WO2013018904A1 - Liquid crystal orientation liquid for light orientation processing technique, and liquid crystal orientation film employing same - Google Patents

Liquid crystal orientation liquid for light orientation processing technique, and liquid crystal orientation film employing same Download PDF

Info

Publication number
WO2013018904A1
WO2013018904A1 PCT/JP2012/069894 JP2012069894W WO2013018904A1 WO 2013018904 A1 WO2013018904 A1 WO 2013018904A1 JP 2012069894 W JP2012069894 W JP 2012069894W WO 2013018904 A1 WO2013018904 A1 WO 2013018904A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
aligning agent
formula
crystal aligning
Prior art date
Application number
PCT/JP2012/069894
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 作本
洋介 飯沼
勇歩 野口
隆夫 堀
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020147002424A priority Critical patent/KR101934606B1/en
Priority to JP2013526972A priority patent/JP6083379B2/en
Priority to CN201280038264.5A priority patent/CN103718093B/en
Publication of WO2013018904A1 publication Critical patent/WO2013018904A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Definitions

  • the present invention relates to a liquid crystal alignment agent for producing a liquid crystal alignment film and a liquid crystal alignment film obtained from the liquid crystal alignment agent. More specifically, in place of rubbing treatment, a liquid crystal alignment agent used for forming a liquid crystal alignment film capable of imparting liquid crystal alignment ability by photo-alignment treatment, that is, irradiation with polarized ultraviolet rays, and the liquid crystal alignment agent. It relates to a liquid crystal alignment film obtained from the above.
  • the liquid crystal alignment film is made of a polyamic acid formed on an electrode substrate and / or a surface of a film made of polyimide obtained by imidizing this with cotton, nylon, It is produced by carrying out a so-called rubbing treatment that rubs in one direction with a cloth such as polyester.
  • the method of rubbing the film surface in the alignment process of the liquid crystal alignment film is an industrially useful method that is simple and excellent in productivity.
  • demands for higher performance, higher definition, and larger size of liquid crystal display elements are increasing, and the surface of the alignment film caused by rubbing treatment, dust generation, the influence of mechanical force and static electricity, Various problems such as non-uniformity in the orientation processing surface have been revealed.
  • Patent Document 1 proposes that a polyimide film having an alicyclic structure such as a cyclobutane ring in the main chain is used for the photo-alignment method.
  • the photo-alignment method as described above has been attracting attention as a rubbing-less alignment treatment method, and has an advantage that it can be produced by an industrially simple manufacturing process.
  • the obtained liquid crystal alignment film can improve performance such as the contrast and viewing angle characteristics of the liquid crystal display element can be improved as compared with the liquid crystal alignment film obtained by the rubbing treatment method. It is.
  • the liquid crystal alignment film used for the liquid crystal display element of the IPS driving method or the FFS driving method in addition to the basic characteristics such as excellent liquid crystal alignment property and electrical characteristics, It is necessary to suppress the afterimage by the generated AC drive.
  • a liquid crystal alignment film obtained by a photo-alignment method has insufficient alignment regulating power of liquid crystal and its stability, and it has been difficult to satisfy the above characteristics.
  • the present invention relates to a liquid crystal alignment film for a photo-alignment processing method capable of suppressing an afterimage due to alternating current driving that occurs in a liquid crystal display element of an IPS drive system or an FFS drive system, and a photo-alignment process for obtaining the liquid crystal alignment film It aims at providing the liquid crystal aligning agent for a method.
  • the present inventor has conducted extensive research to achieve the above object, and as a result of irradiating polarized radiation, any one of the reactions of photolysis, photodimerization, or photoisomerization proceeds, and polarization
  • polarization A polymer having anisotropy in the same direction as the direction or perpendicular to the polarization direction, a polymer having both a rigid aromatic group and a flexible alkylene group, and an organic solvent. It has been found that the above object can be achieved by a liquid crystal aligning agent.
  • the present invention has the following gist. 1.
  • the following (A) component, (B) component, and an organic solvent are contained, Content of (B) component is 0.1-15 mass parts with respect to 100 mass parts of (A) component, It is characterized by the above-mentioned.
  • (B) Component A polymer containing a structure represented by the following formula (1).
  • W 1 and W 2 are each independently a divalent organic group having an aromatic group having 6 to 30 carbon atoms, and A has an alkylene group having 2 to 20 carbon atoms. It is a divalent organic group.
  • the component (A) is a polymer of one or more types that undergoes a photolysis reaction when irradiated with polarized radiation and imparts anisotropy in a direction perpendicular to the polarization direction.
  • the component (A) contains a structural unit represented by the following formula (2), and at least one polymer selected from the group consisting of a polyimide precursor and an imidized polymer of the polyimide precursor 3.
  • the liquid crystal aligning agent according to 1 or 2 above.
  • X 1 is at least one selected from the group consisting of structures represented by the following formulas (X1-1) to (X1-9), and Y 1 is a divalent organic group.
  • R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, An alkenyl group or a phenyl group, which may be the same or different. 4).
  • A From the group which a component consists of a polyimide precursor which contains 60 mol% or more of structural units represented by said Formula (2) with respect to 1 mol of all the structural units, and the imidation polymer of this polyimide precursor. 4.
  • X 1 is at least one selected from the group consisting of a structure represented by the formula (X1-1). 6). 6. The liquid crystal according to any one of 3 to 5 above, wherein in the formula (2), X 1 is at least one selected from the group consisting of structures represented by the following formulas (X1-10) to (X1-11) Alignment agent.
  • Y 1 is at least one selected from the group consisting of structures represented by the following formulas (4) and (5).
  • Z 1 is a single bond, an ester bond, an amide bond, a thioester bond, or a divalent organic group having 2 to 10 carbon atoms.
  • 8 The liquid crystal aligning agent according to 7, wherein Y 1 is a structure represented by the above formula (4) in the above formula (2).
  • the component (B) is at least one polymer selected from the group consisting of a polyimide precursor having a structural unit represented by the following formula (3) and an imidized polymer of the polyimide precursor.
  • the liquid crystal aligning agent in any one of.
  • X 2 is a tetravalent organic group having an aromatic group having 6 to 20 carbon atoms and having a bond in the aromatic group.
  • Y 2 represents the following formula (Y2-1) and (Y2-2) is at least one divalent organic group selected from the group consisting of, and A 1 and A 2 are each independently a hydrogen atom or a C 1 -C which may have a substituent.
  • 10 is an alkyl group, an alkenyl group, or an alkynyl group, and R 2 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • a 3 is a divalent organic group having an alkylene group having 2 to 20 carbon atoms.
  • a 4 represents —O—, —S—, —NR 12 —, ester bond, amide bond, thioester bond, urea bond, carbonate bond, carbamate bond, R 12 is a hydrogen atom, methyl group, or t-butoxycarbonyl group, and A 5 has 2 carbon atoms. ⁇ 20 alkylene groups.
  • the component (B) is selected from the group consisting of a polyimide precursor containing 60 mol% or more of the structural unit represented by the above formula (3) with respect to 1 mol of all structural units and an imidized polymer of the polyimide precursor. 10.
  • the liquid crystal aligning agent according to 9 above which is at least one polymer.
  • the liquid crystal aligning agent according to 9 or 10 above, wherein X 2 in the formula (3) is at least one selected from the group consisting of structures represented by the following formulas (X2-1) to (X2-3).
  • R 13 each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, which may be the same or different.
  • R 13 each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, which may be the same or different.
  • 14 14.
  • 15. 14 A liquid crystal alignment film obtained by applying and baking the liquid crystal aligning agent according to any one of the above 1 to 13, and further irradiating with polarized radiation.
  • 16. 14 A liquid crystal alignment film obtained by applying the liquid crystal aligning agent according to any one of 1 to 13 above, firing, irradiating with polarized radiation, and then heating at 150 ° C. to 250 ° C. 17.
  • a liquid crystal display device comprising the liquid crystal alignment film according to any one of 14 to 16 above.
  • the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention can suppress afterimages caused by alternating current drive generated in an IPS drive type or FFS drive type liquid crystal display element.
  • the reason why the problems of the present invention are solved in the liquid crystal alignment film of the present invention is not necessarily clear, but is considered as follows. In general, afterimages due to alternating current drive generated in liquid crystal display elements of IPS drive type and FFS drive type are suppressed by increasing the anisotropy of the liquid crystal alignment film and / or increasing the interaction between the liquid crystal alignment film and the liquid crystal. It is known that it can be done.
  • the liquid crystal alignment film obtained by the photo-alignment method can provide sufficient anisotropy, a specific portion that reacts by irradiation with radiation requires a certain ratio or more, and the interaction with the liquid crystal is enhanced. It was difficult. Specifically, when a structure capable of enhancing the interaction with the liquid crystal is introduced into the polymer, sufficient anisotropy is caused by a decrease in the reactivity of the photoreactive site and a decrease in the density of the photoreactive site. In some cases, it could not be obtained.
  • the inventors of the present application provide a liquid crystal having both a rigid skeleton containing an aromatic group and a flexible skeleton containing an alkylene group as the component (A) to which anisotropy is imparted by irradiating polarized radiation. While maintaining the anisotropy when irradiated with polarized radiation, the polymer (component (B)) containing a similar structure is preferably mixed with the component (A) in a specific amount.
  • the present inventors have found that the interaction between the liquid crystal alignment film obtained by the photo-alignment method and the liquid crystal can be enhanced. Since the component (B) having a skeleton similar to liquid crystal has a flexible skeleton, it is expected to have high mobility when heated.
  • the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has high liquid crystal alignment properties and can suppress an afterimage caused by alternating current drive generated in an IPS drive type or FFS drive type liquid crystal display element. It is considered possible.
  • ⁇ (A) component The component (A) contained in the liquid crystal aligning agent of the present invention undergoes a reaction of photodecomposition, photodimerization, or photoisomerization by irradiating polarized radiation, and is in the same direction as the polarization direction. Or one or two or more polymers imparted with anisotropy in the direction perpendicular to the polarization direction.
  • the component (A) of the present invention is not particularly limited as long as it is a polymer having a site where any of the reactions of photolysis, photodimerization, or photoisomerization proceeds upon irradiation with radiation.
  • examples of the structure in which the photodimerization reaction proceeds include a polymer containing a structure having a cinnamoyl group represented by the following formula (A-1).
  • examples of the structure in which the photoisomerization reaction proceeds include a polymer containing an azobenzene skeleton represented by the following formula (A-2).
  • the structure in which the photolysis reaction proceeds is at least one selected from the group consisting of a polymer containing an imide skeleton having an alicyclic group represented by the following formula (A-3) and a precursor of the polymer.
  • the polymer of this is mentioned.
  • Q is a divalent aromatic group.
  • X is a tetravalent alicyclic group, and Y is a divalent organic group.
  • Q is a divalent aromatic group.
  • X is a tetravalent alicyclic group, and Y is a divalent organic group.
  • a polymer containing an imide structure having an alicyclic skeleton and a precursor of the polymer have high photoreaction sensitivity, and the obtained liquid crystal alignment film has high anisotropy.
  • a polyimide precursor having a structural unit represented by the following formula (2) and an imidized polymer of the polyimide precursor are preferable. From the viewpoint of solubility in an organic solvent, a polyimide precursor containing a structural unit represented by the following formula (2) is particularly preferable.
  • R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. From the viewpoint of ease of imidization by heating, a hydrogen atom or a methyl group is particularly preferable.
  • X 1 is at least one selected from the group consisting of structures represented by the following formulas (X1-1) to (X1-9).
  • R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, An alkenyl group or a phenyl group, which may be the same or different.
  • R 1 , R 2 , R 3 , and R 4 are preferably a hydrogen atom, a halogen atom, a methyl group, or an ethyl group, more preferably a hydrogen atom or a methyl group, and still more preferably, At least one selected from the group consisting of structures represented by the following formulas (X1-10) to (X1-11).
  • Y 1 is a divalent organic group, and its structure is not particularly limited. Since the obtained liquid crystal alignment film has high anisotropy, it is preferably at least one selected from the group consisting of structures represented by the following formulas (4) and (5).
  • Z 1 is a single bond, an ester bond, an amide bond, a thioester bond, or a divalent organic group having 2 to 10 carbon atoms.
  • the ester bond is represented by —C (O) O— or —OC (O) —.
  • the amide bond a structure represented by —C (O) NH— or —C (O) NR—, —NHC (O) —, —NRC (O) — can be shown.
  • R is an alkyl group, alkenyl group, alkynyl group, aryl group, or a combination thereof having 1 to 10 carbon atoms.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a cyclopentyl group, a cyclohexyl group, and a bicyclohexyl group.
  • alkenyl group examples include those obtained by replacing one or more CH—CH structures present in the above alkyl group with C ⁇ C structures, and more specifically, vinyl groups, allyl groups, 1-propenyl groups.
  • Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C ⁇ C structures, and more specifically, ethynyl groups, 1-propynyl groups, 2 -Propynyl group and the like.
  • Examples of the aryl group include a phenyl group.
  • thioester bond a structure represented by —C (O) S— or —SC (O) — can be shown.
  • Z 1 is an organic group having 2 to 10 carbon atoms, it can be represented by the structure of the following formula (6).
  • Z 4 , Z 5 and Z 6 are each independently a single bond, —O—, —S—, —NR 11 —, an ester bond, an amide bond, a thioester bond, a urea bond, or a carbonate bond. Or a carbamate bond.
  • R 11 is a hydrogen atom, a methyl group, or a t-butoxycarbonyl group.
  • the ester bond, amide bond, and thioester bond can have the same structures as the ester bond, amide bond, and thioester bond described above.
  • urea bond a structure represented by —NH—C (O) NH— or —NR—C (O) NR— can be shown.
  • R is an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof, and examples thereof are the same as the above-described alkyl group, alkenyl group, alkynyl group, and aryl group.
  • carbonate bond a structure represented by —O—C (O) —O— can be shown.
  • the carbamate bond is —NH—C (O) —O—, —O—C (O) —NH—, —NR—C (O) —O—, or —O—C (O) —NR—.
  • R is an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof, and examples thereof are the same as the above-described alkyl group, alkenyl group, alkynyl group, and aryl group.
  • R 9 and R 10 in the formula (6) are each independently a single bond or a structure selected from an alkylene group having 1 to 10 carbon atoms, an alkenylene group, an alkynylene group, an arylene group, and a group obtained by combining these. is there. If one of R 9 and R 10 is a single bond, R 9 or R 10 is a structure selected from the group formed by combining an alkylene group having 2 to 10 carbon atoms, an alkenylene group, an alkynylene group, an arylene group, and these .
  • alkylene group examples include a structure in which one hydrogen atom is removed from the alkyl group. More specifically, a methylene group, 1,1-ethylene group, 1,2-ethylene group, 1,2-propylene group, 1,3-propylene group, 1,4-butylene group, 1,2-butylene group 1,2-pentylene group, 1,2-hexylene group, 2,3-butylene group, 2,4-pentylene group, 1,2-cyclopropylene group, 1,2-cyclobutylene group, 1,3- Examples thereof include a cyclobutylene group, 1,2-cyclopentylene group, 1,2-cyclohexylene group and the like.
  • alkenylene group examples include a structure in which one hydrogen atom is removed from the alkenyl group. More specifically, 1,1-ethenylene group, 1,2-ethenylene group, 1,2-ethenylenemethylene group, 1-methyl-1,2-ethenylene group, 1,2-ethenylene-1,1- Ethylene group, 1,2-ethenylene-1,2-ethylene group, 1,2-ethenylene-1,2-propylene group, 1,2-ethenylene-1,3-propylene group, 1,2-ethenylene-1, Examples include 4-butylene group and 1,2-ethenylene-1,2-butylene group.
  • the alkynylene group includes a structure in which one hydrogen atom is removed from the alkynyl group. More specifically, an ethynylene group, an ethynylene methylene group, an ethynylene-1,1-ethylene group, an ethynylene-1,2-ethylene group, an ethynylene-1,2-propylene group, an ethynylene-1,3-propylene group, Examples include ethynylene-1,4-butylene group, ethynylene-1,2-butylene group and the like.
  • the arylene group includes a structure in which one hydrogen atom is removed from the aryl group. More specific examples include 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group and the like.
  • Y 1 has a structure with high linearity or a rigid structure, a liquid crystal alignment film having good liquid crystal alignment can be obtained. Therefore, Z 1 can be a single bond, The structure of 25) is more preferable.
  • Y 1 Since Y 1 has a more rigid structure, a liquid crystal alignment film having excellent liquid crystal alignment can be obtained. Therefore, Y 1 is particularly preferably a structure represented by the above formula (4).
  • the ratio of the structural unit represented by the above formula (2) is the total structure in the polymer. 60 mol% to 100 mol% is preferable with respect to 1 mol of the unit. Since the higher the ratio of the structural unit represented by the above formula (2), the better the liquid crystal alignment film having liquid crystal alignment properties, 80 mol% to 100 mol% is more preferable, and 90 mol% to 100 mol% is preferable. Is more preferable.
  • the component (A) of the present invention may be a polyimide precursor having a structural unit represented by the following formula (7) and the polyimide precursor.
  • R 1 is the same as defined for R 1 in the formula (2).
  • X 3 is a tetravalent organic group, and its structure is not particularly limited. Specific examples include structures of the following formulas (X-9) to (X-42). From the viewpoint of availability of the compound, X includes X-17, X-25, X-26, X-27, X-28, X-32, or X-39.
  • a tetracarboxylic dianhydride having an aromatic ring structure it is preferable to use a tetracarboxylic dianhydride having an aromatic ring structure, and X is X-26, X-- 27, X-28, X-32, X-35, or X-37 are more preferred.
  • Y 3 is a divalent organic group, and its structure is not particularly limited. Specific examples of Y 3 include the following formulas (Y-1) to (Y-74).
  • the structures other than the formulas (4) and (5) include Y-8, Y-20, Y-21, Y-22, Y— 28, Y-29, Y-30, Y-72, Y-73, or Y-74.
  • the ratio of the structural unit represented by the above formula (7) in the component (A) is high, the ratio of the structural unit represented by the above formula (7) is The amount is preferably 0 to 40 mol%, more preferably 0 to 20 mol%, relative to 1 mol of the structural unit.
  • the component (B) of the present invention is a polymer containing a structure represented by the following formula (1).
  • W 1 and W 2 are each independently a divalent organic group having an aromatic group having 6 to 30 carbon atoms, and may be the same or different. Examples of the aromatic group contained in W 1 and W 2 include benzene, naphthalene, anthracene, biphenyl, and terphenyl.
  • A is a divalent organic group having an alkylene group having 2 to 20 carbon atoms.
  • the alkylene group having 2 to 20 carbon atoms examples include 1,1-ethylene group, 1,2-ethylene group, 1,2-propylene group, 1,3-propylene group, 1,4-butylene group, 1,5-butylene group, Examples include pentylene group, 1,6-hexylene group, 2,3-butylene group, 2,4-pentylene group and the like.
  • the component (B) is selected from the group consisting of a polyimide precursor containing a structure represented by the above formula (1) and an imidized polymer of the polyimide precursor. It is preferable that it is at least one polymer selected. Specifically, at least one selected from the group consisting of a polyimide precursor having a structural unit represented by the following formula (3) and an imidized polymer of the polyimide precursor is more preferable.
  • R 2 is the same definition as R 1 in Formula (2), including preferred examples.
  • a 1 and A 2 are each independently a hydrogen atom or an optionally substituted alkyl group, alkenyl group, or alkynyl group having 1 to 10 carbon atoms. The same structure as a group can be mentioned.
  • the above alkyl group, alkenyl group, and alkynyl group may have a substituent as long as it has 1 to 10 carbon atoms as a whole, and may further form a ring structure by the substituent.
  • forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are combined to form a ring structure.
  • this substituent include halogen groups, hydroxyl groups, thiol groups, nitro groups, aryl groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, alkyls.
  • the halogen group as a substituent include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a phenyl group is mentioned as an aryl group which is a substituent. This aryl group may be further substituted with the other substituent described above.
  • the organooxy group which is a substituent can have a structure represented by OR.
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • alkyloxy group examples include methoxy group, ethoxy group, propyloxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group and the like.
  • the organothio group which is a substituent can have a structure represented by —S—R.
  • R include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Specific examples of the alkylthio group include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, and an octylthio group.
  • the organosilyl group as a substituent can have a structure represented by —Si— (R) 3 .
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Specific examples of the alkylsilyl group include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a tributylsilyl group, a tripentylsilyl group, a trihexylsilyl group, a pentyldimethylsilyl group, and a hexyldimethylsilyl group.
  • the acyl group as a substituent can have a structure represented by —C (O) —R.
  • R examples include the alkyl groups, alkenyl groups, and aryl groups described above. These Rs may be further substituted with the substituent described above.
  • Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
  • As the ester group which is a substituent a structure represented by —C (O) O—R or —OC (O) —R can be shown.
  • R examples include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • the thioester group as a substituent can have a structure represented by —C (S) O—R or —OC (S) —R.
  • R examples include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • the phosphate group which is a substituent can have a structure represented by —OP (O) — (OR) 2 .
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Examples of the amide group as a substituent include —C (O) NH 2 , —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , or —NRC (O) R.
  • the structure represented by can be shown.
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Examples of the aryl group as a substituent include the same aryl groups as described above. This aryl group may be further substituted with the other substituent described above.
  • Examples of the alkyl group as a substituent include the same alkyl groups as described above.
  • This alkyl group may be further substituted with the other substituent described above.
  • Examples of the alkenyl group as a substituent include the same alkenyl groups as described above. This alkenyl group may be further substituted with the other substituent described above.
  • Examples of the alkynyl group that is a substituent include the same alkynyl groups as described above. This alkynyl group may be further substituted with the other substituent described above.
  • a 1 and A 2 a hydrogen atom or a carbon atom that may have a substituent is 1
  • An alkyl group of 1 to 5 is more preferable, and a hydrogen atom, a methyl group or an ethyl group is particularly preferable.
  • X 2 is a tetravalent organic group having an aromatic group having 6 to 20 carbon atoms and having a bond in the aromatic group. Examples of the aromatic group having 6 to 20 carbon atoms include benzene, naphthalene, anthracene, biphenyl, and terphenyl.
  • X 2 is preferably a tetravalent organic group consisting only of an aromatic group, more preferably a compound represented by the following formulas (X2-1) to (X) because the interaction with the liquid crystal is enhanced and the effect of suppressing the afterimage is enhanced. And a structure represented by X2-3). Among these, a structure represented by the formula (X2-1) is particularly preferable.
  • Y 2 is at least one divalent organic group selected from the group consisting of the following formulas (Y2-1) to (Y2-2).
  • a 3 is a divalent organic group having an alkylene group having 2 to 20 carbon atoms, and may have a plurality of alkylene groups.
  • alkylene group having 2 to 20 carbon atoms include 1,1-ethylene group, 1,2-ethylene group, 1,2-propylene group, 1,3-propylene group, 1,4-butylene group, 1,5-butylene group, Examples include pentylene group, 1,6-hexylene group, 2,3-butylene group, 2,4-pentylene group and the like.
  • a 3 is preferably a divalent organic group having an alkylene group having 2 to 10 carbon atoms.
  • a 4 is a single bond, —O—, —S—, —NR 12 —, ester bond, amide bond, thioester bond, urea bond, carbonate bond, or carbamate bond
  • R 4 12 is a hydrogen atom, a methyl group, or a t-butoxycarbonyl group, and these can have the same structure as described above.
  • a 5 is an alkylene group having 2 to 20 carbon atoms, and can exhibit the same structure as the above-described alkylene group.
  • a 4 is preferably a single bond, and A 5 is preferably an alkylene group having 2 to 6 carbon atoms.
  • Specific examples of Y 2 that can enhance the interaction with the liquid crystal and improve the liquid crystal alignment include structures represented by the following formulas (Y2-3) to (Y2-12). Among these, a structure represented by the following formula (Y2-3) is particularly preferable.
  • the ratio of the structural unit represented by the above formula (3) is the total structure in the polymer. 60 mol% to 100 mol% is preferable with respect to 1 mol of the unit. As the ratio of the structural unit represented by the above formula (3) is higher, a liquid crystal alignment film having better liquid crystal alignment can be obtained. Therefore, 80 mol% to 100 mol% is more preferable, and 90 mol% to 100 mol% is obtained. Is more preferable.
  • the component (B) used in the present invention may be a polyimide precursor containing a structural unit represented by the following formula (8) in addition to the structural unit represented by the above formula (3) and the polyimide precursor. .
  • R 2, A 1, and A 2 are the same as defined, including preferred examples and R 2, A 1, and A 2 in Formula (3).
  • X 4 is a tetravalent organic group having an alicyclic group, and the structure thereof is not particularly limited as long as it is a tetravalent organic group having an alicyclic group. Specific examples thereof include the above formulas (X1-1) to (X1-9), (X-9) to (X-15), (X-22 to 25), (X-39), (X-40).
  • Y 4 is a divalent organic group, and its structure is not particularly limited. Specific examples thereof include the above formulas (Y2-3) to (Y2-12), the above formula (4), the above formula (5), and the formulas (Y-1) to (Y-74).
