WO2013018995A1 - Method for forming conductive polymer electrode and method for manufacturing organic thin film transistor using same - Google Patents

Method for forming conductive polymer electrode and method for manufacturing organic thin film transistor using same Download PDF

Info

Publication number
WO2013018995A1
WO2013018995A1 PCT/KR2012/005313 KR2012005313W WO2013018995A1 WO 2013018995 A1 WO2013018995 A1 WO 2013018995A1 KR 2012005313 W KR2012005313 W KR 2012005313W WO 2013018995 A1 WO2013018995 A1 WO 2013018995A1
Authority
WO
WIPO (PCT)
Prior art keywords
initiator
conductive polymer
thin film
film transistor
forming
Prior art date
Application number
PCT/KR2012/005313
Other languages
French (fr)
Korean (ko)
Inventor
김성현
송기국
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Publication of WO2013018995A1 publication Critical patent/WO2013018995A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • H10K10/84Ohmic electrodes, e.g. source or drain electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/471Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • H10K71/611Forming conductive regions or layers, e.g. electrodes using printing deposition, e.g. ink jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene

Definitions

  • the present invention relates to a method of forming a conductive polymer electrode, and more particularly, a method of forming a conductive polymer electrode capable of forming a conductive polymer electrode at low cost by using a film forming technique incorporating inkjet printing technology and vapor deposition polymerization technology. It relates to a method for manufacturing an organic thin film transistor using the same.
  • the flat panel display is significantly thinner than the CRT display, and has the advantage of making screens of various sizes ranging from small to large.
  • Thin film transistors are a type of field effect transistor.
  • a field effect transistor has a capacitor structure including a metal electrode, an insulating layer, and a semiconductor layer.
  • a negative voltage (electron) or negative voltage is applied to the opposite semiconductor by applying a positive voltage to the metal electrode (gate electrode) with an insulating layer interposed therebetween.
  • a positive charge holes can be drawn to the interface between the insulator and the semiconductor to form a charge layer, and the amount of charge can also be adjusted to the size of the voltage.
  • Attaching metal electrodes (source and drain electrodes) to both ends of the charge layer thus formed becomes a resistor, which becomes a kind of variable resistor that can be controlled by the magnitude of the voltage applied to the gate electrode and the source-drain voltage.
  • a metal electrode is attached to a semiconductor layer without using a doped region as a source and a drain electrode, and the semiconductor layer is manufactured as a thin film.
  • an organic thin-film transistor is made of an organic material in various parts of the thin film transistor.
  • Organic thin film transistors can be manufactured in low temperature processes, and by utilizing the unique advantages of organic materials, new application devices such as flexible displays can be created.
  • an organic thin film forming process is important.
  • the organic thin film deposition process include spin coating, printing, and vacuum deposition.
  • the printing method is advantageous to implement an inexpensive organic thin film transistor.
  • Printing is emerging as a next-generation low-cost process technology, and its application field is expanding to new products such as displays, RFID, memory, solar cells, sensors, and transparent transistors.
  • As the printing method inkjet printing, micro-contact printing, screen printing, spray printing and the like are known.
  • inkjet printing technology is a printing process technology capable of direct patterning in a patterning on demand method by ejecting fine ink droplets. Since inkjet printing technology is composed of a much smaller number of equipment than the existing photo process, it has a low process cost characteristic, and because there is no coating, developing, and cleaning process, waste water is used and it is evaluated as an environmentally friendly technology. . In addition, there is an advantage that a large-area process is possible and mass production is possible.
  • Conductive polymers have attracted attention as electrode materials for flexible electronic devices.
  • conductive polymers have insulation properties due to the large band gap energy between the valence band and conduction band where outermost electrons covalently bond are located. It is movable and conductive.
  • Conductive polymers also called ⁇ -conjugated polymers, have a chemical structure in which single bonds ( ⁇ -bonds) and multiple bonds ( ⁇ -bonds) are repeated, which are delocalized by these chemical bonds to bond chains. Has a ⁇ -electron that can move relatively freely along
  • Such conductive polymers are expected to be applicable to various electronic devices because they have advantages such as ease of processing, low weight, and flexibility. However, since most conductive polymers are not dispersed in a general solvent, it is difficult to meet the physical conditions of the ink for forming a film by the printing method, and there are various difficulties in applying them to actual device manufacturing.
  • the present invention has been made in view of this point, and an object of the present invention is a method of forming a conductive polymer electrode capable of forming a conductive polymer electrode at low cost by using a film forming technology incorporating inkjet printing technology and vapor deposition polymerization technology; It is to provide a method of manufacturing an organic thin film transistor using the same.
  • Method for forming a conductive polymer electrode according to the present invention for achieving the above object, (a) applying an initiator solution on the substrate by an inkjet printing method to form an initiator pattern on the substrate, (b) the initiator pattern is formed Placing the substrate in a decompression chamber and supplying a conductive polymer monomer vapor to the decompression chamber to agglomerate and polymerize the conductive polymer monomer on the initiator pattern.
  • the method of forming a conductive polymer electrode according to the present invention may further include surface modifying the surface of the substrate to improve hydrophilicity so that the initiator solution can be smoothly printed on the substrate before step (a).
  • Hydrophilic surface modification to the substrate can be accomplished through O 2 plasma surface treatment.
  • the conductive polymer is PEDOT / PSS (poly (3,4-ethylenedioxythiophene) / poly (4-styrene sulfonate), PANI (polyaniline), PPy (polypyrrole), PT (polythiophene), PA (polyacetylene), PPV (poly para- phenylene vinylene).
  • PEDOT / PSS poly (3,4-ethylenedioxythiophene) / poly (4-styrene sulfonate)
  • PANI polyaniline
  • PPy polypyrrole
  • PT polythiophene
  • PA polyacetylene
  • PPV poly para- phenylene vinylene
  • the initiator solution may include an initiator selected from APS (ammonium persulfate), CuCl 2 , FeCl 3 and distilled water.
  • the initiator solution may further include poly (4-styrenesulfonate) (PSS).
  • PSS poly (4-styrenesulfonate)
  • the content of the PSS in the initiator solution is preferably 5wt% ⁇ 9wt%.
  • a method of manufacturing an organic thin film transistor comprising: (a) forming a gate electrode on a substrate, (b) forming an insulating layer on the substrate to cover the gate electrode, ( c) forming a semiconductor layer on the insulating layer, (d) applying an initiator solution on the insulating layer by inkjet printing to form a first initiator pattern on the insulating layer and in contact with the semiconductor layer, (e) Coating an initiator solution on the insulating layer by inkjet printing to form a second initiator pattern spaced apart from the first initiator pattern and in contact with the semiconductor layer on the insulating layer, (f) the gate electrode, the insulating layer, Put the substrate on which the semiconductor layer, the first initiator pattern and the second initiator pattern are formed, into a decompression chamber and a conductive polymer monomer in the decompression chamber.
  • the source electrode is formed in the shape of the first initiator pattern by supplying steam, amplifying and polymerizing the conductive polymer monomer on the first initiator pattern, and coagulating and polymerizing the conductive polymer monomer on the second initiator pattern. And forming a drain electrode in the shape of the 2 initiator pattern.
  • the surface of the semiconductor layer may be improved to improve hydrophilicity so that the initiator solution may be smoothly printed on the semiconductor layer after the step (c) and before the step (d).
  • the method may further include modifying.
  • Hydrophilic surface modification to the semiconductor layer may be made through O 2 plasma surface treatment.
  • the insulating layer may be made of a material selected from polyvinylphenol (PVP), polyvinylalcohol (PVA), and PMMA.
  • PVP polyvinylphenol
  • PVA polyvinylalcohol
  • PMMA polymethyl methacrylate
  • the semiconductor layer may include pentacene, TIPS-pentacene, poly (3-alkyl) thiophene (P3HT), poly (2,5-bis (3-alkylthiophen-2-yl) thieno [3,2- b] thiophene).
  • the method for forming a conductive polymer electrode according to the present invention by using an inkjet printing method to print an initiator pattern, by exposing the initiator pattern in the vapor of the conductive polymer monomer using a method of agglomeration and polymerization of the conductive polymer monomer on the initiator pattern
  • the conductive polymer electrode can be formed at low cost.
  • the method of forming a conductive polymer electrode according to the present invention can be mass-produced at room temperature without using expensive equipment by using the inkjet printing method and vapor deposition polymerization method.
  • FIG. 1 shows a manufacturing process of an organic thin film transistor using the method of manufacturing an organic thin film transistor according to the present invention.
  • FIG. 2 illustrates a process of forming an initiator pattern by an inkjet printing method in a process of manufacturing an organic thin film transistor using the method of manufacturing an organic thin film transistor according to the present invention.
  • FIG 3 illustrates a process of agglomerating and polymerizing a conductive polymer monomer vaporized on an initiator pattern during a process of manufacturing an organic thin film transistor using the method of manufacturing an organic thin film transistor according to the present invention.
  • FIG. 4 illustrates an organic thin film transistor manufactured by a method of manufacturing an organic thin film transistor according to an embodiment of the present invention.
  • 5 is a graph showing the change in surface resistance of the source electrode and the drain electrode according to the amount of PSS added in the initiator solution.
  • FIG. 1 shows a manufacturing process of an organic thin film transistor using the method of manufacturing an organic thin film transistor according to the present invention.
  • the gate electrode 11 on the substrate 10 (b) and forming the insulating layer 12 on the gate electrode 11.
  • (C) forming the semiconductor layer 13 on the insulating layer 12, and forming the source electrode 16 and the drain electrode 17 on the semiconductor layer 13 Include.
  • the source electrode 16 and the drain electrode 17 are made of a conductive polymer and are made through a film forming process in which inkjet printing and vapor deposition polymerization are combined.
  • Specific manufacturing process of the organic thin film transistor using the method of manufacturing an organic thin film transistor according to the present invention is as follows.
  • the substrate 10 is prepared (a), and the gate electrode 11 is formed on the substrate 10 (b).
  • the substrate 10 may be made of a soft material such as polyethylenesulfone (PES), or various materials that may be used as a substrate of a conventional organic thin film transistor.
  • the gate electrode 11 may be made of various materials that may be used as electrodes such as various metals or conductive polymers, and may be formed through various deposition processes including various deposition methods.
  • the insulating layer 12 is formed on the substrate 10 on which the gate electrode 11 is formed (c).
