WO2013020477A1 - 一种确定相邻小区的重叠覆盖区域的方法、装置、计算机程序和存储介质 - Google Patents

一种确定相邻小区的重叠覆盖区域的方法、装置、计算机程序和存储介质 Download PDF

Info

Publication number
WO2013020477A1
WO2013020477A1 PCT/CN2012/079583 CN2012079583W WO2013020477A1 WO 2013020477 A1 WO2013020477 A1 WO 2013020477A1 CN 2012079583 W CN2012079583 W CN 2012079583W WO 2013020477 A1 WO2013020477 A1 WO 2013020477A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
cell
antenna
polarized antenna
port
Prior art date
Application number
PCT/CN2012/079583
Other languages
English (en)
French (fr)
Inventor
李红
孙鉴
俞昌虹
董鑫
戴明艳
古莉珊
邓也
张晓辉
王康祥
Original Assignee
中国移动通信集团设计院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信集团设计院有限公司 filed Critical 中国移动通信集团设计院有限公司
Publication of WO2013020477A1 publication Critical patent/WO2013020477A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists

Definitions

  • the present invention relates to the field of wireless coverage of GSM (Global System of Mobile communication), and more particularly to a method, apparatus, computer program and storage medium for determining overlapping coverage areas of adjacent cells.
  • GSM Global System of Mobile communication
  • GSM key events such as: cell reselection, location update, cell handover, etc., as shown in Table 1 below for the GSM key event requirements table:
  • C2 is a channel quality parameter of the cell
  • the mobile terminal calculates that the C2 value of a neighboring cell (located in the same location area as the current cell) exceeds the C2 value of the current cell of the mobile terminal and maintains for more than 5 seconds, the mobile terminal starts.
  • the cell is reselected and enters the cell
  • CRH is the cell reselection lag parameter (CRH) value
  • Rxlev is the signal strength (level) of the cell
  • Margin is the level switching threshold
  • the overlapping coverage areas between all GSM neighboring areas must ensure that the mobile terminal has sufficient time to complete the above events when crossing the cell. For a mobile terminal that does not move or move at a low speed, this time is not affected, but for a mobile terminal that moves at a high speed, the distance corresponding to the time is relatively long, the overlapping coverage area is large, and the setting is relatively difficult.
  • the high-speed train has a fast moving speed, such as 350 km/h. Therefore, the switching overlap area of the network is required to be high, and the switching overlap area is calculated as follows:
  • the c-point mobile terminal initiates the handover measurement calculation.
  • the a and b points are the mobile stations in different directions to complete the handover time, and the handover is completed in the c->b (or c->a) segment.
  • Table 2 GSM key event time requirements at different speeds and different switching times
  • the current high-speed rail coverage method is to extend the radio frequency signal and use multiple distributed remote ends to extend the coverage distance of a single cell, thereby extending the coverage of a single cell to more than 10 km.
  • the single-distance unidirectional coverage distance is about lkm.
  • the adjacent remote units of the two cells ensure the overlapping coverage distance, and the distance control is about 1.2 km, and the antenna directions of the two cells are opposite. Cover the junction area.
  • the overlapping coverage of the scheme is performed by two opposite antennas respectively, and the strength difference between the serving cell and the neighboring cell at the time of handover can meet the requirements.
  • the directions of the two antennas are different and the positions are different, it is actually difficult to control the overlapping coverage areas. Due to the large difference in terrain and terrain, the overlapping areas may be insufficient or excessive.
  • two adjacent cell signals are connected to the same border remote device.
  • the device covers the area, and there are signals of two adjacent cells at the same time, and the signal strengths are similar.
  • the solution 2 solves the problem of different coverage between different antennas by connecting two signals to the same remote device and transmitting at the same time.
  • two adjacent cells need to generate different field strength gradients in the left and right parts of the overlapping coverage area respectively, the conditions of reselection and handover are satisfied, and the scheme has determined the field strength difference of the entire overlapping area at the input end. (generally the same), in actual re-election and switching, there is often a situation in which the overlap area is invalid because the field strength of the two campuses is too close in the entire overlapping area.
  • the technical problem to be solved by the present invention is to provide a method, a device, a computer program and a storage medium for determining an overlapping coverage area of a neighboring cell, which can ensure the time requirement of reselection and handover of a mobile terminal at a high speed in a neighboring cell and The requirement of the field strength gradient of the cell enables the reselection and switching of the mobile terminal running at high speed in the train to be completed smoothly.
  • an embodiment of the present invention provides a method for determining an overlapping coverage area of a neighboring cell, including:
  • the difference between the strength of the third signal and the fourth signal is a difference between the first signal strengths
  • the difference between the fifth signal and the sixth signal is a second signal strength difference; the first signal strength difference is the same as the second signal strength difference.
  • the step of introducing the third signal and the sixth signal into the antenna of the first cell is specifically:
  • the step of introducing the fourth signal and the fifth signal into the antenna of the second cell is specifically:
  • the first remote device is the first remote radio unit of the first cell, and the first signal includes: a signal output by the TXRX1 port of the first remote radio unit and/or an RX2 port output. signal of;
  • the second remote device is a second remote radio unit of the second cell, and the second signal includes: a signal output by the TXRX1 port of the second remote radio unit and/or a signal output by the RX2 port. .
  • the antenna in the first cell and the antenna in the second cell are disposed in a back direction.
  • An embodiment of the present invention further provides an apparatus for determining an overlapping coverage area of a neighboring cell, including: a first remote device located in the first cell;
  • a second remote device located in the second cell; where the first cell and the second cell are neighboring cells; a first differential shunt device connected to the first remote device, configured to split the first signal output by the first remote device into a third signal and a fourth signal, where the third signal The intensity is greater than the intensity of the fourth signal;
  • a second differential shunt device connected to the second remote device, configured to split the second signal output by the second remote device into a fifth signal and a sixth signal, where the fifth signal The intensity is greater than the intensity of the sixth signal;
  • An antenna located in the first cell and connected to the first differentiated shunt device, configured to input the third signal and the sixth signal;
  • An antenna located in the second cell and coupled to the second differentiated shunt device for inputting the fourth signal and the fifth signal.
  • first differentiated shunt device and the second differentiated shunt device are the same differential shunt device.
  • the differentiated shunt device is a coupler.
  • the antenna of the first cell in the foregoing apparatus includes: a first dual-polarized antenna, wherein the third signal and the sixth signal are directly input into the first dual-polarized antenna; or
  • the antenna of the first cell includes: a first single-polarized antenna and a second single-polarized antenna, where the third signal is directly input into the first single-polarized antenna, and the sixth signal is directly input into the In the second single-polarized antenna, the first single-polarized antenna and the second single-polarized antenna are disposed in the same direction and in the same direction.
  • the device further includes: a first combiner connected to the first differentiated shunt device, configured to combine the third signal and the sixth signal into a seventh signal, and Seven signals are input into the antenna of the first cell.
  • the antenna of the second cell includes: a second dual-polarized antenna, wherein the fourth signal and the five signals are directly input into the second dual-polarized antenna; or
  • the antenna of the second cell includes: a third single-polarized antenna and a fourth single-polarized antenna, where the fourth signal is directly input into the third single-polarized antenna, and the fifth signal is directly input into the In the fourth single-polarized antenna, the third single-polarized antenna and the fourth single-polarized antenna are disposed in the same direction and in the same direction.
  • the device further includes: a second combiner connected to the second differentiated shunt device, And configured to combine the fourth signal and the fifth signal into an eighth signal, and input the eighth signal into an antenna of the second cell.
  • the first remote device is the first remote radio unit of the first cell, and the first signal includes: a signal output by the TXRX1 port of the first remote radio unit and/or an RX2 port output. signal of;
  • the second remote device is a second remote radio unit of the second cell, and the second signal includes: a signal output by the TXRX1 port of the second remote radio unit and/or a signal output by the RX2 port. .
  • the antenna in the first cell and the antenna in the second cell are disposed in a back direction.
  • Embodiments of the present invention also provide a computer program capable of executing the above method and a storage medium storing the computer program.
