中的第一收发节点集合中各收发节点的下行信 号特征信息, 其中, 第一收发节点集合中包括一个或多个收发节点;
S102、 根据第一收发节点集合中各收发节点的下行信号特征信息, 检测 第一收发节点集合中各收发节点发送的下行信号到达终端的时间;
S 103、 根据第一收发节点集合中各收发节点发送的下行信号到达终端的 时间, 确定向第一收发节点集合中各收发节点发送上行信号的定时提前量 TA。 以上步骤的执行主体为终端。
本发明实施例中,终端的接入小区中具有多个收发节点向终端发送下行信 号, 这些发送下行信号的收发节点, 都可以用于接收终端发送的上行信号, 或 者是, 这些发送下行信号的收发节点中的一部分收发节点(可以是一个, 也可 以是多个)用于接收终端发送的上行信号。终端接入小区中的多个收发节点可 以为接入点(Access Point, AP )、远端无线设备 ( Remote Radio Equipment, RRE )、远端无线端口( Remote Radio Head , RRH )、远端无线单元 ( Remote Radio Unit, RRU )、 基站或家庭基站等具有收发功能的设备, 在此不——列 举。
本实施例中, 第一收发节点集合中的各收发节点, 可以是接收终端上行信 号的收发节点。第一收发节点集合中的每个收发节点可以将本端的下行信号特 征信息发送给终端; 还可以是, 第一收发节点集合中的任一个收发节点, 将本 端以及第一收发节点集合中其他收发节点的下行信号特征信息发送给终端;可 以理解的是,也可以通过终端接入小区中除第一收发节点集合之外的其他收发 节点向终端发送第一收发节点集合中的一个或多个收发节点的下行信号特征 信息。 即, 本发明实施例中, 对于向终端发送下行信号特征信息的收发节点并 不做出限制。
作为一种可行的实施方式,下行信号特征信息可以是收发节点中用于发送 参考信号的天线编号或天线端口编号。 这是由于,每个收发节点对应的天线或 天线端口不同, 而不同的天线或天线端口发送的参考信号是不同的,每个天线 或天线端口发送的参考信号的编号与对应的天线编号或天线端口编号相同。因 此, 可以将收发节点中, 用于发送参考信号的天线编号或者天线端口编号发送 给终端, 终端可以检测对应天线或天线端口发出的参考信号的到达时间,从而 确定向第一收发节点集合中各收发节点发送上行信号的定时提前量 TA。
作为另一种可行的实施方式,下行信号的特征信息还可以是收发节点发送 的信道状态信息参考信号 (Channel State Information-Reference Signal , CSI-RS ) 的编号。 这是由于, 不同的收发节点发送的 CSI-RS不同, 因此, 可以将收发节点发送 CSI-RS编号发送给终端, 终端可以检测 CSI-RS编号对 应的 CSI-RS的到达时间,从而确定向第一收发节点集合中各收发节点发送上 行信号的定时提前量 TA。
以上仅提供了下行信号特征信息的具体例子, 可以理解的是, 下行信号特 征信息还可以为其他类型的特征信息,这些特征信息可以用于区分不同收发节 点发送的下行信号, 在此不——列举。
如果第一收发节点集合中包括一个收发节点,则终端可以检测该收发节点 发送的下行信号到达终端的时间,并根据该收发节点发送的下行信号到达终端 的时间确定向该收发节点发送上行信号的 TA。
具体的, 当终端接入一个小区时, 终端会在首次接收到该小区中的收发节 点发送的下行信号之后的 4艮短时间内, 在小区的共享信道上发送上行信号。 第 一个接收到终端上行信号的收发节点会根据上行信号到达本端的时间与期望 的上行信号到达本端的时间, 为终端下发一个初始 TA, 当无线信号在终端与 该收发节点之间传输的距离发生变化后(为了便于描述, 本发明实施例中简称 为终端与收发节点之间的距离发生变化), 终端以该初始 TA为基准, 根据距 离变化前后该收发节点的下行信号的到达时间的时间差, 与初始 TA之和来确 定距离变化之后的 TA。 只要终端与收发节点之间的距离发生变化, 终端都会 以最近一次确定的 TA, 与距离变化前后该收发节点的下行信号的到达时间的 时间差之和, 确定距离变化之后的 TA。
如果第一收发节点集合中包括多个收发节点 ,则终端可以这些收发节点发 送的下行信号中最先到达终端的下行信号的到达时间,确定向这些多个收发节 点发送上行信号的定时提前量 TA, 例如: 第一收发节点集合中包括收发节点 1和收发节点 2, 如果收发节点 1发送的下行信号最先到达终端, 则终端可以 根据收发节点 1发送的下行信号中最早到达的信号来确定向收发节点 1和收发 节点 2发送上行信号的 TA。
如果第一收发节点集合中包括多个收发节点 ,则终端可以这些收发节点发 送的下行信号中功率最强的下行信号的到达终端的时间 ,确定向这些多个收发 节点发送上行信号的定时提前量 TA,
这是由于,接收终端发送的上行信号的各收发节点中,通常与终端之间无 线信道最佳的,或者与终端之间传输的距离是最小的各收发节点最先接收到终 端发送的上行信号。由于上行信号和下行信号传输经历的信道状况通常具有相 同的特性, 因此, 终端可以根据第一收发节点集合中各收发节点所发送的下行 信号中最早到达终端的下行信号或功率最强的下行信号到达终端的时间来确 定向第一收发节点集合中各收发节点发送上行信号的 TA。
本发明实施例提供的定时提前量 TA的确定方法, 终端根据接入小区中一 个或多个收发节点的下行信号特征信息检测对应的一个或多个下行信号的到 达时间, 从而确定向该一个或多个收发节点发送上行信号的定时提前量 TA, 以使确定的 TA更加准确, 提高 UE发送的上行信号在期望时刻到达接收上行 信号的收发节点的准确度, 提高收发节点性能。
图 2为本发明提供的信息发送方法一个实施例的流程图,如图 2所示,该 方法包括:
5201、 确定接收终端上行信号的第一收发节点集合, 该第一收发节点集 合中包括一个或多个收发节点;
5202、 向终端接入小区中的一个或多个收发节点发送控制命令, 控制命 令用于指示向终端发送第一收发节点集合中一个或多个收发节点的下行信号 特征信息。
以上步骤的执行主体为基站。
终端通常会向接入小区中的各收发节点发送探测参考信号 (Sounding Reference Signal , SRS ), 相应的, 各收发节点可以将检测到的终端发送的
SRS上报给基站, 基站可以根据各收发节点检测到的 SRS的质量情况, 确定 用于接收终端上行信号的一个或多个收发节点, 即确定第一收发节点集合。
另夕卜,终端接入小区中的各收发节点也会向终端发送信道状态信息参考信 号 CSI-RS, 终端可以根据各收发节点发送的 CSI-RS的质量情况, 向基站推 荐用于接收终端上行信号的收发节点,即终端可以向基站发送第一收发节点集 合的建议信息,基站可以根据所述第一收发节点集合的建议信息, 并且综合各 收发节点与终端的信号传输情况等因素,确定接收所述终端上行信号的第一收 发节点集合。
基站确定第一收发节点集合后,可以向终端接入小区中的一个或多个收发 节点发送第一控制命令,指示该一个或多个收发节点向终端发送第一收发节点 集合中一个或多个收发节点的下行信号特征信息。