  • the insulating layer 12 may be made of various materials that may be used as insulating layers of polyvinylphenol (PVP), polyvinylalcohol (PVA), PMMA, or other conventional organic thin film transistors.
  • the insulating layer 12 may be made through various thin film forming processes. For example, a dielectric material selected from polyvinylphenol (PVP), polyvinylalcohol (PVA), and PMMA is dissolved in a solvent together with a crosslinking agent to form an insulator solution, and the insulator solution is spin gated to form a gate electrode.
  • the insulating layer 12 can be formed by crosslinking by applying heat.
  • the semiconductor layer 13 is formed on the insulating layer 12 (d).
  • the semiconductor layer 13 may be made of pentacene, TIPS-pentacene, poly (3-alkyl) thiophene (P3HT), poly (2,5-bis (3-alkylthiophen-2-yl) thieno [3,] 2-b] thiophene), or various materials that can be used as a semiconductor layer of a conventional organic thin film transistor, and may be formed on the insulating layer 12 through various film forming processes.
  • the surface of the semiconductor layer 13 may be surface modified to improve hydrophilicity.
  • the hydrophilic surface modification for the semiconductor layer 13 is to enable the initiator solution 19 to be described later to be well printed on the semiconductor layer 13.
  • various methods such as surface treatment using plasma, surface treatment using ultraviolet rays or gamma rays, mechanical surface treatment, and surface treatment using chemical reactions can be used.
  • the hydrophilic surface modification the surface of the semiconductor layer 13 is modified to be hydrophilic and the surface energy is increased, so that the initiator solution 19 may be uniformly printed on the surface of the semiconductor layer 13.
  • O 2 plasma surface treatment is a method of improving hydrophilicity while less damaging the surface of the semiconductor layer 13 when the treatment intensity or treatment time is well controlled.
  • the initiator solution 19 is applied onto the insulating layer 12 on which the semiconductor layer 13 is formed, and the first initiator pattern 14 and the second initiator pattern 15 contacting the semiconductor layer 13 are formed.
  • conductive polymers can be deposited on the surfaces of various objects. Ammonium persulfate (APS), CuCl 2 , FeCl 3 , or other various materials capable of polymerizing conductive polymer monomers may be used as the initiator.
  • the initiator solution 19 may be made by mixing an initiator and an additive for controlling physical properties of the initiator solution 19 in distilled water.
  • the first initiator pattern 14 and the second initiator pattern 15 are formed by printing the initiator solution 19 on the semiconductor layer 13 and the insulating layer 12 by inkjet printing.
  • the quality of the thin film formed varies depending on the kind of material to be formed, the viscosity of the ink, the printing method, and the like.
  • a low cost desktop printer cartridge 30 can be used to print the initiator solution 19.
  • the use of the entry-level desktop printer cartridge 30 has an advantage of greatly lowering the manufacturing cost even though the film formation resolution is somewhat reduced.
  • the physical properties of the initiator solution 19 are important for printing the initiator solution 19 with the desktop printer cartridge 30 to form the initiator patterns 14 and 15 in good form.
  • the viscosity of the initiator solution is 1 mPa ⁇ s to 30 mPa ⁇ s
  • the surface energy of the initiator solution 19 is preferably 30 mN ⁇ m ⁇ 1 or more.
  • PSS polystyrene 4-styrenesulfonate
  • PSS may be used as an additive for adjusting the physical properties of the initiator solution (19).
  • PSS is an electrical nonconductor, which causes agglomeration above a certain concentration and degrades electrical properties, but due to the low surface energy, PSS increases the contact force between the initiator patterns 14 and 15 and the semiconductor layer, 15) to improve the edge line resolution. Therefore, if the amount of PSS is properly adjusted, the pattern resolution of the source electrode 16 and the drain electrode 17 can be improved without impairing the electrical properties of the source electrode 16 and the drain electrode 17, thereby improving device performance. Can be.
  • Conductive polymers include PEDOT / PSS (poly (3,4-ethylenedioxythiophene) / poly (4-styrene sulfonate), PANI (polyaniline), PPy (polypyrrole), PT (polythiophene), PA (polyacetylene), PPV (poly para- phenylene vinylene), or various other conventionally known conductive polymers can be used.
  • vapor phase deposition polymerization As a method of agglomerating or collecting the conductive polymer on the first initiator pattern 14 and the second initiator pattern 15, vapor phase deposition polymerization is used.
  • the conductive polymer monomer may be polymerized on the initiator patterns 14 and 15, and the specific process thereof is as follows.
  • the substrate 10 having the insulating layer 12, the semiconductor layer 13, the first initiator pattern 14, and the second initiator pattern 15 is placed in the decompression chamber 40.
  • the conductive polymer monomer vapor 20 is supplied to the decompression chamber 40.
  • the vaporized conductive polymer monomer is absorbed only in the first initiator pattern 14 and the second initiator pattern 15, and thus the first initiator pattern 14 ) And the second initiator pattern 15.
  • a source electrode 16 and a drain electrode 17 made of a conductive polymer are formed in the shape of the first initiator pattern 14 and the second initiator pattern 15 on the semiconductor layer 13.
  • the organic thin film transistor 18 may be subjected to a heat treatment process for removing moisture. If the moisture is removed by applying heat to the organic thin film transistor 18, the electrical performance of the organic thin film transistor 18 may be improved.
  • the method of forming the conductive polymer electrode according to the present invention is the same as the method of forming the source electrode and the drain electrode in the above-described method of manufacturing the organic thin film transistor. That is, after the initiator solution is printed on the substrate by inkjet printing to form an initiator pattern, the initiator pattern is exposed in the conductive polymer monomer vapor to aggregate and polymerize the conductive polymer monomer on the initiator pattern, thereby forming a conductive polymer in the shape of the initiator pattern.
  • the formed electrode can be formed.
  • the electrode thus formed may be used in a state of being deposited on a substrate, or may be removed from the substrate and then transferred to another substrate.
  • the method for forming a conductive polymer electrode according to the present invention is to print an initiator solution by inkjet printing to form an initiator pattern, and expose the initiator pattern to the conductive polymer monomer vapor to aggregate and polymerize the conductive polymer monomer on the initiator pattern.
  • the conductive polymer electrode can be formed at low cost.
  • a soft PES (Polyethylenesulfone, i-component Co. Ltd.) substrate was prepared, and gold (Au) was thermally deposited on the PES substrate at a deposition rate of 1.0 Pa ⁇ s ⁇ 1 to form a gate electrode of 50 nm.
  • PVP poly (4-vinylphenol), Mw ⁇ 30,000g / mol, Sigma Aldrich Co. Ltd.) dielectric material and Poly (melamine-co-formaldehyde, Sigma Aldrich Co. Ltd.)
  • a PVP insulator solution was prepared by dissolving in 10 ml of solvent PGMEA (propylene glycol methyl ether acetate, Sigma Aldrich Co. Ltd.) at a molar ratio of 1.
  • the PVP insulator solution was spin cast on the PES substrate at 4000 rpm for 30 seconds, crosslinked at 130 ° C. for 15 minutes, and at 200 ° C. for 5 minutes in nitrogen (N 2 ) atmosphere to form a 300 nm PVP insulating layer. Formed.
  • the PES substrate on which the PVP insulation layer was formed was placed in a vacuum chamber and maintained at a pressure of 5 ⁇ 10 ⁇ 6 torr or lower at room temperature while pentacene (Pentacene, 99.995% trace metals basis, Sigma Aldrich Co. Ltd. ) was deposited at a deposition rate of 0.4 Pa ⁇ s ⁇ 1 to form a pentacene semiconductor layer on the PVP insulating layer.
  • Pentacene is an aromatic ring compound to which five benzene molecules are attached, and is attracting attention as an organic semiconductor material due to its high mobility of charge.
  • the pentacene semiconductor layer was subjected to O 2 plasma treatment at 80 W intensity for 1 second to modify the pentacene semiconductor layer on a hydrophilic surface.
  • the oxidizing agent APS (ammonium persulfate, 98%, Sigma Aldrich Co. Ltd.) 30 wt% and the additive PSS (poly (4-styrenesulfonate, 30 wt% in H2O, Mw ⁇ 70,000 g / mol, Sigma Aldrich Co. Ltd.) was mixed with 10 mL of distilled water to form an initiator solution, which was then coated on a PVP insulating layer on which a pentacene semiconductor layer was formed using a desktop printer cartridge to form an initiator pattern. %, 6wt%, 9wt% and 12wt% were adjusted, and initiator solution and initiator pattern were made according to the amount of PSS added.
  • APS ammonium persulfate, 98%, Sigma Aldrich Co. Ltd.
  • PSS poly (4-styrenesulfonate, 30 wt% in H2O, Mw ⁇ 70,000 g / mol, Sigma Aldrich Co. Ltd.
  • the PES substrate on which the initiator pattern was formed was placed in a decompression chamber supplied with pyrrole monomer vapor, and exposed to pyrrole monomer vapor for 10 minutes to vaporize the pyrrole source electrode and the drain electrode on the initiator pattern.
  • Deposition polymerization Pyrrole, a conductive polymer, is an organic compound belonging to the heterocyclic group in which four carbon atoms and one nitrogen atom form a ring structure.
  • the completed organic thin film transistor was heated to 100 ° C. for 10 minutes to remove residual moisture of the pyrrole source electrode and the drain electrode to improve electrical performance.
  • each of the source electrode and the drain electrode is 450 nm, and the channel length between the source electrode and the drain electrode is 135 ⁇ m.
  • the amount of PSS added to the initiator solution affects the edge line roughness and surface resistance of the source and drain electrodes.
  • the edge line roughness and surface resistance of the source electrode and the drain electrode according to the change amount of the PSS while changing the amount of PSS added to the initiator solution are as follows.
  • the coarse protrusions formed on the edge lines of the source electrode and the drain electrode decreased until the amount of PSS increased to 6wt%.
  • the edge line roughness of the source electrode and the drain electrode was rather increased. This is because when the addition amount of PSS exceeds 6 wt%, the nozzle of the desktop printer cartridge starts to clog and the edge line accuracy is lowered.
  • the surface resistance of the source electrode and the drain electrode was 2.75 ⁇ 10 3 ⁇ / sq without PSS, and it was 8.61 ⁇ 10 4 ⁇ / sq when the amount of PSS added was 12wt%. It appeared to increase.
  • the addition amount of PSS in the initiator solution is between 5wt% ⁇ 9wt%. This is because the surface resistance of the source electrode and the drain electrode is suitable for use as the organic electrode when the amount of the PSS added has a value between 5 wt% and 9 wt%.
  • the addition amount of PSS in the initiator solution is more preferably 6wt%. This is because, when the amount of PSS added is 6 wt%, the surface resistance of the source electrode and the drain electrode is 1.74 ⁇ 10 4 Pa / sq, which is sufficient to be used as the organic electrode, and the roughness of the edge line is small.

Abstract

The present invention relates to a method for forming a conductive polymer electrode, and more specifically, to a method for forming a conductive polymer electrode and a method for manufacturing an organic thin film transistor using the same which can form the conductive polymer electrode at low cost by using a film forming method obtained through a graft of an inkjet printing method and a vapor deposition polymerization method. According to the present invention, the method for forming the conductive polymer electrode can form the conductive polymer electrode at low cost by using a method of making an initiator pattern by printing an initiator solution in an inkjet printing manner, and concentrating and polymerizing conductive polymer monomers on the initiator pattern by exposing the initiator pattern to the conductive polymer monomer steam.