  • the signals of the remote devices (such as the first remote device and the second remote device) of the neighboring cells (such as the first cell and the second cell are split) into two channels with different strengths and weaknesses.
  • the signal, and the strong signal of each cell and the weak signal of the neighboring cell are introduced into the coverage antenna of the local cell, so that the signal of the adjacent cell in the coverage area of the cell is weak and the coverage direction is consistent with the local cell ( That is, different signals of different cells cover the same area, so that the neighboring cells covered by the wireless coverage of the cell overlap the coverage area, which can meet the time requirement of reselection and handover, and can ensure the field strength gradient requirement, thereby ensuring the train.
  • the reselection and switching between adjacent cells in the high-speed traffic state is successfully completed.
  • FIG. 1 is a schematic diagram of a high-speed rail GSM network handover in the prior art
  • FIG. 2 is a diagram of a first high-speed rail GSM network coverage mode commonly used in the prior art
  • FIG. 3 is a second high-speed rail GSM network coverage mode in the prior art
  • FIG. 4 is a determination of a neighboring cell according to the present invention. Method flow diagram for overlapping coverage areas
  • FIG. 5 is a structural diagram of a first embodiment of an apparatus for determining an overlapping coverage area of a neighboring cell according to the present invention
  • FIG. 6 is a structural diagram of a second embodiment of an apparatus for determining an overlapping coverage area of a neighboring cell according to the present invention.
  • FIG. 7 is a schematic diagram of a third embodiment of an apparatus for determining an overlapping coverage area of a neighboring cell according to the present invention.
  • FIG. 8 is a structural diagram of a fourth embodiment of an apparatus for determining an overlapping coverage area of a neighboring cell according to the present invention.
  • FIG. 9 is a structural diagram of a fifth embodiment of an apparatus for determining an overlapping coverage area of a neighboring cell according to the present invention.
  • FIG. 10 is a schematic diagram of the effect of overlapping coverage areas of adjacent cells according to the present invention.
  • the present invention is directed to the problem that the existing GSM network adjacent cell overlap region covers the reselection and handover of the mobile terminal in the high-speed operation state in the high-speed operation state, and provides an overlapping coverage area of the neighboring cell.
  • the method and the device can ensure the time requirement of the reselection and handover of the mobile terminal in the high-speed operation and the requirement of the cell field strength gradient, so that the mobile terminal operating at high speed in the train can be reselected and switched between adjacent cells. Can be completed successfully.
  • the method for determining an overlapping coverage area of a neighboring cell of the present invention includes: Step 11: Acquire a first signal of a first remote device of a first cell;
  • Step 12 Acquire a second signal of the second remote device of the second cell, where the first cell and the second cell are neighboring cells;
  • Step 13 dividing the first signal into a third signal and a fourth signal, wherein the strength of the third signal is greater than the intensity of the fourth signal;
  • Step 14 Split the second signal into a fifth signal and a sixth signal, where the strength of the fifth signal is greater than the strength of the sixth signal;
  • Step 15 introducing a third signal and a sixth signal into an antenna of the first cell
  • Step 16 introducing a fourth signal and a fifth signal into an antenna of the second cell
  • Step 17 determining that the overlapping coverage area of the antenna of the first cell and the antenna of the second cell is an overlapping coverage area of the first cell and the second cell.
  • the foregoing embodiment of the present invention splits the signals of the remote devices (such as the first remote device and the second remote device) of the neighboring cells (such as the first cell and the second cell) into two channels with different strengths and weaknesses.
  • Signaling and introducing a strong signal of each cell and a weak signal of a neighboring cell into a coverage antenna of the cell, In the coverage area of the cell, the signal strength is weak, and the neighboring cell signal whose direction is consistent with the local cell (that is, the signal with different strengths of the different cells covers the same area), so that the neighboring cells of the cell coverage by the cell overlap the coverage area. It can not only meet the time requirements of re-election and switching, but also ensure the field strength gradient requirements, thus ensuring the successful completion of re-election and switching between adjacent cells under high-speed train conditions.
  • the difference between the intensity of the third signal and the fourth signal in the foregoing embodiment is a first signal strength difference
  • the difference between the fifth signal and the sixth signal is a second signal strength difference
  • the first signal strength difference and the second The signal strength difference is the same.
  • the signal strength difference of the neighboring cells is the same, ensuring consistent signal strength difference in the overlapping coverage area, avoiding the target cell signal deterioration due to multipath, shadow, etc. Weaker than the signal of the serving cell.
  • step 15 can be specifically implemented as follows:
  • the first single-polarized antenna may be The original antenna of the first cell, and the second single-polarized antenna may be a newly added antenna in the first cell;
  • the seventh signal after the combining can be input into the first cell
  • the seventh signal after the combining can be input into the first cell
  • it may also be input into a single-polarized antenna of the first cell (as shown in FIG. 6 , that is, the antenna shown in FIG. 6 may be a dual-polarized antenna or two single-polarized antennas.
  • the first combiner outputs a signal to a single-polarized antenna, and the signal output from the RX2 port to another single-polarized antenna).
  • step 16 can be implemented as follows:
  • the antenna shown in FIG. 6 may be a dual polarization
  • the antenna may also be two single-polarized antennas.
  • the second combiner outputs signals to a single-polarized antenna, and the signal output from the RX2 port to another single-polarized antenna
  • the combined eighth signal may be input into a dual-polarized antenna of the second cell or a single-polarized antenna input to the second cell.
  • the first remote device in the first cell is the first remote radio unit (RRU1) of the first cell
  • the first signal includes: a signal output by the TXRX1 port of the first remote radio unit and/or The signal output by the RX2 port;
  • the second remote device is a second remote radio unit (RRU2) of the second cell, and the second signal includes: a signal output by the TXRX1 port of the second remote radio unit and/or a signal output by the RX2 port.
  • RRU2 second remote radio unit
  • the first signal includes: when the signal of the TXRX1 port of the first remote radio unit is output, the implementation architecture is as shown in FIG. 5.
  • the implementation architecture is as shown in FIG. 5.
  • the two signals are strong and weak, and one of the weak signals is introduced into the antenna of the second cell (the neighboring cell of the first cell), and the signal output by the RX2 port is directly introduced into the antenna of the first cell (where the antenna It can be a dual-polarized antenna or a single-polarized antenna.
  • the signal output from the TXRX1 port of the RRU2 is split, divided into two signals with different strengths and weaknesses, and one of them is
  • the weak signal is introduced into the antenna of the first cell (the neighboring cell of the second cell), and the signal output by the TX2 port of the RRU2 of the second cell is directly input into the antenna of the second cell (wherein the antenna may be a dual polarization
  • the antenna can also be a single-polarized antenna).
  • FIG. 6 is a schematic diagram of the architecture shown in FIG. 5, in which the signal outputted by the TXRX1 port is split into two signals with different strengths and weaknesses, and then combined into one signal and introduced into the antenna of the local cell.
  • the first signal includes: when the signal of the RX2 port of the first remote radio unit is output, the implementation architecture is as shown in FIG. 7.
  • the first cell only the signal output by the RX2 port of the RRU1 is split, and the strength is different. Two signals, and one of the weak signals is introduced into the antenna of the second cell (the neighboring cell of the first cell); in the second cell, only the signal output by the RX2 port of the RRU2 is performed.
  • the splitting is divided into two signals with different strengths and weaknesses, and one of the weak signals is introduced into the antenna of the first cell (the neighboring cell of the second cell).
  • the signal outputted by the RX2 port is split into two signals with different strengths and weaknesses, and then combined into one signal and introduced into the antenna of the cell.
  • the first signal includes: when the signal output by the TXRX1 port of the first remote radio unit and the signal output by the RX2 port are implemented, the implementation architecture is as shown in FIG. 9.
  • the signal output by the TXRX1 port of the RRU1 is shunted. Divided into two signals with different strengths and weaknesses, and splits the signal output from the RX2 port into two signals with different strengths and weaknesses, and splits the signals input by the TXRX1 port and the RX2 port into two weak signals.
  • the second cell (the neighboring cell of the first cell) is introduced into the antenna; in the second cell, the signal outputted by the TXRX1 port of the RRU2 is split, divided into two signals with different strengths and weaknesses, and the signal output by the RX2 port is performed.
