WO2013020189A1 - Media for the culture of waste castor-oil-plant cake for simultaneous production of the phytase and thanase enzymes, and detoxification of the castor-oil-plant cake, using the microorganism paecilomyces variotii and using solid fermentation, the enzymes obtained and the uses thereof - Google Patents

Media for the culture of waste castor-oil-plant cake for simultaneous production of the phytase and thanase enzymes, and detoxification of the castor-oil-plant cake, using the microorganism paecilomyces variotii and using solid fermentation, the enzymes obtained and the uses thereof Download PDF

Info

Publication number
WO2013020189A1
WO2013020189A1 PCT/BR2012/000251 BR2012000251W WO2013020189A1 WO 2013020189 A1 WO2013020189 A1 WO 2013020189A1 BR 2012000251 W BR2012000251 W BR 2012000251W WO 2013020189 A1 WO2013020189 A1 WO 2013020189A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
culture medium
phytase
production
paecilomyces variotii
Prior art date
Application number
PCT/BR2012/000251
Other languages
French (fr)
Portuguese (pt)
Inventor
Gabriela Alves MACEDO
José Valdo MADEIRA JUNIOR
Original Assignee
Universidade Estadual De Campinas - Unicamp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Estadual De Campinas - Unicamp filed Critical Universidade Estadual De Campinas - Unicamp
Publication of WO2013020189A1 publication Critical patent/WO2013020189A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor

Definitions

  • the present invention aimed to determine parameters for simultaneous production of phytase and tanase enzymes by solid fermentation in castor bean cake using the fungus Paecilomyces variotii.
  • Castor bean is an oilseed widely used for the production of biodiesel.
  • the residual oil extraction cake is very useful for fertilization and also rich in proteins, opening the possibility of its use as animal feed.
  • This second application addresses the problem of the presence of ricin, a toxic compound present in the cake, with the need to detoxify it prior to fate as a feed, a fact observed through the use of the present invention.
  • animal feed residues represents a viable alternative for this sector, as well as for the production of biocatalysts through solid fermentation.
  • Solid state fermentation provides for the cultivation of microorganisms on solid substrates in the absence of a free aqueous phase (Pandey, A. Solid-state fermentation. Biochemistry Engeenering Journal 13, p. 81-84, 2003).
  • the substrate must have adequate moisture to maintain the growth and metabolism of the microorganism, without exceeding the maximum retention capacity of Water by matrix (Foong, CW; Janaun, J .; Krishnaiah, K .; Prabhakar, A. Effect of superficial air velocity on solid state fermentation of palm kernel cake in a lab scale fermenter using locally isolated strain. Industrial Crops and Products 30 , pp. 114-118, 2009).
  • the solid matrix used in the process can be both the nutrient source and simply a support impregnated with nutrients suitable for microorganism development (Pandey, 2003), (Nagao, N.; Matsuyama J.; Yamamoto, H .; Toda, T. A novel hybrid system of solid state and submerged fermentation with recycle for organic solid waste treatment (Process Biochemistry 39, pp. 37-43, 2003).
  • FS submerged fermentation
  • FES confers advantages over FS such as the use of simple, non-water soluble culture media composed of plant-based materials such as rice bran, wheat, maize and other cereals, requiring few additional nutrients in the medium. Additionally, the cost of the fermentation medium may represent up to 30% of the total enzyme production.
  • agro-industrial residues representing, in countries such as Brazil, abundant and low cost raw material (Graminha, EBN; Gonçalves, AZ L; Pirota, RDPB; Balsalobre, MAA; Da Silva, RE Enzyme production by solid-state fermentation: application to animal nutrition Animal Feed Science and Technology 144, pp. 1-22, 2008), (Pandey, 2003).
  • FES low water activity of solid culture medium influences the physiological aspects of microorganisms, such as their vegetative growth, sporulation, spore germination, enzyme production and enzymatic activity (Graminha, 2008). FES may, in some cases, be economically more interesting in enzyme production. George et al. (George, S.; Raju, V .; Subramanian, TV; Jayaraman, K. Comparative study of protease production in solid substrate fermentation versus submerged fermentation. Bioprocess Engineering 16, p. 381-382, 1997) compared production of protease between solid and submerged fermentation. The authors reported that for the same product yield, 100 mL of nutrients in FS and 1 g in FES were used.
  • Agro-industrial waste is largely produced by human, agricultural and industrial activity.
  • rice husk, straw and bran we can mention: rice husk, straw and bran; wheat straw and bran; sugarcane bagasse; cassava leaf; orange pomace and castor bean pie (Schieber, A.; Stintzing, F. C.; Carie, R. By-products of plant food processing as a source of functional compounds - recent developments. Trends in Food Science & Technology 12, p. 401 -413, 2001); (Graminha, 2008).
  • rations are materials from organic sources for the purpose of properly nourishing the animal.
  • the main characteristics of a diet are the energy availability, amount of fiber (important for digestibility) and supplementary proteins, mainly essential amino acids (González-art ⁇ n, I .; Alvarez-Garc ⁇ a, N .; Hernández-Andaluz, JL. Instantaneous determination of crude proteins, fat and fiber in animal feeds using near infrared reflectance spectroscopy technology and remote reflectance fiber optic probe (Animal Feed Science and Technology 128, pp. 165-171, 2006); (Makkar, H. P. S.
  • Feeds produced with agricultural by-products or food industry residues are frequently used, this is because there is a high availability of residues due to high food production (Bampidis, VA; Robinson, PH Citrus by-products as ruminant feeds: a review. Animal Feed Science and Technology 128, pp 175-217, 2006).
  • the use of this type of feed can bring some benefits to animals and, consequently, to the products obtained from them.
  • An example of this is the higher yield and quality of meat and milk (Vasta, V .; Nudda, A.; Cannas, A.; Lanza, M .; Priolo, A.
  • Castor bean, Ricinus communis, is grown in tropical regions for use of its oil, which is present in the seed, which is extensively used for industrial and medicinal purposes (Anandan, S.; Kumar, GKA; Ghosh, J .; Ramachandra, KS Effect of different physical and chemical treatments on detoxification of ricin in beaver cake Animal Feed Science and Technology 120, p. 159-168, 2005); (Jones, DB Proteins of the bean beaver-their preparation, properties, and utilization. The Journal of The American OH Chemists Society, July, p. 247-251, 1947). The main producing countries are India with 60% of world production and China with 20%.
  • the residual castor bean cake represents half the weight of the seed and has an amount of 34 - 36% protein (Gowda, N.; S.; Pai; DT; Srinivas, RB; Bharadwaj, U. ; Sridhar, M .; Satyanarayana, M.L; Prasad, CS; Ramachandra, KS; Sampath, K. Evaluation of beaver (Ricinus communis) seed cake in the total mixed ration for sheep.Journal of the Science of Food and Agriculture 89 , pp. 216-220, 2008); (Anandan, 2005); 20% fiber, 0.7% calcium; 0.8% phosphorus and 4% ether extract (Souza, R. M.
  • castor bean cake cannot be used as a protein source because of its toxicity and is generally used as an organic fertilizer (Jones, 1947).
  • toxins present are ricinin, albumin 2S and ricin.
  • Ricinin is a toxic alkaloid called 1,2-dihydro-4-methoxy-1-methyl-2- ⁇ -3-pyridinecarbonitrile (C 8 H 8 2 02) present in castor bean cake with low toxicity (Beltr ⁇ o, NOR). ; Lima, RLS Application of castor oil as a source of energy: Biodiesel In: Azevedo, DMP; Beltr ⁇ o, NOR (Ed.) Agribusiness of castor in Brazil 2 * Edition, Embrapa Technological Information, Bras ⁇ lia-DF, p 395-416, 2007).
  • CB-1A Cosmetic Bean Allergen
  • Albumin 2S The formerly known CB-1A (Castor Bean Allergen) allergen complex, currently referred to as Albumin 2S is also present in nuts and other seeds such as Maranh ⁇ o nuts, hazelnuts, mustard and cotton (Breiteneder, H.; Radauer, C. A classification of plant food allergens Journal of Allergy and Clinical Immunology 113, p. 821-30, 2004).
  • This toxin has been known for many years, however, detoxification treatments applied to the cake are generally inefficient (Anandan, 2005).
  • Ricin (CAS No: 9009-86-3) is one of the most potent phytotoxins known and is classified as a type 2 ribosome inactivating protein (RIP), which are heterodimers composed of two chains joined by disulfide bridges: chain A enzymatically active; and the receptor-binding B-chain described by Stirpe et al. (Stirpe, F.; Batelli, MG. Ribosome-inactivating proteins: progress and problems. Cellular and Molecular Life Sciences 63, p. 1850-1866, 2006), which can be viewed in Rutenber's Appendix 1 (Rutenber, E.; Robertus, JD Structure of Ricin B-chain at 2.5 ⁇ resolution. Proteins: Structure, Func and Genetics 10, pp. 260-269, 1991).
  • RIP ribosome inactivating protein
  • the A-chain removes an adenine residue in a ribosomal RNA loop region, with this modification, these ribosomes cannot support protein synthesis, as can be seen in Figure 1.
  • This inactivation can be performed in proportion of one ricin to every 2,000 ribosomes every minute, a rate at which the cell cannot keep up (Olsnes, S.; Fernandez-Puemtes, C.; Carrasco, L.; Vazquez, D. Ribosome inactivation by the toxin lectins abrin and ricin.
  • Kinetics of the enzimic activity of the A-chain toxin European Journal of Biochemistry, v. 60, pp. 281-288, 1975).
  • the heat-resistant ricin could easily be inactivated by any cooking or autoclaving process (Anandan, 2005), but this process is not viable for industrial scale application due to the high cost.
  • a detoxification via fermentation could be performed (Anandan, 2005); (Godoy, M. G. Microbial lipase production and simultaneous detoxification of agroindustrial tailings. Master's Dissertation, IQ-UFRJ - RJ, 2009), a fact accomplished by the present invention.
  • Tannins are a group of water-soluble, high molecular weight phenolic compounds capable of precipitating proteins and binding to metals (chelators). These compounds complex with cellulose, pectin and starch making them insoluble. Hydrolyzable tannins, such as elagitanines and galotanines, and condensed tannins, also named proanthocyanidins (Gross, GG From lignins to tannins: forty years of enzyme studies on the biosynthesis of phenolic compounds. -3031, 2008; Waghorn, 2008).
  • Hydrolyzable tannins (Figure 2) are joined by ester bonds between gallic acid groups and glucose residue through esterase bonds and depsidase bonds (Mueller-Harvey, I. Analysis of hydrolysable tannins. Animal Feed Science and Technology 91, p. 3 -20, 2001).
  • the basic unit (monomer) of these tannins are polyols, which are esterified gallic acids generally with glucose in their hydroxyl groups (galotanines or elagitanines) (Battestin, V; Matsuda, LK; Macedo, GA. Sources and applications of tannins and tanases in food, Food and Nutrition 15, pp. 63-72 2004); (Gross, 2008).
  • Condensed tannins (Figure 3) are more widely distributed than hydrolysables in the plant kingdom, they are condensed due to their compact structure (Mutabaruka, R.; Hairiah, K.; Cadisch, G. Microbial degradation of hydrolysable and condensed tannin polyphenol- protein complexes in soils from different land-use histories (Soil Biology & Biochemistry 39, pp. 1479-1492, 2007). They are present in large quantities in foods, can contain from 2 to 50 flavonoid units. Condensates are resistant to hydrolysis due to the absence of ester and depsidic bonds (Battestin, 2004); (Gross, 2008). Tannins are often distributed in different parts of plants such as seeds, flowers, bark and leaves.
  • Tamarind seed powder and palm kernel cake two novel agroresidues for the production of tannase under solid state fermentation by Aspergillus niger ATCC 16620. Bioresource Technology 96, pp. 1223-1228, 2005).
  • tannins on animal nutrition is due to their ability to bind to macromolecules, decreasing the absorption of these components.
  • low levels of tannin concentration (40 g / kg dry matter) in the feed have shown an increase in nitrogen uptake in ruminants, yielding higher growth rate and milk yield (Belmares, R .; Contreras-Esquivel, J Rodr ⁇ guez-Herrera, R.; Jr, AR; Aguilar, CN Microbial production of tannase: an enzyme with potential use in the food industry (Lebensstoff-Wissenschaft und-Technologie 37, p. 857-864, p.
  • Tanase (EC 3.1.1.20) or tannin-acylhydrolase (TAH) catalyzes the hydrolysis of gallic acid ester bonds ( Figure 4) in hydrolyzable tannin molecules (Kumar, R .; Sharma, J .; Singh, R. Production of tannase from Aspergillus rubber under solid-state fermentation using jamun (Syzygium cumini) leaves Microbiological Research 162, pp. 384-390, 2007); (Trevino-Cueto, B .; Luis, M .; Contreras-Esquivel, J. C; Rodriguez, R.; Aguilera, A.; Aguilar, CN.
  • This enzyme is produced by some filamentous fungi, mainly of the species Aspergillus, Penicillium, Fusarium and Trichoderma, but can also be produced by bacteria of the genus Bacillus, Corynebacterium, Klebsiela, Streptococcus and Selenomonas.
  • Vegetables also produce tannase to accelerate the fruit ripening process (Aissam, H.; Errachidi, F.; Penninckx, MJ; Merzouki, M .; Benlemlih, M. Production of tannase by Aspergillus niger HA37 Growing on tannic acid and olive Mill waste aters. World Journal of Microbiology & Biotechnology 21, p. 609-614, 2005); (Batra, A.; Saxena, RK Potential tannase producers from the Aspergillus and Penicillium genera. Process Biochemistry 40, p.
  • Tanase has numerous applications such as:
  • Animal Feed The use of enzymes in feed makes it possible to increase the assimilation of nutrients contained in it, such as the breakdown of antinutritional factors. At the same time, it reduces costs for feed improvement, as this enzyme can be produced via fermentation (Battestin, 2004; Graminha 2009). There are studies using the action of tannase produced by Paecilomyces variotii in broom sorghum grains on antinutritional factors, in this case tannins.
  • Beers feature polyphenolic compounds from malt. Thus tanase cleaves these compounds and decreases their turbidity, making them a product acceptable to the market (Battestin, 2004).
  • Gallic Acid Production used mainly in the pharmaceutical industries, such as in the synthesis of trimethoprim, antibacterial agent and sulfonamide (Aguilar, CN; Augur C; Favela-Torres, E.; Viniegra-González, G. Production of tannase by Aspergillus niger Aa -20 in submerged and solid state fermentation: influence of glucose and tannic acid Journal of Industrial Microbiology & Biotechnology 26, pp. 296-302, 2001a).
  • Tanase cleaves polyphenolic compounds resulting in compounds such as epigallocatechin, epicatechin and gallic acid, which are molecular structures with antioxidant capacity (Battestin, V .; Macedo, GA; De Freitas, VAP Hydrolysis of epigallocatechin gallate using a tannase from Paecilomyces variotii. Food Chemistry 108, p. 228-233, 2008).
  • the TAH can be obtained from various sources, such as animals (ruminant gut), plants (leaves, fruit peel, twigs) and mainly from microorganisms, since its production is more stable and abundant compared to other sources.
  • microorganisms can be genetically engineered for enzyme improvement and production (Battestin, V; Macedo, G. A. Tannase Production by Paecilomyces variotii. Bioresource Technology 98, p.
  • the fungal TAH enzyme is a glycoprotein with pH stability in the range of 3.5 and 8.0; optimal pH of 5.5 and 6.0; stability temperature in the range of 30 and 60 ° C; optimal temperature between 30 and 40 ° C; isoelectric point of 4.0 and 4.5 and molecular mass between 186 and 300 kDa. These properties vary according to the type of microorganism and growing conditions of the strain used.
  • TAH is inhibited by Cu2 +, Zn + 2, Fe + 2, Mn + 2 and Mg + 2, being inactivated by EDTA, 2-mercaptoethanol, sodium thioglycolate, magnesium and calcium sulfate and ofenanthroline (Aguilar, 2001a); (Aguilar, 2007); (Battestin, V .; Macedo, GA Purification and biochemical characterization of tannase from a newly isolated strain of Paecilomyces variotii. Food Biotechnology 21, p.
  • Phytic acid / W / 'o-lnositol-l, 2,3,4,5,6-hexakisphosphate ( Figure 5) is a cyclic alcohol derived from glucose 6 - phosphate groups attached to each carbon of the glycoside molecule.
  • phytic acid is the most abundant in vegetables, especially in seeds as it has a storage function of the phosphorus group to obtain energy (Raboy, V. Molecules of interest: myo-lnositol-1, 2). 3,4,5,6-hexakisphosphate (Phytochemistry 64, pp. 1033-1043, 2003).
  • the presence of excess phytate pollutes the environment and also disturbs the diet of monogastric animals.
  • Phytate acts as an antinutrient by binding to proteins, amino acids and lipids and chelating minerals such as calcium, iron, zinc and magnesium thus forming insoluble salts (Honsson, SJ; Davis, RP). Phytase-hydrolysing enzyme by some fungi Enzyme and Microbial Technology 5, pp. 377-343, 1983). In addition, it interacts with digestive enzymes reducing their activities, influencing digestion and impairing the utilization of vitamins.
  • the enzyme phosphohydrolase catalyzes the phosphate and phytic acid hydrolysis ( Figure 6) to inorganic phosphate and myo-inositol phosphate derivatives.
  • Phytases are classified as histidine acid phosphatases (Histidine Acid Phosphatases - PAHs), a subclass of phosphatases (Vats, 2004).
  • 3-phytase EC3.1.3.8
  • 6-phytase EC3.1.3.26
  • 3-phytase myo-inositol-hexakisphosphate
  • 6-phytase 6-phytase
  • phytase can be produced using low cost substrates such as oilseed cake (Roopesh, K.; Ramachandran, S.; Nampoothiri, M. ;; Szakacs, G.; Pandey, A. Comparison of phytase product on wheat bran and oilcakes in solid-state fermentation by Mucor racemosus (Bioresource Technology 97, pp. 506-511, 2006).
  • Phytase supplementation in animal feed increases phosphorus bioavailability in monogastric animals, which consequently reduces phosphorus pollution in the environment.
  • the enzyme also prevents: chelation of phytic acid with metal ions, protein binding, lipids and carbohydrates, thus increasing their nutrition in the feed (Vats, 2004).
  • Pie from coconut oil extraction was used to produce extracellular phytase via solid state fermentation with Rhizopus oligosporus. Maximum enzymatic production of 14.29 AU / g of dry substrate after 96 hours of incubation without nutrient supplementation (Sabu, A.; Sarita, S.; Pandey, A.; Bogar, B.; Szakacs, G .; Soccol , CR Solid-state fermentation for production of phytase by Rhizopus oligosporus Applied Biochemistry and Biotechnology 102-103, pp. 251-260, 2002).
  • Enzymes are currently used in numerous industrial products and processes, while new application areas are being added due to their effectiveness and economy in their actions, especially in reducing energy use, for reaction activation and water quantity ( Kirk, O; Borchert, TV; Fuglsang, CC Industrial Enzyme Applications (Current Opinion in Biotechnology 13, pp. 345-351, 2002).
  • enzymes as additives in foods is also well known, such as the action of bromelain on meat, a protease that increases the tenderness of the product, making it more interesting for consumption. Enzymes can also increase nutrient availability, especially in animal feed such as xylanase and beta-glucanase which are used in cereals that aid in nutrient digestibility in monogastric animals which, unlike ruminants, are unable to fully hydrolyze the nutrients.
  • plant foods mainly cellulose and hemicellulose (Polizeli, MLTM; Rizzatti, ACS; Monti, R.; Terenzi, HF; Jorge, JA; Amorim, DS Xylanases from fungi: properties and industrial applications. Applied Microbiological Biotechnologic 67, p. 577-591, 2005).
  • Nuero and Reyes (Nuero, OM; Reyes, F .; Enzymes for animal feeding from Penicillium chrysogenum mycelial wastes from penicillin manufacture. Letters in Applied Microbiology 34, p. 413- 416, 2002) verified multi-enzyme production for use as feed additive animal through the Penicillium chrysogenum.
  • the microorganism produced enzymes such as: tannase, lipase, invertase and beta-1,3-glucanase, with enzymatic activities comparable to the commercial one and thus, enabling its application in animal feed, the present invention, in turn uses the microorganism Paecilomyces variotii to Simultaneous production of phytase and tanase enzymes in castor bean residual cake.
  • the castor bean cake medium showed the highest activity at 48 and 72 hours for tanase and phytase production, respectively.
  • the best conditions for tanase production were: 90% relative humidity, 25% solution saline and 4.6% tannic acid, obtaining an enzymatic activity of 2800 U / g substrate.
  • FIGURES Figure 1 Ribosomal RNA "loop” and Ricin depurination site, described by Stirpe et al. (2006).
  • Figure 2 Chemical structure of the hydrolyzable tannin described by Battestin et al. (2004).
  • Figure 3 Example of the Chemical Structure of Condensed Tannin described by Battestin et al. (2004).
  • Figure 7 Minimum concentration required to inhibit cell growth, considering the percentage of living cells in relation to the amount of protein in castor bean cake extract.
  • Figure 8 Percentage of growth of cells in fresh pie and at each fermentation time (24, 8 and 72 hours).
  • Annex 3 Response Surface and Contour Curve Tanase Activity (U / mL): (a) as a function of saline volume and relative humidity, (b) as a function of relative humidity and tannic acid, and ( c) as a function of tannic acid and saline volume.
  • Annex 4 SDS-PAGE 12% protein extract from each sample tested.
  • the castor bean cake must first be crushed and subjected to a 1.68 mm 10 mesh sieve size separation process.
  • This methodology was performed by volumetric titration that directly provides the sample water percentage, and it is necessary to supply the sample mass added in the titration flask.
  • the amount of water in the sample should be approximately 4.78%, plus or minus 0.07%.
  • the castor bean residual cake For the castor bean residual cake to be used for optimum phytase and tanase production, it must have a moisture content of 6.7%, in relation to the total sample weight, with a variation of 0.16% more or less, as shown in Table 1.
  • Table 1 pH, amount of water and relative humidity of castor bean cake in natura. Castor Pie
  • the microorganism Paecilomyces variotii should be kept in Potato Dextrose Agar (PDA - OXOID - CM0139) medium with a 0.2% tannic acid supplement (Tanal B - Prozyn - BioSolutions) and incubated at 30 ° C for 72 hours.
  • PDA - OXOID - CM0139 Potato Dextrose Agar
  • tannic acid supplement Teanal B - Prozyn - BioSolutions
  • a cell suspension with a homogenizer should be performed, resulting in a concentration of 9 x 10 6 cells / mL.
  • Phytase The optimal incubation period of the microorganism has been determined.
  • Paecilomyces variotii for phytase production is 72 hours, with a slight decrease until 96 hours, when the production value becomes constant and decreases after 120 hours, as shown in Table 2.
  • Table 2 Evaluation of fermentation kinetics for phytase activity in castor bean pie.
  • the tannic acid concentration and the percentage of the saline volume added in relation to the medium were also determined.
  • the optimization of the fermentation kinetics to obtain the highest amount of tanase in the shortest possible time showed that for the production of this enzyme, the optimal fermentation time is 48 hours.
  • Annex 3 indicates that the range in which the highest enzymatic activity would be obtained would be between 84 to 90% relative humidity (RH%), with an optimum humidity percentage of 90%.
  • the activity of the tannase enzyme is higher at concentrations between 4.6 and 6% of tannic acid, with optimal enzymatic activity at 4.6% and higher tannic acid concentrations decrease the tannic activity.
  • concentration of saline volume in relation to the total weight of the medium the range of 25 to 33% would stimulate enzyme production, with optimum concentration of 25%.
  • Lower saline concentrations prevent the growth of the microorganism in the medium and the increase of saline in the culture medium diminished the tannic activity.
  • the relative humidity of the medium present before fermentation was 25% and after incubation in the Chamber there is a small increase of 2%, resulting in 27%.
  • the chamber when used at 90% relative humidity, it can maintain the humidity present in the culture medium, with no loss of water from the medium to the air, resulting in a balance of the water present in the medium with the air, as can be seen in Table 3.
  • Table 3 Relative humidity of the culture medium before and after incubation in the climate chamber for the medium optimized for castor bean tannase production.
  • Table 4 Evaluation of fermentation kinetics for tannin activity in castor bean pie.
  • Example 2 EXPERIMENTAL DESIGN
  • DCCR central rotational composite design
  • the 3 independent variables were: relative humidity () in Climatic Chamber (New Ethics Model 420 / CLDTS 300); tannic acid concentration, which was expressed as a percentage of the total weight of the medium (w / w); and the saline volume, which was expressed as a percentage of the total weight of the medium (v / w).
  • the dependent variables were tanase and phytase enzymatic activity.
  • the concentration of tannic acid (%) used in this study was determined according to Battestin et al. (2007b), where the maximum tanase production was obtained using 8 to 15% tannic acid.
  • tannic acid concentrations were tested in order to reduce the costs of the production medium.
  • the amount of salt added in the fermentation medium is described in the Detailed Description in the Fermentation Process item. In this study, the volume of water added to the fermentation medium was evaluated. The range of water volume The amount added was determined according to the maximum absorption capacity of the substrate, without presenting free water in the medium, according to Table 6. The actual values used in the planning tests are presented in Table 7 and the tests matrix in Table 8. Table 7: Values used in DCCR for three factors.
  • Table 8 Design matrix containing coded variable values.
  • the first design was based on the phytase enzyme activity dependent variable after 72 hours of fermentation and the second design was based on the tanase enzyme activity dependent variable after 48 hours of fermentation.
  • the central rotational composite design was used to evaluate the response or dependent variable of phytase enzymatic activity.
  • the assays were incubated with the microorganism for 72 hours, which was the time with the highest phytase activity.
  • the independent variables studied were: relative air humidity, tannic acid concentration and the percentage of saline volume added in relation to the medium.
  • Table 9 shows the matrix of the independent variables under study, with real and coded values, and the phytase dependent variable during 72 hours of incubation.
  • Table 9 DCCR 2 3 matrix and the response of phytase enzymatic activity after 72 hours of incubation.
  • Table 10 presents the values of the regression coefficients, t and p-value to evaluate which are the statistically significant variables and their interactions above 90% (p ⁇ 0.10).
  • Table 10 Results of Regression Coefficient, Standard Error, t, p and Confidence Limit in optimizing culture medium components (relative humidity, saline volume and tannic acid) on phytase activity.
  • the value obtained was 0.96, for the determination coefficient (R 2 ) was 0.92, indicating a satisfactory correlation between the values obtained by the experiment and those predicted by the model.
  • Annex 2 shows the effects of the components relative humidity and percentage of saline volume in relation to the total weight of the medium on the production of tanase by Paecilomyces variotii.
  • Table 12 shows the matrix of the independent variables under study, with actual, coded values and the tanase dependent variable after 48 hours of fermentation.
  • Table 12 shows an increase in activity, ranging from 104 U / mL in test 12 (75% relative humidity, 55% added saline volume to total medium weight and 8% acid supplemented in the medium) to 573 U / mL in test 2 (84% relative air humidity, 31% saline volume and 6% tannic acid).
  • Table 12 OCCR 2 3 matrix and the response of tanase enzymatic activity after 48 hours of fermentation.
  • Table 13 presents the regression coefficients, standard error, t, p-value and confidence limit of the variables and their interactions, in response to tannase activity with a 90% statistical confidence limit (p ⁇ 0.10).
  • Table 13 Results of Regression Coefficient, Standard Error, t, p and Confidence Limit in optimizing culture medium components (relative humidity, saline volume and tannic acid) on tanase activity.
  • Table 14 Analysis of variance in the study of the effect of culture medium components (RH (%), SS volume (%) and TA (%)) on tanase activity.
  • Tanase (U / mL) 288 + 58.24 * (UR) -75.21 * (SS volume) -20.93 * (SS volume) 2 - 60.77 * (AT) -36 * (UR) * (AT) + 79.25 * (SS volume) * (AT) (2)
  • Annex 3 (a), (b) and (c) illustrate the effects of the components relative humidity, tannic acid concentration and percentage of volume of saline in relation to the total weight of the medium in the production of tanase by Paecilomyces variotii.
  • the enzyme was extracted by adding 4 parts of acetate buffer pH 5.5 - 0.02 M to 1 part of the fermentation medium in each Erlenmeyer. The flasks were shaken at 200 rpm for 1 hour (Battestin, 2007b). The solution was filtered through gauze and the extract retained on filtration was called crude solid extract. The filtrate was centrifuged at 7100 xg for 30 minutes at 4 ° C and was then called crude enzyme extract (Lekha, PK; Lonsane, BK). , pp. 215-260, 1997). The enzyme extract was used to determine the activity of the tanase and phytase enzymes.
  • the crude solid extract was used for analytical determinations of total phenols, condensed tannins, hydrolyzed tannins and detoxification.
  • the main objective of the analytical determinations was to evaluate the concentrations of compounds of nutritional value in the pre-fermented and post-fermented medium as phenolic compounds, hydrolysable tannins, condensates, evaluation of the presence of ricin and determination of the detoxification process.
  • the method was performed by adding 1 mL of the study sample and 5 mL of the vanillin solution over 5 minutes, and 1 mL of the vanillin solution was placed every 1 minute.
  • the blank consisted of 1 mL of distilled water and 5 mL of vanillin solution, then the reaction was conducted for 20 minutes and finally read at a spectrophotometer at 500 nm. The course of the reaction was followed by a catechin calibration curve according to the methodology described. D) Results
  • Table 15 shows the Total Phenol concentrations in each gram of sample extracted by four different solvents diluted 1: 1 with distilled water, except for Hexane: Ethyl Acetate, Acetone and Methanol, in unfermented castor bean cake. Table 15: Concentration of Total Phenols in unfermented castor bean cake in different types of solvents.
  • Acetone solution was used to analyze their contents before and after the castor bean cake fermentation.
  • Table 16 Concentration of Total Phenols and Hydrolyzable Tannins before and after fermentation.
  • TM fresh castor bean pie
  • TM F72h optimized and fermented culture medium for phytase production (after 72 hours of fermentation).
  • the results showed that the fermentation of castor bean cake by Paecilomyces variotii after 72 hours of incubation decreased the concentration of total phenols as well as hydrolysable tannins.
  • the microorganism produced enzymes that hydrolyzed these compounds, such as tannase, which has the ability to cleave hydrolyzable tannins. For these samples, insufficient concentrations of condensed tannins were not detected, probably not sufficient amounts of samples were placed in the extraction process to determine the condensed tannins.
  • Protein extract of the fermented product was evaluated at different incubation times, between 24 and 72 hours, comparing it with purified ricin, fresh castor and autoclaved castor cake (Annex 4).
  • the bands where ricin appears in the gel are in the range between 31.3 and 38.2 kDa and are also visualized in the run with purified ricin.
  • the samples of fresh castor bean cake and autoclaved castor bean cake presented the two bands of ricin in the gel, showing that the methodology is valid for identification of this compound in protein extract samples.
  • the autoclaving process at 121 ° C for 15 minutes did not destroy the ricin chains.
  • the presence of ricin is poorly visible, demonstrating a probable initiation of compound hydrolysis.
  • the bands where ricin are located are completely absent, possibly showing that the microorganism Paecilomyces variotii hydrolyzed the ricin, making possible a detoxified and viable cake for use in animal feed.
  • the minimal protein detection in SDSPAGE by Coomassie Blue is 10 g / mL sample, lower concentrations are hardly detectable by the method (Anandan, 2005); (Godoy, 2009) and (Schagger, H. Tricine-SDS-PAGE. Nature Protocols 1, pp. 16-22, 2006).
  • the MTT test was used according to Mosmann methodology (Mosmann, T., 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Meth. 65, 55-63).
  • type RAW 264.7 cells were cultured in DMEM glasshouse at 37 ° C in the presence of C0 2 in its atmosphere.
  • a volume of 100 ⁇ MTT (5 mg / mL in PBS) and sample extract were added to microplate wells. Each microplate was incubated in the oven for 24 hours. After incubation, the microplates were read in a spectrophotometer at 540 nm absorbance.
  • the assay was conducted using the ricin obtained as described in the extraction item to determine the minimum dose to induce cell culture death.
  • different dilutions of protein made in PBS pH 7.0: 100 were used. ⁇ / ⁇ , 50 ⁇ g / mL, 10 ⁇ 8 / ⁇ , 1 ⁇ g / mL, 100 ng / mL, 50 ng / mL, 10 ng / mL, 1 ng / mL, 100 pg / mL, 50 pg / mL, and 10 pg / mL.
  • the minimum inhibitory concentration of the extract on the cells was used to evaluate the fermented substrate at 24, 48 and 72 hours of fermentation. Through the results obtained by electrophoresis analysis, the samples were tested in live cell cultures to verify its viability in the presence of fresh and fermented castor bean cake.
  • the minimum concentration required for cell death to occur was 1 g / mL cake extract.
  • Lower concentrations of cell viability in the culture medium were close to 100% and thus did not interfere with its growth.
  • the second test was performed with extracts of fermented material with 1 ⁇ g / mL at different times (24, 48 and 72 hours of fermentation).
  • the cell viability was increasing and after 72 hours of fermentation presented approximately 100% of the cell viability.
  • the microorganism Paecilomyces variotii hydrolyzed the possible toxic compounds (ricin) in the medium and favored the growth of the cells under study.
  • Table 17 Relative humidity of the culture medium before and after incubation in the climate chamber for the optimum medium for phytase production in castor bean cake.
  • TM 72h castor bean cake culture medium with 25% of saline volume in relation to the total weight of the medium (v / p).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Fodder In General (AREA)