Description

전도성 고분자 전극의 형성방법 및 이를 이용한 유기박막 트랜지스터의 제조방법Forming method of conductive polymer electrode and manufacturing method of organic thin film transistor using same
본 발명의 전도성 고분자 전극의 형성방법에 관한 것으로, 더욱 상세하게는 잉크젯 프린팅 기술과 기상증착중합 기술을 접목한 성막 기술을 이용하여 저비용으로 전도성 고분자 전극을 형성할 수 있는 전도성 고분자 전극의 형성방법 및 이를 이용한 유기박막 트랜지스터의 제조방법에 관한 것이다.The present invention relates to a method of forming a conductive polymer electrode, and more particularly, a method of forming a conductive polymer electrode capable of forming a conductive polymer electrode at low cost by using a film forming technique incorporating inkjet printing technology and vapor deposition polymerization technology. It relates to a method for manufacturing an organic thin film transistor using the same.
최근 평판 디스플레이의 시장이 크게 성장하고 있다. 평판 디스플레이는 브라운관 디스플레이에 비해 두께가 획기적으로 얇을 뿐만 아니라 소형에서부터 대형까지 다양한 크기의 화면을 만들 수 있는 장점이 있다.Recently, the market for flat panel displays has grown significantly. The flat panel display is significantly thinner than the CRT display, and has the advantage of making screens of various sizes ranging from small to large.
평판 디스플레이의 구동소자로는 주로 박막 트랜지스터(thin film transistor; TFT)가 이용되고 있다. 박막 트랜지스터는 전계효과 트랜지스터의 한 종류이다. 전계효과 트랜지스터는 금속 전극, 절연층, 반도체층을 포함하는 캐패시터 구조를 갖는 것으로, 절연층을 사이에 두고 금속 전극(게이트 전극)에 양전압을 인가하여 반대쪽의 반도체에 음전하(전자) 또는 음전압을 인가하여 양전하(정공)를 절연체와 반도체 계면에 끌어당겨 전하층을 만들 수 있고 전하량도 전압의 크기로 조절할 수 있다. 이렇게 형성된 전하층 양단에 금속 전극(소스와 드레인 전극)을 붙이면 하나의 저항체가 되는데, 이 저항체는 게이트 전극에 인가되는 전압과 소스-드레인 전압의 크기로 조절할 수 있는 일종의 가변 저항이 된다. 박막 트랜지스터는 소스와 드레인 전극으로 도핑 영역을 사용하지 않고 반도체층에 금속 전극을 부착하며 반도체층을 얇은 박막으로 제작한 것이다.As a driving device of a flat panel display, a thin film transistor (TFT) is mainly used. Thin film transistors are a type of field effect transistor. A field effect transistor has a capacitor structure including a metal electrode, an insulating layer, and a semiconductor layer. A negative voltage (electron) or negative voltage is applied to the opposite semiconductor by applying a positive voltage to the metal electrode (gate electrode) with an insulating layer interposed therebetween. By applying a positive charge (holes) can be drawn to the interface between the insulator and the semiconductor to form a charge layer, and the amount of charge can also be adjusted to the size of the voltage. Attaching metal electrodes (source and drain electrodes) to both ends of the charge layer thus formed becomes a resistor, which becomes a kind of variable resistor that can be controlled by the magnitude of the voltage applied to the gate electrode and the source-drain voltage. In the thin film transistor, a metal electrode is attached to a semiconductor layer without using a doped region as a source and a drain electrode, and the semiconductor layer is manufactured as a thin film.
특히, 유기박막 트랜지스터(organic thin-film transistor; OTFT)는 박막 트랜지스터를 구성하는 여러 부분을 유기재료로 만든 것이다. 유기박막 트랜지스터는 저온 공정으로 제조가 가능하고, 유기재료의 독특한 장점을 활용함으로써 플렉시블 디스플레이 등 새로운 응용 디바이스를 만들어낼 수 있다.In particular, an organic thin-film transistor (OTFT) is made of an organic material in various parts of the thin film transistor. Organic thin film transistors can be manufactured in low temperature processes, and by utilizing the unique advantages of organic materials, new application devices such as flexible displays can be created.
유기박막 트랜지스터의 제조에 있어 유기박막의 성막 공정이 중요하다. 유기박막의 성막 공정으로는 스핀코팅법, 프린팅법, 진공증착법 등이 있다. 이 중에서 저가의 유기박막 트랜지스터를 구현하기 위해서는 프린팅법이 유리하다.In manufacturing an organic thin film transistor, an organic thin film forming process is important. Examples of the organic thin film deposition process include spin coating, printing, and vacuum deposition. Among these, the printing method is advantageous to implement an inexpensive organic thin film transistor.
프린팅법은 차세대 저가형 공정 기술로 급부상하고 있는 기술로, 디스플레이, RFID, 메모리, 태양전지, 센서, 투명 트랜지스터 등의 새로운 제품군으로 그 응용 분야가 확대되고 있다. 프린팅법으로는 잉크젯 프린팅(inkjet printing), 미세 접촉 프린팅(μ-contact printing), 스크린 프린팅(screen printing), 스프레이 프린팅(spray printing) 등이 알려져 있다.Printing is emerging as a next-generation low-cost process technology, and its application field is expanding to new products such as displays, RFID, memory, solar cells, sensors, and transparent transistors. As the printing method, inkjet printing, micro-contact printing, screen printing, spray printing and the like are known.
이 중에서 잉크젯 프린팅 기술은 미세한 잉크 방울을 토출시켜 patterning on demand 방식으로 direct patterning이 가능한 인쇄 공정 기술이다. 잉크젯 프린팅 기술은 기존의 포토 공정에 필요한 장비보다 훨씬 적은 수의 장비로 구성되기 때문에 낮은 공정 단가의 특성이 있으며, 코팅, 현상, 세정 공정이 없기 때문에 폐수의 사용량이 적어 환경 친화적 기술로 평가받고 있다. 또한 대면적 공정이 가능하고, 대량생산이 가능하다는 장점이 있다.Among them, inkjet printing technology is a printing process technology capable of direct patterning in a patterning on demand method by ejecting fine ink droplets. Since inkjet printing technology is composed of a much smaller number of equipment than the existing photo process, it has a low process cost characteristic, and because there is no coating, developing, and cleaning process, waste water is used and it is evaluated as an environmentally friendly technology. . In addition, there is an advantage that a large-area process is possible and mass production is possible.
최근에 전도성 고분자(conducting polymer)가 플렉시블 전자소자의 전극 재료로 주목받고 있다. 일반적인 고분자가 공유결합을 이루는 최외각 전자들이 자리하는 가전자대(valance band)와 전도대(conduction band)까지의 밴드간격(band gap) 에너지가 크기 때문에 절연성을 갖는데 반해, 전도성 고분자는 전자들이 어느 정도 자유롭게 움직일 수가 있어 전도성을 띤다. 전도성 고분자는 π-공액 고분자(π-conjugated polymer)라고도 불리며, 단일결합(σ-결합)과 다중결합(π-결합)이 반복되는 화학구조를 가지고 있어서, 이들 화학 결합에 의해 비편재화되어 결합 사슬을 따라 비교적 자유롭게 움직일 수 있는 π-전자를 갖는다.Recently, conductive polymers have attracted attention as electrode materials for flexible electronic devices. In general, conductive polymers have insulation properties due to the large band gap energy between the valence band and conduction band where outermost electrons covalently bond are located. It is movable and conductive. Conductive polymers, also called π-conjugated polymers, have a chemical structure in which single bonds (σ-bonds) and multiple bonds (π-bonds) are repeated, which are delocalized by these chemical bonds to bond chains. Has a π-electron that can move relatively freely along
이러한 전도성 고분자는 가공의 용이성, 저중량, 유연성 등의 장점을 갖기 때문에 다양한 전자소자에 적용될 수 있을 것으로 기대되고 있다. 그러나 대부분의 전도성 고분자는 일반적인 용매에 분산되지 않기 때문에, 프린팅법으로 성막하기 위한 잉크의 물리적 조건을 충족시키기 어려워 실제 디바이스 제조에 적용하기에는 여러 가지 어려움이 있다.Such conductive polymers are expected to be applicable to various electronic devices because they have advantages such as ease of processing, low weight, and flexibility. However, since most conductive polymers are not dispersed in a general solvent, it is difficult to meet the physical conditions of the ink for forming a film by the printing method, and there are various difficulties in applying them to actual device manufacturing.
본 발명은 이러한 점을 감안하여 안출된 것으로, 본 발명의 목적은 잉크젯 프린팅 기술과 기상증착중합 기술을 접목한 성막 기술을 이용하여 저비용으로 전도성 고분자 전극을 형성할 수 있는 전도성 고분자 전극의 형성방법 및 이를 이용한 유기박막 트랜지스터의 제조방법을 제공하는 것이다.The present invention has been made in view of this point, and an object of the present invention is a method of forming a conductive polymer electrode capable of forming a conductive polymer electrode at low cost by using a film forming technology incorporating inkjet printing technology and vapor deposition polymerization technology; It is to provide a method of manufacturing an organic thin film transistor using the same.
상기 목적을 달성하기 위한 본 발명에 의한 전도성 고분자 전극의 형성방법은, (a) 기판 위에 개시제 용액을 잉크젯 프린팅법으로 도포하여 상기 기판 위에 개시제 패턴을 형성하는 단계, (b) 상기 개시제 패턴이 형성된 상기 기판을 감압 챔버에 넣고 상기 감압 챔버에 전도성 고분자 단량체 증기를 공급하여, 상기 개시제 패턴 위에 상기 전도성 고분자 단량체를 응집 및 중합시키는 단계를 포함한다.Method for forming a conductive polymer electrode according to the present invention for achieving the above object, (a) applying an initiator solution on the substrate by an inkjet printing method to form an initiator pattern on the substrate, (b) the initiator pattern is formed Placing the substrate in a decompression chamber and supplying a conductive polymer monomer vapor to the decompression chamber to agglomerate and polymerize the conductive polymer monomer on the initiator pattern.
본 발명에 의한 전도성 고분자 전극의 형성방법은 상기 (a) 단계 이전에 상기 기판에 상기 개시제 용액이 원활하게 인쇄될 수 있도록 상기 기판 표면을 친수성이 향상되도록 표면 개질하는 단계를 더 포함할 수 있다.The method of forming a conductive polymer electrode according to the present invention may further include surface modifying the surface of the substrate to improve hydrophilicity so that the initiator solution can be smoothly printed on the substrate before step (a).
상기 기판에 대한 친수성 표면 개질은 O2 플라즈마 표면처리를 통해 이루어질 수 있다.Hydrophilic surface modification to the substrate can be accomplished through O 2 plasma surface treatment.
상기 전도성 고분자는 PEDOT/PSS(poly(3,4-ethylenedioxythiophene)/poly(4-styrene sulfonate), PANI(polyaniline), PPy(polypyrrole), PT(polythiophene), PA(polyacetylene), PPV(poly para-phenylene vinylene) 중에서 선택될 수 있다.The conductive polymer is PEDOT / PSS (poly (3,4-ethylenedioxythiophene) / poly (4-styrene sulfonate), PANI (polyaniline), PPy (polypyrrole), PT (polythiophene), PA (polyacetylene), PPV (poly para- phenylene vinylene).
상기 개시제 용액은 APS(ammonium persulfate), CuCl2, FeCl3 중에서 선택된 개시제와 증류수를 포함할 수 있다.The initiator solution may include an initiator selected from APS (ammonium persulfate), CuCl 2 , FeCl 3 and distilled water.
상기 개시제 용액은 PSS(poly(4-styrenesulfonate))를 더 포함할 수 있다.The initiator solution may further include poly (4-styrenesulfonate) (PSS).
상기 개시제 용액 중에 상기 PSS의 함유량은 5wt% ~ 9wt%인 것이 좋다.The content of the PSS in the initiator solution is preferably 5wt% ~ 9wt%.