  • the splitting is divided into two signals with different strengths and weaknesses, and two weak signals that are split into signals input by the TXRX1 port and the RX2 port are introduced into the antenna of the first cell (the neighboring cell of the second cell).
  • the antenna in the first cell and the antenna in the second cell are arranged in a back direction to achieve accurate design and convenient adjustment of adjacent overlapping coverage areas on high-speed running traffic routes such as high-speed rail.
  • the first signal when the first signal is split, the first signal can be implemented by a coupler, and the strong signal of the local cell and the weak signal of the neighboring cell can be combined by a combiner, where The combiner is optional;
  • FIG. 10 is a schematic diagram of the effect of overlapping coverage areas of adjacent cells.
  • the method separately splits the signals of the remote devices in two different cells into strong and weak signals through a coupler, and combines the strong signal of each cell with the weak signal of the neighboring cell to introduce the coverage antenna of the local cell. In the middle (or other means such as adding an antenna), the neighboring cell signal with weak signal strength but the coverage pattern is consistent with the local cell in the coverage area of the cell is realized.
  • Coupler setting 10dB coupler can be used to achieve the same coverage area.
  • the signal of the main coverage cell is about 10dB stronger than that of the adjacent area.
  • the length of the overlapping coverage area can meet the event requirements. If the measured area is too small, the coupling can be coupled.
  • the device is changed to 6dB or less, so that the signal difference between the primary coverage cell and the neighboring area becomes smaller, and the overlapping coverage area increases; if the actual measurement after construction reflects that the overlapping coverage area is too large, Use a coupler greater than 10dB to meet event requirements.
  • Antenna direction angle setting When planning the cell, the antenna direction angle and downtilt angle can be set according to the coverage requirements. When the signals of the two cells are transmitted to the same antenna, the size and shape of the coverage area can be controlled by adjusting the antenna direction angle and the downtilt angle after the network is established, so as to cooperate well with the same cell covered by other RRUs; When the network is built, the size and shape of the overlapping coverage area can be corrected by adjusting the angles of the two antennas and the downtilt angle respectively, and the size and shape of the entire coverage area can be controlled.
  • Input power setting In the cell setting process, the output power of the remote end of the RRU can be determined through the link budget to achieve good coverage. When the actual measurement finds that the coverage of the two cells is different, the adjustment of the coverage area can be achieved by adjusting the RRU output power. .
  • the signal gradient of the two cells in the overlapping coverage area can be achieved well, and the device can be adjusted.
  • the size and shape of the boundary cell and the overlapping coverage area can be effectively corrected by adjusting the input power and the antenna direction angle, and finally the whole can be realized. Precise design and easy adjustment of overlapping coverage areas.
  • the above method of the present invention introduces the weak signal of the neighboring cell into the antenna of the local cell, and the signal of the neighboring cell is from the same antenna (such as introducing the above-mentioned dual-polarized antenna) or the same-position antenna (such as the two single-polarized antennas mentioned above).
  • an embodiment of the present invention further provides an apparatus for determining an overlapping coverage area of a neighboring cell, including:
  • a second remote device located in the second cell; wherein the first cell and the second cell are adjacent cells;
  • a first differential shunt device connected to the first remote device, configured to split the first signal output by the first remote device into a third signal and a fourth signal, wherein the third signal has a stronger intensity than the fourth signal Strength of;
  • a second differential shunt device connected to the second remote device, configured to split the second signal output by the second remote device into a fifth signal and a sixth signal, wherein the strength of the fifth signal is greater than the sixth signal Strength
  • An antenna located in the first cell and connected to the first differentiated shunt device for inputting the third signal and the sixth signal;
  • An antenna located in the second cell and coupled to the second differentiated shunt device for inputting the fourth signal and the fifth signal.
  • the first differentiated shunt device and the second differentiated shunt device are the same differentiated shunt device.
  • the differential shunt device is a coupler.
  • the antenna of the first cell includes: a first dual-polarized antenna, wherein the third signal and the sixth signal are directly input into the first dual-polarized antenna; or
  • the antenna of the first cell includes: a first single-polarized antenna and a second single-polarized antenna, the third signal is directly input into the first single-polarized antenna, and the sixth signal is directly input into the second single-polarized antenna;
  • the first single-polarized antenna and the second single-polarized antenna are in the same position and in the same direction;
  • the device further includes: a first combiner connected to the first differentiated shunt device, configured to combine the third signal and the sixth signal into a seventh signal, and input the seventh signal into the first cell In the antenna.
  • a first combiner connected to the first differentiated shunt device, configured to combine the third signal and the sixth signal into a seventh signal, and input the seventh signal into the first cell In the antenna.
  • the antenna of the second cell includes: a second dual-polarized antenna, wherein the fourth signal and the fifth signal are directly input into the second dual-polarized antenna; or
  • the antenna of the second cell includes: a third single-polarized antenna and a fourth single-polarized antenna, wherein the fourth signal is directly input into the third single-polarized antenna, and the fifth signal is directly input into the fourth single-polarized antenna;
  • the third single-polarized antenna and the fourth single-polarized antenna are disposed in the same direction and in the same direction.
  • the foregoing apparatus further includes: a second combiner connected to the second differentiated shunt device, configured to combine the fourth signal and the fifth signal into an eighth signal, and input the eighth signal into the second cell In the antenna.
  • a second combiner connected to the second differentiated shunt device, configured to combine the fourth signal and the fifth signal into an eighth signal, and input the eighth signal into the second cell In the antenna.
  • the first remote device is the first remote radio unit of the first cell
  • the first signal includes: a signal output by the TXRX1 port of the first remote radio unit and/or a signal output by the RX2 port
  • the second remote device is the second remote radio unit of the second cell, and the second signal includes: a signal output by the TXRX1 port of the second remote radio unit and/or a signal output by the RX2 port; Figure 9;
  • the signals output by the ports of the RRUs in the adjacent first cell and the second cell are split, and are divided into signals with different strengths and weaknesses, and the weak signals of the neighboring cells are directly introduced into the cell.
  • the mobile terminal performs smooth reselection and switching between adjacent cells in a high-speed mobile state.
  • the strong signal of the local cell is combined with the introduced weak signal, and then introduced into the antenna of the cell. .
  • FIG. 7 shows a case where the signals output by the RX2 ports of the RRUs in the adjacent first cell and the second cell are shunted, and the principle is the same as the principle of the signal outputted by the TXRX1 shown in FIG. This will not be repeated here.
  • FIG. 8 is a schematic diagram of the architecture of the cell shown in FIG. 7 after the weak signal of the neighboring cell is introduced into the cell, and the strong signal of the cell is combined with the introduced weak signal, and then introduced into the antenna of the cell.
  • FIG. 9 is a schematic diagram of splitting signals outputted by two ports (TXRX1 and RX2) of RRUs in adjacent first cells and second cells into signals having different strengths and weaknesses, and directly introducing weak signals of neighboring cells into the present In the antenna of the cell, the mobile terminal is smoothly reselected and switched in a high-speed mobile state.
  • the antenna in the first cell and the antenna in the second cell are arranged in a back direction, so as to accurately design and conveniently adjust the overlapping coverage area of the adjacent area on the high-speed running traffic route such as the high-speed rail.
  • the device embodiment of the present invention adopts a remote device, a coupler (or other signal differentiated shunt device), a combiner (optional), and an antenna, and divides the wireless signal of the adjacent cell into strong and weak according to requirements.
  • Two channels respectively input two antennas facing away from each other, different signals of different cells cover the same area, and ensure the high consistency of coverage patterns; realize accurate design and convenient adjustment of neighboring areas on high-speed running traffic routes such as high-speed rail Overlap coverage area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种确定相邻小区的重叠覆盖区域的方法和装置,其中方法包括:获取第一小区的第一拉远设备的第一信号;获取第二小区的第二拉远设备的第二信号,第一小区与第二小区是相邻小区;将第一信号分路成第三信号和第四信号,第三信号的强度大于第四信号的强度;将第二信号分路成第五信号和第六信号,第五信号的强度大于第六信号的强度;将第三信号和第六信号引入第一小区的天线中;将第四信号和第五信号引入第二小区的天线中;确定第一小区的天线和第二小区的天线的重叠覆盖区域为第一小区和第二小区的重叠覆盖区域。本发明的方案可以保证列车中高速运行的移动终端在相邻小区间的重选和切换能够顺利完成。