Abstract

The present invention relates to the simultaneous production of thanase and phytase from waste castor-oil-plant cake in solid-state fermentation with Paecilomyces variotii, and also the reduction in the concentration of castor oil after fermentation, thereby promoting the detoxification thereof. The use of enzymes in animal nutrition is known and is the subject of intense interest. The greatest difficulty in terms of wider use of enzymes is still the production cost. The use of waste for animal nutrition represents a viable alternative for this sector, and also for the production of biocatalysts by means of solid fermentation. The present invention determined optimum values for constitution of the culture medium using waste castor-oil-plant cake for production of the phytase and thanase enzymes by means of the solid fermentation of the microorganism Paecilomyces variotii, in such a manner as to produce the greatest possible quantity of enzyme and to achieve the greatest possible performance level thereof. In addition, the present invention enables the detoxification of waste castor-oil-plant cake on account of the degradation of castor oil, the greatest toxic agent thereof, thereby making the waste an ingredient that it is advantageous to use in animal feed.

Description

"MEIOS DE CULTURA DE TORTA RESIDUAL DE MAMONA PARA PRODUÇÃO SIMULTÂNEA DAS ENZIMAS FITASE E TANASE, E DETOXIFICAÇÃO DA TORTA DE MAMONA, PELO MICROORGANISMO PAECILOMYCES VARIOTII ATRAVÉS DA  "MEDIUM RESIDUAL PIE CULTURE FOR SIMULTANEOUS PRODUCTION OF THE PHYMASE AND TANASE ENZYMS, AND DETAXIFICATION OF THE MAMONA PIE BY PAECILOMYCES VARIOTII MICROORGANISM
FERMENTAÇÃO SÓLIDA, ENZIMAS OBTIDAS E SEUS USOS". CAMPO DA INVENÇÃO  SOLID FERMENTATION, ENZYMS OBTAINED AND THEIR USES ". FIELD OF THE INVENTION
O presente invento visou à determinação de parâmetros para produção simultânea das enzimas fitase e tanase através da fermentação sólida, em torta residual de mamona, empregando o fungo Paecilomyces variotii. The present invention aimed to determine parameters for simultaneous production of phytase and tanase enzymes by solid fermentation in castor bean cake using the fungus Paecilomyces variotii.
O uso de enzimas na alimentação animal é conhecido e está sendo bem explorado. A maior dificuldade de expandir o uso de enzimas ainda é o custo de produção. Uma alternativa para isto seria a utilização destes resíduos como substrato da fermentação para produção de enzimas. The use of enzymes in animal feed is well known and is being well explored. The biggest difficulty in expanding enzyme use is still the cost of production. An alternative to this would be to use these residues as fermentation substrate for enzyme production.
A mamona é uma oleaginosa muito usada para a produção de biodiesel. A torta residual da extração do óleo é de grande utilidade para adubação e também rica em proteínas, abrindo possibilidade da sua utilização como ração animal. Esta segunda aplicação enfrenta o problema da presença da ricina, composto tóxico presente na torta, havendo a necessidade de detoxificá-la antes do destino como ração, fato observado através da utilização do presente invento. Castor bean is an oilseed widely used for the production of biodiesel. The residual oil extraction cake is very useful for fertilization and also rich in proteins, opening the possibility of its use as animal feed. This second application addresses the problem of the presence of ricin, a toxic compound present in the cake, with the need to detoxify it prior to fate as a feed, a fact observed through the use of the present invention.
Dessa forma, o uso dos resíduos para alimentação animal representa uma alternativa viável para este setor, assim como para a produção de biocatalizadores através da fermentação sólida. Thus, the use of animal feed residues represents a viable alternative for this sector, as well as for the production of biocatalysts through solid fermentation.
FUNDAMENTOS DA INVENÇÃO PRODUÇÃO DE ENZIMAS POR FERMENTAÇÃO EM ESTADO SÓLIDO BACKGROUND OF THE INVENTION Solid State Fermentation Enzyme Production
A fermentação em estado sólido (FES) proporciona o cultivo de microrganismos em substratos sólidos na ausência de uma fase aquosa livre (Pandey, A. Solid-state fermentation. Biochemistry Engeenering Journal 13, p. 81- 84, 2003). No entanto, o substrato deve apresentar umidade adequada para manter o crescimento e o metabolismo do microrganismo, sem exceder a capacidade de retenção máxima de água pela matriz (Foong, C. W.; Janaun, J.; Krishnaiah, K.; Prabhakar, A. Effect of superficial air velocity on solid state fermentation of palm kernel cake in a lab scale fermenter using locally isolated strain. Industrial Crops and Products 30, p. 114-118, 2009). A matriz sólida utilizada no processo pode ser tanto a fonte de nutriente quanto simplesmente um suporte impregnado com nutrientes adequados ao desenvolvimento do microrganismo (Pandey, 2003), (Nagao, N.; MatsuyamaJ.; Yamamoto, H.; Toda, T. A novel hybrid system of solid state and submerged fermentation with recycle for organic solid waste treatment. ProcessBiochemistry 39, p. 37-43, 2003). Existem diferenças significativas entre os processos de fermentação em estado sólido e fermentação submersa (FS). A principal diferença entre FES e FS é a quantidade de água livre no meio de cultivo. Na FS, a quantidade de sólidos não ultrapassam 50 g/L, enquanto na FES o conteúdo de sóldios varia de 20 a 70% do peso total do meio (Mitchell, D. A.; Losane, B. K. Definition, characteristic and potential. In: Doelle, H.; Mitchell, D. A., Rols, C. E. Solid substrate cultivation. Elsevier Applied Science, p. 1- 16, 1992). Solid state fermentation (FES) provides for the cultivation of microorganisms on solid substrates in the absence of a free aqueous phase (Pandey, A. Solid-state fermentation. Biochemistry Engeenering Journal 13, p. 81-84, 2003). However, the substrate must have adequate moisture to maintain the growth and metabolism of the microorganism, without exceeding the maximum retention capacity of Water by matrix (Foong, CW; Janaun, J .; Krishnaiah, K .; Prabhakar, A. Effect of superficial air velocity on solid state fermentation of palm kernel cake in a lab scale fermenter using locally isolated strain. Industrial Crops and Products 30 , pp. 114-118, 2009). The solid matrix used in the process can be both the nutrient source and simply a support impregnated with nutrients suitable for microorganism development (Pandey, 2003), (Nagao, N.; Matsuyama J.; Yamamoto, H .; Toda, T. A novel hybrid system of solid state and submerged fermentation with recycle for organic solid waste treatment (Process Biochemistry 39, pp. 37-43, 2003). There are significant differences between solid state fermentation and submerged fermentation (FS) processes. The main difference between FES and FS is the amount of free water in the culture medium. In FS, the amount of solids does not exceed 50 g / l, while in FES the content of solids varies from 20 to 70% of the total weight of the medium (Mitchell, DA; Losane, BK Definition, characteristic and potential. In: Doelle, H., Mitchell, DA, Rols, CE Solid substrate cultivation (Elsevier Applied Science, pp. 1-16, 1992).
A FES confere vantagens sobre a FS como a utilização de meios de cultura simples e não hidrossolúveis, compostos de materiais de origem vegetal, como farelos e cascas de arroz, trigo, milho e outros cereais, necessitando de poucos nutrientes adicionais ao meio. Adicionalmente, o custo do meio de fermentação pode representar até 30% do total de uma produção enzimática. Assim, há interesse na utilização de resíduos agroindustriais como substrato, representando, em países como o Brasil, matéria prima abundante e de baixo custo (Graminha, E. B. N.; Gonçalves, A. Z. L; Pirota, R. D. P. B.; Balsalobre, M. A. A.; Da Silva, R. E. Enzyme production by solid- state fermentation: application to animal nutrition. Animal Feed Science and Technology 144, p. 1-22, 2008), (Pandey, 2003). Devido ao baixo teor de umidade e a ausência de água livre no meio, a probabilidade de contaminação por bactérias é reduzida. A pequena quantidade de água empregada na FES também implica em vantagens, tais como menor reacional e maior concentração do produto (Nagao, 2003), (Mitchell, 1992) (Mohapatra, P. K.; Maity, C; Rao, R. S.; Pati, B. R.; Mondai, K. C. Tannase production by Bacillus licheniformis KBR6: Optimization of submerged culture conditions by Taguchi DOE methodology. Food Research International 42, p. 430-435, 2009.; Singhania, R. R.; Patel, A. K.; Soccol, C. R.; Pandey, A. Recent advances in solidstate fermentation. Biochemical Engineering Journal 44, p. 13-18, 2009). Dentre as características da FES, a baixa atividade de água do meio de cultivo sólido influencia nos aspectos fisiológicos dos microrganismos, tais como no seu crescimento vegetativo, esporulação, germinação de esporos, produção de enzimas e atividade enzimática (Graminha, 2008). A FES pode, em alguns casos, ser economicamente mais interessante na produção de enzimas. George e colaboradores (George, S.; Raju, V.; Subramanian, T. V.; Jayaraman, K. Comparative study of protease production in solid substrate fermentation versus submerged fermentation. Bioprocess Engineering 16, p. 381-382, 1997) compararam a produção de protease entre a fermentação em estado sólido e submersa. Os autores relataram que para um mesmo rendimento do produto, foram utilizados 100 mL de nutrientes em FS e 1 g para FES. FES confers advantages over FS such as the use of simple, non-water soluble culture media composed of plant-based materials such as rice bran, wheat, maize and other cereals, requiring few additional nutrients in the medium. Additionally, the cost of the fermentation medium may represent up to 30% of the total enzyme production. Thus, there is interest in the use of agro-industrial residues as substrate, representing, in countries such as Brazil, abundant and low cost raw material (Graminha, EBN; Gonçalves, AZ L; Pirota, RDPB; Balsalobre, MAA; Da Silva, RE Enzyme production by solid-state fermentation: application to animal nutrition Animal Feed Science and Technology 144, pp. 1-22, 2008), (Pandey, 2003). Due to the low moisture content and the absence of free water in the medium, the likelihood of bacterial contamination is reduced. The small amount of water employed in FES also implies advantages such as lower reaction and higher product concentration (Nagao, 2003), (Mitchell, 1992) (Mohapatra, PK; Maity, C.; Rao, RS; Pati, BR; Mondai, KC Tannase production by Bacillus licheniformis KBR6: Optimization of submerged culture conditions by Taguchi DOE methodology. Food Research International 42, p. 430-435, 2009 .; Singhania, RR; Patel, AK; Soccol, CR; Pandey, A. Recent advances in solidstate fermentation. Biochemical Engineering Journal 44, p. 13-18, 2009). Among the characteristics of FES, the low water activity of solid culture medium influences the physiological aspects of microorganisms, such as their vegetative growth, sporulation, spore germination, enzyme production and enzymatic activity (Graminha, 2008). FES may, in some cases, be economically more interesting in enzyme production. George et al. (George, S.; Raju, V .; Subramanian, TV; Jayaraman, K. Comparative study of protease production in solid substrate fermentation versus submerged fermentation. Bioprocess Engineering 16, p. 381-382, 1997) compared production of protease between solid and submerged fermentation. The authors reported that for the same product yield, 100 mL of nutrients in FS and 1 g in FES were used.
PRODUÇÃO DE RAÇÃO ANIMAL UTILIZANDO RESÍDUOS AGRÍCOLAS ANIMAL FEED PRODUCTION USING AGRICULTURAL WASTE
A economia brasileira é uma das mais importantes economias do mundo e baseia-se, principalmente, na agricultura. Entretanto, a grande produção desses materiais agrícolas gera grandes quantidades de resíduos. Nos últimos anos houve um aumento na tentativa de tornar mais eficiente a utilização desses resíduos cuja disposição no meio ambiente causam sérios problemas de poluição (Soccol, C. R.; Vandenbergher, L. P. S. Overview of applied solid-state fermentation in Brazil. Biochemical Engineering Journal 13, p. 205-218, 2003). The Brazilian economy is one of the most important economies in the world and is mainly based on agriculture. However, the large production of these agricultural materials generates large amounts of waste. In recent years there has been an increase in the attempt to make more efficient the use of these wastes whose disposal in the environment causes serious pollution problems (Soccol, CR; Vandenbergher, LPS). Biochemical Engineering Journal 13, p 205-218, 2003).
Resíduos agroindustriais são amplamente produzidos pela atividade humana, agrícola e industrial. Dentre os resíduos produzidos em quantidades significativas pela atividade industrial brasileira, podemos citar: casca, palha e farelo de arroz; palha e farelo de trigo; bagaço de cana; folha de mandioca; bagaço de laranja e torta de mamona (Schieber, A.; Stintzing, F. C; Carie, R. By-products of plant food processing as a source of functional compounds - recent developments. Trends in Food Science &Technology 12, p. 401-413, 2001); (Graminha, 2008). A maioria destes produtos apresenta potencial nutricional e assim, apresentam inúmeras possibilidades para aplicação, como a produção de biomassa microbiana para alimentação animal, ou seja, o uso destes resíduos como substratos para cultivo de microrganismos capazes de biodegradá-los para obtenção de nutrientes para seu desenvolvimento (Goel, G.; Puniya, A. K.; Aguilar, C. N.; Singh, K. Interation of gut microflora with tannins in feeds. Naturwissenschaften 92, p. 497-503, 2005.; Cao, L; Wang, W.; Yang, C; Yang, Y.; Diana, J.; Yakupitiyage, A.; Luo, Z.; Li, D. Application of microbial phytase in fish feed. Enzyme and Microbial Technology 40, p. 497-507, 2007. ; Kuhad, R. C; Singh, A.; Tripathi, K. K.; Saxena, R. K.; Eriksson, K. E. L. Microrganisms as an alternative source of protein. Nutrition Reviews 55, p. 65-75, 1997). Agro-industrial waste is largely produced by human, agricultural and industrial activity. Among the residues produced in significant quantities by the Brazilian industrial activity, we can mention: rice husk, straw and bran; wheat straw and bran; sugarcane bagasse; cassava leaf; orange pomace and castor bean pie (Schieber, A.; Stintzing, F. C.; Carie, R. By-products of plant food processing as a source of functional compounds - recent developments. Trends in Food Science & Technology 12, p. 401 -413, 2001); (Graminha, 2008). Most of these products have nutritional potential and thus have numerous possibilities for application, such as the production of microbial biomass for animal feed, ie the use of these residues as substrates for cultivation of microorganisms capable of biodegrading them to obtain nutrients for their production. Development (Goel, G .; Puniya, AK; Aguilar, CN; Singh, K. Interaction of gut microflora with tannins in feeds. Naturwissenschaften 92, p. 497-503, 2005 .; Cao, L; Wang, W .; Yang Yang, Y; Diana, J.; Yakupitiyage, A.; Luo, Z; Li; D. Application of microbial phytase in fish feed Enzyme and Microbial Technology 40, pp. 497-507, 2007.; Kuhad, R. C. Singh, A. Tripathi, KK, Saxena, RK, Eriksson, KEL Microrganisms as an alternative source of protein Nutrition Reviews 55, 65-75, 1997).
Genericamente, as rações são materiais de fontes orgânicas com a finalidade de nutrir adequadamente o animal. As principais características de uma ração são a disponibilidade energética, quantidade de fibras (importantes para a digestibilidade) e proteínas suplementares, principalmente aminoácidos essenciais (González- artín, I.; Alvarez-García, N.; Hernández-Andaluz, J. L. Instantaneous determination of crude proteins, fat and fibre in animal feeds using near infrared reflectancespectroscopy technology and remote reflectance fibre-optic probe. Animal Feed Science and Technology 128, p. 165-171, 2006); (Makkar, H. P. S. Review: Effects and fate of tannins in ruminant animais, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Ruminant Research 49, p. 241- 256, 2003). Generally, rations are materials from organic sources for the purpose of properly nourishing the animal. The main characteristics of a diet are the energy availability, amount of fiber (important for digestibility) and supplementary proteins, mainly essential amino acids (González-artín, I .; Alvarez-García, N .; Hernández-Andaluz, JL. Instantaneous determination of crude proteins, fat and fiber in animal feeds using near infrared reflectance spectroscopy technology and remote reflectance fiber optic probe (Animal Feed Science and Technology 128, pp. 165-171, 2006); (Makkar, H. P. S. Review: Effects and Fate of Tannins in Animal Ruminants, Adaptation to Tannins, and Strategies to Overcome Detrimental Effects of Feeding Tannin-Rich Feeds. Small Ruminant Research 49, p. 241- 256, 2003).
Rações produzidas com sub-produtos agrícolas ou resíduos de indústrias alimentícias são utilizados freqúentemente, isso porque há grande disponibilidade de resíduos devido à alta produção de alimentos (Bampidis, V. A.; Robinson, P. H. Citrus by-products as ruminant feeds: a review. Animal Feed Science and Technology 128, p. 175-217, 2006). A utilização deste tipo de ração pode trazer alguns benefícios para os animais e, consequentemente, para os produtos deles obtidos. Um exemplo disso é a maior produtividade e qualidade da carne e do leite (Vasta, V.; Nudda, A.; Cannas, A.; Lanza, M.; Priolo, A. Alternative feed resources and their effects on the quality of meat and milk from small ruminants. Animal Feed Science and Technology 147, p. 223-246, 2008). Porém, estas rações devem ser cuidadosamente formuladas para garantir que os compostos antinutricionais, especialmente fitatos e taninos, não interfiram de forma negativa na saúde do animal. Estes compostos podem causar mudanças na estrutura e composição dos ácidos graxos do leite e também da carne (Hérvas, G.; Frutos, P.; Giráldez, F. J.; Mantecón, A. R.; Del Pino, M. C. A.; Effect of different doses of quebracho tannins extract on rumen fermentation in ewes. Animal Feed Science and Technology 109, p. 65-78, 2003). Feeds produced with agricultural by-products or food industry residues are frequently used, this is because there is a high availability of residues due to high food production (Bampidis, VA; Robinson, PH Citrus by-products as ruminant feeds: a review. Animal Feed Science and Technology 128, pp 175-217, 2006). The use of this type of feed can bring some benefits to animals and, consequently, to the products obtained from them. An example of this is the higher yield and quality of meat and milk (Vasta, V .; Nudda, A.; Cannas, A.; Lanza, M .; Priolo, A. Alternative feed resources and their effects on the quality of meat and milk from small ruminants Animal Feed Science and Technology 147, p. 223-246, 2008). However, these feeds should be carefully formulated to ensure that antinutritional compounds, especially phytates and tannins, do not adversely affect animal health. These compounds can cause changes in the structure and composition of milk and meat fatty acids (Herbs, G.; Fruits, P.; Giráldez, FJ; Mantecón, AR; Del Pino, MCA; Effect of different doses of quebracho tannins extract on rumen fermentation in ewes, Animal Feed Science and Technology 109, pp. 65-78, 2003).
Na aquicultura, algumas rações formuladas com farelo de soja são interessantes como fontes alternativas às fontes protéicas de peixes, eliminando assim proteínas de origem animal na formulação da ração (Cárter, C. G.; Hauler, R. C. Fish meai replacement by plant meais in extruded feeds for Atlantic salmon, Salmo salar L Aquaculture 185, p. 299-311, 2000). Um estudo mostrou que o salmão (Hippoglossus hippoglossus L) necessita de uma concentração mínima de 35% de proteínas em sua alimentação para seu crescimento, sendo necessária a utilização de resíduos agroindustriais que apresentam essa concentração, sem a necessidade de suplementação de outros produtos (Arnason, J.; Imsland, A. K.; Gústavsson, A.; Gunnarsson, S.; Arnarson, I.; Reynisson, H.; Jónsson, A. F.; Smáradóttir, H.; Thorarensen, H. Optimum feed formulation for Atlantic halibut (Hippoglossus hippoglossus L: Minimum protein content in diet for maximum growth. Aquaculture 291, p. 188-191, 2009). Existem rações suplementados com resíduos de camarão fermentados, que apresentaram uma maior disponibilização de aminoácidos essenciais em relação à ração contendo resíduo não fermentado (Narayan, B.; Velappan, S. P.; Zituji, S. P.; Manjabhatta, S. N. Yield and chemical composition of fractions from fermented shrimp biowaste. Waste Management & Research 28, p. 64-70, 2009). PRODUÇÃO DE MAMONA In aquaculture, some diets formulated with soybean meal are interesting as alternative sources to fish protein sources, thus eliminating animal proteins in feed formulation (Carter, CG; Hauler, RC. salmon, Salmo salar L Aquaculture 185, pp. 299-311, 2000). A study has shown that salmon (Hippoglossus hippoglossus L) needs a minimum protein concentration of 35% in their diet for their growth, requiring the use of agro-industrial residues that present this concentration, without the need for supplementation of other products (Arnason J. Imsland, AK; Gustavsson, A.; Gunnarsson, S.; Arnarson, I.; Reynisson, H.; Jónsson, AF; Smáradóttir, H.; Thorarensen, H. Optimum feed formulation for Atlantic halibut (Hippoglossus hippoglossus Aquaculture 291, pp. 188-191, 2009) There are diets supplemented with fermented shrimp residues that have a higher availability of essential amino acids than the diets containing unfermented residues (Narayan). , B .; Velappan, SP; Zituji, SP; Manjabhatta, SN Yield and chemical composition of fractions from fermented shrimp biowaste Waste Management & Research 28 , 64-70, 2009) MAMONA PRODUCTION
A mamona, Ricinus communis, é cultivada em regiões tropicais para utilização do seu óleo, que está presente na semente, o qual é extensivamente usado para propósitos industriais e medicinais (Anandan, S.; Kumar, G. K. A.; Ghosh, J.; Ramachandra, K. S. Effect of different physical and chemical treatments on detoxification of ricin in castor cake. Animal Feed Science and Technology 120, p. 159-168, 2005); (Jones, D. B. Proteins of the castor bean-their preparation, properties, and utilization. The Journal of The American OH Chemists' Society, July, p. 247-251, 1947). Os principais países produtores são a índia, com 60% da produção mundial e China, com 20%. O Brasil em 2002 produziu 37.000 toneladas de óleo, representando somente 7,5% da produção mundial (Savy Filho, A. Mamona: Tecnologia Agrícola. Campinas. SP: EMOPI, 2005). Mas este cenário está mudando com a substituição gradual da obtenção de energia via fontes petrolíferas para o óleo vegetal, incluindo o óleo de mamona. Castor bean, Ricinus communis, is grown in tropical regions for use of its oil, which is present in the seed, which is extensively used for industrial and medicinal purposes (Anandan, S.; Kumar, GKA; Ghosh, J .; Ramachandra, KS Effect of different physical and chemical treatments on detoxification of ricin in beaver cake Animal Feed Science and Technology 120, p. 159-168, 2005); (Jones, DB Proteins of the bean beaver-their preparation, properties, and utilization. The Journal of The American OH Chemists Society, July, p. 247-251, 1947). The main producing countries are India with 60% of world production and China with 20%. Brazil in 2002 produced 37,000 tons of oil, representing only 7.5% of world production (Savy Filho, A. Mamona: Agricultural Technology. Campinas. SP: EMOPI, 2005). But this scenario is changing with the gradual shift from energy sources via petroleum sources to vegetable oil, including castor oil.
A torta residual de mamona, resíduo da extração do óleo, representa metade do peso da semente e apresenta uma quantidade de 34 - 36% de proteínas (Gowda, N. . S.; Pai, D. T.; Srinivas, R. B.; Bharadwaj, U.; Sridhar, M.; Satyanarayana, M. L; Prasad, C. S.; Ramachandra, K. S.; Sampath, K. Evaluation of castor (Ricinus communis) seed cake in the total mixed ration for sheep. Journal of the Science of Food and Agriculture 89, p. 216-220, 2008); (Anandan, 2005); 20% de fibras, 0,7% de cálcio; 0,8% de fósforo e 4% de extrato etéreo (Souza, R. M. Efeito do farelo de mamona detoxificado sobre os valores hematológicos de suínos. Dissertação de Mestrado. Universidade Federal de Minas Gerais, Minas Gerais, 1979). Apesar disso, a torta de mamona não pode ser usada como fonte de proteínas devido à sua toxicidade, sendo usada geralmente como fertilizante orgânico (Jones, 1947). Dentre as toxinas presentes estão a ricinina, a albumina 2S e a ricina. The residual castor bean cake represents half the weight of the seed and has an amount of 34 - 36% protein (Gowda, N.; S.; Pai; DT; Srinivas, RB; Bharadwaj, U. ; Sridhar, M .; Satyanarayana, M.L; Prasad, CS; Ramachandra, KS; Sampath, K. Evaluation of beaver (Ricinus communis) seed cake in the total mixed ration for sheep.Journal of the Science of Food and Agriculture 89 , pp. 216-220, 2008); (Anandan, 2005); 20% fiber, 0.7% calcium; 0.8% phosphorus and 4% ether extract (Souza, R. M. Effect of detoxified castor bean meal on swine hematological values. Master's dissertation. Federal University of Minas Gerais, Minas Gerais, 1979). Nevertheless, castor bean cake cannot be used as a protein source because of its toxicity and is generally used as an organic fertilizer (Jones, 1947). Among the toxins present are ricinin, albumin 2S and ricin.