상기 목적을 달성하기 위한 본 발명에 의한 유기박막 트랜지스터의 제조방법은, (a) 기판 위에 게이트 전극을 형성하는 단계, (b) 상기 기판 위에 상기 게이트 전극을 덮도록 절연층을 형성하는 단계, (c) 상기 절연층 위에 반도체층을 형성하는 단계, (d) 상기 절연층 위에 개시제 용액을 잉크젯 프린팅법으로 도포하여 상기 절연층 위에 상기 반도체층과 접하는 제 1 개시제 패턴을 형성하는 단계, (e) 상기 절연층 위에 개시제 용액을 잉크젯 프린팅법으로 도포하여 상기 절연층 위에 상기 제 1 개시제 패턴과 이격되고 상기 반도체층과 접하는 제 2 개시제 패턴을 형성하는 단계, (f) 상기 게이트 전극, 상기 절연층, 상기 반도체층, 상기 제 1 개시제 패턴 및 상기 제 2 개시제 패턴이 형성된 상기 기판을 감압 챔버에 넣고 상기 감압 챔버에 전도성 고분자 단량체 증기를 공급하여, 상기 제 1 개시제 패턴 위에 상기 전도성 고분자 단량체를 증집 및 중합시킴으로써 상기 제 1 개시제 패턴 형상대로 소스 전극을 형성하고, 상기 제 2 개시제 패턴 위에 상기 전도성 고분자 단량체를 응집 및 중합시킴으로써 상기 제 2 개시제 패턴 형상대로 드레인 전극을 형성하는 단계를 포함한다.According to an aspect of the present invention, there is provided a method of manufacturing an organic thin film transistor, the method comprising: (a) forming a gate electrode on a substrate, (b) forming an insulating layer on the substrate to cover the gate electrode, ( c) forming a semiconductor layer on the insulating layer, (d) applying an initiator solution on the insulating layer by inkjet printing to form a first initiator pattern on the insulating layer and in contact with the semiconductor layer, (e) Coating an initiator solution on the insulating layer by inkjet printing to form a second initiator pattern spaced apart from the first initiator pattern and in contact with the semiconductor layer on the insulating layer, (f) the gate electrode, the insulating layer, Put the substrate on which the semiconductor layer, the first initiator pattern and the second initiator pattern are formed, into a decompression chamber and a conductive polymer monomer in the decompression chamber. The source electrode is formed in the shape of the first initiator pattern by supplying steam, amplifying and polymerizing the conductive polymer monomer on the first initiator pattern, and coagulating and polymerizing the conductive polymer monomer on the second initiator pattern. And forming a drain electrode in the shape of the 2 initiator pattern.
본 발명에 의한 유기박막 트랜지스터의 제조방법은 상기 (c) 단계 이후 상기 (d) 단계 이전에, 상기 반도체층에 상기 개시제 용액이 원활하게 인쇄될 수 있도록 상기 반도체층의 표면을 친수성이 향상되도록 표면 개질하는 단계를 더 포함할 수 있다.In the method of manufacturing an organic thin film transistor according to the present invention, the surface of the semiconductor layer may be improved to improve hydrophilicity so that the initiator solution may be smoothly printed on the semiconductor layer after the step (c) and before the step (d). The method may further include modifying.
상기 반도체층에 대한 친수성 표면 개질은 O2 플라즈마 표면처리를 통해 이루어질 수 있다.Hydrophilic surface modification to the semiconductor layer may be made through O 2 plasma surface treatment.
상기 절연층은 PVP(polyvinylphenol), PVA(polyvinylalcohol), PMMA 중에서 선택된 소재로 이루어질 수 있다.The insulating layer may be made of a material selected from polyvinylphenol (PVP), polyvinylalcohol (PVA), and PMMA.
상기 반도체층은 펜타센(pentacene), TIPS-펜타센, P3HT(Poly(3-alkyl)thiophene), PBTTT(poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) 중에서 선택된 소재로 이루어질 수 있다.The semiconductor layer may include pentacene, TIPS-pentacene, poly (3-alkyl) thiophene (P3HT), poly (2,5-bis (3-alkylthiophen-2-yl) thieno [3,2- b] thiophene).
본 발명에 의한 전도성 고분자 전극의 형성방법은 개시제 용액을 잉크젯 프린팅법으로 인쇄하여 개시제 패턴을 만들고, 개시제 패턴을 전도성 고분자 단량체 증기 중에 노출시켜 개시제 패턴 위에 전도성 고분자 단량체를 응집 및 중합시키는 방법을 이용함으로써, 저비용으로 전도성 고분자 전극을 형성할 수 있다.The method for forming a conductive polymer electrode according to the present invention by using an inkjet printing method to print an initiator pattern, by exposing the initiator pattern in the vapor of the conductive polymer monomer using a method of agglomeration and polymerization of the conductive polymer monomer on the initiator pattern The conductive polymer electrode can be formed at low cost.
또한 본 발명에 의한 전도성 고분자 전극의 형성방법은 잉크젯 프린팅법과 기상증착중합법을 이용함으로써, 고가의 장비 없이도 전도성 고분자 전극을 상온에서 대량생산할 수 있다.In addition, the method of forming a conductive polymer electrode according to the present invention can be mass-produced at room temperature without using expensive equipment by using the inkjet printing method and vapor deposition polymerization method.
도 1은 본 발명에 의한 유기박막 트랜지스터의 제조방법을 이용한 유기박막 트랜지스터의 제조 과정을 나타낸 것이다.1 shows a manufacturing process of an organic thin film transistor using the method of manufacturing an organic thin film transistor according to the present invention.
도 2는 본 발명에 의한 유기박막 트랜지스터의 제조방법을 이용한 유기박막 트랜지스터의 제조 과정 중 개시제 패턴을 잉크젯 프린팅법으로 형성하는 공정을 나타낸 것이다.FIG. 2 illustrates a process of forming an initiator pattern by an inkjet printing method in a process of manufacturing an organic thin film transistor using the method of manufacturing an organic thin film transistor according to the present invention.
도 3은 본 발명에 의한 유기박막 트랜지스터의 제조방법을 이용한 유기박막 트랜지스터의 제조 과정 중 개시제 패턴 위에 증기화된 전도성 고분자 단량체를 응집 및 중합시키는 공정을 나타낸 것이다.3 illustrates a process of agglomerating and polymerizing a conductive polymer monomer vaporized on an initiator pattern during a process of manufacturing an organic thin film transistor using the method of manufacturing an organic thin film transistor according to the present invention.
도 4는 본 발명의 실시예에 의한 유기박막 트랜지스터의 제조방법에 의해 제조된 유기박막 트랜지스터를 나타낸 것이다. 4 illustrates an organic thin film transistor manufactured by a method of manufacturing an organic thin film transistor according to an embodiment of the present invention.
도 5는 개시제 용액 중의 PSS의 첨가량에 따른 소스 전극 및 드레인 전극의 표면 저항 변화를 나타낸 그래프이다.5 is a graph showing the change in surface resistance of the source electrode and the drain electrode according to the amount of PSS added in the initiator solution.
이하에서는 첨부된 도면을 참조하여, 본 발명에 의한 전도성 고분자 전극의 형성방법 및 이를 이용한 유기박막 트랜지스터의 제조방법에 대하여 상세히 설명한다.Hereinafter, a method of forming a conductive polymer electrode and a method of manufacturing an organic thin film transistor using the same according to the present invention will be described in detail with reference to the accompanying drawings.
본 발명을 설명함에 있어서, 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의를 위해 과장되거나 단순화되어 나타날 수 있다. 또한 본 발명의 구성 및 작용을 고려하여 특별히 정의된 용어들은 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 이러한 용어들은 본 명세서 전반에 걸친 내용을 토대로 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.In describing the present invention, the size or shape of the components shown in the drawings may be exaggerated or simplified for clarity and convenience of description. In addition, terms that are specifically defined in consideration of the configuration and operation of the present invention may vary depending on the intention or custom of the user or operator. These terms should be interpreted as meanings and concepts corresponding to the technical spirit of the present invention based on the contents throughout the specification.
도 1은 본 발명에 의한 유기박막 트랜지스터의 제조방법을 이용한 유기박막 트랜지스터의 제조 과정을 나타낸 것이다.1 shows a manufacturing process of an organic thin film transistor using the method of manufacturing an organic thin film transistor according to the present invention.
도 1에 도시된 것과 같이, 본 발명에 의한 유기박막 트랜지스터의 제조방법은 기판(10) 위에 게이트 전극(11)을 형성하는 단계(b), 게이트 전극(11) 위에 절연층(12)을 형성하는 단계(c), 절연층(12) 위에 반도체층(13)을 형성하는 단계(d), 반도체층(13) 위에 소스 전극(16) 및 드레인 전극(17)을 형성하는 단계(f)를 포함한다. 여기에서 소스 전극(16)과 드레인 전극(17)은 전도성 고분자로 이루어지며 잉크젯 프린팅법과 기상증착중합법(vapor deposition polymerization)을 접목한 성막 공정을 통해 만들어진다. 본 발명에 의한 유기박막 트랜지스터의 제조방법을 이용한 유기박막 트랜지스터의 구체적인 제조 과정은 다음과 같다.As shown in FIG. 1, in the method of manufacturing an organic thin film transistor according to the present invention, forming the gate electrode 11 on the substrate 10 (b) and forming the insulating layer 12 on the gate electrode 11. (C) forming the semiconductor layer 13 on the insulating layer 12, and forming the source electrode 16 and the drain electrode 17 on the semiconductor layer 13 Include. Here, the source electrode 16 and the drain electrode 17 are made of a conductive polymer and are made through a film forming process in which inkjet printing and vapor deposition polymerization are combined. Specific manufacturing process of the organic thin film transistor using the method of manufacturing an organic thin film transistor according to the present invention is as follows.
먼저, 기판(10)을 준비하고(a), 기판(10) 위에 게이트 전극(11)을 형성한다(b). 기판(10)은 PES(Polyethylenesulfone)와 같은 연질의 소재, 또는 통상의 유기박막 트랜지스터의 기판으로 이용될 수 있는 다양한 소재로 이루어질 수 있다. 게이트 전극(11)은 각종 금속이나 전도성 고분자 등 전극으로 이용될 수 있는 다양한 소재로 이루어질 수 있고, 각종 증착법을 비롯한 다양한 성막 공정을 통해 형성될 수 있다.First, the substrate 10 is prepared (a), and the gate electrode 11 is formed on the substrate 10 (b). The substrate 10 may be made of a soft material such as polyethylenesulfone (PES), or various materials that may be used as a substrate of a conventional organic thin film transistor. The gate electrode 11 may be made of various materials that may be used as electrodes such as various metals or conductive polymers, and may be formed through various deposition processes including various deposition methods.
게이트 전극(11)을 형성한 후, 게이트 전극(11)이 형성된 기판(10) 위에 절연층(12)을 형성한다(c). 절연층(12)은 PVP(polyvinylphenol), PVA(polyvinylalcohol), PMMA, 또는 그 이외에 통상적인 유기박막 트랜지스터의 절연층으로 이용될 수 있는 다양한 소재로 이루어질 수 있다. 절연층(12)은 다양한 박막 형성 공정을 통해 만들어질 수 있다. 예컨대, PVP(polyvinylphenol), PVA(polyvinylalcohol), PMMA 중에서 선택된 유전체 물질을 가교제(crosslinking agent)와 함께 용매에 용해하여 절연체 용액을 만들고, 이 절연체 용액을 스핀 캐스트(spin cast) 등의 방법으로 게이트 전극(11)이 형성된 기판(10) 위에 도포한 후, 열을 가하여 가교시킴으로서 절연층(12)을 형성할 수 있다.After forming the gate electrode 11, the insulating layer 12 is formed on the substrate 10 on which the gate electrode 11 is formed (c). The insulating layer 12 may be made of various materials that may be used as insulating layers of polyvinylphenol (PVP), polyvinylalcohol (PVA), PMMA, or other conventional organic thin film transistors. The insulating layer 12 may be made through various thin film forming processes. For example, a dielectric material selected from polyvinylphenol (PVP), polyvinylalcohol (PVA), and PMMA is dissolved in a solvent together with a crosslinking agent to form an insulator solution, and the insulator solution is spin gated to form a gate electrode. After apply | coating on the board | substrate 10 in which (11) was formed, the insulating layer 12 can be formed by crosslinking by applying heat.
절연층(12)을 형성한 후, 절연층(12) 위에 반도체층(13)을 형성한다(d). 반도체층(13)은 펜타센(pentacene), TIPS-펜타센, P3HT(Poly(3-alkyl)thiophene), PBTTT(poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) 중에서 선택된 소재, 또는 통상적인 유기박막 트랜지스터의 반도체층으로 이용될 수 있는 다양한 소재로 이루어질 수 있고, 각종 성막 공정을 통해 절연층(12) 위에 형성될 수 있다.After the insulating layer 12 is formed, the semiconductor layer 13 is formed on the insulating layer 12 (d). The semiconductor layer 13 may be made of pentacene, TIPS-pentacene, poly (3-alkyl) thiophene (P3HT), poly (2,5-bis (3-alkylthiophen-2-yl) thieno [3,] 2-b] thiophene), or various materials that can be used as a semiconductor layer of a conventional organic thin film transistor, and may be formed on the insulating layer 12 through various film forming processes.