  • the ratio of the structural unit represented by the above formula (8) contained in the component (B) is high, the ratio of the structural unit represented by the above formula (8) is decreased in order to reduce the liquid crystal orientation of the liquid crystal alignment film. Is preferably from 0 to 40 mol%, more preferably from 0 to 20 mol%, based on 1 mol of all structural units.
  • the polyamic acid ester which is a polyimide precursor used in the present invention can be synthesized by the following methods (1) to (3).
  • the polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from tetracarboxylic dianhydride and diamine. Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 4 hours. Can be synthesized.
  • the esterifying agent those that can be easily removed by purification are preferable.
  • the addition amount of the esterifying agent is preferably 2 to 6 molar equivalents per 1 mol of the polyamic acid repeating unit.
  • the solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone from the solubility of the polymer, and these may be used alone or in combination. Good.
  • the concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • Polyamic acid ester can be synthesized from tetracarboxylic acid diester dichloride and diamine. Specifically, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be synthesized by reacting.
  • a base pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
  • the solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
  • the polymer concentration at the time of synthesis is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
  • the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
  • the polyamic acid ester can be synthesized by polycondensation of a tetracarboxylic acid diester and a diamine. Specifically, tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 hours. It can be synthesized by reacting.
  • condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide.
  • Nylmethylmorpholinium O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like.
  • the addition amount of the condensing agent is preferably 2 to 3 times the molar amount of the tetracarboxylic acid diester.
  • tertiary amines such as pyridine and triethylamine can be used.
  • the addition amount of the base is preferably 2 to 4 moles relative to the diamine component from the viewpoint of easy removal and easy obtaining of a high molecular weight product.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component.
  • the synthesis method (1) or (2) is particularly preferable.
  • the polyamic acid ester solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the polyamic acid which is a polyimide precursor used in the present invention can be synthesized by the following method. Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
  • the organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone in view of the solubility of the monomer and polymer. These may be used alone or in combination of two or more.
  • the concentration of the polymer is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation hardly occurs and a high molecular weight body is easily obtained.
  • the polyamic acid obtained as described above can be recovered by precipitating the polymer by pouring into the poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the polyimide used in the present invention can be produced by imidizing the polyimide precursor such as the polyamic acid ester or polyamic acid.
  • a polyimide is produced from a polyamic acid ester
  • chemical imidization in which a basic catalyst is added to the polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in an organic solvent is simple.
  • Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is hardly lowered during the imidization process.
  • Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst.
  • the solvent used at the time of the polymerization reaction mentioned above can be used.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
  • the temperature for carrying out the imidization reaction is ⁇ 20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amic acid ester group.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the catalyst amount, temperature, and reaction time. Since the added catalyst or the like remains in the solution after the imidation reaction, the obtained imidized polymer is recovered by the means described below, re-dissolved in an organic solvent, and the liquid crystal alignment according to the present invention. It is preferable to use an agent.
  • the chemical imidation which adds a catalyst to the solution of the said polyamic acid obtained by reaction of a diamine component and tetracarboxylic dianhydride is simple.
  • Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is hardly lowered during the imidization process.
  • Chemical imidation can be performed by stirring a polymer to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride.
  • a basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferred because it has an appropriate basicity for proceeding with the reaction.
  • the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the temperature for carrying out the imidization reaction is ⁇ 20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amic acid group. Is double.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the catalyst amount, temperature, and reaction time.
  • the liquid crystal aligning agent of the present invention is preferable.
  • the polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while thoroughly stirring. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • the poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
  • the liquid crystal aligning agent of this invention has the form of the solution in which (A) component and (B) component were melt
  • the molecular weight of the polymer of the component (A) and the component (B) is preferably 2,000 to 500,000, more preferably 5,000 to 300,000, and still more preferably, in terms of weight average molecular weight. 10,000 to 100,000.
  • the number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
  • the concentration of the polymer containing the component (A) and the component (B) contained in the liquid crystal aligning agent of the present invention can be appropriately changed depending on the setting of the thickness of the coating film to be formed.
  • the component (A) in the liquid crystal aligning agent of the present invention is organic in order to exhibit high anisotropy when irradiated with polarized radiation and to exhibit good liquid crystal alignment when used as a liquid crystal alignment film.
  • the content is usually 1 to 10% by mass, preferably 2 to 8% by mass, based on the solvent.
  • the content of component (B) is 0.1 to 15 parts by weight, preferably 1 to 10 parts by weight, and more preferably 1 to 5 parts by weight with respect to 100 parts by weight of component (A).
  • the organic solvent contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as the (A) component and the (B) component are uniformly dissolved.
  • Specific examples thereof include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, Examples include 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like.
  • the liquid crystal aligning agent of the present invention may contain a solvent for improving the uniformity of the coating film when the liquid crystal aligning agent is applied to the substrate in addition to the organic solvent for dissolving the polymer.
  • a solvent for improving the uniformity of the coating film when the liquid crystal aligning agent is applied to the substrate in addition to the organic solvent for dissolving the polymer.
  • a solvent having a surface tension lower than that of the organic solvent is generally used.
  • ethyl cellosolve examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2 -Propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, butyl cellosolve acetate, di Propylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactic acid Isoamyl ester, and the like. Two or more
  • Dielectrics or conductive materials for the purpose of changing electrical properties such as conductivity
  • silane coupling agents for the purpose of improving the adhesion between the liquid crystal alignment film and the substrate
  • a crosslinkable compound for the purpose of increasing, and further an imidization accelerator for the purpose of efficiently proceeding imidization of the polyamic acid when baking the coating film may be added.
  • the liquid crystal alignment film of the present invention is a coating film obtained by applying a liquid crystal aligning agent to a substrate, drying and baking, and can be obtained by irradiating this coating film surface with radiation polarized almost linearly.
  • the substrate to which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode or the like is formed.
  • an opaque object such as a silicon wafer can be used as long as it is only on one side of the substrate.
  • a material that reflects light such as aluminum can be used as the electrode.
  • the method for applying the liquid crystal aligning agent of the present invention include a spin coating method, a printing method, and an ink jet method. Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention. Usually, in order to sufficiently remove the organic solvent contained, the organic solvent is dried at 50 ° C. to 120 ° C. for 1 minute to 10 minutes, and then baked at 150 ° C. to 300 ° C. for 5 minutes to 120 minutes.
  • the thickness of the coating film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, and therefore it is 5 to 300 nm, preferably 10 to 200 nm.
  • the liquid crystal aligning agent of the present invention is particularly useful when used in a photo-alignment treatment method.
  • the photo-alignment treatment method there is a method in which the surface of the coating film is irradiated with radiation polarized in a certain direction, and in some cases, a heat treatment is further performed at a temperature of 150 to 250 ° C. to impart liquid crystal alignment ability.
  • a heat treatment is further performed at a temperature of 150 to 250 ° C. to impart liquid crystal alignment ability.
  • the wavelength of radiation ultraviolet rays and visible rays having a wavelength of 100 nm to 800 nm can be used. Among these, ultraviolet rays having a wavelength of 100 nm to 400 nm are preferable, and those having a wavelength of 200 nm to 400 nm are particularly preferable.
  • radiation may be irradiated while heating the coated substrate at 50 to 250 ° C.
  • Dose of the radiation is preferably in the range of 1 ⁇ 10,000mJ / cm 2, and particularly preferably in the range of 100 ⁇ 5,000mJ / cm 2.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the above-described method, performing an alignment treatment, and then preparing a liquid crystal cell by a known method. It is.
  • the manufacturing method of a liquid crystal cell is not specifically limited. For example, a pair of substrates on which a liquid crystal alignment film is formed are placed with a liquid crystal alignment film surface inside, preferably with a spacer of 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m, and then surroundings. Is generally sealed with a sealant, and liquid crystal is injected and sealed.
  • the method for enclosing the liquid crystal is not particularly limited, and examples thereof include a vacuum method of injecting liquid crystal after reducing the pressure inside the produced liquid crystal cell, and a dropping method of sealing after dropping the liquid crystal.
  • the molecular weight of the polyamic acid ester is measured by a GPC (normal temperature gel permeation chromatography) apparatus, and is a number average molecular weight (hereinafter also referred to as Mn) and a weight average molecular weight (hereinafter also referred to as Mw) as polyethylene glycol and polyethylene oxide equivalent values. ) was calculated.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • GPC device manufactured by Shodex (GPC-101) Column: manufactured by Shodex (series of KD803 and KD805) Column temperature: 50 ° C Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr ⁇ H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystals (o-phosphoric acid) 30 mmol / L, tetrahydrofuran) (THF) is 10 ml / L) Flow rate: 1.0 ml / min Standard sample for preparing calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polymer laboratory Polyethylene glycol manufactured by the company (peak top molecular weight (Mp) of about 12,000, 4,000, 1,000). In order to avoid the overlap of peaks, the measurement was performed by mixing four types of 900,000, 100,000, 12,000, and
  • FFS fringe field switching
  • a coating film having a thickness of 100 nm.
  • This coating film surface was irradiated with 254 nm ultraviolet light through a polarizing plate to obtain a substrate with a liquid crystal alignment film. Further, a coating film was similarly formed on a glass substrate having a columnar spacer having a height of 4 ⁇ m on which no electrode was formed as a counter substrate, and an orientation treatment was performed.
  • the two substrates are combined as a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is added.
  • An empty cell was produced by curing.
  • Liquid crystal MLC-2041 manufactured by Merck & Co., Inc.
  • VT characteristic voltage-transmittance characteristic
  • the obtained polyamic acid ester solution was poured into 872 g of 2-propanol with stirring, and the deposited precipitate was collected by filtration, washed with 290 g of 2-propanol five times, and dried to obtain a polyamic acid ester.
  • a resin powder was obtained.
  • Mn 13462
  • Mw 28462.
  • PEE-1 polyamic acid ester solution
  • Example 1 In a 20 ml sample tube containing a stirrer, 7.13 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 and 0.29 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2; 4.60 g of NMP and 3.02 g of BCS were added, and stirred for 30 minutes with a magnetic stirrer to obtain a liquid crystal aligning agent (A-1).
  • PAA-1 polyamic acid solution obtained in Synthesis Example 1
  • PAA-2 polyamic acid solution obtained in Synthesis Example 2
  • 4.60 g of NMP and 3.02 g of BCS were added, and stirred for 30 minutes with a magnetic stirrer to obtain a liquid crystal aligning agent (A-1).
  • Example 2 In a 20 ml sample tube containing a stirrer, 3.95 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1, 0.19 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2, 3.88 g of NMP, 2.00 g of BCS, and 0.02 g of 1-butylimidazole were added and stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-2).
  • Example 3 In a 20 ml sample tube containing a stir bar, 3.79 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 and 0.37 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2; 3.89 g of NMP, 2.00 g of BCS, and 0.02 g of 1-butylimidazole were added, and the mixture was stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-3).
  • PAA-1 polyamic acid solution obtained in Synthesis Example 1
  • PAA-2 polyamic acid solution obtained in Synthesis Example 2
  • 3.89 g of NMP, 2.00 g of BCS, and 0.02 g of 1-butylimidazole were added, and the mixture was stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-3).
  • Example 4 In a 20 ml sample tube containing a stirrer, 7.42 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 and 0.08 g of the polyamic acid ester solution (PAE-1) obtained in Synthesis Example 3 were used. Then, 4.53 g of NMP and 3.03 g of BCS were stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-4).
  • Example 5 After the liquid crystal aligning agent (A-1) obtained in Example 1 was filtered through a 1.0 ⁇ m filter, an ITO electrode having a film thickness of 50 nm as a first layer was insulated on a glass substrate as a second layer. Glass on which FFS driving electrodes having comb-like ITO electrodes (electrode width: 3 ⁇ m, electrode interval: 6 ⁇ m, electrode height: 50 nm) are formed as the third layer, silicon nitride having a thickness of 500 nm as a film The substrate was applied by spin coating. After drying on an 80 ° C. hot plate for 5 minutes, baking was performed in a hot air circulation oven at 230 ° C.
  • a coating film having a thickness of 100 nm.
  • the surface of the coating film was irradiated with 1500 mJ / cm 2 of 254 nm ultraviolet light through a polarizing plate, and further heated in a hot air circulation oven at 230 ° C. for 30 minutes to obtain a substrate with a liquid crystal alignment film.
  • a coating film was similarly formed on a glass substrate having a columnar spacer having a height of 4 ⁇ m on which no electrode was formed as a counter substrate, and an orientation treatment was performed. The two substrates are combined as a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is added.
  • Liquid crystal MLC-2041 manufactured by Merck & Co., Inc.
  • ⁇ V 50 was 1.8 mV.
  • Example 6 An FFS drive liquid crystal cell was produced in the same manner as in Example 5 except that the liquid crystal aligning agent (A-2) obtained in Example 2 was used. As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ⁇ V 50 was 1.3 mV.
  • Example 7 An FFS drive liquid crystal cell was produced in the same manner as in Example 5 except that the liquid crystal aligning agent (A-3) obtained in Example 3 was used. As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ⁇ V 50 was 1.2 mV.
  • Example 8 An FFS drive liquid crystal cell was produced in the same manner as in Example 5 except that the liquid crystal aligning agent (A-4) obtained in Example 4 was used. As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ⁇ V 50 was 1.1 mV.
  • Comparative Example 2 An FFS drive liquid crystal cell was produced in the same manner as in Example 6 except that the liquid crystal aligning agent (B-1) obtained in Comparative Example 1 was used. As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ⁇ V 50 was 5.0 mV.
  • Example 9 In a 50 ml sample tube containing a stir bar, 16.29 g of the polyamic acid solution (PAA-3) obtained in Synthesis Example 4 and 0.45 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2 were added. 7.38 g of BCS, 6.05 g of BCS, and 0.23 g of N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine as an imidization accelerator, The mixture was stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-5).
  • PAA-3 polyamic acid solution obtained in Synthesis Example 4
  • PAA-2 polyamic acid solution obtained in Synthesis Example 2
  • Example 10 In a 50 ml sample tube containing a stirrer, 10.79 g of the polyamic acid solution (PAA-3) obtained in Synthesis Example 4, 0.31 g of the polyamic acid solution (PAA-5) obtained in Synthesis Example 6 and NMP , BCS 6.05 g, and N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine as an imidization accelerator were added for 30 minutes with a magnetic stirrer. By stirring, a liquid crystal aligning agent (A-6) was obtained.
  • Example 11 In a 50 ml sample tube containing a stirrer, 10.90 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 5 and 0.10 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2 were added. 5.08 g, BCS 4.26 g, and 0.15 g of N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine as an imidization accelerator, The mixture was stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-7).
  • Example 12 In a 20 ml sample tube containing a stir bar, 7.45 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 5 and 0.08 g of the polyamic acid ester solution (PAE-2) obtained in Synthesis Example 7 were obtained. 4.39 g of NMP, 3.02 g of BCS, and 0.08 g of N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine as an imidization accelerator were added. The mixture was stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-8).
  • Example 13 In a 20-ml sample tube containing a stirrer, 7.43 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 5 and 0.08 g of the polyamic acid ester solution (PAE-3) obtained in Synthesis Example 8 were obtained. 4.38 g of NMP, 3.11 g of BCS, and 0.08 g of N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine as an imidization accelerator were added. The mixture was stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-9).
  • Example 14 In a 20 ml sample tube containing a stir bar, 7.43 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 5 and 0.08 g of the polyamic acid ester solution (PAE-4) obtained in Synthesis Example 9 were obtained. 4.35 g of NMP, 3.02 g of BCS, and 0.08 g of N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine as an imidization accelerator were added. The mixture was stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-10).
  • Example 15 An FFS drive liquid crystal cell was produced in the same manner as in Example 5, except that the liquid crystal aligning agent (A-5) obtained in Example 9 was used and 254 nm ultraviolet rays were irradiated at 500 mJ / cm 2 . As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ⁇ V 50 was 0.8 mV.
  • Example 16 An FFS drive liquid crystal cell was produced in the same manner as in Example 5 except that the liquid crystal aligning agent (A-6) obtained in Example 10 was used and 254 nm ultraviolet rays were irradiated at 500 mJ / cm 2 . As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ⁇ V 50 was 1.0 mV.
  • Example 17 An FFS drive liquid crystal cell was produced in the same manner as in Example 5 except that the liquid crystal aligning agent (A-7) obtained in Example 11 was used and 254 nm ultraviolet rays were irradiated at 500 mJ / cm 2 . As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ⁇ V 50 was 0.8 mV.
  • Example 18 An FFS drive liquid crystal cell was produced in the same manner as in Example 5 except that the liquid crystal aligning agent (A-8) obtained in Example 12 was used and ultraviolet rays of 254 nm were irradiated at 500 mJ / cm 2 . As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ⁇ V 50 was 0.6 mV.
  • Example 19 An FFS drive liquid crystal cell was produced in the same manner as in Example 5, except that the liquid crystal aligning agent (A-9) obtained in Example 13 was used and 254 nm ultraviolet rays were irradiated at 500 mJ / cm 2 . As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ⁇ V 50 was 1.1 mV.
  • Example 20 An FFS drive liquid crystal cell was produced in the same manner as in Example 5 except that the liquid crystal aligning agent (A-10) obtained in Example 14 was used and 254 nm ultraviolet rays were irradiated at 500 mJ / cm 2 . As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ⁇ V 50 was 1.1 mV.
  • Example 21 In a 50 ml sample tube containing a stirrer, 12.44 g of the polymer solution (M-1) of the methacrylate obtained in Synthesis Example 10 and 0.32 g of the polyamic acid solution (A-2) obtained in Synthesis Example 2 Then, 2.08 g of NMP and 6.19 g of BCS were added and stirred at room temperature for 5 hours to obtain a liquid crystal aligning agent (A-11).
  • Example 22 In a 50 ml sample tube containing a stir bar, 12.41 g of the polymer solution (M-1) of the methacrylate obtained in Synthesis Example 10 and 0.54 g of the polyamic acid solution (A-2) obtained in Synthesis Example 2 Then, 2.09 g of NMP and 6.20 g of BCS were added and stirred at room temperature for 5 hours to obtain a liquid crystal aligning agent (A-12).
  • Example 23 Using the liquid crystal aligning agent (A-11) obtained in Example 21, a liquid crystal cell was produced according to the procedure shown below.
  • the board A glass substrate having a size of 30 mm ⁇ 40 mm and a thickness of 0.7 mm and having a comb-like pixel electrode formed by patterning an ITO film is used.
  • the pixel electrode has a comb-like shape configured by arranging a plurality of dog-shaped electrode elements whose central portion is bent. The width of each electrode element in the short direction is 10 ⁇ m, and the distance between the electrode elements is 20 ⁇ m.
  • each pixel Since the pixel electrode forming each pixel is formed by arranging a plurality of bent-shaped electrode elements in the center part, the shape of each pixel is not rectangular, but in the center part like the electrode elements. It has a shape that bends and resembles a bold, bold character.
  • Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side. When the first region and the second region of each pixel are compared, the formation directions of the electrode elements of the pixel electrodes constituting them are different.
  • the electrode element of the pixel electrode is formed to form an angle of + 15 ° (clockwise) in the first region of the pixel, and in the second region of the pixel.
  • the electrode elements of the pixel electrode are formed so as to form an angle of ⁇ 15 ° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the application of voltage between the pixel electrode and the counter electrode are mutually in the substrate plane. It is comprised so that it may become a reverse direction.
  • the liquid crystal aligning agent (A-11) obtained in Example 21 was spin-coated on the prepared substrate with electrodes. Subsequently, after drying for 90 seconds with an 80 degreeC hotplate, it baked for 30 minutes with a 160 degreeC hot-air circulation type oven, and formed the liquid crystal aligning film with a film thickness of 100 nm.
  • the coating film surface was irradiated with 313 nm ultraviolet rays through a polarizing plate at 500 mJ / cm 2 and then heated in a hot air circulation oven at 160 ° C. to obtain a substrate with a liquid crystal alignment film. Further, a coating film was similarly formed on a glass substrate having a columnar spacer having a height of 4 ⁇ m on which no electrode was formed as a counter substrate, and an orientation treatment was performed. A sealant (XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.) was printed on the liquid crystal alignment film of one substrate. Next, the other substrate was bonded so that the liquid crystal alignment film faces each other and the alignment direction was 0 °, and then the sealing agent was cured to produce an empty cell.
  • a sealant XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.
  • a liquid crystal cell having a configuration of an IPS (In-Plane Switching) mode liquid crystal display element is prepared by injecting liquid crystal MLC-2041 (manufactured by Merck Co., Ltd.) into the empty cell by a reduced pressure injection method, sealing the injection port. Obtained.
  • the liquid crystal cell for IPS mode obtained by the above method is installed between two polarizing plates arranged so that the polarization axes are orthogonal to each other, the backlight is turned on with no voltage applied, and transmitted light is transmitted.
  • the arrangement angle of the liquid crystal cell was adjusted so that the luminance was minimized.
  • the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the pixel was darkest to the angle at which the first region was darkest was calculated as the initial orientation azimuth.
  • an AC voltage of 8 V PP was applied at a frequency of 30 Hz in an oven at 60 ° C. for 168 hours.
  • the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left as it was at room temperature for 1 hour.
  • the orientation azimuth was measured in the same manner, and the difference in orientation azimuth before and after AC driving was calculated as an angle ⁇ (deg.). It can be judged that the smaller the difference in orientation orientation before and after AC driving, the better the AC driving image sticking characteristics.
  • the difference in orientation azimuth angle before and after AC driving is the angle ⁇ (deg.). It was 0.5 °.
  • Example 24 An IPS drive liquid crystal cell was produced in the same manner as in Example 23 except that the liquid crystal aligning agent (A-12) obtained in Example 22 was used. As a result of evaluating the AC drive burn-in characteristics of this IPS drive liquid crystal cell in the same manner as in Example 23, the difference in orientation azimuth angle before and after AC drive is the angle ⁇ (deg.). It was 0.4 °.
  • Comparative Example 4 An IPS drive liquid crystal cell was produced in the same manner as in Example 23 except that the liquid crystal aligning agent (B-2) obtained in Comparative Example 3 was used. As a result of evaluating the AC drive burn-in characteristics of this IPS drive liquid crystal cell in the same manner as in Example 23, the difference in orientation azimuth angle before and after AC drive is the angle ⁇ (deg.). It was 1.7 °.
  • the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention reduces afterimages due to AC driving generated in an IPS driving type or FFS driving type liquid crystal display element, and because the residual charge accumulated by the DC voltage is quickly relaxed, It is particularly useful as a liquid crystal alignment film of an IPS driving method or an FFS driving method having excellent afterimage characteristics or a liquid crystal alignment film of a liquid crystal television.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are a liquid crystal orientation film with which it is possible to alleviate an afterimage resulting from AC driving which occurs with an IPS drive format or an FFS drive format liquid-crystal display element, and a liquid crystal orientation liquid for a light orientation processing technique for said film. A liquid crystal orientation liquid for a light orientation processing technique includes a constituent (A), a constituent (B), and an organic solvent, wherein the degree of inclusion of the constituent (B) is 0.1-15 parts to 100 parts of the constituent (A). Constituent (A): one or more polymers, wherein by illuminating with polarized light, one of the following reactions progresses: photolysis, photodimerization, or photoisomerization, and wherein an anisotropy is applied in either the same direction as the polarized light direction or the perpendicular direction to the polarized light direction. Constituent (B): a polymer having a structure which is represented with formula (1), following: (Chemical Formula 1) (Wherein W1 and W2 are independent bivalent organic groups including an aromatic group with 6-30 carbons, and A is a bivalent organic group including an alkylene group with 2-20 carbons.