A ricinina é um alcalóide tóxico denominado l,2-dihidro-4-metoxi-l-metil-2- οχο-3-piridinocarbonitrila (C8H8 202), presente na torta de mamona e de baixa toxicidade (Beltrão, N. E. M.; Lima, R. L. S. Aplicação do óleo de mamona como fonte de energia: Biodiesel. In: Azevedo, D. M. P.; Beltrão, N. E. M. (Ed.). O Agronegócio da mamona no Brasil. 2* Edição, Embrapa Informação Tecnológica, Brasília-DF, p. 395- 416, 2007). Ricinin is a toxic alkaloid called 1,2-dihydro-4-methoxy-1-methyl-2-οχο-3-pyridinecarbonitrile (C 8 H 8 2 02) present in castor bean cake with low toxicity (Beltrão, NOR). ; Lima, RLS Application of castor oil as a source of energy: Biodiesel In: Azevedo, DMP; Beltrão, NOR (Ed.) Agribusiness of castor in Brazil 2 * Edition, Embrapa Technological Information, Brasília-DF, p 395-416, 2007).
O complexo alergênico denominado antigamente de CB-1A (Castor Bean Allergen), atualmente mencionado como Albumina 2S está presente também em nozes e outras sementes como castanha do maranhão, avelã, mostarda e algodão (Breiteneder, H.; Radauer, C. A classification of plant food allergens. Journal of Allergy and Clinicai Immunology 113, p. 821-30, 2004). Há muitos anos que a presença desta toxina é conhecida, no entanto, os tratamentos aplicados à torta no que se referem à detoxificação são geralmente ineficientes (Anandan, 2005). The formerly known CB-1A (Castor Bean Allergen) allergen complex, currently referred to as Albumin 2S is also present in nuts and other seeds such as Maranhão nuts, hazelnuts, mustard and cotton (Breiteneder, H.; Radauer, C. A classification of plant food allergens Journal of Allergy and Clinical Immunology 113, p. 821-30, 2004). The presence of this toxin has been known for many years, however, detoxification treatments applied to the cake are generally inefficient (Anandan, 2005).
A ricina (n° CAS: 9009-86-3) é uma das mais potentes fitotoxinas conhecidas, sendo classificada como uma proteína inativadora de ribossomos (RIP) do tipo 2, que são heterodímeros compostos de duas cadeias unidos por pontes dissulfeto: cadeia A, enzimaticamente ativa; e a cadeia B, ligante de receptores, descrito por Stirpe e colaboradores (Stirpe, F.; Batelli, M. G. Ribossome-inactivating proteins: progress and problems. Cellular and Molecular Life Sciences 63, p. 1850-1866, 2006), que pode ser visualizado no Anexo 1, de Rutenber (Rutenber, E.; Robertus, J. D. Structure of ricin B-chain at 2.5 Â resolution. Proteins: Structure, Funcion and Genetics 10, p. 260- 269, 1991). Ricin (CAS No: 9009-86-3) is one of the most potent phytotoxins known and is classified as a type 2 ribosome inactivating protein (RIP), which are heterodimers composed of two chains joined by disulfide bridges: chain A enzymatically active; and the receptor-binding B-chain described by Stirpe et al. (Stirpe, F.; Batelli, MG. Ribosome-inactivating proteins: progress and problems. Cellular and Molecular Life Sciences 63, p. 1850-1866, 2006), which can be viewed in Rutenber's Appendix 1 (Rutenber, E.; Robertus, JD Structure of Ricin B-chain at 2.5 Â resolution. Proteins: Structure, Func and Genetics 10, pp. 260-269, 1991).
A cadeia A remove um resíduo adenina numa região "loop" do RNA ribossômico, com essa modificação, estes ribossomos não podem dar suporte à síntese de proteínas, como pode ser visualizado na Figura 1. Esta inativação pode ser efetuada na proporção de uma ricina para cada 2.000 ribossomos a cada minuto, uma velocidade em que a célula não consegue acompanhar (Olsnes, S.; Fernandez- Puemtes, C; Carrasco, L; Vazquez, D. Ribosome inactivation by the toxin lectins abrin and ricin. Kinetics of the enzimic activity of the toxin A-chain. European Journal of Biochemistry, v. 60, p. 281-288, 1975). The A-chain removes an adenine residue in a ribosomal RNA loop region, with this modification, these ribosomes cannot support protein synthesis, as can be seen in Figure 1. This inactivation can be performed in proportion of one ricin to every 2,000 ribosomes every minute, a rate at which the cell cannot keep up (Olsnes, S.; Fernandez-Puemtes, C.; Carrasco, L.; Vazquez, D. Ribosome inactivation by the toxin lectins abrin and ricin. Kinetics of the enzimic activity of the A-chain toxin, European Journal of Biochemistry, v. 60, pp. 281-288, 1975).
A ricina por ser termossensível, poderia facilmente ser inativada por qualquer processo de cozimento ou autoclavagem (Anandan, 2005), mas este processo não apresenta viabilidade para aplicação em escala industrial devido ao alto custo. Para solucionar esse problema, uma detoxificação via fermentação poderia ser realizada (Anandan, 2005); (Godoy, M. G. Produção de lipase microbiana e detoxificação simultânea de rejeitos agroindustriais. Dissertação de Mestrado, IQ-UFRJ - RJ, 2009), fato realizado pelo presente invento. The heat-resistant ricin could easily be inactivated by any cooking or autoclaving process (Anandan, 2005), but this process is not viable for industrial scale application due to the high cost. To solve this problem, a detoxification via fermentation could be performed (Anandan, 2005); (Godoy, M. G. Microbial lipase production and simultaneous detoxification of agroindustrial tailings. Master's Dissertation, IQ-UFRJ - RJ, 2009), a fact accomplished by the present invention.
TANINOS E TANASE Os taninos são um grupo de compostos fenólicos com alta massa molecular, solúveis em água, capazes de precipitar proteínas e de se ligarem a metais (quelantes). Estes compostos se complexam com a celulose, pectina e amido tornando-os insolúveis. São classificados em dois grupos, os taninos hidrolisáveis, como os elagitaninos e galotaninos, e condensados, também nomeados por proantocianidinas (Gross, G. G. From lignins to tannins: forty years of enzyme studies on the biosynthesis of phenolic compounds. Phytochemistry 69, p. 3018-3031, 2008.; Waghorn, 2008). TANINES AND TANASE Tannins are a group of water-soluble, high molecular weight phenolic compounds capable of precipitating proteins and binding to metals (chelators). These compounds complex with cellulose, pectin and starch making them insoluble. Hydrolyzable tannins, such as elagitanines and galotanines, and condensed tannins, also named proanthocyanidins (Gross, GG From lignins to tannins: forty years of enzyme studies on the biosynthesis of phenolic compounds. -3031, 2008; Waghorn, 2008).
Os taninos hidrolisáveis (Figura 2) são unidos por ligações ésteres entre grupos de ácido gálico e resíduo de glicose através de ligações esterásicas e ligações depsidásicas (Mueller-Harvey, I. Analysis of hydrolysable tannins. Animal Feed Science and Technology 91, p. 3-20, 2001). A unidade básica (monômero) destes taninos são os polióis, que são ácidos gálicos esterificados geralmente com glicose em seus grupos hidroxilas (galotaninos ou elagitaninos) (Battestin, V.; Matsuda, L. K.; Macedo, G. A. Fontes e aplicações de taninos e tanases em alimentos. Alimentos e Nutrição 15, p. 63-72 2004); (Gross, 2008). Hydrolyzable tannins (Figure 2) are joined by ester bonds between gallic acid groups and glucose residue through esterase bonds and depsidase bonds (Mueller-Harvey, I. Analysis of hydrolysable tannins. Animal Feed Science and Technology 91, p. 3 -20, 2001). The basic unit (monomer) of these tannins are polyols, which are esterified gallic acids generally with glucose in their hydroxyl groups (galotanines or elagitanines) (Battestin, V; Matsuda, LK; Macedo, GA. Sources and applications of tannins and tanases in food, Food and Nutrition 15, pp. 63-72 2004); (Gross, 2008).
Os taninos condensados (Figura 3) são mais vastamente distribuídos que os hidrolisáveis no reino vegetal, eles são condensados devido à sua estruturação compacta (Mutabaruka, R.; Hairiah, K.; Cadisch, G. Microbial degradation of hydrolysable and condensed tannin polyphenol-protein complexes in soils from different land-use histories. Soil Biology & Biochemistry 39, p. 1479-1492, 2007). Eles estão presentes em grande quantidade nos alimentos, podem conter de 2 a 50 unidades flavonóides. Os condensados são resistentes a hidrólise, devido à ausência de ligações ésteres e depsídicas (Battestin, 2004); (Gross, 2008). Taninos são frequentemente distribuídos em diferentes partes das plantas como sementes, flores, casca e folhas. Ocorrem naturalmente no metabolismo secundário de vegetais e têm sido considerado o quarto mais abundante constituinte, depois de celulose, hemicelulose e lignina (Manjit; Yadav, A.; AggarwaI, N. K.; Kumar, K.; Kumar, A. Tannase production by Aspergillus fumigatus MA under solid-state fermentation. World Journal of Microbiologyand Biotechnology 24, p. 3023-3030, 2008). Estes compostos inibem o crescimento de muitos microrganismos por se complexarem com proteínas. Estas características são altamente antinutricionais e impedem a utilização de plantas ricas em taninos para ração animal (Sabu, A.; Pandey, A.; Daud, M. J.; Szakacs, G. Tamarind seed powder and palm kernel cake: two novel agroresidues for the production of tannase under solid state fermentation by Aspergillus niger ATCC 16620. Bioresource Technology 96, p. 1223-1228, 2005). Condensed tannins (Figure 3) are more widely distributed than hydrolysables in the plant kingdom, they are condensed due to their compact structure (Mutabaruka, R.; Hairiah, K.; Cadisch, G. Microbial degradation of hydrolysable and condensed tannin polyphenol- protein complexes in soils from different land-use histories (Soil Biology & Biochemistry 39, pp. 1479-1492, 2007). They are present in large quantities in foods, can contain from 2 to 50 flavonoid units. Condensates are resistant to hydrolysis due to the absence of ester and depsidic bonds (Battestin, 2004); (Gross, 2008). Tannins are often distributed in different parts of plants such as seeds, flowers, bark and leaves. They occur naturally in the secondary metabolism of vegetables and have been considered the fourth most abundant constituent after cellulose, hemicellulose and lignin (Manjit; Yadav, A.; AggarwaI, NK; Kumar, K.; Kumar, A. Tannase production by Aspergillus fumigatus MA under solid-state fermentation World Journal of Microbiology and Biotechnology 24, pp. 3023-3030, 2008). These compounds inhibit the growth of many microorganisms by complexing with proteins. These characteristics are highly antinutritional and prevent the use of plants rich in tannins for animal feed (Sabu, A.; Pandey, A.; Daud, MJ; Szakacs, G. Tamarind seed powder and palm kernel cake: two novel agroresidues for the production of tannase under solid state fermentation by Aspergillus niger ATCC 16620. Bioresource Technology 96, pp. 1223-1228, 2005).
O efeito negativo de taninos na nutrição animal é devido à sua capacidade de se ligar a macromoléculas, diminuindo a absorção destes componentes. Contudo, baixos níveis da concentração de taninos (40 g/kg de matéria seca) na ração têm demonstrado um aumento na assimilação de nitrogénio em ruminantes, rendendo maior taxa de crescimento e produção de leite (Belmares, R.; Contreras-Esquivel, J.; Rodríguez-Herrera, R.; Coronel, A. R.; Aguilar, C. N. Microbial production of tannase: an enzyme with potential use in food industry. Lebensmittel-Wissenschaft und- Technologie 37, p. 857-864, p. 2004); (Min, B. R.; Barry, T. N.; Attwood, G. T.; McNabb, W. C. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Animal Feed Science and Technology 106, p. 3-19, 2003). The negative effect of tannins on animal nutrition is due to their ability to bind to macromolecules, decreasing the absorption of these components. However, low levels of tannin concentration (40 g / kg dry matter) in the feed have shown an increase in nitrogen uptake in ruminants, yielding higher growth rate and milk yield (Belmares, R .; Contreras-Esquivel, J Rodríguez-Herrera, R.; Colonel, AR; Aguilar, CN Microbial production of tannase: an enzyme with potential use in the food industry (Lebensmittel-Wissenschaft und-Technologie 37, p. 857-864, p. 2004); (Min, BR; Barry, TN; Attwood, GT; McNabb, WC The effect of condensed tannins on nutrition and health of fed fresh temperate ruminants: a review. Animal Feed Science and Technology 106, p. 3-19, 2003 ).
A tanase (EC 3.1.1.20) ou tanino-acil-hidrolase (TAH) catalisa a hidrólise de ligações ésteres de ácido gálico (Figura 4) nas moléculas de taninos hidrolisáveis (Kumar, R.; Sharma, J.; Singh, R. Production of tannase from Aspergillus rubber under solid-state fermentation using jamun (Syzygium cumini) leaves. Microbiological Research 162, p. 384-390, 2007); (Trevino-Cueto, B.; Luis, M.; Contreras-Esquivel, J. C; Rodriguez, R.; Aguilera, A.; Aguilar, C. N. Gallic acid and tannase accumulation during fungai solid state culture of a tannin-rich desert plant [Larrea tridentata Cov.). Bioresource Technology 98, p. 721-724, 2007). Esta enzima é produzida por alguns fungos filamentosos, principalmente das espécies: Aspergillus, Penicillium, Fusarium e Trichoderma, mas também pode ser produzida por bactérias do género Bacillus, Corynebacterium, Klebsiela, Streptococcus e Selenomonas. Tanase (EC 3.1.1.20) or tannin-acylhydrolase (TAH) catalyzes the hydrolysis of gallic acid ester bonds (Figure 4) in hydrolyzable tannin molecules (Kumar, R .; Sharma, J .; Singh, R. Production of tannase from Aspergillus rubber under solid-state fermentation using jamun (Syzygium cumini) leaves Microbiological Research 162, pp. 384-390, 2007); (Trevino-Cueto, B .; Luis, M .; Contreras-Esquivel, J. C; Rodriguez, R.; Aguilera, A.; Aguilar, CN. Gallic acid and tannase accumulation during fungal solid state culture of a tannin-rich desert. plant [Larrea tridentata Cov.). Bioresource Technology 98, p. 721-724, 2007). This enzyme is produced by some filamentous fungi, mainly of the species Aspergillus, Penicillium, Fusarium and Trichoderma, but can also be produced by bacteria of the genus Bacillus, Corynebacterium, Klebsiela, Streptococcus and Selenomonas.
Vegetais também produzem tanase para acelerar o processo de amadurecimento de frutas (Aissam, H.; Errachidi, F.; Penninckx, M. J.; Merzouki, M.; Benlemlih, M. Production of tannase by Aspergillus niger HA37 growing on tannic acid and olive Mill waste aters. World Journal of Microbiology & Biotechnology 21, p. 609-614, 2005); (Batra, A.; Saxena, R. K. Potential tannase producers from the genera Aspergillus and Penicillium. Process Biochemistry 40, p. 1553-1557, 2005); (Hamdy, H. S.; Purification and characterization of a newly isolated stable long-life tannase produced by Fusarium subglutinans - Wollenweber and Reinking. Journal of Pharmaceutical Innovation 3, p. 142-151, 2008); (Aguilar, C. N.; Gutiérrez-Sánchez, G. Review: sources, properties, applications and potential uses of tannin acyl hydrolase. Food Science and Technology International 7, p. 373-382, 2001b); (Deschamps, A. M.; Otuk, G.; Lebeault, J. M. Production of tannase and degradation of chestnut tannin by bactéria. Journal of Fermentation Technology 61, p. 55-59, 1983); (Rodrigues, T. H. S.; Dantas, M. A. A.; Pinto, G. A. S.; Gonçalves, L. R. B. Tannase production by solid- state fermentation of cashew apple bagasse. Applied Biochemistry and Biotechnology 136-140, p. 675-688, 2007); (Rodriguez, H.; Rivas, B.; Gómez-Cordovés, C; Mu noz, R. Characterization of tannase activity in cell-free extracts of Lactobacillus plantarum CECT 748T. International Journal of Food Microbiology 121, p. 92-98, 2008); (Van de Lagemaat, J.; Pyle, D. L. Modelling the uptake and growth kinetics of Penicillium glabrum in a tannic acid-containing solid-state fermentation for tannase production. Process Biochemistry 40, p. 1773-1782, 2005); (Purohit, J. S.; Dutta, J. R.; Nanda, R. K.; Banerjee, R. Strain improvement for tannase production from co- culture of Aspergillus foetidus and Rhizopus oryzae. Bioresource Technology 97, p. 795-801, 2006); (Belmares, 2004). Vegetables also produce tannase to accelerate the fruit ripening process (Aissam, H.; Errachidi, F.; Penninckx, MJ; Merzouki, M .; Benlemlih, M. Production of tannase by Aspergillus niger HA37 Growing on tannic acid and olive Mill waste aters. World Journal of Microbiology & Biotechnology 21, p. 609-614, 2005); (Batra, A.; Saxena, RK Potential tannase producers from the Aspergillus and Penicillium genera. Process Biochemistry 40, p. 1553-1557, 2005); (Hamdy, HS; Purification and characterization of a newly isolated stable long-life tannase produced by Fusarium subglutinans - Wollenweber and Reinking. Journal of Pharmaceutical Innovation 3, p. 142-151, 2008); (Aguilar, CN; Gutiérrez-Sanchez, G. Review: sources, properties, applications and potential uses of tanninacyl hydrolase. Food Science and Technology International 7, pp. 373-382, 2001b); (Deschamps, AM; Otuk, G.; Lebeault, JM Production of tannase and degradation of chestnut tannin by bacteria. Journal of Fermentation Technology 61, p. 55-59, 1983); (Rodrigues, THS; Dantas, MAA; Pinto, GAS; Gonçalves, LRB Tannase production by solid-state fermentation of cashew apple bagasse. Applied Biochemistry and Biotechnology 136-140, p. 675-688, 2007); (Rodriguez, H .; Rivas, B .; Gomez-Cordovés, C.; Muz, R. Characterization of tannase activity in cell-free extracts of Lactobacillus plantarum CECT 748T. International Journal of Food Microbiology 121, p. 92-98, 2008); (Van de Lagemaat, J.; Pyle, DL Modeling the uptake and growth kinetics of Penicillium glabrum in a tannic acid-containing solid-state fermentation for tannase production. Process Biochemistry 40, p. 1773-1782, 2005); (Purohit, JS; Dutta, JR; Nanda, RK; Banerjee, R. Strain Improvement for Tannase Production from the Cultivation of Aspergillus foetidus and Rhizopus oryzae. Bioresource Technology 97, p. 795-801, 2006); (Belmares, 2004).
A tanase apresenta inúmeras aplicações como: Tanase has numerous applications such as:
• Ração Animal: o emprego de enzimas em rações torna possível aumentar a assimilação dos nutrientes nele contido, como a quebra de fatores antinutricionais. Ao mesmo tempo reduz os custos para melhoramento da ração, já que esta enzima pode ser produzida via fermentação (Battestin, 2004; Graminha 2009). Existem estudos em que se utilizaram a ação da tanase, produzida por Paecilomyces variotii, em grãos de sorgo tipo vassoura sobre os fatores antinutricionais, neste caso os taninos. Nestes estudos foram verificadas nas amostras tratadas com a tanase uma redução dos taninos, aumento de fósforo, melhora na digestibilidade e diminuição da excreção de fósforo, em comparação ao sorgo cru (Schons, P. F. Detanificação e desfitinizaçao de grãos de sorgo (Sorghum bicolor) por tanase e fitase e estudo biológico. Dissertação de Mestrado - UNICAMP-FEA, 2009). • Animal Feed: The use of enzymes in feed makes it possible to increase the assimilation of nutrients contained in it, such as the breakdown of antinutritional factors. At the same time, it reduces costs for feed improvement, as this enzyme can be produced via fermentation (Battestin, 2004; Graminha 2009). There are studies using the action of tannase produced by Paecilomyces variotii in broom sorghum grains on antinutritional factors, in this case tannins. In these studies a reduction in tannins was verified in the samples treated with tannase, phosphorus increase, digestibility improvement and phosphorus excretion decrease compared to raw sorghum (Schons, PF Detanification and dephytinization of sorghum grains (Sorghum bicolor) by tanase and phytase and biological study. Master's Dissertation - UNICAMP-FEA, 2009).
• Preparação de Chás Instantâneos: uma das bebidas mais consumidas no mundo, pelo seu aroma, sabor e principalmente efeitos medicinais. Na preparação destes chás, que são muitas vezes na forma gelada, produz um precipitado insolúvel. Este precipitado é o complexo de polifenóis, que é o principal problema detectado. A tanase, adicionada ao processo do produto, catalisa a quebra das ligações ésteres, que acaba clivando os compostos insolúveis, diminuindo sua turbidez e aumentando sua qualidade, já que a enzima libera compostos fenólicos e voláteis (Lekha, P. K.; Lonsane, B. K. Production and application of tannin acyl hydrolase: State of the art. Advances in Applied Biochemistry and Microbiology 44, p. 215-260, 1997); (Khokhar, S.; Magnusdottir, S. G. M. Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom. Journal of Agricultural and FoodChemistry 50, p. 565-570, 2002). • Preparation of Instant Teas: one of the most consumed beverages in the world, for its aroma, taste and mainly medicinal effects. In the preparation of these teas, which are often in icy form, it produces an insoluble precipitate. This precipitate is the polyphenol complex, which is the main problem detected. Tanase, added to the product process, catalyzes the breakdown of ester bonds, which eventually cleaves insoluble compounds, decreasing their turbidity and increasing their quality, as the enzyme releases phenolic and volatile compounds (Lekha, PK; Lonsane, BK Production and application of tannin acyl hydrolase: State of the Art Advances in Applied Biochemistry and Microbiology 44, pp. 215-260, 1997); (Khokhar, S.; Magnusdottir, S. G. M. Total phenol, catechin, and caffeine contents of commonly consumed teas in the United Kingdom. Journal of Agricultural and Food Chemistry 50, p. 565-570, 2002).
• Fabricação de Cervejas: as cervejas apresentam compostos polifenólicos provenientes do malte. Assim a tanase cliva estes compostos e diminui sua turbidez, tornando um produto aceitável ao mercado (Battestin, 2004). • Brewing: Beers feature polyphenolic compounds from malt. Thus tanase cleaves these compounds and decreases their turbidity, making them a product acceptable to the market (Battestin, 2004).
• Produção de Ácido Gálico: usado principalmente nas indústrias farmacêuticas, como na síntese de trimetoprima, agente antibacteriano e sulfonamida (Aguilar, C. N.; Augur C; Favela-Torres, E.; Viniegra-González, G. Production of tannase by Aspergillus niger Aa-20 in submerged and soiid-state fermentation: influence of glucose and tannic acid. Journal of Industrial Microbiology & Biotechnology 26, p. 296-302, 2001a). • Gallic Acid Production: used mainly in the pharmaceutical industries, such as in the synthesis of trimethoprim, antibacterial agent and sulfonamide (Aguilar, CN; Augur C; Favela-Torres, E.; Viniegra-González, G. Production of tannase by Aspergillus niger Aa -20 in submerged and solid state fermentation: influence of glucose and tannic acid Journal of Industrial Microbiology & Biotechnology 26, pp. 296-302, 2001a).
• Produção de Antioxidantes: a tanase cliva compostos polifenólicos resultando em compostos como epigalocatequina, epicatequina e ácido gálico, que são estruturas moleculares com capacidade antioxidante (Battestin, V.; Macedo, G. A.; De Freitas, V. A. P. Hydrolysis of epigallocatechin gallate using a tannase from Paecilomyces variotii. Food Chemistry 108, p. 228-233, 2008). • Antioxidant Production: Tanase cleaves polyphenolic compounds resulting in compounds such as epigallocatechin, epicatechin and gallic acid, which are molecular structures with antioxidant capacity (Battestin, V .; Macedo, GA; De Freitas, VAP Hydrolysis of epigallocatechin gallate using a tannase from Paecilomyces variotii. Food Chemistry 108, p. 228-233, 2008).
O TAH pode ser obtido de várias fontes, como de animais (intestino de ruminantes), plantas (folhas, casca de frutas, galhos) e principalmente de microrganismos, já que sua produção é mais estável e abundante, comparado com as outras fontes. Além disso, os microrganismos podem ser manipulados geneticamente para melhoramento da enzima e sua produção (Battestin, V.; Macedo, G. A. Tannase Production by Paecilomyces variotii. Bioresource Technology 98, p. 1832-1837, 2007b); (Aguilar, C. N.; Rodriguez, R.; Gutiérrez-Sánchez, G.; Augur, C; Favela-Torres, E.; Prado-Barragan, L. A.; Ramírez-Coronel, A.; Contreras-Esquivel, J. C. Microbial tannases: advances and perspectives. Applied Microbiology and Biotechnology 76, p. 47-59, 2007). The TAH can be obtained from various sources, such as animals (ruminant gut), plants (leaves, fruit peel, twigs) and mainly from microorganisms, since its production is more stable and abundant compared to other sources. In addition, microorganisms can be genetically engineered for enzyme improvement and production (Battestin, V; Macedo, G. A. Tannase Production by Paecilomyces variotii. Bioresource Technology 98, p. 1832-1837, 2007b); (Aguilar, CN; Rodriguez, R.; Gutiérrez-Sánchez, G.; Augur, C.; Favela-Torres, E.; Prado-Barragan, LA; Ramírez-Coronel, A.; Contreras-Esquivel, JC Microbial tannases: advances and perspectives Applied Microbiology and Biotechnology 76, pp. 47-59, 2007).