반도체층(13)의 형성 후, 반도체층(13)의 표면을 친수성이 향상되도록 표면 개질할 수 있다. 반도체층(13)에 대한 친수성 표면 개질은 후술할 개시제 용액(19)이 반도체층(13)에 양호하게 인쇄될 수 있도록 하기 위한 것이다. 반도체층(13)을 친수성 표면 개질하는 방법으로는 플라즈마를 이용하는 표면처리, 자외선이나 감마선을 이용하는 표면처리, 기계적인 표면처리, 화학 반응을 이용하는 표면처리 등 다양한 방법이 이용될 수 있다. 이러한 친수성 표면 개질을 통해 반도체층(13)의 표면이 친수성으로 개질되고 표면 에너지가 증가됨으로써 개시제 용액(19)이 반도체층(13) 표면에 균일하게 인쇄될 수 있다. 다양한 친수성 표면 개질 방법 중에서 O2 플라즈마 표면처리는 처리 세기나 처리 시간을 잘 조절할 경우 반도체층(13)의 표면에 손상을 덜 주면서 친수성을 향상시킬 수 있는 방법이다.After the formation of the semiconductor layer 13, the surface of the semiconductor layer 13 may be surface modified to improve hydrophilicity. The hydrophilic surface modification for the semiconductor layer 13 is to enable the initiator solution 19 to be described later to be well printed on the semiconductor layer 13. As a method for modifying the hydrophilic surface of the semiconductor layer 13, various methods such as surface treatment using plasma, surface treatment using ultraviolet rays or gamma rays, mechanical surface treatment, and surface treatment using chemical reactions can be used. Through the hydrophilic surface modification, the surface of the semiconductor layer 13 is modified to be hydrophilic and the surface energy is increased, so that the initiator solution 19 may be uniformly printed on the surface of the semiconductor layer 13. Among various hydrophilic surface modification methods, O 2 plasma surface treatment is a method of improving hydrophilicity while less damaging the surface of the semiconductor layer 13 when the treatment intensity or treatment time is well controlled.
다음으로, 반도체층(13)이 형성된 절연층(12) 위에 개시제(initiator) 용액(19)을 도포하여 반도체층(13)과 접하는 제 1 개시제 패턴(14) 및 제 2 개시제 패턴(15)을 형성한다(e). 개시제를 이용하면 전도성 고분자를 다양한 물체의 표면에 증착시킬 수 있다. 개시제로는 APS(ammonium persulfate), CuCl2, FeCl3, 또는 그 이외에 전도성 고분자 단량체를 중합시킬 수 있는 다양한 물질이 이용될 수 있다. 개시제 용액(19)은 개시제와 개시제 용액(19)의 물성 조절을 위한 첨가물을 증류수에 섞어 만들 수 있다.Next, the initiator solution 19 is applied onto the insulating layer 12 on which the semiconductor layer 13 is formed, and the first initiator pattern 14 and the second initiator pattern 15 contacting the semiconductor layer 13 are formed. (E). By using an initiator, conductive polymers can be deposited on the surfaces of various objects. Ammonium persulfate (APS), CuCl 2 , FeCl 3 , or other various materials capable of polymerizing conductive polymer monomers may be used as the initiator. The initiator solution 19 may be made by mixing an initiator and an additive for controlling physical properties of the initiator solution 19 in distilled water.
제 1 개시제 패턴(14) 및 제 2 개시제 패턴(15)은 개시제 용액(19)을 잉크젯 프린팅법으로 반도체층(13) 및 절연층(12) 위에 인쇄함으로써 형성된다. 잉크젯 프린팅법을 이용한 성막 공정에 있어서 성막 대상 물질의 종류, 잉크의 점도, 인쇄 방법 등에 따라 형성되는 박막의 품질이 달라진다.The first initiator pattern 14 and the second initiator pattern 15 are formed by printing the initiator solution 19 on the semiconductor layer 13 and the insulating layer 12 by inkjet printing. In the film forming process using the inkjet printing method, the quality of the thin film formed varies depending on the kind of material to be formed, the viscosity of the ink, the printing method, and the like.
도 2에 도시된 것과 같이, 개시제 용액(19)을 인쇄하는데 보급형의 데스크탑 프린터 카트리지(30)가 이용될 수 있다. 보급형의 데스크탑 프린터 카트리지(30)를 이용하면 성막 해상도는 다소 떨어지더라도 제조 비용을 크게 낮출 수 있는 장점이 있다. 데스크탑 프린터 카트리지(30)로 개시제 용액(19)을 인쇄하여 양호한 형태의 개시제 패턴(14)(15)을 형성하기 위해서는 개시제 용액(19)의 물성이 중요하다.As shown in FIG. 2, a low cost desktop printer cartridge 30 can be used to print the initiator solution 19. The use of the entry-level desktop printer cartridge 30 has an advantage of greatly lowering the manufacturing cost even though the film formation resolution is somewhat reduced. The physical properties of the initiator solution 19 are important for printing the initiator solution 19 with the desktop printer cartridge 30 to form the initiator patterns 14 and 15 in good form.
구체적으로, 개시제 용액의 점도는 1mPa·s ~ 30mPa·s이고, 개시제 용액(19)의 표면 에너지는 30mN·m-1 이상인 것이 좋다. 개시제 용액(19)의 점도와 표면 에너지가 이러한 값을 가질 때, 개시제 용액(19)이 데스크탑 프린터 카트리지(30)를 통해 원활하게 분사될 수 있고, 반도체층(13) 표면에 형성되는 개시제 패턴(14)(15)의 에지 라인(edge line)이 양호하게 나타날 수 있다. 개시제 패턴(14)(15) 에지 라인의 거칠기가 커지면 개시제 패턴(14)(15) 형상대로 형성되는 소스 전극(16) 및 드레인 전극(17)의 형상이 불규칙해지고, 소스 전극(16) 및 드레인 전극(17) 사이의 채널 길이가 불균일하게 나타나 바람직하지 않다.Specifically, the viscosity of the initiator solution is 1 mPa · s to 30 mPa · s, and the surface energy of the initiator solution 19 is preferably 30 mN · m −1 or more. When the viscosity and surface energy of the initiator solution 19 have these values, the initiator solution 19 can be smoothly sprayed through the desktop printer cartridge 30, and the initiator pattern (formed on the surface of the semiconductor layer 13) 14) The edge lines of 15 may appear well. When the roughness of the edge lines of the initiator patterns 14 and 15 becomes large, the shapes of the source electrode 16 and the drain electrode 17 formed in the shape of the initiator patterns 14 and 15 become irregular, and the source electrode 16 and the drain The channel length between the electrodes 17 is uneven, which is undesirable.
개시제 용액(19)의 물성을 조절하기 위한 첨가물로는 PSS(poly(4-styrenesulfonate))가 이용될 수 있다. PSS는 전기적으로 부도체로 일정 농도 이상에서는 뭉침 현상이 발생하여 전기적 성질을 떨어뜨리지만, 낮은 표면 에너지로 인해 개시제 패턴(14)(15)과 반도체층과의 접촉력을 증가시켜 개시제 패턴(14)(15)의 에지 라인 해상도를 향상시켜 준다. 따라서 PSS의 첨가량을 적절하게 조절하면 소스 전극(16) 및 드레인 전극(17)의 전기적 성질을 저해하지 않으면서 소스 전극(16) 및 드레인 전극(17)의 패턴 해상도를 향상시켜 소자 성능 향상을 기대할 수 있다.PS (polystyrene 4-styrenesulfonate) (PSS) may be used as an additive for adjusting the physical properties of the initiator solution (19). PSS is an electrical nonconductor, which causes agglomeration above a certain concentration and degrades electrical properties, but due to the low surface energy, PSS increases the contact force between the initiator patterns 14 and 15 and the semiconductor layer, 15) to improve the edge line resolution. Therefore, if the amount of PSS is properly adjusted, the pattern resolution of the source electrode 16 and the drain electrode 17 can be improved without impairing the electrical properties of the source electrode 16 and the drain electrode 17, thereby improving device performance. Can be.
다시 도 1을 참조하면, 반도체층(13) 위에 제 1 개시제 패턴(14) 및 제 2 개시제 패턴(15)을 형성한 후, 제 1 개시제 패턴(14) 및 제 2 개시제 패턴(15) 위에 전도성 고분자 단량체을 증집 또는 포집하여 전도성 고분자로 이루어진 소스 전극(16) 및 드레인 전극(17)을 형성한다. 전도성 고분자로는 PEDOT/PSS(poly(3,4-ethylenedioxythiophene)/poly(4-styrene sulfonate), PANI(polyaniline), PPy(polypyrrole), PT(polythiophene), PA(polyacetylene), PPV(poly para-phenylene vinylene), 또는 이 이외에 통상적으로 알려진 다양한 전도성 고분자가 이용될 수 있다.Referring back to FIG. 1, after the first initiator pattern 14 and the second initiator pattern 15 are formed on the semiconductor layer 13, the conductive material is formed on the first initiator pattern 14 and the second initiator pattern 15. The polymer monomer is accumulated or collected to form a source electrode 16 and a drain electrode 17 made of a conductive polymer. Conductive polymers include PEDOT / PSS (poly (3,4-ethylenedioxythiophene) / poly (4-styrene sulfonate), PANI (polyaniline), PPy (polypyrrole), PT (polythiophene), PA (polyacetylene), PPV (poly para- phenylene vinylene), or various other conventionally known conductive polymers can be used.
제 1 개시제 패턴(14) 및 제 2 개시제 패턴(15) 위에 전도성 고분자를 응집 또는 포집하는 방법으로는 기상증착중합법이 이용된다. 기상증착중합법을 이용하면 전도성 고분자 단량체를 개시제 패턴(14)(15) 위에서 중합시킬 수 있으며, 그 구체적인 과정은 다음과 같다.As a method of agglomerating or collecting the conductive polymer on the first initiator pattern 14 and the second initiator pattern 15, vapor phase deposition polymerization is used. Using the vapor deposition polymerization method, the conductive polymer monomer may be polymerized on the initiator patterns 14 and 15, and the specific process thereof is as follows.
도 3에 도시된 것과 같이, 절연층(12), 반도체층(13), 제 1 개시제 패턴(14) 및 제 2 개시제 패턴(15)이 형성된 기판(10)을 감압 챔버(40)에 넣고, 감압 챔버(40)에 전도성 고분자 단량체 증기(20)를 공급한다. 기판(10)을 전도성 고분자 단량체 증기(20) 중에 일정시간 동안 노출시키면, 증기화된 전도성 고분자 단량체가 제 1 개시제 패턴(14) 및 제 2 개시제 패턴(15)에만 흡수되어 제 1 개시제 패턴(14) 및 제 2 개시제 패턴(15) 위에서 중합된다. 이로써 반도체층(13) 위에는 제 1 개시제 패턴(14) 및 제 2 개시제 패턴(15)의 형상대로 전도성 고분자로 이루어진 소스 전극(16) 및 드레인 전극(17)이 형성된다.As shown in FIG. 3, the substrate 10 having the insulating layer 12, the semiconductor layer 13, the first initiator pattern 14, and the second initiator pattern 15 is placed in the decompression chamber 40. The conductive polymer monomer vapor 20 is supplied to the decompression chamber 40. When the substrate 10 is exposed to the conductive polymer monomer vapor 20 for a predetermined time, the vaporized conductive polymer monomer is absorbed only in the first initiator pattern 14 and the second initiator pattern 15, and thus the first initiator pattern 14 ) And the second initiator pattern 15. As a result, a source electrode 16 and a drain electrode 17 made of a conductive polymer are formed in the shape of the first initiator pattern 14 and the second initiator pattern 15 on the semiconductor layer 13.
이러한 과정으로 만들어진 유기박막 트랜지스터(18)는 마지막으로 습기 제거를 위한 열처리 공정을 거칠 수 있다. 유기박막 트랜지스터(18)에 열을 가하여 습기를 제거하면 유기박막 트랜지스터(18)의 전기적 성능을 향상시킬 수 있다.Finally, the organic thin film transistor 18 may be subjected to a heat treatment process for removing moisture. If the moisture is removed by applying heat to the organic thin film transistor 18, the electrical performance of the organic thin film transistor 18 may be improved.
한편, 본 발명에 의한 전도성 고분자 전극의 형성방법은 상술한 유기박막 트랜지스터의 제조방법 중에서 소스 전극 및 드레인 전극을 형성하는 방법과 같다. 즉, 기판 위에 개시제 용액을 잉크젯 프린팅법으로 인쇄하여 개시제 패턴을 형성한 후, 개시제 패턴을 전도성 고분자 단량체 증기 중에 노출시켜 개시제 패턴 위에 전도성 고분자 단량체를 응집 및 중합시킴으로써, 개시제 패턴의 형상대로 전도성 고분자로 이루어진 전극을 형성할 수 있다. 이렇게 형성된 전극은 기판에 증착된 상태로 이용될 수도 있고, 기판에서 박리된 후 다른 기판 등으로 옮겨져 이용될 수도 있다.Meanwhile, the method of forming the conductive polymer electrode according to the present invention is the same as the method of forming the source electrode and the drain electrode in the above-described method of manufacturing the organic thin film transistor. That is, after the initiator solution is printed on the substrate by inkjet printing to form an initiator pattern, the initiator pattern is exposed in the conductive polymer monomer vapor to aggregate and polymerize the conductive polymer monomer on the initiator pattern, thereby forming a conductive polymer in the shape of the initiator pattern. The formed electrode can be formed. The electrode thus formed may be used in a state of being deposited on a substrate, or may be removed from the substrate and then transferred to another substrate.
