WO2013018938A1 - 반도체 발광소자 - Google Patents

반도체 발광소자 Download PDF

Info

Publication number
WO2013018938A1
WO2013018938A1 PCT/KR2011/005589 KR2011005589W WO2013018938A1 WO 2013018938 A1 WO2013018938 A1 WO 2013018938A1 KR 2011005589 W KR2011005589 W KR 2011005589W WO 2013018938 A1 WO2013018938 A1 WO 2013018938A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
light emitting
semiconductor layer
finger
type semiconductor
Prior art date
Application number
PCT/KR2011/005589
Other languages
English (en)
French (fr)
Inventor
김재윤
김제원
이진복
황석민
하해수
이수열
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to CN201180072220.XA priority Critical patent/CN103650178A/zh
Priority to US14/129,524 priority patent/US20140131759A1/en
Priority to PCT/KR2011/005589 priority patent/WO2013018938A1/ko
Publication of WO2013018938A1 publication Critical patent/WO2013018938A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/387Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape with a plurality of electrode regions in direct contact with the semiconductor body and being electrically interconnected by another electrode layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Definitions

  • the present invention relates to a semiconductor light emitting device, and more particularly, to a semiconductor light emitting device having an electrode structure in which light loss caused by an electrode is minimized and current dissipation effects can be improved.
  • a semiconductor light emitting device is a semiconductor device capable of generating light of various colors based on recombination of electrons and holes at junctions of p and n type semiconductors when a current is applied.
  • Such semiconductor light emitting devices have a number of advantages, such as long lifespan, low power supply, excellent initial driving characteristics, high vibration resistance, etc., compared to filament based light emitting devices.
  • group III nitride semiconductors capable of emitting light in a blue series short wavelength region have been in the spotlight.
  • the nitride single crystal constituting the light emitting device using the group III nitride semiconductor is formed on a specific growth substrate, such as a sapphire or SiC substrate.
  • a specific growth substrate such as a sapphire or SiC substrate.
  • the arrangement of the electrodes is greatly limited. That is, in the conventional nitride semiconductor light emitting device, since the electrodes are generally arranged in the horizontal direction, the current flow becomes narrow. Due to such a narrow current flow, the operating voltage Vf of the light emitting device is increased to decrease the current efficiency, and at the same time, may be vulnerable to electrostatic discharge.
  • One object of the present invention is to provide a semiconductor light emitting device having an electrode structure in which the light loss by the electrode is minimized and the current dispersion effect can be improved.
  • an insulating layer may be interposed between the n-type and p-type fingers among the regions where the n-type and p-type fingers overlap each other.
  • the insulating layer may be formed in a region where the n-type semiconductor layer, the active layer and the p-type semiconductor layer are partially removed.
  • the insulating layer may be formed in a region where the n-type semiconductor layer, the active layer, the p-type semiconductor layer, and the p-type pad are partially removed.
  • it may further include a transparent electrode formed between the p-type semiconductor layer and the p-type electrode.
  • the light emitting structure forms a rectangular light emitting surface when viewed from the top of the p-type semiconductor layer
  • the n-type and p-type electrodes are each a horizontal line crossing the center of the light emitting surface, It may be arranged to have a symmetrical structure with respect to at least one of the vertical line and the diagonal line.
  • the n-type finger may be formed to extend from the n-type pad in two different directions and then formed to extend in the two different directions.
  • the p-type finger may have a portion formed inside the region defined by the n-type finger when viewed from the top of the light emitting structure.
  • the p-type finger may be formed to extend from the p-type pad in two different directions, and then may be formed to meet portions extending in the two different directions.
  • the n-type finger may have a portion formed inside the region defined by the p-type finger when viewed from the top of the light emitting structure.
  • the light emitting structure forms a rectangular light emitting surface when viewed from the top of the p-type semiconductor layer, and the n-type and p-type pads are disposed at opposite edges on the light emitting surface, respectively.
  • the n-type and p-type fingers extend in opposite corner directions from the n-type and p-type pads, respectively, and then branch in two different directions, respectively, and the n-type and p-type fingers are separated in the branched area. Can cross each other.
  • the n-type finger extends from the n-type pad in the opposite corner direction, of which is respectively extended in two directions perpendicular to the portion located at the center of the light emitting surface, the p-type finger is the p-type
  • the n-type and p-type pads may extend from the pad toward two corners of the non-formed light emitting surface, respectively, and may be bent toward the n-type pad to intersect the n-type finger.
  • the n-type and p-type electrodes can cross each other when viewed from the top of the light emitting structure, the area occupied by the electrodes in the light emitting surface can be reduced, thereby minimizing light loss.
  • the current dispersion effect may be improved by the insulating layer present in the region where the n-type and p-type electrodes cross each other.
  • FIG. 1 is a plan view schematically showing a semiconductor light emitting device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA ′ of the semiconductor light emitting device of FIG. 1, and FIG. 5 illustrates a modified example of the structure of FIG. 2.
  • FIG. 3 is a cross-sectional view of the BB ′ line of the semiconductor light emitting device of FIG. 1
  • FIG. 4 is a cross-sectional view of the CC ′ line of the semiconductor light emitting device of FIG. 1.
  • FIGS. 6 and 7 are plan views schematically illustrating a semiconductor light emitting device according to another embodiment of the present invention, respectively.
  • FIG. 1 is a plan view schematically showing a semiconductor light emitting device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA ′ of the semiconductor light emitting device of FIG. 1, and
  • FIG. 5 illustrates a modified example of the structure of FIG. 2.
  • 3 is a cross-sectional view of the BB ′ line of the semiconductor light emitting device of FIG. 1, and
  • FIG. 4 is a cross-sectional view of the CC ′ line of the semiconductor light emitting device of FIG. 1.
  • a light emitting structure is formed on a substrate 101, where the light emitting structure is an n-type semiconductor layer 102 and an active layer 103. And a p-type semiconductor layer 104.
  • the p-type electrode 107 is formed on the p-type semiconductor layer 104, and the p-type electrode 107 is provided with the p-type pad 107a and the p-type finger 107b.
  • a transparent electrode 105 capable of performing an ohmic contact function and a current distribution function is formed between the p-type electrode 107 and the p-type semiconductor layer 104.
  • the transparent electrode 105 may be made of a transparent conductive oxide such as ITO.
  • An n-type electrode 106 is formed in an area where the active layer 103 and the p-type semiconductor layer 104 are not formed on the upper surface of the n-type semiconductor layer 102, and the n-type electrode 106 is also an n-type pad 106a. And an n-type finger 106b.
  • a passivation structure may be formed by applying an electrically insulating material to the surface of the light emitting structure.
  • the substrate 101 is provided for growth of a nitride semiconductor single crystal, and a substrate made of sapphire, Si, ZnO, GaAs, SiC, MgAl 2 O 4 , MgO, LiAlO 2 , LiGaO 2 , GaN, or the like may be used.