Description

光配向処理法用の液晶配向剤、及びそれを用いた液晶配向膜Liquid crystal aligning agent for photo-alignment treatment method, and liquid crystal alignment film using the same
 本発明は、液晶配向膜を作製するための液晶配向剤、この液晶配向剤から得られる液晶配向膜に関する。さらに詳しくは、ラビング処理に代わり、光配向処理法、すなわち、偏光された紫外線の照射によって液晶配向能を付与することが可能な液晶配向膜の形成に用いられる液晶配向剤、及びかかる液晶配向剤から得られる液晶配向膜に関する。 The present invention relates to a liquid crystal alignment agent for producing a liquid crystal alignment film and a liquid crystal alignment film obtained from the liquid crystal alignment agent. More specifically, in place of rubbing treatment, a liquid crystal alignment agent used for forming a liquid crystal alignment film capable of imparting liquid crystal alignment ability by photo-alignment treatment, that is, irradiation with polarized ultraviolet rays, and the liquid crystal alignment agent. It relates to a liquid crystal alignment film obtained from the above.
 液晶テレビ、液晶ディスプレイなどに用いられる液晶表示素子は、通常、液晶の配列状態を制御するための液晶配向膜が素子内に設けられている。
 現在、工業的に最も普及している方法によれば、この液晶配向膜は、電極基板上に形成されたポリアミック酸及び/又はこれをイミド化したポリイミドからなる膜の表面を、綿、ナイロン、ポリエステル等の布で一方向に擦る、いわゆるラビング処理を行うことで作製されている。
In a liquid crystal display element used for a liquid crystal television, a liquid crystal display, and the like, a liquid crystal alignment film for controlling the alignment state of liquid crystals is usually provided in the element.
At present, according to the most widespread industrial method, the liquid crystal alignment film is made of a polyamic acid formed on an electrode substrate and / or a surface of a film made of polyimide obtained by imidizing this with cotton, nylon, It is produced by carrying out a so-called rubbing treatment that rubs in one direction with a cloth such as polyester.
 液晶配向膜の配向過程において膜面をラビング処理する方法は、簡便で生産性に優れた工業的に有用な方法である。しかし、液晶表示素子の高性能化、高精細化、大型化への要求は益々高まり、ラビング処理によって発生する配向膜の表面の傷、発塵、機械的な力や静電気による影響、さらには、配向処理面内の不均一性など種々の問題が明らかとなってきている。 The method of rubbing the film surface in the alignment process of the liquid crystal alignment film is an industrially useful method that is simple and excellent in productivity. However, demands for higher performance, higher definition, and larger size of liquid crystal display elements are increasing, and the surface of the alignment film caused by rubbing treatment, dust generation, the influence of mechanical force and static electricity, Various problems such as non-uniformity in the orientation processing surface have been revealed.
 ラビング処理に代わる方法としては、偏光された放射線を照射することにより、液晶配向能を付与する光配向法が知られている。光配向法による液晶配向処理は、光異性化反応を利用したもの、光架橋反応を利用したもの、光分解反応を利用したものなどが提案されている(非特許文献1参照)。
 ポリイミドを光配向用液晶配向膜に用いた場合、他に比べて高い耐熱性を有することからその有用性が期待されている。特許文献1では、主鎖にシクロブタン環などの脂環構造を有するポリイミド膜を光配向法に用いることが提案されている。
As a method for replacing the rubbing treatment, a photo-alignment method for imparting liquid crystal alignment ability by irradiating polarized radiation is known. As liquid crystal alignment treatment by the photo-alignment method, those utilizing a photoisomerization reaction, those utilizing a photocrosslinking reaction, those utilizing a photolysis reaction, and the like have been proposed (see Non-Patent Document 1).
When polyimide is used for the liquid crystal alignment film for photo-alignment, its usefulness is expected because it has higher heat resistance than others. Patent Document 1 proposes that a polyimide film having an alicyclic structure such as a cyclobutane ring in the main chain is used for the photo-alignment method.
 上記のような光配向法は、ラビングレス配向処理方法として注目されており、工業的にも簡便な製造プロセスで生産できる利点があるだけでなく、IPS駆動方式やフリンジフィールドスイッチング(以下、FFS)駆動方式の液晶表示素子において、得られる液晶配向膜が、ラビング処理法で得られる液晶配向膜に比べて、液晶表示素子のコントラストや視野角特性の向上し得るなどの性能を向上させることが可能である。
 一方、IPS駆動方式やFFS駆動方式の液晶表示素子に用いられる液晶配向膜としては、優れた液晶配向性や電気特性などの基本特性に加えて、IPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流駆動による残像の抑制が必要とされる。しかし、従来、光配向法で得られる液晶配向膜は、液晶の配向規制力、及びその安定性が不十分であり、上記特性を満足することは困難であった。
The photo-alignment method as described above has been attracting attention as a rubbing-less alignment treatment method, and has an advantage that it can be produced by an industrially simple manufacturing process. In the liquid crystal display element of the driving method, the obtained liquid crystal alignment film can improve performance such as the contrast and viewing angle characteristics of the liquid crystal display element can be improved as compared with the liquid crystal alignment film obtained by the rubbing treatment method. It is.
On the other hand, as the liquid crystal alignment film used for the liquid crystal display element of the IPS driving method or the FFS driving method, in addition to the basic characteristics such as excellent liquid crystal alignment property and electrical characteristics, It is necessary to suppress the afterimage by the generated AC drive. However, heretofore, a liquid crystal alignment film obtained by a photo-alignment method has insufficient alignment regulating power of liquid crystal and its stability, and it has been difficult to satisfy the above characteristics.
日本特開平9-297313号公報Japanese Unexamined Patent Publication No. 9-297313
 本発明は、IPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流駆動による残像を抑制することができる光配向処理法用の液晶配向膜、及び該液晶配向膜を得るための光配向処理法用の液晶配向剤を提供することを目的とする。 The present invention relates to a liquid crystal alignment film for a photo-alignment processing method capable of suppressing an afterimage due to alternating current driving that occurs in a liquid crystal display element of an IPS drive system or an FFS drive system, and a photo-alignment process for obtaining the liquid crystal alignment film It aims at providing the liquid crystal aligning agent for a method.
 本発明者は、上記の目的を達成するため、鋭意研究を進めたところ、偏光された放射線を照射することにより、光分解、光二量化、又は光異性化のいずれかの反応が進行し、偏光方向と同一方向、又は偏光方向に対して垂直方向に異方性が付与される重合体と、剛直な芳香族基と柔軟なアルキレン基の両方を有する重合体と、有機溶剤とを含有せしめた液晶配向剤により上記の目的を達成し得ることを見出した。 The present inventor has conducted extensive research to achieve the above object, and as a result of irradiating polarized radiation, any one of the reactions of photolysis, photodimerization, or photoisomerization proceeds, and polarization A polymer having anisotropy in the same direction as the direction or perpendicular to the polarization direction, a polymer having both a rigid aromatic group and a flexible alkylene group, and an organic solvent. It has been found that the above object can be achieved by a liquid crystal aligning agent.
 かくして、本発明は、下記を要旨とするものである。
1.下記の(A)成分、(B)成分、及び有機溶媒を含有し、(B)成分の含有量が(A)成分100質量部に対して0.1~15質量部であることを特徴とする液晶配向剤。
(A)成分:偏光された放射線を照射することにより、光分解、光二量化、又は光異性化のいずれかの反応が進行し、偏光方向と同一方向、又は偏光方向に対して垂直方向に異方性が付与される1種又は2種以上の重合体。
(B)成分:下記式(1)で表される構造を含有する重合体。
Thus, the present invention has the following gist.
1. The following (A) component, (B) component, and an organic solvent are contained, Content of (B) component is 0.1-15 mass parts with respect to 100 mass parts of (A) component, It is characterized by the above-mentioned. Liquid crystal aligning agent.
Component (A): Irradiation with polarized radiation causes a reaction of photodecomposition, photodimerization, or photoisomerization to proceed in the same direction as the polarization direction or in a direction perpendicular to the polarization direction. One type or two or more types of polymers imparted with anisotropy.
(B) Component: A polymer containing a structure represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000010
(式(1)において、W及びWはそれぞれ独立して、炭素数6~30の芳香族基を有する2価の有機基であり、Aは、炭素数2~20のアルキレン基を有する2価の有機基である。)
2.(A)成分が、偏光された放射線を照射することにより、光分解反応が進行し、偏光方向に対して垂直方向に異方性が付与される1種又は2種以上の重合体である上記1に記載の液晶配向剤。
3.(A)成分が、下記式(2)で表される構造単位を含有することを特徴とするポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体である上記1又は2に記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000010
(In Formula (1), W 1 and W 2 are each independently a divalent organic group having an aromatic group having 6 to 30 carbon atoms, and A has an alkylene group having 2 to 20 carbon atoms. It is a divalent organic group.)
2. The component (A) is a polymer of one or more types that undergoes a photolysis reaction when irradiated with polarized radiation and imparts anisotropy in a direction perpendicular to the polarization direction. The liquid crystal aligning agent of 1.
3. The component (A) contains a structural unit represented by the following formula (2), and at least one polymer selected from the group consisting of a polyimide precursor and an imidized polymer of the polyimide precursor 3. The liquid crystal aligning agent according to 1 or 2 above.
Figure JPOXMLDOC01-appb-C000011
(式(2)において、Xは下記式(X1-1)~(X1-9)で表される構造からなる群から選ばれる少なくとも1種であり、Yは2価の有機基であり、Rは、水素原子、又は炭素数1~4のアルキル基である。)
Figure JPOXMLDOC01-appb-C000011
(In the formula (2), X 1 is at least one selected from the group consisting of structures represented by the following formulas (X1-1) to (X1-9), and Y 1 is a divalent organic group. R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
Figure JPOXMLDOC01-appb-C000012
 式(X1-1)において、R、R、R、及びRはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、アルケニル基、又はフェニル基であり、同一でも異なってもよい。
4.(A)成分が、上記式(2)で表される構造単位を全構造単位1モルに対して、60モル%以上含有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種である上記3に記載の液晶配向剤。
5.上記式(2)において、Xが上記式(X1-1)で表される構造からなる群から選ばれる少なくとも1種である上記3又は4に記載の液晶配向剤。
6.上記式(2)において、Xが下記式(X1-10)~(X1-11)で表される構造からなる群から選ばれる少なくとも1種である上記3~5のいずれかに記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000012
In the formula (X1-1), R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, An alkenyl group or a phenyl group, which may be the same or different.
4). (A) From the group which a component consists of a polyimide precursor which contains 60 mol% or more of structural units represented by said Formula (2) with respect to 1 mol of all the structural units, and the imidation polymer of this polyimide precursor. 4. The liquid crystal aligning agent according to 3 above, which is at least one selected.
5. 5. The liquid crystal aligning agent according to 3 or 4 above, wherein in the formula (2), X 1 is at least one selected from the group consisting of a structure represented by the formula (X1-1).
6). 6. The liquid crystal according to any one of 3 to 5 above, wherein in the formula (2), X 1 is at least one selected from the group consisting of structures represented by the following formulas (X1-10) to (X1-11) Alignment agent.
Figure JPOXMLDOC01-appb-C000013
7.上記式(2)において、Yが下記式(4)及び(5)で表される構造からなる群から選ばれる少なくとも1種である上記3~6のいずれかに記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000013
7). 7. The liquid crystal aligning agent according to any one of 3 to 6, wherein in the formula (2), Y 1 is at least one selected from the group consisting of structures represented by the following formulas (4) and (5).
Figure JPOXMLDOC01-appb-C000014
(式(5)において、Zは単結合、エステル結合、アミド結合、チオエステル結合、又は炭素数2~10の2価の有機基である。)
8.上記式(2)において、Yが上記式(4)で表される構造である上記7に記載の液晶配向剤。
9.(B)成分が、下記式(3)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体である上記1~8のいずれかに記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000014
(In Formula (5), Z 1 is a single bond, an ester bond, an amide bond, a thioester bond, or a divalent organic group having 2 to 10 carbon atoms.)
8). 8. The liquid crystal aligning agent according to 7, wherein Y 1 is a structure represented by the above formula (4) in the above formula (2).
9. (1) to (8) wherein the component (B) is at least one polymer selected from the group consisting of a polyimide precursor having a structural unit represented by the following formula (3) and an imidized polymer of the polyimide precursor. The liquid crystal aligning agent in any one of.
Figure JPOXMLDOC01-appb-C000015
(式(3)において、Xは炭素数6~20の芳香族基を有し、且つ結合手を芳香族基に有する4価の有機基ある。Yは下記式(Y2-1)及び(Y2-2)からなる群から選ばれる少なくとも1種の2価の有機基であり、A及びAはそれぞれ独立して、水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、アルケニル基、アルキニル基であり、Rは水素原子、又は炭素数1~4のアルキル基である。)
Figure JPOXMLDOC01-appb-C000015
(In the formula (3), X 2 is a tetravalent organic group having an aromatic group having 6 to 20 carbon atoms and having a bond in the aromatic group. Y 2 represents the following formula (Y2-1) and (Y2-2) is at least one divalent organic group selected from the group consisting of, and A 1 and A 2 are each independently a hydrogen atom or a C 1 -C which may have a substituent. 10 is an alkyl group, an alkenyl group, or an alkynyl group, and R 2 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
Figure JPOXMLDOC01-appb-C000016
(式(Y2-1)において、Aは炭素数2~20のアルキレン基を有する2価の有機基である。式(Y2-2)において、Aは、-O-、-S-、-NR12-、エステル結合、アミド結合、チオエステル結合、ウレア結合、カーボネート結合、カルバメート結合であり、R12は、水素原子、メチル基、又はt-ブトキシカルボニル基であり、Aは炭素数2~20のアルキレン基である。)
10.(B)成分が、上記式(3)で表される構造単位を全構造単位1モルに対して60モル%以上含有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体である上記9に記載の液晶配向剤。
11.上記式(3)のXが下記式(X2-1)~(X2-3)で表される構造からなる群から選ばれる少なくとも1種である上記9又は10に記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000016
(In the formula (Y2-1), A 3 is a divalent organic group having an alkylene group having 2 to 20 carbon atoms. In the formula (Y2-2), A 4 represents —O—, —S—, —NR 12 —, ester bond, amide bond, thioester bond, urea bond, carbonate bond, carbamate bond, R 12 is a hydrogen atom, methyl group, or t-butoxycarbonyl group, and A 5 has 2 carbon atoms. ˜20 alkylene groups.)
10. The component (B) is selected from the group consisting of a polyimide precursor containing 60 mol% or more of the structural unit represented by the above formula (3) with respect to 1 mol of all structural units and an imidized polymer of the polyimide precursor. 10. The liquid crystal aligning agent according to 9 above, which is at least one polymer.
11. 11. The liquid crystal aligning agent according to 9 or 10 above, wherein X 2 in the formula (3) is at least one selected from the group consisting of structures represented by the following formulas (X2-1) to (X2-3).
Figure JPOXMLDOC01-appb-C000017
12.上記式(3)のXが上記式(X2-1)である上記11に記載の液晶配向剤。
13.上記式(3)のYが下記式(Y2-3)~(Y2-12)で表される構造からなる群から選ばれる少なくとも1種である上記9~12のいずれに記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000017
12 12. The liquid crystal aligning agent according to 11 above, wherein X 2 in the formula (3) is the formula (X2-1).
13. 13. The liquid crystal aligning agent according to any one of 9 to 12, wherein Y 2 in the formula (3) is at least one selected from the group consisting of structures represented by the following formulas (Y2-3) to (Y2-12) .
Figure JPOXMLDOC01-appb-C000018

(式(Y2-10)及び(Y2-11)において、R13はそれぞれ独立して、水素原子、又は炭素数1~10のアルキル基であり、同一でも異なってもよい。)
14.上記1~13のいずれかに記載の液晶配向剤を塗布、焼成して得られる液晶配向膜。
15.上記1~13のいずれかに記載の液晶配向剤を塗布、焼成し、さらに偏光された放射線を照射して得られる液晶配向膜。
16.上記1~13のいずれかに記載の液晶配向剤を塗布、焼成し、偏光された放射線を照射した後、150℃~250℃で加熱して得られる液晶配向膜。
17.上記14~16のいずれかに記載の液晶配向膜を具備する液晶表示素子。
Figure JPOXMLDOC01-appb-C000018

