WO2013018671A1 - System for controlling mechanical automatic gear system - Google Patents

System for controlling mechanical automatic gear system Download PDF

Info

Publication number
WO2013018671A1
WO2013018671A1 PCT/JP2012/069085 JP2012069085W WO2013018671A1 WO 2013018671 A1 WO2013018671 A1 WO 2013018671A1 JP 2012069085 W JP2012069085 W JP 2012069085W WO 2013018671 A1 WO2013018671 A1 WO 2013018671A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
state
automatic transmission
engine
speed
Prior art date
Application number
PCT/JP2012/069085
Other languages
French (fr)
Japanese (ja)
Inventor
哲郎 小関
Original Assignee
三菱ふそうトラック・バス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011169173A external-priority patent/JP2013032805A/en
Priority claimed from JP2011270213A external-priority patent/JP5880828B2/en
Application filed by 三菱ふそうトラック・バス株式会社 filed Critical 三菱ふそうトラック・バス株式会社
Priority to CN201280029494.5A priority Critical patent/CN103608601A/en
Priority to AU2012291146A priority patent/AU2012291146B2/en
Publication of WO2013018671A1 publication Critical patent/WO2013018671A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/504Relating the engine
    • F16D2500/5048Stall prevention
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/506Relating the transmission
    • F16D2500/50684Torque resume after shifting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/7041Position
    • F16D2500/70412Clutch position change rate

Definitions

  • the present invention relates to a control system for a mechanical automatic transmission, and more particularly to clutch control during gear shifting.
  • Patent Document a mechanical automatic transmission device that enables automatic transmission by operating an operation (selection and shift) of a transmission in a manual transmission device and connection / disconnection of a clutch by an actuator.
  • the engine torque is unloaded as in Patent Document 1, and the clutch is disengaged, or the speed of disengaging the clutch is changed according to the engine torque as in Patent Document 2,
  • Patent Document 3 by controlling the engine torque so that the vehicle acceleration becomes zero, the clutch is disengaged, etc., thereby reducing torque fluctuation due to engine power disengagement at the time of clutch disengagement and shock at the time of shifting Is reduced.
  • the automatic transmission of the above-mentioned patent document controls the disengagement of the clutch based on the engine torque, and does not consider the load applied to the drive system components from the clutch to the drive wheels.
  • the clutch when the clutch is disengaged in association with the shift in the technique of Patent Document 1, the clutch is first operated in the disengagement direction at a predetermined speed, and then the clutch torque (torque transmitted through the clutch) is sufficient.
  • the clutch operation speed is increased at a predetermined timing at which the risk of occurrence of shock disappears due to a decrease in speed, and the disconnection is completed.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a control system for a mechanical automatic transmission that can reduce shock during shifting.
  • a control system for a mechanical automatic transmission is mounted on a vehicle and supplies power to an input shaft to which power from an internal combustion engine is input via a clutch, and to drive wheels of the vehicle.
  • the clutch is operated such that the clutch is disengaged when a drive system load, which is a load applied to the clutch, is zero at the time of switching.
  • an operation state detection unit that detects an operation state of the internal combustion engine
  • the control unit detects an output torque of the internal combustion engine that is detected by the operation state detection unit and a preset value of the internal combustion engine.
  • the drive system load may be calculated based on the moment of inertia and the amount of change in the rotational speed of the internal combustion engine detected by the operating state detecting means.
  • the vehicle further includes a traveling state detection unit that detects a traveling state of the vehicle, and the control unit manages a map of a relationship between the driving system load and the clutch stroke, and is detected by the traveling state detection unit.
  • the map is corrected based on the traveling state of the vehicle, and the clutch stroke is calculated based on the corrected map.
  • the control means includes a clutch slip index calculating means for calculating a slip index that correlates with a slip state of the clutch based on an input / output rotational speed of the clutch, and an operation in the disengagement direction of the clutch.
  • a half-clutch state determining means for determining whether or not the clutch is in a half-clutch state in which slip occurs, and a half-clutch state by the half-clutch state determining means
  • a clutch operation speed control means for increasing the operation speed of the clutch when the determination is made.
  • the clutch operating speed control means may continuously increase the operating speed of the clutch at a predetermined change rate when the determination of the half-clutch state is made (Claim 5).
  • the clutch when the gear train is switched, the clutch is operated so that the clutch is disengaged when the drive system load is zero.
  • the internal combustion engine is transmitted from the internal combustion engine side applied to the drive system components on the drive wheel side from the clutch when the clutch is disconnected with no load.
  • a sudden decrease in force (such as inertial force) can be prevented, and the load on the drive system components can be prevented from being suddenly released.
  • the rotation of the drive system components (for example, the clutch rotation speed) can be prevented from being greatly disturbed, the occurrence of a shock at the time of shifting can be prevented.
  • the drive system load is calculated based on the output torque of the internal combustion engine, the moment of inertia of the internal combustion engine, and the amount of change in the rotational speed of the internal combustion engine, so there is no need to provide sensors for detecting the drive system load.
  • the clutch stroke amount is calculated from a map of the drive system load and the clutch stroke corrected based on the vehicle running state detected by the running state detecting means. For example, the vehicle running distance is extended and the clutch deteriorates. Even in such a case, the clutch stroke can be accurately calculated in consideration of the deterioration of the clutch (claim 3).
  • a slip index correlated with the slip state of the clutch is calculated based on the input / output rotational speed of the clutch during operation in the clutch disengagement direction, and whether or not the clutch is in the half-clutch state based on the slip index is calculated.
  • the clutch operating speed is increased.
  • a large shock may occur even if the operating speed in the disengagement direction is increased.
  • the timing for completing the disconnection of the clutch is accelerated by increasing the operation speed. Therefore, both shock suppression at the time of clutch disengagement and shortening of the shift time can be achieved, so that the shift feeling can be improved (claim 4).
  • FIG. 1 is a schematic configuration diagram of a control system for a mechanical automatic transmission according to a first embodiment of the present invention.
  • the configuration of the control system of the mechanical automatic transmission will be described.
  • a control system for a mechanical automatic transmission is mounted on a vehicle (not shown), and is roughly divided into an engine (internal combustion engine) 10, a mechanical automatic transmission (transmission means) 20, and an electronic control unit ( (Hereinafter referred to as ECU) (control means) 30. Each component is electrically connected.
  • the engine 10 generates power according to the amount of operation of an accelerator pedal (not shown) of the driver. Further, the engine 10 includes a crank angle sensor (operating state detecting means) 11 for detecting the rotational speed of the engine 10, that is, the rotational speed on the input side of the clutch 21, and an air flow sensor (operating state) for detecting the intake air amount of the engine 10. Detection means) 12 and a fuel injection valve (operating state detection means) 13 for injecting fuel and adjusting the output of the engine 10 are provided.
  • the mechanical automatic transmission 20 operates a plurality of transmission units (switching means) (not shown), switches the gear train engagement state, shifts and amplifies the power generated by the engine 10 according to the vehicle speed, and displays the power. It transmits to the tire that does not.
  • the mechanical automatic transmission 20 includes a clutch 21, an input shaft 22, an output shaft 23, a propeller shaft 24, a clutch operation unit 25, an output shaft rotation sensor (running state detection means) 26, and a clutch rotation speed sensor 27. Yes.
  • the clutch 21 is interposed between the engine 10 and the input shaft 22, and transmits or blocks power generated by the engine 10 to the input shaft 22.
  • the propeller shaft 24 is connected to the output shaft 23 and transmits the shifted power to the tire.
  • the clutch operation unit 25 is composed of an actuator or the like, and connects and disconnects the clutch 21.
  • the clutch operation unit 25 has a built-in stroke sensor that detects the stroke amount of the clutch 21.
  • the output shaft rotation sensor 26 detects the rotation speed of the output shaft 23, and calculates the vehicle speed of the vehicle based on the detection signal of the sensor, the gear ratio (final reduction ratio) after the output shaft 23, and the tire outer periphery. Is possible.
  • the clutch rotational speed sensor 27 detects the rotational speed of the output side of the clutch 21, and based on the detection signal of the sensor and the detection signal of the crank angle sensor 11 that detects the rotational speed of the engine 10.
  • the input / output rotational speed difference can be calculated.