이와 같이, 본 발명에 의한 전도성 고분자 전극의 형성방법은 개시제 용액을 잉크젯 프린팅법으로 인쇄하여 개시제 패턴을 만들고, 개시제 패턴을 전도성 고분자 단량체 증기 중에 노출시켜 개시제 패턴 위에 전도성 고분자 단량체를 응집 및 중합시킴으로써, 저비용으로 전도성 고분자 전극을 형성할 수 있다. As described above, the method for forming a conductive polymer electrode according to the present invention is to print an initiator solution by inkjet printing to form an initiator pattern, and expose the initiator pattern to the conductive polymer monomer vapor to aggregate and polymerize the conductive polymer monomer on the initiator pattern. The conductive polymer electrode can be formed at low cost.
이하에서는, 본 발명을 실시예에 의거하여 설명한다.In the following, the present invention will be described based on Examples.
아래의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 실시예로 한정되는 것은 아니다.The following examples are merely illustrative of the present invention, the present invention is not limited to the examples.
<실시예><Example>
연질의 PES(Polyethylenesulfone, i-component Co. Ltd.) 기판을 준비하고, PES 기판 위에 금(Au)을 1.0Å·s-1의 증착 속도로 열증착하여 50nm의 게이트 전극을 형성하였다.A soft PES (Polyethylenesulfone, i-component Co. Ltd.) substrate was prepared, and gold (Au) was thermally deposited on the PES substrate at a deposition rate of 1.0 Pa · s −1 to form a gate electrode of 50 nm.
다음으로, 유전체 물질인 PVP(poly(4-vinylphenol), Mw~30,000g/mol, Sigma Aldrich Co. Ltd.)와 가교제인 Poly(melamine-co-formaldehyde, Sigma Aldrich Co. Ltd.)를 2대 1의 몰비로 용매인 PGMEA(propylene glycol methyl ether acetate, Sigma Aldrich Co. Ltd.) 10ml에 용해하여 PVP 절연체 용액을 만들었다. 그리고 PVP 절연체 용액을 PES 기판 위에 4000rpm으로 30초 동안 스핀 캐스트(spin cast)하고, 130℃로 15분 동안, 그리고 질소(N2) 분위기에서 200℃로 5분 동안 가교하여 300nm의 PVP 절연층을 형성하였다.Next, PVP (poly (4-vinylphenol), Mw ~ 30,000g / mol, Sigma Aldrich Co. Ltd.) dielectric material and Poly (melamine-co-formaldehyde, Sigma Aldrich Co. Ltd.) A PVP insulator solution was prepared by dissolving in 10 ml of solvent PGMEA (propylene glycol methyl ether acetate, Sigma Aldrich Co. Ltd.) at a molar ratio of 1. The PVP insulator solution was spin cast on the PES substrate at 4000 rpm for 30 seconds, crosslinked at 130 ° C. for 15 minutes, and at 200 ° C. for 5 minutes in nitrogen (N 2 ) atmosphere to form a 300 nm PVP insulating layer. Formed.
PVP 절연층의 형성 후, PVP 절연층이 형성된 PES 기판을 진공 챔버에 넣고 상온에서 5×10-6 torr 이하의 압력을 유지하면서 펜타센(Pentacene, 99.995% trace metals basis, Sigma Aldrich Co. Ltd.)을 0.4Å·s-1의 증착 속도로 증착하여 PVP 절연층 위에 펜타센 반도체층을 형성하였다. 펜타센은 다섯 개의 벤젠 분자가 붙어있는 방향족 고리 화합물로서, 전하의 높은 이동도 때문에 유기 반도체용 소재로 각광받고 있는 물질이다. 펜타센 반도체층의 형성후, 펜타센 반도체층을 80W 세기로 1초 동안 O2 플라즈마 처리하여 펜타센 반도체층을 친수성 표면 개질하였다.After the formation of the PVP insulation layer, the PES substrate on which the PVP insulation layer was formed was placed in a vacuum chamber and maintained at a pressure of 5 × 10 −6 torr or lower at room temperature while pentacene (Pentacene, 99.995% trace metals basis, Sigma Aldrich Co. Ltd. ) Was deposited at a deposition rate of 0.4 Pa · s −1 to form a pentacene semiconductor layer on the PVP insulating layer. Pentacene is an aromatic ring compound to which five benzene molecules are attached, and is attracting attention as an organic semiconductor material due to its high mobility of charge. After the pentacene semiconductor layer was formed, the pentacene semiconductor layer was subjected to O 2 plasma treatment at 80 W intensity for 1 second to modify the pentacene semiconductor layer on a hydrophilic surface.
다음으로, 산화제인 APS(ammonium persulfate, 98%, Sigma Aldrich Co. Ltd.) 30wt%와 첨가제인 PSS(poly(4-styrenesulfonate, 30 wt% in H2O,Mw~70,000 g/mol, Sigma Aldrich Co. Ltd.)를 10mL의 증류수에 섞어 개시제 용액을 만들고, 이를 데스크탑 프린터 카트리지를 이용하여 펜타센 반도체층이 형성된 PVP 절연층 위에 도포하여 개시제 패턴을 형성하였다. 이 과정에서 PSS의 첨가량을 0wt%, 5wt%, 6wt%, 9wt% 및 12wt%로 조절하였고, 각각의 PSS 첨가량에 따른 개시제 용액및 개시제 패턴을 만들었다.Next, the oxidizing agent APS (ammonium persulfate, 98%, Sigma Aldrich Co. Ltd.) 30 wt% and the additive PSS (poly (4-styrenesulfonate, 30 wt% in H2O, Mw ~ 70,000 g / mol, Sigma Aldrich Co. Ltd.) was mixed with 10 mL of distilled water to form an initiator solution, which was then coated on a PVP insulating layer on which a pentacene semiconductor layer was formed using a desktop printer cartridge to form an initiator pattern. %, 6wt%, 9wt% and 12wt% were adjusted, and initiator solution and initiator pattern were made according to the amount of PSS added.
펜타센 반도체층 위에 개시제 패턴을 형성한 다음, 개시제 패턴이 형성된 PES 기판을 피롤 단량체 증기가 공급된 감압 챔버에 넣고, 10분 동안 피롤 단량체 증기 중에 노출시켜 개시제 패턴 위에 피롤 소스 전극 및 드레인 전극을 증기증착중합하였다. 전도성 고분자인 피롤(pyrrole)은 4개의 탄소 원자와 1개의 질소 원자가 고리구조를 이루고 있는, 헤테로고리 계열에 속하는 유기화합물이다.After the initiator pattern was formed on the pentacene semiconductor layer, the PES substrate on which the initiator pattern was formed was placed in a decompression chamber supplied with pyrrole monomer vapor, and exposed to pyrrole monomer vapor for 10 minutes to vaporize the pyrrole source electrode and the drain electrode on the initiator pattern. Deposition polymerization. Pyrrole, a conductive polymer, is an organic compound belonging to the heterocyclic group in which four carbon atoms and one nitrogen atom form a ring structure.
마지막으로, 피롤 소스 전극 및 드레인 전극의 잔류 습기를 제거하여 전기적 성능을 향상시키기 위해 완성된 유기박막 트랜지스터를 100℃로 10분 동안 가열하였다.Finally, the completed organic thin film transistor was heated to 100 ° C. for 10 minutes to remove residual moisture of the pyrrole source electrode and the drain electrode to improve electrical performance.
도 4는 본 발명의 실시예에 의한 유기박막 트랜지스터의 제조방법에 의해 제조된 유기박막 트랜지스터를 나타낸 것이다. 도 4에 나타낸 유기박막 트랜지스터에 있어서 소스 전극과 드레인 전극 각각의 두께는 450nm이고, 소스 전극과 드레인 전극 사이의 채널 길이는 135㎛이다.4 illustrates an organic thin film transistor manufactured by a method of manufacturing an organic thin film transistor according to an embodiment of the present invention. In the organic thin film transistor shown in FIG. 4, the thickness of each of the source electrode and the drain electrode is 450 nm, and the channel length between the source electrode and the drain electrode is 135 μm.
개시제 용액에 첨가되는 PSS의 첨가량은 소스 전극 및 드레인 전극의 에지 라인 거칠기와 표면 저항에 영향을 준다. 본 실시예에서 개시제 용액에 첨가되는 PSS의 첨가량을 변화시키면서 PSS의 첨가량 변화에 따른 소스 전극 및 드레인 전극의 에지 라인 거칠기와 표면 저항을 살펴본 결과는 다음과 같다.The amount of PSS added to the initiator solution affects the edge line roughness and surface resistance of the source and drain electrodes. In the present embodiment, the edge line roughness and surface resistance of the source electrode and the drain electrode according to the change amount of the PSS while changing the amount of PSS added to the initiator solution are as follows.
소스 전극 및 드레인 전극의 에지 라인에 형성되는 거친 돌출부는 PSS의 첨가량이 6wt%까지 증가할 때까지 감소하는 양상을 보였다. 그러나 PSS의 첨가량이 6wt%를 초과하자 소스 전극 및 드레인 전극의 에지 라인 거칠기는 오히려 증가하였다. 이것은 PSS의 첨가량이 6wt%를 넘으면 데스크탑 프린터 카트리지의 노즐이 막히기 시작하면서 에지 라인의 정밀도가 떨어지기 때문이다.The coarse protrusions formed on the edge lines of the source electrode and the drain electrode decreased until the amount of PSS increased to 6wt%. However, when the addition amount of PSS exceeded 6 wt%, the edge line roughness of the source electrode and the drain electrode was rather increased. This is because when the addition amount of PSS exceeds 6 wt%, the nozzle of the desktop printer cartridge starts to clog and the edge line accuracy is lowered.
한편, PSS의 첨가량에 따른 소스 전극 및 드레인 전극의 표면 저항 변화는 도 5에 나타난 그래프와 같다.Meanwhile, surface resistance changes of the source electrode and the drain electrode according to the amount of PSS added are as shown in FIG. 5.
4 탐침법에 의한 측정 결과, 소스 전극 및 드레인 전극의 표면 저항은 PSS를 첨가하지 않은 경우 2.75×103Ω/sq로 나타났고, PSS의 첨가량이 12wt%일 때 8.61×104Ω/sq로 증가하는 것으로 나타났다. 도 5에 나타난 것과 같은 PSS의 첨가량에 따른 소스 전극 및 드레인 전극의 표면 저항의 변화를 살펴보면, 개시제 용액 중에 PSS의 첨가량은 5wt% ~ 9wt% 사이인 것이 바람직하다. PSS의 첨가량이 5wt% ~ 9wt% 사이의 값을 가질 때 소스 전극 및 드레인 전극의 표면 저항이 유기 전극으로 이용하기에 적합하기 때문이다. 이에 더해, 소스 전극 및 드레인 전극의 에지 라인 거칠기까지 고려하면, 개시제 용액 중에 PSS의 첨가량은 6wt%가 더욱 바람직하다. PSS의 첨가량이 6wt%일 때, 소스 전극 및 드레인 전극의 표면 저항이 1.74×104Ω/sq로 유기 전극으로 이용하기에 충분한 값을 나타내고, 에지 라인의 거칠기도 작기 때문이다.As a result of the measurement by the 4 probe method, the surface resistance of the source electrode and the drain electrode was 2.75 × 10 3 Ω / sq without PSS, and it was 8.61 × 10 4 Ω / sq when the amount of PSS added was 12wt%. It appeared to increase. Looking at the change in the surface resistance of the source electrode and the drain electrode according to the addition amount of PSS as shown in Figure 5, it is preferable that the addition amount of PSS in the initiator solution is between 5wt% ~ 9wt%. This is because the surface resistance of the source electrode and the drain electrode is suitable for use as the organic electrode when the amount of the PSS added has a value between 5 wt% and 9 wt%. In addition, considering the edge line roughness of the source electrode and the drain electrode, the addition amount of PSS in the initiator solution is more preferably 6wt%. This is because, when the amount of PSS added is 6 wt%, the surface resistance of the source electrode and the drain electrode is 1.74 × 10 4 Pa / sq, which is sufficient to be used as the organic electrode, and the roughness of the edge line is small.
앞에서 설명되고 도면에 도시된 본 발명의 실시예는 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안 된다. 본 발명의 보호범위는 특허청구범위에 기재된 사항에 의해서만 제한되고, 본 발명의 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 및 변경하는 것이 가능하다. 따라서, 이러한 개량 및 변경은 해당 기술분야에서 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속하게 될 것이다.Embodiments of the present invention described above and illustrated in the drawings should not be construed as limiting the technical spirit of the present invention. The protection scope of the present invention is limited only by the matters described in the claims, and those skilled in the art can improve and change the technical idea of the present invention in various forms. Accordingly, such improvements and modifications will fall within the protection scope of the present invention as long as it will be apparent to those skilled in the art.