  • the sapphire is a Hexa-Rhombo R3c symmetric crystal and the lattice constants of c-axis and a-direction are 13.001 13. and 4.758 ⁇ , respectively, C (0001) plane, A (1120) plane, R 1102 surface and the like.
  • the C surface is relatively easy to grow a nitride thin film and stable at high temperature, it is mainly used as a substrate for growing a nitride semiconductor.
  • the n-type and p-type semiconductor layers 102 and 104 are nitride semiconductors, specifically, Al x In y Ga (1-x- y) N composition formulas (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1), for example, GaN, AlGaN, InGaN, or the like.
  • the active layer 103 formed between the n-type and p-type semiconductor layers 102 and 104 emits light having a predetermined energy by recombination of electrons and holes, and the quantum well layer and the quantum barrier layer are alternately stacked. Multiple quantum well (MQW) structures, such as InGaN / GaN structures, may be used.
  • the n-type and p-type semiconductor layers 102 and 104 and the active layer 103 may be formed using a semiconductor layer growth process such as MOCVD, MBE, HVPE, and the like known in the art.
  • the electrode area occupied in the light emitting surface while minimizing the current dispersion effect is minimized.
  • the n-type and p-type electrodes (106, 107) were arranged to cross each other.
  • the light emitting surface is a rectangular surface shown in FIG. 1 and corresponds to a surface obtained when the light emitting structure is viewed from above the p-type semiconductor layer 104.
  • the light emitting surface is a geometrically perfect rectangle, and the shape somewhat deformed from the rectangle may be included in the range of the light emitting surface in the present invention. For example, the case where the corner part of a rectangle is chamfered is mentioned.
  • the n-type electrode 106 has an n-type pad 106a and an n-type finger 106b, and the n-type pad 106a is relatively relatively to the n-type fingers 106b and 106c so as to be connected to a conductive wire or the like. Have a large width.
  • the n-type and p-type pads 106a and 107a may be disposed at corners facing each other on the light emitting surface, respectively.
  • the n-type finger 106b has a conductive line structure extending from the n-type pad 106a so that a current can be uniformly injected into the entire light emitting surface, but is not necessarily the case, but is typically compared with the n-type pad 106a.
  • the p-type pad 107a may have a larger width than the p-type finger 107b.
  • the p-type finger 107b is disposed to intersect with the n-type finger 106b when viewed from the top of the light emitting structure, and thus, as shown in FIG. 1, the n-type and p-type fingers There exists an area where 106b and 107b overlap each other.
  • the length and the occupied area of the n-type and p-type fingers 106b and 107b can be inevitably increased to form an electrode having a similar level of performance as in the present embodiment. Further, as will be described later, by disposing the insulating layer 108 for preventing short circuits between the n-type and p-type fingers 106b, 107b, a current dispersion effect can be obtained.
  • the n-type finger 106b may be formed so as to extend from the n-type pad 106a in two different directions, and then the portions extending in the two different directions may meet each other, and the p-type finger 107b may be formed. May be a portion formed inside the region defined by the n-type finger 106b.
  • the shapes of the n-type finger 106b and the p-type finger 107b may be opposite to each other. That is, the p-type finger 107b may be formed so as to extend from the p-type pad 107a in two different directions, and then the portions extending in the two different directions may meet each other, and the n-type finger 106b may be formed.
  • the n-type and p-type electrodes 106 and 107 may include at least one of a horizontal line, a vertical line, and a diagonal line crossing the center of the light emitting surface so that current can be uniformly injected into the light emitting surface. It is preferable to be arranged to have a symmetrical structure with respect to one. In this embodiment, the n-type and p-type electrodes 106 and 107 are arranged symmetrically with respect to the diagonal line (corresponding to the CC ′ line).
  • an appropriate electrically insulating structure needs to be interposed in the region where the n-type and p-type fingers 106b and 107b overlap.
  • an insulating layer 108 is formed between the n-type and p-type fingers 106b and 107b among the regions where the n-type and p-type fingers 106b and 107b overlap each other. It is interposed.
  • the insulating layer 108 is made of an electrically insulating material such as silicon oxide or silicon nitride, and the n-type semiconductor layer 102, the active layer 103, and the p-type semiconductor layer ( 104 may be formed in some removed regions.
  • the insulating layer 108 when viewed from the top of the light emitting structure, the insulating layer 108 is represented as forming a rectangle, the shape of the insulating layer 108 may be variously modified, for example, other polygons, circles, ellipses, and the like. . Since the insulating layer 108 may induce a flow of current (arrow of FIG. 2) in the lateral direction of the light emitting structure together with a short circuit prevention function, it may contribute to the improvement of the current dispersion effect.
  • the insulating layer 108 ′ includes the p-type electrode 107 together with the n-type semiconductor layer 102, the active layer 103, and the p-type semiconductor layer 104.
  • the p-type finger 107b may be formed even in a region where some of the p-type fingers 107b are removed.
  • FIG. 6 and 7 are plan views schematically illustrating semiconductor light emitting devices according to another exemplary embodiment of the present invention, and are for explaining examples of cross structures of n-type and p-type electrodes that can be variously applied.
  • the semiconductor light emitting device 200 according to the present embodiment has a structure similar to the foregoing embodiment, and there is a difference only in the specific shapes of the n-type and p-type fingers 206b and 207b.
  • the n-type electrode 206 formed on the n-type semiconductor layer 202 has an n-type pad 206a and an n-type finger 206b, and similarly, the p-type electrode 207 formed on the transparent electrode 205.
  • the transparent electrode 205 corresponds to a structure that can be omitted.
  • the n-type and p-type pads 206a and 207a are disposed at opposite edges of the light emitting surface, respectively, and the n-type and p-type fingers 206b and 207b respectively face from the n-type and p-type pads 206a and 207a. Extending in the corner direction, and then branched in two different directions. In this case, the n-type and p-type fingers 206b and 207b intersect with each other at the branched portion, and an insulating layer 208 is formed in the overlapping region generated thereby.
  • the semiconductor light emitting device 300 is the same as the previous embodiment, and the n-type electrode 306 formed on the n-type semiconductor layer 302 is connected to the n-type pad 306a.
  • An n-type finger 306b is provided, and the p-type electrode 307 formed on the transparent electrode 305 includes a p-type pad 307a and a p-type finger 307b.
  • the n-type and p-type pads 306a and 307a are disposed at opposite corners of the light emitting surface, respectively.
  • the n-type finger 306b extends from the n-type pad 306a in the opposite corner direction, and portions corresponding to the center of the light emitting surface extend in two directions perpendicular to the n-type pad 306a, respectively.
  • the p-type finger 307b extends from the p-type pad 307a toward two corners of the light emitting surface where n-type and p-type pads 306a and 307a are not formed, and then bent toward the n-type pad 306a. This intersects with the n-type finger 306b.
  • an insulating layer 308 is formed between the n-type and p-type fingers 306b and 307b among the overlapping regions of the n-type and p-type fingers 306b and 307b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