Description

一种确定相邻小区的重叠覆盖区域的方法、 装置、 计算机程序和存储介质 技术领域
本发明涉及 GSM (全球移动通讯系统 Global System of Mobile communication) 无线覆盖领域, 特别是指一种确定相邻小区的重叠覆盖区域 的方法、 装置、 计算机程序和存储介质。
背景技术
GSM关键事件, 如: 小区重选, 位置更新, 小区切换等, 如下表 1所 为 GSM关键事件要求表:
Figure imgf000003_0001
表 1
其中, C2是小区的信道质量参数, 若移动终端计算某邻区 (与当前小区 位于同一位置区)的 C2值超过移动终端当前停留小区的 C2值,且维持 5秒以 上, 则移动终端将启动小区重选而进入该小区; CRH 为小区重选滞后参数 (CRH) 值; Rxlev是小区的信号强度 (电平), Margin是电平切换门限;
所有 GSM邻区之间的重叠覆盖区,都必须保证移动终端在跨小区时有足 够的时间完成以上事件。 对于不移动或低速运动的移动终端, 这个时间不受 影响, 但是对于高速运动的移动终端, 该时间对应的距离相对较长, 重叠覆 盖区较大, 设置相对困难。
高速列车运动速度快, 如时速为 350公里, 所以对网络的切换重叠区域 要求高, 其切换重叠区域计算如下:
列车运行在两小区覆盖区域时, 从甲小区一 >乙小区, 甲小区的信号越来 越弱, 乙小区的信号越来越强, 从移动终端开始启动切换计时, 切换时长为
5秒, 重叠覆盖区域场强高于 -90dBm的列车运行时间需大于 10秒, 列车运 行设计时速为 350km/h, 则场强重叠区长度为: S=V X T=(350000/3600) X 10 = 972 m。
切换情况分析如图 1所示:
图 1中: c点移动终端启动越区切换测量计算, a、 b点为不同方向移动 台完成切换时间, 切换在 c—>b (或 c—>a) 段完成。
如图 1所示, 当时速为 350公里, 切换时间为 5秒时, 需要两个小区信 号重叠覆盖区域为 972米, 场强大于 -90dBm, 即可保证小区间的顺利切换及 小区重选。
不同速度不同切换时间的重叠覆盖距离见下表 2:
Figure imgf000004_0001
表 2: 不同速度、 不同切换时间下 GSM关键事件时间要求
现有技术方案一:
如图 2所示, 目前常用的高铁覆盖方式是将射频信号拉远, 采用多个分 布式远端, 延长单个小区的覆盖距离, 从而将单小区的覆盖扩展到 10km 以 上。
采用该方式时, 单远端单向覆盖距离为 lkm左右, 在小区边界处, 两个 小区的相邻拉远单元为保证重叠覆盖距离, 距离控制在 1.2km左右, 两小区 天线方向相对, 同时覆盖交界区域。 该方案的重叠覆盖, 是分别由两个相对 的天线完成的, 切换时服务小区和邻小区的强度差可以满足要求。 但是, 由 于两天线的方向不同, 位置各异, 实际上重叠覆盖区域控制难度较大, 由于 各地地形地物差异较大, 重叠区域会发生不足或过大情况。
现有技术方案二:
如图 3所示,该方案中两个相邻小区信号被接入同一个交界远端设备中, 该设备覆盖区域, 同时存在两个相邻小区的信号, 信号强度相近。
该方案二通过将两路信号接入同一远端设备, 同时发射, 解决了不同天 线之间覆盖不同的问题。 但是, 由于两相邻小区, 需要在重叠覆盖区域的左 右两部分, 分别产生不同的场强梯度, 才满足重选和切换的条件, 该方案在 输入端已经将整个重叠区域的场强差确定(一般为相同), 在实际重选和切换 时, 往往会出现由于在整个重叠区域两校区场强过于接近, 无法满足条件导 致重叠区无效的情况。
发明人在实现本发明的过程中, 发现现有的高速列车运行线路上, 相邻 小区的重叠覆盖区域确定方法不能满足重选和切换的时间要求以及小区场强 梯度的要求, 从而使高速运行状态下的移动终端重选和切换不能顺利完成。 发明内容
本发明要解决的技术问题是提供一种确定相邻小区的重叠覆盖区域的方 法、 装置、 计算机程序和存储介质, 可以保证高速运行的移动终端在相邻小 区的重选和切换的时间要求以及小区场强梯度的要求, 从而使列车中高速运 行的移动终端的重选和切换能够顺利完成。
为解决上述技术问题, 本发明的实施例提供一种确定相邻小区的重叠覆 盖区域的方法, 包括:
获取第一小区的第一拉远设备的第一信号;
获取第二小区的第二拉远设备的第二信号, 其中所述第一小区与所述第 二小区是相邻小区;
将所述第一信号分路成第三信号和第四信号, 其中所述第三信号的强度 大于所述第四信号的强度;
将所述第二信号分路成第五信号和第六信号, 其中所述第五信号的强度 大于所述第六信号的强度;
将所述第三信号和所述第六信号引入所述第一小区的天线中;
将所述第四信号和所述第五信号引入所述第二小区的天线中;
确定所述第一小区的天线和所述第二小区的天线的重叠覆盖区域为所述 第一小区和所述第二小区的重叠覆盖区域。
其中, 所述第三信号的强度与所述第四信号的差为第一信号强度差, 所 述第五信号与所述第六信号的差为第二信号强度差; 所述第一信号强度差与 所述第二信号强度差相同。
其中, 将所述第三信号和所述第六信号引入所述第一小区的天线中的歩 骤具体为:
将所述第三信号和所述第六信号分别直接输入所述第一小区的第一双极 化天线中; 或者
将所述第三信号直接输入所述第一小区的第一单极化天线中, 并将所述 第六信号直接输入所述第一小区的第二单极化天线中; 或者
将所述第三信号和所述第六信号合路成第七信号, 并将所述第七信号输 入所述第一小区的天线中。
其中, 将所述第四信号和所述第五信号引入所述第二小区的天线中的歩 骤具体为:
将所述第四信号和所述第五信号分别直接输入所述第二小区的第二双极 化天线中; 或者
将所述第四信号直接输入所述第二小区的第三单极化天线中, 并将所述 第五信号直接输入所述第二小区的第四单极化天线中; 或者
将所述第四信号和所述第五信号合路成第八信号, 并将所述第八信号输 入所述第二小区的天线中。
其中, 所述第一拉远设备为所述第一小区的第一远端射频单元, 所述第 一信号包括: 所述第一远端射频单元的 TXRX1端口输出的信号和 /或 RX2端 口输出的信号;
所述第二拉远设备为所述第二小区的第二远端射频单元, 所述第二信号 包括: 所述第二远端射频单元的 TXRX1端口输出的信号和 /或 RX2端口输出 的信号。
其中, 所述第一小区中的天线和所述第二小区中的天线背向设置。
本发明的实施例还提供一种确定相邻小区的重叠覆盖区域的装置,包括: 位于第一小区中的第一拉远设备;
位于第二小区中的第二拉远设备; 其中, 所述第一小区与所述第二小区 是相邻小区; 与所述第一拉远设备连接的第一差异化分流器件, 用于将所述第一拉远 设备输出的第一信号分路成第三信号和第四信号, 其中所述第三信号的强度 大于所述第四信号的强度;
与所述第二拉远设备连接的第二差异化分流器件, 用于将所述第二拉远 设备输出的第二信号分路成第五信号和第六信号, 其中所述第五信号的强度 大于所述第六信号的强度;
位于所述第一小区中且与所述第一差异化分流器件连接的天线, 用于输 入所述第三信号和所述第六信号;
位于所述第二小区中且与所述第二差异化分流器件连接的天线, 用于输 入所述第四信号和所述第五信号。
其中, 所述第一差异化分流器件与所述第二差异化分流器件为相同的差 异化分流器件。
其中, 所述差异化分流器件为耦合器。
其中, 上述装置中所述第一小区的天线包括: 一第一双极化天线, 所述 第三信号和所述第六信号分别直接输入所述第一双极化天线中; 或者
所述第一小区的天线包括: 一第一单极化天线和一第二单极化天线, 所 述第三信号直接输入所述第一单极化天线中, 所述第六信号直接输入所述第 二单极化天线中; 其中, 所述第一单极化天线和所述第二单极化天线同位置、 同向设置。