其中, 向终端发送下行信号特征信息的收发节点, 可以是第一收发集合中 的收发节点,也可以是终端接入小区中除第一收发集合之外的其他节点。这些 收发节点可以将第一收发集合中一个或多个收发节点的下行信号特征信息发 送给终端, 以使终端根据第一收发节点集合中各收发节点的下行信号特征信 息,检测第一收发节点集合中各收发节点发送的下行信号到达终端的时间, 并 根据第一收发节点集合中各收发节点发送的下行信号到达终端的时间,确定向 第一收发节点集合中各收发节点发送上行信号的定时提前量 TA。
另外, 收发节点的下行信号特征信息, 可以为收发节点中用于发送参考信 号的天线编号或天线端口编号, 还可以为收发节点发送的 CSI-RS的编号。 还 可以为其他能够区分不同收发节点发送的下行信号的特征信息。
终端接入小区中的各收发节点,通常会周期性向基站上报检测到的终端发 出的 SRS, 而终端向各收发节点发出的 SRS质量也可能发生变化, 因此, 基 站可以进一步根据终端接入小区中各收发节点上报的 SRS质量情况, 确定接 收终端上行信号的收发节点由第一收发节点集合变为第二收发节点集合,该第 二收发节点集合中包括一个或多个收发节点。
另外, 终端接入小区中的各收发节点向终端发送信道状态信息参考信号
CSI-RS也可能会发生变化, 这种情况下, 终端向基站推荐的用于接收终端上 行信号的收发节点可能发生变化, 因此,基站还可以根据终端发送的第一收发 节点集合的建议信息, 并且综合各收发节点与终端的信号传输情况等因素,确 定接收终端上行信号的收发节点由第一收发节点集合变为第二收发节点集合。
基站确定接收终端上行信号的节点变为第二收发节点集合后,可以向终端 接入小区中的一个或多个收发节点发送第二控制命令,指示向终端发送第二收 发节点集合中一个或多个收发节点的下行信号特征信息。
类似的,接收第二控制命令的收发节点可以是第一收发节点集合中的收发 节点,也可以是第二收发节点集合中的收发节点,还可以是终端接入小区中除 第一收发节点集合和第二收发节点集合之外的其他收发节点。第二收发节点集 合中各收发节点的下行信号特征信息也可以是收发节点中用于发送参考信号 的天线编号或天线端口编号, 还可以为收发节点发送的 CSI-RS的编号。 还可 以为其他能够区分不同收发节点发送的下行信号的特征信息。
本发明实施例提供的信息方法,基站确定接收终端上行信号的收发节点集 合,并指示终端接入小区中的一个或多个收发节点将收发节点集合中各收发节 点的下行信号特征信息发送给终端 ,以使终端能够根据这些收发节点的下行信 号特征信息检测对应的下行信号的到达时间 ,从而确定向该收发节点集合中各 节点发送上行信号的定时提前量 TA, 以使确定的 TA更加准确,提高 UE发送 的上行信号在期望时刻到达接收上行信号的收发节点的准确度,提高收发节点 性能。
图 3为本发明提供的信息发送方法又一个实施例的流程图, 如图 3所示, 该方法包括: S301、 接收基站发送的第一控制命令, 第一控制命令用于指示向终端发 送第一收发节点集合中一个或多个收发节点的下行信号特征信息,第一收发节 点集合中包括一个或多个收发节点,第一收发节点集合中包括本端收发节点或 不包括本端收发节点;
S302、 向终端发送第一收发节点集合中一个或多个收发节点的下行信号 特征信息。
该步骤的执行主体为收发节点,该收发节点可以为 AP、RRE、RRH、RRU、 基站或家庭基站等具有收发功能的设备, 在此不一一列举。
该收发节点可以是第一收发集合中的收发节点,也可以是终端接入小区中 除第一收发集合之外的其他节点。 收发节点接收到基站发送的第一控制命令 后,可以将第一收发集合中一个或多个收发节点的下行信号特征信息发送给终 端, 以是终端根据第一收发节点集合中各收发节点的下行信号特征信息,检测 第一收发节点集合中各收发节点发送的下行信号到达终端的时间,并根据第一 收发节点集合中各收发节点发送的下行信号到达终端的时间,确定向第一收发 节点集合中各收发节点发送上行信号的定时提前量 TA。
其中,该收发节点发送给终端的下行信号特征信息可以为收发节点中用于 发送参考信号的天线编号或天线端口编号, 还可以为收发节点发送的 CSI-RS 的编号。 还可以为其他能够区分不同收发节点发送的下行信号的特征信息。
收发节点发送的下行信号特征信息可以在向终端发送的媒体接入控制 ( Media Access Control , MAC M言令中,或者无线资源控制( Radio Resource Control , RRC )信令中携带。 可以理解的是, 收发节点还可以在与终端交互 的其他信令中携带下行信号特征信息。
当基站确定接收终端上行信号的收发节点由第一收发节点集合变为第二 收发节点集合时,基站可以向终端接入小区中的一个或多收发节点发送第二控 制命令,用于指示向终端发送第二收发节点集合中一个或多个收发节点的下行 信号特征信息, 第二收发节点集合中可以包括一个或多个收发节点。 收发节点接收基站发送的第二控制命令后,可以向终端发送第二收发节点 集合中一个或多个收发节点的下行信号特征信息。
类似的,第二收发节点中各节点的下行信号特征信息可以为收发节点中用 于发送参考信号的天线编号或天线端口编号, 还可以为收发节点发送的 CSI-RS的编号。 还可以为其他能够区分不同收发节点发送的下行信号的特征 信息。 各下行信号特征信息可以在向终端发送的 MAC信令中, 或者 RRC信 令中携带。 可以理解的是, 收发节点还可以在与终端交互的其他信令中携带下 行信号特征信息。
本发明实施例提供的信息发送方法,收发节点接收到基站发送的控制命令 后,可以将终端接入小区中一个或多个收发节点的下行信号特征信息发送给终 端, 终端检测对应的一个或多个下行信号的到达时间,从而确定向该一个或多 个收发节点发送上行信号的定时提前量 TA, 以使确定的 TA更加准确, 提高 UE发送的上行信号在期望时刻到达接收上行信号的收发节点的准确度, 提高 收发节点性能。
图 4为本发明提供的定时提前量 TA的确定方法另一个实施例的流程图, 如图 4所示,本实施中以第一收发节点集合中包括一个收发节点一第一收发节 点为例, 对本发明提供的定时提前量 TA的确定方法进行说明, 该方法具体包 括:
S401、 接收第一收发节点的下行信号特征信息;
S402、根据第一收发节点的下行信号特征信息,检测所述第一收发节点发 送的下行信号到达终端的时间;
S403、根据第一收发节点的下行信号到达终端的时间,确定相第一收发节 点发送上行信号的定时提前量 TA。
第一收发节点的下行信号的特征信息,可以是第一收发节点发送参考信号 的天线编号或天线端口编号。这是由于,每个收发节点对应的天线或天线端口 不同, 而不同的天线或天线端口发送的参考信号是不同的, 因此, 可以将第一 收发节点中用于发送参考信号的天线编号或者天线端口编号发送给终端,终端 可以检测对应天线或天线端口发出的参考信号的到达时间,从而确定向第一收 发节点发送上行信号的定时提前量 TA。 例如: 第一收发节点发送编号为 1 的 参考信号, 则可以将参考信号的编号为 1这一下行信号特征信息发送给终端, 则终端可以通过检测编号为 1的参考信号的到达时间,来确定向第一收发节点 发送上行信号的 TA值。
第一收发节点的下行信号的特征信息, 还可以是第一收发节点发送的 CSI-RS的编号, 终端可以通过检测该编号的 CSI-RS来确定向收发节点 1发 送上行信号的 TA。 这是由于, 不同收发节点发送的 CSI-RS不同, 因此, 可 以向终端发送第一收发节点发送 CSI-RS 的编号, 终端可以通过检测该 CSI-RS的编号所对应的 CSI-RS来确定向第一收发节点上行的 TA值。