본 발명은 반도체 발광소자에 관한 것으로서, 본 발명의 일 실시 형태는 n형 반도체층과, 상기 n형 반도체층 상면 중 일부 영역에 해당하는 제1 영역 위에 형성된 활성층 및 p형 반도체층과, 상기 n형 반도체층 상면 중 상기 제1 영역과 다른 제2 영역 위에 형성되어 상기 n형 반도체층과 전기적으로 연결되며, n형 패드와 제1 및 제2 n형 핑거를 구비하는 n형 전극 및 상기 p형 반도체층 상에 형성되어 상기 p형 반도체층과 전기적으로 연결되며, p형 패드 및 p형 핑거를 구비하는 p형 전극을 포함하며, 상기 n형 반도체층, 활성층 및 p형 반도체층은 발광구조물을 이루고, 상기 발광구조물의 상부에서 보았을 때, 상기 n형 및 p형 핑거는 서로 교차하도록 서로 중첩되는 영역이 존재하는 것을 특징으로 하는 반도체 발광소자를 제공한다.

Description

반도체 발광소자
본 발명은 반도체 발광소자에 관한 것으로서, 특히, 전극에 의한 광 손실이 최소화되며, 전류 분산 효과가 개선될 수 있는 전극 구조를 갖는 반도체 발광소자에 관한 것이다.
반도체 발광소자는 전류가 가해지면 p, n형 반도체의 접합 부분에서 전자와 정공의 재결합에 기하여, 다양한 색상의 빛을 발생시킬 수 있는 반도체 장치이다. 이러한 반도체 발광소자는 필라멘트에 기초한 발광소자에 비해 긴 수명, 낮은 전원, 우수한 초기 구동 특성, 높은 진동 저항 등의 여러 장점을 갖기 때문에 그 수요가 지속적으로 증가하고 있다. 특히, 최근에는, 청색 계열의 단파장 영역의 빛을 발광할 수 있는 III족 질화물 반도체가 각광을 받고 있다.
이러한 III족 질화물 반도체를 이용한 발광소자를 구성하는 질화물 단결정은 사파이어 또는 SiC 기판과 같이 특정의 성장용 기판 상에서 형성된다. 하지만, 사파이어와 같이 절연성 기판을 사용하는 경우에는 전극의 배열에 큰 제약을 받게 된다. 즉, 종래의 질화물 반도체 발광소자는 전극이 수평방향으로 배열되는 것이 일반적이므로, 전류흐름이 협소 해지게 된다. 이러한 협소한 전류 흐름으로 인해, 발광소자의 동작 전압(Vf)이 증가하여 전류효율이 저하되며, 이와 더불어 정전기 방전(Electrostatic discharge)에 취약해질 수 있다. 이 경우, 전류가 발광면 전체적으로 균일하게 퍼지도록 하기 위하여, n형 및 p형 전극을 각각 패드와 핑거 전극으로 나누어 서로 교대로 배치하는 등의 시도가 있다. 하지만, 전류 분산 효과를 위하여 패드와 핑거의 비율이 증가함에 따라 발광면에서 전극이 점유하는 면적도 함께 증가되며, 이렇게 증가된 전극 면적에 의하여 광 손실이 발생되는 문제가 있다. 이는 전극 면적의 증가에 따라 활성층의 면적이 감소되고 외부 광 추출 효율이 감소될 수 있기 때문이다. 따라서, 당 기술 분야에서는 전류 분산 효과가 우수하면서도 광 손실이 최소화될 수 있는 전극 구조를 얻을 수 있는 방안이 요구된다.
본 발명의 일 목적은 전극에 의한 광 손실이 최소화되며, 전류 분산 효과가 개선될 수 있는 전극 구조를 구비하는 반도체 발광소자를 제공하는 것에 있다.
상기한 목적을 달성하기 위해서, 본 발명의 일 실시 형태는,
n형 반도체층과, 상기 n형 반도체층 상면 중 일부 영역에 해당하는 제1 영역 위에 형성된 활성층 및 p형 반도체층과, 상기 n형 반도체층 상면 중 상기 제1 영역과 다른 제2 영역 위에 형성되어 상기 n형 반도체층과 전기적으로 연결되며, n형 패드와 제1 및 제2 n형 핑거를 구비하는 n형 전극 및 상기 p형 반도체층 상에 형성되어 상기 p형 반도체층과 전기적으로 연결되며, p형 패드 및 p형 핑거를 구비하는 p형 전극을 포함하며, 상기 n형 반도체층, 활성층 및 p형 반도체층은 발광구조물을 이루고, 상기 발광구조물의 상부에서 보았을 때, 상기 n형 및 p형 핑거는 서로 교차하도록 서로 중첩되는 영역이 존재하는 것을 특징으로 하는 반도체 발광소자를 제공한다.
본 발명의 일 실시 예에서, 상기 n형 및 p형 핑거가 서로 중첩되는 영역 중 상기 n형 및 p형 핑거 사이에는 절연층이 개재될 수 있다.
이 경우, 상기 절연층은 상기 n형 반도체층, 활성층 및 p형 반도체층이 일부 제거된 영역에 형성될 수 있다.
또한, 상기 절연층은 상기 n형 반도체층, 활성층, p형 반도체층 및 p형 패드가 일부 제거된 영역에 형성될 수도 있다.
본 발명의 일 실시 예에서, 상기 p형 반도체층과 상기 p형 전극 사이에 형성된 투명전극을 더 포함할 수 있다.
본 발명의 일 실시 예에서, 상기 발광구조물은 상기 p형 반도체층의 상부에서 보았을 때 직사각형의 발광면을 형성하며, 상기 n형 및 p형 전극은 각각 상기 발광면의 중심을 가로지르는 수평 라인, 수직 라인 및 대각선 라인 중 적어도 하나를 기준으로 대칭 구조를 갖도록 배치될 수 있다.