Um dos tópicos mais estudados sobre TAH refere-se às propriedades químicas desta enzima, mas o mecanismo de ação e regulação ainda não é totalmente compreendido. A enzima TAH fúngica é uma glicoproteína com pH de estabilidade na faixa de 3,5 e 8,0; pH ótimo de 5,5 e 6,0; temperatura de estabilidade na faixa de 30 e 60°C; temperatura ótima entre 30 e 40°C; ponto isoelétrico de 4,0 e 4,5 e massa molecular entre 186 e 300 kDa. Essas propriedades variam de acordo com o tipo de microrganismo e condições de cultivo da linhagem usada. O TAH é inibido por Cu2+, Zn+2, Fe+2, Mn+2 e Mg+2, sendo inativada por EDTA, 2-mercaptoetanol, tioglicolato de sódio, sulfato de magnésio e de cálcio e ofenantrolina (Aguilar, 2001a); (Aguilar, 2007); (Battestin, V.; Macedo, G. A. Purification and bíochemical characterizatíon of tannase from a newly isolated strain of Paecilomyces variotii. Food Biotechnology 21, p. 207-216, 2007a); (Belmares, 2004); (Mahapatra, K.; Nanda, R. K.; Bag, S. S.; Banerjee, R.; Pandey, A.; Szakacs, G. Purification, characterizatíon and some studies on secondary structure of tannase from Aspergillus awamori nakazawa. Process Biochemistry 40, p. 3251-3254, 2005); (Sharma, S.; Agarwal, L; Saxena, R. K. Statistical optimization for tannase production from Aspergillus niger under submerged fermentation. Indian Journal of Microbiology 47, p. 132-138, 2007); (Sharma, S.; Agarwal, L; Saxena, R. K. Purification, immobilization and characterization of tannase from Penicillium variable. Bioresource Technology 99, p. 2544-2551, 2008). One of the most studied topics about TAH concerns the chemical properties of this enzyme, but the mechanism of action and regulation is not yet fully understood. The fungal TAH enzyme is a glycoprotein with pH stability in the range of 3.5 and 8.0; optimal pH of 5.5 and 6.0; stability temperature in the range of 30 and 60 ° C; optimal temperature between 30 and 40 ° C; isoelectric point of 4.0 and 4.5 and molecular mass between 186 and 300 kDa. These properties vary according to the type of microorganism and growing conditions of the strain used. TAH is inhibited by Cu2 +, Zn + 2, Fe + 2, Mn + 2 and Mg + 2, being inactivated by EDTA, 2-mercaptoethanol, sodium thioglycolate, magnesium and calcium sulfate and ofenanthroline (Aguilar, 2001a); (Aguilar, 2007); (Battestin, V .; Macedo, GA Purification and biochemical characterization of tannase from a newly isolated strain of Paecilomyces variotii. Food Biotechnology 21, p. 207-216, 2007a); (Belmares, 2004); (Mahapatra, K .; Nanda, RK; Bag, SS; Banerjee, R .; Pandey, A.; Szakacs, G. Purification, Characterization and some studies on secondary structure of tannase from Aspergillus awamori nakazawa. Process Biochemistry 40, p. 3251-3254, 2005); (Sharma, S.; Agarwal, L.; Saxena, RK Statistical optimization for tannase production from Aspergillus niger under submerged fermentation. Indian Journal of Microbiology 47, pp. 132-138, 2007); (Sharma, S.; Agarwal, L.; Saxena, RK Purification, immobilization and Characterization of tannase from Penicillium variable. Bioresource Technology 99, p. 2544-2551, 2008).
FITATOS E FITASE RIBBONS AND PHYTASE
O ácido fítico, /W/'o-lnositol-l,2,3,4,5,6-hexaquisfosfato (Figura 5), é um álcool cíclico derivado da glicose com 6 grupamentos fosfatos ligados em cada carbono da molécula glicosídica. Dentre os compostos agrupados em fosforilados, o ácido fítico é o mais abundante em vegetais, principalmente em sementes já que apresenta função de estocagem do grupo fósforo para obtenção de energia (Raboy, V. Molecules of interest: myo-lnositol-l,2,3,4,5,6-hexakisphosphate. Phytochemistry 64, p. 1033- 1043, 2003). A presença de fitato em excesso polue o meio ambiente como também atrapalha na dieta de animais monogástricos. 0 fitato age como um antinutriente ligando-se às proteínas, aminoácidos e lipídios e quelando minerais como cálcio, ferro, zinco e magnésio formando, assim, sais insolúveis (Ho son, S. J.; Davis, R. P. Production of phytase-hydrolysing enzyme by some fungi. Enzyme and Microbial Technology 5, p. 377-343, 1983). Além disso, interage com enzimas digestivas reduzindo suas atividades, influenciando na digestão e prejudicando o aproveitamento de vitaminas. Phytic acid / W / 'o-lnositol-l, 2,3,4,5,6-hexakisphosphate (Figure 5) is a cyclic alcohol derived from glucose 6 - phosphate groups attached to each carbon of the glycoside molecule. Among the compounds grouped in phosphorylates, phytic acid is the most abundant in vegetables, especially in seeds as it has a storage function of the phosphorus group to obtain energy (Raboy, V. Molecules of interest: myo-lnositol-1, 2). 3,4,5,6-hexakisphosphate (Phytochemistry 64, pp. 1033-1043, 2003). The presence of excess phytate pollutes the environment and also disturbs the diet of monogastric animals. Phytate acts as an antinutrient by binding to proteins, amino acids and lipids and chelating minerals such as calcium, iron, zinc and magnesium thus forming insoluble salts (Honsson, SJ; Davis, RP). Phytase-hydrolysing enzyme by some fungi Enzyme and Microbial Technology 5, pp. 377-343, 1983). In addition, it interacts with digestive enzymes reducing their activities, influencing digestion and impairing the utilization of vitamins.
Apesar de o fitato servir como fonte principal de energia e fósforo para germinação de sementes, o fósforo ligado é pouco disponível para animais monogástricos, de maneira que, o fósforo inorgânico, um mineral não-renovável e caro, é acrescentado nas dietas de suínos, peixes e aves para atender suas necessidades nutricionais de fósforo (Vats, P.; Banerjee, U. C. Production studies and catalytic properties of phytases (myo-inositolhexakisphosphate phosphohydrolases): an overview. Enzyme and Microbial Technology 35, p. 3-14, 2004). O fósforo do fitato que não é utilizado é excretado tornando-se um poluente ambiental em áreas de agropecuária intensiva (Lei, X. G.; Porres, J. M. Phytase enzimology, applications and biotechnology. Biotechnology Letters 25, p. 1787-1794, 2003). Although phytate serves as the primary source of energy and phosphorus for seed germination, bound phosphorus is poorly available for monogastric animals, so inorganic phosphorus, a non-renewable and expensive mineral, is added to pig diets, fish and poultry to meet their phosphorus nutritional needs (Vats, P .; Banerjee, UC Production studies and catalytic properties of phytases (myo-inositolhaxakisphosphate phosphohydrolases): an overview. Enzyme and Microbial Technology 35, p. 3-14, 2004) . Unused phytate phosphorus is excreted as an environmental pollutant in intensive farming areas (Lei, X. G .; Porres, J.M. Phytase Enzyme, Applications and Biotechnology. Biotechnology Letters 25, p. 1787-1794, 2003).
A enzima ácido fosfohidrolase catalisa a hidrólise de fosfato e ácido fítico (Figura 6) a fosfato inorgânico e derivados de fosfato mio-inositol. Fitases são classificadas como histidina ácido fosfatases (Histidine Acid Phosphatases - HAPs), uma subclasse de fosfatases (Vats, 2004). Existe uma outra classificação baseada na posição do primeiro fosfato a ser hidrolisado, nomeado de 3-fitase (E.C.3.1.3.8) e 6- fitase (E.C.3.1.3.26), do qual a 3-fitase (mio-inositol-hexakisfosfato-3-fosfohidrolase) é originado principalmente via microbiana e a 6-fitase é derivada de plantas. Para obtenção de fitase microbiana, os fungos são os mais pesquisados, dentre eles podemos citar os géneros Penicillium, Aspergillus e Mucor. Dentre as leveduras destaca-se o género Saccharomyces (Dvoráková, J. Phytase: Sources, preparation and exploitation. Folia Microbiológica 43, Issue 4, p.323-338, 1998); ( ies, E. F.; Macedo, G. A. Progressive screening of thermostable yeasts for phytase productíon. Food Science and Biotechnology 18, p. 655-660, 2009). Pelo processo fermentativo, a fitase pode ser produzida com a utilização de substratos de baixo custo como torta de sementes oleaginosas (Roopesh, K.; Ramachandran, S.; Nampoothiri, . M.; Szakacs, G.; Pandey, A. Comparison of phytase productíon on wheat bran and oilcakes in solid-state fermentation by Mucor racemosus. Bioresource Technology 97, p. 506- 511, 2006). The enzyme phosphohydrolase catalyzes the phosphate and phytic acid hydrolysis (Figure 6) to inorganic phosphate and myo-inositol phosphate derivatives. Phytases are classified as histidine acid phosphatases (Histidine Acid Phosphatases - PAHs), a subclass of phosphatases (Vats, 2004). There is another classification based on the position of the first phosphate to be hydrolyzed, named 3-phytase (EC3.1.3.8) and 6-phytase (EC3.1.3.26), of which 3-phytase (myo-inositol-hexakisphosphate) -3-phosphohydrolase) originates mainly from the microbial pathway and 6-phytase is derived from plants. To obtain microbial phytase, the fungi are the most researched, among them we can mention the genera Penicillium, Aspergillus and Mucor. Among the yeasts, the genus Saccharomyces stands out (Dvoráková, J. Phytase: Sources, preparation and exploitation. Microbiological Folia 43, Issue 4, p.323-338, 1998); (Ies, EF; Macedo, GA Progressive screening of thermostable yeasts for phytase product. Food Science and Biotechnology 18, p. 655-660, 2009). By the fermentative process, phytase can be produced using low cost substrates such as oilseed cake (Roopesh, K.; Ramachandran, S.; Nampoothiri, M. ;; Szakacs, G.; Pandey, A. Comparison of phytase product on wheat bran and oilcakes in solid-state fermentation by Mucor racemosus (Bioresource Technology 97, pp. 506-511, 2006).
A suplementação de fitase em ração animal aumenta a biodisponibilidade de fósforo em animais monogástricos, que consequentemente reduz a poluição de fósforo no meio ambiente. A enzima também impede: quelação do ácido fítico com íons metais, ligação de proteínas, lipídeos e carboidratos, aumentando assim sua nutrição na ração (Vats, 2004). Phytase supplementation in animal feed increases phosphorus bioavailability in monogastric animals, which consequently reduces phosphorus pollution in the environment. The enzyme also prevents: chelation of phytic acid with metal ions, protein binding, lipids and carbohydrates, thus increasing their nutrition in the feed (Vats, 2004).
Pesquisas na área de produção da enzima fitase têm importância ressaltada não apenas pela investigação de uma fonte pouca explorada de fitase como também pela busca de fitases com características desejáveis para indústria de alimentação animal, principalmente relacionadas à termoestabilidade, à estabilidade em baixo pH e ao custo do processo fermentativo. Research in the area of phytase enzyme production is important not only for the investigation of a poorly exploited source of phytase, but also for the search for phytases with desirable characteristics for the animal feed industry, mainly related to thermostability, low pH stability and cost. of the fermentation process.
Hong e colaboradores, utilizaram resíduos de mandioca como meio de cultivo, subprodutos do processamento do amido de mandioca, suplementado com fonte de nitrogénio para fermentação em estado sólido com Aspergillus niger para produção de fitase. Foi obtido um rendimento máximo de 6,73 UA/g de matéria seca. A enzima apresentou atividade residual de 4,71 UA/g à 75°C durante 30 minutos, que suportaria em processamentos na indústria de ração (Hong, K.; Ma, Y.; Li, M. Solid-state fermentation of phytase from cassava dregs. Applied Biochemistry and Biotechnology 91-93, p. 777-785, 2001). Hong and colleagues used cassava residues as a growing medium, by-products from the processing of cassava starch supplemented with nitrogen source for solid state fermentation with Aspergillus niger for phytase production. A maximum yield of 6.73 UA / g of dry matter was obtained. The enzyme showed residual activity of 4.71 UA / g at 75 ° C for 30 minutes, which would support in processing in the feed industry (Hong, K .; Ma, Y .; Li. M. Solid-state fermentation of phytase from cassava dregs. Applied Biochemistry and Biotechnology 91-93, p. 777-785, 2001).
Utilizou-se torta proveniente da extração do óleo de coco para produção de fitase extracelular via fermentação em estado sólido com Rhizopus oligosporus. A produção enzimática máxima de 14,29 UA/g de substrato seco após 96 horas de incubação sem suplementação de nutrientes (Sabu, A.; Sarita, S.; Pandey, A.; Bogar, B.; Szakacs, G.; Soccol, C. R. Solid-state fermentation for production of phytase by Rhizopus oligosporus. Applied Biochemistry and Biotechnology 102-103, p. 251-260, 2002). Pie from coconut oil extraction was used to produce extracellular phytase via solid state fermentation with Rhizopus oligosporus. Maximum enzymatic production of 14.29 AU / g of dry substrate after 96 hours of incubation without nutrient supplementation (Sabu, A.; Sarita, S.; Pandey, A.; Bogar, B.; Szakacs, G .; Soccol , CR Solid-state fermentation for production of phytase by Rhizopus oligosporus Applied Biochemistry and Biotechnology 102-103, pp. 251-260, 2002).
ENZIMAS EM RAÇÃO ANIMAL ANIMAL FEED ENZYMES
As enzimas são usadas atualmente em inúmeros produtos e processos industriais, ao mesmo tempo novas áreas de aplicação estão sendo adicionadas, devido à sua eficácia e economia nas suas ações, principalmente na redução do uso de energia, para ativação da reação e quantidade de água (Kirk, O.; Borchert, T. V.; Fuglsang, C. C. Industrial enzyme applications. Current Opinion in Biotechnology 13, p. 345-351, 2002). Enzymes are currently used in numerous industrial products and processes, while new application areas are being added due to their effectiveness and economy in their actions, especially in reducing energy use, for reaction activation and water quantity ( Kirk, O; Borchert, TV; Fuglsang, CC Industrial Enzyme Applications (Current Opinion in Biotechnology 13, pp. 345-351, 2002).
O uso de enzimas como aditivos em alimentos também é bem conhecida, como por exemplo, a ação da bromelina em carne, uma protease que aumenta a maciez do produto, tornando-o mais interessante ao consumo. As enzimas também podem aumentar a disponibilização de nutrientes, principalmente em rações para animais, como a xilanase e beta-glucanase que são utilizadas em cereais que ajudam na digestibilidade dos nutrientes em animais monogástricos, que ao contrário dos ruminantes, são incapazes de hidrolisar totalmente os alimentos de origem vegetal, principalmente celulose e hemicelulose (Polizeli, M. L. T. M.; Rizzatti, A. C. S.; Monti, R.; Terenzi, H. F.; Jorge, J. A.; Amorim, D. S. Xylanases from fungi: properties and industrial applications. Applied Microbiological Biotechnologic 67, p. 577-591, 2005). The use of enzymes as additives in foods is also well known, such as the action of bromelain on meat, a protease that increases the tenderness of the product, making it more interesting for consumption. Enzymes can also increase nutrient availability, especially in animal feed such as xylanase and beta-glucanase which are used in cereals that aid in nutrient digestibility in monogastric animals which, unlike ruminants, are unable to fully hydrolyze the nutrients. plant foods, mainly cellulose and hemicellulose (Polizeli, MLTM; Rizzatti, ACS; Monti, R.; Terenzi, HF; Jorge, JA; Amorim, DS Xylanases from fungi: properties and industrial applications. Applied Microbiological Biotechnologic 67, p. 577-591, 2005).
O uso de resíduos agroindustriais favorece economicamente a formulação de rações, entretanto esses resíduos devem ser suplementados com enzimas que hidrolisam compostos para aumentar seu valor nutricional, como os fatores antinutricionais já mencionados para os taninos e fitatos. Assim, para extrair o máximo valor nutritivo, são adicionadas enzimas exógenas nos alimentos ou resíduos para melhor absorção aos animais monogástricos (Pariza, M. W.; Cook, M. Determining the safety of enzymes used in animal feed. Regulatory Toxicology and Pharmacology 56, p. 332-342, 2010). The use of agroindustrial residues economically favors the formulation of rations, however these residues must be supplemented with enzymes that hydrolyze compounds to increase their nutritional value, such as the antinutritional factors already mentioned for tannins and phytates. Thus, to extract maximum nutritional value, exogenous enzymes are added to foods or residues for better absorption in monogastric animals (Pariza, MW; Cook, M. Determining the safety of enzymes used in animal feed. Regulatory Toxicology and Pharmacology 56, p. 332-342, 2010).
Nos últimos anos, o foco tem sido a utilização de fósforo orgânico para alimentação, estocado no ácido fítico, que está presente em várias espécies e estruturas dos vegetais. Entretanto esse fósforo não está disponibilizado aos monogástricos, já que eles não apresentam enzimas que hidrolisam o fitato e liberam o fósforo. Assim, a suplementação da enzima fitase na ração auxilia na nutrição dos animais (Lei, X. G.; Stahl, C. H. Nutritional benefits of phytase and dietary determinants of its efficacy. Journal of Applied Animal Research 17, p. 97-112, 2000); (Kies, A. K.; Van Hemert, K. H. F.; Saber, W. C. Effect of phytase on protein and amino acid digestibility and energy utilization. World's Poult Science Journal 57, p. 109- 126, 2001). In recent years, the focus has been on the use of organic phosphorus for food, stored in phytic acid, which is present in various plant species and structures. However, this phosphorus is not available to monogastrics, since they do not have enzymes that hydrolyze phytate and release phosphorus. Thus, supplementation of the phytase enzyme in the feed assists in animal nutrition (Lei, X. G .; Stahl, C. H. Nutritional benefits of phytase and dietary determinants of its efficacy. Journal of Applied Animal Research 17, p. 97-112, 2000); (Kies, A.K.; Van Hemert, K.H.F .; Saber, W.C. Effect of phytase on protein and amino acid digestibility and energy utilization. World Poult Science Journal 57, p. 109-126, 2001).
Existe também a suplementação de complexos enzimáticos em rações para animais, como a adição de carbohidrases, representadas por xilanase, beta-glucanase e celulase feita em ração à base de trigo, que mostraram uma melhora no crescimento e aparente aumento na digestibilidade de nutrientes em porcos (Emiola, I. A.; Opapeju, F. O.; Slominski, B. A.; Nyachoti, C. M. Growth performance and nutrient digestibility in pigs fed wheat distillers dried grains with solublesbased diets supplemented with a multicarbohydrase enzyme. Journal of Animal Science 87, p. 2315-2322, 2009). Colombatto e colaboradores (Colombatto, D.; Beauchemin, K. A. A protease additive increases fermentation of alfalfa diets by mixed ruminai microorganisms in vitro. Journal of Animal Science 87, p.1097-1105, 2009) verificarama a ação de protease em ração à base de componentes vegetais, para ruminantes. Concluíram que esta enzima age removendo proteínas estruturais da parede celular vegetal e consequentemente disponibiliza uma maior quantidade de nutrientes para digestibilidade na microbiota dos ruminantes. There is also supplementation of enzyme complexes in animal feed, such as carbohydrate addition, represented by xylanase, beta-glucanase and cellulase made in wheat feed, which showed improved growth and apparent increase in nutrient digestibility in pigs. (Emiola, IA; Opapeju, FO; Slominski, BA; Nyachoti, CM Growth performance and nutrient digestibility in pigs fed wheat distillers dried grains with solublesbased diets supplemented with a multicarbohydrase enzyme. Journal of Animal Science 87, p. 2315-2322, 2009 ). Colombatto et al. (Colombatto, D .; Beauchemin, KA The in vitro protease additive increases fermentation of alfalfa diets by mixed ruminal microorganisms. Journal of Animal Science 87, p.1097-1105, 2009) verified the action of protease in base feed of vegetable components for ruminants. They concluded that this enzyme acts by removing structural proteins from the plant cell wall and consequently it provides a greater amount of nutrients for digestibility in the ruminant microbiota.
Nuero e Reyes (Nuero, O. M.; Reyes, F.; Enzymes for animal feeding from Penicillium chrysogenum mycelial wastes from penicillin manufacture. Letters in Applied Microbiology 34, p. 413- 416, 2002) verificaram a produção multienzimática para utilização como aditivo em ração animal através do Penicillium chrysogenum. O microrganismo produziu enzimas como: tanase, lipase, invertase e beta-l,3-glucanase, com atividades enzimáticas comparáveis com a comercial e assim, possibilitando sua aplicação na alimentação animal, o presente invento, por sua vez utiliza o microorganismo Paecilomyces variotii para produção simultânea das enzimas fitase e tanase em torta residual de mamona. Nuero and Reyes (Nuero, OM; Reyes, F .; Enzymes for animal feeding from Penicillium chrysogenum mycelial wastes from penicillin manufacture. Letters in Applied Microbiology 34, p. 413- 416, 2002) verified multi-enzyme production for use as feed additive animal through the Penicillium chrysogenum. The microorganism produced enzymes such as: tannase, lipase, invertase and beta-1,3-glucanase, with enzymatic activities comparable to the commercial one and thus, enabling its application in animal feed, the present invention, in turn uses the microorganism Paecilomyces variotii to Simultaneous production of phytase and tanase enzymes in castor bean residual cake.
BREVE DESCRIÇÃO DA INVENÇÃO BRIEF DESCRIPTION OF THE INVENTION
Para produção de biodiesel, o óleo proveniente da mamona se destaca entre as sementes oleaginosas. Além do óleo, a mamona após a extração produz a torta que é de grande interesse para fertilização orgânica. A torta também apresenta alta concentração de proteínas, o que traz possibilidades para sua utilização como ingrediente para nutrição animal. No entanto, essa aplicação enfrenta problemas na presença de toxinas, principalmente da ricina, uma proteína que impede a síntese protéica nas células de animais que as ingerem. Atualmente, diversas técnicas vêm surgindo para detoxificar a torta de mamona e utilizá-la na alimentação animal. Dentre estas técnicas, a fermentação em estado sólido mostrou-se promissora na detoxificação da torta, e simultaneamente pode ser utilizada para produção de enzimas de interesse biotecnológico, aumentando seu valor comercial. O presente invento, visou a otimização da produção simultânea das enzimas fitase e tanase utilizando o fungo Paecilomyces variotii através da fermentação em estado sólido em torta residual de mamona. For biodiesel production, castor oil stands out among oilseeds. In addition to oil, castor bean after extraction produces cake that is of great interest for organic fertilization. The pie also has a high protein concentration, which brings possibilities for its use as an ingredient for animal nutrition. However, this application faces problems in the presence of toxins, especially ricin, a protein that prevents protein synthesis in the cells of animals that ingest them. Currently, several techniques have been emerging to detoxify castor bean cake and use it in animal feed. Among these techniques, solid state fermentation has shown promise in detoxification of the cake, and simultaneously can be used to produce enzymes of biotechnological interest, increasing its commercial value. The present invention aimed at optimizing the simultaneous production of phytase and tanase enzymes using the fungus Paecilomyces variotii through solid state fermentation in castor bean cake.
De acordo com a cinética de fermentação estabelecida, determinou-se que o meio contendo torta de mamona apresentou maior atividade nos tempos de 48 e 72 horas para produção de tanase e fitase, respectivamente. As melhores condições para produção de tanase foram: 90% de umidade relativa do ambiente, 25% de solução salina e 4,6% de ácido tânico, obtendo-se uma atividade enzimática de 2800 U/g de substrato. According to the established fermentation kinetics, it was determined that the castor bean cake medium showed the highest activity at 48 and 72 hours for tanase and phytase production, respectively. The best conditions for tanase production were: 90% relative humidity, 25% solution saline and 4.6% tannic acid, obtaining an enzymatic activity of 2800 U / g substrate.
Por sua vez, para produção da enzima fitase as melhores condições foram: 90% de umidade relativa do ambiente e 25% de solução salina, obtendo-se uma atividade enzimática de 280 U/g de substrato. In turn, for the phytase enzyme production the best conditions were: 90% relative humidity and 25% saline, obtaining an enzymatic activity of 280 U / g substrate.
Durante o processo fermentativo, a concentração da ricina mostrou-se menor com a utilização do fungo Paecilomyces variotii. Este resultado foi confirmado pelos testes de eletroforese em gel e do ensaio biológico. During the fermentation process, the concentration of ricin was lower with the use of the fungus Paecilomyces variotii. This result was confirmed by gel electrophoresis and biological assay tests.
BREVE DESCRIÇÃO DAS FIGURAS Figura 1: "Loop" do RNA ribossômico e sítio de despurinação da Ricina, descrito por Stirpe e colaboradores (2006). BRIEF DESCRIPTION OF THE FIGURES Figure 1: Ribosomal RNA "loop" and Ricin depurination site, described by Stirpe et al. (2006).
Figura 2: Estrutura química do Tanino Hidrolisável descrita por Battestin e colaboradores (2004). Figure 2: Chemical structure of the hydrolyzable tannin described by Battestin et al. (2004).
Figura 3: Exemplo da Estrutura Química do Tanino Condensado descrito por Battestin e colaboradores (2004). Figure 3: Example of the Chemical Structure of Condensed Tannin described by Battestin et al. (2004).
Figura 4: Hidrólise do Ácido Tânico descrito por Battestin e colaboradores (2004). Figure 4: Tannic Acid Hydrolysis described by Battestin et al. (2004).
FiguraS: Estrutura química do Ácido Fítico descrito por Raboy e colaboradores (2003). FigureS: Chemical Structure of Phytic Acid described by Raboy et al. (2003).
Figura 6: Hidrólise do Ácido Fítico descrito por Dvoráková e colaboradores (1998). Figure 6: Phytic Acid Hydrolysis described by Dvoráková et al. (1998).
Figura 7: Concentração mínima necessária para inibição do crescimento das células, considerando-se a porcentagem de células vivas em relação à quantidade de proteínas no extrato de torta de mamona. Figure 7: Minimum concentration required to inhibit cell growth, considering the percentage of living cells in relation to the amount of protein in castor bean cake extract.
Figura 8: Porcentagem de crescimento das células em torta in natura e em cada tempo de fermentação (24, 8 e 72 horas). Figure 8: Percentage of growth of cells in fresh pie and at each fermentation time (24, 8 and 72 hours).