其中, 上述装置还包括: 与所述第一差异化分流器件连接的第一合路器, 用于将所述第三信号和所述第六信号合路成第七信号, 并将所述第七信号输 入所述第一小区的天线中。
其中, 上述装置中, 所述第二小区的天线包括: 一第二双极化天线, 所 述第四信号和所述五信号分别直接输入所述第二双极化天线中; 或者
所述第二小区的天线包括: 一第三单极化天线和一第四单极化天线, 所 述第四信号直接输入所述第三单极化天线中, 所述第五信号直接输入所述第 四单极化天线中; 其中, 所述第三单极化天线和所述第四单极化天线同位置、 同向设置。
其中, 上述装置还包括: 与所述第二差异化分流器件连接的第二合路器, 用于将所述第四信号和所述第五信号合路成第八信号, 并将所述第八信号输 入所述第二小区的天线中。
其中, 所述第一拉远设备为所述第一小区的第一远端射频单元, 所述第 一信号包括: 所述第一远端射频单元的 TXRX1端口输出的信号和 /或 RX2端 口输出的信号;
所述第二拉远设备为所述第二小区的第二远端射频单元, 所述第二信号 包括: 所述第二远端射频单元的 TXRX1端口输出的信号和 /或 RX2端口输出 的信号。
其中, 所述第一小区中的天线和所述第二小区中的天线背向设置。
本发明的实施例还提供一种能够执行上述方法的计算机程序以及存储该 计算机程序的存储介质。
本发明的上述技术方案的有益效果如下:
上述方案中, 通过将相邻小区 (如上述第一小区和第二小区) 的拉远设 备 (如上述第一拉远设备和第二拉远设备) 的信号分路成强弱不同的两路信 号, 并将每个小区的强信号与相邻小区的弱信号引入本小区的覆盖天线中, 实现在本小区覆盖区域中有信号强度较弱, 并覆盖方向与本小区一致的邻小 区信号(即异小区的强弱不同的信号覆盖同一区域), 使本小区无线覆盖的相 邻小区重叠覆盖区域, 既能满足重选和切换的时间要求, 又能保证其场强梯 度要求, 从而确保列车高速通行状态下相邻小区间的重选和切换顺利完成。 附图说明
图 1为现有技术中, 高铁 GSM网络切换示意图;
图 2为现有技术中, 常用的第一种高铁 GSM网络覆盖方式图; 图 3为现有技术中, 常用的第二种高铁 GSM网络覆盖方式图; 图 4为本发明的确定相邻小区的重叠覆盖区域的方法流程图;
图 5 为本发明的确定相邻小区的重叠覆盖区域的装置第一实施例架构 图;
图 6 为本发明的确定相邻小区的重叠覆盖区域的装置第二实施例架构 图;
图 7 为本发明的确定相邻小区的重叠覆盖区域的装置第三实施例架构 图;
图 8 为本发明的确定相邻小区的重叠覆盖区域的装置第四实施例架构 图;
图 9 为本发明的确定相邻小区的重叠覆盖区域的装置第五实施例架构 图;
图 10为本发明的相邻小区的重叠覆盖区域效果示意图。
具体实施方式
为使本发明要解决的技术问题、 技术方案和优点更加清楚, 下面将结合 附图及具体实施例进行详细描述。
本发明针对现有的 GSM 网络相邻小区重叠区域覆盖存在高速运行状态 下的移动终端在相邻小区间的重选和切换不能顺利完成的问题, 提供一种确 定相邻小区的重叠覆盖区域的方法和装置, 可以保证高速运行的移动终端在 相邻小区的重选和切换的时间要求以及小区场强梯度的要求, 从而使列车中 高速运行的移动终端在相邻小区间的重选和切换能够顺利完成。
如图 4所示, 本发明的确定相邻小区的重叠覆盖区域的方法, 包括: 歩骤 11, 获取第一小区的第一拉远设备的第一信号;
歩骤 12, 获取第二小区的第二拉远设备的第二信号, 其中第一小区与第 二小区是相邻小区;
歩骤 13, 将第一信号分路成第三信号和第四信号, 其中第三信号的强度 大于第四信号的强度;
歩骤 14, 将第二信号分路成第五信号和第六信号, 其中第五信号的强度 大于第六信号的强度;
歩骤 15, 将第三信号和第六信号引入第一小区的天线中;
歩骤 16, 将第四信号和第五信号引入第二小区的天线中;
歩骤 17, 确定第一小区的天线和第二小区的天线的重叠覆盖区域为第一 小区和第二小区的重叠覆盖区域。
本发明的上述实施例通过将相邻小区 (如第一小区和第二小区) 的拉远 设备(如第一拉远设备和第二拉远设备)的信号分路成强弱不同的两路信号, 并将每个小区的强信号与相邻小区的弱信号引入本小区的覆盖天线中, 实现 在本小区覆盖区域中有信号强度较弱, 并覆盖方向与本小区一致的邻小区信 号(即异小区的强弱不同的信号覆盖同一区域), 使本小区无线覆盖的相邻小 区重叠覆盖区域, 既能满足重选和切换的时间要求, 又能保证其场强梯度要 求, 从而确保列车高速通行状态下在相邻小区间的重选和切换顺利完成。
优选的, 上述实施例中的第三信号的强度与第四信号的差为第一信号强 度差, 第五信号与第六信号的差为第二信号强度差; 第一信号强度差与第二 信号强度差相同。小区重选和切换时, 由于上述相邻小区的信号强度差相同, 确保了在重叠覆盖区域内有始终一致的信号强度差, 避免出现由于多径、 阴 影等原因造成的目标小区信号变差甚至弱于服务小区信号的情况。
进一歩地, 上述实施例中, 歩骤 15具体可通过如下方式实现:
( 1 )将第三信号和第六信号分别直接输入第一小区的第一双极化天线中 (如图 5所示, 当然, 该第一拉远设备另一输出端口 RX2输出的信号直接输 入至一单极化天线或者一双极化天线中); 或者
(2)将第三信号直接输入第一小区的第一单极化天线中, 并将第六信号 直接输入第一小区的第二单极化天线中, 其中该第一单极化天线可以是第一 小区原有的天线, 第二单极化天线可以是在该第一小区中新增加的天线; 或 者
(3 )将第三信号和第六信号合路成第七信号, 并将第七信号输入第一小 区的天线中; 具体实现方法是: 合路后的第七信号既可以输入第一小区的一 双极化天线中, 也可以是输入第一小区的一单极化天线中 (如图 6所示, 即 该图 6所示的天线可以为一双极化天线, 也可是两个单极化天线, 当是两个 单极化天线时, 第一合路器输出信号至一单极化天线中, RX2端口输出的信 号至另一单极化天线中)。
同样的, 对于第二小区 (即第一小区的邻小区) 中, 上述歩骤 16可通过 如下方式实现:
( 1 )将第四信号和第五信号分别直接输入第二小区的第二双极化天线中 (如图 5所示, 当然, 该第二拉远设备的另一输出端口 RX2输出的信号也可 以是直接输入一单极化天线或者一双极化天线中); 或者
(2)将第四信号直接输入第二小区的第三单极化天线中, 并将第五信号 直接输入第二小区的第四单极化天线中; 其中该第三单极化天线是第二小区 原有的天线, 第四单极化天线可以是在该第二小区中新增加的天线; 或者
(3 )将第四信号和第五信号合路成第八信号, 并将第八信号输入第二小 区的天线中 (如图 6所示, 即该图 6所示的天线可以为一双极化天线, 也可 是两个单极化天线, 当是两个单极化天线时, 第二合路器输出信号至一单极 化天线中, RX2端口输出的信号至另一单极化天线中);合路后的第八信号既 可以输入第二小区的一双极化天线中, 也可以是输入第二小区的一单极化天 线中。
具体实现时, 上述第一小区中的第一拉远设备为第一小区的第一远端射 频单元 (RRU1 ) , 第一信号包括: 第一远端射频单元的 TXRX1 端口输出的 信号和 /或 RX2端口输出的信号;
第二拉远设备为第二小区的第二远端射频单元(RRU2) , 第二信号包括: 第二远端射频单元的 TXRX1端口输出的信号和 /或 RX2端口输出的信号。