由于在长期演进的进一步演进( Long Term Evolution Advanced , LTE-A ) 系统中, 收发节点发送 CSI-RS的频率较低, 通常至少 5ms发送 1次, 而收发节 点发送的 CRS的频率大约为每 1 ms发送 1次。 因此, 作为另一种较佳的实施方 式, 终端接收到第一收发节点发送的 CSI-RS的编号后, 可以检测 CRS编号对 应的 CSI-RS到达终端的时间, 进一步的, 终端可以才艮据 CSI-RS到达终端的时 间以及 CSI-RS编号与对应的公共参考信号 CRS之间的时间差,检测 CSI-RS编 号对应的 C RS到达终端的时间。
如图 5所示, 假设收发节点 1和收发节点 2都向终端发送下行信号, 收发节 点 1和收发节点 2发送的 CRS相同, 但发送的 CSI-RS不同。 每个收发节点向终 端发送的 CRS和 CSI-RS之间的时间差通常是定值 d , 终端在 t1时刻和 t3时刻均 接收到收发节点 1和收发节点 2发送的 CRS信号, 而终端并不知道这两个时刻 收到的 CRS分别来自哪个收发节点。 由于收发节点 1和收发节点 2发送的 CSI-RS是不同的, 因此终端能够检测到接收的 CSI-RS来自哪个收发节点, 如 图 4所示, 终端可以根据接收到的 CSI-RS的编号, 获知在 t2时刻检测的接收到 的 CSI-RS来自发送节点 1 , 在 t4时刻接收的 CSI-RS来自收发节点 2。 由于每个 收发节点发送的 CRS和 CSI-RS之间的时间差为 d , 因此, 终端能够判断出 t1时 刻接收到的 CRS来自收发节点 1 , t3时刻接收到的 CRS来自收发节点 2。 如果 收发节点 1和收发节点 2发送 CSI-RS的频率是每 5ms发送 1次,发送 CRS的频率 是每 1 ms发送 1次,则当终端在某一时刻检测到收发节点 1发送的 CSI-RS之后, 可以确定终端收到收发节点 1发送的 CRS的时刻为 t-d。 因此, 在后续 4个 ms时 间内、 终端可以在 t-d+n时刻( n取值为 1 ~4 )检测接收 CRS的时间。 可以看出, 终端在接收到第一收发节点的 CSI-RS后, 可以以 1 ms为频率, 确定 TA的调整 量, 从而提高终端的 TA调整精度。
当终端接入第一收发节点所在的小区时,终端会在首次接收到该小区中的 收发节点发送的下行信号之后的很短时间内,在小区的共享信道上发送上行信 号。 第一收发节点会根据上行信号到达时间与期望的上行信号到达时间, 为终 端下发一个初始 TA, 当终端与第一收发节点的距离发生变化后, 终端以该初 始 TA为基准, 根据距离变化前后第一收发节点的下行信号的到达时间的时间 差, 与初始 TA之和来确定距离变化之后的 TA。 只要终端与第一收发节点之间 的距离发生变化, 终端都会以最近一次确定的 TA, 与距离变化前后第一收发 节点的下行信号的到达时间的时间差之和, 确定距离变化之后的 TA。
以下以一个具体例子进行说明, 在终端的一次距离变化之前,信号在终端 与第一收发节点之间传输的距离为 D,第一收发节点向终端发送的下行信号在 !^时刻到达终端, 终端发送上行信号的定时提前为 TTA1。 当终端移动之后, 信 号在终端与第一收发节点之间传输的距离变为 D2,第一收发节点向终端发送的 信号在 T2时刻到达终端, 其中, Τ2= +(02-0^/0。 终端可以通过检测第一收 发节点发送的下行信号的到达时刻变化值 IVl , 从而确定距离变化后上行信 号的定时提前为
Figure imgf000017_0001
从而可以保证终端发送的上行信号在期望的时 刻到达第一收发节点。
图 6为本发明提供的定时提前量 ΤΑ的确定方法再一个实施例的流程图,如 图 6所示, 本实施中以接收终端上行信号的收发节点由第一收发节点集合变为 第二收发节点集合, 第一收发节点集合包括第一收发节点, 第二收发节点集合 包括第二收发节点, 对本发明提供的定时提前量 ΤΑ的确定方法进行说明, 该 方法具体包括:
5601、 接收第二收发节点的下行信号特征信息;
5602、 根据第二收发节点的下行信号特征信息, 检测第二收发节点发送 的下行信号到达终端的时间。
5603、 将第二收发节点发送的下行信号到达终端的时间与第一收发节点 发送的下行信号到达终端的时间的时间差,与向第一收发节点发送上行信号过 程中最近一次确定的 TA之和, 确定为向第二收发节点发送上行信号的 TA。
其中, S601和 S602具体可参见前一实施例中的相关描述,在此不再赘述。 以下以一个具体例子对本实施例中的 S603进行详细说明。 如果接收终端 上行信号的收发节点由收发节点 1变为收发节点 2 ,则终端可以分别获取收发节 点 1和收发节点 2所发送的下行信号到达终端的时间差为 TDIFF , 终端可以根据向 第一收发节点发送上行信号过程中最近一次确定的 TA--TA。ld和 TDIFF重新确定向 收发节点 2发送上行信号的 TANEW, TANEW=TA。LD+TDIFF
图 7为本发明提供的定时提前量 TA的确定方法再一个实施例的流程图,如 图 7所示, 本实施中以第一收发节点集合中包括多个收发节点, 对本发明提供 的定时提前量 TA的确定方法进行说明。 该方法具体包括:
S701、 接收第一收发节点集合中各收发节点的下行信号特征信息, 该第 一收发节点集合中包括多个收发节点;
S702、 根据第一收发节点集合中各收发节点的下行信号特征信息, 检测 第一收发节点集合中各收发节点发送的下行信号到达终端的时间;
S703、 根据第一收发节点集合中多个收发节点发送的下行信号中最先到 达的信号或者功率最强的信号到达终端的时间,确定向该多个收发节点发送上 行信号的定时提前量 TA。
其中, S701和 S702具体可参见前述实施例中的相关描述,在此不再赘述。 以下以一个具体例子对本实施例中 S702进行详细说明。 终端接入小区中 包括 4个收发节点, 所有收发节点都向终端发送下行信号, 第一收发节点集合 中包括收发节点 1和收发节点 2。 U E可以以收发节点 1和收发节点 2发送的下行 信号中最早到达的下行信号来确定向收发节点 1和收发节点 1发送上行信号的 TA。
例如:收发节点 1发送的下行信号比收发节点 2发送的下行信号更早到达终 端, 则终端可以根据收发节点 1所发送的下行信号的到达时间来确定 TA。
需要说明的是, 如果终端根据收发节点 1所发送的下行信号的到达时间来 确定向收发节点 2发送上行信号的 TA,这会导致终端发送的上行信号在收发节 点 2所期望的时刻之后到达收发节点 2。这一问题可以通过一些现有的正交频分 复用 ( Orthogonal Frequency Division Multiplexing , OFDM ) 系统中的循环 前缀( Cyclic Prefix, CP )技术来解决。 具体是: 如果终端需要发送 OFDM符 号长度为 N的上行信号: a(1 ), a(2), ..., a(N) , 则釆用 CP技术之后, 假设终端 在上行信号中增加长度为 K的循环前缀, 则终端发送的上行信号为: a(N-K+1 ), a(N-K+2), ..., a(N), a(1 ), a(2), ..., a(N) , 而接收终端发送的上行信号的收发节 点 1和收发节点 2只需从第 K+ 1个 OFDM符号开始接收上行信号即可。 当终端发 送多个上述增加长度为 K的 CP之后的上行信号时, 即使信号推迟到达收发节 点, 只要推迟到达的时间长度小于 CP的长度 K, 由于从第 K+1个 OFDM符号开 始的长度为 N的信号都包括了 a(1 )~a(N)中所有需要的信号, 因此,可以保证各 上行信号不受到任何符号间的干扰。 作为另一种可行的实施方式,终端可以以收发节点 1和收发节点 2中,发送 的下行信号中功率最强的下行信号的到达终端的时间, 确定向收发节点 1和收 发节点 2发送上行信号的定时提前量 TA。