BREVE DESCRIÇÃO DOS ANEXOS Anexo 1: Estrutura da Ricina descrita por Rutenber e colaboradores (1991). Anexo 2; Superfície de Resposta e Curva de Contorno para Atividade da Fitase (U/mL) BRIEF DESCRIPTION OF ANNEXES Annex 1: Structure of Ricina described by Rutenber et al. (1991). Annex 2; Response Surface and Contour Curve for Phytase Activity (U / mL)
Anexo 3: Superfície de Resposta e Curva de Contorno Atividade da Tanase (U/mL): (a) em função do volume da solução salina e umidade relativa do ar, (b) em função da umidade relativa do ar e ácido tânico e (c) em função do ácido tânico e volume da solução salina. Annex 3: Response Surface and Contour Curve Tanase Activity (U / mL): (a) as a function of saline volume and relative humidity, (b) as a function of relative humidity and tannic acid, and ( c) as a function of tannic acid and saline volume.
Anexo 4: SDS-PAGE 12% do extrato protéico de cada amostra testada. Annex 4: SDS-PAGE 12% protein extract from each sample tested.
* M = Marcador; R = Ricina purificada; IN = Torta de Mamona in natura; Au = Torta de Mamona Autoclavada; 24 = Torta de Mamona Fermentada durante 24 horas; 48 = Torta de Mamona Fermentada durante 48 horas; 72 = Torta de Mamona Fermentada durante 72 horas. * M = Bookmark; R = purified Ricin; IN = fresh castor bean pie; Au = Autoclaved Castor Pie; 24 = Fermented Castor Pie for 24 hours; 48 = Fermented Castor Pie for 48 hours; 72 = Fermented Castor Pie for 72 hours.
** Massa Molecular de cada cadeia do Marcador. ** Molecular Mass of each Marker chain.
DESCRIÇÃO DETALHADA DA INVENÇÃO DETAILED DESCRIPTION OF THE INVENTION
CARACTERIZAÇÃO DO RESÍDUO WASTE CHARACTERIZATION
Anteriormente à utilização da torta de mamona residual como meio de cultura para produção das enzimas tanase e fitase, este resíduo deve ser caracterizado para certificação quanto às suas características, para obtenção de quantidades ótimas das enzimas, a partir da menor quantidade possível de meio de cultura. Prior to the use of residual castor bean cake as a culture medium for the production of tanase and phytase enzymes, this residue should be characterized for certification as to its characteristics, to obtain optimal amounts of enzymes from the smallest possible amount of culture medium. .
Para essa caracterização, primeiramente a torta residual de mamona deve ser triturada e submetida a um processo de separação granulométrica em tamis de 10 mesh, com 1,68 mm. For this characterization, the castor bean cake must first be crushed and subjected to a 1.68 mm 10 mesh sieve size separation process.
A) Determinação do pH: A) pH determination:
Devem-se adicionar 5 mL de água deionizada a 0,5 g de amostra, a mistura foi vigorosamente agitada. Após 10 minutos, o pH do sobrenadante é medido em potenciômetro. Para que sua utilização como meio de cultura para produção de enzimas, a torta residual de mamona deve apresentar pH de 5,95, com variação de 0,04 para mais ou para menos. B) Porcentagem de Água (Karl-Fischer): 5 ml of deionized water should be added to 0.5 g of sample, the mixture was vigorously stirred. After 10 minutes, the pH of the supernatant is measured in a potentiometer. For its use as a culture medium for enzyme production, the residual castor bean cake must have a pH of 5.95, ranging from 0.04 to plus or minus. B) Water Percentage (Karl-Fischer):
Para determinar-se a quantidade de água presente Na torta residual de mamona, sugere-se utilizar metodologia para amostras com baixa quantidade de água livre, como cereais, casca de frutas, resíduos vegetais e grãos, como a desenvolvida por Laitinen (Laitnen, H. A. Boyer, K. W. Automobile exhaust particulates properties of environmental signif icance. Environmental Science and Technology 279, p. 457-1086, 1975). To determine the amount of water present In residual castor bean cake, it is suggested to use methodology for samples with low amount of free water, such as cereals, fruit peel, vegetable residues and grains, such as that developed by Laitinen (Laitnen, HA Boyer, KW Automotive exhaust particulate properties of environmental significance (Environmental Science and Technology 279, pp. 457-1086, 1975).
Esta metodologia baseia-se na oxidação de S02 pelo l2, que constituem o reagente de Karl Fischer, na presença de água, conforme ilustrado na equação química a seguir: l2 + S02 + H20 -> 2HI + H2S04 This methodology is based on the oxidation of S0 2 by l 2 , which make up Karl Fischer's reagent, in the presence of water, as illustrated in the following chemical equation: l 2 + S0 2 + H 2 0 -> 2HI + H 2 S0 4
Esta metodologia foi realizada por titulação volumétrica que fornece diretamente a porcentagem de água da amostra, sendo necessário fornecer a massa de amostra adicionada no frasco de titulação. A quantidade de água na amostra deve ser de aproximadamente 4,78%, com variação de 0,07% para mais ou para menos. This methodology was performed by volumetric titration that directly provides the sample water percentage, and it is necessary to supply the sample mass added in the titration flask. The amount of water in the sample should be approximately 4.78%, plus or minus 0.07%.
C) Umidade: C) Humidity:
Para determinação da umidade da amostra, deve-se fazer a incubação de 0,5 g por 24 horas em estufa a 105°C e, deve-se fazer a pesagem em períodos regulares até que essas amostras atinjam peso constante. To determine the moisture content of the sample, incubate 0.5 g for 24 hours in an oven at 105 ° C and weigh at regular intervals until these samples reach constant weight.
Para que a torta residual de mamona seja utilizada para produção ótima de fitase e tanase, ele deve apresentar teor de umidade de 6,7%, em relação ao peso total da amostra, com variação de 0,16% para mais ou para menos, como pode-se verificar na Tabela 1. For the castor bean residual cake to be used for optimum phytase and tanase production, it must have a moisture content of 6.7%, in relation to the total sample weight, with a variation of 0.16% more or less, as shown in Table 1.
Tabela 1: pH, quantidade de água e umidade relativa da torta de mamona in natura. Torta de Mamona Table 1: pH, amount of water and relative humidity of castor bean cake in natura. Castor Pie
Teste Média pH 5,95 ± 0,04  Average Test pH 5.95 ± 0.04
Agua (%) 4,78 ± 0,07 Water (%) 4.78 ± 0.07
Umidade (%) 6,7 ± 0,16 Humidity (%) 6.7 ± 0.16
PROCESSO FERMENTATIVO FERMENTATIVE PROCESS
A) Microrganismo A) Microorganism
O microrganismo Paecilomyces variotii deve ser mantido em meio Potato Dextrose Agar (PDA - OXOID - CM0139) com suplemento de 0,2% de ácido tânico (Tanal B - Prozyn - BioSolutions) e incubados em estufa a 30°C durante 72 horas. The microorganism Paecilomyces variotii should be kept in Potato Dextrose Agar (PDA - OXOID - CM0139) medium with a 0.2% tannic acid supplement (Tanal B - Prozyn - BioSolutions) and incubated at 30 ° C for 72 hours.
Após a incubação, deve ser realizada uma suspensão celular com um homogeneizador, obtendo-se no final uma concentração de 9 x IO6 células/mL. After incubation, a cell suspension with a homogenizer should be performed, resulting in a concentration of 9 x 10 6 cells / mL.
B) Meio de Fermentação Devem ser misturados, na proporção de g/mL, 1 parte do resíduo (torta residual de mamona) para 1 parte da solução salina (g/L) composta por: 1,0 de KH2PO4; 2,0 de NH4NO3; 0,2 de MgS04.7H20; 0,02 de CaCI2.2H20; 0,004 de MnCI2.4H20; 0,002 de Na2Mo04.2H20 e 0,0025 de FeS04.7H20; e 10% de ácido tânico. Em seguida, o recipiente no qual foi feita a mistura deve ser esterilizado em autoclave a temperatura de 121°C durante 15 minutos. B) Fermentation Medium 1 part of the residue (castor bean cake) to 1 part of the saline solution (g / L) consisting of: 1.0 KH2PO4 should be mixed in the g / mL ratio. 2.0 of NH4 NO3; 0.2 MgS0 4 .7H 2 0; 0.02 CaCl 2 .2H 2 0; 0.004 MNCI 2 .4H 2 0; 0.002 of Na 2 Mo0 4 .2H 2 0 and 0.0025 of FeS0 4 .7H 2 0; and 10% tannic acid. Then the mixing vessel should be autoclaved at 121 ° C for 15 minutes.
Após ser resfriado à temperatura ambiente, adiciona-se a suspensão de esporos do Paecilomyces variotii, ao meio de cultura Potato Dextrose Agar (PDA - OXOID - CM0139) com suplemento de 0,2% de ácido tânico. Após a inoculação, os recipientes devem ser incubados em estufa a 30°C durante 120 horas. C) Otimização de Produção Enzimática Para a otimização da produção das enzimas tanase e fitase na torta residual de mamona, é necessária que seja mantida a proporção correta entre a concentração de ácido tânico e solução salina no meio de produção enzimática. After being cooled to room temperature, the spore suspension of Paecilomyces variotii is added to the Potato Dextrose Agar (PDA - OXOID - CM0139) culture medium with a 0.2% tannic acid supplement. After inoculation, the containers should be incubated in an oven at 30 ° C for 120 hours. C) Enzyme Production Optimization To optimize the production of tanase and phytase enzymes in castor bean cake, the correct ratio of tannic acid to saline concentration in the enzyme production medium must be maintained.
Fitase: Determinou-se que o período ótimo de incubação do microorganismoPhytase: The optimal incubation period of the microorganism has been determined.
Paecilomyces variotii para produção de fitase, é de 72 horas, sofrendo uma pequena queda até as 96 horas, quando o valor de produção torna-se constante e apresenta queda após 120 horas, como podemos verificar na Tabela 2. Paecilomyces variotii for phytase production is 72 hours, with a slight decrease until 96 hours, when the production value becomes constant and decreases after 120 hours, as shown in Table 2.
Tabela 2: Avaliação da cinética de fermentação para a atividade fitásica em Torta de Mamona. Table 2: Evaluation of fermentation kinetics for phytase activity in castor bean pie.
Fitase (U/mL) Phytase (U / mL)
Tempo de Incubação (horas) Média*  Incubation Time (hours) Average *
' 24 12,28 ± 0,28 a '24 to 12.28 ± 0.28
48 9, 19 ± 0,03 b  48 9, 19 ± 0.03 b
72 49,79 ± 0, 16 c  72 49.79 ± 0.16 c
96 13,89 ± 1,53 a  13.89 ± 1.53 to
*Médias seguidas de mesma letra não diferem entre si pelo teste de Tukey (p>0,05) ao nível de 5% de probabilidade. Adicionalmente, determinou-se que, em relação à umidade relativa (UR%), a faixa em que se obtém a maior atividade enzimática é entre 85 a 90% de umidade presente no local de incubação do meio, com porcentagem ótima de 90%. * Means followed by the same letter do not differ by Tukey's test (p> 0.05) at the 5% probability level. Additionally, it was determined that, in relation to relative humidity (RH%), the range in which the highest enzymatic activity is obtained is between 85 and 90% of humidity present in the medium incubation site, with an optimum percentage of 90%.
Valores acima de 90% provocam desequilíbrio entre temperatura e umidade na Câmara Climática, desfavorecendo ao ambiente ótimo para produção enzimática pelo Paecilomyces variotii. Concentrações menores de umidade em relação à faixa dita anteriormente produzem menos fitase, como pode ser observado no Anexo 2. Não é necessária a adição de ácido tânico ao meio de cultura com torta residual de mamona, pois ele não interfere na produção dessa enzima. Adicionalmente, também não é necessária a suplementação do ácido fítico, que geralmente se usa para produção da fitase, resultando em uma produção com maior viabilidade económica. A porcentagem do volume da solução salina em relação ao peso total do meio é entre 25 a 28%, sendo a concentração ótima de 25%. Porcentagens menores do volume da solução inibem o crescimento do microrganismo. Values above 90% cause an imbalance between temperature and humidity in the Climatic Chamber, disfavoring the optimal environment for enzymatic production by Paecilomyces variotii. Lower concentrations of moisture in relation to the above range produce less phytase, as can be seen in Annex 2. The addition of tannic acid to the culture medium with castor bean cake is not necessary as it does not interfere with the production of this enzyme. In addition, phytic acid supplementation, which is generally used for phytase production, is not required, resulting in more economically viable production. The percentage of saline volume in relation to the total weight of the medium is between 25 and 28%, with the optimum concentration of 25%. Smaller percentages of solution volume inhibit the growth of the microorganism.
Dessa forma, determinou-se que as melhores condições para a produção da fitase, em 10 g de meio, seriam: 2,5 mL de SS (%); 7,5 g de torta de mamona, incubados à 90% de UR. Obtendo-se dessa forma uma atividade de 70 U/mL ou 280 U/g de substrato na fermentação pela linhagem P. variotii. Thus, it was determined that the best conditions for phytase production in 10 g of medium would be: 2.5 mL SS (%); 7.5 g castor bean cake incubated at 90% RH. Thus obtaining an activity of 70 U / mL or 280 U / g substrate in the fermentation by P. variotii strain.
Tanase: Tanase:
Para otimização de produção da enzima tanase também foram determinados a concentração de ácido tânico e porcentagem do volume da solução salina adicionada em relação ao meio. To optimize the production of the tanase enzyme, the tannic acid concentration and the percentage of the saline volume added in relation to the medium were also determined.
A otimização da cinética de fermentação, para que se obtenha a maior quantidade de tanase no menor tempo possível mostrou que para a produção dessa enzima, o tempo ótimo de fermentação é de 48 horas The optimization of the fermentation kinetics to obtain the highest amount of tanase in the shortest possible time showed that for the production of this enzyme, the optimal fermentation time is 48 hours.
A Anexo 3 indica que a faixa em que se obteria a maior atividade enzimática seria entre 84 a 90% de umidade relativa (UR%), com porcentagem de umidade ótima de 90%. Annex 3 indicates that the range in which the highest enzymatic activity would be obtained would be between 84 to 90% relative humidity (RH%), with an optimum humidity percentage of 90%.
Valores acima de 90% provocam desequilíbrio entre umidade e temperatura na Câmara Climática. Condições de umidade do ar menores a 84% diminuem a atividade enzimática. Values above 90% cause an imbalance between humidity and temperature in the Climatic Chamber. Air humidity conditions less than 84% decrease enzymatic activity.
A atividade da enzima tanase é maior em concentrações entre 4,6 a 6% de ácido tânico, com atividade enzimática ótima em 4,6% e Concentrações maiores de ácido tânico diminuem a atividade tanásica. Para a concentração do volume da solução salina em relação ao peso total do meio, a faixa de 25 a 33% estimularia a produção da enzima, com concentração ótima de 25%. Concentrações menores da solução salina impedem o crescimento do microrganismo no meio e o aumento da solução salina no meio de cultivo diminuiu a atividade tanásica. The activity of the tannase enzyme is higher at concentrations between 4.6 and 6% of tannic acid, with optimal enzymatic activity at 4.6% and higher tannic acid concentrations decrease the tannic activity. For the concentration of saline volume in relation to the total weight of the medium, the range of 25 to 33% would stimulate enzyme production, with optimum concentration of 25%. Lower saline concentrations prevent the growth of the microorganism in the medium and the increase of saline in the culture medium diminished the tannic activity.
A umidade relativa do meio presente antes da fermentação era de 25% e após incubação na Câmara há um pequeno aumento de 2%, resultando em 27%. Entretanto a Câmara quando utilizada a 90% de umidade relativa do ar, consegue-se manter a umidade presente no meio de cultivo, não havendo perda de água do meio para o ar, resultando em um equilíbrio da água presente no meio com o ar, como pode ser observado na Tabela 3. The relative humidity of the medium present before fermentation was 25% and after incubation in the Chamber there is a small increase of 2%, resulting in 27%. However, when the chamber is used at 90% relative humidity, it can maintain the humidity present in the culture medium, with no loss of water from the medium to the air, resulting in a balance of the water present in the medium with the air, as can be seen in Table 3.
Tabela 3: Umidade relativa do meio de cultivo antes e após incubação na câmara climática para o meio otimizado para produção de tanase em torta de mamona. Table 3: Relative humidity of the culture medium before and after incubation in the climate chamber for the medium optimized for castor bean tannase production.
Umidade Relativa do Meio de Cultivo (%) Relative Humidity of Cultivation Medium (%)
Amostra* Tempo de Incubação** Umidade Iuicial Umidade Final TM 48ii 48 horas ' 25% 27% * TM 48h = meio de cultivo de torta de mamona com 4,6% do peso do ácido tânico em relação ao peso total do meio (p/p) e 25% do volume da solução salina em relação ao peso total do meio (v/p). Sample * Incubation Time ** Initial Moisture Final Moisture TM 48ii 48 hours ' 25% 27% * TM 48h = castor bean cake medium with 4.6% tannic acid weight to total medium weight (p / w) and 25% of the saline volume in relation to the total weight of the medium (v / w).
Dessa forma, para otimizar as condições para a produção da tanase, em 10 g de meio, seriam: 3 mL de SS (%); 0,46 g de AT (%); 6,54 g de torta de mamona, incubados à 90% de UR. Obtendo-se dessa forma uma atividade de 700 U/mL ou 2800 U/g de substrato na fermentação pela linhagem P. variotii. Thus, to optimize the conditions for the production of tanase, in 10 g of medium, would be: 3 mL of SS (%); 0.46 g AT (%); 6.54 g castor bean cake incubated at 90% RH. Thus obtaining an activity of 700 U / mL or 2800 U / g substrate in the fermentation by P. variotii strain.
EXEMPLOS Exemplo 1: CINÉTICA DE FERMENTAÇÃO Com o objetivo de definir a cinética de fermentação, as atividades enzimáticas de tanase e fitase foram determinadas em diferentes tempos: 24, 48, 72 e 96 horas. Definindo assim o melhor tempo de fermentação do meio para produção das enzimas, sendo este tempo utilizado na etapa de delineamento experimental. EXAMPLES Example 1: FERMENTATION KINETICS In order to define the fermentation kinetics, the enzymatic activities of tanase and phytase were determined at different times: 24, 48, 72 and 96 hours. Thus defining the best fermentation time of the medium for enzyme production, this time being used in the experimental design step.
Utilizando a torta de mamona como substrato, o melhor tempo de fermentação para produção enzimática da tanase foi após 48 horas, como indicada na Tabela 4. Using castor bean cake as substrate, the best fermentation time for enzymatic production of tanase was after 48 hours, as shown in Table 4.
Tabela 4: Avaliação da cinética de fermentação para a atividade tanásica em Torta de Mamona. Table 4: Evaluation of fermentation kinetics for tannin activity in castor bean pie.
Tanase (U/mL) Tanase (U / mL)
Tempo de Incubação (horas) Média*  Incubation Time (hours) Average *
24 162 ± 10,2 a  24 162 ± 10.2 a
48 428 ± 10,1  48 428 ± 10.1
72 249 ± 16,9 c  72 249 ± 16.9 c
96 211 ± 17,3 c  96 211 ± 17.3 c
*Médias seguidas de mesma letra não diferem entre si pelo teste de Tukey (p>0,05) ao nível de 5% de probabilidade. * Means followed by the same letter do not differ by Tukey's test (p> 0.05) at the 5% probability level.
A partir de 48 horas de incubação a atividade enzimática diminuiu para 249 U/mL após 72 horas e manteve-se estatisticamente constante. Para enzima fitase, o melhor tempo de incubação para sua produção foi após 72 horas, após 96 horas a atividade diminuiu para 13,89 U/mL, como indicados na Tabela 5. Tabela 5: Avaliação da cinética de fermentação para a atividade fitásica em Torta de Mamona. Fitase (U/mL) After 48 hours of incubation the enzyme activity decreased to 249 U / mL after 72 hours and remained statistically constant. For phytase enzyme, the best incubation time for its production was after 72 hours, after 96 hours the activity decreased to 13.89 U / mL, as shown in Table 5. Table 5: Evaluation of fermentation kinetics for phytase activity in Castor bean pie. Phytase (U / mL)
Tempo de Incubação (horas) Média*  Incubation Time (hours) Average *
24 ' 12,28 ± 0,28 a 24 '12 .28 ± 0.28 a
48 9,19 ± 0,03 b  48 9.19 ± 0.03 b
72 49,79 ± 0,16 c  72 49.79 ± 0.16 c
96 13,89 ± 1,53 a  13.89 ± 1.53 to
*Médias seguidas de mesma letra não diferem entre si pelo teste de Tukey (p>0,05) ao nível de 5% de probabilidade. * Means followed by the same letter do not differ by Tukey's test (p> 0.05) at the 5% probability level.
Exemplo 2: DELINEAMENTO EXPERIMENTAL Com objetivo de otimizar a produção das enzimas tanase e fitase na torta de mamona, foram analisados a influência da concentração do ácido tânico e volume da solução salina no meio de produção enzimática. Utilizou-se a técnica do delineamento composto central rotacional (DCCR), apresentando 8 pontos fatoriais (p.f.), 6 pontos axiais (p.a.) e 3 pontos centrais (p.c.) totalizando 17 ensaios (23 p.f. + 6 p.a. + 3 p.c. = 17). As 3 variáveis independentes foram: umidade relativa do ar ( ) em Câmara Climática (Nova Ética-Modelo 420/CLDTS 300); concentração de ácido tânico, que foi expresso em porcentagem em relação ao peso total do meio (p/p); e o volume da solução salina, que foi expresso em porcentagem em relação ao peso total do meio (v/p). As variáveis dependentes (respostas) foram atividade enzimática da tanase e fitase. Example 2: EXPERIMENTAL DESIGN In order to optimize the production of tanase and phytase enzymes in castor bean cake, the influence of tannic acid concentration and saline volume on the enzyme production medium were analyzed. The central rotational composite design (DCCR) technique was used, presenting 8 factor points (pf), 6 axial points (pa) and 3 central points (pc) totaling 17 trials (2 3 pf + 6 pa + 3 pc = 17 ). The 3 independent variables were: relative humidity () in Climatic Chamber (New Ethics Model 420 / CLDTS 300); tannic acid concentration, which was expressed as a percentage of the total weight of the medium (w / w); and the saline volume, which was expressed as a percentage of the total weight of the medium (v / w). The dependent variables (responses) were tanase and phytase enzymatic activity.
A concentração de ácido tânico (%) utilizada nesse estudo foi determinada de acordo com Battestin e colaboradores (2007b), onde a produção máxima de tanase foi obtida utilizando 8 a 15% de ácido tânico. Para o presente trabalho, foram testadas concentrações menores de ácido tânico a fim de reduzir os custos do meio de produção. The concentration of tannic acid (%) used in this study was determined according to Battestin et al. (2007b), where the maximum tanase production was obtained using 8 to 15% tannic acid. For the present work, lower tannic acid concentrations were tested in order to reduce the costs of the production medium.
A quantidade de sal adicionado no meio de fermentação está descrita na Descrição Detalhada, no item de Processo Fermentativo. Nesse estudo foi avaliado o volume de água adicionado ao meio de fermentação. A faixa de volume de água adicionada foi determinada de acordo com a capacidade máxima de absorção do substrato, sem apresentar água livre no meio, conforme Tabela 6. Os valores reais utilizados nos ensaios do planejamento estão apresentados na Tabela 7 e a matriz dos ensaios na Tabela 8. Tabela 7: Valores utilizados no DCCR para três fatores. The amount of salt added in the fermentation medium is described in the Detailed Description in the Fermentation Process item. In this study, the volume of water added to the fermentation medium was evaluated. The range of water volume The amount added was determined according to the maximum absorption capacity of the substrate, without presenting free water in the medium, according to Table 6. The actual values used in the planning tests are presented in Table 7 and the tests matrix in Table 8. Table 7: Values used in DCCR for three factors.
Níveis Levels
Variáveis* -1,68 -1 0 1 1,68 Variables * -1.68 -1 0 1 1.68
UR (%) 60 66 75 84 90 volume SS (%) 25 31 40 49 55RH (%) 60 66 75 84 90 volume SS (%) 25 31 40 49 55
AT (%) 4,6 6 8 10 11,4 TA (%) 4.6 6 8 10 11.4
* AT (%) = Concentração de Ácido Tânico (p/p); volume SS (%) = volume da Solução Salina (v/p); UR (%) = Porcentagem da Umidade Relativa do Ar. * AT (%) = Tannic Acid Concentration (w / w); SS volume (%) = Saline volume (v / p); RH (%) = Percent Relative Humidity of Air.
Tabela 8: Matriz do delineamento contendo valores codificados das variáveis. Table 8: Design matrix containing coded variable values.
Níveis Codificados das ív efe Nã Dodííicíid os das Variáveis Variáveis Independentes* Independentes* Coded Levels of Non-Diodic Effects of Variables Independent Variables * Independent *
¾ ¾ ¾ vetam© :8S (%) AT (%)Et ¾ ¾ vetam ©: 8S (%) AT (%)
1 -1 -1 -1 66 31 61 -1 -1 -1 66 31 6
2 +1 -1 -1 84 31 62 +1 -1 -1 84 31 6
3 -1 +1 -1 6 49 63 -1 +1 -1 6 49 6
4 +1 +1 -1 84 49 64 +1 +1 -1 84 49 6
5 -I -1 +1 66 31 105 -I -1 +1 66 31 10
6 +1 -I +1 84 31 106 +1 -I +1 84 31 10
7 -! +1 +1 66 49 107 -! +1 +1 66 49 10
8 +1 +1 +1 8 49 10 8 +1 +1 +1 8 49 10
-1.68 0 0 60 40 8 -1.68 0 0 60 40 8
10 +im 0 0 90 40 810 + im 0 0 90 40 8
11 0 -1,68 0 75 25 811 0 -1.68 0 75 25 8
12 0 +1,68 0 75 55 812 0 +1.68 0 75 55 8
13 0 0 75 40 4,613 0 0 75 40 4.6
14 0 0 +1,68 75 40 11,14 0 0 +1.68 75 40 11,
15 0 0 0 75 40 S15 0 0 0 75 40 S
16 0 0 © 75 40 816 0 0 © 75 40 8
17 Q 0 0 75 40 817 Q 0 0 75 40 8
18 0 0 0 75 40 8 18 0 0 0 75 40 8