  • the input rotational speed of the clutch is the rotational speed of the engine 1
  • the output rotational speed of the clutch 21 is the rotational speed of the clutch 21.
  • the ECU 30 is a control device for performing comprehensive control of the vehicle, and includes an input / output device, a storage device (ROM, RAM, nonvolatile RAM, etc.), a central processing unit (CPU), and the like. Sensors such as a crank angle sensor 11, an air flow sensor 12, a fuel injection valve 13, a clutch operation unit 25, and a clutch rotational speed sensor 27 are electrically connected to the input side of the ECU 30. Detection information is input.
  • the clutch operation unit 25 is electrically connected to the output side of the ECU 30.
  • the ECU 30 calculates the running state of the vehicle such as the vehicle speed and the operating state of the engine 10 such as the engine torque from the detection information detected by these various sensors. Further, the ECU 30 determines the travel state, the driving state, and the operation state of the shift operation unit (not shown) of the driver, and controls the clutch operation unit 25 and the transmission unit to change the speed of the mechanical automatic transmission 20.
  • FIG. 2 is a control block diagram showing a clutch operation control procedure of the control system for the mechanical automatic transmission according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing, in a time series, clutch control states at the time of a shift operation in the ECU 30 of the control system for the mechanical automatic transmission according to the first embodiment of the present invention.
  • the engine torque Teg that is the output torque
  • the thick solid line is the clutch torque (drive load) Tcl that is the torque applied to the clutch 21
  • the thin broken line is the fully connected position where the clutch 21 is completely connected
  • the alternate long and short dash line is the clutch 21
  • the half-clutch start position where power transmission starts is shown, and the two-dot chain line shows the complete position where the clutch 21 is completely disconnected.
  • FIG. 4 is a map showing the relationship between the clutch torque Tcl and the clutch stroke Scl.
  • the broken line indicates before correction, and the solid line indicates after correction.
  • the pre-correction is a clutch torque Tcl that can be transmitted with respect to the clutch stroke Scl when the clutch 21 is new.
  • the corrected value is a clutch torque Tcl that can be transmitted to the clutch stroke Scl in consideration of the degree of deterioration of the clutch 21 due to traveling conditions such as a vehicle speed and a traveling distance of the vehicle.
  • the ECU 30 operates the clutch operation unit 25 in a direction in which the clutch 21 is disconnected.
  • the clutch stroke Scl is changed (FIG. 3a).
  • the change in the clutch stroke Scl is smaller than the change in the clutch stroke Scl before the first predetermined value.
  • the engine torque calculation unit 31 detects the rotational speed of the engine 10 detected by the crank angle sensor 11, the intake air amount of the engine 10 detected by the airflow sensor 12, and Based on the fuel injection amount calculated based on the operating state of the fuel injection valve 13 that supplies fuel to the engine 10, an engine torque Teg that is a torque generated by the engine 10 is calculated. Further, the rotation change amount calculation unit 32 differentiates the rotation speed of the engine 10 detected by the crank angle sensor 11 with respect to time, and calculates the rotation speed change amount aeg.
  • the clutch torque calculation unit 33 the engine torque Teg calculated by the engine torque calculation unit 31, the rotation speed change amount aeg calculated by the rotation change amount calculation unit 32, and the engine 10 stored in the ECU 30 in advance.
  • the clutch torque Tcl is calculated based on the following equation (1) obtained from the engine inertia moment Ieg and the equation of motion.
  • the clutch stroke calculating section 34 takes into account the clutch torque Tcl calculated by the clutch torque calculating section 33 and the clutch torque Tcl and clutch stroke Scl shown in FIG.
  • the clutch operating unit 25 is operated so as to have the clutch stroke Scl calculated by the clutch stroke calculating unit 34.
  • the clutch stroke Scl is changed by the predetermined clutch stroke Scl per predetermined time as before the first predetermined value, that is, at a predetermined inclination.
  • the clutch operating unit 25 is operated so that the stroke Scl changes, and the clutch 21 is operated in the disconnection direction to reach the complete disconnection position (FIG. 3d).
  • the clutch torque Tcl since the clutch torque Tcl is calculated based on the engine torque Teg, the clutch torque Tcl changes corresponding to the fluctuation of the engine torque Teg during the control of the clutch 21, and the clutch 21 Smooth shifting can be achieved by suppressing the sliding of the engine and the engine speed.
  • clutch slippage can be suppressed, wear of the clutch 21 due to heavy use of half-clutch can be prevented at the time of shifting, and stalling due to slipping of the clutch 21 can be avoided when the vehicle is uphill during heavy climbing. be able to.
  • the clutch torque Tcl is calculated based on the above formula (1), and it is not necessary to provide sensors for detecting the clutch torque Tcl. Therefore, the clutch torque Tcl can be accurately calculated while suppressing an increase in cost. Can do.
  • the clutch stroke Scl is calculated from a map of the clutch torque Tcl and the clutch stroke Scl corrected based on the traveling state such as the vehicle speed and the traveling distance of the vehicle. For example, the traveling distance of the vehicle is extended and the clutch 21 is deteriorated. Even in such a case, the clutch stroke Scl can be accurately calculated in consideration of the deterioration of the clutch 21.
  • the clutch stroke may be controlled to be cut at a constant speed so that the engine is not stopped or the vehicle jumps out (runaway).
  • the clutch 21 can be disengaged between a and b in FIG. 3 so as to satisfy the expression (1) in the same manner as between b and c in FIG.
  • a technique may be used in which the clutch 21 is disengaged so as to satisfy the formula (1) while decreasing the torque while changing the inclination in several times.
  • FIG. 5 is a control block diagram showing a clutch operation control procedure of the control system for the mechanical automatic transmission according to the second embodiment of the present invention.
  • FIG. 6 is a diagram showing the clutch control state at the time of a shift operation in the ECU 30 of the control system for the mechanical automatic transmission according to the second embodiment of the present invention in time series.
  • the engine torque Teg which is the output torque, or the engine rotation speed Ne, which is the output rotation speed
  • the thick solid line is the clutch torque (drive load) Tcl, which is the torque applied to the clutch 21, or the clutch rotation speed Nc, which is the rotation speed of the clutch 21.
  • the thin broken line indicates the complete connection position where the clutch 21 is completely connected
  • the alternate long and short dash line indicates the half clutch start position where the clutch 21 starts transmitting power
  • the two-dot chain line indicates the complete connection position where the clutch 21 is completely disconnected.
  • the rotational speed difference ⁇ N in the figure indicates the difference between the engine rotational speed Ne and the clutch rotational speed Nc
  • the clutch operating speed indicates the operating speed of the clutch by the clutch operating unit 25.
  • slippage occurs between the clutch input and output at any point in time due to the increase of the clutch stroke Scl (FIG. 6 b), the engine rotational speed Ne that is the rotational speed on the input side of the clutch 21, and the clutch 21
  • a rotational speed difference ⁇ N (slip index) is generated between the output side rotational speed and the clutch rotational speed Nc.
  • the rotational speed difference ⁇ N gradually increases.
  • the rotational speed difference ⁇ N is sequentially calculated by a clutch slip index calculating unit (clutch slip index calculating means) 35 of the ECU 30.
  • the clutch 21 When the rotational speed difference ⁇ N exceeds a preset determination value ⁇ N0 by the half-clutch state determination unit (half-clutch state determination unit) 36 of the ECU 21 (FIG. 6c), it is considered that the clutch 21 has entered the half-clutch state.
  • the operation speed of the clutch 21 is switched from a1 to a2 (> a1) by the clutch operation speed control unit (clutch operation speed control means) 37 of the ECU 21.
  • the determination value ⁇ N0 is set to a value slightly larger than 0 in order to reliably determine that the clutch 21 has slipped.
  • the rotational speed difference ⁇ N between the clutch input and output is used as the slip index correlated with the clutch slip.
  • the present invention is not limited to this.
  • a ratio between the engine rotational speed Ne and the clutch rotational speed Nc may be used.
  • the operation speed of the clutch 21 by the clutch operation unit 25 increases, and the clutch 21 is more quickly operated in the disconnection direction.
  • a predetermined timing is set in advance immediately after the clutch torque Tc is reduced to 0. For example, it is considered that the predetermined timing is reached when the clutch stroke increases to the predetermined determination value ST0 (FIG. 6d).