这是由于,接收终端发送的上行信号的各收发节点中,通常与终端之间无 线信道最佳的,或者与终端之间传输的距离是最小的各收发节点最先接收到终 端发送的上行信号。由于上行信号和下行信号传输经历的信道状况通常具有相 同的特性, 因此,终端可以根据收发节点 1和收发节点 2所发送的下行信号中最 早到达终端的下行信号或功率最强的下行信号到达终端的时间来确定向收发 节点 1和收发节点 2发送上行信号的 TA。
图 8为本发明提供的定时提前量 TA的确定方法再一个实施例的流程图,如 图 8所示, 本实施中以接收终端上行信号的收发节点由第一收发节点集合变为 第二收发节点集合, 第一收发节点集合包括多个收发节点, 第二收发节点集合 包括多个收发节点, 对本发明提供的定时提前量 TA的确定方法进行说明, 该 方法具体包括:
S801、 接收第二收发节点集合中各节点的下行信号特征信息;
S802、 根据第二收发节点集合中各节点的下行信号特征信息, 检测第二 收发节点集合中各收发节点发送的下行信号到达终端的时间;
S803、 将第二收发节点集合中各节点发送的下行信号到达终端的时间与 第三收发节点发送的下行信号到达终端的时间的时间差中的最小值,与向第一 收发节点集合发送上行信号过程中最近一次确定的 TA之和, 确定为向第二节 点集合发送上行信号的 TA, 第三收发节点为下行信号最先到达终端的节点。
其中, S801和 S802具体可参见前述实施例中的相关描述,在此不再赘述。 以下以一个具体例子对本实施例中的 S803进行详细说明。 如果接收终端 上行信号的收发节点由收发节点 1和收发节点 2 , 变为收发节点 3和收发节点 4 , 其中, 收发节点 1发送的下行信号先于收发节点 2发送的下下行信号到达终端。 则终端可以分别获取收发节点 3和收发节点 4所发送的下行信号与收发节点 1 发送的下行信号到达终端的时间差 Tdiff1和 Tdiff2 , 终端可以根据 Tdiff1和 Tdiff2中的 最小值, 以及向收发节点 1和收发节点 2发送上行信号过程中最近一次确定的 TA--TA。ld , 以及 min ( Tdiff1 , Tdiff2 )重新确定向收发节点 3和收发节点 4发送上 行信号的 TAnew, TAnew=TA0id+ min ( Tdiff1 , Tdiff2 ) 。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程 , 是可以通过计算机程序来指令相关的硬件来完成,的程序可存储于一计算机可 读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施例的流程。 其 中,的存储介质可为磁碟、光盘、只读存储记忆体( Read-Only Memory, ROM ) 或随机存储记忆体( Random Access Memory, RAM )等。
图 9为本发明提供的执行上述定时提前量 TA的确定方法的终端一个实施 例的结构示意图, 如图 9所示, 该终端包括: 接收器 1 1、监测器 12和处理器 13; 其中,接收器 1 1 ,用于接收终端接入小区中的第一收发节点集合中各收发 节点的下行信号特征信息, 第一收发节点集合中包括一个或多个收发节点; 监测器 12, 用于根据第一收发节点集合中各收发节点的下行信号特征信 息, 检测第一收发节点集合中各收发节点发送的下行信号到达终端的时间; 处理器 13,用于根据第一收发节点集合中各收发节点发送的下行信号到达 终端的时间,确定向第一收发节点集合中各收发节点发送上行信号的定时提前 量 TA。
本发明还提供了执行上述定时提前量 TA的确定方法的终端的另一个实施 例, 在前一实施例的基础上, 作为一种可行的实施方式:
处理器 13可以具体用于:根据多个收发节点发送的下行信号中最先到达的 信号或者功率最强的信号到达终端的时间,确定向多个收发节点发送上行信号 的定时提前量 TA。
若接收终端上行信号的收发节点由第一收发节点集合变为第二收发节点 集合,则接收器 1 1还可以用于:接收第二收发节点集合中各节点的下行信号特 征信息;
监测器 12还可以用于:根据第二收发节点集合中各节点的下行信号特征信 息, 检测第二收发节点集合中各收发节点发送的下行信号到达终端的时间。
若第一收发节点集合包括第一收发节点,第二收发节点集合包括第二收发 节点,则处理器 13还可以用于:将第二收发节点发送的下行信号到达终端的时 间与第一收发节点发送的下行信号到达终端的时间的时间差,与向第一收发节 点发送上行信号过程中最近一次确定的 TA之和, 确定为向第二收发节点发送 上行信号的 TA。
若第一收发节点集合包括多个收发节点,第二收发节点集合包括多个收发 节点,则处理器 13还可以用于:将第二收发节点集合中各节点发送的下行信号 到达终端的时间与第三收发节点发送的下行信号到达终端的时间的时间差中 的最小值, 与向第一收发节点集合发送上行信号过程中最近一次确定的 TA之 和, 确定为向第二节点集合发送上行信号的 TA, 第三收发节点为下行信号最 先到达终端的节点。
作为一种可行的实施方式,下行信号特征信息为收发节点发送参考信号的 天线编号或天线端口编号;
相应的,监测器 12可以具体用于:检测天线编号或天线端口编号对应的参 考信号到达终端的时间。
作为另一种可行的实施方式,下行信号特征信息为收发节点发送的信道状 态信息参考信号 CSI-RS的编号;
相应的, 监测器 12可以具体用于: 检测 CSI-RS编号对应的 CSI-RS到达终 端的时间;或者,检测 CRS编号对应的 CSI-RS到达终端的时间,并根据 CSI-RS 到达终端的时间以及 CSI-RS编号与对应的公共参考信号 CRS之间的时间差, 检测 CSI-RS编号对应的 CRS到达终端的时间。 本实施中 ,下行信号特征信息可以通过接入小区中任意一个或多个收发节 点向终端发送的媒体接入控制 MAC信令或无线资源控制 RRC信令携带。
本发明实施例提供的终端, 与本发明实施例提供的定时提前量 TA的确定 方法相对应, 为定时提前量 TA的确定方法的执行设备, 终端执行方法的具体 过程可参见方法实施例, 不再赘述。
本发明实施例提供的终端,终端根据接入小区中一个或多个收发节点的下 行信号特征信息检测对应的一个或多个下行信号的到达时间,从而确定向该一 个或多个收发节点发送上行信号的定时提前量 TA , 以使确定的 TA更加准确, 提高 UE发送的上行信号在期望时刻到达接收上行信号的收发节点的准确度, 提高收发节点性能。
图 10为本发明提供的执行上述信息发送方法的基站一个实施例的结构示 意图, 如图 10所示, 该基站包括: 处理器 21和发送器 22;
处理器 21 ,用于确定接收终端上行信号的第一收发节点集合,第一收发节 点集合中包括一个或多个收发节点;
发送器 22,用于向终端接入小区中的一个或多个收发节点发送第一控制命 令,第一控制命令用于指示向终端发送第一收发节点集合中一个或多个收发节 点的下行信号特征信息。