* xl= UR (%) = % umidade relativa do ar; x2 = volume SS (%) = % do volume da solução salina em relação ao peso total (v/p); x3 = AT (%) = % do peso do ácido tânico em relação ao peso total (p/p). De acordo com a Tabela 6, a capacidade máxima de água que a torta de mamona absorveu em 10 gramas foram 11 mL de água, ou seja, em um meio com torta de mamona e água, 55% do peso do meio eram representados por água. * xl = RH (%) =% relative humidity; x2 = SS volume (%) =% saline volume to total weight (v / w); x3 = TA (%) =% of tannic acid weight in relation to total weight (w / w). According to Table 6, the maximum water capacity that the castor cake absorbed in 10 grams was 11 mL of water, ie, in a medium with castor cake and water, 55% of the weight of the medium was represented by water. .
Tabela 6: Capacidade de Absorção de Água da Torta de Mamona. Capacidade de Absorção de Agua Table 6: Castor Pie Water Absorption Capacity. Water Absorption Capacity
Massa da Amostra* Volume de Água Absorvida Umidade (¾)  Sample Mass * Absorbed Water Volume Moisture (¾)
10 g 1 1 uiL 55  10 g 1 1 ul 55
*Peso da torta de mamona postado para avaliar a capacidade de absorção de água em seu meio. * Weight of castor bean pie posted to assess water absorbing capacity in its medium.
Com os resultados do planejamento foi possível no software STATISTCA 7.0 a determinação dos coeficientes de regressão para a resposta de interesse, calculou a ANOVA para analisar a possibilidade de construir a equação da resposta em função dos coeficientes de regressão estatisticamente significativo e também a superfície de resposta, com nível de significância de 10% (p-valor<0,l). With the planning results it was possible in STATISTCA 7.0 software to determine the regression coefficients for the response of interest, calculated the ANOVA to analyze the possibility of constructing the response equation as a function of statistically significant regression coefficients and also the response surface. , with a significance level of 10% (p-value <0.1).
O primeiro delineamento foi realizado considerando-se a variável dependente atividade enzimática da fitase após 72 horas de fermentação e o segundo delineamento para variável dependente atividade enzimática da tanase após 48 horas de fermentação. The first design was based on the phytase enzyme activity dependent variable after 72 hours of fermentation and the second design was based on the tanase enzyme activity dependent variable after 48 hours of fermentation.
A) DCCR para Produção de Fitase A) DCCR for Phytase Production
O delineamento composto central rotacional foi utilizado para avaliar a resposta ou variável dependente atividade enzimática da fitase. Os ensaios foram incubados com o microrganismo durante 72 horas, que foi o tempo que apresentou atividade fitásica mais alta. As variáveis independentes estudadas foram: a umidade relativa do ar, concentração do ácido tânico e a porcentagem do volume da solução salina adicionada em relação ao meio. Apresenta-se na Tabela 9 a matriz das variáveis independentes em estudo, com valores reais e codificados, e a variável dependente fitase durante 72 horas de incubação. The central rotational composite design was used to evaluate the response or dependent variable of phytase enzymatic activity. The assays were incubated with the microorganism for 72 hours, which was the time with the highest phytase activity. The independent variables studied were: relative air humidity, tannic acid concentration and the percentage of saline volume added in relation to the medium. Table 9 shows the matrix of the independent variables under study, with real and coded values, and the phytase dependent variable during 72 hours of incubation.
Analisando-se os valores de atividade obtidos na Tabela 9, verifica-se um aumento na de atividade enzimática, variando-se de 1,97 U/mL para o ensaio 3 (66% de umidade relativa do ar, 49% do volume da Solução Salina em relação ao peso total e 6% de ácido tânico) até uma atividade máxima de 42,01 U/mL, para o ensaio 2 (84% de umidade relativa do ar, 31% do volume da Solução Salina e 6% de ácido tânico). Analyzing the activity values obtained in Table 9, there is an increase in the enzymatic activity, ranging from 1.97 U / mL for test 3 (66% relative humidity, 49% of the volume of Saline solution in relation to total weight and 6% tannic acid) to a maximum activity of 42.01 U / mL for test 2 (84% relative humidity, 31% saline volume and 6% tannic acid).
Tabela 9: Matriz DCCR 23 e a resposta da atividade enzimática da fitase após 72 horas de incubação. Table 9: DCCR 2 3 matrix and the response of phytase enzymatic activity after 72 hours of incubation.
Valores Codificados Valores Reais Resposta Coded Values Real Values Answer
Fitase Phytase
Ensaio'; ¾ UR <%) volume SS (%) Test'; ¾ UR <%) SS volume (%)
(U/mL) l -1 -1 -1 66 31 6 17.4 (U / mL) l -1 -1 -1 66 31 6 17.4
2 1 -1 -1 84 31 6 42,012 1 -1 -1 84 31 6 42.01
3 -1 1 -1 66 49 6 1T973 -1 1 -1 66 49 6 1 T 97
4 1 1 -1 84 49 6 8,84 1 1 -1 84 49 6 8.8
5 -1 -1 1 66 31 10 10,695 -1 -1 1 66 31 10 10.69
6 1 -1 1 84 31 10 28,326 1 -1 1 84 31 10 28.32
7 -1 1 1 66 49 10 2,517 -1 1 1 66 49 10 2.51
S í 1 1 84 49 10 4,96S 1 1 84 49 10 4.96
9 -1,68 0 0 60 40 s 2, 19 -1.68 0 0 60 40 s 2, 1
10 1.68 0 í 90 40 8 37,8410 1,668 0 90 40 8 37,84
11 Q -1,08 0 75 25 s 29,1911 Q -1.08 0 75 25 s 29.19
12 ϋ 1.68 0 75 55 8 53812 ϋ 1.68 0 75 55 8 538
13 0 0 -1,68 75 40 4.6 6,9113 0 0 -1.68 75 40 4.6 6.91
14 0 0 1.68 75 40 11,4 7,1814 0 0 1.68 75 40 11.4 7.18
15 0 0 0 75 ' 40 8 4,8115 0 0 0 75 '40 8 4.81
16 0 0 § 75 40 S 5,5816 0 0 § 75 40 S 5.58
17 0 0 0 75 40 8 4.62 xl = UR (%) = porcentagem da umidade relativa do ar; x2 = volume SS (%) = % do volume da Solução Salina em relação ao peso total (v/p); x3 = AT (%) = % do peso do ácido tânico em relação ao peso total (p/p). 17 0 0 0 75 40 8 4.62 xl = RH (%) = percentage of relative air humidity; x2 = SS volume (%) =% Saline volume to total weight (v / p); x3 = TA (%) =% of tannic acid weight in relation to total weight (w / w).
A Tabela 10 apresenta os valores dos coeficientes de regressão, t e p-valor para avaliar quais são as variáveis e suas interações, estatisticamente significativo, acima de 90% (p<0,10). Table 10 presents the values of the regression coefficients, t and p-value to evaluate which are the statistically significant variables and their interactions above 90% (p <0.10).
Com os resultados da Tabela 10, verificou-se que as variáveis linear e quadrática de AT (%) (concentração de ácido tânico) e interação UR (%) com AT (%) e UR (%) com AT (%) não foram significativos, sendo avaliados para Resíduos na Fonte de Variação, apresentando pvalor igual a 0,17, 0,67, 0,36 e 0,18, respectivamente. Assim, somente as variáveis Média, UR (%) (L) e (Q), volume SS (%) (L) e (Q) e interação UR (%) e volume SS (%) foram avaliados para Regressão na Fonte de Variação no ANOVA. With the results of Table 10, it was found that the linear and quadratic variables of AT (%) (tannic acid concentration) and interaction UR (%) with AT (%) and RH (%) with TA (%) were not significant, being evaluated for Residues at Source of Variation, presenting pvalue equal to 0.17, 0.67, 0.36 and 0.18, respectively. Thus, only the variables Mean, RH (%) (L) and (Q), SS volume (%) (L) and (Q) and interaction RH (%) and SS volume (%) were evaluated for Source Regression. ANOVA variation.
Tabela 10: Resultados do Coeficiente de Regressão, Erro Padrão, t, p e Limite de Confiança na otimização dos componentes do meio de cultivo (umidade relativa do ar, volume da solução salina e ácido tânico) na atividade de fitase. Table 10: Results of Regression Coefficient, Standard Error, t, p and Confidence Limit in optimizing culture medium components (relative humidity, saline volume and tannic acid) on phytase activity.
Coeficiente Limite de Limite de Coefficient Limit Limit
Erro  Error
de t(7) p-valor Confiança Confiança Padrão  of t (7) p-value Trust Default Trust
Regressão -$>0,<Hs +90,% Regression - $> 0, <Hs + 90,%
Média* 5,06 2,37 2,13 0,0703 0.56 9,54Average * 5.06 2.37 2.13 0.0703 0.56 9.54
(1)UR (%){L)* 8,14 1,11 7,31 0,0001 6,02 10,24(1) RH (%) {L) * 8.14 1.11 7.31 0.0001 6.02 10.24
UR (%>(<¾* 5,16 1.23 4.21 0.0039 2.84 7.48RH (%> (<¾ * 5.16 1.23 4.21 0.0039 2.84 7.48
(2)volume SS (%)(L>* -8,80 1,11 -7,91 0,0001 -10,91 -6,69 volume SS (%)(Q)* 4/16 1,23 3,39 0,0115 1,83 6.47(2) SS volume (%) (L> * -8.80 1.11 -7.91 0.0001 -10.91 -6.69 SS volume (%) (Q) * 4/16 1.23 3 .39 0.0115 1.83 6.47
(3)AT <%)(L) -1,70 1.11 -1,53 0,1701 -3,81 0,40(3) AT <%) (L) -1.70 1.11 -1.53 0.1701 -3.81 0.40
AT (%)(Q) 0,54 1,23 0,44 0,6742 -1,78 2,85TA (%) (Q) 0.54 1.23 0.44 0.6742 -1.78 2.85
1L x 2L* -4,12 1,46 -2,83 0,0253 -6,87 -1.361L x 2L * -4.12 1.46 -2.83 0.0253 -6.87 -1.36
HL x 3L -L42 1,46 -0,98 0,3614 -4,17 1,33HL x 3L -L42 1.46 -0.98 0.3614 -4.17 1.33
2L x 3L 2, 14 1,46 1,47 0,1851 -0,61 4,8 2L x 3L 2, 14 1.46 1.47 0.1851 -0.61 4.8
* parâmetros estatisticamente significativos a 90% de nível de confiança. L = parâmetro linear; Q = parâmetro quadrático. * Statistically significant parameters at 90% confidence level. L = linear parameter; Q = quadratic parameter.
A análise de variância (ANOVA) está representada na Tabela 11. Analysis of variance (ANOVA) is shown in Table 11.
Tabela 11: Análise de Variância no estudo do efeito dos componentes do meio de cultivo (UR (%), volume SS (%) e AT (%)) na atividade de fitase. Fonte de Soma Graus de MédiaTable 11: Analysis of variance in the study of the effect of culture medium components (RH (%), SS volume (%) and TA (%)) on phytase activity. Sum Source Average Degrees
Figure imgf000034_0001
Figure imgf000034_0001
Variação Quadrática Liberdade Quadrática  Quadratic Variation Quadratic Freedom
Regressão 2514 5 503 25.8 0,00001 Regression 2514 5 503 25.8 0.00001
Resíduos 214 11 20 Waste 214 11 20
Falta de Ajuste 213.5 9 23,72 91.2  Lack of Adjustment 213.5 9 23.72 91.2
E ro Puro 0,517 2 0,26  Pure ro 0.517 2 0.26
Total 2727,6 16  Total 2727.6 16
R2=0,92 Ftab(0,l;5;ll)=2,45 Ftab(0,l;9;2)=9,38 R2 = 0.92 Ftab (0.1.5; 11) = 2.45 Ftab (0.1.9; 2) = 9.38
Para o coeficiente de correlação (R) o valor obtido foi de 0,96, para o coeficiente de determinação (R2) foi de 0,92, indicando uma correlação satisfatória entre os valores obtidos pelo experimento e os preditos pelo modelo. O valor F da Falta de Ajuste obtido a partir da ANOVA foi de 91,2 (9,72 vezes maior do que o valor de Ftabelado=9,38) e indicou uma falta de ajuste do modelo maior que o indicado pelo valor tabelado. O valor de F da Regresão obtido foi de 25,8 (10,53 vezes maior do que o valor de Ftabelado=2,45), indicando que o modelo para a atividade de fitase pode ser considerado estatisticamente significativo a 90% de nível de confiança. For the correlation coefficient (R) the value obtained was 0.96, for the determination coefficient (R 2 ) was 0.92, indicating a satisfactory correlation between the values obtained by the experiment and those predicted by the model. The F-value of the Misadjustment obtained from ANOVA was 91.2 (9.72 times higher than the Ftabeled value = 9.38) and indicated a misadjustment of the model larger than indicated by the tabulated value. The Regression F value obtained was 25.8 (10.53 times higher than the Ftabeled value = 2.45), indicating that the model for phytase activity can be considered statistically significant at 90% level. confidence.
Estes resultados podem ser considerados satisfatório e suficientes, permitindo obter um modelo codificado que descreve as respostas em função das variáveis analisadas. A partir da validação dos parâmetros de estudo, foi obtido o modelo polinomial quadrático que representa o comportamento da atividade enzimática (1): Fitase (U/mL) = 5,74 +8,14*(UR) +5*(UR)2 -8,8*(volume SS) +4*(volume SS)2 -These results can be considered satisfactory and sufficient, allowing to obtain a coded model that describes the answers as a function of the analyzed variables. From the validation of the study parameters, we obtained the quadratic polynomial model that represents the enzymatic activity behavior (1): Phytase (U / mL) = 5.74 + 8.14 * (UR) + 5 * (UR) 2 -8.8 * (SS volume) + 4 * (SS volume) 2 -
4,12*(UR)*(volume SS) (1) 4.12 * (UR) * (SS volume) (1)
O modelo polinomial quadrático foi utilizado para construir as superfícies de resposta e curvas de contorno. O Anexo 2 mostra os efeitos dos componentes umidade relativa do ar e porcentagem do volume da solução salina em relação ao peso total do meio, na produção de tanase pelo Paecilomyces variotii. The quadratic polynomial model was used to construct the response surfaces and contour curves. Annex 2 shows the effects of the components relative humidity and percentage of saline volume in relation to the total weight of the medium on the production of tanase by Paecilomyces variotii.
B) DCCR para Produção de Tanase A Tabela 12 demonstra a matriz das variáveis independentes em estudo, com valores reais, codificados e a variável dependente tanase após 48 horas de fermentação. B) DCCR for Tanase Production Table 12 shows the matrix of the independent variables under study, with actual, coded values and the tanase dependent variable after 48 hours of fermentation.
Analisando-se os valores de atividade tanásica obtidos. Na Tabela 12, verifica-se um aumento na atividade, variando de 104 U/mL no ensaio 12 (75% de umidade relativa do ar, 55% do volume da solução salina adicionado em relação ao peso total do meio e 8% de ácido tânico suplementado no meio) para 573 U/mL no ensaio 2 (84% de umidade relativa do ar, 31% do volume da solução salina e 6% de ácido tânico). Analyzing the values of tanasic activity obtained. Table 12 shows an increase in activity, ranging from 104 U / mL in test 12 (75% relative humidity, 55% added saline volume to total medium weight and 8% acid supplemented in the medium) to 573 U / mL in test 2 (84% relative air humidity, 31% saline volume and 6% tannic acid).
Tabela 12: Matriz OCCR 23 e a resposta da atividade enzimática da tanase após 48 horas de fermentação. Table 12: OCCR 2 3 matrix and the response of tanase enzymatic activity after 48 hours of fermentation.
Valores Codificados Valeres Reais Resposta Coded Values Actual Values Answer
TanaseTanase
Ensaios liR ό) volume SS (¾) AT f/e) LiR tests) SS volume (¾) AT f / e)
(U/mL) (U / mL)
1 -1 -1 -1 66 31 6 384 1 -1 -1 -1 66 31 6 384
2 I -1 84 31 6 573 2 I -1 84 31 6 573
3 -I 1 -1 66 49 6 124 3 -I 1 -1 66 49 6 124
4 1 I -1 84 49 6 216 4 1 I -1 84 49 6 216
5 -1 -1 1 66 31 10 199 5 -1 -1 1 66 31 10 199
6 1 -1 1 84 31 10 206  6 1 -1 1 84 31 10 206
7 -1 1 1 66 49 10 218 7 -1 1 1 66 49 10 218
S 1 1 1 84 49 10 204S 1 1 1 84 49 10 204
9 -IM 0 0 60 40 s 1209 -IM 0 0 60 40 s 120
10 1,68 0 0 90 40 8 430 10 1.68 0 0 90 40 8 430
11 0 -L6S 0 75 25 8 35S 11 0 -L6S 0 75 25 8 35S
12 0 1,68 0 75 55 8 10412 0 1.68 0 75 55 8 104
13 0 0 -1,68· 75 40 4.6 386 13 0 0 -1.68 · 75 40 4.6 386
14 0 0 1,68 75 40 1L4 172  14 0 0 1.68 75 40 1L4 172
15 0 0 0 75 40 8 326 15 0 0 0 75 40 8 326
U 0 0 0 75 40 8 302 U 0 0 0 75 40 8 302
17 0 0 0 75 40 8 288 xl = UR (%) = umidade relativa do ar (%); x2 = volume SS (%) = % do volume da Solução Salina em relação ao peso total (v/p) ; x3 = AT (%) = % do peso do ácido tânico em relação ao peso total (p/p). 17 0 0 0 75 40 8 288 xl = RH (%) = relative humidity (%); x2 = SS volume (%) =% Saline volume to total weight (v / p); x3 = TA (%) =% of tannic acid weight in relation to total weight (w / w).
A Tabela 13 apresenta os coeficientes de regressão, erro padrão, t, p-valor e limite de confiança das variáveis e suas interações, em resposta a atividade da tanase com limite de confiança estatística de 90% (p<0,10). Table 13 presents the regression coefficients, standard error, t, p-value and confidence limit of the variables and their interactions, in response to tannase activity with a 90% statistical confidence limit (p <0.10).
Tabela 13: Resultados do Coeficiente de Regressão, Erro Padrão, t, p e Limite de Confiança na otimização dos componentes do meio de cultivo (umidade relativa do ar, volume da Solução Salina e ácido tânico) na atividade de tanase. Table 13: Results of Regression Coefficient, Standard Error, t, p and Confidence Limit in optimizing culture medium components (relative humidity, saline volume and tannic acid) on tanase activity.
Coeficiente Limite de Limite de Coefficient Limit Limit
Erro  Error
de t(7) p-Yalor Confiança Confiança Padrão  of t (7) p-Yalor Confidence Standard Confidence
Regressão -90,% +909 οRegression -90,% +90 9 ο
Média* 305 25 12,4 0,000005 258 352Average * 305 25 12.4 0.000005 258 352
(1)UR (%)(L)* 58 12 5,0 0.001504 36 80(1) RH (%) (L) * 58 12 5.0 0.001504 36 80
I R (%)(Q) - 13 -0,7 0.489433 -33 15I R (%) (Q) - 13 -0.7 0.489433 -33 15
(2)vo!iime SS (%)(L>* -75 12 -6,5 0,000333 -97 -53 volume SS (°/o)(Q)* -25 13 -1, 0,091974 -49 -0,7(2) volume SS (%) (L> * -75 12 -6.5 0.000333 -97 -53 SS volume (° / o) (Q) * -25 13 -1, 0.091974 -49 -0.7
(3)AT (%)(L>* . -61 12 -5,3 0,001181 -83 -39(3) AT (%) (L> *. -61 12 -5.3 0.001181 -83 -39
AT (%)(Q) -8 13 -0,6 0,555943 -32 16TA (%) (Q) -8 13 -0.6 0.555943 -32 16
1L x 2L -15 15 -1,0 0,361548 -43 141L x 2L -15 15 -1.0 0.361548 -43 14
1L x 3L* -36 15 -2,4 0.048719 -65 -71L x 3L * -36 15 -2.4 0.048719 -65 -7
2L X 3L* 79 15 5,2 0,001194 51 108 2L X 3L * 79 15 5.2 0.001194 51 108
* parâmetros estatisticamente significativos a 90% de nível de confiança. L = parâmetro linear; Q = parâmetro quadrático. * Statistically significant parameters at 90% confidence level. L = linear parameter; Q = quadratic parameter.
Com os resultados da Tabela 5, as variáveis UR (%) quadrático (umidade relativa do ar), AT (%) quadrático (concentração de ácido tânico) e interação UR (%) e volume SS (%) não foram significativos, apresentando p-valor igual a 0,48, 0,55 e 0,36, respectivamente. Assim, somente as variáveis UR (%) (L), volume SS (%) (L), volume SS (%) (Q), AT (%) (L), interação UR (%) com AT (%) e interação volume SS (%) com AT (%) foram avaliados para Regressão na Fonte de Variação no ANOVA. A análise de variância (ANOVA) está representada na Tabela 14. With the results of Table 5, the variables RH (%) quadratic (relative humidity), AT (%) quadratic (tannic acid concentration) and interaction RH (%) and SS volume (%) were not significant, showing p -value 0.48, 0.55 and 0.36, respectively. Thus, only the variables RH (%) (L), SS volume (%) (L), SS volume (%) (Q), AT (%) (L), interaction UR (%) with AT (%) and SS volume interaction (%) with TA (%) were evaluated for Source of Variation Regression in ANOVA. Analysis of variance (ANOVA) is shown in Table 14.
Tabela 14: Análise de Variância no estudo do efeito dos componentes do meio de cultivo (UR (%), volume SS (%) e AT (%)) na atividade de tanase. Table 14: Analysis of variance in the study of the effect of culture medium components (RH (%), SS volume (%) and TA (%)) on tanase activity.
Fout de Soma Graus de MédiaSum Fout Average Degrees
Figure imgf000037_0001
Figure imgf000037_0001
Variação Quadrática Liberdade Quadrática  Quadratic Variation Quadratic Freedom
Regressão 240329 6 40055 253 0,00001 Regression 240329 6 40055 253 0.00001
Resíduos 15826 10 1583 Waste 15826 10 1583
Falta de Ajuste 15086,9 8 1886 5, 1 1  Lack of Adjustment 15086.9 8 1886 5, 1 1
Erro Puro 738,7 2 369  Pure Error 738.7 2 369
Total 256154,5 16  Total 256154.5 16
R2=0,94 Ftab(0,l;6;10)=2,46 Ftab(0,l;8;2)=9,37 R 2 = 0.94 Ftab (0.1, 6.10) = 2.46 Ftab (0.1, 8, 2) = 9.37
Para o coeficiente de correlação (R) o valor obtido foi de 0,97, para o coeficiente de determinação (R2) foi de 0,94, indicando uma boa correlação entre os valores obtidos pelo experimento e os preditos pelo modelo. O valor F da Falta de Ajuste obtido a partir da ANOVA foi de 5,11 (1,83 vezes menor do que o valor de Ftabelado=9,37), resultando em uma falta de ajuste do modelo menor que o indicado pelo valor tabelado. O valor de F da Regressão obtido foi de 25,3 (10,2 vezes maior do que o valor de Ftabelado=2,46), indicando que o modelo para a atividade de tanase pode ser considerado estatisticamente significativo a 90% de nível de confiança. For the correlation coefficient (R) the value obtained was 0.97, for the determination coefficient (R 2 ) was 0.94, indicating a good correlation between the values obtained by the experiment and those predicted by the model. The F-value of Non-Adjustment obtained from ANOVA was 5.11 (1.83 times lower than the value of Ft = 9.37), resulting in a lack of model adjustment lower than indicated by the tabulated value. . The regression F value obtained was 25.3 (10.2 times higher than the Ftabeled value = 2.46), indicating that the model for tannase activity can be considered statistically significant at 90% level. confidence.
Estes resultados podem ser obtidos por um modelo codificado que descreve as respostas em função das variáveis analisadas. A partir da validação dos parâmetros de estudo, foi obtido o modelo polinomial quadrático que representa o comportamento da atividade enzimática (2): These results can be obtained by a coded model that describes the responses as a function of the analyzed variables. From the validation of the study parameters, we obtained the quadratic polynomial model that represents the behavior of enzymatic activity (2):
Tanase (U/mL) = 288 + 58,24*(UR) -75,21*(volume SS) -20,93*(volume SS)2 - 60,77*(AT) -36*(UR)*(AT) +79,25*(volume SS)*(AT) (2) Tanase (U / mL) = 288 + 58.24 * (UR) -75.21 * (SS volume) -20.93 * (SS volume) 2 - 60.77 * (AT) -36 * (UR) * (AT) + 79.25 * (SS volume) * (AT) (2)
O modelo polinomial quadrático foi utilizado para construir as superfícies de resposta e curvas de contorno. O Anexo 3, (a), (b) e (c), ilustra os efeitos dos componentes umidade relativa do ar, concentração de ácido tânico e porcentagem do volume da solução salina em relação ao peso total do meio, na produção de tanase pelo Paecilomyces variotii. The quadratic polynomial model was used to construct the response surfaces and contour curves. Annex 3 (a), (b) and (c) illustrate the effects of the components relative humidity, tannic acid concentration and percentage of volume of saline in relation to the total weight of the medium in the production of tanase by Paecilomyces variotii.
Exemplo 3; EXTRAÇÃO ENZIMÁTICA E DETERMINAÇÕES ANALÍTICAS Example 3; ENZYMATIC EXTRACTION AND ANALYTICAL DETERMINATIONS
Após a fermentação procedeu-se a extração da enzima adicionando 4 partes de tampão acetato pH 5,5 - 0,02 M para 1 parte do meio de fermentação em cada Erlenmeyer. Os frascos foram agitados a 200 rpm por 1 hora (Battestin, 2007b). A solução foi filtrada em gaze e o extrato retido na filtração foi denominado extrato sólido bruto. O filtrado foi centrifugado a 7100 x g por 30 minutos a 4°C, sendo então chamado de extrato enzimático bruto (Lekha, P. K.; Lonsane, B. K. Production and application of tannin acyl hydrolase: State of the art. Advances in Applied Biochemistry and Microbiology 44, p. 215-260, 1997). O extrato enzimático foi utilizado para determinação da atividade das enzimas tanase e fitase. O extrato sólido bruto foi utilizado para determinações analíticas de fenóis totais, taninos condensados, taninos hidrolisados e detoxificação. O objetivo principal das determinações analíticas foi avaliar as concentrações de compostos de valor nutricional no meio pré-fermentado e pós-fermentado como compostos fenólicos, taninos hidrolisáveis, condensados, avaliação da presença de ricina e determinação do processo de detoxificação. After fermentation, the enzyme was extracted by adding 4 parts of acetate buffer pH 5.5 - 0.02 M to 1 part of the fermentation medium in each Erlenmeyer. The flasks were shaken at 200 rpm for 1 hour (Battestin, 2007b). The solution was filtered through gauze and the extract retained on filtration was called crude solid extract. The filtrate was centrifuged at 7100 xg for 30 minutes at 4 ° C and was then called crude enzyme extract (Lekha, PK; Lonsane, BK). , pp. 215-260, 1997). The enzyme extract was used to determine the activity of the tanase and phytase enzymes. The crude solid extract was used for analytical determinations of total phenols, condensed tannins, hydrolyzed tannins and detoxification. The main objective of the analytical determinations was to evaluate the concentrations of compounds of nutritional value in the pre-fermented and post-fermented medium as phenolic compounds, hydrolysable tannins, condensates, evaluation of the presence of ricin and determination of the detoxification process.
A) Extração de Fenóis Totais Foram utilizadas os seguintes solventes para o processo de extração, na proporção de 50% do solvente e 50% de água: Acetato de Etila, Acetona e Metanol. Também foi testado com o solvente Hexano em sua forma anidra (100%). Foram pesados 200 mg da amostra em 10 mL do solvente, em seguida foram incubados a temperatura ambiente com agitação de 150 rpm durante 120 minutos. Após a homogeneização foram centrifugados a 1320 x g a 5°C durante 15 minutos e analisados por determinação de Fenóis Totais (Naczk, M.; Shahidi, F. Extraction and analysis of phenolics in food. Journal of Chromatography A 1054, p. 95-111, 2004); (Schons, 2009). A) Total Phenol Extraction The following solvents were used for the extraction process, in the proportion of 50% solvent and 50% water: Ethyl Acetate, Acetone and Methanol. It was also tested with the hexane solvent in its anhydrous form (100%). 200 mg of the sample was weighed in 10 mL of the solvent, then incubated at room temperature with 150 rpm shaking for 120 minutes. After homogenization they were centrifuged at 1320 xg at 5 ° C for 15 minutes and analyzed by determination of Total Phenols (Naczk, M .; Shahidi, F. Extraction and analysis of phenolics in food. Journal of Chromatography A 1054, p. 95-111 , 2004); (Schons, 2009).