본 발명의 일 실시 예에서, 상기 n형 핑거는 상기 n형 패드로부터 서로 다른 2개의 방향으로 연장 형성된 후 상기 서로 다른 2개의 방향으로 연장 형성된 부분이 만나도록 형성될 수 있다.
이 경우, 상기 p형 핑거는 상기 발광구조물의 상부에서 보았을 때 상기 n형 핑거에 의하여 정의된 영역 내부에 형성된 부분이 존재할 수 있다.
본 발명의 일 실시 예에서, 상기 p형 핑거는 상기 p형 패드로부터 서로 다른 2개의 방향으로 연장 형성된 후 상기 서로 다른 2개의 방향으로 연장 형성된 부분이 만나도록 형성될 수 있다.
이 경우, 상기 n형 핑거는 상기 발광구조물의 상부에서 보았을 때 상기 p형 핑거에 의하여 정의된 영역 내부에 형성된 부분이 존재할 수 있다.
본 발명의 일 실시 예에서, 상기 발광구조물은 상기 p형 반도체층의 상부에서 보았을 때, 직사각형의 발광면을 형성하며, 상기 n형 및 p형 패드는 상기 발광면에서 서로 대향하는 모서리에 각각 배치될 수 있다.
이 경우, 상기 n형 및 p형 핑거는 각각 n형 및 p형 패드로부터 대향하는 모서리 방향으로 연장된 후 각각 서로 다른 2개의 방향으로 분기되며, 상기 n형 및 p형 핑거는 상기 분기된 영역에서 서로 교차할 수 있다.
또한, 상기 n형 핑거는 상기 n형 패드로부터 대향하는 모서리 방향으로 연장되며, 이 중에서 상기 발광면의 중심에 위치한 부분으로부터 이에 수직한 2개의 방향으로 각각 연장되며, 상기 p형 핑거는 상기 p형 패드로부터 상기 발광면 중에서 상기 n형 및 p형 패드가 형성되지 않은 2개의 모서리를 향하여 각각 연장된 후 상기 n형 패드를 향하여 절곡되어 상기 n형 핑거와 교차될 수 있다.
본 발명에서 제안하는 반도체 발광소자를 사용할 경우, n형 및 p형 전극이 발광구조물의 상부에서 보았을 때 서로 교차될 수 있으므로, 발광면에서 전극이 점유하는 면적을 줄일 수 있어 광 손실이 최소화될 수 있으며, 이와 더불어, n형 및 p형 전극이 교차되는 영역에 존재하는 절연층에 의하여 전류 분산 효과가 개선될 수 있다.
도 1은 본 발명의 일 실시 형태에 따른 반도체 발광소자를 개략적으로 나타내는 평면도이다.
도 2는 도 1의 반도체 발광소자에서 AA` 라인에 대한 단면도이며, 도 5는 도 2의 구조에서 변형된 예를 나타낸다.
도 3은 도 1의 반도체 발광소자에서 BB` 라인에 대한 단면도이며, 도 4는 도 1의 반도체 발광소자에서 CC` 라인에 대한 단면도이다.
도 6 및 도 7은 각각 본 발명의 다른 실시 형태에 따른 반도체 발광소자를 개략적으로 나타내는 평면도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시형태들을 설명한다.
그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있으며, 도면상의 동일한 부호로 표시되는 요소는 동일한 요소이다.
도 1은 본 발명의 일 실시 형태에 따른 반도체 발광소자를 개략적으로 나타내는 평면도이다. 도 2는 도 1의 반도체 발광소자에서 AA` 라인에 대한 단면도이며, 도 5는 도 2의 구조에서 변형된 예를 나타낸다. 또한, 도 3은 도 1의 반도체 발광소자에서 BB` 라인에 대한 단면도이며, 도 4는 도 1의 반도체 발광소자에서 CC` 라인에 대한 단면도이다.
도 1 내지 4를 참조하면, 본 실시 형태에 따른 반도체 발광소자(100)는 기판(101) 상에 발광구조물이 형성되며, 여기서, 상기 발광구조물은 n형 반도체층(102), 활성층(103) 및 p형 반도체층(104)을 구비하는 구조에 해당한다. 이 경우, 도시하지는 않았으나, n형 반도체층(102)과 기판(101) 사이에는 그 위에 성장되는 반도체층의 결정성을 향상시기 위한 측면에서 제공되는 하나 이상의 버퍼층이 형성될 수 있다. p형 반도체층(104) 상에는 p형 전극(107)이 형성되며, p형 전극(107)은 p형 패드(107a)와 p형 핑거(107b)를 갖추어 구성된다. 이 경우, 본 발명에서 필수적으로 요구되는 구성 요소는 아니지만, p형 전극(107)과 p형 반도체층(104) 사이에는 오믹컨택 기능과 전류분산 기능을 수행할 수 있는 투명 전극(105)이 형성될 수 있으며, 투명 전극(105)은 ITO와 같은 투명 전도성 산화물(Transparent Conductive Oxide)로 이루어질 수 있다. n형 반도체층(102) 상면 중에서 활성층(103)과 p형 반도체층(104)이 형성되지 않은 영역에는 n형 전극(106)이 형성되며, n형 전극(106) 역시 n형 패드(106a)와 n형 핑거(106b)를 갖추어 구성된다. 한편, 도시하지는 않았으나, 상기 발광구조물의 표면에는 전기 절연성 물질을 적용하여 패시베이션 구조를 형성할 수 있다.