图 1 1为本发明提供的执行上述信息发送方法的基站又一个实施例的结构 示意图, 如图 1 1所示, 该基站包括: 处理器 21和发送器 22;
进一步的, 该基站还可以包括:
接收器 23, 用于接收终端接入小区中各收发节点上报的探测参考信号
SRS, SRS为终端接入小区中各收发节点检测到的终端发出的 SRS;
处理器 21具体用于: 根据终端接入小区中各收发节点上报的 SRS质量, 确定接收终端上行信号的第一收发节点集合。
处理器 21还可以用于: 根据终端接入小区中各收发节点上报的 SRS质量, 确定接收终端上行信号的收发节点由第一收发节点集合变为第二收发节点集 合, 第二收发节点集合中包括一个或多个收发节点;
发送器 22还用于:向终端接入小区中的一个或多个收发节点发送第二控制 命令,第二控制命令用于指示向终端发送第二收发节点集合中一个或多个收发 节点的下行信号特征信息。
其中,下行信号特征信息为收发节点发送参考信号的天线编号或天线端口 编号, 或者为收发节点发送的信道状态信息参考信号 CSI-RS的编号。
本发明实施例提供的基站, 与本发明实施例提供的信息发送方法相对应, 为信息发送方法的执行设备,基站执行方法的具体过程可参见方法实施例, 不 再赘述。
本发明实施例提供基站, 用于确定接收终端上行信号的收发节点集合, 并 指示终端接入小区中的一个或多个收发节点将收发节点集合中各收发节点的 下行信号特征信息发送给终端,以使终端能够根据这些收发节点的下行信号特 征信息检测对应的下行信号的到达时间,从而确定向该收发节点集合中各节点 发送上行信号的定时提前量 TA, 以使确定的 TA更加准确,提高 UE发送的上行 信号在期望时刻到达接收上行信号的收发节点的准确度, 提高收发节点性能。
图 12为本发明提供的执行上述信息发送方法的收发节点一个实施例的结 构示意图, 如图 12所示, 该收发节点包括:
接收器 31 ,用于接收基站发送的第一控制命令,第一控制命令用于指示向 终端发送第一收发节点集合中一个或多个收发节点的下行信号特征信息,第一 收发节点集合中包括一个或多个收发节点,第一收发节点集合中包括本端收发 节点或不包括本端收发节点;
发送器 32,用于向终端发送第一收发节点集合中一个或多个收发节点的下 行信号特征信息。
进一步的,接收器 31还可以用于: 接收基站发送的第二控制命令, 第二控 制命令用于指示向终端发送第二收发节点集合中一个或多个收发节点的下行 信号特征信息, 第二收发节点集合中包括一个或多个收发节点, 第二收发节点 集合中包括本端收发节点或不包括本端收发节点,第二收发节点集合为变更后 的接收终端上行信号的收发节点集合;
发送器还可以用于:向终端发送第二收发节点集合中一个或多个收发节点 的下行信号特征信息。
本发明实施例提供的收发节点,与本发明实施例提供的信息发送方法相对 应, 为信息发送方法的执行设备, 收发节点执行方法的具体过程可参见方法实 施例, 不再赘述。
本发明实施例提供的收发节点,根据基站的控制命令,将终端接入小区中 一个或多个收发节点的下行信号特征信息发送给终端,终端检测对应的一个或 多个下行信号的到达时间 ,从而确定向该一个或多个收发节点发送上行信号的 定时提前量 TA, 以使确定的 TA更加准确,提高 UE发送的上行信号在期望时刻 到达接收上行信号的收发节点的准确度, 提高收发节点性能。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限 制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员 应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其 中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的 本质脱离本发明各实施例技术方案的精神和范围。

Claims

1、 一种定时提前量 TA的确定方法, 其特征在于, 包括:
接收终端接入小区中的第一收发节点集合中各收发节点的下行信号特征 信息, 所述第一收发节点集合中包括一个或多个收发节点;
根据所述第一收发节点集合中各收发节点的下行信号特征信息,检测所述 第一收发节点集合中各收发节点发送的下行信号到达所述终端的时间;
根据所述第一收发节点集合中各收发节点发送的下行信号到达所述终端 的时间,确定向所述第一收发节点集合中各收发节点发送上行信号的定时提前 量 TA。
2、 根据权利要求 1所述的方法, 其特征在于, 若所述第一收发节点集合 中包括多个收发节点,则所述根据所述第一收发节点集合中各收发节点发送的 下行信号到达所述终端的时间,确定向所述第一收发节点集合中各收发节点发 送上行信号的定时提前量 TA, 具体为:
根据所述多个收发节点发送的下行信号中最先到达的信号或者功率最强 的信号到达所述终端的时间,确定向所述多个收发节点发送上行信号的定时提 前量 TA。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 若接收所述终端上行 信号的收发节点由第一收发节点集合变为第二收发节点集合,所述第二收发节 点集合中包括一个或多个收发节点, 则所述方法还包括:
接收所述第二收发节点集合中各节点的下行信号特征信息;
根据所述第二收发节点集合中各节点的下行信号特征信息,检测所述第二 收发节点集合中各收发节点发送的下行信号到达所述终端的时间。
4、 根据权利要求 3所述的方法, 其特征在于, 所述第一收发节点集合包 括第一收发节点, 所述第二收发节点集合包括第二收发节点, 则所述根据所述 第二收发节点集合中各节点的下行信号特征信息,检测所述第二收发节点集合 中各收发节点发送的下行信号到达所述终端的时间之后, 还包括: 将所述第二收发节点发送的下行信号到达所述终端的时间与所述第一收 发节点发送的下行信号到达所述终端的时间的时间差,与向所述第一收发节点 发送上行信号过程中最近一次确定的 TA之和, 确定为向所述第二收发节点发 送上行信号的 TA;
或者, 所述第一收发节点集合包括多个收发节点, 所述第二收发节点集合 包括多个收发节点,则所述根据所述第二收发节点集合中各节点的下行信号特 征信息,检测所述第二收发节点集合中各收发节点发送的下行信号到达所述终 端的时间之后, 还包括:
将所述第二收发节点集合中各节点发送的下行信号到达所述终端的时间 与第三收发节点发送的下行信号到达所述终端的时间的时间差中的最小值,与 向所述第一收发节点集合发送上行信号过程中最近一次确定的 TA之和, 确定 为向所述第二节点集合发送上行信号的 TA, 所述第三收发节点为所述第一收 发节点集合中下行信号最先到达所述终端的节点。
5、 根据权利要求 1-4 中任一所述的方法, 其特征在于, 所述下行信号特 征信息为收发节点发送参考信号的天线编号或天线端口编号;
所述检测下行信号到达所述终端的时间, 具体为:
检测所述天线编号或天线端口编号对应的参考信号到达所述终端的时间; 或者, 所述下行信号特征信息为收发节点发送的信道状态信息参考信号 CSI-RS的编号;
所述检测下行信号到达所述终端的时间, 具体为:
检测所述 CSI-RS编号对应的 CSI-RS到达所述终端的时间;
或者,检测所述 CRS编号对应的 CSI-RS到达所述终端的时间, 并根据所 述 CSI-RS到达所述终端的时间以及所述 CSI-RS编号与对应的公共参考信号 CRS之间的时间差, 检测所述 CSI-RS编号对应的 CRS到达所述终端的时间。