  • the operation speed is switched from a2 to a3 (> a2). Thereafter, since it is not necessary to consider shock suppression, the operation speed a3 is set to a sufficiently large value. For this reason, the clutch 21 is operated to the cutting side more rapidly, and the cutting is completed (FIG. 6e).
  • the timing for increasing the operation speed a3 of the clutch 21 is not limited to the above.
  • the time when the clutch torque decreases to 0 may be regarded as the predetermined timing and may be increased to the operation speed a3.
  • the clutch 21 when the clutch 21 is started to be disconnected and the rotational speed difference ⁇ N between the input and the output exceeds the predetermined determination value ⁇ N0. Further, the operation speed of the clutch 21 by the clutch operation unit 25 is increased from a1 to a2. Since the clutch 21 at this time is in a half-clutch state, even if the operation speed is increased, a large shock does not occur. On the other hand, the timing for completing the disconnection of the clutch 21 is greatly increased by increasing the operation speed. You can speed up. Therefore, both shock suppression at the time of clutch disengagement and shortening of the shift time can be achieved, so that the shift feeling can be improved.
  • the embodiment of the present invention is not limited to the embodiment.
  • the rotation change amount calculation unit 32 differentiates the rotation speed of the engine 10 detected by the crank angle sensor 11 with respect to time, and calculates the rotation speed change amount aeg.
  • the vehicle speed may be differentiated and calculated using the tire diameter or the total reduction ratio. In this way, by calculating the rotational speed change amount aeg based on the vehicle speed that is relatively less varied than the rotational speed of the engine 10, a smoother shift can be achieved.
  • the clutch operating speed is increased stepwise from a1 to a2 when the rotational speed difference ⁇ N between the input and output of the clutch 21 exceeds the judgment value ⁇ N0.
  • the invention is not limited to this, and as shown in FIG. 7, for example, the clutch operation speed may be continuously set to the increasing side in accordance with an increase in the rotational speed difference ⁇ N.

Abstract

Engine torque (Teg) is calculated by an engine torque calculation unit (31) on the basis of the speed of an engine (10) and the amount of intake air, and the amount of fuel injected. The speed change amount (aeg) is furthermore calculated by a speed change amount calculation unit (32). Clutch torque (Tcl) is calculated by a clutch torque calculation unit (33) on the basis of the engine torque (Teg), speed change amount (aeg), engine inertia moment (Ieg) and formula (1). Clutch stroke (Scl) is then calculated by a clutch stroke calculation unit (34) from a map indicating the relationship between the clutch torque (Tcl) and the clutch stroke (Scl), and a clutch operation unit (25) is actuated in such a way as that the clutch stroke (Scl) is achieved.

Description

機械式自動変速装置の制御システムControl system for mechanical automatic transmission
 本発明は、機械式自動変速装置の制御システムに関し、詳しくは、変速時のクラッチ制御に関する。 The present invention relates to a control system for a mechanical automatic transmission, and more particularly to clutch control during gear shifting.
 車両の変速装置として、手動変速装置における変速機の操作(セレクト及びシフト)及びクラッチの断接をアクチュエータにより作動させることで自動変速を可能とする機械式自動変速装置が知られている(特許文献1)。当該自動変速装置では、変速時にクラッチを切断するとエンジンの動力が突然切断されることにより、ショックが発生することがある。 2. Description of the Related Art As a vehicle transmission device, a mechanical automatic transmission device that enables automatic transmission by operating an operation (selection and shift) of a transmission in a manual transmission device and connection / disconnection of a clutch by an actuator is known (Patent Document). 1). In the automatic transmission, when the clutch is disconnected at the time of shifting, the power of the engine is suddenly disconnected, which may cause a shock.
 したがって、自動変速装置では、例えば、特許文献1のようにエンジントルクを無負荷状態にしてクラッチを切断したり、特許文献2のようにエンジントルクに応じてクラッチを切断する速度を変化させたり、特許文献3のように車両の加速度が0となるようにエンジントルクを制御した後にクラッチを切断したりすることで、クラッチ切断時のエンジンの動力の切断によるトルク変動を低減して変速時のショックを低減している。 Therefore, in the automatic transmission, for example, the engine torque is unloaded as in Patent Document 1, and the clutch is disengaged, or the speed of disengaging the clutch is changed according to the engine torque as in Patent Document 2, As disclosed in Patent Document 3, by controlling the engine torque so that the vehicle acceleration becomes zero, the clutch is disengaged, etc., thereby reducing torque fluctuation due to engine power disengagement at the time of clutch disengagement and shock at the time of shifting Is reduced.
特開2004-270812号公報JP 2004-270812 A 特開2007-211945号公報JP 2007-211194 A 特許3752959号公報Japanese Patent No. 3752959 特許3417823号公報Japanese Patent No. 3417823
 しかしながら、上記特許文献の自動変速装置は、エンジントルクに基づいてクラッチの切断を制御しており、クラッチから駆動輪までの駆動系部品に掛かる負荷を考慮していない。 However, the automatic transmission of the above-mentioned patent document controls the disengagement of the clutch based on the engine torque, and does not consider the load applied to the drive system components from the clutch to the drive wheels.
 したがって、クラッチの切断に伴い、クラッチ以降の駆動系部品に掛かるエンジン側の慣性が急激に無くなることにより、駆動系部品の負荷が急激に開放され、駆動系部品の回転(例えば、クラッチ回転数)が大きく乱れることとなり、延いては、変速時のショックが発生することとなり好ましいことではない。 Accordingly, as the clutch is disengaged, the inertia on the engine side applied to the drive system parts after the clutch is suddenly eliminated, so that the load of the drive system parts is suddenly released, and the rotation of the drive system parts (for example, the clutch rotational speed) Is greatly disturbed, and as a result, a shock at the time of shifting occurs, which is not preferable.
 また、例えば上記特許文献1の技術において変速に伴ってクラッチを切断する際には、まずクラッチを所定速度で切断方向に操作し、その後にクラッチトルク(クラッチを介して伝達されるトルク)が十分に低下してショック発生の虞が無くなった所定タイミングで、クラッチの操作速度を増加させて切断を完了している。 Further, for example, when the clutch is disengaged in association with the shift in the technique of Patent Document 1, the clutch is first operated in the disengagement direction at a predetermined speed, and then the clutch torque (torque transmitted through the clutch) is sufficient. The clutch operation speed is increased at a predetermined timing at which the risk of occurrence of shock disappears due to a decrease in speed, and the disconnection is completed.
 即ち、クラッチの切断操作の開始から所定タイミングまで一定の操作速度を一義的に適用するだけのため、ショックを抑制すべくクラッチ操作速度を低下させれば変速時間が長引き、変速時間を短縮化すべくクラッチ操作速度を増加させればショックを生じてしまう。よって、クラッチ切断時のショック抑制と変速時間の短縮化とがトレードオフの関係になり、双方を共に満足することができなかった。 That is, since a constant operation speed is uniquely applied from the start of the clutch disengagement operation to a predetermined timing, if the clutch operation speed is reduced to suppress the shock, the shift time is prolonged and the shift time is shortened. Increasing the clutch operating speed will cause a shock. Therefore, there is a trade-off relationship between suppression of shock when the clutch is disengaged and shortening of the shift time, and both cannot be satisfied.
 本発明は、この様な問題を解決するためになされたもので、その目的とするところは、変速時のショックを低減することのできる機械式自動変速装置の制御システムを提供することにある。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a control system for a mechanical automatic transmission that can reduce shock during shifting.
 上記目的を達成するため、本願発明の機械式自動変速装置の制御システムは、車両に搭載され、内燃機関からの動力がクラッチを介して入力される入力軸と、前記車両の駆動輪に動力を出力する出力軸と、前記入力軸と前記出力軸に設けられる複数のギヤ列と、前記複数のギヤ列の係合状態を切り換える複数の切換手段とを有し、前記複数の切換手段を作動させ前記内燃機関から入力される動力を増減速し出力する変速手段と、前記クラッチと前記複数の切換手段の作動を制御する制御手段と、を備え、前記制御手段は、前記ギヤ列の係合状態の切り換え時に、前記クラッチに掛かる負荷である駆動系負荷が0であるときに前記クラッチを切断するように前記クラッチを操作することを特徴とする(請求項1)。 In order to achieve the above object, a control system for a mechanical automatic transmission according to the present invention is mounted on a vehicle and supplies power to an input shaft to which power from an internal combustion engine is input via a clutch, and to drive wheels of the vehicle. An output shaft for outputting; a plurality of gear trains provided on the input shaft and the output shaft; and a plurality of switching means for switching engagement states of the plurality of gear trains, and operating the plurality of switching devices. Transmission means for increasing and decelerating and outputting power input from the internal combustion engine, and control means for controlling the operation of the clutch and the plurality of switching means, the control means being in an engaged state of the gear train The clutch is operated such that the clutch is disengaged when a drive system load, which is a load applied to the clutch, is zero at the time of switching.
 好ましくは、前記内燃機関の運転状態を検出する運転状態検出手段を備え、前記制御手段は、前記運転状態検出手段にて検出される前記内燃機関の出力トルクと、予め設定される前記内燃機関の慣性モーメントと、前記運転状態検出手段にて検出される前記内燃機関の回転速度変化量とに基づいて前記駆動系負荷を算出するのがよい(請求項2)。 Preferably, an operation state detection unit that detects an operation state of the internal combustion engine is provided, and the control unit detects an output torque of the internal combustion engine that is detected by the operation state detection unit and a preset value of the internal combustion engine. The drive system load may be calculated based on the moment of inertia and the amount of change in the rotational speed of the internal combustion engine detected by the operating state detecting means.
 また、好ましくは、前記車両の走行状態を検出する走行状態検出手段を備え、前記制御手段は、前記駆動系負荷と前記クラッチストロークとの関係をマップ管理し、前記走行状態検出手段にて検出される前記車両の走行状態に基づき前記マップを補正し、補正後の前記マップに基づき前記クラッチストロークを算出するのがよい(請求項3)。 Preferably, the vehicle further includes a traveling state detection unit that detects a traveling state of the vehicle, and the control unit manages a map of a relationship between the driving system load and the clutch stroke, and is detected by the traveling state detection unit. Preferably, the map is corrected based on the traveling state of the vehicle, and the clutch stroke is calculated based on the corrected map.
 また、好ましくは、前記制御手段は、前記クラッチの入出力回転速度に基づき該クラッチの滑り状態と相関する滑り指標を算出するクラッチ滑り指標算出手段と、前記クラッチの切断方向への操作中に、前記クラッチ滑り指標算出手段により算出された滑り指標に基づき、前記クラッチが滑りを生じた半クラッチ状態になったか否かを判定する半クラッチ状態判定手段と、前記半クラッチ状態判定手段により半クラッチ状態の判定が下されたときに前記クラッチの操作速度を増加するクラッチ操作速度制御手段と、を備えるのがよい(請求項4)。 Preferably, the control means includes a clutch slip index calculating means for calculating a slip index that correlates with a slip state of the clutch based on an input / output rotational speed of the clutch, and an operation in the disengagement direction of the clutch. Based on the slip index calculated by the clutch slip index calculating means, a half-clutch state determining means for determining whether or not the clutch is in a half-clutch state in which slip occurs, and a half-clutch state by the half-clutch state determining means And a clutch operation speed control means for increasing the operation speed of the clutch when the determination is made.
 更に好ましくは、前記クラッチ操作速度制御手段は、前記半クラッチ状態の判定が下されたときに、前記クラッチの操作速度を所定の変化率で連続的に増加させるのがよい(請求項5)。 More preferably, the clutch operating speed control means may continuously increase the operating speed of the clutch at a predetermined change rate when the determination of the half-clutch state is made (Claim 5).
 本願発明の機械式自動変速装置の制御システムによれば、ギヤ列の係合状態の切り換え時に、駆動系負荷が0であるときにクラッチを切断するようにクラッチの操作を行っている。
 このように、駆動系負荷が0であるときにクラッチ操作を行うことにより、内燃機関が無負荷でのクラッチの切断に伴うクラッチより駆動輪側の駆動系部品に掛かる内燃機関側から伝達される力(慣性力など)の急激な減少を防止でき、駆動系部品の負荷が急激に開放されることを防止することができる。
According to the control system for a mechanical automatic transmission of the present invention, when the gear train is switched, the clutch is operated so that the clutch is disengaged when the drive system load is zero.
Thus, by operating the clutch when the drive system load is zero, the internal combustion engine is transmitted from the internal combustion engine side applied to the drive system components on the drive wheel side from the clutch when the clutch is disconnected with no load. A sudden decrease in force (such as inertial force) can be prevented, and the load on the drive system components can be prevented from being suddenly released.
 したがって、駆動系部品の回転(例えば、クラッチ回転数)が大きく乱れることを防止できるので、変速時のショックの発生を防止することができる(請求項1)。
 また、駆動系負荷を内燃機関の出力トルクと、内燃機関の慣性モーメントと、内燃機関の回転速度変化量とに基づいて算出しており、駆動系負荷を検出するセンサ類を設ける必要がないので、コスト増加を抑制しつつ、正確に駆動系負荷を算出することができる(請求項2)。
Therefore, since the rotation of the drive system components (for example, the clutch rotation speed) can be prevented from being greatly disturbed, the occurrence of a shock at the time of shifting can be prevented.
In addition, the drive system load is calculated based on the output torque of the internal combustion engine, the moment of inertia of the internal combustion engine, and the amount of change in the rotational speed of the internal combustion engine, so there is no need to provide sensors for detecting the drive system load. Thus, it is possible to accurately calculate the driving system load while suppressing an increase in cost (claim 2).
 また、クラッチストローク量を走行状態検出手段にて検出される車両の走行状態に基づき補正される駆動系負荷とクラッチストロークのマップより算出するようにしており、例えば車両の走行距離が延びクラッチが劣化しているような場合でも、クラッチの劣化を考慮してクラッチストロークを正確に算出することができる(請求項3)。 Further, the clutch stroke amount is calculated from a map of the drive system load and the clutch stroke corrected based on the vehicle running state detected by the running state detecting means. For example, the vehicle running distance is extended and the clutch deteriorates. Even in such a case, the clutch stroke can be accurately calculated in consideration of the deterioration of the clutch (claim 3).
 また、クラッチの切断方向への操作中にクラッチの入出力回転速度に基づき、クラッチの滑り状態と相関する滑り指標を算出して、この滑り指標に基づきクラッチが半クラッチ状態になったか否かを判定し、半クラッチ状態の判定を下したときにクラッチの操作速度を増加させるようにしており、クラッチの半クラッチ状態では、切断方向への操作速度を増加しても大きなショックを発生することがなく、一方、操作速度の増加によりクラッチの切断完了のタイミングが速められる。よって、クラッチ切断時のショック抑制と変速時間の短縮化とを両立することができるので、変速フィーリングを向上させることができる(請求項4)。 In addition, a slip index correlated with the slip state of the clutch is calculated based on the input / output rotational speed of the clutch during operation in the clutch disengagement direction, and whether or not the clutch is in the half-clutch state based on the slip index is calculated. When the half clutch state is determined, the clutch operating speed is increased. In the clutch half clutch state, a large shock may occur even if the operating speed in the disengagement direction is increased. On the other hand, the timing for completing the disconnection of the clutch is accelerated by increasing the operation speed. Therefore, both shock suppression at the time of clutch disengagement and shortening of the shift time can be achieved, so that the shift feeling can be improved (claim 4).
 また、半クラッチ状態の判定が下されたときに、クラッチの操作速度を所定の変化率で連続的に増加するようにしているので、ショック抑制と変速時間の短縮化とをより高次元で両立することができる(請求項5)。 In addition, when the determination of the half-clutch state is made, the clutch operating speed is continuously increased at a predetermined rate of change, so both shock suppression and shift time shortening can be achieved at a higher level. (Claim 5).
本発明の第1実施例に係る機械式自動変速装置の制御システムの概略構成図である。It is a schematic block diagram of the control system of the mechanical automatic transmission which concerns on 1st Example of this invention. 本発明の第1実施例に係る機械式自動変速装置の制御システムのクラッチ作動制御手順を示す制御ブロック図である。It is a control block diagram which shows the clutch operation control procedure of the control system of the mechanical automatic transmission which concerns on 1st Example of this invention. 本発明の第1実施例に係る機械式自動変速装置の制御システムの変速操作時のクラッチ制御状態を時系列で示す図である。It is a figure which shows the clutch control state at the time of gear shifting operation of the control system of the mechanical automatic transmission which concerns on 1st Example of this invention in time series. 本発明の第1実施例に係る機械式自動変速装置の制御システムのクラッチトルクとクラッチストロークとの関係を示すマップである。It is a map which shows the relationship between the clutch torque of the control system of the mechanical automatic transmission which concerns on 1st Example of this invention, and a clutch stroke. 本発明の第2実施例に係る機械式自動変速装置の制御システムのクラッチ作動制御手順を示す制御ブロック図である。It is a control block diagram which shows the clutch operation control procedure of the control system of the mechanical automatic transmission which concerns on 2nd Example of this invention. 本発明の第2実施例に係る機械式自動変速装置の制御システムの変速操作時のクラッチ制御状態を時系列で示す図である。It is a figure which shows the clutch control state at the time of gear shifting operation of the control system of the mechanical automatic transmission which concerns on 2nd Example of this invention in time series. その他の実施形態における変速操作時のクラッチ制御状態を時系列で示す図である。It is a figure which shows the clutch control state at the time of gear shifting operation in other embodiment in time series.
 以下、本発明の実施の形態を図面に基づき説明する。
 まずは、本発明の第1実施例に係る機械式自動変速装置の制御システムについて説明する。
[第1実施例]
 図1は、本発明の第1実施例に係る機械式自動変速装置の制御システムの概略構成図である。以下、当該機械式自動変速装置の制御システムの構成を説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, a control system for a mechanical automatic transmission according to a first embodiment of the present invention will be described.
[First embodiment]
FIG. 1 is a schematic configuration diagram of a control system for a mechanical automatic transmission according to a first embodiment of the present invention. Hereinafter, the configuration of the control system of the mechanical automatic transmission will be described.
 図1に示すように、機械式自動変速装置の制御システムは、図示しない車両に搭載され、大きく分けてエンジン(内燃機関)10、機械式自動変速機(変速手段)20、及び電子コントロールユニット(以下、ECUという)(制御手段)30から構成される。なお、それぞれの構成要素は、電気的に接続されている。 As shown in FIG. 1, a control system for a mechanical automatic transmission is mounted on a vehicle (not shown), and is roughly divided into an engine (internal combustion engine) 10, a mechanical automatic transmission (transmission means) 20, and an electronic control unit ( (Hereinafter referred to as ECU) (control means) 30. Each component is electrically connected.
 エンジン10は、運転者の図示しないアクセルペダルの操作量に応じて動力を発生するものである。また、エンジン10には、エンジン10の回転速度、即ちクラッチ21の入力側の回転速度を検出するクランク角センサ(運転状態検出手段)11、エンジン10の吸入空気量を検出するエアフローセンサ(運転状態検出手段)12及び燃料を噴射しエンジン10の出力を調整する燃料噴射弁(運転状態検出手段)13が設けられている。 The engine 10 generates power according to the amount of operation of an accelerator pedal (not shown) of the driver. Further, the engine 10 includes a crank angle sensor (operating state detecting means) 11 for detecting the rotational speed of the engine 10, that is, the rotational speed on the input side of the clutch 21, and an air flow sensor (operating state) for detecting the intake air amount of the engine 10. Detection means) 12 and a fuel injection valve (operating state detection means) 13 for injecting fuel and adjusting the output of the engine 10 are provided.
 機械式自動変速機20は、図示しない複数の変速部(切換手段)を作動させ、ギヤ列の係合状態を切り換えてエンジン10で発生した動力を車速に合わせて変速し増幅させ、動力を図示しないタイヤへ伝達をするものである。また、機械式自動変速機20は、クラッチ21、入力軸22、出力軸23、プロペラシャフト24、クラッチ操作部25、出力軸回転センサ(走行状態検出手段)26及びクラッチ回転速度センサ27を備えている。 The mechanical automatic transmission 20 operates a plurality of transmission units (switching means) (not shown), switches the gear train engagement state, shifts and amplifies the power generated by the engine 10 according to the vehicle speed, and displays the power. It transmits to the tire that does not. The mechanical automatic transmission 20 includes a clutch 21, an input shaft 22, an output shaft 23, a propeller shaft 24, a clutch operation unit 25, an output shaft rotation sensor (running state detection means) 26, and a clutch rotation speed sensor 27. Yes.
 クラッチ21は、エンジン10と入力軸22との間に介装され、エンジン10で発生した動力を入力軸22へ伝達又は遮断するものである。
 プロペラシャフト24は、出力軸23に接続され、変速された動力をタイヤに伝達するものである。
The clutch 21 is interposed between the engine 10 and the input shaft 22, and transmits or blocks power generated by the engine 10 to the input shaft 22.
The propeller shaft 24 is connected to the output shaft 23 and transmits the shifted power to the tire.
 クラッチ操作部25は、アクチュエータ等で構成され、クラッチ21の断接を行うものである。また、クラッチ操作部25には、クラッチ21のストローク量を検出するストロークセンサが内蔵されている。
 出力軸回転センサ26は、出力軸23の回転速度を検出するものであり、当該センサの検出信号と出力軸23以降のギヤ比(最終減速比)とタイヤ外周とに基づいて車両の車速の算出が可能となる。
The clutch operation unit 25 is composed of an actuator or the like, and connects and disconnects the clutch 21. The clutch operation unit 25 has a built-in stroke sensor that detects the stroke amount of the clutch 21.
The output shaft rotation sensor 26 detects the rotation speed of the output shaft 23, and calculates the vehicle speed of the vehicle based on the detection signal of the sensor, the gear ratio (final reduction ratio) after the output shaft 23, and the tire outer periphery. Is possible.
 クラッチ回転速度センサ27は、クラッチ21の出力側の回転速度を検出するものであり、当該センサの検出信号とエンジン10の回転速度を検出するクランク角センサ11の検出信号とに基づいてクラッチ21の入出力の回転速度差が算出可能となる。なお、クラッチの入力回転速度は、エンジン1の回転速度を、クラッチ21の出力回転速度は、クラッチ21の回転速度である。 The clutch rotational speed sensor 27 detects the rotational speed of the output side of the clutch 21, and based on the detection signal of the sensor and the detection signal of the crank angle sensor 11 that detects the rotational speed of the engine 10. The input / output rotational speed difference can be calculated. The input rotational speed of the clutch is the rotational speed of the engine 1, and the output rotational speed of the clutch 21 is the rotational speed of the clutch 21.
 ECU30は、車両の総合的な制御を行うための制御装置であり、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)及び中央演算処理装置(CPU)等を含んで構成される。
 ECU30の入力側には、クランク角センサ11、エアフローセンサ12、燃料噴射弁13、クラッチ操作部25及びクラッチ回転速度センサ27等のセンサ類が電気的に接続されており、これら各種センサ類からの検出情報が入力される。
The ECU 30 is a control device for performing comprehensive control of the vehicle, and includes an input / output device, a storage device (ROM, RAM, nonvolatile RAM, etc.), a central processing unit (CPU), and the like.
Sensors such as a crank angle sensor 11, an air flow sensor 12, a fuel injection valve 13, a clutch operation unit 25, and a clutch rotational speed sensor 27 are electrically connected to the input side of the ECU 30. Detection information is input.
 一方、ECU30の出力側には、クラッチ操作部25が電気的に接続されている。
 ECU30は、これら各種センサ類にて検出する検出情報より、車速等の車両の走行状態、エンジントルク等のエンジン10の運転状態を算出する。また、ECU30は、それら走行状態や運転状態や運転者の図示しないシフト操作部の操作状況を判別し、クラッチ操作部25及び変速部を制御して機械式自動変速機20の変速を行う。
On the other hand, the clutch operation unit 25 is electrically connected to the output side of the ECU 30.
The ECU 30 calculates the running state of the vehicle such as the vehicle speed and the operating state of the engine 10 such as the engine torque from the detection information detected by these various sensors. Further, the ECU 30 determines the travel state, the driving state, and the operation state of the shift operation unit (not shown) of the driver, and controls the clutch operation unit 25 and the transmission unit to change the speed of the mechanical automatic transmission 20.
 以下、このように構成された本発明の第1実施例に係る機械式自動変速装置の制御システムのECU30におけるクラッチ21の作動制御について説明する。
 図2は、本発明の第1実施例に係る機械式自動変速装置の制御システムのクラッチ作動制御手順を示す制御ブロック図である。
Hereinafter, the operation control of the clutch 21 in the ECU 30 of the control system for the mechanical automatic transmission according to the first embodiment of the present invention configured as described above will be described.
FIG. 2 is a control block diagram showing a clutch operation control procedure of the control system for the mechanical automatic transmission according to the first embodiment of the present invention.
 また、図3は、本発明の第1実施例に係る機械式自動変速装置の制御システムのECU30における変速操作時のクラッチ制御状態を時系列で示す図であり、図中太破線はエンジン10が出力するトルクであるエンジントルクTegを、太実線はクラッチ21に加わるトルクであるクラッチトルク(駆動負荷)Tclを、細破線はクラッチ21が完全に接続する完接位置を、一点鎖線はクラッチ21が動力の伝達を開始する半クラッチ開始位置を、二点鎖線はクラッチ21が完全に切断する完断位置をそれぞれ示す。 FIG. 3 is a diagram showing, in a time series, clutch control states at the time of a shift operation in the ECU 30 of the control system for the mechanical automatic transmission according to the first embodiment of the present invention. The engine torque Teg that is the output torque, the thick solid line is the clutch torque (drive load) Tcl that is the torque applied to the clutch 21, the thin broken line is the fully connected position where the clutch 21 is completely connected, and the alternate long and short dash line is the clutch 21 The half-clutch start position where power transmission starts is shown, and the two-dot chain line shows the complete position where the clutch 21 is completely disconnected.
 また、図4は、クラッチトルクTclとクラッチストロークSclとの関係を示すマップであり、図中破線は補正前を、実線は補正後をそれぞれ示す。当該補正前とは、クラッチ21の新品時のクラッチストロークSclに対する伝達可能なクラッチトルクTclである。また、補正後とは、車両の車速や走行距離等の走行状況によるクラッチ21の劣化度合いを考慮したクラッチストロークSclに対する伝達可能なクラッチトルクTclである。また、当該マップは、クラッチトルクTcl=0でクラッチストロークSclが半クラッチ位置となるように設定されている。 FIG. 4 is a map showing the relationship between the clutch torque Tcl and the clutch stroke Scl. In the figure, the broken line indicates before correction, and the solid line indicates after correction. The pre-correction is a clutch torque Tcl that can be transmitted with respect to the clutch stroke Scl when the clutch 21 is new. Further, the corrected value is a clutch torque Tcl that can be transmitted to the clutch stroke Scl in consideration of the degree of deterioration of the clutch 21 due to traveling conditions such as a vehicle speed and a traveling distance of the vehicle. The map is set so that the clutch torque Scl = 0 and the clutch stroke Scl is at the half clutch position.
 図3に示すように、運転者のシフト操作部の操作状況や、車両の車速等を判別し、変速が開始されると、ECU30はクラッチ操作部25を作動させ、クラッチ21が切断する方向にクラッチストロークSclを変化させる(図3a)。 As shown in FIG. 3, when an operation state of the shift operation unit of the driver, the vehicle speed of the vehicle, and the like are discriminated and the shift is started, the ECU 30 operates the clutch operation unit 25 in a direction in which the clutch 21 is disconnected. The clutch stroke Scl is changed (FIG. 3a).
 次に図3bのようにクラッチストロークSclが第1所定値となると、そのときのクラッチトルクTclに基づいて以降のクラッチストローク制御を実施し、クラッチトルクTcl=0でクラッチストロークSclが半クラッチ位置、即ちクラッチトルクTcl=0でクラッチ21が動力を伝達不能となるようにする。例えば、図3に示すように、クラッチストロークSclが第1所定値となった以降では、第1所定値以前のクラッチストロークSclの変化よりも傾きの小さいクラッチストロークSclの変化とする。 Next, as shown in FIG. 3b, when the clutch stroke Scl reaches the first predetermined value, the subsequent clutch stroke control is performed based on the clutch torque Tcl at that time, and when the clutch torque Tcl = 0, the clutch stroke Scl is the half clutch position, That is, when the clutch torque Tcl = 0, the clutch 21 cannot transmit power. For example, as shown in FIG. 3, after the clutch stroke Scl becomes the first predetermined value, the change in the clutch stroke Scl is smaller than the change in the clutch stroke Scl before the first predetermined value.
 詳しくは、図2に示すように、エンジントルク算出部31にて、クランク角センサ11にて検出されるエンジン10の回転速度と、エアフローセンサ12にて検出されるエンジン10の吸入空気量と、エンジン10に燃料を供給する燃料噴射弁13の作動状態に基づいて算出される燃料噴射量とに基づいて、エンジン10の発生するトルクであるエンジントルクTegを算出する。また、回転変化量算出部32にて、クランク角センサ11にて検出されるエンジン10の回転速度を時間で微分し、回転速度変化量aegを算出する。 Specifically, as shown in FIG. 2, the engine torque calculation unit 31 detects the rotational speed of the engine 10 detected by the crank angle sensor 11, the intake air amount of the engine 10 detected by the airflow sensor 12, and Based on the fuel injection amount calculated based on the operating state of the fuel injection valve 13 that supplies fuel to the engine 10, an engine torque Teg that is a torque generated by the engine 10 is calculated. Further, the rotation change amount calculation unit 32 differentiates the rotation speed of the engine 10 detected by the crank angle sensor 11 with respect to time, and calculates the rotation speed change amount aeg.
 そして、クラッチトルク算出部33にて、エンジントルク算出部31にて算出されたエンジントルクTegと回転変化量算出部32にて算出された回転速度変化量aegと予めECU30に記憶されたエンジン10のエンジン慣性モーメントIegと運動方程式から求められる下記式(1)に基づいて、クラッチトルクTclを算出する。 Then, in the clutch torque calculation unit 33, the engine torque Teg calculated by the engine torque calculation unit 31, the rotation speed change amount aeg calculated by the rotation change amount calculation unit 32, and the engine 10 stored in the ECU 30 in advance. The clutch torque Tcl is calculated based on the following equation (1) obtained from the engine inertia moment Ieg and the equation of motion.
     Tcl=Teg-Ieg×aeg・・・・(1)
 次に、クラッチストローク算出部34にて、クラッチトルク算出部33にて算出されたクラッチトルクTclと車両の車速及び走行距離等によるクラッチ21の劣化を考慮した図4のクラッチトルクTclとクラッチストロークSclとの関係を示すマップに基づき、クラッチストロークSclを算出する。なお、当該マップは、クラッチトルクTcl=0でクラッチストロークSclが半クラッチ開始位置となるように設定されている。図3cのようにクラッチトルクTcl=0でクラッチストロークSclが半クラッチ開始位置となる。
Tcl = Teg−Ieg × aeg (1)
Next, the clutch stroke calculating section 34 takes into account the clutch torque Tcl calculated by the clutch torque calculating section 33 and the clutch torque Tcl and clutch stroke Scl shown in FIG. The clutch stroke Scl is calculated based on the map showing the relationship between The map is set so that the clutch torque Scl = 0 and the clutch stroke Scl is the half-clutch start position. As shown in FIG. 3c, when the clutch torque Tcl = 0, the clutch stroke Scl becomes the half-clutch start position.
 そして、クラッチ操作部25をクラッチストローク算出部34にて算出されたクラッチストロークSclとなるように作動させる。
 そして、クラッチストロークSclが半クラッチ開始位置通過後の第2所定値となると、クラッチストロークSclが第1所定値以前と同様に所定時間当たり所定クラッチストロークScl変化するように、即ち所定の傾きでクラッチストロークSclが変化するようにクラッチ操作部25を作動させ、クラッチ21を切断方向に作動させ、完断位置とする(図3d)。
Then, the clutch operating unit 25 is operated so as to have the clutch stroke Scl calculated by the clutch stroke calculating unit 34.
When the clutch stroke Scl reaches the second predetermined value after passing through the half-clutch start position, the clutch stroke Scl is changed by the predetermined clutch stroke Scl per predetermined time as before the first predetermined value, that is, at a predetermined inclination. The clutch operating unit 25 is operated so that the stroke Scl changes, and the clutch 21 is operated in the disconnection direction to reach the complete disconnection position (FIG. 3d).
 このように、本発明の第1実施例に係る機械式自動変速装置の制御システムによれば、ギヤの変速時に、上記式(1)から算出されるクラッチトルクTclが0であるとクラッチストロークSclをクラッチ21が半クラッチ開始位置、即ちクラッチ21が動力を伝達不能となる位置にクラッチ操作部25を作動させるようにしている。 Thus, according to the control system for the mechanical automatic transmission according to the first embodiment of the present invention, when the clutch torque Tcl calculated from the above equation (1) is 0 at the time of gear shift, the clutch stroke Scl. The clutch operating unit 25 is operated to the clutch 21 half clutch start position, that is, the clutch 21 cannot transmit power.
 これにより、エンジン10が無負荷である時にクラッチ21の切断によって、クラッチ21以降の入力軸22、出力軸23、プロペラシャフト24等の駆動系部品に掛かっていたエンジン10側から伝達される力(慣性力など)が急激に減少して駆動系部品の負荷が急激に開放されることを防止することができる。
 したがって、駆動系部品の回転が大きく乱れることを防止することができるので、変速時のショックの発生を防止することができる。
Thus, when the engine 10 is unloaded, the force transmitted from the engine 10 side applied to the drive system components such as the input shaft 22, the output shaft 23, and the propeller shaft 24 after the clutch 21 due to the disconnection of the clutch 21 ( It is possible to prevent the load of the drive system parts from being suddenly released due to a sudden decrease in inertia force and the like.
Therefore, since it is possible to prevent the rotation of the drive system parts from being greatly disturbed, it is possible to prevent the occurrence of a shock at the time of shifting.
 また、上記式(1)に示すように、クラッチトルクTclをエンジントルクTegに基づいて演算するので、クラッチ21の制御中にエンジントルクTegの変動に対応してクラッチトルクTclが変化し、クラッチ21の滑りやエンジン回転速度の吹き上がりを抑制して、滑らかな変速が可能となる。特に、クラッチ滑りを抑制できるため、変速時に半クラッチの多用によるクラッチ21の摩耗を防止でき、車両重量が大きい場合での登坂走行中にシフトアップしたときに、クラッチ21の滑りによる失速を回避することができる。 Further, as shown in the above equation (1), since the clutch torque Tcl is calculated based on the engine torque Teg, the clutch torque Tcl changes corresponding to the fluctuation of the engine torque Teg during the control of the clutch 21, and the clutch 21 Smooth shifting can be achieved by suppressing the sliding of the engine and the engine speed. In particular, since clutch slippage can be suppressed, wear of the clutch 21 due to heavy use of half-clutch can be prevented at the time of shifting, and stalling due to slipping of the clutch 21 can be avoided when the vehicle is uphill during heavy climbing. be able to.
 また、クラッチトルクTclを上記式(1)に基づいて算出しており、クラッチトルクTclを検出するセンサ類を設ける必要がないので、コスト増加を抑制しつつ、正確にクラッチトルクTclを算出することができる。 Further, the clutch torque Tcl is calculated based on the above formula (1), and it is not necessary to provide sensors for detecting the clutch torque Tcl. Therefore, the clutch torque Tcl can be accurately calculated while suppressing an increase in cost. Can do.
 また、クラッチストロークSclを車両の車速や走行距離等の走行状態に基づき補正されるクラッチトルクTclとクラッチストロークSclのマップより算出するようにしており、例えば車両の走行距離が延びクラッチ21が劣化しているような場合でも、クラッチ21の劣化を考慮して、クラッチストロークSclを正確に算出することができる。 Further, the clutch stroke Scl is calculated from a map of the clutch torque Tcl and the clutch stroke Scl corrected based on the traveling state such as the vehicle speed and the traveling distance of the vehicle. For example, the traveling distance of the vehicle is extended and the clutch 21 is deteriorated. Even in such a case, the clutch stroke Scl can be accurately calculated in consideration of the deterioration of the clutch 21.
 更に、変速時にエンジン回転速度が比較的低く、エンジン停止を回避するためにエンジントルクを低下させることができない場合など、式(1)に従った制御を行うと適切にクラッチが切れない状況では、式(1)に従った制御が可能となるまで、エンジン停止や車両飛び出し(暴走)とならないようにクラッチストロークを一定速度で切るように制御してもよい。 Furthermore, when the engine speed is relatively low at the time of shifting and the engine torque cannot be reduced to avoid engine stop, etc., when the control according to Equation (1) is performed, the clutch cannot be properly released. Until the control according to the equation (1) is possible, the clutch stroke may be controlled to be cut at a constant speed so that the engine is not stopped or the vehicle jumps out (runaway).
 また、図3のaとbの間において、図3のbとcの間と同様に式(1)を満たすようにクラッチ21を切ることも可能であり、例えば図3aからcの間においてエンジントルクを数回に分けて傾きを変えながら減少させつつ式(1)を満たすようにクラッチ21を切る手法を取ってもよい。
[第2実施例]
 以下、本発明の第2実施例に係る機械式自動変速装置の制御システムについて説明する。
Further, the clutch 21 can be disengaged between a and b in FIG. 3 so as to satisfy the expression (1) in the same manner as between b and c in FIG. A technique may be used in which the clutch 21 is disengaged so as to satisfy the formula (1) while decreasing the torque while changing the inclination in several times.
[Second Embodiment]
Hereinafter, a control system for a mechanical automatic transmission according to a second embodiment of the present invention will be described.
 第2実施例では、上記第1実施例に対して、図3cのクラッチストロークSclが半クラッチ開始位置通過後のクラッチの作動制御が異なっており、以下に上記第1実施例との相違点について説明する。
 図5は、本発明の第2実施例に係る機械式自動変速装置の制御システムのクラッチ作動制御手順を示す制御ブロック図である。また、図6は、本発明の第2実施例に係る機械式自動変速装置の制御システムのECU30における変速操作時のクラッチ制御状態を時系列で示す図であり、図中太破線はエンジン10が出力するトルクであるエンジントルクTeg或いは出力する回転速度であるエンジン回転速度Neを、太実線はクラッチ21に加わるトルクであるクラッチトルク(駆動負荷)Tcl或いはクラッチ21の回転速度であるクラッチ回転速度Ncを、細破線はクラッチ21が完全に接続する完接位置を、一点鎖線はクラッチ21が動力の伝達を開始する半クラッチ開始位置を、二点鎖線はクラッチ21が完全に切断する完断位置をそれぞれ示す。また、なお、図中の回転速度差ΔNは、エンジン回転速度Neとクラッチ回転速度Ncとの差を示し、クラッチ操作速度は、クラッチ操作部25によるクラッチの作動速度を示す。
In the second embodiment, the clutch operation control after the clutch stroke Scl shown in FIG. 3c has passed the half-clutch start position is different from the first embodiment, and the difference from the first embodiment is as follows. explain.
FIG. 5 is a control block diagram showing a clutch operation control procedure of the control system for the mechanical automatic transmission according to the second embodiment of the present invention. FIG. 6 is a diagram showing the clutch control state at the time of a shift operation in the ECU 30 of the control system for the mechanical automatic transmission according to the second embodiment of the present invention in time series. The engine torque Teg, which is the output torque, or the engine rotation speed Ne, which is the output rotation speed, the thick solid line is the clutch torque (drive load) Tcl, which is the torque applied to the clutch 21, or the clutch rotation speed Nc, which is the rotation speed of the clutch 21. The thin broken line indicates the complete connection position where the clutch 21 is completely connected, the alternate long and short dash line indicates the half clutch start position where the clutch 21 starts transmitting power, and the two-dot chain line indicates the complete connection position where the clutch 21 is completely disconnected. Each is shown. In addition, the rotational speed difference ΔN in the figure indicates the difference between the engine rotational speed Ne and the clutch rotational speed Nc, and the clutch operating speed indicates the operating speed of the clutch by the clutch operating unit 25.