기판(101)은 질화물 반도체 단결정의 성장을 위하여 제공되며, 사파이어, Si, ZnO, GaAs, SiC, MgAl2O4, MgO, LiAlO2, LiGaO2 , GaN 등의 물질로 이루어진 기판을 사용할 수 있다. 이 경우, 사파이어는 육각-롬보형(Hexa-Rhombo R3c) 대칭성을 갖는 결정체로서 c축 및 a측 방향의 격자상수가 각각 13.001Å과 4.758Å이며, C(0001)면, A(1120)면, R(1102)면 등을 갖는다. 이 경우, 상기 C면은 비교적 질화물 박막의 성장이 용이하며, 고온에서 안정하기 때문에 특히, 질화물 반도체의 성장용 기판으로 주로 사용된다.
n형 및 p형 반도체층(102, 104)은 질화물 반도체, 구체적으로, AlxInyGa(1-x-y)N 조성식(여기서, 0≤x≤1, 0≤y≤1, 0≤x+y≤1임)을 표현되는 물질로 이루어질 수 있으며, 예를 들어, GaN, AlGaN, InGaN 등의 물질이 이에 해당될 수 있다. n형 및 p형 반도체층(102, 104) 사이에 형성되는 활성층(103)은 전자와 정공의 재결합에 의해 소정의 에너지를 갖는 광을 방출하며, 양자우물층과 양자장벽층이 서로 교대로 적층된 다중 양자우물(MQW) 구조, 예컨대, InGaN/GaN 구조가 사용될 수 있다. 한편, n형 및 p형 반도체층(102, 104)과 활성층(103)은 당 기술 분야에서 공지된 MOCVD, MBE, HVPE 등과 같은 반도체층 성장 공정을 이용하여 형성될 수 있을 것이다.
본 실시 형태의 경우, n형 및 p형 전극(106, 107)의 배치 구조를 최적화함으로써 전류 분산 효과를 거두면서도 발광면 내부에 점유하는 전극 면적을 최소화하였으며, 구체적으로, n형 및 p형 전극(106, 107)이 서로 교차되도록 배치하였다. 여기서, 발광면은 도 1에 도시된 직사각형의 면으로서, p형 반도체층(104)의 상부에서 상기 발광구조물을 보았을 때 얻어지는 면에 해당한다. 다만, 본 발명에서, 발광면이 기하학적으로 완벽한 직사각형일 것을 반드시 요구하는 것은 아니며, 직사각형에서 다소 변형된 형상도 본 발명에서 말하는 발광면의 범위에 포함될 수 있을 것이다. 예를 들어, 직사각형의 모서리 부분을 일부 모따기 처리한 경우를 들 수 있다.
n형 전극(106)은 n형 패드(106a) 및 n형 핑거(106b)를 구비하며, n형 패드(106a)는 도전성 와이어 등과 접속될 수 있도록 n형 핑거(106b, 106c)에 비하여 상대적으로 큰 폭을 갖는다. 본 실시 형태의 경우, n형 및 p형 패드(106a, 107a)는 상기 발광면에서 서로 대향하는 모서리에 각각 배치될 수 있다. n형 핑거(106b)는 발광면 전체에 균일하게 전류가 주입될 수 있도록 n형 패드(106a)로부터 연장된 도전성 라인 구조를 가지며, 반드시 그러한 것은 아니지만, 통상적으로 n형 패드(106a)와 비교하여 폭이 좁다. 마찬가지로, p형 패드(107a)는 p형 핑거(107b)보다 큰 폭을 가질 수 있다. 본 실시 형태의 경우, p형 핑거(107b)는 발광구조물의 상부에서 보았을 때, n형 핑거(106b)와 교차되도록 배치되며, 이에 따라, 도 1에 도시된 것과 같이, n형 및 p형 핑거(106b, 107b)가 서로 중첩되는 영역이 존재한다. n형 및 p형 핑거(106b, 107b)를 교차 배치시킴으로써 전극 설계의 자유도가 크게 향상되며, 이에 따라, 발광면에서 차지하는 전극의 면적 비율을 줄일 수 있다. 교차 배치 구조를 사용하지 않을 경우에는 본 실시 형태에서와 유사한 수준의 성능을 갖는 전극을 형성하기 위하여, n형 및 p형 핑거(106b, 107b)의 길이와 점유 면적이 불가피하게 증가될 수 있다. 나아가, 후술할 바와 같이, n형 및 p형 핑거(106b, 107b) 사이에 단락 방지를 위한 절연층(108)을 배치함으로써 전류 분산 효과를 얻을 수 있다.
구체적으로, n형 핑거(106b)는 n형 패드(106a)로부터 서로 다른 2개의 방향으로 연장 형성된 후 상기 서로 다른 2개의 방향으로 연장 형성된 부분이 만나도록 형성될 수 있으며, p형 핑거(107b)는 n형 핑거(106b)에 의하여 정의된 영역 내부에 형성된 부분이 존재할 수 있다. 이 경우, 따로 도시하지는 않았으나, n형 핑거(106b)와 p형 핑거(107b)의 형상은 서로 반대가 될 수 있다. 즉, p형 핑거(107b)는 p형 패드(107a)로부터 서로 다른 2개의 방향으로 연장 형성된 후 상기 서로 다른 2개의 방향으로 연장 형성된 부분이 만나도록 형성될 수 있으며, n형 핑거(106b)는 p형 핑거(107b)에 의하여 정의된 영역 내부에 형성된 부분이 존재할 수 있다. 이러한 전극 배치는 n형 및 p형 핑거(106b, 107b)의 교차 배치가 아니면 구현될 수 없을 것이다. 한편, 반드시 요구되는 사항은 아니지만, 발광면에 전류가 균일하게 주입될 수 있도록 n형 및 p형 전극(106, 107)은 상기 발광면의 중심을 가로지르는 수평 라인, 수직 라인 및 대각선 라인 중 적어도 하나를 기준으로 대칭 구조를 갖도록 배치되는 것이 바람직하다. 본 실시 형태에서는 대각선 라인(CC` 라인에 해당)을 기준으로 n형 및 p형 전극(106, 107)이 대칭을 이루도록 배치하였다.