6、 根据权利要求 1-5 中任一所述的方法, 其特征在于, 所述下行信号特 征信息通过所述接入小区中任意一个或多个收发节点向所述终端发送的媒体 接入控制 MAC信令或无线资源控制 RRC信令携带。
7、 一种信息发送方法, 其特征在于, 包括:
确定接收终端上行信号的第一收发节点集合,所述第一收发节点集合中包 括一个或多个收发节点;
向所述终端接入小区中的一个或多个收发节点发送第一控制命令,所述第 一控制命令用于指示向所述终端发送所述第一收发节点集合中一个或多个收 发节点的下行信号特征信息。
8、 根据权利要求 7所述的方法, 其特征在于, 所述确定接收终端上行信 号的第一收发节点集合, 具体为:
接收所述终端接入小区中各收发节点上报的探测参考信号 SRS,所述 SRS 为所述终端接入小区中各收发节点检测到的所述终端发出的 SRS;
根据所述终端接入小区中各收发节点上报的 SRS质量, 确定接收所述终 端上行信号的第一收发节点集合。
9、 根据权利要求 7或 8所述的方法, 其特征在于, 还包括:
根据所述终端接入小区中各收发节点上报的 SRS质量, 确定接收所述终 端上行信号的收发节点由第一收发节点集合变为第二收发节点集合,所述第二 收发节点集合中包括一个或多个收发节点;
向所述终端接入小区中的一个或多个收发节点发送第二控制命令,所述第 二控制命令用于指示向所述终端发送所述第二收发节点集合中一个或多个收 发节点的下行信号特征信息。
10、 根据权利要求 7-9任一项所述的方法, 其特征在于, 所述下行信号特 征信息为收发节点发送参考信号的天线编号或天线端口编号,或者为收发节点 发送的信道状态信息参考信号 CSI-RS的编号。
11、 一种信息发送方法, 其特征在于, 包括:
接收基站发送的第一控制命令,所述第一控制命令用于指示向所述终端发 送所述第一收发节点集合中一个或多个收发节点的下行信号特征信息,所述第 一收发节点集合中包括一个或多个收发节点,所述第一收发节点集合中包括本 端收发节点或不包括本端收发节点;
向所述终端发送第一收发节点集合中一个或多个收发节点的下行信号特 征信息。
12、 根据权利要求 11所述的方法, 其特征在于, 所述方法还包括: 接收所述基站发送的第二控制命令,所述第二控制命令用于指示向所述终 端发送所述第二收发节点集合中一个或多个收发节点的下行信号特征信息,所 述第二收发节点集合中包括一个或多个收发节点,所述第二收发节点集合中包 括本端收发节点或不包括本端收发节点,所述第二收发节点集合为变更后的接 收所述终端上行信号的收发节点集合;
向所述终端发送所述第二收发节点集合中一个或多个收发节点的下行信 号特征信息。
13、根据权利要求 11或 12所述的方法, 所述下行信号特征信息通过向所 述终端发送的媒体接入控制 MAC信令或无线资源控制 RRC信令携带。
14、 一种终端, 其特征在于, 包括:
接收器,用于接收终端接入小区中的第一收发节点集合中各收发节点的下 行信号特征信息, 所述第一收发节点集合中包括一个或多个收发节点;
监测器 ,用于根据所述第一收发节点集合中各收发节点的下行信号特征信 息,检测所述第一收发节点集合中各收发节点发送的下行信号到达所述终端的 时间;
处理器,用于根据所述第一收发节点集合中各收发节点发送的下行信号到 达所述终端的时间,确定向所述第一收发节点集合中各收发节点发送上行信号 的定时提前量 TA。
15、 根据权利要求 14所述的终端, 其特征在于, 所述处理器具体用于: 根据所述多个收发节点发送的下行信号中最先到达的信号或者功率最强 的信号到达所述终端的时间,确定向所述多个收发节点发送上行信号的定时提 前量 TA。
16、根据权利要求 14或 15所述的终端,其特征在于,所述接收器还用于: 接收所述第二收发节点集合中各节点的下行信号特征信息,所述第二收发节点 集合为变更后的接收所述终端上行信号的收发节点集合;
所述监测器还用于:根据所述第二收发节点集合中各节点的下行信号特征 信息,检测所述第二收发节点集合中各收发节点发送的下行信号到达所述终端 的时间。
17、 根据权利要求 16所述的终端, 其特征在于, 所述第一收发节点集合 包括第一收发节点, 所述第二收发节点集合包括第二收发节点, 则所述处理器 还用于:将所述第二收发节点发送的下行信号到达所述终端的时间与所述第一 收发节点发送的下行信号到达所述终端的时间的时间差,与向所述第一收发节 点发送上行信号过程中最近一次确定的 TA之和, 确定为向所述第二收发节点 发送上行信号的 TA;
或者, 所述第一收发节点集合包括多个收发节点, 所述第二收发节点集合 包括多个收发节点, 则所述处理器还用于: 将所述第二收发节点集合中各节点 发送的下行信号到达所述终端的时间与第三收发节点发送的下行信号到达所 述终端的时间的时间差中的最小值,与向所述第一收发节点集合发送上行信号 过程中最近一次确定的 TA之和, 确定为向所述第二节点集合发送上行信号的 TA, 所述第三收发节点为所述第一收发节点集合中下行信号最先到达所述终 端的节点。
18、 根据权利要求 14-17任一项所述的终端, 其特征在于, 所述接收器接 收的下行信号特征信息为收发节点发送参考信号的天线编号或天线端口编号; 则所述监测器具体用于:检测所述天线编号或天线端口编号对应的参考信号到 达所述终端的时间;
或者所述接收器接收的下行信号特征信息为收发节点发送的信道状态信 息参考信号 CSI-RS的编号; 则所述监测器具体用于: 检测所述 CSI-RS编号 对应的 CSI-RS到达所述终端的时间; 或者具体用于,检测所述 CRS编号对应 的 CSI-RS到达所述终端的时间, 并根据所述 CSI-RS到达所述终端的时间以 及所述 CSI-RS 编号与对应的公共参考信号 CRS 之间的时间差, 检测所述 CSI-RS编号对应的 CRS到达所述终端的时间。
19、 一种基站, 其特征在于, 包括:
处理器, 用于确定接收终端上行信号的第一收发节点集合, 所述第一收发 节点集合中包括一个或多个收发节点;
发送器,用于向所述终端接入小区中的一个或多个收发节点发送第一控制 命令,所述第一控制命令用于指示向所述终端发送所述第一收发节点集合中一 个或多个收发节点的下行信号特征信息。
20、 根据权利要求 19所述的基站, 其特征在于, 还包括:
接收器, 用于接收所述终端接入小区中各收发节点上报的探测参考信号 SRS, 所述 SRS 为所述终端接入小区中各收发节点检测到的所述终端发出的 SRS;
所述处理器具体用于: 根据所述终端接入小区中各收发节点上报的 SRS 质量, 确定接收所述终端上行信号的第一收发节点集合。
21、根据权利要求 19或 20所述的基站,其特征在于,所述处理器还用于: 根据所述终端接入小区中各收发节点上报的 SRS质量, 确定接收所述终端上 行信号的收发节点由第一收发节点集合变为第二收发节点集合,所述第二收发 节点集合中包括一个或多个收发节点; 所述发送器还用于:向所述终端接入小区中的一个或多个收发节点发送第 二控制命令,所述第二控制命令用于指示向所述终端发送所述第二收发节点集 合中一个或多个收发节点的下行信号特征信息。
22、 根据权利要求 19-21任一项所述的基站, 其特征在于, 所述下行信号 特征信息为收发节点发送参考信号的天线编号或天线端口编号,或者为收发节 点发送的信道状态信息参考信号 CSI-RS的编号。