B) Determinação de Fenóis Totais Foi utilizada a técnica de Follin-Ciocaulteau (Singleton, V. L. Rossi, ). A. J. Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. American Journal of Enology and Viticulture 20, p. 144-158, 1965) para determinação de fenóis presentes na amostra. Este método baseia-se na redução do ácido fosfomolibdico e fosfotungstico pelas hidroxilas dos fenóis produzindo uma coloração azul, quantificada por espectrofotometria a 760 nm. B) Determination of Total Phenols Follin-Ciocaulteau technique (Singleton, VL Rossi) was used. AJ Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. American Journal of Enology and Viticulture 20, p. 144-158, 1965) for determination of phenols present in the sample. This method is based on the reduction of phosphomolybdic and phosphotungstic acid by the phenol hydroxyls producing a blue color, quantified by spectrophotometry at 760 nm.
Em um Erlenmeyer de 50 mL foram adicionados 1 mL do reagente Follin- Ciocaulteau, 10 mL de água destilada, 1 mL da amostra e deixou-se em repouso durante 3 minutos. Foram adicionados 8 mL de carbonato de sódio (7,5%) e a reação ocorreu por 2 horas em local escuro. Após 2 horas, foi realizada a leitura da amostra em espectrofotômetro à absorbância de 760 nm. O branco foi composto por todos os constituintes da reação, com exceção da amostra. O curso da reação foi acompanhado por uma curva de calibração com ácido gálico, conforme metodologia descrita. In a 50 mL Erlenmeyer was added 1 mL Follin-Ciocaulteau reagent, 10 mL distilled water, 1 mL of sample and allowed to stand for 3 minutes. 8 mL of sodium carbonate (7.5%) was added and the reaction took place for 2 hours in a dark place. After 2 hours, the spectrophotometer was read at 760 nm. White was composed of all reaction constituents except the sample. The reaction course was followed by a gallic acid calibration curve, according to the methodology described.
C) Determinação de Taninos Hidrolisáveis Foi empregada a metodologia de Brune e colaboradores (Brune, . Hallberg, L.C) Determination of Hydrolyzable Tannins The methodology of Brune and collaborators (Brune, Hallberg, L.
Skânberg, A. Determination of iron-binding phenolic groups in foods. Journal of Food Science 56, p. 128-131, 1991) sendo que a extração das amostras foi realizada como indicado para os fenóis totais. Utilizou-se uma solução de sulfato de ferro (III) e amónio, denominada FAS. A solução era constituída por: 89% de solução tampão acetato 0,1 M - pH 4,4; 10% de solução de goma arábica à 1%; 1% de solução de sulfato de ferro (III) e amónio à 5%. Em um tubo de ensaio adicionou-se 2 mL da amostra em estudo e 8 mL da solução FAS. Após 15 minutos de reação, foi lida a absorbância em 578 nm. O branco foi realizado substituindo a amostra por água destilada. O curso da reação foi acompanhado por um a curva de calibração com ácido tânico, conforme metodologia descrita. Skânberg, A. Determination of iron-binding phenolic groups in foods. Journal of Food Science 56, p. 128-131, 1991) and sample extraction was performed as indicated for the total phenols. An iron (III) ammonium sulphate solution called FAS was used. The solution consisted of: 89% 0.1 M acetate buffer - pH 4.4; 10% 1% gum arabic solution; 1% 5% ammonium iron (III) sulphate solution. In a test tube, 2 mL of the study sample and 8 mL of the FAS solution were added. After 15 minutes of reaction, the absorbance at 578 nm was read. The blank was performed by replacing the sample with distilled water. The reaction course was followed by a tannic acid calibration curve according to the methodology described.
D) Determinação de Taninos Condensados D) Determination of Condensed Tannins
Empregou-se a metodologia de Prince e colaboradores (Price, M. L Van Scoyoc, S. Butler, L. G. A criticai evaluation of the vanillin reaction as an assay for tannin in sorghum grain. Journal of Agricultural and Food Chemistry 26, p. 1214- 1218, 1978), sendo específica para flavonóides e dihidroxichalconas que possuem ligação simples na posição 2 e 3 e uma hidroxila livre no anel beta. A vanilina é protonada em uma solução ácida, resultando em um carbocátion eletrofílico fraco, o qual reage com o anel aromático nas posições 6 ou 8, este composto é imediatamente desidratado formando um composto vermelho. The methodology of Prince and co-workers was employed (Price, M.L. Van Scoyoc, S. Butler, LG. Critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. Journal of Agricultural and Food Chemistry 26, p. 1214 - 1218, 1978), being specific for flavonoids and dihydroxychalconas having single bonding at positions 2 and 3 and a free beta ring hydroxyl. Vanillin is protonated in an acidic solution, resulting in a weak electrophilic carbocation, which reacts with the aromatic ring at positions 6 or 8, this compound is immediately dehydrated to form a red compound.
A extração da amostra foi realizada como nos fenóis e taninos hidrolisáveis. Utilizou uma solução de vanilina contendo: 1 parte para a solução de vanilina (1% de vanilina dissolvido em metanol) e 1 parte para solução de HCI (8% de HCI em metanol). Sample extraction was performed as in hydrolysable phenols and tannins. A vanillin solution containing: 1 part vanillin solution (1% vanillin dissolved in methanol) and 1 part HCI solution (8% HCl in methanol) was used.
O método foi realizado com a adição de 1 mL da amostra em estudo e 5 mL da solução de vanilina durante 5 minutos, sendo que a cada 1 minuto foi colocado 1 mL da solução de vanilina. O branco foi constituído por 1 mL de água destilada e 5 mL da solução de vanilina, em seguida a reação foi conduzida durante 20 minutos e por fim foi feita a leitura em espectrofotômetro a 500 nm. O curso da reação foi acompanhado por uma curva de calibração com catequina, conforme metodologia descrita. D) Resultados The method was performed by adding 1 mL of the study sample and 5 mL of the vanillin solution over 5 minutes, and 1 mL of the vanillin solution was placed every 1 minute. The blank consisted of 1 mL of distilled water and 5 mL of vanillin solution, then the reaction was conducted for 20 minutes and finally read at a spectrophotometer at 500 nm. The course of the reaction was followed by a catechin calibration curve according to the methodology described. D) Results
Na Tabela 15 estão representadas as concentrações de Fenóis Totais em cada grama de amostra extraída por quatro diferentes solventes diluídos a 1:1 com água destilada, com exceção ao Hexano: Acetato de Etila, Acetona e Metanol, em torta de mamona não fermentada. Tabela 15: Concentração de Fenóis Totais em torta de mamona não fermentada em diferentes tipos de solventes. Table 15 shows the Total Phenol concentrations in each gram of sample extracted by four different solvents diluted 1: 1 with distilled water, except for Hexane: Ethyl Acetate, Acetone and Methanol, in unfermented castor bean cake. Table 15: Concentration of Total Phenols in unfermented castor bean cake in different types of solvents.
Fenóis Totais (mg/g de amostra) Total Phenols (mg / g sample)
Solvente* Média Solvent * Average
Acetato de Etila 42.93 ± 1,75 Ethyl Acetate 42.93 ± 1.75
Acetona 46,99 ± 1 ,55 Acetone 46.99 ± 1.55
Metanol 32,25 ± 2,41 Methanol 32.25 ± 2.41
Hexano 3,28 ± 0,37 *Acetato = 1:1 de Acetato de Etila e Água destilada; Acetona = 1:1 de Acetona e Água destilada; Metanol = 1:1 de Metanol e Água destilada; Hexano = somente Hexano. Hexane 3.28 ± 0.37 * Acetate = 1: 1 Ethyl Acetate and Distilled Water; Acetone = 1: 1 Acetone and Distilled Water; Methanol = 1: 1 Methanol and Distilled Water; Hexane = Hexane only.
Os resultados mostram que o solvente Acetona diluído a 1:1 com água destilada apresentou maior concentração de fenóis, com uma média de 47 miligramas por grama de amostra. The results show that the solvent Acetone diluted 1: 1 with distilled water presented the highest concentration of phenols, with an average of 47 milligrams per gram of sample.
Não há um consenso para utilização de um solvente para extração dos compostos fenólicos na maioria das amostras na área de alimentos, principalmente em vegetais. Mas os resultados acima indicam que o melhor solvente para extração de compostos fenólicos são aqueles que apresentam polaridade, o que não ocorre com o Hexano por ser um solvente apolar e não interage com compostos polares, somente com apoiares. There is no consensus on the use of a solvent to extract phenolic compounds in most food samples, especially vegetables. But the above results indicate that the best solvent for phenolic compounds extraction are those with polarity, which is not the case with Hexane because it is a nonpolar solvent and does not interact with polar compounds, only with supports.
Para melhor extração de Fenóis Totais e também para Taninos Hidrolisáveis e Condensados, foi utilizada a solução de Acetona para analisar os seus teores antes e após a fermentação da torta de mamona. For better extraction of Total Phenols and also for Hydrolyzable and Condensed Tannins, the Acetone solution was used to analyze their contents before and after the castor bean cake fermentation.
Os teores de Fenóis Totais e Taninos Hidrolisáveis das amostras, torta de mamona in natura e meio de cultivo otimizado e fermentado para produção de fitase (após 72 horas de fermentação), estão apresentados na Tabela 16. The levels of Total Phenols and Hydrolyzable Tannins of the samples, fresh castor bean cake and optimized and fermented culture medium for phytase production (after 72 hours of fermentation) are presented in Table 16.
Tabela 16: Concentração de Fenóis Totais e Taninos Hidrolisáveis antes e após fermentação. Table 16: Concentration of Total Phenols and Hydrolyzable Tannins before and after fermentation.
Fenóis Totais e Taninos Hidrolisáveis (mg/g de amostra) Total Phenols and Hydrolyzable Tannins (mg / g sample)
Amostras* FT TH Samples * FT TH
TM 28,14 ± 2, 16 3,34 + 0,19 TM 28.14 ± 2.16 3.34 + 0.19
TM F72h 14,03 ± 5,4 0,52 ± 0.18  TM F72h 14.03 ± 5.4 0.52 ± 0.18
*TM = Torta de Mamona in natura; TM F72h = meio de cultivo otimizado e fermentado para produção de fitase (após 72 horas de fermentação). Os resultados mostraram que a fermentação da torta de mamona por Paecilomyces variotii após 72 horas de incubação diminuiu a concentração de fenóis totais e também de taninos hidrolisáveis. Provavelmente o microrganismo produziu enzimas que hidrolisaram estes compostos, como a tanase, que tem capacidade de clivar taninos hidrolisáveis. Para estas amostras, não foram detectados concentrações suficientes de taninos condensados, provavelmente não foram postados quantidades suficientes das amostras no processo de extração para determinar os taninos condensados. * TM = fresh castor bean pie; TM F72h = optimized and fermented culture medium for phytase production (after 72 hours of fermentation). The results showed that the fermentation of castor bean cake by Paecilomyces variotii after 72 hours of incubation decreased the concentration of total phenols as well as hydrolysable tannins. Probably the microorganism produced enzymes that hydrolyzed these compounds, such as tannase, which has the ability to cleave hydrolyzable tannins. For these samples, insufficient concentrations of condensed tannins were not detected, probably not sufficient amounts of samples were placed in the extraction process to determine the condensed tannins.
Não foram encontradas na literatura recente, pesquisas que envolvessem a determinação de compostos fenólicos em torta de mamona, já que estes resíduos não apresentam ainda interesse na produção de ração animal e consequentemente não há estudos para análises de compostos de interesse funcional ao animal. No studies were found in the recent literature that involved the determination of phenolic compounds in castor bean cake, as these residues are not yet of interest in the production of animal feed and consequently there are no studies to analyze compounds of functional interest to the animal.
Xu e colaboradores (Xu, L; Diosady, L. L. Rapid method for total phenolic acid determination in rapeseed/canola meais. Food Research International 30, p. 571- 574, 1997) quantificaram a presença de compostos fenólicos em canola, uma semente utilizada para extração de seu óleo para o setor de biocombustíveis. Foi realizado uma etapa de extração em que a amostra passou por uma extração ácida de acetona em seguida por uma hidrólise alcalina, depois passou por uma acidificação, depois por uma extração de éter etílico com acetato de etila e finalmente por uma evaporação e dissolução em metanol. Essa extração foi realizada para que se obtive-se três tipos de fenóis: os livres, os esterificados e os insolúveis, favorecendo um maior amplo de compostos identificados na análise colorimétrica. De acordo com os resultados, a canola apresentou 1683 miligramas de compostos fenólicos a cada 100 gramas de amostra. Xu et al. (Xu, L; Diosady, LL Rapid method for total phenolic acid determination in rapeseed / canola female. Food Research International 30, pp. 571-564, 1997) quantified the presence of phenolic compounds in canola, a seed used for extraction of its oil for the biofuels sector. An extraction step was carried out in which the sample underwent acid extraction of acetone followed by alkaline hydrolysis, then acidified, then extracted with ethyl ether and ethyl acetate and finally evaporated and dissolved in methanol. . This extraction was performed to obtain three types of phenols: free, esterified and insoluble, favoring a larger range of compounds identified in the colorimetric analysis. According to the results, the canola showed 1683 milligrams of phenolic compounds per 100 grams of sample.
Segundo Kozlowska e colaboradores (Kozlowska, H.; Naczk, .; Shahihi, F.; Zadernowski, R. Phenolic acids and tannins in rapeseed and canola. In Canola and Rapeseed: Production, Chemistry, Nutrition and Processing Technology, ed. F. Shahidi, AVI Book, New York, NY, p. 193-210, 1991) a concentração de ácidos fenólicos em farelo de canola está na ordem de 6,4 a 12,8 gramas por kg de amostra. A partir destes resultados verificamos que a torta de mamona apresentou uma composição de compostos fenólicos mais expressivos em relação à canola, apresentando vantagem em relação a sua composição fenólica para um futuro uso como ração animal. Exemplo 4: AVALIAÇÃO DA DETOXIFICAÇÃO DA TORTA DE MAMONA POR FERMENTAÇÃO EM ESTADO SÓLIDO According to Kozlowska and colleagues (Kozlowska, H .; Naczk,.; Shahihi, F.; Zadernowski, R. Phenolic acids and tannins in rapeseed and canola. In Canola and Rapeseed: Production, Chemistry, Nutrition and Processing Technology, ed. F. Shahidi, AVI Book, New York, NY, pp. 193-210, 1991) The concentration of phenolic acids in canola meal is in the range of 6.4 to 12.8 grams per kg of sample. From these results we found that castor bean cake presented a composition of phenolic compounds more expressive in relation to canola, presenting advantage over its phenolic composition for future use as animal feed. Example 4: EVALUATION OF SOLID FERMENTATION PURPOSE DETAXIFICATION
A) Detecção de ricina por SDS-PAGE A) SDS-PAGE Ricin Detection
Para avaliar a detoxificação da torta de mamona via fermentação em estado sólidopor Paecilomyces variotii, foi identificada a presença da ricina por SDS-PAGE. A ricina apresentavam 2 cadeias que quando clivados pelo SDS e corridos no gel de poliacrilamida apresentam duas bandas, uma chamada de cadeia A com 32 kDa e outra de cadeia B com 34 kDa (Anandan, 2005). To evaluate the detoxification of castor bean cake via solid state fermentation by Paecilomyces variotii, the presence of ricin was identified by SDS-PAGE. Ricin had 2 strands which when cleaved by the SDS and run on the polyacrylamide gel have two bands, one called a 32 kDa A chain and a 34 kDa B chain (Anandan, 2005).
Foi avaliado o extrato protéico do produto fermentado em diferentes tempos de incubação, entre 24 a 72 horas, comparando com a ricina purificada, a torta de mamona in natura e a autoclavada (Anexo 4). Protein extract of the fermented product was evaluated at different incubation times, between 24 and 72 hours, comparing it with purified ricin, fresh castor and autoclaved castor cake (Annex 4).
Primeiro, efetuou-se a extração com adição de tampão fosfato salino (PBS) pH 7,2 na proporção 1:4 (1 g de resíduo sólido para 4 mL de tampão) no resíduo que foi mantido em agitação durante 3 horas, em seguida submetido à centrifugação a 14000 rpm durante 15 minutos a temperatura ambiente. Para determinação de ricina presente na amostra, foi realizada a quantificação de proteínas (Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principie of protein-dye binding. Analytical Biochemistry 72, p. 248, 1976) para obter uma concentração padrão para todas as amostras. Adicionou 80 μί do sobrenadante a 40 \il de tampão contendo Dodecil Sulfato de Sódio (SDS) e β- mercaptoetanol, totalizando 120 μί. Deste total, foram aplicados 25 μί para correr o gel de SDS-PAGE 12% (10xl0x0,lcm). Após a corrida, as proteínas foram fixadas e coradas por 1 hora com solução de Coomassie-Brilliant-Blue 0,1% em metanol/ácido acético/água (45/10/45, v/v/v). Após esse tempo, o gel foi descorado com uma solução contendo metanol/ácido acético/água (45/10/45, v/v/v). De acordo com o Anexo 4 as bandas em que a ricina aparecem no gel estão na faixa entre 31,3 e 38,2 kDa, sendo também visualizadas na corrida com a ricina purificada. As amostras torta de mamona in natura e torta de mamona autoclavada apresentaram as duas bandas da ricina no gel, mostrando que a metodologia é válida para identificação deste composto em amostras de extrato protéico. O processo de autoclavagem, a 121°C durante 15 minutos, não destruiu as cadeias da ricina. Na amostra de extrato protéico fermentado após 24 horas, a presença de ricina é fracamente visível, demonstrando uma provável inicialização da hidrólise do composto. Nas amostras de 48 e 72 horas de fermentação, as bandas onde a ricina se localizam estão completamente ausentes, mostrando possivelmente que o microrganismo Paecilomyces variotii hidrolisou a ricina, tornando possível uma torta detoxificada e viável para uso em ração animal. A detecção mínima de proteínas em SDSPAGE por Coomassie Blue é de 10 g/mL de amostra, concentrações mais baixas dificilmente são detectáveis pelo método (Anandan, 2005); (Godoy, 2009) e (Schãgger, H. Tricine-SDS-PAGE. Nature Protocols l,p. 16-22, 2006). First, extraction was made by adding phosphate buffered saline (PBS) pH 7.2 in a 1: 4 ratio (1 g solid residue to 4 mL buffer) in the residue which was stirred for 3 hours, then centrifuged at 14000 rpm for 15 minutes at room temperature. Protein quantification was determined for the determination of ricin in the sample (Bradford, MM A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding. Analytical Biochemistry 72, p. 248, 1976) to obtain a standard concentration for all samples. He added 80 μί of the supernatant to 40 æl buffer containing Sodium Dodecyl Sulfate (SDS) and β-mercaptoethanol, totaling 120 μί. Of this total, 25 μί were applied to run the 12% SDS-PAGE gel (10x10x0.1 cm). After the run, proteins were fixed and stained for 1 hour with 0.1% Coomassie-Brilliant-Blue solution in methanol / acetic acid / water (45/10/45, v / v / v). After this time, the gel was bleached with a solution containing methanol / acetic acid / water (45/10/45, v / v / v). According to Annex 4 the bands where ricin appears in the gel are in the range between 31.3 and 38.2 kDa and are also visualized in the run with purified ricin. The samples of fresh castor bean cake and autoclaved castor bean cake presented the two bands of ricin in the gel, showing that the methodology is valid for identification of this compound in protein extract samples. The autoclaving process at 121 ° C for 15 minutes did not destroy the ricin chains. In the sample of protein extract fermented after 24 hours, the presence of ricin is poorly visible, demonstrating a probable initiation of compound hydrolysis. In the 48 and 72 hour fermentation samples, the bands where ricin are located are completely absent, possibly showing that the microorganism Paecilomyces variotii hydrolyzed the ricin, making possible a detoxified and viable cake for use in animal feed. The minimal protein detection in SDSPAGE by Coomassie Blue is 10 g / mL sample, lower concentrations are hardly detectable by the method (Anandan, 2005); (Godoy, 2009) and (Schagger, H. Tricine-SDS-PAGE. Nature Protocols 1, pp. 16-22, 2006).
Uma alternativa seria a utilização do corante de prata para uma detecção de compostos com menores concentrações. An alternative would be to use silver dye to detect compounds with lower concentrations.
B) Teste de Atividade Tóxica em Cultura de Células B) Toxic Activity Test in Cell Culture
Foi usado o teste MTT de acordo com metodologia de Mosmann (Mosmann, T., 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Meth. 65, 55-63). Durante os ensaios, células do tipo RAW 264,7 foram cultivados em meio DMEM em estufas a 37°C na presença de C02 em sua atmosfera. Para 100 μί de cultura de células, um volume de 100 μί de MTT (5 mg/mL em PBS) e extrato da amostra foram adicionadas em poços de microplacas. Cada microplaca foi incubada na estufa de acordo com o tempo de 24 horas. Após incubação, as microplacas foram lidas em espectrofotômetro à 540 nm de absorbância. The MTT test was used according to Mosmann methodology (Mosmann, T., 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Meth. 65, 55-63). During the tests, type RAW 264.7 cells were cultured in DMEM glasshouse at 37 ° C in the presence of C0 2 in its atmosphere. For 100 μί of cell culture, a volume of 100 μί MTT (5 mg / mL in PBS) and sample extract were added to microplate wells. Each microplate was incubated in the oven for 24 hours. After incubation, the microplates were read in a spectrophotometer at 540 nm absorbance.
O ensaio foi conduzido utilizando-se a ricina obtida como descrito no item da extração, a fim de determinar a dose mínima para induzir morte na cultura de células. Para isso, foram utilizadas diferentes diluições da proteína feita em PBS pH 7,0: 100 μ§/ιτιί, 50 μg/mL, 10 μ8/ιηί, 1 μg/mL, 100 ng/mL, 50 ng/mL, 10 ng/mL, 1 ng/mL, 100 pg/mL, 50 pg/mL e 10 pg/mL. Em seguida utiiizou-se a concentração mínima inibitória do extrato sobre as células para avaliar o substrato fermentado nos tempos de 24, 48 e 72 horas de fermentação. Através dos resultados obtidos pela análise em eletroforese, as amostras foram testadas em culturas de células vivas para verificação da viabilidade da mesma em presença da torta de mamona in natura e fermentada. The assay was conducted using the ricin obtained as described in the extraction item to determine the minimum dose to induce cell culture death. For this, different dilutions of protein made in PBS pH 7.0: 100 were used. μ§ / ιτιί, 50 μg / mL, 10 μ8 / ιηί, 1 μg / mL, 100 ng / mL, 50 ng / mL, 10 ng / mL, 1 ng / mL, 100 pg / mL, 50 pg / mL, and 10 pg / mL. Then the minimum inhibitory concentration of the extract on the cells was used to evaluate the fermented substrate at 24, 48 and 72 hours of fermentation. Through the results obtained by electrophoresis analysis, the samples were tested in live cell cultures to verify its viability in the presence of fresh and fermented castor bean cake.
De acordo com a Figura 7, a concentração mínima necessária para que ocorra a morte das células foi de 1 g/mL de extrato da torta. Menores concentrações a viabilidade celular no meio de cultura foi próximos dos 100% e assim não interferiram em seu crescimento. A partir destes valores, o segundo ensaio foi realizado com extratos do material fermentado com 1 μg/mL em diferentes tempos (24, 48 e 72 horas de fermentação). De acordo com a Figura 8, durante o processo fermentativo, em seu progresso do tempo, a viabilidade celular foi aumentando em que após 72 horas de fermentação apresentou aproximadamente 100% da viabilidade celular. Sendo assim, provavelmente o microorganismo Paecilomyces variotii hidrolizou os possíveis compostos tóxicos (ricina) no meio e favoreceu o crescimento das células em estudo. According to Figure 7, the minimum concentration required for cell death to occur was 1 g / mL cake extract. Lower concentrations of cell viability in the culture medium were close to 100% and thus did not interfere with its growth. From these values, the second test was performed with extracts of fermented material with 1 μg / mL at different times (24, 48 and 72 hours of fermentation). According to Figure 8, during the fermentation process, in its time progress, the cell viability was increasing and after 72 hours of fermentation presented approximately 100% of the cell viability. Thus, probably the microorganism Paecilomyces variotii hydrolyzed the possible toxic compounds (ricin) in the medium and favored the growth of the cells under study.
Tabela 17: Umidade relativa do meio de cultivo antes e após incubação na câmara climática para o meio ótimo para produção de fitase em torta de mamona. Table 17: Relative humidity of the culture medium before and after incubation in the climate chamber for the optimum medium for phytase production in castor bean cake.
Umidade Relativa do Meio de Cultivo (%) Relative Humidity of Cultivation Medium (%)
Amostra* Tempo de Incubação** Umidade Inicial Umidade Final Sample * Incubation Time ** Initial Humidity Final Humidity
TM 72h 72 horas 27% : 27% TM 72h 72 hours 27% : 27%
* TM 72h = meio de cultivo de torta de mamona com 25% do volume da solução salina em relação ao peso total do meio (v/p). * TM 72h = castor bean cake culture medium with 25% of saline volume in relation to the total weight of the medium (v / p).
** Incubação em Câmara Climática a 90% de Umidade Relativa do Ar a temperatura de 30°C. ** 90% Relative Humidity Climate Chamber Incubation at 30 ° C.