n형 및 p형 핑거(106b, 107b)이 교차 배치될 경우, n형 및 p형 핑거(106b, 107b)가 중첩되는 영역에서는 적절한 전기 절연 구조가 개재될 필요가 있다. 이를 위하여, 도 1 및 도 2에 도시된 것과 같이, n형 및 p형 핑거(106b, 107b)가 서로 중첩되는 영역 중 n형 및 p형 핑거(106b, 107b) 사이에는 절연층(108)이 개재된다. 절연층(108)은 전기 절연성을 갖는 물질, 예컨대, 실리콘 산화물 또는 실리콘 질화물로 이루어지며, 소자의 동작 시 단락이 발생하지 않도록 n형 반도체층(102), 활성층(103) 및 p형 반도체층(104)이 일부 제거된 영역에 형성될 수 있다. 이 경우, 발광구조물의 상부에서 보았을 때, 절연층(108)은 사각형을 이루는 것으로 표현되어 있으나, 절연층(108)의 형상은 예컨대, 다른 다각형이나 원형, 타원 등으로 다양하게 변형될 수 있을 것이다. 절연층(108)은 단락 방지 기능과 더불어 전류의 흐름(도 2의 화살표)을 발광구조물의 측 방향으로 유도할 수 있으므로, 전류 분산 효과의 향상에 기여할 수 있다. 한편, 도 5의 변형된 예와 같이, 필요에 따라, 절연층(108`)은 n형 반도체층(102), 활성층(103) 및 p형 반도체층(104)과 더불어 p형 전극(107), 구체적으로, p형 핑거(107b)가 일부 제거된 영역에까지 형성될 수도 있다.
도 6 및 도 7은 각각 본 발명의 다른 실시 형태에 따른 반도체 발광소자를 개략적으로 나타내는 평면도이며, 다양하게 응용될 수 있는 n형 및 p형 전극의 교차 구조의 일 예들을 설명하기 위한 것이다. 우선, 도 6을 참조하면, 본 실시 형태에 따른 반도체 발광소자(200)는 앞선 실시 형태와 유사한 구조를 가지며, n형 및 p형 핑거(206b, 207b)의 구체적 형상에만 차이가 있다. n형 반도체층(202) 상에 형성된 n형 전극(206)은 n형 패드(206a)와 n형 핑거(206b)를 구비하며, 마찬가지로, 투명 전극(205) 상에 형성된 p형 전극(207)은 p형 패드(207a)와 p형 핑거(207b)를 구비한다. 이 경우, 투명 전극(205)은 생략될 수 있는 구조에 해당한다. n형 및 p형 패드(206a, 207a)는 발광면의 서로 대향하는 모서리에 각각 배치되며, n형 및 p형 핑거(206b, 207b)는 각각 n형 및 p형 패드(206a, 207a)로부터 대향하는 모서리 방향으로 연장된 후 각각 서로 다른 2개의 방향으로 분기된다. 이 경우, 분기된 부분에서 n형 및 p형 핑거(206b, 207b)는 서로 교차하며, 이에 의해 발생된 중첩 영역에는 절연층(208)이 형성된다.
다음으로, 도 7에 도시된 실시 형태의 경우, 반도체 발광소자(300)는 앞선 실시 형태와 마찬가지로, n형 반도체층(302) 상에 형성된 n형 전극(306)은 n형 패드(306a)와 n형 핑거(306b)를 구비하며, 투명 전극(305) 상에 형성된 p형 전극(307)은 p형 패드(307a)와 p형 핑거(307b)를 구비한다. 또한, n형 및 p형 패드(306a, 307a)는 발광면의 서로 대향하는 모서리에 각각 배치된다. n형 핑거(306b)는 n형 패드(306a)로부터 대향하는 모서리 방향으로 연장되며, 발광면의 중심에 해당하는 부분은 이에 수직한 2개의 방향으로 각각 연장된다. p형 핑거(307b)는 p형 패드(307a)로부터 발광면 중에서 n형 및 p형 패드(306a, 307a)가 형성되지 않은 2개의 모서리를 향하여 각각 연장된 후 n형 패드(306a)를 향하여 절곡됨으로써 n형 핑거(306b)와 교차된다. 이 경우에도 n형 및 p형 핑거(306b, 307b)의 중첩 영역 중에서 n형 및 p형 핑거(306b, 307b) 사이에는 절연층(308)이 형성된다.
본 발명은 상술한 실시 형태 및 첨부된 도면에 의해 한정되는 것이 아니며, 첨부된 청구범위에 의해 한정하고자 한다. 따라서, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 당 기술분야의 통상의 지식을 가진 자에 의해 다양한 형태의 치환, 변형 및 변경이 가능할 것이며, 이 또한 본 발명의 범위에 속한다고 할 것이다.