23、 一种收发节点, 其特征在于, 包括:
接收器, 用于接收基站发送的第一控制命令, 所述第一控制命令用于指示 向所述终端发送所述第一收发节点集合中一个或多个收发节点的下行信号特 征信息, 所述第一收发节点集合中包括一个或多个收发节点, 所述第一收发节 点集合中包括本端收发节点或不包括本端收发节点;
发送器,用于向所述终端发送第一收发节点集合中一个或多个收发节点的 下行信号特征信息。
24、 根据权利要求 23所述的收发节点, 其特征在于,
所述接收器还用于: 接收所述基站发送的第二控制命令, 所述第二控制命 令用于指示向所述终端发送所述第二收发节点集合中一个或多个收发节点的 下行信号特征信息, 所述第二收发节点集合中包括一个或多个收发节点, 所述 第二收发节点集合中包括本端收发节点或不包括本端收发节点,所述第二收发 节点集合为变更后的接收所述终端上行信号的收发节点集合;
所述发送器还用于:向所述终端发送所述第二收发节点集合中一个或多个 收发节点的下行信号特征信息。
PCT/CN2012/079729 2011-08-05 2012-08-06 定时提前量ta的确定方法、信息发送方法和设备 WO2013020490A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12822102.5A EP2728946A1 (en) 2011-08-05 2012-08-06 Method for determining the timing advance ta , method and device for transmitting the information
US14/167,525 US20140148186A1 (en) 2011-08-05 2014-01-29 Method for determining timing advance ta, and method and device for transmitting information

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110223793XA CN102917393A (zh) 2011-08-05 2011-08-05 定时提前量ta的确定方法、信息发送方法和设备
CN201110223793.X 2011-08-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/167,525 Continuation US20140148186A1 (en) 2011-08-05 2014-01-29 Method for determining timing advance ta, and method and device for transmitting information

Publications (1)

Publication Number Publication Date
WO2013020490A1 true WO2013020490A1 (zh) 2013-02-14

Family

ID=47615585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079729 WO2013020490A1 (zh) 2011-08-05 2012-08-06 定时提前量ta的确定方法、信息发送方法和设备

Country Status (4)

Country Link
US (1) US20140148186A1 (zh)
EP (1) EP2728946A1 (zh)
CN (1) CN102917393A (zh)
WO (1) WO2013020490A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103744051B (zh) * 2013-12-11 2016-03-23 南京邮电大学 一种单频网定位系统中的基站识别方法
EP4221377A1 (en) * 2015-03-20 2023-08-02 Ntt Docomo, Inc. Terminal, base station, and communication method
CN107734628B (zh) * 2016-08-10 2019-12-20 电信科学技术研究院 一种通信系统中的信息处理方法及装置
WO2018072842A1 (en) * 2016-10-21 2018-04-26 Telefonaktiebolaget Lm Ericsson (Publ) A method of assigning transmission timing to radio terminal, radio network node and radio terminal
US10356740B2 (en) * 2016-11-29 2019-07-16 Huawei Technologies Co., Ltd. System and scheme for uplink synchronization for small data transmissions
WO2018161299A1 (zh) * 2017-03-09 2018-09-13 华为技术有限公司 无线通信的方法、控制设备、节点和终端设备
US11375524B2 (en) 2017-08-09 2022-06-28 Apple Inc. Time advance adjustment delay for shortened transmission time interval under carrier aggregation or dual connectivity
CN110557782B (zh) * 2018-06-01 2021-03-05 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
US11638250B2 (en) 2018-06-01 2023-04-25 Shanghai Langbo Communication Technology Company Limiied Method and device in communication node used for NR NTN communications
EP4016884A4 (en) * 2019-08-19 2022-08-24 Huawei Technologies Co., Ltd. SIGNAL TRANSMISSION METHOD AND DEVICE, SIGNAL PROCESSING METHOD AND DEVICE, AND RADAR SYSTEM
CN114175769A (zh) * 2019-09-06 2022-03-11 诺基亚技术有限公司 基于到达时间的上行链路信道同步
CN113473589B (zh) * 2020-03-31 2022-12-06 华为技术有限公司 一种定时提前量的确定方法及通信装置
CN118317416A (zh) * 2023-01-06 2024-07-09 中国移动通信有限公司研究院 一种定时提前的传输方法、装置、设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007092670A2 (en) * 2006-02-06 2007-08-16 Motorola, Inc. Neighbor-assisted handover in mobile communications systems