其中, 第一信号包括: 第一远端射频单元的 TXRX1端口输出的信号时, 实现架构图如图 5所示, 在第一小区中, 只将 RRU1的 TXRX1端口输出的 信号进行分路, 分成强弱不同的两路信号, 并将其中的一路弱信号引入第二 小区 (第一小区的邻小区) 的天线中, RX2端口输出的信号直接引入该第一 小区的天线中 (其中, 该天线可以是一个双极化天线, 也可以是一个单极化 天线); 第二小区中, 只将 RRU2的 TXRX1端口输出的信号进行分路, 分成 强弱不同的两路信号, 并将其中的一路弱信号引入第一小区 (第二小区的邻 小区) 的天线中, 该第二小区的 RRU2的 TX2端口输出的信号直接输入该第 二小区的天线中 (其中, 该天线可以是一个双极化天线, 也可以是一个单极 化天线)。
图 6为图 5所示的方案中, TXRX1端口输出的信号分路成强弱不同的两 路信号后, 再合路成一路信号, 并引入本小区的天线中的架构示意图。
第一信号包括: 第一远端射频单元的 RX2端口输出的信号时, 实现架构 如图 7所示, 在第一小区中, 只将 RRU1的 RX2端口输出的信号进行分路, 分成强弱不同的两路信号, 并将其中的一路弱信号引入第二小区 (第一小区 的邻小区) 的天线中; 第二小区中, 只将 RRU2的 RX2端口输出的信号进行 分路, 分成强弱不同的两路信号, 并将其中的一路弱信号引入第一小区 (第 二小区的邻小区) 的天线中。
图 8为图 7所示的方案中, RX2端口输出的信号分路成强弱不同的两路 信号后, 再合路成一路信号, 并引入本小区的天线中。
第一信号包括: 第一远端射频单元的 TXRX1端口输出的信号和 RX2端 口输出的信号时, 实现架构如图 9所示, 在第一小区中, 将 RRU1的 TXRX1 端口输出的信号进行分路, 分成强弱不同的两路信号, 并将 RX2端口输出的 信号进行分路, 分成强弱不同的两路信号, 并将其中的 TXRX1端口和 RX2 端口输入的信号分路成的两路弱信号引入第二小区 (第一小区的邻小区) 的 天线中; 第二小区中, 将 RRU2的 TXRX1端口输出的信号进行分路, 分成 强弱不同的两路信号, 并将 RX2端口输出的信号进行分路, 分成强弱不同的 两路信号, 并将其中的 TXRX1端口和 RX2端口输入的信号分路成的两路弱 信号引入第一小区 (第二小区的邻小区) 的天线中。
优选的, 上述第一小区中的天线和第二小区中的天线背向设置, 以实现 精确设计和便捷调整高铁等高速运行交通路线上的邻区重叠覆盖区域。
下面结合具体应用说明上述方法的实现过程:
再如图 5-图 10, 上述第一信号分路时, 可以通过一耦合器来实现, 本小 区的强信号与邻小区的弱信号合路时, 可以通过一合路器来实现, 其中, 合 路器为可选; 图 10为相邻小区的重叠覆盖区域效果示意图。
该方法通过耦合器将两个不同小区中的拉远设备的信号分别分路成强弱 两个信号, 将每个小区的强信号与相邻小区的弱信号合路, 引入本小区的覆 盖天线中(或采用增加天线等其他方式), 实现在本小区覆盖区域中有信号强 度较弱, 但覆盖方向图与本小区一致的邻小区信号。
如图 5-图 10所示, 按照该方法实施后, 可以通过如下方式设置和调整重 叠覆盖区大小:
耦合器设置: 采用 10dB耦合器, 可以实现同覆盖区域内, 主覆盖小区信 号比邻区信号强 10dB左右,重叠覆盖区域长度可以满足事件要求;如建设后 实测反映重叠覆盖区过小, 可以将耦合器换为 6dB或更小, 使主覆盖小区和 邻区信号差变小, 重叠覆盖区增大; 如建设后实测反映重叠覆盖区过大, 可 以采用大于 10dB的耦合器, 以满足事件要求。
天线方向角设置: 在小区规划时, 可以按照覆盖需求合理设置天线方向 角和下倾角。 两小区信号接入同一天线发射时, 建网后通过调整天线方向角 和下倾角, 可以控制覆盖区域的大小和形状, 以和其它 RRU覆盖的同小区良 好配合; 两小区信号接入不同天线发射时, 建网后可以通过分别调整两天线 方向角和下倾角的手段来修正重叠覆盖区域的大小、 形状, 以及控制整个覆 盖区域的大小和形状。
输入功率设置: 在小区设置过程中, 通过链路预算可以确定 RRU远端的 输出功率, 实现良好覆盖; 当实测发现两小区覆盖均有偏差时, 可以通过调 整 RRU输出功率来实现覆盖区域的调整。
由以上耦合器设置方式, 可以实现重叠覆盖区域内两小区的信号梯度良 好, 并通过设备调整, 边界小区和重叠覆盖区大小和形状可以通过调整输入 功率和天线方向角有效修正, 最终能够实现整个重叠覆盖区域的精确设计和 便捷调整。
本发明的上述方法通过将邻小区的弱信号引入本小区的天线中, 相邻小 区的信号从同一天线 (如引入上述一双极化天线) 或同位置天线 (如上述的 两个单极化天线同位置、 同向设置) 同向发出来, 实现的良好的小区间重选 和切换, 保证一定的重叠覆盖距离, 该区域精准且方便调整; 并通过输入端 耦合器器件来控制两小区信号强弱差异, 以及将相邻小区的信号从同一天线 或同位置天线同向发出以保证重叠覆盖区信号差的恒定来实现小区间重选和 切换, 确保在重叠覆盖区域内有始终一致的信号强度差, 避免出现由于多径、 阴影等原因造成的目标小区信号变差甚至弱于服务小区信号的情况。
再如图 5-图 10所示,本发明的实施例还提供一种确定相邻小区的重叠覆 盖区域的装置, 包括:
位于第一小区中的第一拉远设备;
位于第二小区中的第二拉远设备; 其中, 第一小区与第二小区是相邻小 区;
与第一拉远设备连接的第一差异化分流器件, 用于将第一拉远设备输出 的第一信号分路成第三信号和第四信号, 其中第三信号的强度大于第四信号 的强度;
与第二拉远设备连接的第二差异化分流器件, 用于将第二拉远设备输出 的第二信号分路成第五信号和第六信号, 其中第五信号的强度大于第六信号 的强度;
位于第一小区中且与第一差异化分流器件连接的天线, 用于输入第三信 号和第六信号;
位于第二小区中且与第二差异化分流器件连接的天线, 用于输入第四信 号和第五信号。
其中, 第一差异化分流器件与第二差异化分流器件为相同的差异化分流 器件。
其中, 差异化分流器件为耦合器。
第一小区的天线包括: 一第一双极化天线, 第三信号和第六信号分别直 接输入第一双极化天线中; 或者
第一小区的天线包括: 一第一单极化天线和一第二单极化天线, 第三信 号直接输入第一单极化天线中, 第六信号直接输入第二单极化天线中; 其中, 第一单极化天线和第二单极化天线同位置、 同向设置;
优选的, 上述装置, 还包括: 与第一差异化分流器件连接的第一合路器, 用于将第三信号和第六信号合路成第七信号, 并将第七信号输入第一小区的 天线中。
第二小区的天线包括: 一第二双极化天线, 第四信号和五信号分别直接 输入第二双极化天线中; 或者
第二小区的天线包括: 一第三单极化天线和一第四单极化天线, 第四信 号直接输入第三单极化天线中, 第五信号直接输入第四单极化天线中; 其中, 第三单极化天线和第四单极化天线同位置、 同向设置。
优选的, 上述的装置还包括: 与第二差异化分流器件连接的第二合路器, 用于将第四信号和第五信号合路成第八信号, 并将第八信号输入第二小区的 天线中。
优选的, 第一拉远设备为第一小区的第一远端射频单元, 第一信号包括: 第一远端射频单元的 TXRX1端口输出的信号和 /或 RX2端口输出的信号; 第二拉远设备为第二小区的第二远端射频单元, 第二信号包括: 第二远 端射频单元的 TXRX1端口输出的信号和 /或 RX2端口输出的信号; 具体实现 架构如图 5-图 9所示;
其中,图 5所示的是将相邻的第一小区和第二小区中的 RRU的端口输出 的信号进行分路, 分成强弱不同的信号, 并将邻小区的弱信号直接引入本小 区的天线中, 以实现移动终端在高速移动状态下在相邻小区间的顺利重选和 切换。
图 6所示是: 在图 5所示的架构上, 邻小区的弱信号引入本小区中后, 本小区的强信号与引入的弱信号进行合路后,再引入本小区的天线中的架构。
图 7所示的是将相邻的第一小区和第二小区中的 RRU的 RX2端口输出 的信号进行分路的情况, 原理与图 5所示 TXRX1输出的信号进行分路的原 理相同, 在此不再赘述。
图 8是在图 7所示的架构上, 邻小区的弱信号引入本小区中后, 本小区 的强信号与引入的弱信号进行合路后, 再引入本小区的天线中的架构。
图 9是将相邻的第一小区和第二小区中的 RRU的两个端口 (TXRX1和 RX2) 输出的信号进行分路, 分成强弱不同的信号, 并将邻小区的弱信号直 接引入本小区的天线中, 以实现移动终端在高速移动状态下顺利重选和切换。
上述实施例中, 第一小区中的天线和第二小区中的天线背向设置, 实现 精确设计和便捷调整高铁等高速运行交通路线上的邻区重叠覆盖区域。
本发明的该装置实施例, 采用拉远设备、 耦合器 (或其他信号差异化分 流器件)、 合路器 (可选)、 天线, 通过将相邻小区的无线信号按需求分为强 弱的两路, 分别输入背向的两个天线, 异小区的强弱不同的信号覆盖同一区 域, 并保证覆盖方向图的高度一致性; 实现精确设计和便捷调整高铁等高速 运行交通路线上的邻区重叠覆盖区域。
以上所述是本发明的优选实施方式, 应当指出, 对于本技术领域的普通 技术人员来说, 在不脱离本发明所述原理的前提下, 还可以作出若干改进和 润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权利 要求 书
1. 一种确定相邻小区的重叠覆盖区域的方法, 其特征在于, 包括: 获取第一小区的第一拉远设备的第一信号;
获取第二小区的第二拉远设备的第二信号, 其中所述第一小区与所述第 二小区是相邻小区;
将所述第一信号分路成第三信号和第四信号, 其中所述第三信号的强度 大于所述第四信号的强度;
将所述第二信号分路成第五信号和第六信号, 其中所述第五信号的强度 大于所述第六信号的强度;
将所述第三信号和所述第六. 信号引入所述第一小区的天线中;
将所述第四信号和所述第五信号引入所述第二小区的天线中;
确定所述第一小区的天线和所述第二小区的天线的重叠覆盖区域为所述 第一小区和所述第二小区的重叠覆盖区域。
2. 根据权利要求 1所述的方法, 其特征在于, 所述第三信号的强度与所 述第四信号的差为第一信号强度差, 所述第五信号与所述第六信号的差为第 二信号强度差; 所述第一信号强度差与所述第二信号强度差相同。
3. 根据权利要求 1所述的方法, 其特征在于, 将所述第三信号和所述第 六信号弓 I入所述第一小区的天线中的歩骤具体为:
将所述第三信号和所述第六信号分别直接输入所述第一小区的第一双极 化天线中; 或者
将所述第三信号直接输入所述第一小区的第一单极化天线中, 并将所述 第六信号直接输入所述第一小区的第二单极化天线中; 或者
将所述第三信号和所述第六信号合路成第七信号, 并将所述第七信号输 入所述第一小区的天线中。
4. 根据权利要求 1所述的方法, 其特征在于, 将所述第四信号和所述第 五信号弓 I入所述第二小区的天线中的歩骤具体为:
将所述第四信号和所述第五信号分别直接输入所述第二小区的第二双极 化天线中; 或者
将所述第四信号直接输入所述第二小区的第三单极化天线中, 并将所述 第五信号直接输入所述第二小区的第四单极化天线中; 或者
将所述第四信号和所述第五信号合路成第八信号, 并将所述第八信号输 入所述第二小区的天线中。
5. 根据权利要求 1所述的方法, 其特征在于, 所述第一拉远设备为所述 第一小区的第一远端射频单元, 所述第一信号包括: 所述第一远端射频单元 的 TXRX1端口输出的信号和 /或 RX2端口输出的信号;
所述第二拉远设备为所述第二小区的第二远端射频单元, 所述第二信号 包括: 所述第二远端射频单元的 TXRX1端口输出的信号和 /或 RX2端口输出的 信号。
6. 根据权利要求 1一 5任一项所述的方法, 其特征在于, 所述第一小区中 的天线和所述第二小区中的天线背向设置。
7. 一种确定相邻小区的重叠覆盖区域的装置, 其特征在于, 包括: 位于第一小区中的第一拉远设备;
位于第二小区中的第二拉远设备; 其中, 所述第一小区与所述第二小区 是相邻小区;
与所述第一拉远设备连接的第一差异化分流器件, 用于将所述第一拉远 设备输出的第一信号分路成第三信号和第四信号, 其中所述第三信号的强度 大于所述第四信号的强度;
与所述第二拉远设备连接的第二差异化分流器件, 用于将所述第二拉远 设备输出的第二信号分路成第五信号和第六信号, 其中所述第五信号的强度 大于所述第六信号的强度;
位于所述第一小区中且与所述第一差异化分流器件连接的天线, 用于输 入所述第三信号和所述第六信号;
位于所述第二小区中且与所述第二差异化分流器件连接的天线, 用于输 入所述第四信号和所述第五信号。
8. 根据权利要求 7所述的装置, 其特征在于, 所述第一差异化分流器件 与所述第二差异化分流器件为相同的差异化分流器件。
9. 根据权利要求 8所述的装置, 其特征在于, 所述差异化分流器件为耦
10. 根据权利要求 7所述的装置, 其特征在于,
所述第一小区的天线包括: 一第一双极化天线, 所述第三信号和所述第 六信号分别直接输入所述第一双极化天线中; 或者
所述第一小区的天线包括: 一第一单极化天线和一第二单极化天线, 所 述第三信号直接输入所述第一单极化天线中, 所述第六信号直接输入所述第 二单极化天线中; 其中, 所述第一单极化天线和所述第二单极化天线同位置、 同向设置。
11. 根据权利要求 7所述的装置, 其特征在于, 还包括:
与所述第一差异化分流器件连接的第一合路器, 用于将所述第三信号和 所述第六信号合路成第七信号, 并将所述第七信号输入所述第一小区的天线 中。
12. 根据权利要求 7所述的装置, 其特征在于,
所述第二小区的天线包括: 一第二双极化天线, 所述第四信号和所述五 信号分别直接输入所述第二双极化天线中; 或者
所述第二小区的天线包括: 一第三单极化天线和一第四单极化天线, 所 述第四信号直接输入所述第三单极化天线中, 所述第五信号直接输入所述第 四单极化天线中; 其中, 所述第三单极化天线和所述第四单极化天线同位置、 同向设置。
13. 根据权利要求 7所述的装置, 其特征在于, 还包括:
与所述第二差异化分流器件连接的第二合路器, 用于将所述第四信号和 所述第五信号合路成第八信号, 并将所述第八信号输入所述第二小区的天线 中。
14. 根据权利要求 7所述的装置, 其特征在于, 所述第一拉远设备为所述 第一小区的第一远端射频单元, 所述第一信号包括: 所述第一远端射频单元 的 TXRX1端口输出的信号和 /或 RX2端口输出的信号;
所述第二拉远设备为所述第二小区的第二远端射频单元, 所述第二信号 包括: 所述第二远端射频单元的 TXRX1端口输出的信号和 /或 RX2端口输出的 信号。
15. 根据权利要求 7— 14任一项所述的装置, 其特征在于, 所述第一小区 中的天线和所述第二小区中的天线背向设置。
16. 一种包括指令的计算机程序, 所述指令在由处理器执行时被设置成 使所述处理器执行如权利要求 1-6中任一项所述的方法。
17. 一种存储了如权利要求 16所述计算机程序的存储介质。
PCT/CN2012/079583 2011-08-05 2012-08-02 一种确定相邻小区的重叠覆盖区域的方法、装置、计算机程序和存储介质 WO2013020477A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110224678.4A CN102917368B (zh) 2011-08-05 2011-08-05 一种确定相邻小区的重叠覆盖区域的方法和装置
CN201110224678.4 2011-08-05

Publications (1)

Publication Number Publication Date
WO2013020477A1 true WO2013020477A1 (zh) 2013-02-14

Family

ID=47615562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079583 WO2013020477A1 (zh) 2011-08-05 2012-08-02 一种确定相邻小区的重叠覆盖区域的方法、装置、计算机程序和存储介质

Country Status (2)

Country Link
CN (1) CN102917368B (zh)
WO (1) WO2013020477A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105794268A (zh) * 2013-09-19 2016-07-20 思科技术公司 经由对一系列无线宽带数据链路的程序化追踪的高速移动宽带网络接入

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105722110A (zh) * 2014-12-05 2016-06-29 中兴通讯股份有限公司 覆盖距离的获取方法及装置
CN104660320B (zh) * 2015-02-06 2018-05-01 大唐移动通信设备有限公司 一种信号传输装置、系统及方法
CN105682103A (zh) * 2015-12-25 2016-06-15 上海邮电设计咨询研究院有限公司 对现有的lte通信网络进行改造的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1768545A (zh) * 2003-03-28 2006-05-03 摩托罗拉公司 确定基于小区的通信系统中的覆盖区域的方法
CN101778438A (zh) * 2010-01-25 2010-07-14 华为技术有限公司 协作通信方法和设备、切换方法及基站控制设备
WO2010128576A1 (ja) * 2009-05-08 2010-11-11 日本電気株式会社 網管理システム、無線カバレッジ調節方法および無線カバレッジ調節用プログラム
CN101959226A (zh) * 2009-07-21 2011-01-26 中国移动通信集团设计院有限公司 一种异系统间相邻小区的生成方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2871980B1 (fr) * 2004-06-22 2006-08-04 Radiotelephone Sfr Procede et systeme de calcul du voisinage 2g-3g pour un transfert automatique de connexion entre des systemes 2g et 3g

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1768545A (zh) * 2003-03-28 2006-05-03 摩托罗拉公司 确定基于小区的通信系统中的覆盖区域的方法
WO2010128576A1 (ja) * 2009-05-08 2010-11-11 日本電気株式会社 網管理システム、無線カバレッジ調節方法および無線カバレッジ調節用プログラム
CN101959226A (zh) * 2009-07-21 2011-01-26 中国移动通信集团设计院有限公司 一种异系统间相邻小区的生成方法及装置
CN101778438A (zh) * 2010-01-25 2010-07-14 华为技术有限公司 协作通信方法和设备、切换方法及基站控制设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105794268A (zh) * 2013-09-19 2016-07-20 思科技术公司 经由对一系列无线宽带数据链路的程序化追踪的高速移动宽带网络接入
CN105794268B (zh) * 2013-09-19 2019-10-25 思科技术公司 经由对一系列无线宽带数据链路的程序化追踪的高速移动宽带网络接入

Also Published As

Publication number Publication date
CN102917368A (zh) 2013-02-06
CN102917368B (zh) 2015-02-04

Similar Documents

Publication Publication Date Title
TWI653849B (zh) 用於衛星通訊的交接
CN108076488B (zh) 用于小区切换的方法、装置和系统
EP3207739B1 (en) Method and device for beam switching
KR20180080272A (ko) 무선 통신 시스템 내의 전자 디바이스 및 무선 통신 방법
WO2019056982A1 (zh) 无线通信系统中的装置和方法、计算机可读存储介质
WO2019056981A1 (zh) 无线通信系统中的装置和方法、计算机可读存储介质
US10945176B2 (en) Method, device and computer program for primary cell change
CN109275168B (zh) 优化公共运输平台上终端的切换参数设置的系统与方法
US11297546B2 (en) Neighboring mobility reference signal set search in beam-based NR mobility
CN103237324B (zh) 一种地理位置信息辅助lte系统快速切换判决方法
WO2013020477A1 (zh) 一种确定相邻小区的重叠覆盖区域的方法、装置、计算机程序和存储介质
US10341926B2 (en) Handover in high speed scenario
US10945229B2 (en) Location tracking
WO2015017977A1 (zh) 一种umts到lte的网络切换方法、设备及系统
RU2005112739A (ru) Способ работы системы мобильной связи, система мобильной связи, мобильная станция и устройство для определения подгруппы смежных ячеек радиосвязи системы мобильной связи
US20110299505A1 (en) Base station device, mobile terminal, communication system, and method of controlling said communication system
EP3089515A1 (en) Apparatuses, methods and computer programs for a mobility management unit of a first and a second mobile communication system and a mobile transceiver
US20230189012A1 (en) Network Signaling for Radio Resource Management Enhancement in High Speed Train (HST) Scenarios
WO2020222286A1 (ja) ユーザ装置及び通信方法
JP6385713B2 (ja) 携帯通信システム、基地局、及び測定結果送信方法
US9444533B1 (en) Method to improve multiple user multiple input multiple output pairing in a network
KR20190074939A (ko) 이동 통신 시스템에서 핸드오버 방법 및 장치
WO2020222285A1 (ja) ユーザ装置及び通信方法
CN103857015B (zh) Lte下基于ue离开方式的小区搜索方法
CN103957557A (zh) 一种终端测量上报方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12821563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 16/05/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12821563

Country of ref document: EP

Kind code of ref document: A1