Claims

REIVINDICAÇÕES
1. Meio de cultura para produção de enzima fitase pelo microorganismo Paecilomyces variotii, caracterizado por ser de torta residual de mamona. 1. Culture medium for phytase enzyme production by the microorganism Paecilomyces variotii, characterized in that it is from castor bean residual cake.
2. Meio de cultura para produção de enzima fitase pelo microorganismo Paecilomyces variotii caracterizado por ser constituído de torta residual de mamona e solução salina; 2. Culture medium for production of the phytase enzyme by the microorganism Paecilomyces variotii characterized by its residual castor bean cake and saline solution;
3. Meio de cultura para produção de enzima fitase pelo microorganismo Paecilomyces variotii, de acordo com a reivindicação 2, caracterizado pela solução salina ser composta em grama por litro de 1 parte de KH2P0 ; 2 partes de NH N03; 0,2 partes de MgS04.7H20; 0,02 partes de CaCI2.2H20; 0,004 partes de MnCI2.4H20; 0,002 partes de Na2Mo04.2H20 e 0,0025 partes de FeS04.7H20. Culture medium for production of the phytase enzyme by the microorganism Paecilomyces variotii according to Claim 2, characterized in that the saline solution is composed in grams per liter of 1 part KH 2 P0; 2 parts of NH NO 3 ; 0.2 parts MgSO 4 .7H 20 ; 0.02 shares of CaCl 2 .2H 2 0; 0.004 shares of MNCI 2 .4H 2 0; 0.002 parts of Na 2 Mo0 4 .2H 2 0 and 0.0025 parts of FeS0 4 .7H 2 0.
4. Meio de cultura para produção de enzima fitase pelo microorganismo Paecilomyces variotii, de acordo com a reivindicação 2, caracterizado por não conter ácido fítico. Culture medium for production of the phytase enzyme by the microorganism Paecilomyces variotii according to Claim 2, characterized in that it does not contain phytic acid.
5. Meio de cultura para produção de enzima fitase pelo microorganismo Paecilomyces variotii, de acordo com a reivindicação 2, caracterizado por preferencialmente não conter ácido tânico. Culture medium for production of the phytase enzyme by the microorganism Paecilomyces variotii according to claim 2, characterized in that it preferably contains no tannic acid.
6. Meio de cultura para produção de enzima fitase pelo microorganismo Paecilomyces variotii, de acordo com a reivindicação 2, caracterizado por conter de 25 a 28% de solução salina, em relação ao peso total do meio. Culture medium for production of the phytase enzyme by the microorganism Paecilomyces variotii according to Claim 2, characterized in that it contains from 25 to 28% of saline in relation to the total weight of the medium.
7. Meio de cultura para produção de enzima fitase pelo microorganismo Paecilomyces variotii, de acordo com a reivindicação 6, caracterizado por conter preferencialmente 25% de solução salina, em relação ao peso total do meio. Culture medium for production of the phytase enzyme by the microorganism Paecilomyces variotii according to Claim 6, characterized in that it preferably contains 25% saline in relation to the total weight of the medium.
8. Meio de cultura para produção de enzima fitase pelo microorganismo Paecilomyces variotii, de acordo com a reivindicação 2, caracterizado por conter preferencialmente 75% do peso total composto pela torta residual de mamona. Culture medium for production of the phytase enzyme by the microorganism Paecilomyces variotii according to Claim 2, characterized in that it preferably contains 75% of the total weight of the castor bean cake.
9. Enzima fitase caracterizada por ser produzida pelo microorganismo Paecilomyces variotii através de fermentação sólida. Phytase enzyme characterized by being produced by the microorganism Paecilomyces variotii by solid fermentation.
10. Enzima fitase caracterizada por ser produzida pelo microorganismo Paecilomyces variotii através de fermentação sólida em torta residual de mamona. 10. Phytase enzyme characterized by being produced by the microorganism Paecilomyces variotii by solid fermentation in residual castor bean cake.
11. Enzima fitase caracterizada por ser produzida pelo microorganismo Paecilomyces variotii através de fermentação sólida em meio de cultura como descrito nas reivindicações de 1 a 8. Phytase enzyme characterized in that it is produced by the microorganism Paecilomyces variotii by solid fermentation in culture medium as described in claims 1 to 8.
12. Enzima fitase produzida pelo microorganismo Paecilomyces variotii através de fermentração sólida em torta residual de mamona caracterizada por ser obtida preferencialmente após 72 horas de incubação. 12. Phytase enzyme produced by the microorganism Paecilomyces variotii by solid fermentation in residual castor bean cake, preferably obtained after 72 hours of incubation.
13. Enzima fitase produzida pelo microorganismo Paecilomyces variotii através de fermentração sólida em meio de cultura como descrito nas reivindicações de 1 a 8 caracterizada por ser obtida preferencialmente após 72 horas de incubação. Phytase enzyme produced by the microorganism Paecilomyces variotii by solid fermentation in culture medium as described in claims 1 to 8, which is preferably obtained after 72 hours of incubation.
14. Enzima fitase produzida pelo microorganismo Paecilomyces variotii através de fermentração sólida em torta residual de mamona caracterizada por ser obtida em entre 85 e 90% de umidade relativa ambiente. Phytase enzyme produced by the microorganism Paecilomyces variotii by solid fermentation in castor bean residual cake characterized by being obtained in between 85 and 90% of ambient relative humidity.
15. Enzima fitase produzida pelo microorganismo Paecilomyces variotii através de fermentração sólida em torta residual de mamona caracterizada por ser obtida preferencialmente em ambiente com 90% de umidade relativa. Phytase enzyme produced by the microorganism Paecilomyces variotii by solid fermentation in residual castor bean cake characterized by being preferably obtained in an environment with 90% relative humidity.
16. Meio de cultura para produção de tanase pelo microorganismo Paecilomyces variotii, caracterizado por ser de torta residual de mamona. 16. Culture medium for production of tannase by the microorganism Paecilomyces variotii, characterized in that it is from castor bean residual cake.
17. Meio de cultura para produção de enzima tanase pelo microorganismo Paecilomyces varioti caracterizado por ser constituído de torta residual de mamona, solução salina e de ácido tânico; 17. Culture medium for the production of enzyme tanase by the micro-organism Paecilomyces varioti, which consists of castor bean cake, saline and tannic acid;
18. Meio de cultura para produção de enzima tanase pelo microorganismo Paecilomyces variotii, de acordo com a reivindicação 17, caracterizado pela solução salina ser composta em grama por litro de 1 parte de KH2P04; 2 partes de NH4N03; 0,2 partes de MgS04.7H20; 0,02 partes de CaCI2.2H20; 0,004 partes de MnCl2.4H20; 0,002 partes de Na2Mo04.2H20 e 0,0025 partes de FeS04.7H20. Culture medium for the production of enzyme tase by the microorganism Paecilomyces variotii according to claim 17, characterized in that the saline solution is composed in grams per liter of 1 part KH 2 P0 4 ; 2 parts NH 4 NO 3 ; 0.2 parts MgSO 4 .7H 20 ; 0.02 shares of CaCl 2 .2H 2 0; 0.004 parts MnCl 2 .4H 2 0; 0.002 parts of Na 2 Mo0 4 .2H 2 0 and 0.0025 parts of FeS0 4 .7H 2 0.
19. Meio de cultura para produção de enzima tanase pelo microorganismo Paecilomyces variotii, de acordo com a reivindicação 17, caracterizado por conter de 4,6 a 6,0 % de ácido tânico, em relação ao peso total do meio. Culture medium for production of enzyme tase by the microorganism Paecilomyces variotii according to claim 17, characterized in that it contains from 4.6 to 6.0% tannic acid in relation to the total weight of the medium.
20. Meio de cultura para produção de enzima tanase pelo microorganismo Paecilomyces variotii, de acordo com a reivindicação 19, caracterizado por conter preferencialmente 4,6% de ácido tânico em relação ao peso total do meio. Culture medium for production of enzyme tase by the microorganism Paecilomyces variotii according to claim 19, characterized in that it preferably contains 4.6% tannic acid in relation to the total weight of the medium.
21. Meio de cultura para produção de enzima tanase pelo microorganismo Paecilomyces variotii, de acordo com a reivindicação 17, caracterizado por conter de 25 a 33% de solução salina, em relação ao peso total do meio. Culture medium for the production of enzyme tasease by the microorganism Paecilomyces variotii according to claim 17, characterized in that it contains from 25 to 33% of saline in relation to the total weight of the medium.
22. Meio de cultura para produção de enzima tanase pelo microorganismo Paecilomyces variotii, de acordo com a reivindicação 21, caracterizado por conter preferencialmente 25% de solução salina, em relação ao peso total do meio. Culture medium for the production of enzyme tasease by the microorganism Paecilomyces variotii according to claim 21, characterized in that it preferably contains 25% saline in relation to the total weight of the medium.
23. Meio de cultura para produção de enzima tanase pelo microorganismo Paecilomyces variotii, de acordo com a reivindicação 17, caracterizado por conter preferencialmente 65,4% de torta residual de mamona. Culture medium for production of enzyme tase by the microorganism Paecilomyces variotii according to claim 17, characterized in that it preferably contains 65.4% of castor bean cake.
24. Enzima tanase caracterizada por ser produzida pelo microorganismo Paecilomyces variotii através de fermentação sólida. 24. Tannase enzyme characterized by being produced by the microorganism Paecilomyces variotii by solid fermentation.
25. Enzima tanase caracterizada por ser produzida pelo microorganismo Paecilomyces variotii através de fermentação sólida em torta residual de mamona. 25. Tannase enzyme characterized by being produced by the microorganism Paecilomyces variotii by solid fermentation in residual castor cake.
26. Enzima tanase caracterizada por ser produzida pelo microorganismo Paecilomyces variotii através de fermentação sólida em meio de cultura como descrito nas reivindicações de 16 a 23. Enzyme tannase characterized by being produced by the microorganism Paecilomyces variotii by solid fermentation in culture medium as described in claims 16 to 23.
27. Enzima tanase produzida pelo microorganismo Paecilomyces variotii através de fermentração sólida em torta residual de mamona caracterizada por ser obtida preferencialmente após 48 horas de incubação. 27. Enzyme tannase produced by Paecilomyces variotii microorganism by solid fermentation in residual castor bean cake, which is preferably obtained after 48 hours of incubation.
28. Enzima tanase produzida pelo microorganismo Paecilomyces variotii através de fermentração sólida em meio de cultura como descrito nas reivindicações de 16 a 23 caracterizada por ser obtida preferencialmente após 48 horas de incubação. Enzyme tannase produced by Paecilomyces variotii by solid fermentation in culture medium as described in claims 16 to 23, which is preferably obtained after 48 hours of incubation.
29. Enzima tanase produzida pelo microorganismo Paecilomyces varíotii através de fermentração sólida em meio de cultura como descrito nas reivindicações de 16 a 23 caracterizada por ser obtida em ambiente com umidade relativa entre 84 e 90%. An enzyme tase produced by Paecilomyces varíotii by solid fermentation in culture medium as described in claims 16 to 23, characterized in that it is obtained in an environment with relative humidity between 84 and 90%.
30. Enzima tanase produzida pelo microorganismo Paecilomyces varíotii através de fermentração sólida em meio de cultura como descrito nas reivindicações de 16 a 23 caracterizada por ser obtida preferencialmente em ambiente com umidade relativa de 90%. Tase enzyme produced by the microorganism Paecilomyces varíotii by solid fermentation in culture medium as described in claims 16 to 23 characterized in that it is preferably obtained in an environment with relative humidity of 90%.
31. Meio de cultura para produção simultânea das enzimas fitase e tanase pelo microorganismo Paecilomyces varíotii, caracterizado por ser de torta residual de mamona. 31. Culture medium for the simultaneous production of the phytase and tanase enzymes by the microorganism Paecilomyces varíotii, characterized by its residual castor bean cake.
32. Meio de cultura para produção simultânea das enzimas fitase e tanase pelo microorganismo Paecilomyces varíotii caracterizado por ser constituído de torta residual de mamona e solução salina; 32. Culture medium for the simultaneous production of phytase and tanase enzymes by the micro-organism Paecilomyces varíotii characterized by its castor bean cake and saline solution;
33. Meio de cultura para produção simultânea das enzimas fitase e tanase pelo microorganismo Paecilomyces varíotii, de acordo com a reivindicação 32, caracterizado pela solução salina ser composta em grama por litro de 1 parte de KH2P04; 2 partes de NH4N03; 0,2 partes de MgS0 .7H20; 0,02 partes de CaCI2.2H20; 0,004 partes de MnCI2.4H20; 0,002 partes de Na2Mo04.2H20 e 0,0025 partes de FeS04.7H20. A culture medium for the simultaneous production of the phytase and tanase enzymes by the micro-organism Paecilomyces varíotii according to Claim 32, characterized in that the saline solution is composed in grams per liter of 1 part KH 2 P0 4 ; 2 parts NH 4 NO 3 ; 0.2 parts MgS0 .7H 2 0; 0.02 shares of CaCl 2 .2H 2 0; 0.004 shares of MNCI 2 .4H 2 0; 0.002 parts Na 2 Mo0 4 .2H 2 0 and 0.0025 parts of FeS0 4 .7H 2 0.
34. Meio de cultura para produção simultânea das enzimas fitase e tanase pelo microorganismo Paecilomyces varíotii, de acordo com a reivindicação 32, caracterizado por não conter ácido fítico. A culture medium for the simultaneous production of the phytase and tanase enzymes by the microorganism Paecilomyces varíotii according to claim 32, characterized in that it does not contain phytic acid.
35. Meio de cultura para produção simultânea das enzimas fitase e tanase pelo microorganismo Paecilomyces varíotii, de acordo com a reivindicação 32, caracterizado por conter ácido tânico de 4,6 a 6% de ácido tânico. A culture medium for the simultaneous production of the phytase and tanase enzymes by the microorganism Paecilomyces variotii according to claim 32, characterized in that it contains tannic acid of 4,6 to 6% tannic acid.
36. Meio de cultura para produção simultânea das enzimas fitase e tanase pelo microorganismo Paecilomyces varíotii, de acordo com a reivindicação 32, caracterizado por conter de 25 a 33% de solução salina, em relação ao peso total do meio. Culture medium for the simultaneous production of the phytase and tanase enzymes by the microorganism Paecilomyces varíotii according to claim 32, characterized in that it contains from 25 to 33% of saline in relation to the total weight of the medium.
37. Meio de cultura para produção simultânea das enzimas fitase e tanase pelo microorganismo Paecilomyces variotii, de acordo com a reivindicação 36, caracterizado por conter preferencialmente 25% de solução salina, em relação ao peso total do meio. A culture medium for the simultaneous production of the phytase and tanase enzymes by the microorganism Paecilomyces variotii according to claim 36, characterized in that it preferably contains 25% saline in relation to the total weight of the medium.
38. Meio de cultura para produção simultânea das enzimas fitase e tanase pelo microorganismo Paecilomyces variotii, de acordo com a reivindicação 32, caracterizado por conter de 65,4 a 75% do peso total composto pela torta residual de mamona. A culture medium for the simultaneous production of the phytase and tanase enzymes by the microorganism Paecilomyces variotii according to claim 32, which comprises from 65,4 to 75% of the total weight of castor bean cake.
39. Enzima fitase caracterizada por ser produzida pelo microorganismo Paecilomyces variotii através de fermentação sólida em meio de cultura como descrito nas reivindicações de 31 a 38. Phytase enzyme characterized in that it is produced by the microorganism Paecilomyces variotii by solid fermentation in culture medium as described in claims 31 to 38.
40. Enzima fitase produzida pelo microorganismo Paecilomyces variotii através de fermentração sólida em meio de cultura como descrito nas reivindicações de 31 a 38 caracterizada por ser obtida preferencialmente após 72 horas de incubação. Phytase enzyme produced by the microorganism Paecilomyces variotii by solid fermentation in culture medium as described in claims 31 to 38, which is preferably obtained after 72 hours of incubation.
41. Enzima fitase produzida pelo microorganismo Paecilomyces variotii através de fermentração sólida em meio de cultura como descrito nas reivindicações de 31 a 38 caracterizada por ser obtida em ambiente com umidade relativa entre 85 e 90%. Phytase enzyme produced by the microorganism Paecilomyces variotii by solid fermentation in culture medium as described in claims 31 to 38 characterized in that it is obtained in an environment with relative humidity between 85 and 90%.
42. Enzima fitase produzida pelo microorganismo Paecilomyces variotii através de fermentração sólida em meio de cultura como descrito nas reivindicações de 31 a 38 caracterizada por ser obtida preferencialmente em ambiente com umidade relativa de 90%. Phytase enzyme produced by the microorganism Paecilomyces variotii by solid fermentation in culture medium as described in claims 31 to 38 characterized in that it is preferably obtained in an environment with relative humidity of 90%.
43. Enzima tanase caracterizada por ser produzida pelo microorganismo Paecilomyces variotii através de fermentação sólida em meio de cultura como descrito nas reivindicações de 31 a 38. Enzyme tanase characterized by being produced by the microorganism Paecilomyces variotii by solid fermentation in culture medium as described in claims 31 to 38.
44. Enzima tanase produzida pelo microorganismo Paecilomyces variotii através de fermentração sólida em meio de cultura como descrito nas reivindicações de 31 a 38 caracterizada por ser obtida preferencialmente após 48 horas de incubação. Enzyme tanase produced by the microorganism Paecilomyces variotii by solid fermentation in culture medium as described in claims 31 to 38, which is preferably obtained after 48 hours of incubation.
45. Enzima tanase produzida pelo microorganismo Paecilomyces variotii através de fermentração sólida em meio de cultura como descrito nas reivindicações de 31 a 38 caracterizada por ser obtida em ambiente com umidade relativa entre 84 e 90%. Tase enzyme produced by the microorganism Paecilomyces variotii by solid fermentation in a culture medium as described in claims 31 to 38 characterized in that it is obtained in an environment with relative humidity between 84 and 90%.
46. Enzima tanase produzida pelo microorganismo Paecilomyces variotii através de fermentração sólida em meio de cultura como descrito nas reivindicações de 31 a 38 caracterizada por ser obtida preferencialmente em ambiente com umidade relativa de 90%. Enzyme tannase produced by the microorganism Paecilomyces variotii by solid fermentation in culture medium as described in claims 31 to 38 characterized in that it is preferably obtained in an environment with relative humidity of 90%.
47. Uso da enzima fitase obtida de acordo com as reivindicações de 1 a 8, caracterizado por ser para suplementação alimentar. Use of the phytase enzyme obtained according to claims 1 to 8, characterized in that it is for food supplementation.
48. Uso da enzima fitase obtida de acordo com as reivindicações de 1 a 8, caracterizado por ser para suplementação em ração animal. Use of the phytase enzyme obtained according to claims 1 to 8, characterized in that it is for supplementation in animal feed.
49. Uso da enzima tanase obtida de acordo com as reivindicações de 17 a 23, caracterizado por ser para suplementação alimentar. Use of the enzyme tanase obtained according to claims 17 to 23, characterized in that it is for food supplementation.
50. Uso da enzima tanase obtida de acordo com as reivindicações de 17 a 23, caracterizado por ser para suplementação em ração animal. Use of the enzyme tanase obtained according to claims 17 to 23, characterized in that it is for supplementation in animal feed.
51. Uso da enzima fitase obtida de acordo com as reivindicações de 31 a 38, caracterizado por ser para suplementação alimentar. Use of the phytase enzyme obtained according to claims 31 to 38, characterized in that it is for food supplementation.
52. Uso da enzima fitase obtida de acordo com as reivindicações de 31 a 38, caracterizado por ser para suplementação em ração animal. Use of the phytase enzyme obtained according to claims 31 to 38, characterized in that it is for supplementation in animal feed.
53. Uso da enzima tanase obtida de acordo com as reivindicações de 31 a 38, caracterizado por ser para suplementação alimentar. Use of the enzyme tanase obtained according to claims 31 to 38, characterized in that it is for food supplementation.
54. Uso da enzima tanase obtida de acordo com as reivindicações de 31 a 38, caracterizado por ser para suplementação em ração animal. Use of the enzyme tanase obtained according to claims 31 to 38, characterized in that it is for supplementation in animal feed.
PCT/BR2012/000251 2011-08-05 2012-07-23 Media for the culture of waste castor-oil-plant cake for simultaneous production of the phytase and thanase enzymes, and detoxification of the castor-oil-plant cake, using the microorganism paecilomyces variotii and using solid fermentation, the enzymes obtained and the uses thereof WO2013020189A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRPI1103789-0 2011-08-05
BRPI1103789-0A BRPI1103789B1 (en) 2011-08-05 2011-08-05 culture media for residual castor cake for simultaneous production of phytase and tanase enzymes, and detoxification of castor cake, by the microorganism paecilomyces variotii through solid fermentation, obtained enzymes and their uses

Publications (1)

Publication Number Publication Date
WO2013020189A1 true WO2013020189A1 (en) 2013-02-14

Family

ID=47667787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2012/000251 WO2013020189A1 (en) 2011-08-05 2012-07-23 Media for the culture of waste castor-oil-plant cake for simultaneous production of the phytase and thanase enzymes, and detoxification of the castor-oil-plant cake, using the microorganism paecilomyces variotii and using solid fermentation, the enzymes obtained and the uses thereof

Country Status (2)

Country Link
BR (1) BRPI1103789B1 (en)
WO (1) WO2013020189A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103436505A (en) * 2013-08-13 2013-12-11 广西大学 Preparation method of tannase
CN114107161A (en) * 2021-11-15 2022-03-01 泸州老窖股份有限公司 Method for producing ellagic acid by degrading pomegranate rind with mixed domesticated strain

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB890258A (en) * 1959-12-31 1962-02-28 Egon Darzins Non-toxic castor cake and method of producing the same
CN101695335A (en) * 2009-09-27 2010-04-21 江南大学 Method for preparing nontoxic forage ricin by extrusion technology

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB890258A (en) * 1959-12-31 1962-02-28 Egon Darzins Non-toxic castor cake and method of producing the same
CN101695335A (en) * 2009-09-27 2010-04-21 江南大学 Method for preparing nontoxic forage ricin by extrusion technology

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANANDAN, S. ET AL.: "Effect of different physical and chemical treatments on detoxification of ricin in castor cake.", ANIMAL FEED SCIENCE AND TECHNOLOGY, vol. 120, September 2005 (2005-09-01), pages 159 - 168 *
GODOY, M.G.ET AL.: "Use of a low-cost methodology for biodetoxification of castor bean waste and lipase production", MATERIAIS E MÉTODOS, vol. 44, no. 5, July 2009 (2009-07-01), pages 317 - 322 *
MADEIRA, J.V. ET AL., DETOXIFICATION OF CASTOR BEAN RESIDUES AND SIMULTANEOUS PRODUCTION OF TANNASE AND PHYTASE BY SOLID-STATE FERMENTATION USING PAECILOMYCES VARIOTII, vol. 102, May 2011 (2011-05-01), pages 7343 - 7348 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103436505A (en) * 2013-08-13 2013-12-11 广西大学 Preparation method of tannase
CN103436505B (en) * 2013-08-13 2014-09-17 广西大学 Preparation method of tannase
CN114107161A (en) * 2021-11-15 2022-03-01 泸州老窖股份有限公司 Method for producing ellagic acid by degrading pomegranate rind with mixed domesticated strain

Also Published As

Publication number Publication date
BRPI1103789A2 (en) 2013-07-30
BRPI1103789B1 (en) 2020-10-20

Similar Documents

Publication Publication Date Title
Godoy et al. Agricultural residues as animal feed: protein enrichment and detoxification using solid-state fermentation
Fernandes et al. Sequential bioprocessing of Ulva rigida to produce lignocellulolytic enzymes and to improve its nutritional value as aquaculture feed
JP6511268B2 (en) Ingredients of animal feed composition
CN106455630A (en) A method for improving the nutritional value of animal feed
CN102940135B (en) Efficient pig feed composite enzyme preparation added with enzyme protective agent
Herrera Bravo de Laguna et al. Enzymes and bioproducts produced by the ascomycete fungus Paecilomyces variotii
Sun et al. Nutrition upgrading of corn-ethanol co-product by fungal fermentation: Amino acids enrichment and anti-nutritional factors degradation
Chai et al. Assessment of coffee waste in formulation of substrate for oyster mushrooms Pleurotus pulmonarius and Pleurotus floridanus
Zhu et al. Finding of phytase: Understanding growth promotion mechanism of phytic acid to freshwater microalga Euglena gracilis
KARAKURT et al. Chemical, enzymatic, and antioxidant enrichments of full-fat soybean and sunflower meal by Bacillus subtilis (ATCC $^{®} $6633$^{TM} $) fermentation using a solid-state bioreactor
Aslamyah et al. Fermentation of seaweed flour with various fermenters to improve the quality of fish feed ingredients
Egbune et al. Enhancement of the nutritional value of elephant grass (Pennisetum purpureum Schum.) for use as animal feeds and for xylanase production
Ezedom et al. Biochemical evaluation of autoclaved and solid state fermented tropical pasture grasses
Hussin et al. Phytate-degrading enzyme production by bacteria isolated from Malaysian soil
de Mello Ayres et al. Use of defatted fermented rice bran in the diet of juvenile mullets Mugil liza
Pazla et al. Pre-treatments of Mirasolia diversifolia using Lactobacillus bulgaricus at different dosages and fermentation times: Phytic acid concentration, enzyme activity, and fermentation characteristics
Egbune et al. Solid-state fermentation production of L-lysine by Corynebacterium glutamicum (ATCC 13032) using agricultural by-products as substrate
WO2013020188A1 (en) Media for the culture of orange-bagasse waste for simultaneous production of the phytase and thanase enzymes by the microorganism paecilomyces variotii by means of solid fermentation, the enzymes obtained and the uses thereof
WO2013020189A1 (en) Media for the culture of waste castor-oil-plant cake for simultaneous production of the phytase and thanase enzymes, and detoxification of the castor-oil-plant cake, using the microorganism paecilomyces variotii and using solid fermentation, the enzymes obtained and the uses thereof
Ranjan et al. Identification of phytase producing yeast and optimization and characterization of extracellular phytase from Candida parapsilosis
Oboh et al. Improvement of the nutritive value and antioxidant properties of citrus peels through Saccharomyces cerevisae solid substrate fermentation for utilization in livestock feed
Demirgül et al. Changes in nutrients, energy, antioxidant and carotenoid levels of dried tomato (Lycopersicon esculentum) pomage treated with Aspergillus niger solid-state fermentation
KR101288314B1 (en) Penicillium sp. GDX01 strain producing cellulase and uses thereof
Olaniyi Effect of beta-mannanase treatment on nutritive quality of palm kernel meal
de Oliveira Simas et al. Production of Phytase, Protease and Xylanase by Aspergillus niveus with Rice Husk as a Carbon Source and Application of the Enzymes in Animal Feed

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12822623

Country of ref document: EP

Kind code of ref document: A1