CN101572577A (zh) * 2008-04-30 2009-11-04 大唐移动通信设备有限公司 一种实现上行发送定时提前的方法和装置
CN101742518A (zh) * 2008-11-06 2010-06-16 华为技术有限公司 一种定时调整方法、系统和装置
CN101741457A (zh) * 2008-11-05 2010-06-16 华为技术有限公司 接入点选择方法、装置及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2451109A1 (en) * 2003-06-30 2012-05-09 Fujitsu Limited Multiple-input multiple-output transmission system
US20050053099A1 (en) * 2003-09-05 2005-03-10 Spear Stephen L. Timing advance determinations in wireless communications devices and methods
US20080084849A1 (en) * 2006-10-06 2008-04-10 Interdigital Technology Corporation Autonomous timing advance adjustment during handover
US8031693B2 (en) * 2007-11-20 2011-10-04 Research In Motion Limited System and method for timing synchronization
KR101237666B1 (ko) * 2009-07-28 2013-02-26 엘지전자 주식회사 다중 입출력 통신 시스템에서 셀간 간섭을 제거하기 위한 기준신호 전송 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007092670A2 (en) * 2006-02-06 2007-08-16 Motorola, Inc. Neighbor-assisted handover in mobile communications systems
CN101572577A (zh) * 2008-04-30 2009-11-04 大唐移动通信设备有限公司 一种实现上行发送定时提前的方法和装置
CN101741457A (zh) * 2008-11-05 2010-06-16 华为技术有限公司 接入点选择方法、装置及系统
CN101742518A (zh) * 2008-11-06 2010-06-16 华为技术有限公司 一种定时调整方法、系统和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2728946A4 *

Also Published As

Publication number Publication date
CN102917393A (zh) 2013-02-06
EP2728946A4 (en) 2014-05-07
US20140148186A1 (en) 2014-05-29
EP2728946A1 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
WO2013020490A1 (zh) 定时提前量ta的确定方法、信息发送方法和设备
US12058657B2 (en) Autonomous timing adjustment for a wireless device
US11336423B2 (en) Timing synchronization for downlink (DL) transmissions in coordinated multipoint (CoMP) systems
CN109792608B (zh) 上行链路同步操作的免定时调整方案
CN111630894B (zh) 小区组之间的传输的切换
CN110036685B (zh) 用于适应随机接入配置来控制与基于srs载波的切换相关联的中断的方法和装置
KR20240014629A (ko) 채널 구성 방법 및 장치, 전력 제어 방법 및 장치, 사용자 장비, 기지국 및 저장 매체
EP2179551B1 (en) A method and apparatus for configuring sounding signals in a wireless communication network
US11012173B2 (en) Method and network node for enabling reduced interference in a wireless network
JP6100878B2 (ja) 協調マルチポイント(CoMP)システムにおけるダウンリンク(DL)送信のためのタイミング同期
WO2013029464A1 (zh) 定时提前量ta的确定方法和设备
EP2880928B1 (en) A method and apparatus for uplink time alignment upon timing advance group split or creation
WO2010130209A1 (zh) 下行测量导频的配置和发送方法和装置
WO2018040674A1 (zh) 上行传输方法、下行传输方法、用户设备和基站
WO2018014830A1 (zh) 时间提前量的测量方法及装置
WO2018143846A1 (en) Timing-advance handling for separate beam-pair links
WO2020079763A1 (ja) 端末及び通信方法
CN113228788B (zh) 闭环远程干扰管理
WO2020030048A1 (zh) 通信方法及装置
EP3777366A1 (en) Flexible selection of timing advance control method for supplementary uplink connections
WO2013170782A1 (zh) 配置信道测量和进行上行信道测量的方法、系统及设备
WO2014146613A1 (zh) 校正信号的发送方法及基站
WO2022057820A1 (zh) 测量方法、发送方法及相关设备
CN116456361A (zh) 定时测量上报、定时配置、信息传输方法、装置及设备
CN117545059A (zh) 定时提前获取方法、装置、终端及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822102

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012822102

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE