WO2013018697A1 - Permanent magnet synchronous motor - Google Patents

Permanent magnet synchronous motor Download PDF

Info

Publication number
WO2013018697A1
WO2013018697A1 PCT/JP2012/069142 JP2012069142W WO2013018697A1 WO 2013018697 A1 WO2013018697 A1 WO 2013018697A1 JP 2012069142 W JP2012069142 W JP 2012069142W WO 2013018697 A1 WO2013018697 A1 WO 2013018697A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
stage
synchronous motor
skew
cogging torque
Prior art date
Application number
PCT/JP2012/069142
Other languages
French (fr)
Japanese (ja)
Inventor
研二 遠藤
Original Assignee
株式会社SIM-Drive
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社SIM-Drive filed Critical 株式会社SIM-Drive
Priority to CN201280037513.9A priority Critical patent/CN103733480A/en
Publication of WO2013018697A1 publication Critical patent/WO2013018697A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems

Definitions

  • the present invention relates to a permanent magnet type synchronous motor suitable for a drive motor of an electric vehicle.
  • Patent Document 1 discloses that a skew is generated by shifting the magnetic pole boundaries of multistage permanent magnets in a rotor in the circumferential direction in order to reduce cogging torque.
  • Patent Document 1 in order to reduce the torque ripple and cogging torque of a motor, a rotor having a magnetic pole pair in the circumferential direction is divided into three stages in the axial direction, and a skew is applied by shifting each stage by a predetermined angle. A motor is shown.
  • the cogging torque includes high-order harmonic components, but in the case of an electric vehicle, the magnitude of the cogging torque of the fundamental wave determined by the least common multiple of the number of poles and the number of slots becomes a problem. Therefore, it is important to reduce the cogging torque of the fundamental wave by offsetting with the skew.
  • the magnitude of the cogging torque and the magnitude of the cogging torque are reduced between the outer stage and the inner stage due to the interaction of magnets between adjacent stages.
  • a difference occurs in the phase angle, and it is difficult to significantly reduce the cogging torque by canceling the fundamental wave of the cogging torque.
  • FIG. 6 is a simulation diagram in which the magnetic pole relationship of the rotor in which the outer rotor motor is subjected to the three-step skew for the purpose of removing the cogging torque is developed in the circumferential direction, and will be specifically described based on FIG.
  • the magnetic flux of the hatched portion S 1 of S pole skew first stage that does not flow to the second stage to flow directly to the hatched portion N 1 of the N pole of the hatched portion of the stator teeth facing therewith, in effect, the flux becomes a magnetic flux of a portion excluding the hatched portion S 1, that amount torque decreases.
  • the center of the magnetic force also moves 1 ⁇ 2 right of circumferential distance hatched portion S 1, that amount out of phase.
  • FIG. 7 shows an example of the effect of the four-stage skew, unlike FIG. 6, and the cogging torque at each stage on the left “when it is operating normally” is canceled and the total becomes zero.
  • the cogging torque of each stage is not completely canceled when the balance is lost due to the interference of the magnetic fluxes of the magnetic poles of each stage on the right side, and the cogging torque remains in total.
  • the present invention provides a synchronous motor that can significantly reduce the cogging torque in a permanent magnet type synchronous motor in order to improve these conventional techniques.
  • the invention of claim 1 is a permanent magnet synchronous motor in which a rotor having a permanent magnet is subjected to a skew of the number of stages for dividing the fundamental wave determined by the least common multiple of the number of poles and the number of slots, and between each stage of the skew, A permanent magnet type synchronous motor with a non-magnetic material interposed between the stages to prevent leakage of magnetic flux was used.
  • the invention according to claim 2 is the permanent magnet synchronous motor according to claim 1, wherein the non-magnetic material is an aluminum plate, a stainless plate, or a non-magnetic resin.
  • a permanent magnet type synchronous motor according to the first or second aspect of the invention, wherein the number of skew stages is 2 to 4.
  • the permanent magnet type synchronous motor is an outer rotor type motor that drives wheels of an electric vehicle.
  • the invention of claim 5 is the invention according to any one of claims 1 to 3, wherein the permanent magnet type synchronous motor is an inner rotor type motor having a rotor inside.
  • the magnetic flux passing through the teeth of the stator is the same in each stage regardless of whether each skew stage is on the outside, in the middle, or on the inside, and the phase is Since no error occurs, the cogging torque at each skew stage is the same, and the phase can be accurately shifted from stage to stage, so the fundamental wave of the cogging torque can be canceled reliably and the cogging torque can be greatly increased. Can be reduced.
  • FIG. 3 is a simulation diagram in which the magnetic pole relationship of the rotor subjected to four-stage skew according to the first embodiment of the present invention is developed in the circumferential direction. It is the simulation figure which expand
  • the present invention relates to a permanent magnet synchronous motor in which a rotor having a permanent magnet is subjected to a skew of the number of stages for dividing the fundamental wave determined by the least common multiple of the number of poles and the number of slots, between each stage of the skew.
  • the fundamental wave of the cogging torque can be canceled reliably, and the cogging torque can be greatly reduced.
  • Embodiment 1 of the present invention will be described below with reference to the drawings.
  • an outer rotor type synchronous motor having 18 slots and 12 poles is subjected to four-stage skew.
  • FIG. 1 the configuration of the outer rotor type motor will be described first.
  • the outer rotor motor 1 includes a stator 2 and a cylindrical rotor 3 that rotates on the outer side of the stator 2 in the circumferential direction.
  • the stator 2 includes a plurality of teeth 4 arranged radially at predetermined intervals and a coil 5 formed by being wound around the teeth 4.
  • V-shaped magnets 6 penetrating in the direction are embedded, and a plurality of the V-shaped magnets 6 are arranged at predetermined intervals in the circumferential direction of the rotor 3, and each of the V-shaped magnets 6 is two plate-shaped permanent magnets.
  • the inner edge 21 which is the inner peripheral side of the rotor 3 on the side surfaces of the magnets 6d and 6e is formed in contact with each other, and the magnets 6d and 6e are tangent to the inner periphery of the rotor 3. It is arrange
  • FIG. 2 is a simulation diagram in which the magnetic pole relationship of the rotor 3 in which the outer rotor type motor 1 is skewed by four steps is developed in the circumferential direction.
  • the fundamental wave of the cogging torque is 36 waves, which is the least common multiple of the number of slots 18 and the number of poles 12.
  • N poles and S poles are alternately arranged in each stage, and the non-magnetic material 7 is placed between each stage of the skew in which the first, second, third, and fourth poles are shifted in the circumferential direction. Intervened.
  • the number of slots and the number of poles are the same as those in the first embodiment, but the number of skew stages is two.
  • Example 2 since the nonmagnetic material 7 is interposed between the first stage and the second stage, the magnetic flux at the end S 1 or N 1 of the magnetic pole is also changed from the first stage to the second stage. In addition, all the magnetic fluxes of the magnetic poles can be used effectively without flowing from the second stage to the first stage. Further, since there is no phase difference error between the first stage and the second stage, the first stage and second stage cogging torques can be sufficiently canceled out. Accordingly, the fundamental wave of the cogging torque can be sufficiently reduced by the two-stage skew.
  • FIG. 4 shows analysis data when the thickness of the nonmagnetic material 7 is 2 mm.
  • FIG. 5 shows a schematic configuration diagram when the outer rotor type motor of the present invention is applied as an in-wheel motor of an electric vehicle.
  • the outer rotor type motor 1 including the stator 2 and the rotor 3 outside thereof is housed in a wheel 10 including a substantially cylindrical rim 8 and a disk 9.
  • the disk 9 of the wheel 10 is fixed to the flange 12 provided at the end of the shaft 11 with bolts 13.
  • the flange 12 is fixed to a motor cover 15 that covers the outside of the motor 1 with bolts 14.
  • the stator 2 is fixed to the inner frame 17 inside thereof, and a bearing 18 is interposed between the inner frame 17 and the shaft 11.
  • the inner frame 17 is fixed to the knuckle 20 with a bolt 19.
  • a disc caliper 22 is fixed to the knuckle 20 by the bolt 19 so that the brake disc 23 fixed to the outer periphery of the shaft 11 can be gripped.

Abstract

The present invention is capable of drastically reducing the cogging torque of a permanent magnet synchronous motor. In this permanent magnet synchronous motor, a rotor having permanent magnets is skewed in a number of stages required for dividing a fundamental wave, which is determined by the least common multiple of the numbers of poles and slots, into multiple fundamental waves. An intervening non-magnetic material for inter-stage magnetic flux leakage prevention is provided between each set of skew stages. Consequently, the fundamental waves of the cogging torque can be reliably cancelled out. Also, the cogging torque can be drastically reduced.

Description

永久磁石式同期モータPermanent magnet synchronous motor
この発明は、電気自動車の駆動用モータ等に好適な永久磁石式の同期モータに関するものである。 The present invention relates to a permanent magnet type synchronous motor suitable for a drive motor of an electric vehicle.
永久磁石式の同期モータでは、コギングトルクを低減するため、ロータにおける多段の永久磁石の磁極境界を周方向にずらしたスキューを施すことにが、例えば、特許文献1によって開示されている。 In a permanent magnet type synchronous motor, for example, Patent Document 1 discloses that a skew is generated by shifting the magnetic pole boundaries of multistage permanent magnets in a rotor in the circumferential direction in order to reduce cogging torque.
特許文献1には、モータのトルクリップル及びコギングトルクを低減するため、周方向に磁極対を有するロータを軸方向に3段に分割し、各段を所定角度ずつずらすことによりスキューを施したブラシレスモータが示されている。 In Patent Document 1, in order to reduce the torque ripple and cogging torque of a motor, a rotor having a magnetic pole pair in the circumferential direction is divided into three stages in the axial direction, and a skew is applied by shifting each stage by a predetermined angle. A motor is shown.
特開2008-228390号公報JP 2008-228390 A
ところで、コギングトルクは高次の高調波成分を含むが、電気自動車の場合、極数とスロット数の最小公倍数で決まる基本波のコギングトルクの大きさが問題となる。そのため、この基本波のコギングトルクをスキューにより相殺して低減することが重要である。 By the way, the cogging torque includes high-order harmonic components, but in the case of an electric vehicle, the magnitude of the cogging torque of the fundamental wave determined by the least common multiple of the number of poles and the number of slots becomes a problem. Therefore, it is important to reduce the cogging torque of the fundamental wave by offsetting with the skew.
しかし、例えばロータに3段又は4段という複数段のスキューを施した場合、隣接する段間の磁石の相互作用により、外側に位置する段と内側に位置する段では、コギングトルクの大きさ及びその位相角に差が生じ、コギングトルクの基本波を相殺することによってコギングトルクを大幅に低減することが困難であった。 However, for example, when the rotor is skewed in multiple stages of three or four stages, the magnitude of the cogging torque and the magnitude of the cogging torque are reduced between the outer stage and the inner stage due to the interaction of magnets between adjacent stages. A difference occurs in the phase angle, and it is difficult to significantly reduce the cogging torque by canceling the fundamental wave of the cogging torque.
図6は、アウターロータモータに、コギングトルクを除去する目的で3段スキューを施したロータの磁極関係を周方向に展開した模擬図であり、この図6に基づいて具体的に説明する。 FIG. 6 is a simulation diagram in which the magnetic pole relationship of the rotor in which the outer rotor motor is subjected to the three-step skew for the purpose of removing the cogging torque is developed in the circumferential direction, and will be specifically described based on FIG.
即ち、スキュー1段目のS極の斜線部分Sの磁束は第2段の斜線部分のN極の斜線の部分Nに直接流れ、これと対向する固定子のティースへは流れないため、実質的には、磁束は斜線部分Sを除いた部分の磁束となり、その分トルクが減少する。また、磁力の中心も斜線部分Sの周方向距離の1/2分右に移動し、その分位相がずれる。 That is, since the magnetic flux of the hatched portion S 1 of S pole skew first stage that does not flow to the second stage to flow directly to the hatched portion N 1 of the N pole of the hatched portion of the stator teeth facing therewith, in effect, the flux becomes a magnetic flux of a portion excluding the hatched portion S 1, that amount torque decreases. The center of the magnetic force also moves ½ right of circumferential distance hatched portion S 1, that amount out of phase.
次に、スキューの2段目については、1段目のS極の影響による、N極の磁石の右端の斜線部分Nの磁束と、3段目のS極の斜線部分Sの影響による、N極の磁石の左端の斜線部分Nの磁束が無効化される。そのため、固定子のティースに流れる有効磁束はその両側分少なくなる。なお、磁束中心は変わらないため、位相のずれは生じない。 Then, by the second stage of the skew due to the influence of the first-stage S-pole, and the magnetic flux of the rightmost hatched portion N 1 of the N pole magnet, the influence of the hatched portion S 1 of S pole of the third stage , the magnetic flux of the hatched portion N 1 of the left end of the N pole magnets are invalidated. For this reason, the effective magnetic flux flowing through the teeth of the stator is reduced by both sides. Since the center of magnetic flux does not change, there is no phase shift.
また、スキューの3段目については、オーバラップした2段目のN極の影響により、S極の磁石の右端の斜線部分Sの磁束が、固定子のティースに流れないため、実質的な磁束は、斜線の部分Sを除いた磁束となり、その分トルクは小さくなる。また、磁力中心も、斜線の部分Sの周方向距離の1/2分左方向に移動し、その分位相がずれる。 As for the third stage of the skewed, due to the influence of the second-stage N poles overlap, since the right end of the magnetic flux of the hatched portion S 1 of S-pole magnet, not flow on the teeth of the stator, substantially flux becomes a flux excluding the hatched portion S 1, that amount torque becomes smaller. Further, the magnetic force center also moves in ½ left of circumferential distance hatched portion S 1, that amount out of phase.
従って、スキューの1段目~3段目それぞれに、磁束及び位相に誤差が生じるため、1段目~3段目のスキューで発生するコギングトルクは十分に相殺することが出来ず、上記誤差によりコギングトルクの低減効果は小さいものになってしまう。 Therefore, since errors occur in the magnetic flux and the phase in each of the first to third stages of the skew, the cogging torque generated by the first to third stages of the skew cannot be sufficiently canceled out. The effect of reducing the cogging torque is small.
図7は、図6と異なり、4段スキューの効果の例を示すもので、左側の「正常に作用しているとき」の各段のコギングトルクは相殺されて総計は0となる。
一方、右側の、各段の磁極の磁束の干渉により「バランスを欠くとき」は各段のコギングトルクは完全に相殺されず、総計でもコギングトルクは残留する。
FIG. 7 shows an example of the effect of the four-stage skew, unlike FIG. 6, and the cogging torque at each stage on the left “when it is operating normally” is canceled and the total becomes zero.
On the other hand, the cogging torque of each stage is not completely canceled when the balance is lost due to the interference of the magnetic fluxes of the magnetic poles of each stage on the right side, and the cogging torque remains in total.
そこで、この発明はこれらの従来技術を改善すべく、永久磁石式の同期モータにおいて、コギングトルクを大幅に低減することができる同期モータを提供するものである。 Accordingly, the present invention provides a synchronous motor that can significantly reduce the cogging torque in a permanent magnet type synchronous motor in order to improve these conventional techniques.
請求項1の発明は、永久磁石を有するロータに、極数及びスロット数の最小公倍数によって決まる基本波を複数分割する段数のスキューを施した永久磁石式同期モータにおいて、スキューの各段間に、各段間の磁束の漏えいを防止する非磁性体材を介在させた永久磁石式同期モータとした。 The invention of claim 1 is a permanent magnet synchronous motor in which a rotor having a permanent magnet is subjected to a skew of the number of stages for dividing the fundamental wave determined by the least common multiple of the number of poles and the number of slots, and between each stage of the skew, A permanent magnet type synchronous motor with a non-magnetic material interposed between the stages to prevent leakage of magnetic flux was used.
また、請求項2の発明は、請求項1の発明において、前記非磁性体材は、アルミニウム板、ステンレス板、又は非磁性樹脂のいずれかである、永久磁石式同期モータとした。 The invention according to claim 2 is the permanent magnet synchronous motor according to claim 1, wherein the non-magnetic material is an aluminum plate, a stainless plate, or a non-magnetic resin.
また、請求項3の発明は、請求項1又は2の発明において、前記スキューの段数は2~4段である、永久磁石式同期モータとした。 According to a third aspect of the invention, there is provided a permanent magnet type synchronous motor according to the first or second aspect of the invention, wherein the number of skew stages is 2 to 4.
また、請求項4の発明は、請求項1~3のいずれかの発明において、前記永久磁石式同期モータは電気自動車の車輪を駆動するアウターロータ式モータであるものとした。 According to a fourth aspect of the present invention, in any of the first to third aspects of the present invention, the permanent magnet type synchronous motor is an outer rotor type motor that drives wheels of an electric vehicle.
また、請求項5の発明は、請求項1~3のいずれかの発明において、前記永久磁石式同期モータは、回転子が内側のインナーロータ式モータであるものとした。 The invention of claim 5 is the invention according to any one of claims 1 to 3, wherein the permanent magnet type synchronous motor is an inner rotor type motor having a rotor inside.
請求項1~5の発明によれば、スキューの各段が外側にあるか、中間にあるか、内側にあるに関係なく、固定子のティースを通る磁束が各段で同一となり、かつ、位相誤差も生じないので、スキュー各段のコギングトルクが同一となり、かつ、位相を段ごとに正確にずらせることが出来るので、コギングトルクの基本波を確実に相殺することができ、コギングトルクを大幅に低減することが出来る。 According to the first to fifth aspects of the present invention, the magnetic flux passing through the teeth of the stator is the same in each stage regardless of whether each skew stage is on the outside, in the middle, or on the inside, and the phase is Since no error occurs, the cogging torque at each skew stage is the same, and the phase can be accurately shifted from stage to stage, so the fundamental wave of the cogging torque can be canceled reliably and the cogging torque can be greatly increased. Can be reduced.
この発明の実施例1のアウターロータ式モータの概略正面図である。It is a schematic front view of the outer rotor type motor of Example 1 of this invention. この発明の実施例1の4段スキューを施したロータの磁極関係を周方向に展開した模擬図である。FIG. 3 is a simulation diagram in which the magnetic pole relationship of the rotor subjected to four-stage skew according to the first embodiment of the present invention is developed in the circumferential direction. この発明の実施例2の2段スキューを施したロータの磁極関係を周方向に展開した模擬図である。It is the simulation figure which expand | deployed the magnetic pole relationship of the rotor which gave 2-step skew of Example 2 of this invention to the circumferential direction. この発明の実施例1の解析データのグラフ図である。It is a graph figure of the analysis data of Example 1 of this invention. この発明の実施例1のロータを使用したアウターローラ式モータを電気自動車のインホイールモータとして適用した概略構成図である。It is a schematic block diagram which applied the outer roller type motor using the rotor of Example 1 of this invention as an in-wheel motor of an electric vehicle. 従来の3段スキューを施したロータの磁極関係を周方向に展開した模擬図である。It is the simulation figure which expand | deployed the magnetic pole relationship of the rotor which performed the conventional 3-step skew in the circumferential direction. 4段スキューのコギング低減効果の例を示す説明図である。It is explanatory drawing which shows the example of the cogging reduction effect of a 4-step skew.
この発明は、永久磁石を有するロータに、極数及びスロット数の最小公倍数によって決まる基本波を複数分割する段数のスキューを施した永久磁石式同期モータにおいて、スキューの各段間に、各段間の磁束の漏えいを防止する非磁性体材を介在させた永久磁石式同期モータとした。 The present invention relates to a permanent magnet synchronous motor in which a rotor having a permanent magnet is subjected to a skew of the number of stages for dividing the fundamental wave determined by the least common multiple of the number of poles and the number of slots, between each stage of the skew. A permanent-magnet synchronous motor with a non-magnetic material interposed to prevent leakage of magnetic flux.
これにより、コギングトルクの基本波を確実に相殺することができ、コギングトルクを大幅に低減することが出来る。 As a result, the fundamental wave of the cogging torque can be canceled reliably, and the cogging torque can be greatly reduced.
以下、この発明の実施例1を図に基づいて説明する。実施例1は、スロット数18、極数12のアウターロータ式同期モータに4段スキューを施したものであるが、図1において、まず、アウターロータ式モータの構成を説明する。 Embodiment 1 of the present invention will be described below with reference to the drawings. In the first embodiment, an outer rotor type synchronous motor having 18 slots and 12 poles is subjected to four-stage skew. In FIG. 1, the configuration of the outer rotor type motor will be described first.
当該アウターロータ式モータ1は、ステータ2と当該ステータ2の外側を周方向に回転する円筒状のロータ3から構成されている。前記ステータ2は、所定間隔ごとに放射状に配設された複数本のティース4と、当該ティース4に巻き回されて形成されたコイル5とから成り、前記ロータ3には、当該ロータ3を軸方向に貫通するV字マグネット6が埋設され、当該V字マグネット6はロータ3の周方向に所定間隔毎に複数配設され、前記各V字マグネット6は、2個の平板形状の永久磁石であるマグネット6d、6eから成り、当該マグネット6d、6eの側面の前記ロータ3の内周側である内側縁21がそれぞれ接して形成され、前記マグネット6d、6eは、前記ロータ3の内周に対する接線と平行になるように配設されている。 The outer rotor motor 1 includes a stator 2 and a cylindrical rotor 3 that rotates on the outer side of the stator 2 in the circumferential direction. The stator 2 includes a plurality of teeth 4 arranged radially at predetermined intervals and a coil 5 formed by being wound around the teeth 4. V-shaped magnets 6 penetrating in the direction are embedded, and a plurality of the V-shaped magnets 6 are arranged at predetermined intervals in the circumferential direction of the rotor 3, and each of the V-shaped magnets 6 is two plate-shaped permanent magnets. The inner edge 21 which is the inner peripheral side of the rotor 3 on the side surfaces of the magnets 6d and 6e is formed in contact with each other, and the magnets 6d and 6e are tangent to the inner periphery of the rotor 3. It is arrange | positioned so that it may become parallel.
図2は、上記アウターロータ式モータ1に4段スキューを施したロータ3の磁極関係を周方向に展開した模擬図である。このモータ1においては、コギングトルクの基本波はスロット数18と極数12の最小公倍数である36波となる。 FIG. 2 is a simulation diagram in which the magnetic pole relationship of the rotor 3 in which the outer rotor type motor 1 is skewed by four steps is developed in the circumferential direction. In this motor 1, the fundamental wave of the cogging torque is 36 waves, which is the least common multiple of the number of slots 18 and the number of poles 12.
各段でN極、S極を交互に並べ、1段目、2段目、3段目、4段目の磁極を周方向にずらしたスキューの各段の間に、非磁性体材7を介在させたものである。 N poles and S poles are alternately arranged in each stage, and the non-magnetic material 7 is placed between each stage of the skew in which the first, second, third, and fourth poles are shifted in the circumferential direction. Intervened.
この様にしたので、各段の破線で示された端部S又はNの磁束が、隣接する段の磁極に流れる事がなく、各段の磁極の磁束が全て対向する固定子のティースに流れるので、各段で発生するコギングトルクが等しく、かつ、位相の誤差も生じないので、コギングトルクの基本波36をスキュー段数の4で割った値、即ち、スキューの段を機械角度で360度÷36÷4=2.5度毎ずらせることによって基本波のコギングトルクを大幅に低減することができる。 Since this is done, the magnetic flux of the end S 1 or N 1 indicated by the broken line of each stage does not flow to the magnetic pole of the adjacent stage, and all the magnetic fluxes of the magnetic poles of each stage face each other. Therefore, since the cogging torque generated at each stage is equal and no phase error occurs, the value obtained by dividing the fundamental wave 36 of the cogging torque by 4 of the number of skew stages, that is, the skew stage is 360 in terms of the mechanical angle. By shifting the angle by ÷ 36 ÷ 4 = 2.5 degrees, the cogging torque of the fundamental wave can be greatly reduced.
なお、4段スキューの場合、電気角はスキュー1段当たり360度/4=90度となるため、コギングトルクの基本波のみでなく、2倍波についてもコギンクトルクを相殺して低減することができる。 In the case of four-step skew, the electrical angle is 360 degrees / 4 = 90 degrees per skew step, so that not only the fundamental wave of the cogging torque but also the double wave can be reduced by canceling the cogging torque. .
実施例2は、スロット数、極数は実施例1と同じであるが、スキューの段数を2段としたものである。 In the second embodiment, the number of slots and the number of poles are the same as those in the first embodiment, but the number of skew stages is two.
2段のスキューの場合、1段目と2段目の間に非磁性体材7を設けないと、1段目の各磁極の図の破線で示した左側の部分S又はNと、2段目の図の破線より右側の部分N又はSの間で磁束が直接流れ、これらと対向する固定子のティースには磁束が流れないため、実質的に有効な磁力は、各段とも破線の外側のS又はNを除いた部分となる。そのため、磁力の大きさは1段目と2段目で同じとなるが、磁束(磁力)の中心は、1段目は、図の右方向にずれ、2段目は左方向にずれる。従って、1段目と2段目で位相差に誤差を生じ、コギングトルクを十分に打ち消すことができない。 In the case of two-stage skew, if the non-magnetic material 7 is not provided between the first and second stages, the left portion S 1 or N 1 indicated by the broken line in the figure of each magnetic pole of the first stage, Since the magnetic flux flows directly between the portions N 1 or S 1 on the right side of the broken line in the second-stage diagram, and the magnetic flux does not flow through the stator teeth facing these, the substantially effective magnetic force is Both are portions excluding S 1 or N 1 outside the broken line. Therefore, the magnitude of the magnetic force is the same in the first stage and the second stage, but the center of the magnetic flux (magnetic force) is shifted in the right direction in the figure in the first stage, and the second stage is shifted in the left direction. Therefore, an error occurs in the phase difference between the first stage and the second stage, and the cogging torque cannot be canceled sufficiently.
しかし、実施例2のでは、1段目と2段目との間に非磁性体材7を介在させたので、磁極の端部S又はNの磁束も、1段目から2段目に、或いは2段目から1段目に流れることがなく、磁極の磁束を全て有効に利用することができる。さらに、1段目と2段目で位相差の誤差を生じることがないので、1段目と2段目のコギングトルクを十分に相殺することができる。従って、2段スキューによって、コギングトルクの基本波を十分低減することができる。 However, in Example 2, since the nonmagnetic material 7 is interposed between the first stage and the second stage, the magnetic flux at the end S 1 or N 1 of the magnetic pole is also changed from the first stage to the second stage. In addition, all the magnetic fluxes of the magnetic poles can be used effectively without flowing from the second stage to the first stage. Further, since there is no phase difference error between the first stage and the second stage, the first stage and second stage cogging torques can be sufficiently canceled out. Accordingly, the fundamental wave of the cogging torque can be sufficiently reduced by the two-stage skew.
次に、この発明の上記実施例1を実施した場合の位相角に対するコギングトルクの発生状況の解析データを示す。コギング対策の効果は、スキュー段間に介在させる非磁性体材7の厚さによって変化する。図4は、非磁性体材7の厚さが2mmの場合の解析データである。 Next, analysis data of the cogging torque generation state with respect to the phase angle when the first embodiment of the present invention is implemented will be shown. The effect of countermeasures against cogging varies depending on the thickness of the nonmagnetic material 7 interposed between the skew stages. FIG. 4 shows analysis data when the thickness of the nonmagnetic material 7 is 2 mm.
これによると、非磁性体材7を設けない場合は約20Nmであるのに対し、非磁性体材7を設けた場合は約10Nmとなり、役50%の低減効果がある。また、図4には示していないが、非磁性体材7の厚さを4mmにすると、約70%の低減効果があることが確認されている。 According to this, it is about 20 Nm when the nonmagnetic material 7 is not provided, whereas it is about 10 Nm when the nonmagnetic material 7 is provided, and there is a reduction effect of 50%. Although not shown in FIG. 4, it has been confirmed that when the thickness of the non-magnetic material 7 is 4 mm, there is a reduction effect of about 70%.
また、この発明のアウターロータ式モータを電気自動車のインホイールモータとして適用した時の概略構成図を図5に示す。 Further, FIG. 5 shows a schematic configuration diagram when the outer rotor type motor of the present invention is applied as an in-wheel motor of an electric vehicle.
図示したように、ステータ2とその外側のロータ3から成るアウターロータ式モータ1は、略円筒形状のリム8とディスク9から成るホイール10内に収容されている。ホイール10のディスク9は、シャフト11の端部に備わるフランジ12にボルト13により固定されている。フランジ12はボルト14によりモータ1の外側を被うモータカバー15と固定されている。 As shown in the drawing, the outer rotor type motor 1 including the stator 2 and the rotor 3 outside thereof is housed in a wheel 10 including a substantially cylindrical rim 8 and a disk 9. The disk 9 of the wheel 10 is fixed to the flange 12 provided at the end of the shaft 11 with bolts 13. The flange 12 is fixed to a motor cover 15 that covers the outside of the motor 1 with bolts 14.
従って、ロータ3が回転することにより、その回転はモータカバー15、フランジ12、ホイール10の順に伝えられ、リム8に取り付けられたタイヤ16が回転する。ステータ2は、その内側のインナーフレーム17に固定されており、インナーフレーム17とシャフト11の間にはベアリング18が介在されている。インナーフレーム17は、ボルト19によりナックル20に固定される。また、ディスクキャリパー22が前記ボルト19により前記ナックル20に固定され、前記シャフト11の外周に固定されたブレーキディスク23を把持自在となっている。 Therefore, when the rotor 3 rotates, the rotation is transmitted in the order of the motor cover 15, the flange 12, and the wheel 10, and the tire 16 attached to the rim 8 rotates. The stator 2 is fixed to the inner frame 17 inside thereof, and a bearing 18 is interposed between the inner frame 17 and the shaft 11. The inner frame 17 is fixed to the knuckle 20 with a bolt 19. A disc caliper 22 is fixed to the knuckle 20 by the bolt 19 so that the brake disc 23 fixed to the outer periphery of the shaft 11 can be gripped.
なお、上記実施例ではアウターロータ式モータの例を示したが、この発明は、インナーロータ式モータにも適用できるものである。 In addition, although the example of the outer rotor type motor was shown in the said Example, this invention is applicable also to an inner rotor type motor.
 1   アウターロータ式モータ   2   ステータ
 3   ロータ           4   ティース
 5   コイル           6   V字マグネット
 6d  マグネット         6e  マグネット
 7   非磁性体材         8   リム
 9   ディスク          10  ホイール
 11  シャフト          12  フランジ
 13  ボルト           14  ボルト
 15  モータカバー        16  タイヤ
 17  インナーフレーム      18  ベアリング
 19  ボルト           20  ナックル
 21  内側縁           22  ディスクキャリパー
 23 ブレーキディスク
 
             
DESCRIPTION OF SYMBOLS 1 Outer rotor type motor 2 Stator 3 Rotor 4 Teeth 5 Coil 6 V-shaped magnet 6d Magnet 6e Magnet 7 Non-magnetic material 8 Rim 9 Disc 10 Wheel 11 Shaft 12 Flange 13 Bolt 14 Bolt 15 Motor cover 16 Tire 17 Inner frame 18 Bearing 19 bolt 20 knuckle 21 inner edge 22 disc caliper 23 brake disc

Claims (5)

  1. 永久磁石を有するロータに、極数及びスロット数の最小公倍数によって決まる基本波を複数分割する段数のスキューを施した永久磁石式同期モータにおいて、
    スキューの各段間に、各段間の磁束の漏えいを防止する非磁性体材を介在させたことを特徴とする、永久磁石式同期モータ。
    In a permanent magnet type synchronous motor in which a rotor having a permanent magnet is subjected to a skew of the number of stages for dividing a fundamental wave determined by the least common multiple of the number of poles and the number of slots,
    A permanent magnet type synchronous motor, wherein a non-magnetic material for preventing leakage of magnetic flux between each stage is interposed between each stage of skew.
  2. 前記非磁性体材は、アルミニウム板、ステンレス板、又は非磁性樹脂のいずれかであることを特徴とする、請求項1に記載の永久磁石式同期モータ。 The permanent magnet type synchronous motor according to claim 1, wherein the nonmagnetic material is an aluminum plate, a stainless plate, or a nonmagnetic resin.
  3. 前記スキューの段数は2~4段であることを特徴とする、請求項1又は2に記載の永久磁石式同期モータ。 3. The permanent magnet synchronous motor according to claim 1, wherein the number of skew stages is 2 to 4.
  4. 前記永久磁石式同期モータは、電気自動車の車輪を駆動するアウターロータ式モータであることを特徴とする、請求項1~3のいずれかに記載の永久磁石式同期モータ。 The permanent magnet synchronous motor according to any one of claims 1 to 3, wherein the permanent magnet synchronous motor is an outer rotor motor that drives wheels of an electric vehicle.
  5. 前記永久磁石式同期モータは、回転子が内側のインナーロータ式モータであることを特徴とする、請求項1~3のいずれかに記載の永久磁石式同期モータ。
     
    The permanent magnet type synchronous motor according to any one of claims 1 to 3, wherein the permanent magnet type synchronous motor is an inner rotor type motor having an inner rotor.
PCT/JP2012/069142 2011-07-29 2012-07-27 Permanent magnet synchronous motor WO2013018697A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280037513.9A CN103733480A (en) 2011-07-29 2012-07-27 Permanent magnet synchronous motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-167365 2011-07-29
JP2011167365A JP2013031336A (en) 2011-07-29 2011-07-29 Permanent magnet type synchronous motor

Publications (1)

Publication Number Publication Date
WO2013018697A1 true WO2013018697A1 (en) 2013-02-07

Family

ID=47629221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069142 WO2013018697A1 (en) 2011-07-29 2012-07-27 Permanent magnet synchronous motor

Country Status (4)

Country Link
JP (1) JP2013031336A (en)
CN (1) CN103733480A (en)
TW (1) TW201330460A (en)
WO (1) WO2013018697A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101560972B1 (en) * 2014-04-22 2015-10-26 주식회사 만도 Motor
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
WO2019017495A1 (en) 2017-07-21 2019-01-24 株式会社デンソー Dynamo-electric machine
JP7006541B2 (en) 2017-12-28 2022-01-24 株式会社デンソー Rotating machine
JP6858720B2 (en) * 2018-01-15 2021-04-14 三菱プレシジョン株式会社 Magnets and flywheels used for flywheels
JP7404841B2 (en) * 2019-12-13 2023-12-26 株式会社デンソー rotating electric machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000308287A (en) * 1999-04-19 2000-11-02 Matsushita Electric Ind Co Ltd Permanent magnet embedded reluctance motor
JP2000308286A (en) * 1999-04-16 2000-11-02 Yamaha Motor Co Ltd Rotating electric machine
JP2002281722A (en) * 2001-03-22 2002-09-27 Matsushita Electric Ind Co Ltd Outer rotor motor and electric bicycle
JP2004248422A (en) * 2003-02-14 2004-09-02 Moric Co Ltd Field magnet type rotary electric equipment
WO2009069575A1 (en) * 2007-11-28 2009-06-04 Kabushiki Kaisha Toshiba Rotary machine rotor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000308286A (en) * 1999-04-16 2000-11-02 Yamaha Motor Co Ltd Rotating electric machine
JP2000308287A (en) * 1999-04-19 2000-11-02 Matsushita Electric Ind Co Ltd Permanent magnet embedded reluctance motor
JP2002281722A (en) * 2001-03-22 2002-09-27 Matsushita Electric Ind Co Ltd Outer rotor motor and electric bicycle
JP2004248422A (en) * 2003-02-14 2004-09-02 Moric Co Ltd Field magnet type rotary electric equipment
WO2009069575A1 (en) * 2007-11-28 2009-06-04 Kabushiki Kaisha Toshiba Rotary machine rotor

Also Published As

Publication number Publication date
TW201330460A (en) 2013-07-16
JP2013031336A (en) 2013-02-07
CN103733480A (en) 2014-04-16

Similar Documents

Publication Publication Date Title
WO2013018697A1 (en) Permanent magnet synchronous motor
JP4269953B2 (en) Rotating electric machine
US7595575B2 (en) Motor/generator to reduce cogging torque
JP4834386B2 (en) Permanent magnet type motor and electric power steering device using the same
TWI420783B (en) Axial motor
JP5210150B2 (en) Permanent magnet type rotating electrical machine, elevator apparatus, and manufacturing method of permanent magnet type rotating electrical machine
JP5533879B2 (en) Permanent magnet type rotating electrical machine rotor
JP6095267B2 (en) Three-phase permanent magnet synchronous motor
JP6280761B2 (en) Stator core and permanent magnet motor
JP2014180094A (en) Permanent magnet rotary electric machine and elevator driving winch
JP2012110213A (en) Motor
JP2017017912A (en) Electric motor
WO2016060232A1 (en) Double stator-type rotary machine
WO2016002174A1 (en) Electric motor
JP2006304539A (en) Rotor structure of axial gap rotating electric machine
JP2010183648A (en) Permanent magnet rotary electric machine and electric vehicle using the same
JP4605480B2 (en) Axial gap type motor
JP2013066339A (en) Embedded-magnet rotary electric machine
JP2013219946A (en) Stator core and rotary motor using the same
JP2014147191A (en) Permanent magnet outer rotor synchronous motor
JP5541080B2 (en) Resolver rotor fixing structure
JP6165622B2 (en) Rotating electric machine rotor and rotating electric machine equipped with the same
JP6357870B2 (en) Permanent magnet motor
JP2015006110A (en) Motor device
JP6126873B2 (en) Permanent magnet rotating electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12819750

Country of ref document: EP

Kind code of ref document: A1