(In formulas (Y2-10) and (Y2-11), R 13 each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, which may be the same or different.)
14 14. A liquid crystal alignment film obtained by applying and baking the liquid crystal aligning agent according to any one of 1 to 13 above.
15. 14. A liquid crystal alignment film obtained by applying and baking the liquid crystal aligning agent according to any one of the above 1 to 13, and further irradiating with polarized radiation.
16. 14. A liquid crystal alignment film obtained by applying the liquid crystal aligning agent according to any one of 1 to 13 above, firing, irradiating with polarized radiation, and then heating at 150 ° C. to 250 ° C.
17. 17. A liquid crystal display device comprising the liquid crystal alignment film according to any one of 14 to 16 above.
 本発明の液晶配向剤から得られる液晶配向膜は、IPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流駆動による残像を抑制することができる。
 本発明の液晶配向膜において、何故に本発明の課題が解決されるかについては、必ずしも明らかではないが、ほぼ次のように考えられる。
 一般に、液晶配向膜の異方性を高めること、及び/又は液晶配向膜と液晶との相互作用を高めることにより、IPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流駆動による残像を抑制できることが知られている。一方、光配向法によって得られる液晶配向膜は、充分な異方性を付与できたとしても、放射線照射によって反応する特定の部位が一定割合以上必要であり、液晶との相互作用を高めることは困難であった。具体的には、液晶との相互作用を高めることができる構造を重合体中に導入した場合、光反応部位の反応性の低下や光反応性部位の密度の低下によって、充分な異方性が得られない場合があった。
The liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention can suppress afterimages caused by alternating current drive generated in an IPS drive type or FFS drive type liquid crystal display element.
The reason why the problems of the present invention are solved in the liquid crystal alignment film of the present invention is not necessarily clear, but is considered as follows.
In general, afterimages due to alternating current drive generated in liquid crystal display elements of IPS drive type and FFS drive type are suppressed by increasing the anisotropy of the liquid crystal alignment film and / or increasing the interaction between the liquid crystal alignment film and the liquid crystal. It is known that it can be done. On the other hand, even if the liquid crystal alignment film obtained by the photo-alignment method can provide sufficient anisotropy, a specific portion that reacts by irradiation with radiation requires a certain ratio or more, and the interaction with the liquid crystal is enhanced. It was difficult. Specifically, when a structure capable of enhancing the interaction with the liquid crystal is introduced into the polymer, sufficient anisotropy is caused by a decrease in the reactivity of the photoreactive site and a decrease in the density of the photoreactive site. In some cases, it could not be obtained.
 本願発明者らは、偏光された放射線を照射することにより異方性が付与される(A)成分に、芳香族基を含む剛直な骨格とアルキレン基を含む柔軟な骨格の両方を有する液晶と類似した構造を含有する重合体((B)成分)を、(A)成分に対して好ましくは特定の量を混合することにより、偏光された放射線を照射した際の異方性を維持したまま、光配向法によって得られる液晶配向膜と液晶との相互作用を高めることができることを見出した。
 液晶と類似の骨格を有する(B)成分は、柔軟な骨格を有するために、加熱した際の運動性は高いと予想される。光配向処理時や液晶表示素子製造時には、いつくかの加熱工程がある。本願発明者らは、この加熱工程の際に、(B)成分の運動性が向上し、偏光された放射線を照射によって付与された異方性に沿って、再配向すると考えた。(B)成分が再配向することにより、光配向法によって得られる液晶配向膜であっても、異方性が高く、且つ液晶との相互作用が高い液晶配向膜が得られると考えられる。
The inventors of the present application provide a liquid crystal having both a rigid skeleton containing an aromatic group and a flexible skeleton containing an alkylene group as the component (A) to which anisotropy is imparted by irradiating polarized radiation. While maintaining the anisotropy when irradiated with polarized radiation, the polymer (component (B)) containing a similar structure is preferably mixed with the component (A) in a specific amount. The present inventors have found that the interaction between the liquid crystal alignment film obtained by the photo-alignment method and the liquid crystal can be enhanced.
Since the component (B) having a skeleton similar to liquid crystal has a flexible skeleton, it is expected to have high mobility when heated. There are several heating processes during the photo-alignment process and during the manufacture of the liquid crystal display element. The inventors of the present application considered that the mobility of the component (B) is improved during this heating step, and reorientation is performed along the anisotropy imparted by irradiation with polarized radiation. By reorienting the component (B), it is considered that a liquid crystal alignment film having high anisotropy and high interaction with the liquid crystal can be obtained even in a liquid crystal alignment film obtained by a photo-alignment method.
 以上のことから、本発明の液晶配向剤から得られる液晶配向膜は、高い液晶配向性を有するとともに、IPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流駆動による残像を抑制することができると考えられる。 From the above, the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has high liquid crystal alignment properties and can suppress an afterimage caused by alternating current drive generated in an IPS drive type or FFS drive type liquid crystal display element. It is considered possible.
<(A)成分>
 本発明の液晶配向剤に含有される(A)成分は、偏光された放射線を照射することにより、光分解、光二量化、又は光異性化のいずれかの反応が進行し、偏光方向と同一方向、又は偏光方向に対して垂直方向に異方性が付与される1種又は2種以上の重合体である。
<(A) component>
The component (A) contained in the liquid crystal aligning agent of the present invention undergoes a reaction of photodecomposition, photodimerization, or photoisomerization by irradiating polarized radiation, and is in the same direction as the polarization direction. Or one or two or more polymers imparted with anisotropy in the direction perpendicular to the polarization direction.
 本発明の(A)成分は、放射線を照射することにより、光分解、光二量化、又は光異性化のいずれかの反応が進行する部位を有する重合体であれば、その構造は特に限定されない。具体例を挙げるならば、光二量化反応が進行する構造としては、下記式(A-1)で表されるシンナモイル基を有する構造を含有する重合体が挙げられる。光異性化反応が進行する構造としては、下記式(A-2)で表されるアゾベンゼン骨格を含有する重合体が挙げられる。光分解反応が進行する構造としては、下記式(A-3)で表される脂環式基を有するイミド骨格を含有する重合体及び該重合体の前駆体からなる群から選ばれる少なくとも1種の重合体が挙げられる。
 式(A-1)において、Qは2価の芳香族基である。式(A-3)において、Xは、4価の脂環式基であり、Yは2価の有機基である。
 得られる液晶配向膜の耐熱性が高く、液晶表示素子とした場合に、高い電圧保持率の信頼性の高い液晶表示素子が得られ、且つ得られる液晶配向膜の異方性が高いため、下記式(A-3)で表される脂環式基を有するイミド骨格及びイミド骨格のイミド化重合体がより好ましい。
The component (A) of the present invention is not particularly limited as long as it is a polymer having a site where any of the reactions of photolysis, photodimerization, or photoisomerization proceeds upon irradiation with radiation. As a specific example, examples of the structure in which the photodimerization reaction proceeds include a polymer containing a structure having a cinnamoyl group represented by the following formula (A-1). Examples of the structure in which the photoisomerization reaction proceeds include a polymer containing an azobenzene skeleton represented by the following formula (A-2). The structure in which the photolysis reaction proceeds is at least one selected from the group consisting of a polymer containing an imide skeleton having an alicyclic group represented by the following formula (A-3) and a precursor of the polymer. The polymer of this is mentioned.
In the formula (A-1), Q is a divalent aromatic group. In the formula (A-3), X is a tetravalent alicyclic group, and Y is a divalent organic group.
When the obtained liquid crystal alignment film has high heat resistance and a liquid crystal display element, a highly reliable liquid crystal display element with a high voltage holding ratio is obtained, and the obtained liquid crystal alignment film has high anisotropy. An imide skeleton having an alicyclic group represented by the formula (A-3) and an imidized polymer having an imide skeleton are more preferable.
Figure JPOXMLDOC01-appb-C000019
 式(A-1)において、Qは2価の芳香族基である。式(A-3)において、Xは、4価の脂環式基であり、Yは2価の有機基である。
 脂環式骨格を有するイミド構造を含有する重合体及び該重合体の前駆体としては、光反応の感度が高く、得られる液晶配向膜の異方性が高いため、本発明に記載の(A)成分としては、下記式(2)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体が好ましい。有機溶媒への溶解性の観点から、下記式(2)で表される構造単位を含有するポリイミド前駆体が特に好ましい。
Figure JPOXMLDOC01-appb-C000019
In the formula (A-1), Q is a divalent aromatic group. In the formula (A-3), X is a tetravalent alicyclic group, and Y is a divalent organic group.
A polymer containing an imide structure having an alicyclic skeleton and a precursor of the polymer have high photoreaction sensitivity, and the obtained liquid crystal alignment film has high anisotropy. As the component, a polyimide precursor having a structural unit represented by the following formula (2) and an imidized polymer of the polyimide precursor are preferable. From the viewpoint of solubility in an organic solvent, a polyimide precursor containing a structural unit represented by the following formula (2) is particularly preferable.
Figure JPOXMLDOC01-appb-C000020
 式(2)において、Rは、水素原子、又は炭素数1~4のアルキル基である。加熱によるイミド化のしやすさの観点から、水素原子、又はメチル基が特に好ましい。Xは下記式(X1-1)~(X1-9)で表される構造からなる群から選ばれる少なくとも1種である。
Figure JPOXMLDOC01-appb-C000020
In the formula (2), R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. From the viewpoint of ease of imidization by heating, a hydrogen atom or a methyl group is particularly preferable. X 1 is at least one selected from the group consisting of structures represented by the following formulas (X1-1) to (X1-9).
Figure JPOXMLDOC01-appb-C000021
 式(X1-1)において、R、R、R、及びRはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、アルケニル基、又はフェニル基であり、同一でも異なってもよい。液晶配向性の観点から、R、R、R,及びRは、水素原子、ハロゲン原子、メチル基、又はエチル基が好ましく、水素原子、又はメチル基がより好ましく、さらに好ましくは、下記式(X1-10)~(X1-11)で表される構造からなる群から選ばれる少なくとも1種である。
Figure JPOXMLDOC01-appb-C000021
In the formula (X1-1), R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, An alkenyl group or a phenyl group, which may be the same or different. From the viewpoint of liquid crystal orientation, R 1 , R 2 , R 3 , and R 4 are preferably a hydrogen atom, a halogen atom, a methyl group, or an ethyl group, more preferably a hydrogen atom or a methyl group, and still more preferably, At least one selected from the group consisting of structures represented by the following formulas (X1-10) to (X1-11).
Figure JPOXMLDOC01-appb-C000022
 Yは、2価の有機基であり、その構造は特に限定されるものではない。得られる液晶配向膜の異方性が高いため、下記式(4)及び(5)で表される構造からなる群から選ばれる少なくとも1種であることが好ましい。
Figure JPOXMLDOC01-appb-C000022
Y 1 is a divalent organic group, and its structure is not particularly limited. Since the obtained liquid crystal alignment film has high anisotropy, it is preferably at least one selected from the group consisting of structures represented by the following formulas (4) and (5).
Figure JPOXMLDOC01-appb-C000023
 式(5)において、Zは単結合、エステル結合、アミド結合、チオエステル結合、又は炭素数2~10の2価の有機基である。
 Zにおいて、エステル結合としては、-C(O)O-、又は-OC(O)-で表される。アミド結合としては、-C(O)NH-、又は、-C(O)NR-、-NHC(O)-、-NRC(O)-で表される構造を示すことができる。Rは、炭素数1~10を有する、アルキル基、アルケニル基、アルキニル基、アリール基、若しくはこれらの組み合わせである。
Figure JPOXMLDOC01-appb-C000023
In Formula (5), Z 1 is a single bond, an ester bond, an amide bond, a thioester bond, or a divalent organic group having 2 to 10 carbon atoms.
In Z 1 , the ester bond is represented by —C (O) O— or —OC (O) —. As the amide bond, a structure represented by —C (O) NH— or —C (O) NR—, —NHC (O) —, —NRC (O) — can be shown. R is an alkyl group, alkenyl group, alkynyl group, aryl group, or a combination thereof having 1 to 10 carbon atoms.
 上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、シクロペンチル基、シクロヘキシル基、ビシクロヘキシル基などが挙げられる。アルケニル基としては、上記のアルキル基に存在する1つ以上のCH-CH構造を、C=C構造に置き換えたものが挙げられ、より具体的には、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基などが挙げられる。アルキニル基としては、前記のアルキル基に存在する1つ以上のCH-CH構造をC≡C構造に置き換えたものが挙げられ、より具体的には、エチニル基、1-プロピニル基、2-プロピニル基などが挙げられる。アリール基としては、例えばフェニル基が挙げられる。
 チオエステル結合としては-C(O)S-、又は-SC(O)-で表される構造を示すことができる。
 Zが炭素数2~10の有機基である場合、下記式(6)の構造で表すことができる。
Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a cyclopentyl group, a cyclohexyl group, and a bicyclohexyl group. Examples of the alkenyl group include those obtained by replacing one or more CH—CH structures present in the above alkyl group with C═C structures, and more specifically, vinyl groups, allyl groups, 1-propenyl groups. And isopropenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, 2-hexenyl group, cyclopropenyl group, cyclopentenyl group, cyclohexenyl group and the like. Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C≡C structures, and more specifically, ethynyl groups, 1-propynyl groups, 2 -Propynyl group and the like. Examples of the aryl group include a phenyl group.
As the thioester bond, a structure represented by —C (O) S— or —SC (O) — can be shown.
When Z 1 is an organic group having 2 to 10 carbon atoms, it can be represented by the structure of the following formula (6).
Figure JPOXMLDOC01-appb-C000024
 式(6)における、Z4、Z、Zはそれぞれ独立して、単結合、-O-、-S-、-NR11-、エステル結合、アミド結合、チオエステル結合、ウレア結合、カーボネート結合、又はカルバメート結合である。R11は、水素原子、メチル基、又はt-ブトキシカルボニル基である。
Figure JPOXMLDOC01-appb-C000024
In formula (6), Z 4 , Z 5 and Z 6 are each independently a single bond, —O—, —S—, —NR 11 —, an ester bond, an amide bond, a thioester bond, a urea bond, or a carbonate bond. Or a carbamate bond. R 11 is a hydrogen atom, a methyl group, or a t-butoxycarbonyl group.
 Z、Z、Zにおいて、エステル結合、アミド結合、及び、チオエステル結合については、前記のエステル結合、アミド結合、及び、チオエステル結合の同様の構造を示すことができる。 In Z 4 , Z 5 , and Z 6 , the ester bond, amide bond, and thioester bond can have the same structures as the ester bond, amide bond, and thioester bond described above.
 ウレア結合としては、-NH-C(O)NH-、又は-NR-C(O)NR-で表される構造を示すことができる。Rは炭素数1~10のアルキル基、アルケニル基、アルキニル基、アリール基、若しくはこれらの組み合わせであり、前記のアルキル基、アルケニル基、アルキニル基、アリール基と同様の例を挙げることができる。
 カーボネート結合としては、-O-C(O)-O-で表される構造を示すことができる。
 カルバメート結合としては、-NH-C(O)-O-、-O-C(O)-NH-、-NR-C(O)-O-、又は-O-C(O)-NR-で表される構造を示すことができる。Rは炭素数1~10のアルキル基、アルケニル基、アルキニル基、アリール基、若しくはこれらの組み合わせであり、前記のアルキル基、アルケニル基、アルキニル基、アリール基と同様の例を挙げることができる。
As the urea bond, a structure represented by —NH—C (O) NH— or —NR—C (O) NR— can be shown. R is an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof, and examples thereof are the same as the above-described alkyl group, alkenyl group, alkynyl group, and aryl group.
As the carbonate bond, a structure represented by —O—C (O) —O— can be shown.
The carbamate bond is —NH—C (O) —O—, —O—C (O) —NH—, —NR—C (O) —O—, or —O—C (O) —NR—. The structure represented can be shown. R is an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof, and examples thereof are the same as the above-described alkyl group, alkenyl group, alkynyl group, and aryl group.
 式(6)中のR及びR10は、それぞれ独立して単結合、又は炭素数1~10のアルキレン基、アルケニレン基、アルキニレン基、アリーレン基、及びこれらを組み合わせた基から選ばれる構造である。RとR10の何れかが単結合の場合、R又はR10は炭素数2~10のアルキレン基、アルケニレン基、アルキニレン基、アリーレン基、及びこれらを組み合わせた基から選ばれる構造である。 R 9 and R 10 in the formula (6) are each independently a single bond or a structure selected from an alkylene group having 1 to 10 carbon atoms, an alkenylene group, an alkynylene group, an arylene group, and a group obtained by combining these. is there. If one of R 9 and R 10 is a single bond, R 9 or R 10 is a structure selected from the group formed by combining an alkylene group having 2 to 10 carbon atoms, an alkenylene group, an alkynylene group, an arylene group, and these .
 上記アルキレン基としては、前記アルキル基から水素原子を1つ除いた構造が挙げられる。より具体的には、メチレン基、1,1-エチレン基、1,2-エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,4-ブチレン基、1,2-ブチレン基、1,2-ペンチレン基、1,2-へキシレン基、2,3-ブチレン基、2,4-ペンチレン基、1,2-シクロプロピレン基、1,2-シクロブチレン基、1,3-シクロブチレン基、1,2-シクロペンチレン基、1,2-シクロへキシレン基などが挙げられる。 Examples of the alkylene group include a structure in which one hydrogen atom is removed from the alkyl group. More specifically, a methylene group, 1,1-ethylene group, 1,2-ethylene group, 1,2-propylene group, 1,3-propylene group, 1,4-butylene group, 1,2-butylene group 1,2-pentylene group, 1,2-hexylene group, 2,3-butylene group, 2,4-pentylene group, 1,2-cyclopropylene group, 1,2-cyclobutylene group, 1,3- Examples thereof include a cyclobutylene group, 1,2-cyclopentylene group, 1,2-cyclohexylene group and the like.
 アルケニレン基としては、前記アルケニル基から水素原子を1つ除いた構造が挙げられる。より具体的には、1,1-エテニレン基、1,2-エテニレン基、1,2-エテニレンメチレン基、1-メチル-1,2-エテニレン基、1,2-エテニレン-1,1-エチレン基、1,2-エテニレン-1,2-エチレン基、1,2-エテニレン-1,2-プロピレン基、1,2-エテニレン-1,3-プロピレン基、1,2-エテニレン-1,4-ブチレン基、1,2-エテニレン-1,2-ブチレン基などが挙げられる。 Examples of the alkenylene group include a structure in which one hydrogen atom is removed from the alkenyl group. More specifically, 1,1-ethenylene group, 1,2-ethenylene group, 1,2-ethenylenemethylene group, 1-methyl-1,2-ethenylene group, 1,2-ethenylene-1,1- Ethylene group, 1,2-ethenylene-1,2-ethylene group, 1,2-ethenylene-1,2-propylene group, 1,2-ethenylene-1,3-propylene group, 1,2-ethenylene-1, Examples include 4-butylene group and 1,2-ethenylene-1,2-butylene group.
 アルキニレン基としては、前記アルキニル基から水素原子を1つ除いた構造が挙げられる。より具体的には、エチニレン基、エチニレンメチレン基、エチニレン-1,1-エチレン基、エチニレン-1,2-エチレン基、エチニレン-1,2-プロピレン基、エチニレン-1,3-プロピレン基、エチニレン-1,4-ブチレン基、エチニレン-1,2-ブチレン基などが挙げられる。
 アリーレン基としては、前記アリール基から水素原子を1つ除いた構造が挙げられる。より具体的には、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基などが挙げられる。
The alkynylene group includes a structure in which one hydrogen atom is removed from the alkynyl group. More specifically, an ethynylene group, an ethynylene methylene group, an ethynylene-1,1-ethylene group, an ethynylene-1,2-ethylene group, an ethynylene-1,2-propylene group, an ethynylene-1,3-propylene group, Examples include ethynylene-1,4-butylene group, ethynylene-1,2-butylene group and the like.
The arylene group includes a structure in which one hydrogen atom is removed from the aryl group. More specific examples include 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group and the like.
 Yに直線性が高い構造や剛直な構造を有する場合、良好な液晶配向性を有する液晶配向膜が得られるため、Zは、単結合、又は下記式(A1-1)~(A1-25)の構造がより好ましい。 When Y 1 has a structure with high linearity or a rigid structure, a liquid crystal alignment film having good liquid crystal alignment can be obtained. Therefore, Z 1 can be a single bond, The structure of 25) is more preferable.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028

 Yが剛直な構造であるほど、液晶配向性に優れた液晶配向膜が得られるため、Yは、上記式(4)で表される構造が特に好ましい。
 上記式(2)で表される構造単位を含有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体において、上記式(2)で表される構造単位の比率は、重合体中の全構造単位1モルに対して、60モル%~100モル%が好ましい。上記式(2)で表される構造単位の比率が高いほど、良好な液晶配向性を有する液晶配向膜が得られるため、80モル%~100モル%がより好ましく、90モル%~100モル%がさらに好ましい。
 本発明の(A)成分は、上記式(2)で表される構造単位以外に、下記式(7)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体であってもよい。
Figure JPOXMLDOC01-appb-C000028

Since Y 1 has a more rigid structure, a liquid crystal alignment film having excellent liquid crystal alignment can be obtained. Therefore, Y 1 is particularly preferably a structure represented by the above formula (4).
In the polyimide precursor containing the structural unit represented by the above formula (2) and the imidized polymer of the polyimide precursor, the ratio of the structural unit represented by the above formula (2) is the total structure in the polymer. 60 mol% to 100 mol% is preferable with respect to 1 mol of the unit. Since the higher the ratio of the structural unit represented by the above formula (2), the better the liquid crystal alignment film having liquid crystal alignment properties, 80 mol% to 100 mol% is more preferable, and 90 mol% to 100 mol% is preferable. Is more preferable.
In addition to the structural unit represented by the above formula (2), the component (A) of the present invention may be a polyimide precursor having a structural unit represented by the following formula (7) and the polyimide precursor.
Figure JPOXMLDOC01-appb-C000029
 式(7)において、Rは上記式(2)のRと同様の定義である。Xは4価の有機基であり、その構造は特に限定されない。具体的例を挙げるならば、下記式(X-9)~(X-42)の構造が挙げられる。化合物の入手性の観点から、Xは、X-17、X-25、X-26,X-27、X-28、X-32、又はX-39が挙げられる。また、直流電圧により蓄積した残留電荷の緩和が早い液晶配向膜を得られるという観点から、芳香族環構造を有するテトラカルボン酸二無水物を用いることが好ましく、Xは、X-26,X-27、X-28、X-32、X-35、又はX-37がより好ましい。
Figure JPOXMLDOC01-appb-C000029
In the formula (7), R 1 is the same as defined for R 1 in the formula (2). X 3 is a tetravalent organic group, and its structure is not particularly limited. Specific examples include structures of the following formulas (X-9) to (X-42). From the viewpoint of availability of the compound, X includes X-17, X-25, X-26, X-27, X-28, X-32, or X-39. Further, from the viewpoint of obtaining a liquid crystal alignment film in which the residual charge accumulated by direct current voltage can be quickly relaxed, it is preferable to use a tetracarboxylic dianhydride having an aromatic ring structure, and X is X-26, X-- 27, X-28, X-32, X-35, or X-37 are more preferred.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
 上記式(7)において、Yは2価の有機基であり、その構造は特に限定されない。Yの具体例を挙げるならば、下記記式(Y-1)~(Y-74)が挙げられる。
Figure JPOXMLDOC01-appb-C000031
In the above formula (7), Y 3 is a divalent organic group, and its structure is not particularly limited. Specific examples of Y 3 include the following formulas (Y-1) to (Y-74).
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 (A)成分の有機溶剤に対する溶解性の向上が期待できるため、式(4)及び式(5)以外の構造としては、Y-8、Y-20、Y-21、Y-22、Y-28、Y-29、Y-30、Y-72、Y-73、又はY-74を有する構造単位を含有することが好ましい。
 (A)成分における上記式(7)で表される構造単位の比率が高い場合、液晶配向膜の液晶配向性を低下させるため、上記式(7)で表される構造単位の比率は、全構造単位1モルに対して0~40モル%が好ましく、0~20モル%がさらに好ましい。
Figure JPOXMLDOC01-appb-C000039
Since the solubility of the component (A) in the organic solvent can be expected, the structures other than the formulas (4) and (5) include Y-8, Y-20, Y-21, Y-22, Y— 28, Y-29, Y-30, Y-72, Y-73, or Y-74.
When the ratio of the structural unit represented by the above formula (7) in the component (A) is high, the ratio of the structural unit represented by the above formula (7) is The amount is preferably 0 to 40 mol%, more preferably 0 to 20 mol%, relative to 1 mol of the structural unit.
<(B)成分>
 本発明の(B)成分は、下記式(1)で表される構造を含有する重合体である。
Figure JPOXMLDOC01-appb-C000040
 式(1)において、W及びWはそれぞれ独立して、炭素数6~30の芳香族基を有する2価の有機基であり、同一でも異なってもよい。W及びWに含まれる芳香族基としては、ベンゼン、ナフタレン、アントラセン、ビフェニル、又はターフェニルが挙げられる。Aは、炭素数2~20のアルキレン基を有する2価の有機基である。炭素数2~20のアルキレン基としては、1,1-エチレン基、1,2-エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,4-ブチレン基、1,5-ペンチレン基、1,6-へキシレン基、2,3-ブチレン基、2,4-ペンチレン基などが挙げられる。
 高い液晶配向性を有する液晶配向膜が得られるため、(B)成分は、上記式(1)で表される構造を含有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体であることが好ましい。
 具体的には、下記式(3)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種であることがより好ましい。
<(B) component>
The component (B) of the present invention is a polymer containing a structure represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000040
In the formula (1), W 1 and W 2 are each independently a divalent organic group having an aromatic group having 6 to 30 carbon atoms, and may be the same or different. Examples of the aromatic group contained in W 1 and W 2 include benzene, naphthalene, anthracene, biphenyl, and terphenyl. A is a divalent organic group having an alkylene group having 2 to 20 carbon atoms. Examples of the alkylene group having 2 to 20 carbon atoms include 1,1-ethylene group, 1,2-ethylene group, 1,2-propylene group, 1,3-propylene group, 1,4-butylene group, 1,5-butylene group, Examples include pentylene group, 1,6-hexylene group, 2,3-butylene group, 2,4-pentylene group and the like.
Since a liquid crystal alignment film having high liquid crystal alignment properties is obtained, the component (B) is selected from the group consisting of a polyimide precursor containing a structure represented by the above formula (1) and an imidized polymer of the polyimide precursor. It is preferable that it is at least one polymer selected.
Specifically, at least one selected from the group consisting of a polyimide precursor having a structural unit represented by the following formula (3) and an imidized polymer of the polyimide precursor is more preferable.
Figure JPOXMLDOC01-appb-C000041
 式(3)において、Rは好ましい例も含めて上記式(2)のRと同様の定義である。A及びAは、それぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、アルケニル基、又はアルキニル基であり、前記のアルキル基、アルケニル基、アルキニル基と同様の構造を挙げることができる。
Figure JPOXMLDOC01-appb-C000041
In Formula (3), R 2 is the same definition as R 1 in Formula (2), including preferred examples. A 1 and A 2 are each independently a hydrogen atom or an optionally substituted alkyl group, alkenyl group, or alkynyl group having 1 to 10 carbon atoms. The same structure as a group can be mentioned.
 上記のアルキル基、アルケニル基、アルキニル基は、全体として炭素数が1~10であれば置換基を有していてもよく、更には置換基によって環構造を形成してもよい。なお、置換基によって環構造を形成するとは、置換基同士又は置換基と母骨格の一部とが結合して環構造となることを意味する。
 この置換基の例としてはハロゲン基、水酸基、チオール基、ニトロ基、アリール基、オルガノオキシ基、オルガノチオ基、オルガノシリル基、アシル基、エステル基、チオエステル基、リン酸エステル基、アミド基、アルキル基、アルケニル基、アルキニル基を挙げることができる。
 置換基であるハロゲン基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 置換基であるアリール基としては、フェニル基が挙げられる。このアリール基には前述した他の置換基がさらに置換していてもよい。
 置換基であるオルガノオキシ基としては、O-Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アルキルオキシ基の具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基などが挙げられる。
The above alkyl group, alkenyl group, and alkynyl group may have a substituent as long as it has 1 to 10 carbon atoms as a whole, and may further form a ring structure by the substituent. Note that forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are combined to form a ring structure.
Examples of this substituent include halogen groups, hydroxyl groups, thiol groups, nitro groups, aryl groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, alkyls. A group, an alkenyl group and an alkynyl group.
Examples of the halogen group as a substituent include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
A phenyl group is mentioned as an aryl group which is a substituent. This aryl group may be further substituted with the other substituent described above.
The organooxy group which is a substituent can have a structure represented by OR. The R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above. Specific examples of the alkyloxy group include methoxy group, ethoxy group, propyloxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group and the like.
 置換基であるオルガノチオ基としては、-S-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アルキルチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基などが挙げられる。
 置換基であるオルガノシリル基としては、-Si-(R)で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アルキルシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基、トリペンチルシリル基、トリヘキシルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基などが挙げられる。
 置換基であるアシル基としては、-C(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アシル基の具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ベンゾイル基などが挙げられる。
 置換基であるエステル基としては、-C(O)O-R、又は-OC(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
The organothio group which is a substituent can have a structure represented by —S—R. Examples of R include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above. Specific examples of the alkylthio group include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, and an octylthio group.
The organosilyl group as a substituent can have a structure represented by —Si— (R) 3 . The R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above. Specific examples of the alkylsilyl group include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a tributylsilyl group, a tripentylsilyl group, a trihexylsilyl group, a pentyldimethylsilyl group, and a hexyldimethylsilyl group.
The acyl group as a substituent can have a structure represented by —C (O) —R. Examples of R include the alkyl groups, alkenyl groups, and aryl groups described above. These Rs may be further substituted with the substituent described above. Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
As the ester group which is a substituent, a structure represented by —C (O) O—R or —OC (O) —R can be shown. Examples of R include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
 置換基であるチオエステル基としては、-C(S)O-R、又は-OC(S)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるリン酸エステル基としては、-OP(O)-(OR)2で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるアミド基としては、-C(O)NH、-C(O)NHR、-NHC(O)R、-C(O)N(R)、又は、-NRC(O)Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるアリール基としては、前述したアリール基と同じものを挙げることができる。このアリール基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキル基としては、前述したアルキル基と同じものを挙げることができる。このアルキル基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルケニル基としては、前述したアルケニル基と同じものを挙げることができる。このアルケニル基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキニル基としては、前述したアルキニル基と同じものを挙げることができる。このアルキニル基には前述した他の置換基がさらに置換していてもよい。
The thioester group as a substituent can have a structure represented by —C (S) O—R or —OC (S) —R. Examples of R include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
The phosphate group which is a substituent can have a structure represented by —OP (O) — (OR) 2 . The R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
Examples of the amide group as a substituent include —C (O) NH 2 , —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , or —NRC (O) R. The structure represented by can be shown. The R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
Examples of the aryl group as a substituent include the same aryl groups as described above. This aryl group may be further substituted with the other substituent described above.
Examples of the alkyl group as a substituent include the same alkyl groups as described above. This alkyl group may be further substituted with the other substituent described above.
Examples of the alkenyl group as a substituent include the same alkenyl groups as described above. This alkenyl group may be further substituted with the other substituent described above.
Examples of the alkynyl group that is a substituent include the same alkynyl groups as described above. This alkynyl group may be further substituted with the other substituent described above.
 一般に、嵩高い構造を導入すると、アミノ基の反応性や液晶配向性を低下させる可能性があるため、A及びAとしては、水素原子、又は置換基を有してもよい炭素数1~5のアルキル基がより好ましく、水素原子、メチル基又はエチル基が特に好ましい。
 Xは炭素数6~20の芳香族基を有し、且つ結合手を芳香族基に有する4価の有機基ある。炭素数6~20の芳香族基としては、ベンゼン、ナフタレン、アントラセン、ビフェニル、ターフェニルが挙げられる。液晶との相互作用を高め、残像の抑制に効果が高くなるため、Xとしては、芳香族基のみからなる4価の有機基が好ましく、より好ましくは、下記式(X2-1)~(X2-3)で表される構造が挙げられる。中でも、式(X2-1)で表される構造が特に好ましい。
In general, when a bulky structure is introduced, there is a possibility that the reactivity of the amino group and the liquid crystal orientation may be lowered. Therefore, as A 1 and A 2 , a hydrogen atom or a carbon atom that may have a substituent is 1 An alkyl group of 1 to 5 is more preferable, and a hydrogen atom, a methyl group or an ethyl group is particularly preferable.
X 2 is a tetravalent organic group having an aromatic group having 6 to 20 carbon atoms and having a bond in the aromatic group. Examples of the aromatic group having 6 to 20 carbon atoms include benzene, naphthalene, anthracene, biphenyl, and terphenyl. X 2 is preferably a tetravalent organic group consisting only of an aromatic group, more preferably a compound represented by the following formulas (X2-1) to (X) because the interaction with the liquid crystal is enhanced and the effect of suppressing the afterimage is enhanced. And a structure represented by X2-3). Among these, a structure represented by the formula (X2-1) is particularly preferable.
Figure JPOXMLDOC01-appb-C000042
 Yは、下記式(Y2-1)~(Y2-2)からなる群から選ばれる少なくとも1種の2価の有機基である。
Figure JPOXMLDOC01-appb-C000042
Y 2 is at least one divalent organic group selected from the group consisting of the following formulas (Y2-1) to (Y2-2).
Figure JPOXMLDOC01-appb-C000043
 式(Y2-1)において、Aは、炭素数2~20のアルキレン基を有する2価の有機基であり、アルキレン基を複数有しても構わない。炭素数2~20のアルキレン基としては、1,1-エチレン基、1,2-エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,4-ブチレン基、1,5-ペンチレン基、1,6-へキシレン基、2,3-ブチレン基、2,4-ペンチレン基などが挙げられる。液晶配向性の観点から、Aは炭素数2~10のアルキレン基を有する2価の有機基であることが好ましい。
 式(Y2-2)において、Aは、単結合、-O-、-S-、-NR12-、エステル結合、アミド結合、チオエステル結合、ウレア結合、カーボネート結合、又はカルバメート結合であり、R12は、水素原子、メチル基、又はt-ブトキシカルボニル基であり、これらは前記のものと同様の構造を示すことができる。液晶配向性の観点から、Aは炭素数2~20のアルキレン基であり、前記のアルキレン基と同様の構造を示すことができる。液晶配向性の観点から、Aは単結合が好ましく、Aは炭素数2~6のアルキレン基が好ましい。
 液晶との相互作用を高め、液晶配向性を向上できるYの具体例としては、下記式(Y2-3)~(Y2-12)で表される構造が挙げられる。中でも、下記式(Y2-3)で表される構造が特に好ましい。
Figure JPOXMLDOC01-appb-C000043
In the formula (Y2-1), A 3 is a divalent organic group having an alkylene group having 2 to 20 carbon atoms, and may have a plurality of alkylene groups. Examples of the alkylene group having 2 to 20 carbon atoms include 1,1-ethylene group, 1,2-ethylene group, 1,2-propylene group, 1,3-propylene group, 1,4-butylene group, 1,5-butylene group, Examples include pentylene group, 1,6-hexylene group, 2,3-butylene group, 2,4-pentylene group and the like. From the viewpoint of liquid crystal orientation, A 3 is preferably a divalent organic group having an alkylene group having 2 to 10 carbon atoms.
In the formula (Y2-2), A 4 is a single bond, —O—, —S—, —NR 12 —, ester bond, amide bond, thioester bond, urea bond, carbonate bond, or carbamate bond, and R 4 12 is a hydrogen atom, a methyl group, or a t-butoxycarbonyl group, and these can have the same structure as described above. From the viewpoint of liquid crystal orientation, A 5 is an alkylene group having 2 to 20 carbon atoms, and can exhibit the same structure as the above-described alkylene group. From the viewpoint of liquid crystal alignment, A 4 is preferably a single bond, and A 5 is preferably an alkylene group having 2 to 6 carbon atoms.
Specific examples of Y 2 that can enhance the interaction with the liquid crystal and improve the liquid crystal alignment include structures represented by the following formulas (Y2-3) to (Y2-12). Among these, a structure represented by the following formula (Y2-3) is particularly preferable.
Figure JPOXMLDOC01-appb-C000044
 上記式(3)で表される構造単位を含有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体において、上記式(3)で表される構造単位の比率は、重合体中の全構造単位1モルに対して、60モル%~100モル%が好ましい。上記式(3)で表される構造単位の比率が高いほど、良好な液晶配向性を有する液晶配向膜が得られるため、80モル%~100モル%がより好ましく、90モル%~100モル%がさらに好ましい。
 本発明に用いられる(B)成分は上記式(3)で表される構造単位以外に下記式(8)で表される構造単位を含有するポリイミド前駆体及び該ポリイミド前駆体であってもよい。
Figure JPOXMLDOC01-appb-C000044
In the polyimide precursor containing the structural unit represented by the above formula (3) and the imidized polymer of the polyimide precursor, the ratio of the structural unit represented by the above formula (3) is the total structure in the polymer. 60 mol% to 100 mol% is preferable with respect to 1 mol of the unit. As the ratio of the structural unit represented by the above formula (3) is higher, a liquid crystal alignment film having better liquid crystal alignment can be obtained. Therefore, 80 mol% to 100 mol% is more preferable, and 90 mol% to 100 mol% is obtained. Is more preferable.
The component (B) used in the present invention may be a polyimide precursor containing a structural unit represented by the following formula (8) in addition to the structural unit represented by the above formula (3) and the polyimide precursor. .
Figure JPOXMLDOC01-appb-C000045
 式(8)において、R、A、及びAは、式(3)におけるR、A、及びAと好ましい例も含めて同様の定義である。Xは、脂環式基を有する4価の有機基であり、脂環式基を有する4価の有機基であれば、その構造は特に限定されない。その具体例を挙げるとするならば、上記式(X1-1)~(X1-9)、(X-9)~(X-15)、(X-22~25)、(X-39)、(X-40)が挙げられる。Yは2価の有機基であり、その構造は特に限定されるものではない。その具体例を挙げるとするならば、上記式(Y2-3)~(Y2-12)、上記式(4)、上記式(5)、式(Y-1)~(Y-74)が挙げられる。
(B)成分に含有される上記式(8)で表される構造単位の比率が高い場合、液晶配向膜の液晶配向性を低下させるため、上記式(8)で表される構造単位の比率は、全構造単位1モルに対して0~40モル%が好ましく、0~20モル%がさらに好ましい。
Figure JPOXMLDOC01-appb-C000045
In the formula (8), R 2, A 1, and A 2 are the same as defined, including preferred examples and R 2, A 1, and A 2 in Formula (3). X 4 is a tetravalent organic group having an alicyclic group, and the structure thereof is not particularly limited as long as it is a tetravalent organic group having an alicyclic group. Specific examples thereof include the above formulas (X1-1) to (X1-9), (X-9) to (X-15), (X-22 to 25), (X-39), (X-40). Y 4 is a divalent organic group, and its structure is not particularly limited. Specific examples thereof include the above formulas (Y2-3) to (Y2-12), the above formula (4), the above formula (5), and the formulas (Y-1) to (Y-74). It is done.
When the ratio of the structural unit represented by the above formula (8) contained in the component (B) is high, the ratio of the structural unit represented by the above formula (8) is decreased in order to reduce the liquid crystal orientation of the liquid crystal alignment film. Is preferably from 0 to 40 mol%, more preferably from 0 to 20 mol%, based on 1 mol of all structural units.
<ポリイミド前駆体の製造方法>
 本発明に用いられるポリイミド前駆体であるポリアミック酸エステルは、以下に示す(1)~(3)の方法で合成することができる。
(1)ポリアミック酸から合成する場合
 ポリアミック酸エステルは、テトラカルボン酸二無水物とジアミンから得られるポリアミック酸をエステル化することによって合成することができる。
 具体的には、ポリアミック酸とエステル化剤を有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
 エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシー1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2~6モル当量が好ましい。
 上記の反応に用いる溶媒は、ポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
<Method for producing polyimide precursor>
The polyamic acid ester which is a polyimide precursor used in the present invention can be synthesized by the following methods (1) to (3).
(1) When synthesizing from polyamic acid The polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from tetracarboxylic dianhydride and diamine.
Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 4 hours. Can be synthesized.
As the esterifying agent, those that can be easily removed by purification are preferable. N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like. The addition amount of the esterifying agent is preferably 2 to 6 molar equivalents per 1 mol of the polyamic acid repeating unit.
The solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or γ-butyrolactone from the solubility of the polymer, and these may be used alone or in combination. Good. The concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
(2)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから合成することができる。
 具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを塩基と有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
 前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましい。
 上記の反応に用いる溶媒は、モノマー及びポリマーの溶解性からN-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒はできるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。
(2) When synthesized by reaction of tetracarboxylic acid diester dichloride and diamine Polyamic acid ester can be synthesized from tetracarboxylic acid diester dichloride and diamine.
Specifically, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be synthesized by reacting.
As the base, pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently. The addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
The solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or γ-butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination. The polymer concentration at the time of synthesis is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained. In order to prevent hydrolysis of the tetracarboxylic acid diester dichloride, the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
(3)テトラカルボン酸ジエステルとジアミンからポリアミック酸を合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより合成することができる。
 具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、有機溶剤の存在下で0℃~150℃、好ましくは0℃~100℃において、30分~24時間、好ましくは3~15時間反応させることによって合成することができる。
 前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2~3倍モルであることが好ましい。
 前記塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、ジアミン成分に対して2~4倍モルが好ましい。
 また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0~1.0倍モルが好ましい。
(3) When a polyamic acid is synthesized from a tetracarboxylic acid diester and a diamine The polyamic acid ester can be synthesized by polycondensation of a tetracarboxylic acid diester and a diamine.
Specifically, tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 hours. It can be synthesized by reacting.
Examples of the condensing agent include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide. Nylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like. The addition amount of the condensing agent is preferably 2 to 3 times the molar amount of the tetracarboxylic acid diester.
As the base, tertiary amines such as pyridine and triethylamine can be used. The addition amount of the base is preferably 2 to 4 moles relative to the diamine component from the viewpoint of easy removal and easy obtaining of a high molecular weight product.
In the above reaction, the reaction proceeds efficiently by adding Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component.
 上記3つのポリアミック酸エステルの合成方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(1)又は上記(2)の合成法が特に好ましい。
 上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
Among the methods for synthesizing the three polyamic acid esters, since a high molecular weight polyamic acid ester is obtained, the synthesis method (1) or (2) is particularly preferable.
The polyamic acid ester solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying. Although a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
<ポリアミック酸の製造方法>
 本発明に用いられるポリイミド前駆体であるポリアミック酸は、以下に示す方法により合成することができる。
 具体的には、テトラカルボン酸二無水物とジアミンとを有機溶媒の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~12時間反応させることによって合成できる。
 上記の反応に用いる有機溶媒は、モノマー及びポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。ポリマーの濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
 上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、ポリマーを析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
<Method for producing polyamic acid>
The polyamic acid which is a polyimide precursor used in the present invention can be synthesized by the following method.
Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
The organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or γ-butyrolactone in view of the solubility of the monomer and polymer. These may be used alone or in combination of two or more. It may be used. The concentration of the polymer is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation hardly occurs and a high molecular weight body is easily obtained.
The polyamic acid obtained as described above can be recovered by precipitating the polymer by pouring into the poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine | purified by performing precipitation several times, washing | cleaning with a poor solvent, and normal temperature or heat-drying can be obtained. Although a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
<ポリイミドの製造方法>
 本発明に用いられるポリイミドは、前記ポリアミック酸エステル又はポリアミック酸などのポリイミド前駆体をイミド化することにより製造することができる。ポリアミック酸エステルからポリイミドを製造する場合、前記ポリアミック酸エステル溶液、又はポリアミック酸エステル樹脂粉末を有機溶媒に溶解させて得られるポリアミック酸溶液に塩基性触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の過程で重合体の分子量低下が起こりにくいので好ましい。
 化学的イミド化は、イミド化させたいポリアミック酸エステルを、有機溶媒中において塩基性触媒存在下で撹拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等が挙げられる。中でもトリエチルアミンは反応を進行させるのに充分な塩基性を持つので好ましい。
<Production method of polyimide>
The polyimide used in the present invention can be produced by imidizing the polyimide precursor such as the polyamic acid ester or polyamic acid. When a polyimide is produced from a polyamic acid ester, chemical imidization in which a basic catalyst is added to the polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in an organic solvent is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is hardly lowered during the imidization process.
Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
 イミド化反応を行うときの温度は、-20℃~140℃、好ましくは0℃~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はアミック酸エステル基の0.5~30モル倍、好ましくは2~20モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。イミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
 ポリアミック酸からポリイミドを製造する場合、ジアミン成分とテトラカルボン酸二無水物との反応で得られた前記ポリアミック酸の溶液に触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の過程で重合体の分子量低下が起こりにくいので好ましい。
The temperature for carrying out the imidization reaction is −20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amic acid ester group. The imidation ratio of the resulting polymer can be controlled by adjusting the catalyst amount, temperature, and reaction time. Since the added catalyst or the like remains in the solution after the imidation reaction, the obtained imidized polymer is recovered by the means described below, re-dissolved in an organic solvent, and the liquid crystal alignment according to the present invention. It is preferable to use an agent.
When manufacturing a polyimide from a polyamic acid, the chemical imidation which adds a catalyst to the solution of the said polyamic acid obtained by reaction of a diamine component and tetracarboxylic dianhydride is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is hardly lowered during the imidization process.
 化学的イミド化は、イミド化させたい重合体を、有機溶媒中において塩基性触媒と酸無水物の存在下で攪拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。 Chemical imidation can be performed by stirring a polymer to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferred because it has an appropriate basicity for proceeding with the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
 イミド化反応を行うときの温度は、-20℃~140℃、好ましくは0℃~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はアミック酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミック酸基の1~50モル倍、好ましくは3~30モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。
 ポリアミック酸エステル又はポリアミック酸のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
 上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。
 前記貧溶媒は、特に限定されないが、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられる。
The temperature for carrying out the imidization reaction is −20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amic acid group. Is double. The imidation ratio of the resulting polymer can be controlled by adjusting the catalyst amount, temperature, and reaction time.
In the solution after the imidation reaction of polyamic acid ester or polyamic acid, the added catalyst and the like remain, so the obtained imidized polymer is recovered by the means described below, and redissolved in an organic solvent. Thus, the liquid crystal aligning agent of the present invention is preferable.
The polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while thoroughly stirring. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
The poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
<液晶配向剤>
 本発明の液晶配向剤は、(A)成分と(B)成分が有機溶媒中に溶解された溶液の形態を有する。(A)成分及び(B)成分の重合体の分子量は、いずれも、重量平均分子量で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。また、数平均分子量は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、さらに好ましくは、5,000~50,000である。
 本発明の液晶配向剤に含有される(A)成分及び(B)成分を含む重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点から1質量%以上であることが好ましく、溶液の保存安定性の点からは10重量%以下とすることが好ましい。特に2~8質量%が好ましい。
 本発明の液晶配向剤における(A)成分は、偏光された放射線を照射した際に、高い異方性を発現し、液晶配向膜とした際に、良好な液晶配向性を示すために、有機溶媒に対して通常1~10質量%、好ましくは2~8質量%含有される。また、液晶配向剤に含有される(B)成分の含有量は、多すぎると、偏光された放射線を照射しても異方性が得られず、液晶配向性が不十分となり、少なすぎると本発明の効果が充分に得られないことがある。そのため、(B)成分の含有量は、(A)成分100質量部に対して、0.1~15質量部であり、1~10質量部が好ましく、1~5質量部がより好ましい。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of this invention has the form of the solution in which (A) component and (B) component were melt | dissolved in the organic solvent. The molecular weight of the polymer of the component (A) and the component (B) is preferably 2,000 to 500,000, more preferably 5,000 to 300,000, and still more preferably, in terms of weight average molecular weight. 10,000 to 100,000. The number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
The concentration of the polymer containing the component (A) and the component (B) contained in the liquid crystal aligning agent of the present invention can be appropriately changed depending on the setting of the thickness of the coating film to be formed. It is preferably 1% by mass or more from the viewpoint of forming a coating film having no coating, and is preferably 10% by weight or less from the viewpoint of storage stability of the solution. 2 to 8% by mass is particularly preferable.
The component (A) in the liquid crystal aligning agent of the present invention is organic in order to exhibit high anisotropy when irradiated with polarized radiation and to exhibit good liquid crystal alignment when used as a liquid crystal alignment film. The content is usually 1 to 10% by mass, preferably 2 to 8% by mass, based on the solvent. Moreover, when there is too much content of (B) component contained in a liquid crystal aligning agent, even if it irradiates with the polarized radiation, anisotropy will not be obtained, but when liquid crystal orientation becomes inadequate and it is too small. The effects of the present invention may not be sufficiently obtained. Therefore, the content of component (B) is 0.1 to 15 parts by weight, preferably 1 to 10 parts by weight, and more preferably 1 to 5 parts by weight with respect to 100 parts by weight of component (A).
 本発明の液晶配向剤に含有される有機溶媒は、(A)成分と(B)成分が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。また、単独ではポリマー成分を均一に溶解できない溶媒であっても、ポリマーが析出しない範囲であれば、上記の有機溶媒に混合してもよい。 The organic solvent contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as the (A) component and the (B) component are uniformly dissolved. Specific examples thereof include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, Examples include 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like. You may use these 1 type or in mixture of 2 or more types. Moreover, even if it is a solvent which cannot melt | dissolve a polymer component uniformly by itself, if it is a range which a polymer does not precipitate, you may mix with said organic solvent.
 本発明の液晶配向剤は、重合体を溶解させるための有機溶媒の他に、液晶配向剤を基板へ塗布する際の塗膜均一性を向上させるための溶媒を含有してもよい。かかる溶媒は、一般的に上記有機溶媒よりも低表面張力の溶媒が用いられる。その具体例を挙げるならば、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ブチルセロソルブアセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等が挙げられる。これらの溶媒は2種以上を併用してもよい。 The liquid crystal aligning agent of the present invention may contain a solvent for improving the uniformity of the coating film when the liquid crystal aligning agent is applied to the substrate in addition to the organic solvent for dissolving the polymer. As such a solvent, a solvent having a surface tension lower than that of the organic solvent is generally used. Specific examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2 -Propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, butyl cellosolve acetate, di Propylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactic acid Isoamyl ester, and the like. Two or more of these solvents may be used in combination.
 本発明の液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、(A)成分、(B)成分の重合体以外の重合体、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体若しくは導電物質、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、さらには塗膜を焼成する際にポリアミック酸のイミド化を効率よく進行させる目的のイミド化促進剤等を添加しても良い。 In the liquid crystal aligning agent of the present invention, in addition to the above, as long as the effects of the present invention are not impaired, the polymer other than the polymer of the component (A) and the component (B), the dielectric constant of the liquid crystal aligning film, Dielectrics or conductive materials for the purpose of changing electrical properties such as conductivity, silane coupling agents for the purpose of improving the adhesion between the liquid crystal alignment film and the substrate, and the hardness and density of the film when it is made into a liquid crystal alignment film A crosslinkable compound for the purpose of increasing, and further an imidization accelerator for the purpose of efficiently proceeding imidization of the polyamic acid when baking the coating film may be added.
<液晶配向膜>
 本発明の液晶配向膜は、液晶配向剤を基板に塗布し、乾燥、焼成して得られた塗膜であり、この塗膜面をほぼ直線に偏光した放射線を照射することで得られる。
 本発明の液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板やポリカーボネート基板等のプラスチック基板等を用いることができ、液晶駆動のためのITO電極等が形成された基板を用いることがプロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。本発明の液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられる。
 本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される有機溶媒を十分に除去するために50℃~120℃で1分~10分乾燥させ、その後150℃~300℃で5分~120分焼成される。焼成後の塗膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nm、好ましくは10~200nmである。
 本発明の液晶配向剤は光配向処理法で使用する場合に特に有用である。
<Liquid crystal alignment film>
The liquid crystal alignment film of the present invention is a coating film obtained by applying a liquid crystal aligning agent to a substrate, drying and baking, and can be obtained by irradiating this coating film surface with radiation polarized almost linearly.
The substrate to which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode or the like is formed. In the reflective liquid crystal display element, an opaque object such as a silicon wafer can be used as long as it is only on one side of the substrate. In this case, a material that reflects light such as aluminum can be used as the electrode. Examples of the method for applying the liquid crystal aligning agent of the present invention include a spin coating method, a printing method, and an ink jet method.
Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention. Usually, in order to sufficiently remove the organic solvent contained, the organic solvent is dried at 50 ° C. to 120 ° C. for 1 minute to 10 minutes, and then baked at 150 ° C. to 300 ° C. for 5 minutes to 120 minutes. The thickness of the coating film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, and therefore it is 5 to 300 nm, preferably 10 to 200 nm.
The liquid crystal aligning agent of the present invention is particularly useful when used in a photo-alignment treatment method.
 光配向処理法の具体例としては、前記塗膜表面に、一定方向に偏光した放射線を照射し、場合によってはさらに150~250℃の温度で加熱処理を行い、液晶配向能を付与する方法が挙げられる。放射線の波長としては、100nm~800nmの波長を有する紫外線及び可視光線を用いることができる。このうち、100nm~400nmの波長を有する紫外線が好ましく、200nm~400nmの波長を有するものが特に好ましい。また、液晶配向性を改善するために、塗膜基板を50~250℃で加熱しつつ、放射線を照射してもよい。前記放射線の照射量は、1~10,000mJ/cmの範囲にあることが好ましく、100~5,000mJ/cmの範囲にあることが特に好ましい。
 (B)成分の再配向を誘起するために、偏光された紫外線を照射した後に、150~250℃の温度で加熱処理を行うことが好ましく、200~250℃の温度で加熱処理を行うことがより好ましい。
As a specific example of the photo-alignment treatment method, there is a method in which the surface of the coating film is irradiated with radiation polarized in a certain direction, and in some cases, a heat treatment is further performed at a temperature of 150 to 250 ° C. to impart liquid crystal alignment ability. Can be mentioned. As the wavelength of radiation, ultraviolet rays and visible rays having a wavelength of 100 nm to 800 nm can be used. Among these, ultraviolet rays having a wavelength of 100 nm to 400 nm are preferable, and those having a wavelength of 200 nm to 400 nm are particularly preferable. Further, in order to improve the liquid crystal orientation, radiation may be irradiated while heating the coated substrate at 50 to 250 ° C. Dose of the radiation is preferably in the range of 1 ~ 10,000mJ / cm 2, and particularly preferably in the range of 100 ~ 5,000mJ / cm 2.
In order to induce reorientation of the component (B), it is preferable to perform heat treatment at a temperature of 150 to 250 ° C. after irradiation with polarized ultraviolet rays, and to perform a heat treatment at a temperature of 200 to 250 ° C. More preferred.
<液晶表示素子>
 本発明の液晶表示素子は、上記した手法により本発明の液晶配向剤から液晶配向膜付き基板を得、配向処理を行った後、公知の方法で液晶セルを作製し、液晶表示素子としたものである。
 液晶セルの製造方法は特に限定されない。一例を挙げるならば、液晶配向膜が形成された1対の基板を、液晶配向膜面を内側にして、好ましくは1~30μm、より好ましくは2~10μmのスペーサーを挟んで設置した後、周囲をシール剤で固定し、液晶を注入して封止する方法が一般的である。液晶封入の方法については特に制限されず、作製した液晶セル内を減圧にした後液晶を注入する真空法、液晶を滴下した後封止を行う滴下法などが例示できる。
<Liquid crystal display element>
The liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the above-described method, performing an alignment treatment, and then preparing a liquid crystal cell by a known method. It is.
The manufacturing method of a liquid crystal cell is not specifically limited. For example, a pair of substrates on which a liquid crystal alignment film is formed are placed with a liquid crystal alignment film surface inside, preferably with a spacer of 1 to 30 μm, more preferably 2 to 10 μm, and then surroundings. Is generally sealed with a sealant, and liquid crystal is injected and sealed. The method for enclosing the liquid crystal is not particularly limited, and examples thereof include a vacuum method of injecting liquid crystal after reducing the pressure inside the produced liquid crystal cell, and a dropping method of sealing after dropping the liquid crystal.
 以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。なお、本実施例及び比較例で使用した化合物の略号、及び各特性の測定方法は、以下のとおりである。
NMP:N-メチル-2-ピロリドン
BCS:ブチルセロソルブ
GBL:γ-ブチロラクトン
AIBN:2,2’-アゾビスイソブチロニトリル
DA-1:下記式(DA-1)
DA-2:下記式(DA-2)
MA1:下記式(MA-1)

Figure JPOXMLDOC01-appb-I000046

Figure JPOXMLDOC01-appb-I000047
[粘度]
 合成例において、ポリアミック酸エステル及びポリアミック酸溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples. In addition, the symbol of the compound used by the present Example and the comparative example, and the measuring method of each characteristic are as follows.
NMP: N-methyl-2-pyrrolidone BCS: Butyl cellosolve GBL: γ-butyrolactone AIBN: 2,2′-azobisisobutyronitrile DA-1: the following formula (DA-1)
DA-2: Formula (DA-2) below
MA1: The following formula (MA-1)

Figure JPOXMLDOC01-appb-I000046

Figure JPOXMLDOC01-appb-I000047
[viscosity]
In the synthesis examples, the viscosity of the polyamic acid ester and the polyamic acid solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample amount of 1.1 mL, and cone rotor TE-1 (1 ° 34 ′, R24 ), And measured at a temperature of 25 ° C.
[分子量]
 また、ポリアミック酸エステルの分子量はGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として数平均分子量(以下、Mnとも言う。)と重量平均分子量(以下、Mwとも言う。)を算出した。
GPC装置:Shodex社製(GPC-101)
カラム:Shodex社製(KD803、KD805の直列)
カラム温度:50℃
溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp)約12,000、4,000、1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、1,000の4種を混合したサンプル、及び150,000、30,000、4,000の3種を混合したサンプルの2サンプルを別々に測定。
[Molecular weight]
The molecular weight of the polyamic acid ester is measured by a GPC (normal temperature gel permeation chromatography) apparatus, and is a number average molecular weight (hereinafter also referred to as Mn) and a weight average molecular weight (hereinafter also referred to as Mw) as polyethylene glycol and polyethylene oxide equivalent values. ) Was calculated.
GPC device: manufactured by Shodex (GPC-101)
Column: manufactured by Shodex (series of KD803 and KD805)
Column temperature: 50 ° C
Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystals (o-phosphoric acid) 30 mmol / L, tetrahydrofuran) (THF) is 10 ml / L)
Flow rate: 1.0 ml / min Standard sample for preparing calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polymer laboratory Polyethylene glycol manufactured by the company (peak top molecular weight (Mp) of about 12,000, 4,000, 1,000). In order to avoid the overlap of peaks, the measurement was performed by mixing four types of 900,000, 100,000, 12,000, and 1,000, and three types of 150,000, 30,000, and 4,000. Two samples of mixed samples are measured separately.
[FFS駆動液晶セルの交流駆動焼き付き]
 ガラス基板上に、第1層目に電極として形状の膜厚50nmのITO電極を、第2層目に絶縁膜として形状の膜厚500nmの窒化珪素を、第3層目に電極として櫛歯形状のITO電極(電極幅:3μm、電極間隔:6μm、電極高さ:50nm)を有するフリンジフィールドスィッチング(Fringe Field Switching:以下、FFSという)駆動用電極が形成されているガラス基板に、スピンコート塗布にて液晶配向剤を塗布した。80℃のホットプレート上で5分間乾燥させた後、250℃の熱風循環式オーブンで60分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して254nmの紫外線を照射し、液晶配向膜付き基板を得た。また、対向基板として電極が形成されていない高さ4μmの柱状スペーサーを有するガラス基板にも、同様に塗膜を形成させ、配向処理を施した。
[AC drive burn-in of FFS drive liquid crystal cell]
On a glass substrate, an ITO electrode having a thickness of 50 nm as an electrode in the first layer, a silicon nitride having a thickness of 500 nm as an insulating film in the second layer, and a comb-like shape as an electrode in the third layer Spin coating is applied to a glass substrate on which fringe field switching (hereinafter referred to as FFS) driving electrodes having ITO electrodes (electrode width: 3 μm, electrode interval: 6 μm, electrode height: 50 nm) are formed. A liquid crystal aligning agent was applied. After drying on an 80 ° C. hot plate for 5 minutes, baking was performed in a hot air circulation oven at 250 ° C. for 60 minutes to form a coating film having a thickness of 100 nm. This coating film surface was irradiated with 254 nm ultraviolet light through a polarizing plate to obtain a substrate with a liquid crystal alignment film. Further, a coating film was similarly formed on a glass substrate having a columnar spacer having a height of 4 μm on which no electrode was formed as a counter substrate, and an orientation treatment was performed.
 上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2041(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。
 このFFS駆動液晶セルの58℃の温度下でのV-T特性(電圧-透過率特性)を測定した後、±4V/120Hzの矩形波を4時間印加した。4時間後、電圧を切り、58℃の温度下で60分間放置した後、再度V-T特性を測定し、矩形波印加前後の透過率50%となる電圧の差(ΔV50)を算出した。
The two substrates are combined as a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is added. An empty cell was produced by curing. Liquid crystal MLC-2041 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS drive liquid crystal cell.
After measuring the VT characteristic (voltage-transmittance characteristic) of the FFS driving liquid crystal cell at a temperature of 58 ° C., a rectangular wave of ± 4 V / 120 Hz was applied for 4 hours. After 4 hours, the voltage was turned off, and after standing for 60 minutes at a temperature of 58 ° C., the VT characteristics were measured again, and the difference in voltage (ΔV 50 ) that gave a transmittance of 50% before and after the rectangular wave application was calculated. .
(合成例1)
 撹拌装置付き及び窒素導入管付きの3000mL四つ口フラスコに、NMPを2394g加えて、1,2,3,4-シクロブタンテトラカルボン酸二無水物を196.34g(1.00mol)添加した。このテトラカルボン酸二無水物のスラリー液を撹拌しながら、p-フェニレンジアミンを101.11g(0.935mol)添加し、更に固形分濃度が8質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-1)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は115mPa・sであった。
(Synthesis Example 1)
To a 3000 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 2394 g of NMP was added, and 196.34 g (1.00 mol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride was added. While stirring the tetracarboxylic dianhydride slurry, 101.11 g (0.935 mol) of p-phenylenediamine was added, and NMP was further added so that the solid concentration was 8% by mass. The solution was stirred for a time to obtain a polyamic acid (PAA-1) solution. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 115 mPa · s.
(合成例2)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、1,5-ビス(4-アミノフェノキシ)ペンタンを5.73g(20.0mmol)取り、NMPを65.4g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらピロメリット酸二無水物を4.19g(19.2mmol)添加し、更に固形分濃度が12質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-2)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は520mPa・sであった。
(Synthesis Example 2)
To a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, take 5.73 g (20.0 mmol) of 1,5-bis (4-aminophenoxy) pentane, add 65.4 g of NMP, and send nitrogen. While stirring, the mixture was dissolved. While stirring this diamine solution, 4.19 g (19.2 mmol) of pyromellitic dianhydride was added, NMP was further added so that the solid content concentration was 12% by mass, and the mixture was stirred at room temperature for 24 hours to be polyamic acid. A solution of (PAA-2) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 520 mPa · s.
(合成例3)
 攪拌装置付きの300ml四つ口フラスコに2,5-ビス(メトキシカルボニル)テレフタル酸を5.42g(19.2mmol)取り、NMPを100g加え、撹拌して溶解させた。続いて、トリエチルアミンを4.45g(43.98mmol)、1,3-ビス(4-アミノフェノキシ)プロパンを5.17g(20.0mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(15±2重量%水和物)を16.60g添加し、更にNMPを13.74g加え、水冷下で4時間反応させた。
(Synthesis Example 3)
In a 300 ml four-necked flask equipped with a stirrer, 5.42 g (19.2 mmol) of 2,5-bis (methoxycarbonyl) terephthalic acid was taken, 100 g of NMP was added, and the mixture was stirred and dissolved. Subsequently, 4.45 g (43.98 mmol) of triethylamine and 5.17 g (20.0 mmol) of 1,3-bis (4-aminophenoxy) propane were added and dissolved by stirring. While stirring this solution, 16.60 g of 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride (15 ± 2 wt% hydrate) was added. Further, 13.74 g of NMP was added and reacted for 4 hours under water cooling.
 得られたポリアミド酸エステル溶液を872gの2-プロパノールに撹拌しながら投入し、析出した沈殿物をろ取し、続いて、290gの2-プロパノールで5回洗浄し、乾燥することでポリアミック酸エステル樹脂粉末を得た。このポリアミック酸エステルの分子量はMn=13462、Mw=28462であった。
 50ml三角フラスコに、得られたポリアミド酸エステル樹脂粉末を1.08g取り、NMPを9.78g加え、室温で24時間撹拌し溶解させて、ポリアミド酸エステル溶液(PAE-1)を得た。
The obtained polyamic acid ester solution was poured into 872 g of 2-propanol with stirring, and the deposited precipitate was collected by filtration, washed with 290 g of 2-propanol five times, and dried to obtain a polyamic acid ester. A resin powder was obtained. The molecular weight of this polyamic acid ester was Mn = 13462 and Mw = 28462.
In a 50 ml Erlenmeyer flask, 1.08 g of the obtained polyamic acid ester resin powder was taken, 9.78 g of NMP was added, and the mixture was stirred and dissolved at room temperature for 24 hours to obtain a polyamic acid ester solution (PAE-1).
(合成例4)
 撹拌装置付き及び窒素導入管付きの1000mL四つ口フラスコに、GBLを309g加えて、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物を67.25g(30.0mmol)添加した。次に、NMPを487g加えた。このテトラカルボン酸二無水物のスラリー液を撹拌しながら、p-フェニレンジアミンを31.14g(28.80mmol)添加し、更に固形分濃度が10質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-3)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は471mPa・sであった。
(Synthesis Example 4)
309 g of GBL was added to a 1000 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, and 67.25 g (30.30 g) of 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride was added. 0 mmol) was added. Next, 487 g of NMP was added. While stirring this tetracarboxylic dianhydride slurry, 31.14 g (28.80 mmol) of p-phenylenediamine was added, and NMP was further added so that the solid concentration was 10% by mass. The solution was stirred for a time to obtain a polyamic acid (PAA-3) solution. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 471 mPa · s.
(合成例5)
 撹拌装置付き及び窒素導入管付きの300mL四つ口フラスコに、p-フェニレンジアミンを6.43g(59.46mmol)、DA-1を2.49g(10.49mmol)を加え、NMPを195g入れて、撹拌して溶解させた。この溶液を撹拌しながら、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物を15.09g(67.31mmol)添加し、更に固形分濃度が10質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-4)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は230mPa・sであった。
(Synthesis Example 5)
6.43 g (59.46 mmol) of p-phenylenediamine, 2.49 g (10.49 mmol) of DA-1 and 195 g of NMP were added to a 300 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube. And dissolved by stirring. While stirring this solution, 15.09 g (67.31 mmol) of 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride was added, and the solid content concentration became 10% by mass. NMP was added and stirred at room temperature for 24 hours to obtain a polyamic acid (PAA-4) solution. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 230 mPa · s.
(合成例6)
 撹拌装置付き及び窒素導入管付きの300mL四つ口フラスコに、DA-2を11.93g(39.98mmol)加え、NMPを162g入れて、撹拌して溶解させた。この溶液を撹拌しながら、ピロメリット酸二無水物を8.03g(36.82mmol)添加し更に固形分濃度が10質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-5)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は108mPa・sであった。
(Synthesis Example 6)
To a 300 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 11.93 g (39.98 mmol) of DA-2 was added, and 162 g of NMP was added and dissolved by stirring. While stirring this solution, 8.03 g (36.82 mmol) of pyromellitic dianhydride was added, NMP was further added so that the solid content concentration was 10% by mass, and the mixture was stirred at room temperature for 24 hours to polyamic acid ( A solution of PAA-5) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 108 mPa · s.
(合成例7)
 攪拌装置付きの300ml四つ口フラスコに2,5-ビス(メトキシカルボニル)テレフタル酸を5.19g(18.4mmol)取り、NMPを107g加え、撹拌して溶解させた。続いて、トリエチルアミンを4.45g(44.0mmol)、1,6-ビス(4-アミノフェノキシ)へキサンを6.00g(19.97mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら(2,3-ジヒドロキシ-2-チオキソ-3-ベンゾオキサゾイル)ホスホン酸ジフェニルを16.88g添加し、更にNMPを15g加え、水冷下で4時間反応させた。得られたポリアミド酸エステル溶液を614gの2-プロパノールに撹拌しながら投入し、析出した沈殿物をろ取し、続いて、307gの2-プロパノールで5回洗浄し、乾燥することでポリアミド酸エステル樹脂粉末を得た。
 このポリアミック酸エステルの分子量はMn=6286、Mw=17648であった。
 50ml三角フラスコに、得られたポリアミック酸エステル樹脂粉末を2.00g取り、NMPを18.04g加え、室温で24時間撹拌し溶解させて、ポリアミド酸エステル溶液(PAE-2)を得た。
(Synthesis Example 7)
In a 300 ml four-necked flask equipped with a stirrer, 5.19 g (18.4 mmol) of 2,5-bis (methoxycarbonyl) terephthalic acid was taken, 107 g of NMP was added, and dissolved by stirring. Subsequently, 4.45 g (44.0 mmol) of triethylamine and 6.00 g (19.97 mmol) of 1,6-bis (4-aminophenoxy) hexane were added and dissolved by stirring. While stirring this solution, 16.88 g of (2,3-dihydroxy-2-thioxo-3-benzoxazoyl) phosphonate diphenyl was added, and 15 g of NMP was further added, followed by reaction for 4 hours under water cooling. The obtained polyamic acid ester solution was poured into 614 g of 2-propanol with stirring, and the deposited precipitate was collected by filtration, then washed with 307 g of 2-propanol five times and dried to obtain a polyamic acid ester. A resin powder was obtained.
The molecular weight of this polyamic acid ester was Mn = 6286 and Mw = 17648.
In a 50 ml Erlenmeyer flask, 2.00 g of the obtained polyamic acid ester resin powder was taken, 18.04 g of NMP was added, and the mixture was stirred and dissolved at room temperature for 24 hours to obtain a polyamic acid ester solution (PAE-2).
(合成例8)
 攪拌装置付きの300ml四つ口フラスコに2,5-ビス(メトキシカルボニル)テレフタル酸を5.19g(18.4mmol)取り、NMPを109g加え、撹拌して溶解させた。続いて、トリエチルアミンを4.45g(44.0mmol)、1,7-ビス(4-アミノフェノキシ)ヘプタンを6.28g(19.97mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら(2,3-ジヒドロキシ-2-チオキソ-3-ベンゾオキサゾイル)ホスホン酸ジフェニルを16.87g添加し、更にNMPを15g加え、水冷下で4時間反応させた。得られたポリアミド酸エステル溶液を629gの2-プロパノールに撹拌しながら投入し、析出した沈殿物をろ取し、続いて、314gの2-プロパノールで5回洗浄し、乾燥することでポリアミド酸エステル樹脂粉末を得た。
 このポリアミック酸エステルの分子量はMn=5004、Mw=17542であった。
 50ml三角フラスコに、得られたポリアミック酸エステル樹脂粉末を2.00g取り、NMPを18.02g加え、室温で24時間撹拌し溶解させて、ポリアミド酸エステル溶液(PAE-3)を得た。
(Synthesis Example 8)
In a 300 ml four-necked flask equipped with a stirrer, 5.19 g (18.4 mmol) of 2,5-bis (methoxycarbonyl) terephthalic acid was taken, 109 g of NMP was added, and dissolved by stirring. Subsequently, 4.45 g (44.0 mmol) of triethylamine and 6.28 g (19.97 mmol) of 1,7-bis (4-aminophenoxy) heptane were added and dissolved by stirring. While stirring this solution, 16.87 g of (2,3-dihydroxy-2-thioxo-3-benzoxazoyl) phosphonate diphenyl was added, and 15 g of NMP was further added, followed by reaction for 4 hours under water cooling. The obtained polyamic acid ester solution was poured into 629 g of 2-propanol while stirring, and the deposited precipitate was collected by filtration, washed with 314 g of 2-propanol five times, and dried to obtain a polyamic acid ester. A resin powder was obtained.
The molecular weight of this polyamic acid ester was Mn = 5004 and Mw = 17542.
In a 50 ml Erlenmeyer flask, 2.00 g of the obtained polyamic acid ester resin powder was taken, 18.02 g of NMP was added, and the mixture was stirred and dissolved at room temperature for 24 hours to obtain a polyamic acid ester solution (PAE-3).
(合成例9)
 攪拌装置付きの300ml四つ口フラスコに2,5-ビス(メトキシカルボニル)テレフタル酸を5.19g(18.4mmol)取り、NMPを112g加え、撹拌して溶解させた。続いて、トリエチルアミンを4.45g(44.0mmol)、1,8-ビス(4-アミノフェノキシ)オクタンを6.56g(19.97mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら(2,3-ジヒドロキシ-2-チオキソ-3-ベンゾオキサゾイル)ホスホン酸ジフェニルを16.87g添加し、更にNMPを15g加え、水冷下で4時間反応させた。得られたポリアミド酸エステル溶液を642gの2-プロパノールに撹拌しながら投入し、析出した沈殿物をろ取し、続いて、321gの2-プロパノールで5回洗浄し、乾燥することでポリアミド酸エステル樹脂粉末を得た。
 このポリアミック酸エステルの分子量はMn=6319、Mw=17702であった。
 50ml三角フラスコに、得られたポリアミック酸エステル樹脂粉末を2.00g取り、NMPを18.01g加え、室温で24時間撹拌し溶解させて、ポリアミド酸エステル溶液(PAE-4)を得た。
(Synthesis Example 9)
In a 300 ml four-necked flask equipped with a stirrer, 5.19 g (18.4 mmol) of 2,5-bis (methoxycarbonyl) terephthalic acid was taken, 112 g of NMP was added and stirred to dissolve. Subsequently, 4.45 g (44.0 mmol) of triethylamine and 6.56 g (19.97 mmol) of 1,8-bis (4-aminophenoxy) octane were added and dissolved by stirring. While stirring this solution, 16.87 g of (2,3-dihydroxy-2-thioxo-3-benzoxazoyl) phosphonate diphenyl was added, and 15 g of NMP was further added, followed by reaction for 4 hours under water cooling. The obtained polyamic acid ester solution was poured into 642 g of 2-propanol with stirring, and the deposited precipitate was collected by filtration, washed with 321 g of 2-propanol five times, and dried to obtain a polyamic acid ester. A resin powder was obtained.
The molecular weight of this polyamic acid ester was Mn = 6319 and Mw = 17702.
In a 50 ml Erlenmeyer flask, 2.00 g of the obtained polyamic acid ester resin powder was taken, 18.01 g of NMP was added, and the mixture was stirred and dissolved at room temperature for 24 hours to obtain a polyamic acid ester solution (PAE-4).
(合成例10)
 撹拌装置付きの300ml四つ口フラスコに、MA1を12.41g(35.0mmol))入れ、NMPを111.7g加えて、溶解させた後、ダイアフラムポンプで6分間脱気を行なった。その後、AIBNを0.287g(1.80mmol)加えて、再び6分間脱気を行なった。この後、60℃で30時間反応させ、メタクリレートのポリマー溶液(MA-1)を得た。このポリマーの数平均分子量は13000、重量平均分子量は51000であった。
(Synthesis Example 10)
In a 300 ml four-necked flask equipped with a stirrer, 12.41 g (35.0 mmol) of MA1 was added and 111.7 g of NMP was added and dissolved, followed by deaeration with a diaphragm pump for 6 minutes. Thereafter, 0.287 g (1.80 mmol) of AIBN was added, and deaeration was performed again for 6 minutes. Thereafter, the mixture was reacted at 60 ° C. for 30 hours to obtain a polymer solution of methacrylate (MA-1). This polymer had a number average molecular weight of 13,000 and a weight average molecular weight of 51,000.
(実施例1)
 撹拌子を入れた20mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を7.13g、合成例2で得られたポリアミック酸溶液(PAA-2)を0.29g、NMPを4.60g、及びBCSを3.02g加えて、マグネチックスターラーで30分間撹拌し液晶配向剤(A-1)を得た。
(実施例2)
 撹拌子を入れた20mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を3.95g、合成例2で得られたポリアミック酸溶液(PAA-2)を0.19g、NMPを3.88g、BCSを2.00g、及び1-ブチルイミダゾールを0.02g加えて、マグネチックスターラーで30分間撹拌し液晶配向剤(A-2)を得た。
(Example 1)
In a 20 ml sample tube containing a stirrer, 7.13 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 and 0.29 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2; 4.60 g of NMP and 3.02 g of BCS were added, and stirred for 30 minutes with a magnetic stirrer to obtain a liquid crystal aligning agent (A-1).
(Example 2)
In a 20 ml sample tube containing a stirrer, 3.95 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1, 0.19 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2, 3.88 g of NMP, 2.00 g of BCS, and 0.02 g of 1-butylimidazole were added and stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-2).
(実施例3)
 撹拌子を入れた20mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を3.79g、合成例2で得られたポリアミック酸溶液(PAA-2)を0.37g、NMPを3.89g、BCSを2.00g、及び1-ブチルイミダゾールを0.02g加えて、マグネチックスターラーで30分間撹拌し液晶配向剤(A-3)を得た。
(実施例4)
 撹拌子を入れた20mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を7.42g、合成例3で得られたポリアミック酸エステル溶液(PAE-1)を0.08g、NMPを4.53g、及びBCSを3.03gマグネチックスターラーで30分間撹拌し液晶配向剤(A-4)を得た。
(比較例1)
 撹拌子を入れた20mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を4.16g、NMPを3.82g、及びBCSを2.0g加えて、マグネチックスターラーで30分間撹拌し液晶配向剤(B-1)を得た。
(Example 3)
In a 20 ml sample tube containing a stir bar, 3.79 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 and 0.37 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2; 3.89 g of NMP, 2.00 g of BCS, and 0.02 g of 1-butylimidazole were added, and the mixture was stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-3).
(Example 4)
In a 20 ml sample tube containing a stirrer, 7.42 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 and 0.08 g of the polyamic acid ester solution (PAE-1) obtained in Synthesis Example 3 were used. Then, 4.53 g of NMP and 3.03 g of BCS were stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-4).
(Comparative Example 1)
4.16 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 (PAA-1), 3.82 g of NMP, and 2.0 g of BCS were added to a 20-ml sample tube containing a stir bar, and the mixture was stirred with a magnetic stirrer. The mixture was stirred for a minute to obtain a liquid crystal aligning agent (B-1).
(実施例5)