Claims (13)

  1. n형 반도체층;
    상기 n형 반도체층 상면 중 일부 영역에 해당하는 제1 영역 위에 형성된 활성층 및 p형 반도체층;
    상기 n형 반도체층 상면 중 상기 제1 영역과 다른 제2 영역 위에 형성되어 상기 n형 반도체층과 전기적으로 연결되며, n형 패드와 제1 및 제2 n형 핑거를 구비하는 n형 전극; 및
    상기 p형 반도체층 상에 형성되어 상기 p형 반도체층과 전기적으로 연결되며, p형 패드 및 p형 핑거를 구비하는 p형 전극;을 포함하며,
    상기 n형 반도체층, 활성층 및 p형 반도체층은 발광구조물을 이루고,
    상기 발광구조물의 상부에서 보았을 때, 상기 n형 및 p형 핑거는 서로 교차하도록 서로 중첩되는 영역이 존재하는 것을 특징으로 하는 반도체 발광소자.
  2. 제1항에 있어서,
    상기 n형 및 p형 핑거가 서로 중첩되는 영역 중 상기 n형 및 p형 핑거 사이에는 절연층이 개재되는 것을 특징으로 하는 반도체 발광소자.
  3. 제2항에 있어서,
    상기 절연층은 상기 n형 반도체층, 활성층 및 p형 반도체층이 일부 제거된 영역에 형성된 것을 특징으로 하는 반도체 발광소자.
  4. 제2항에 있어서,
    상기 절연층은 상기 n형 반도체층, 활성층, p형 반도체층 및 p형 패드가 일부 제거된 영역에 형성된 것을 특징으로 하는 반도체 발광소자.
  5. 제1항에 있어서,
    상기 p형 반도체층과 상기 p형 전극 사이에 형성된 투명전극을 더 포함하는 것을 특징으로 하는 반도체 발광소자.
  6. 제1항에 있어서,
    상기 발광구조물은 상기 p형 반도체층의 상부에서 보았을 때 직사각형의 발광면을 형성하며, 상기 n형 및 p형 전극은 각각 상기 발광면의 중심을 가로지르는 수평 라인, 수직 라인 및 대각선 라인 중 적어도 하나를 기준으로 대칭 구조를 갖도록 배치된 것을 특징으로 하는 반도체 발광소자.
  7. 제1항에 있어서,
    상기 n형 핑거는 상기 n형 패드로부터 서로 다른 2개의 방향으로 연장 형성된 후 상기 서로 다른 2개의 방향으로 연장 형성된 부분이 만나도록 형성된 것을 특징으로 하는 반도체 발광소자.
  8. 제7항에 있어서,
    상기 p형 핑거는 상기 발광구조물의 상부에서 보았을 때 상기 n형 핑거에 의하여 정의된 영역 내부에 형성된 부분이 존재하는 것을 특징으로 하는 반도체 발광소자.
  9. 제1항에 있어서,
    상기 p형 핑거는 상기 p형 패드로부터 서로 다른 2개의 방향으로 연장 형성된 후 상기 서로 다른 2개의 방향으로 연장 형성된 부분이 만나도록 형성된 것을 특징으로 하는 반도체 발광소자.
  10. 제9항에 있어서,
    상기 n형 핑거는 상기 발광구조물의 상부에서 보았을 때 상기 p형 핑거에 의하여 정의된 영역 내부에 형성된 부분이 존재하는 것을 특징으로 하는 반도체 발광소자.
  11. 제1항에 있어서,
    상기 발광구조물은 상기 p형 반도체층의 상부에서 보았을 때, 직사각형의 발광면을 형성하며, 상기 n형 및 p형 패드는 상기 발광면에서 서로 대향하는 모서리에 각각 배치된 것을 특징으로 하는 반도체 발광소자.
  12. 제11항에 있어서,
    상기 n형 및 p형 핑거는 각각 n형 및 p형 패드로부터 대향하는 모서리 방향으로 연장된 후 각각 서로 다른 2개의 방향으로 분기되며, 상기 n형 및 p형 핑거는 상기 분기된 영역에서 서로 교차하는 것을 특징으로 하는 반도체 발광소자.
  13. 제11항에 있어서,
    상기 n형 핑거는 상기 n형 패드로부터 대향하는 모서리 방향으로 연장되며, 이 중에서 상기 발광면의 중심에 위치한 부분으로부터 이에 수직한 2개의 방향으로 각각 연장되며, 상기 p형 핑거는 상기 p형 패드로부터 상기 발광면 중에서 상기 n형 및 p형 패드가 형성되지 않은 2개의 모서리를 향하여 각각 연장된 후 상기 n형 패드를 향하여 절곡되어 상기 n형 핑거와 교차되는 것을 특징으로 하는 반도체 발광소자.
PCT/KR2011/005589 2011-07-29 2011-07-29 반도체 발광소자 WO2013018938A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180072220.XA CN103650178A (zh) 2011-07-29 2011-07-29 半导体发光元件
US14/129,524 US20140131759A1 (en) 2011-07-29 2011-07-29 Semiconductor light-emitting element
PCT/KR2011/005589 WO2013018938A1 (ko) 2011-07-29 2011-07-29 반도체 발광소자

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/005589 WO2013018938A1 (ko) 2011-07-29 2011-07-29 반도체 발광소자

Publications (1)

Publication Number Publication Date
WO2013018938A1 true WO2013018938A1 (ko) 2013-02-07

Family

ID=47629441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005589 WO2013018938A1 (ko) 2011-07-29 2011-07-29 반도체 발광소자

Country Status (3)

Country Link
US (1) US20140131759A1 (ko)
CN (1) CN103650178A (ko)
WO (1) WO2013018938A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107223285B (zh) * 2015-02-13 2020-01-03 首尔伟傲世有限公司 发光元件以及发光二极管
DE102017117645A1 (de) 2017-08-03 2019-02-07 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und Verfahren zur Herstellung eines optoelektronischen Halbleiterchips
CN112424960B (zh) * 2019-10-23 2023-03-10 安徽三安光电有限公司 发光二极管及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100288824B1 (ko) * 1996-09-09 2001-06-01 니시무로 타이죠 화합물반도체발광장치
JP2004342885A (ja) * 2003-05-16 2004-12-02 Sumitomo Chem Co Ltd 発光素子および発光装置
KR20090062619A (ko) * 2007-12-13 2009-06-17 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
KR20090066863A (ko) * 2007-12-20 2009-06-24 삼성전기주식회사 전극 패턴을 구비한 질화물 반도체 발광소자
US20100295088A1 (en) * 2008-10-02 2010-11-25 Soraa, Inc. Textured-surface light emitting diode and method of manufacture

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6614056B1 (en) * 1999-12-01 2003-09-02 Cree Lighting Company Scalable led with improved current spreading structures
US6380564B1 (en) * 2000-08-16 2002-04-30 United Epitaxy Company, Ltd. Semiconductor light emitting device
WO2008038842A1 (en) * 2006-09-25 2008-04-03 Seoul Opto Device Co., Ltd. Light emitting diode having extensions of electrodes for current spreading
KR101020910B1 (ko) * 2008-12-24 2011-03-09 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100288824B1 (ko) * 1996-09-09 2001-06-01 니시무로 타이죠 화합물반도체발광장치
JP2004342885A (ja) * 2003-05-16 2004-12-02 Sumitomo Chem Co Ltd 発光素子および発光装置
KR20090062619A (ko) * 2007-12-13 2009-06-17 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
KR20090066863A (ko) * 2007-12-20 2009-06-24 삼성전기주식회사 전극 패턴을 구비한 질화물 반도체 발광소자
US20100295088A1 (en) * 2008-10-02 2010-11-25 Soraa, Inc. Textured-surface light emitting diode and method of manufacture

Also Published As

Publication number Publication date
US20140131759A1 (en) 2014-05-15
CN103650178A (zh) 2014-03-19

Similar Documents

Publication Publication Date Title
KR100706944B1 (ko) 질화물계 반도체 발광소자
US10615311B2 (en) Light emitting device and display comprising same
US6693306B2 (en) Structure of a light emitting diode and method of making the same
WO2010095781A1 (ko) 발광소자 및 그 제조방법
WO2017014512A1 (ko) 발광 소자
KR20070111091A (ko) 질화물계 반도체 발광다이오드
WO2014061971A1 (ko) 발광 영역 분리 트렌치를 갖는 전류 분산 효과가 우수한 고휘도 반도체 발광소자
WO2013024921A1 (ko) 반도체 발광소자
WO2013015472A1 (ko) 반도체 발광소자 및 그 제조방법
WO2017052344A1 (ko) 발광소자, 발광소자 패키지 및 발광장치
WO2016104958A1 (ko) 적색 발광소자 및 조명장치
WO2013018938A1 (ko) 반도체 발광소자
US9711564B2 (en) Preparation method for high-voltage LED device integrated with pattern array
KR101969307B1 (ko) 반도체 발광소자
KR20080005726A (ko) 플립칩용 질화물계 발광소자
KR20120016830A (ko) 반도체 발광 소자 및 발광 장치
KR20110069374A (ko) 반도체 발광소자
KR20120014341A (ko) 발광다이오드 소자
KR20160118487A (ko) 발광소자
KR101028612B1 (ko) 발광소자
KR20110092830A (ko) 반도체 발광소자
WO2013022129A1 (ko) 질화물 반도체 발광소자
KR20110105990A (ko) 반도체 발광소자
CN113644176B (zh) 一种led芯片
KR101255003B1 (ko) 발광 소자 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870187

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14129524

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870187

Country of ref document: EP

Kind code of ref document: A1