Claims (16)

  1. (a) 기판 위에 개시제 용액을 잉크젯 프린팅법으로 도포하여 상기 기판 위에 개시제 패턴을 형성하는 단계; 및(a) applying an initiator solution on the substrate by inkjet printing to form an initiator pattern on the substrate; And
    (b) 상기 개시제 패턴이 형성된 상기 기판을 감압 챔버에 넣고 상기 감압 챔버에 전도성 고분자 단량체 증기를 공급하여, 상기 개시제 패턴 위에 상기 전도성 고분자 단량체를 응집 및 중합시키는 단계;를 포함하는 것을 특징으로 하는 전도성 고분자 전극의 형성방법.(b) placing the substrate on which the initiator pattern is formed into a decompression chamber and supplying a conductive polymer monomer vapor to the decompression chamber to agglomerate and polymerize the conductive polymer monomer on the initiator pattern. Method of forming a polymer electrode.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 (a) 단계 이전에 상기 기판에 상기 개시제 용액이 원활하게 인쇄될 수 있도록 상기 기판 표면을 친수성이 향상되도록 표면 개질하는 단계를 더 포함하는 것을 특징으로 하는 전도성 고분자 전극의 형성방법.And forming a surface of the substrate to improve hydrophilicity such that the initiator solution can be smoothly printed onto the substrate before step (a).
  3. 제 2 항에 있어서,The method of claim 2,
    상기 기판에 대한 친수성 표면 개질은 O2 플라즈마 표면처리를 통해 이루어지는 것을 특징으로 하는 전도성 고분자 전극의 형성방법.Hydrophilic surface modification to the substrate is a method of forming a conductive polymer electrode, characterized in that through the O 2 plasma surface treatment.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 전도성 고분자는 PEDOT/PSS(poly(3,4-ethylenedioxythiophene)/poly(4-styrene sulfonate), PANI(polyaniline), PPy(polypyrrole), PT(polythiophene), PA(polyacetylene), PPV(poly para-phenylene vinylene) 중에서 선택되는 것을 특징으로 하는 전도성 고분자 전극의 형성방법.The conductive polymer is PEDOT / PSS (poly (3,4-ethylenedioxythiophene) / poly (4-styrene sulfonate), PANI (polyaniline), PPy (polypyrrole), PT (polythiophene), PA (polyacetylene), PPV (poly para- phenylene vinylene).
  5. 제 1 항에 있어서,The method of claim 1,
    상기 개시제 용액은 APS(ammonium persulfate), CuCl2, FeCl3 중에서 선택된 개시제와 증류수를 포함하는 것을 특징으로 하는 전도성 고분자 전극의 형성방법.The initiator solution is a method of forming a conductive polymer electrode, characterized in that it comprises an initiator selected from APS (ammonium persulfate), CuCl 2 , FeCl 3 and distilled water.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 개시제 용액은 PSS(poly(4-styrenesulfonate))를 더 포함하는 것을 특징으로 하는 전도성 고분자 전극의 형성방법.The initiator solution is a method of forming a conductive polymer electrode, characterized in that it further comprises a poly (4-styrenesulfonate) (PSS).
  7. 제 6 항에 있어서,The method of claim 6,
    상기 개시제 용액 중에 상기 PSS의 함유량은 5wt% ~ 9wt%인 것을 특징으로 하는 전도성 고분자 전극의 형성방법.The method of forming a conductive polymer electrode, characterized in that the content of the PSS in the initiator solution is 5wt% ~ 9wt%.
  8. (a) 기판 위에 게이트 전극을 형성하는 단계;(a) forming a gate electrode over the substrate;
    (b) 상기 기판 위에 상기 게이트 전극을 덮도록 절연층을 형성하는 단계;(b) forming an insulating layer on the substrate to cover the gate electrode;
    (c) 상기 절연층 위에 반도체층을 형성하는 단계;(c) forming a semiconductor layer on the insulating layer;
    (d) 상기 절연층 위에 개시제 용액을 잉크젯 프린팅법으로 도포하여 상기 절연층 위에 상기 반도체층과 접하는 제 1 개시제 패턴을 형성하는 단계;(d) applying an initiator solution on the insulating layer by inkjet printing to form a first initiator pattern on the insulating layer and in contact with the semiconductor layer;
    (e) 상기 절연층 위에 개시제 용액을 잉크젯 프린팅법으로 도포하여 상기 절연층 위에 상기 제 1 개시제 패턴과 이격되고 상기 반도체층과 접하는 제 2 개시제 패턴을 형성하는 단계; 및(e) applying an initiator solution on the insulating layer by inkjet printing to form a second initiator pattern spaced apart from the first initiator pattern and in contact with the semiconductor layer on the insulating layer; And
    (f) 상기 게이트 전극, 상기 절연층, 상기 반도체층, 상기 제 1 개시제 패턴 및 상기 제 2 개시제 패턴이 형성된 상기 기판을 감압 챔버에 넣고 상기 감압 챔버에 전도성 고분자 단량체 증기를 공급하여, 상기 제 1 개시제 패턴 위에 상기 전도성 고분자 단량체를 응집 및 중합시킴으로써 상기 제 1 개시제 패턴 형상대로 소스 전극을 형성하고, 상기 제 2 개시제 패턴 위에 상기 전도성 고분자 단량체를 응집 및 중합시킴으로써 상기 제 2 개시제 패턴 형상대로 드레인 전극을 형성하는 단계;를 포함하는 것을 특징으로 하는 유기박막 트랜지스터의 제조방법.(f) inserting the substrate on which the gate electrode, the insulating layer, the semiconductor layer, the first initiator pattern, and the second initiator pattern are formed into a decompression chamber, and supplying a conductive polymer monomer vapor to the decompression chamber, thereby providing the first Aggregating and polymerizing the conductive polymer monomer on the initiator pattern to form a source electrode in the shape of the first initiator pattern, and coagulating and polymerizing the conductive polymer monomer on the second initiator pattern to form the drain electrode in the shape of the second initiator pattern. Forming method of manufacturing an organic thin film transistor comprising a.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 (c) 단계 이후 상기 (d) 단계 이전에, 상기 반도체층에 상기 개시제 용액이 원활하게 인쇄될 수 있도록 상기 반도체층의 표면을 친수성이 향상되도록 표면 개질하는 단계를 더 포함하는 것을 특징으로 하는 유기박막 트랜지스터의 제조방법.After the step (c) and before the step (d), further comprising surface modification of the surface of the semiconductor layer to improve hydrophilicity so that the initiator solution can be smoothly printed on the semiconductor layer. Method of manufacturing an organic thin film transistor.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 반도체층에 대한 친수성 표면 개질은 O2 플라즈마 표면처리를 통해 이루어지는 것을 특징으로 하는 유기박막 트랜지스터의 제조방법.Hydrophilic surface modification to the semiconductor layer is a method of manufacturing an organic thin film transistor, characterized in that through the O 2 plasma surface treatment.
  11. 제 8 항에 있어서,The method of claim 8,
    상기 전도성 고분자는 PEDOT/PSS(poly(3,4-ethylenedioxythiophene)/poly(4-styrene sulfonate), PANI(polyaniline), PPy(polypyrrole), PT(polythiophene), PA(polyacetylene), PPV(poly para-phenylene vinylene) 중에서 선택되는 것을 특징으로 하는 유기박막 트랜지스터의 제조방법.The conductive polymer is PEDOT / PSS (poly (3,4-ethylenedioxythiophene) / poly (4-styrene sulfonate), PANI (polyaniline), PPy (polypyrrole), PT (polythiophene), PA (polyacetylene), PPV (poly para- phenylene vinylene). The method of manufacturing an organic thin film transistor, characterized in that.
  12. 제 8 항에 있어서,The method of claim 8,
    상기 개시제 용액은 APS(ammonium persulfate), CuCl2, FeCl3 중에서 선택된 개시제와 증류수를 포함하는 것을 특징으로 하는 유기박막 트랜지스터의 제조방법.The initiator solution is a method of manufacturing an organic thin film transistor, characterized in that it comprises an initiator selected from APS (ammonium persulfate), CuCl 2 , FeCl 3 and distilled water.
  13. 제 12 항에 있어서,The method of claim 12,
    상기 개시제 용액은 PSS(poly(4-styrenesulfonate))를 더 포함하는 것을 특징으로 하는 유기박막 트랜지스터의 제조방법.The initiator solution is a method of manufacturing an organic thin film transistor, characterized in that it further comprises a poly (4-styrenesulfonate) (PSS).
  14. 제 13 항에 있어서,The method of claim 13,
    상기 개시제 용액 중에 상기 PSS의 함유량은 5wt% ~ 9wt%인 것을 특징으로 하는 유기박막 트랜지스터의 제조방법.The method of manufacturing an organic thin film transistor, characterized in that the content of the PSS in the initiator solution is 5wt% ~ 9wt%.
  15. 제 8 항에 있어서,The method of claim 8,
    상기 절연층은 PVP(polyvinylphenol), PVA(polyvinylalcohol), PMMA 중에서 선택된 소재로 이루어지는 것을 특징으로 하는 유기박막 트랜지스터의 제조방법.The insulating layer is a method of manufacturing an organic thin film transistor, characterized in that made of a material selected from PVP (polyvinylphenol), PVA (polyvinylalcohol), PMMA.
  16. 제 8 항에 있어서,The method of claim 8,
    상기 반도체층은 펜타센(pentacene), TIPS-펜타센, P3HT(Poly(3-alkyl)thiophene), PBTTT(poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) 중에서 선택된 소재로 이루어지는 것을 특징으로 하는 유기박막 트랜지스터의 제조방법.The semiconductor layer may include pentacene, TIPS-pentacene, poly (3-alkyl) thiophene (P3HT), poly (2,5-bis (3-alkylthiophen-2-yl) thieno [3,2- b] thiophene) manufacturing method of an organic thin film transistor, characterized in that consisting of a material selected from.
PCT/KR2012/005313 2011-07-29 2012-07-04 Method for forming conductive polymer electrode and method for manufacturing organic thin film transistor using same WO2013018995A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110076008A KR20130014090A (en) 2011-07-29 2011-07-29 Method for forming conducting polymer electrode and method for manufacturing organic thin-film transistor using the same
KR10-2011-0076008 2011-07-29