 実施例1で得られた液晶配向剤(A-1)を1.0μmのフィルターで濾過した後、ガラス基板上に、第1層目として膜厚50nmのITO電極を、第2層目として絶縁膜として膜厚500nmの窒化ケイ素を、第3層目として櫛歯形状のITO電極(電極幅:3μm、電極間隔:6μm、電極高さ:50nm)を有するFFS駆動用電極が形成されているガラス基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで15分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して254nmの紫外線を1500mJ/cm照射し、さらに230℃の熱風循環式オーブンで30分間加熱し、液晶配向膜付き基板を得た。また、対向基板として電極が形成されていない高さ4μmの柱状スペーサーを有するガラス基板にも、同様に塗膜を形成させ、配向処理を施した。
 上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2041(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。
このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は1.8mVであった。
(Example 5)
After the liquid crystal aligning agent (A-1) obtained in Example 1 was filtered through a 1.0 μm filter, an ITO electrode having a film thickness of 50 nm as a first layer was insulated on a glass substrate as a second layer. Glass on which FFS driving electrodes having comb-like ITO electrodes (electrode width: 3 μm, electrode interval: 6 μm, electrode height: 50 nm) are formed as the third layer, silicon nitride having a thickness of 500 nm as a film The substrate was applied by spin coating. After drying on an 80 ° C. hot plate for 5 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 15 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with 1500 mJ / cm 2 of 254 nm ultraviolet light through a polarizing plate, and further heated in a hot air circulation oven at 230 ° C. for 30 minutes to obtain a substrate with a liquid crystal alignment film. Further, a coating film was similarly formed on a glass substrate having a columnar spacer having a height of 4 μm on which no electrode was formed as a counter substrate, and an orientation treatment was performed.
The two substrates are combined as a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is added. An empty cell was produced by curing. Liquid crystal MLC-2041 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS drive liquid crystal cell.
As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ΔV 50 was 1.8 mV.
(実施例6)
 実施例2で得られた液晶配向剤(A-2)を用いた以外は、実施例5と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は1.3mVであった。
(実施例7)
 実施例3で得られた液晶配向剤(A-3)を用いた以外は、実施例5と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は1.2mVであった。
(Example 6)
An FFS drive liquid crystal cell was produced in the same manner as in Example 5 except that the liquid crystal aligning agent (A-2) obtained in Example 2 was used. As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ΔV 50 was 1.3 mV.
(Example 7)
An FFS drive liquid crystal cell was produced in the same manner as in Example 5 except that the liquid crystal aligning agent (A-3) obtained in Example 3 was used. As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ΔV 50 was 1.2 mV.
(実施例8)
 実施例4で得られた液晶配向剤(A-4)を用いた以外は、実施例5と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は1.1mVであった。
(比較例2)
 比較例1で得られた液晶配向剤(B-1)を用いた以外は、実施例6と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は5.0mVであった。
(Example 8)
An FFS drive liquid crystal cell was produced in the same manner as in Example 5 except that the liquid crystal aligning agent (A-4) obtained in Example 4 was used. As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ΔV 50 was 1.1 mV.
(Comparative Example 2)
An FFS drive liquid crystal cell was produced in the same manner as in Example 6 except that the liquid crystal aligning agent (B-1) obtained in Comparative Example 1 was used. As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ΔV 50 was 5.0 mV.
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
(実施例9)
 撹拌子を入れた50mlサンプル管に、合成例4で得られたポリアミック酸溶液(PAA-3)16.29g、合成例2で得られたポリアミック酸溶液(PAA-2)を0.45g、NMPを7.38g、BCSを6.05g、及びイミド化促進剤としてN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.23g加えて、マグネチックスターラーで30分間撹拌し液晶配向剤(A-5)を得た。
Example 9
In a 50 ml sample tube containing a stir bar, 16.29 g of the polyamic acid solution (PAA-3) obtained in Synthesis Example 4 and 0.45 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2 were added. 7.38 g of BCS, 6.05 g of BCS, and 0.23 g of N-α- (9-fluorenylmethoxycarbonyl) -N-τ-t-butoxycarbonyl-L-histidine as an imidization accelerator, The mixture was stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-5).
(実施例10)
 撹拌子を入れた50mlサンプル管に、合成例4で得られたポリアミック酸溶液(PAA-3)10.79g、合成例6で得られたポリアミック酸溶液(PAA-5)を0.31g、NMPをg、BCSを6.05g、及びイミド化促進剤としてN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジン加えて、マグネチックスターラーで30分間撹拌し液晶配向剤(A-6)を得た。
(Example 10)
In a 50 ml sample tube containing a stirrer, 10.79 g of the polyamic acid solution (PAA-3) obtained in Synthesis Example 4, 0.31 g of the polyamic acid solution (PAA-5) obtained in Synthesis Example 6 and NMP , BCS 6.05 g, and N-α- (9-fluorenylmethoxycarbonyl) -N-τ-t-butoxycarbonyl-L-histidine as an imidization accelerator were added for 30 minutes with a magnetic stirrer. By stirring, a liquid crystal aligning agent (A-6) was obtained.
(実施例11)
 撹拌子を入れた50mlサンプル管に、合成例5で得られたポリアミック酸溶液(PAA-4)10.90g、合成例2で得られたポリアミック酸溶液(PAA-2)を0.10g、NMPを5.08g、BCSを4.26g、及びイミド化促進剤としてN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g加えて、マグネチックスターラーで30分間撹拌し液晶配向剤(A-7)を得た。
(Example 11)
In a 50 ml sample tube containing a stirrer, 10.90 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 5 and 0.10 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2 were added. 5.08 g, BCS 4.26 g, and 0.15 g of N-α- (9-fluorenylmethoxycarbonyl) -N-τ-t-butoxycarbonyl-L-histidine as an imidization accelerator, The mixture was stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-7).
(実施例12)
 撹拌子を入れた20mlサンプル管に、合成例5で得られたポリアミック酸溶液(PAA-4)7.45g、合成例7で得られたポリアミド酸エステル溶液(PAE-2)を0.08g、NMPを4.39g、BCSを3.02g、及びイミド化促進剤としてN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.08g加えて、マグネチックスターラーで30分間撹拌し液晶配向剤(A-8)を得た。
Example 12
In a 20 ml sample tube containing a stir bar, 7.45 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 5 and 0.08 g of the polyamic acid ester solution (PAE-2) obtained in Synthesis Example 7 were obtained. 4.39 g of NMP, 3.02 g of BCS, and 0.08 g of N-α- (9-fluorenylmethoxycarbonyl) -N-τ-t-butoxycarbonyl-L-histidine as an imidization accelerator were added. The mixture was stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-8).
(実施例13)
 撹拌子を入れた20mlサンプル管に、合成例5で得られたポリアミック酸溶液(PAA-4)7.43g、合成例8で得られたポリアミド酸エステル溶液(PAE-3)を0.08g、NMPを4.38g、BCSを3.11g、及びイミド化促進剤としてN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.08g加えて、マグネチックスターラーで30分間撹拌し液晶配向剤(A-9)を得た。
(Example 13)
In a 20-ml sample tube containing a stirrer, 7.43 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 5 and 0.08 g of the polyamic acid ester solution (PAE-3) obtained in Synthesis Example 8 were obtained. 4.38 g of NMP, 3.11 g of BCS, and 0.08 g of N-α- (9-fluorenylmethoxycarbonyl) -N-τ-t-butoxycarbonyl-L-histidine as an imidization accelerator were added. The mixture was stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-9).
(実施例14)
 撹拌子を入れた20mlサンプル管に、合成例5で得られたポリアミック酸溶液(PAA-4)7.43g、合成例9で得られたポリアミド酸エステル溶液(PAE-4)を0.08g、NMPを4.35g、BCSを3.02g、及びイミド化促進剤としてN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.08g加えて、マグネチックスターラーで30分間撹拌し液晶配向剤(A-10)を得た。
(Example 14)
In a 20 ml sample tube containing a stir bar, 7.43 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 5 and 0.08 g of the polyamic acid ester solution (PAE-4) obtained in Synthesis Example 9 were obtained. 4.35 g of NMP, 3.02 g of BCS, and 0.08 g of N-α- (9-fluorenylmethoxycarbonyl) -N-τ-t-butoxycarbonyl-L-histidine as an imidization accelerator were added. The mixture was stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-10).
(実施例15)
 実施例9で得られた液晶配向剤(A-5)を用い、254nmの紫外線を500mJ/cm照射した以外は、実施例5と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は0.8mVであった。
(実施例16)
 実施例10で得られた液晶配向剤(A-6)を用い、254nmの紫外線を500mJ/cm照射した以外は、実施例5と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は1.0mVであった。
(Example 15)
An FFS drive liquid crystal cell was produced in the same manner as in Example 5, except that the liquid crystal aligning agent (A-5) obtained in Example 9 was used and 254 nm ultraviolet rays were irradiated at 500 mJ / cm 2 . As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ΔV 50 was 0.8 mV.
(Example 16)
An FFS drive liquid crystal cell was produced in the same manner as in Example 5 except that the liquid crystal aligning agent (A-6) obtained in Example 10 was used and 254 nm ultraviolet rays were irradiated at 500 mJ / cm 2 . As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ΔV 50 was 1.0 mV.
(実施例17)
 実施例11で得られた液晶配向剤(A-7)を用い、254nmの紫外線を500mJ/cm照射した以外は、実施例5と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は0.8mVであった。
(実施例18)
 実施例12で得られた液晶配向剤(A-8)を用い、254nmの紫外線を500mJ/cm照射した以外は、実施例5と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は0.6mVであった。
(Example 17)
An FFS drive liquid crystal cell was produced in the same manner as in Example 5 except that the liquid crystal aligning agent (A-7) obtained in Example 11 was used and 254 nm ultraviolet rays were irradiated at 500 mJ / cm 2 . As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ΔV 50 was 0.8 mV.
(Example 18)
An FFS drive liquid crystal cell was produced in the same manner as in Example 5 except that the liquid crystal aligning agent (A-8) obtained in Example 12 was used and ultraviolet rays of 254 nm were irradiated at 500 mJ / cm 2 . As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ΔV 50 was 0.6 mV.
(実施例19)
 実施例13で得られた液晶配向剤(A-9)を用い、254nmの紫外線を500mJ/cm照射した以外は、実施例5と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は1.1mVであった。
(実施例20)
 実施例14で得られた液晶配向剤(A-10)を用い、254nmの紫外線を500mJ/cm照射した以外は、実施例5と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は1.1mVであった。
(Example 19)
An FFS drive liquid crystal cell was produced in the same manner as in Example 5, except that the liquid crystal aligning agent (A-9) obtained in Example 13 was used and 254 nm ultraviolet rays were irradiated at 500 mJ / cm 2 . As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ΔV 50 was 1.1 mV.
(Example 20)
An FFS drive liquid crystal cell was produced in the same manner as in Example 5 except that the liquid crystal aligning agent (A-10) obtained in Example 14 was used and 254 nm ultraviolet rays were irradiated at 500 mJ / cm 2 . As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ΔV 50 was 1.1 mV.
(実施例21)
 撹拌子を入れた50mlサンプル管に、合成例10で得られたメタクリレートのポリマー溶液(M-1)を12.44g、合成例2で得られたポリアミック酸溶液(A-2)を0.32g、NMPを2.08g、及びBCSを6.19g加えて、室温で5時間撹拌し、液晶配向剤(A-11)を得た。
(実施例22)
 撹拌子を入れた50mlサンプル管に、合成例10で得られたメタクリレートのポリマー溶液(M-1)を12.41g、合成例2で得られたポリアミック酸溶液(A-2)を0.54g、NMPを2.09g、及びBCSを6.20g加えて、室温で5時間撹拌し、液晶配向剤(A-12)を得た。
(Example 21)
In a 50 ml sample tube containing a stirrer, 12.44 g of the polymer solution (M-1) of the methacrylate obtained in Synthesis Example 10 and 0.32 g of the polyamic acid solution (A-2) obtained in Synthesis Example 2 Then, 2.08 g of NMP and 6.19 g of BCS were added and stirred at room temperature for 5 hours to obtain a liquid crystal aligning agent (A-11).
(Example 22)
In a 50 ml sample tube containing a stir bar, 12.41 g of the polymer solution (M-1) of the methacrylate obtained in Synthesis Example 10 and 0.54 g of the polyamic acid solution (A-2) obtained in Synthesis Example 2 Then, 2.09 g of NMP and 6.20 g of BCS were added and stirred at room temperature for 5 hours to obtain a liquid crystal aligning agent (A-12).
(比較例3)
 撹拌子を入れた50mlサンプル管に、合成例10で得られたメタクリレートのポリマー溶液(M-1)を12.44g、NMPを2.05g、及びBCSを6.21g加えて、室温で5時間撹拌し、液晶配向剤(B-2)を得た。
(Comparative Example 3)
To a 50 ml sample tube containing a stir bar, 12.44 g of the methacrylate polymer solution (M-1) obtained in Synthesis Example 10, 2.05 g of NMP, and 6.21 g of BCS were added, and 5 hours at room temperature. Stirring to obtain a liquid crystal aligning agent (B-2).
(実施例23)
 実施例21で得られた液晶配向剤(A-11)を用いて下記に示すような手順で液晶セルの作製を行った。基板は、
 30mm×40mmの大きさで、厚さが0.7mmのガラス基板であり、ITO膜をパターニングして形成された櫛歯状の画素電極が配置されたものを用いた。画素電極は、中央部分が屈曲したくの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は10μmであり、電極要素間の間隔は20μmである。各画素を形成する画素電極が、中央部分の屈曲したくの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字のくの字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。
(Example 23)
Using the liquid crystal aligning agent (A-11) obtained in Example 21, a liquid crystal cell was produced according to the procedure shown below. The board
A glass substrate having a size of 30 mm × 40 mm and a thickness of 0.7 mm and having a comb-like pixel electrode formed by patterning an ITO film is used. The pixel electrode has a comb-like shape configured by arranging a plurality of dog-shaped electrode elements whose central portion is bent. The width of each electrode element in the short direction is 10 μm, and the distance between the electrode elements is 20 μm. Since the pixel electrode forming each pixel is formed by arranging a plurality of bent-shaped electrode elements in the center part, the shape of each pixel is not rectangular, but in the center part like the electrode elements. It has a shape that bends and resembles a bold, bold character. Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side. When the first region and the second region of each pixel are compared, the formation directions of the electrode elements of the pixel electrodes constituting them are different.
 すなわち、後述する液晶配向膜の配向処理方向を基準とした場合、画素の第1領域では画素電極の電極要素が+15°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が-15°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。実施例21で得られた液晶配向剤(A-11)を、準備された上記電極付き基板にスピンコートした。次いで、80℃のホットプレートで90秒間乾燥した後、160℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。 That is, when the alignment processing direction of the liquid crystal alignment film described later is used as a reference, the electrode element of the pixel electrode is formed to form an angle of + 15 ° (clockwise) in the first region of the pixel, and in the second region of the pixel. The electrode elements of the pixel electrode are formed so as to form an angle of −15 ° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the application of voltage between the pixel electrode and the counter electrode are mutually in the substrate plane. It is comprised so that it may become a reverse direction. The liquid crystal aligning agent (A-11) obtained in Example 21 was spin-coated on the prepared substrate with electrodes. Subsequently, after drying for 90 seconds with an 80 degreeC hotplate, it baked for 30 minutes with a 160 degreeC hot-air circulation type oven, and formed the liquid crystal aligning film with a film thickness of 100 nm.
 次いで、塗膜面に偏光板を介して313nmの紫外線を500mJ/cm照射した後に160℃の熱風循環式オーブンで加熱し、液晶配向膜付き基板を得た。また、対向基板として電極が形成されていない高さ4μmの柱状スペーサーを有するガラス基板にも、同様に塗膜を形成させ、配向処理を施した。一方の基板の液晶配向膜上にシール剤(協立化学製XN-1500T)を印刷した。次いで、もう一方の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2041(メルク株式会社製)を注入し、注入口を封止して、IPS(In-Planes Switching)モード液晶表示素子の構成を備えた液晶セルを得た。 Next, the coating film surface was irradiated with 313 nm ultraviolet rays through a polarizing plate at 500 mJ / cm 2 and then heated in a hot air circulation oven at 160 ° C. to obtain a substrate with a liquid crystal alignment film. Further, a coating film was similarly formed on a glass substrate having a columnar spacer having a height of 4 μm on which no electrode was formed as a counter substrate, and an orientation treatment was performed. A sealant (XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.) was printed on the liquid crystal alignment film of one substrate. Next, the other substrate was bonded so that the liquid crystal alignment film faces each other and the alignment direction was 0 °, and then the sealing agent was cured to produce an empty cell. A liquid crystal cell having a configuration of an IPS (In-Plane Switching) mode liquid crystal display element is prepared by injecting liquid crystal MLC-2041 (manufactured by Merck Co., Ltd.) into the empty cell by a reduced pressure injection method, sealing the injection port. Obtained.
 上記の方法で得られたIPSモード用液晶セルを、偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を初期配向方位角として算出した。次いで、60℃のオーブン中で、周波数30Hzで8VPPの交流電圧を168時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に1時間放置した。放置の後、同様にして配向方位角を測定し、交流駆動前後の配向方位角の差を角度Δ(deg.)として算出した。交流駆動前後の配向方位の差が小さいほど、交流駆動焼き付き特性は良好と判断できる。結果、交流駆動前後の配向方位角の差を角度Δ(deg.)は。0.5°であった。 The liquid crystal cell for IPS mode obtained by the above method is installed between two polarizing plates arranged so that the polarization axes are orthogonal to each other, the backlight is turned on with no voltage applied, and transmitted light is transmitted. The arrangement angle of the liquid crystal cell was adjusted so that the luminance was minimized. Then, the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the pixel was darkest to the angle at which the first region was darkest was calculated as the initial orientation azimuth. Next, an AC voltage of 8 V PP was applied at a frequency of 30 Hz in an oven at 60 ° C. for 168 hours. Thereafter, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left as it was at room temperature for 1 hour. After standing, the orientation azimuth was measured in the same manner, and the difference in orientation azimuth before and after AC driving was calculated as an angle Δ (deg.). It can be judged that the smaller the difference in orientation orientation before and after AC driving, the better the AC driving image sticking characteristics. As a result, the difference in orientation azimuth angle before and after AC driving is the angle Δ (deg.). It was 0.5 °.
(実施例24)
 実施例22で得られた液晶配向剤(A-12)を用いたい以外は、実施例23と同様の方法でIPS駆動液晶セルを作製した。このIPS駆動液晶セルについて、実施例23と同様の方法で交流駆動焼き付き特性を評価した結果、交流駆動前後の配向方位角の差を角度Δ(deg.)は。0.4°であった。
(比較例4)
 比較例3で得られた液晶配向剤(B-2)を用いたい以外は、実施例23と同様の方法でIPS駆動液晶セルを作製した。このIPS駆動液晶セルについて、実施例23と同様の方法で交流駆動焼き付き特性を評価した結果、交流駆動前後の配向方位角の差を角度Δ(deg.)は。1.7°であった。
(Example 24)
An IPS drive liquid crystal cell was produced in the same manner as in Example 23 except that the liquid crystal aligning agent (A-12) obtained in Example 22 was used. As a result of evaluating the AC drive burn-in characteristics of this IPS drive liquid crystal cell in the same manner as in Example 23, the difference in orientation azimuth angle before and after AC drive is the angle Δ (deg.). It was 0.4 °.
(Comparative Example 4)
An IPS drive liquid crystal cell was produced in the same manner as in Example 23 except that the liquid crystal aligning agent (B-2) obtained in Comparative Example 3 was used. As a result of evaluating the AC drive burn-in characteristics of this IPS drive liquid crystal cell in the same manner as in Example 23, the difference in orientation azimuth angle before and after AC drive is the angle Δ (deg.). It was 1.7 °.
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
 本発明の液晶配向剤から得られる液晶配向膜は、IPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流駆動による残像を低減し、且つ直流電圧により蓄積した残留電荷の緩和が早いため、残像特性に優れたIPS駆動方式やFFS駆動方式の液晶表示素子や液晶テレビの液晶配向膜として特に有用である。 The liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention reduces afterimages due to AC driving generated in an IPS driving type or FFS driving type liquid crystal display element, and because the residual charge accumulated by the DC voltage is quickly relaxed, It is particularly useful as a liquid crystal alignment film of an IPS driving method or an FFS driving method having excellent afterimage characteristics or a liquid crystal alignment film of a liquid crystal television.
 なお、2011年8月4日に出願された日本特許出願2011-171227号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The entire contents of the specification, claims and abstract of Japanese Patent Application No. 2011-171227 filed on August 4, 2011 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (17)