Publications (1)

Publication Number Publication Date
WO2013018995A1 true WO2013018995A1 (en) 2013-02-07

Family

ID=47629479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005313 WO2013018995A1 (en) 2011-07-29 2012-07-04 Method for forming conductive polymer electrode and method for manufacturing organic thin film transistor using same

Country Status (2)

Country Link
KR (1) KR20130014090A (en)
WO (1) WO2013018995A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024028539A1 (en) * 2022-08-05 2024-02-08 Turun Yliopisto A method for manufacturing a patterned polymer film structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100058364A (en) * 2008-11-24 2010-06-03 서울대학교산학협력단 Patterning method of conducting polymer using inkjet printing and vapor deposition polymerization
KR20110065206A (en) * 2009-12-09 2011-06-15 서울대학교산학협력단 A flexible organic thin film transistor prepared by inkjet printing and vapor deposition polymerization
KR20110074310A (en) * 2009-12-24 2011-06-30 서울대학교산학협력단 The fabrication method of electrochromic device using vapor deposition polymerization-mediated printing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100058364A (en) * 2008-11-24 2010-06-03 서울대학교산학협력단 Patterning method of conducting polymer using inkjet printing and vapor deposition polymerization
KR20110065206A (en) * 2009-12-09 2011-06-15 서울대학교산학협력단 A flexible organic thin film transistor prepared by inkjet printing and vapor deposition polymerization
KR20110074310A (en) * 2009-12-24 2011-06-30 서울대학교산학협력단 The fabrication method of electrochromic device using vapor deposition polymerization-mediated printing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024028539A1 (en) * 2022-08-05 2024-02-08 Turun Yliopisto A method for manufacturing a patterned polymer film structure

Also Published As

Publication number Publication date
KR20130014090A (en) 2013-02-07

Similar Documents

Publication Publication Date Title
JP4509228B2 (en) Field effect transistor made of organic material and method of manufacturing the same
US7632703B2 (en) Organic thin-film transistors
KR102082019B1 (en) Bank structures for organic electronic devices
JP5428104B2 (en) Organic semiconductor composition
JP2005535120A (en) Organic electronic devices
KR101887167B1 (en) Electronic device
GB2413895A (en) Patterning substrates by ink-jet or pad printing
EP2117059B1 (en) Organic Thin Film Transistors
JP2004128469A (en) Field-effect transistor
Bäcklund et al. Towards all-polymer field-effect transistors with solution processable materials
JP2009246342A (en) Field-effect transistor, method of manufacturing the same, and image display apparatus
KR101050588B1 (en) Organic insulating film pattern formation method
JP5715664B2 (en) Organic semiconductor composition
WO2013018995A1 (en) Method for forming conductive polymer electrode and method for manufacturing organic thin film transistor using same
EP1976040B1 (en) Insulating material for organic field effect transistors
WO2017128697A1 (en) Organic thin film transistor, and fabricating method thereof
JP4572515B2 (en) Field effect transistor
WO2007039547A1 (en) Organic compositions
US7045470B2 (en) Methods of making thin dielectric layers on substrates
KR101005808B1 (en) A method for preparing photo-crosslinkable organic gate insulator and organic thin film transistor device using the same
JP2010123952A (en) Thin-film transistor and semiconductor composition
KR20100040263A (en) Semiconducting ink formulation
JP2004063977A (en) Field effect transistor
JP5218812B2 (en) Organic thin film transistor
JP5030444B2 (en) Organic thin film transistor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12820350

Country of ref document: EP

Kind code of ref document: A1