  1.  下記の(A)成分、(B)成分、及び有機溶媒を含有し、(B)成分の含有量が(A)成分100質量部に対して0.1~15質量部であることを特徴とする液晶配向剤。
     (A)成分:偏光された放射線を照射することにより、光分解、光二量化、又は光異性化のいずれかの反応が進行し、偏光方向と同一方向、又は偏光方向に対して垂直方向に異方性が付与される1種又は2種以上の重合体。
     (B)成分:下記式(1)で表される構造を含有する重合体。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)において、W及びWはそれぞれ独立して、炭素数6~30の芳香族基を有する2価の有機基であり、Aは、炭素数2~20のアルキレン基を有する2価の有機基である。)
    The following (A) component, (B) component, and an organic solvent are contained, Content of (B) component is 0.1-15 mass parts with respect to 100 mass parts of (A) component, It is characterized by the above-mentioned. Liquid crystal aligning agent.
    Component (A): Irradiation with polarized radiation causes a reaction of photodecomposition, photodimerization, or photoisomerization to proceed in the same direction as the polarization direction or in a direction perpendicular to the polarization direction. One type or two or more types of polymers imparted with anisotropy.
    (B) Component: A polymer containing a structure represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (1), W 1 and W 2 are each independently a divalent organic group having an aromatic group having 6 to 30 carbon atoms, and A has an alkylene group having 2 to 20 carbon atoms. It is a divalent organic group.)
  2.  (A)成分が、偏光された放射線を照射することにより、光分解反応が進行し、偏光方向に対して垂直方向に異方性が付与される1種又は2種以上の重合体である請求項1に記載の液晶配向剤。 The component (A) is one or two or more types of polymers that undergo a photolysis reaction when irradiated with polarized radiation and impart anisotropy in a direction perpendicular to the polarization direction. Item 2. A liquid crystal aligning agent according to Item 1.
  3.  (A)成分が、下記式(2)で表される構造単位を含有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体である請求項1又は2に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    (Xは、下記式(X1-1)~(X1-9)で表される構造からなる群から選ばれる少なくとも1種であり、Yは2価の有機基であり、Rは、水素原子、又は炭素数1~4のアルキル基である。)
    Figure JPOXMLDOC01-appb-C000003
    (R、R、R、及びRはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、アルケニル基、又はフェニル基である。)
    The component (A) is at least one polymer selected from the group consisting of a polyimide precursor containing a structural unit represented by the following formula (2) and an imidized polymer of the polyimide precursor. Or the liquid crystal aligning agent of 2.
    Figure JPOXMLDOC01-appb-C000002
    (X 1 is at least one selected from the group consisting of structures represented by the following formulas (X1-1) to (X1-9), Y 1 is a divalent organic group, and R 1 is It is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000003
    (R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkenyl group, or a phenyl group. is there.)
  4.  (A)成分が、上記式(2)で表される構造単位を全構造単位1モルに対して、60モル%以上含有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種である請求項3に記載の液晶配向剤。 (A) From the group which a component consists of a polyimide precursor which contains 60 mol% or more of structural units represented by said Formula (2) with respect to 1 mol of all the structural units, and the imidation polymer of this polyimide precursor. The liquid crystal aligning agent according to claim 3, which is at least one selected.
  5.  上記式(2)において、Xが上記式(X1-1)で表される構造からなる群から選ばれる少なくとも1種である請求項3又は4に記載の液晶配向剤。 In the above formula (2), a liquid crystal aligning agent of claim 3 or 4 X 1 is at least one selected from the group consisting of structures represented by the formula (X1-1).
  6.  上記式(2)において、Xが下記式(X1-10)~(X1-11)で表される構造からなる群から選ばれる少なくとも1種である請求項3~5のいずれかに記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004
    6. The formula (2), wherein X 1 is at least one selected from the group consisting of structures represented by the following formulas (X1-10) to (X1-11): Liquid crystal aligning agent.
    Figure JPOXMLDOC01-appb-C000004
  7.  上記式(2)において、Yが下記式(4)及び(5)で表される構造からなる群から選ばれる少なくとも1種である請求項3~6のいずれかに記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
    (Zは単結合、エステル結合、アミド結合、チオエステル結合、又は炭素数2~10の2価の有機基である。)
    7. The liquid crystal aligning agent according to claim 3, wherein in the formula (2), Y 1 is at least one selected from the group consisting of structures represented by the following formulas (4) and (5).
    Figure JPOXMLDOC01-appb-C000005
    (Z 1 is a single bond, an ester bond, an amide bond, a thioester bond, or a divalent organic group having 2 to 10 carbon atoms.)
  8.  上記式(2)において、Yが上記式(4)で表される構造である請求項7に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 7, wherein Y 1 is a structure represented by the above formula (4) in the above formula (2).
  9.  (B)成分が、下記式(3)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体である請求項1~8のいずれかに記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000006
    (Xは炭素数6~20の芳香族基を有し、且つ結合手を芳香族基に有する4価の有機基であり、Yは下記式(Y2-1)~(Y2-2)からなる群から選ばれる少なくとも1種の2価の有機基であり、A及びAはそれぞれ独立して、水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、アルケニル基、アルキニル基であり、Rは水素原子、又は炭素数1~4のアルキル基である。)
    Figure JPOXMLDOC01-appb-C000007
    (Aは炭素数2~20のアルキレン基を有する2価の有機基である。式(Y2-2)において、Aは、単結合、-O-、-S-、-NR12-、エステル結合、アミド結合、チオエステル結合、ウレア結合、カーボネート結合、カルバメート結合であり、R12は、水素原子、メチル基、又はt-ブトキシカルボニル基であり、Aは炭素数2~10のアルキレン基である。)
    The component (B) is at least one polymer selected from the group consisting of a polyimide precursor having a structural unit represented by the following formula (3) and an imidized polymer of the polyimide precursor. The liquid crystal aligning agent in any one of 8.
    Figure JPOXMLDOC01-appb-C000006
    (X 2 is a tetravalent organic group having an aromatic group having 6 to 20 carbon atoms and having a bond in the aromatic group, and Y 2 is represented by the following formulas (Y2-1) to (Y2-2) At least one divalent organic group selected from the group consisting of: A 1 and A 2 are each independently a hydrogen atom or an optionally substituted alkyl group having 1 to 10 carbon atoms, An alkenyl group or an alkynyl group, and R 2 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000007
    (A 3 is a divalent organic group having an alkylene group having 2 to 20 carbon atoms. In the formula (Y2-2), A 4 is a single bond, —O—, —S—, —NR 12 —, An ester bond, an amide bond, a thioester bond, a urea bond, a carbonate bond, or a carbamate bond; R 12 is a hydrogen atom, a methyl group, or a t-butoxycarbonyl group; and A 5 is an alkylene group having 2 to 10 carbon atoms. .)
  10.  (B)成分が、上記式(3)で表される構造単位を全構造単位1モルに対して60モル%以上含有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体である請求項9に記載の液晶配向剤。 The component (B) is selected from the group consisting of a polyimide precursor containing 60 mol% or more of the structural unit represented by the above formula (3) with respect to 1 mol of all structural units and an imidized polymer of the polyimide precursor. The liquid crystal aligning agent according to claim 9, which is at least one kind of polymer.
  11.  上記式(3)のXが下記式(X2-1)~(X2-3)で表される構造からなる群から選ばれる少なくとも1種である請求項9又は10に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000008
    11. The liquid crystal aligning agent according to claim 9, wherein X 2 in the formula (3) is at least one selected from the group consisting of structures represented by the following formulas (X2-1) to (X2-3).
    Figure JPOXMLDOC01-appb-C000008
  12.  上記式(3)のXが上記式(X2-1)である請求項11に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 11, wherein X 2 in the formula (3) is the formula (X2-1).
  13.  上記式(3)のYが下記式(Y2-3)~(Y2-12)で表される構造からなる群から選ばれる少なくとも1種である請求項9~12のいずれに記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000009
    (式(Y2-10)及び(Y2-11)において、Rはそれぞれ独立して、水素原子、又は炭素数1~10のアルキル基であり、同一でも異なってもよい。)
    13. The liquid crystal alignment according to claim 9, wherein Y 2 in the formula (3) is at least one selected from the group consisting of structures represented by the following formulas (Y2-3) to (Y2-12). Agent.
    Figure JPOXMLDOC01-appb-C000009
    (In formulas (Y2-10) and (Y2-11), R each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, which may be the same or different.)
  14.  請求項1~13のいずれかに記載の液晶配向剤を塗布、焼成して得られる液晶配向膜。 A liquid crystal alignment film obtained by applying and baking the liquid crystal aligning agent according to any one of claims 1 to 13.
  15.  請求項1~13のいずれかに記載の液晶配向剤を塗布、焼成し、さらに偏光された放射線を照射して得られる液晶配向膜。 A liquid crystal alignment film obtained by applying and baking the liquid crystal aligning agent according to any one of claims 1 to 13, and further irradiating with polarized radiation.
  16.  請求項1~13のいずれかに記載の液晶配向剤を塗布、焼成し、偏光された放射線を照射した後、150℃~300℃で加熱して得られる液晶配向膜。 A liquid crystal alignment film obtained by applying and baking the liquid crystal aligning agent according to any one of claims 1 to 13 and irradiating with polarized radiation, followed by heating at 150 to 300 ° C.
  17.  請求項14~16のいずれかに記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display device comprising the liquid crystal alignment film according to any one of claims 14 to 16.
PCT/JP2012/069894 2011-08-04 2012-08-03 Liquid crystal orientation liquid for light orientation processing technique, and liquid crystal orientation film employing same WO2013018904A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147002424A KR101934606B1 (en) 2011-08-04 2012-08-03 Liquid crystal orientation liquid for light orientation processing technique, and liquid crystal orientation film employing same
JP2013526972A JP6083379B2 (en) 2011-08-04 2012-08-03 Liquid crystal aligning agent for photo-alignment treatment method, and liquid crystal alignment film using the same
CN201280038264.5A CN103718093B (en) 2011-08-04 2012-08-03 The aligning agent for liquid crystal of light orientation position logos and use the liquid crystal orientation film of this aligning agent for liquid crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-171227 2011-08-04
JP2011171227 2011-08-04

Publications (1)

Publication Number Publication Date
WO2013018904A1 true WO2013018904A1 (en) 2013-02-07

Family

ID=47629417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069894 WO2013018904A1 (en) 2011-08-04 2012-08-03 Liquid crystal orientation liquid for light orientation processing technique, and liquid crystal orientation film employing same

Country Status (5)

Country Link
JP (1) JP6083379B2 (en)
KR (1) KR101934606B1 (en)
CN (1) CN103718093B (en)
TW (1) TWI610962B (en)
WO (1) WO2013018904A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015050132A1 (en) * 2013-10-02 2015-04-09 Dic株式会社 Method for producing liquid crystal alignment film and liquid crystal display element using same
WO2015060358A1 (en) * 2013-10-23 2015-04-30 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2015080158A1 (en) * 2013-11-27 2015-06-04 宇部興産株式会社 Polyimide precursor composition, polyimide production method, polyimide, polyimide film, and substrate
JP2016029465A (en) * 2014-07-23 2016-03-03 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display device, phase difference film, and manufacturing method of phase difference film

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107003568B (en) * 2014-09-18 2020-09-15 日产化学工业株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6669161B2 (en) * 2015-03-24 2020-03-18 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display device
JP6852347B2 (en) * 2016-01-29 2021-03-31 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
JP7243628B2 (en) * 2017-09-26 2023-03-22 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08114808A (en) * 1994-10-13 1996-05-07 Japan Synthetic Rubber Co Ltd Orienting agent for liquid crystal
JPH10123532A (en) * 1996-07-11 1998-05-15 Nissan Chem Ind Ltd Orientation treating agent for liquid crystal cell
JP2000080164A (en) * 1998-09-03 2000-03-21 Nissan Chem Ind Ltd Polyimide precursor, polyimide, and aligning agent for liquid crystal cell
JP2009058928A (en) * 2007-08-08 2009-03-19 Chisso Corp Liquid crystal orienting agent, liquid crystal oriented film, and liquid crystal display element
JP2011065149A (en) * 2009-08-18 2011-03-31 Chisso Corp Liquid crystal aligning agent, liquid crystal alignment layer, and liquid crystal display element

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950032573U (en) * 1994-05-12 1995-12-14 이택현 Writing Stopguard
JP4539836B2 (en) * 2004-11-26 2010-09-08 Jsr株式会社 Liquid crystal aligning agent and horizontal electric field type liquid crystal display element
JP5516836B2 (en) * 2006-12-28 2014-06-11 Jsr株式会社 Vertical alignment type liquid crystal aligning agent and vertical alignment type liquid crystal display element
JP5477572B2 (en) * 2007-10-19 2014-04-23 Jsr株式会社 Liquid crystal aligning agent and method for forming liquid crystal aligning film
JP5019050B2 (en) * 2007-12-13 2012-09-05 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JP5472562B2 (en) * 2008-01-18 2014-04-16 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5311054B2 (en) * 2009-02-19 2013-10-09 Jsr株式会社 Liquid crystal aligning agent, liquid crystal display element and manufacturing method thereof
CN102051185B (en) * 2009-11-03 2013-07-17 奇美实业股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
CN102140351B (en) * 2010-02-01 2014-09-03 群创光电股份有限公司 Liquid crystal composite for liquid crystal display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08114808A (en) * 1994-10-13 1996-05-07 Japan Synthetic Rubber Co Ltd Orienting agent for liquid crystal
JPH10123532A (en) * 1996-07-11 1998-05-15 Nissan Chem Ind Ltd Orientation treating agent for liquid crystal cell
JP2000080164A (en) * 1998-09-03 2000-03-21 Nissan Chem Ind Ltd Polyimide precursor, polyimide, and aligning agent for liquid crystal cell
JP2009058928A (en) * 2007-08-08 2009-03-19 Chisso Corp Liquid crystal orienting agent, liquid crystal oriented film, and liquid crystal display element
JP2011065149A (en) * 2009-08-18 2011-03-31 Chisso Corp Liquid crystal aligning agent, liquid crystal alignment layer, and liquid crystal display element

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10423033B2 (en) 2013-10-02 2019-09-24 Dic Corporation Method for producing liquid crystal alignment film and liquid crystal display element using same
JP5904312B2 (en) * 2013-10-02 2016-04-13 Dic株式会社 Method for producing liquid crystal alignment film and liquid crystal display device using the same
CN105593755A (en) * 2013-10-02 2016-05-18 Dic株式会社 Method for producing liquid crystal alignment film and liquid crystal display element using same
WO2015050132A1 (en) * 2013-10-02 2015-04-09 Dic株式会社 Method for producing liquid crystal alignment film and liquid crystal display element using same
JPWO2015060358A1 (en) * 2013-10-23 2017-03-09 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2015060358A1 (en) * 2013-10-23 2015-04-30 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
KR102291426B1 (en) 2013-10-23 2021-08-18 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
KR20160074604A (en) * 2013-10-23 2016-06-28 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JPWO2015080158A1 (en) * 2013-11-27 2017-03-16 宇部興産株式会社 Polyimide precursor composition, polyimide production method, polyimide, polyimide film, and substrate
KR20160091936A (en) * 2013-11-27 2016-08-03 우베 고산 가부시키가이샤 Polyimide precursor composition, polyimide production method, polyimide, polyimide film, and substrate
KR102257869B1 (en) 2013-11-27 2021-05-27 우베 고산 가부시키가이샤 Polyimide precursor composition, polyimide production method, polyimide, polyimide film, and substrate
KR20210063447A (en) * 2013-11-27 2021-06-01 우베 고산 가부시키가이샤 Polyimide precursor composition, polyimide production method, polyimide, polyimide film, and substrate
KR102281153B1 (en) 2013-11-27 2021-07-22 우베 고산 가부시키가이샤 Polyimide precursor composition, polyimide production method, polyimide, polyimide film, and substrate
WO2015080158A1 (en) * 2013-11-27 2015-06-04 宇部興産株式会社 Polyimide precursor composition, polyimide production method, polyimide, polyimide film, and substrate
JP2016029465A (en) * 2014-07-23 2016-03-03 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display device, phase difference film, and manufacturing method of phase difference film

Also Published As

Publication number Publication date
JPWO2013018904A1 (en) 2015-03-05
CN103718093A (en) 2014-04-09
CN103718093B (en) 2016-11-23
TWI610962B (en) 2018-01-11
JP6083379B2 (en) 2017-02-22
KR101934606B1 (en) 2019-01-02
TW201326257A (en) 2013-07-01
KR20140041811A (en) 2014-04-04

Similar Documents

Publication Publication Date Title
JP6852771B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP6083379B2 (en) Liquid crystal aligning agent for photo-alignment treatment method, and liquid crystal alignment film using the same
JP6558245B2 (en) LIQUID CRYSTAL ORIENTING LIQUID CRYSTAL Alignment Agent, LIQUID CRYSTAL ALIGNMENT FILM, AND LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME
JP6187457B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element for photo-alignment method
JP6056759B2 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP6056752B2 (en) Liquid crystal alignment agent and liquid crystal alignment film using the same
JP5962512B2 (en) Liquid crystal aligning agent and liquid crystal aligning film
JP6102745B2 (en) Method for producing liquid crystal alignment film
WO2012053525A1 (en) Liquid crystal aligning agent suitable for photo-alignment process, and liquid crystal alignment film using same
JP6202006B2 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
WO2012176822A1 (en) Liquid crystal orientation agent for photo-orientation treatment method and liquid crystal orientation film using same
KR101610562B1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP6217648B2 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP6460342B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
JP6558543B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
JPWO2015119168A1 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element using the same
JP2018040979A (en) Production method of liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819320

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013526972

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147002424

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12819320

Country of ref document: EP

Kind code of ref document: A1