 図6に示すように、クラッチストロークSclの増加により何れかの時点でクラッチ入出力間に滑りが生じ(図6b)、クラッチ21の入力側の回転速度であるエンジン回転速度Neと、クラッチ21の出力側の回転速度であるクラッチ回転速度Ncとの間に回転速度差ΔN(滑り指標)が発生する。クラッチ滑りと共に回転速度差ΔNは次第に増加し、このときの回転速度差ΔNはECU30のクラッチ滑り指標算出部(クラッチ滑り指標算出手段)35により逐次算出される。 As shown in FIG. 6, slippage occurs between the clutch input and output at any point in time due to the increase of the clutch stroke Scl (FIG. 6 b), the engine rotational speed Ne that is the rotational speed on the input side of the clutch 21, and the clutch 21 A rotational speed difference ΔN (slip index) is generated between the output side rotational speed and the clutch rotational speed Nc. As the clutch slips, the rotational speed difference ΔN gradually increases. At this time, the rotational speed difference ΔN is sequentially calculated by a clutch slip index calculating unit (clutch slip index calculating means) 35 of the ECU 30.
 そして、ECU21の半クラッチ状態判定部(半クラッチ状態判定手段)36により回転速度差ΔNが予め設定された判定値ΔN0を超えると(図6c)、クラッチ21が半クラッチ状態になったと見なされて、ECU21のクラッチ操作速度制御部(クラッチ操作速度制御手段)37によりクラッチ21の操作速度がa1からa2(>a1)に切り換えられる。なお、判定値ΔN0は、クラッチ21に滑りが生じたことを確実に判定するために0より若干大きな値として設定されている。 When the rotational speed difference ΔN exceeds a preset determination value ΔN0 by the half-clutch state determination unit (half-clutch state determination unit) 36 of the ECU 21 (FIG. 6c), it is considered that the clutch 21 has entered the half-clutch state. The operation speed of the clutch 21 is switched from a1 to a2 (> a1) by the clutch operation speed control unit (clutch operation speed control means) 37 of the ECU 21. The determination value ΔN0 is set to a value slightly larger than 0 in order to reliably determine that the clutch 21 has slipped.
 なお、本実施形態では、クラッチ滑りと相関する滑り指標としてクラッチ入出力間の回転速度差ΔNを用いたが、これに限ることはない。例えばエンジン回転速度Neとクラッチ回転速度Ncとの比を用いてもよい。
 クラッチ操作部25によるクラッチ21の操作速度は増加し、クラッチ21はより迅速に切断方向に操作されるようになる。
In the present embodiment, the rotational speed difference ΔN between the clutch input and output is used as the slip index correlated with the clutch slip. However, the present invention is not limited to this. For example, a ratio between the engine rotational speed Ne and the clutch rotational speed Nc may be used.
The operation speed of the clutch 21 by the clutch operation unit 25 increases, and the clutch 21 is more quickly operated in the disconnection direction.
 そして、クラッチトルクTcが0まで低下した直後として所定タイミングが予め設定されており、例えばクラッチストロークが所定の判定値ST0まで増加した時点で所定タイミングに到達したと見なされ(図6d)、クラッチ21の操作速度はa2からa3(>a2)に切り換えられる。以降はショック抑制を配慮する必要がないため、操作速度a3は十分に大きな値に設定されている。このためクラッチ21は一層迅速に切断側に操作されて、切断完了に至る(図6e)。 A predetermined timing is set in advance immediately after the clutch torque Tc is reduced to 0. For example, it is considered that the predetermined timing is reached when the clutch stroke increases to the predetermined determination value ST0 (FIG. 6d). The operation speed is switched from a2 to a3 (> a2). Thereafter, since it is not necessary to consider shock suppression, the operation speed a3 is set to a sufficiently large value. For this reason, the clutch 21 is operated to the cutting side more rapidly, and the cutting is completed (FIG. 6e).
 なお、クラッチ21の操作速度a3に増加させるタイミングは上記に限るものではなく、例えばクラッチトルクが0まで低下した時点を所定タイミングと見なして操作速度a3に増加させてもよい。 The timing for increasing the operation speed a3 of the clutch 21 is not limited to the above. For example, the time when the clutch torque decreases to 0 may be regarded as the predetermined timing and may be increased to the operation speed a3.
 このように本発明の第2実施例に係る機械式自動変速装置の制御システムによれば、クラッチ21の切断を開始して入出力間の回転速度差ΔNが所定の判定値ΔN0を超えたときに、クラッチ操作部25によるクラッチ21の操作速度をa1からa2に増加させている。そして、この時点のクラッチ21は半クラッチ状態になっているため、操作速度を増加しても大きなショックを発生することがなく、一方、操作速度の増加によりクラッチ21の切断完了のタイミングを大幅に速めることができる。よって、クラッチ切断時のショック抑制と変速時間の短縮化とを両立できるので、変速フィーリングを向上させることができる。 As described above, according to the control system for the mechanical automatic transmission according to the second embodiment of the present invention, when the clutch 21 is started to be disconnected and the rotational speed difference ΔN between the input and the output exceeds the predetermined determination value ΔN0. Further, the operation speed of the clutch 21 by the clutch operation unit 25 is increased from a1 to a2. Since the clutch 21 at this time is in a half-clutch state, even if the operation speed is increased, a large shock does not occur. On the other hand, the timing for completing the disconnection of the clutch 21 is greatly increased by increasing the operation speed. You can speed up. Therefore, both shock suppression at the time of clutch disengagement and shortening of the shift time can be achieved, so that the shift feeling can be improved.
 以上で発明の実施形態の説明を終えるが、本発明の形態は実施形態に限定されるものではない。
 例えば、本実施形態は、回転変化量算出部32にて、クランク角センサ11にて検出されるエンジン10の回転速度を時間で微分し、回転速度変化量aegを算出するようにしているが、これに限定するものではなく、例えば、車速を微分しタイヤ径や総減速比を用いて算出するようにしても良い。このように、エンジン10の回転速度より比較的変動の少ない車速に基づいて回転速度変化量aegを算出することで、より滑らかな変速を図ることができる。
Although the description of the embodiment of the invention is finished as above, the embodiment of the present invention is not limited to the embodiment.
For example, in the present embodiment, the rotation change amount calculation unit 32 differentiates the rotation speed of the engine 10 detected by the crank angle sensor 11 with respect to time, and calculates the rotation speed change amount aeg. For example, the vehicle speed may be differentiated and calculated using the tire diameter or the total reduction ratio. In this way, by calculating the rotational speed change amount aeg based on the vehicle speed that is relatively less varied than the rotational speed of the engine 10, a smoother shift can be achieved.
 また、本発明の第2実施例ではクラッチ21の入出力間の回転速度差ΔNが判定値ΔN0を超えた時点でクラッチ操作速度をa1からa2にステップ的に増加させるようにしているが、本発明はこれに限定されるものではなく、図7に示すように、例えば回転速度差ΔNの増加に応じてクラッチ操作速度を連続的に増加側に設定し直してもよい。 In the second embodiment of the present invention, the clutch operating speed is increased stepwise from a1 to a2 when the rotational speed difference ΔN between the input and output of the clutch 21 exceeds the judgment value ΔN0. The invention is not limited to this, and as shown in FIG. 7, for example, the clutch operation speed may be continuously set to the increasing side in accordance with an increase in the rotational speed difference ΔN.
 10 エンジン(内燃機関)
 11 クランク角センサ(運転状態検出手段)
 12 エアフローセンサ(運転状態検出手段)
 13 燃料噴射弁(運転状態検出手段)
 20 機械式自動変速機
 21 クラッチ
 25 クラッチ操作部
 26 出力軸回転センサ(走行状態検出手段)
 30 ECU(制御手段、クラッチ滑り指標算出手段、半クラッチ状態判定手段、クラッチ操作速度制御手段)
10 Engine (Internal combustion engine)
11 Crank angle sensor (operating state detection means)
12 Air flow sensor (Operating state detection means)
13 Fuel injection valve (operating state detection means)
20 Mechanical Automatic Transmission 21 Clutch 25 Clutch Operation Unit 26 Output Shaft Rotation Sensor (Running State Detection Means)
30 ECU (control means, clutch slip index calculation means, half-clutch state determination means, clutch operation speed control means)

Claims (5)

  1.  車両に搭載され、内燃機関からの動力がクラッチを介して入力される入力軸と、前記車両の駆動輪に動力を出力する出力軸と、前記入力軸と前記出力軸に設けられる複数のギヤ列と、前記複数のギヤ列の係合状態を切り換える複数の切換手段とを有し、前記複数の切換手段を作動させ前記内燃機関から入力される動力を増減速し出力する変速手段と、
     前記クラッチと前記複数の切換手段の作動を制御する制御手段と、を備え、
     前記制御手段は、前記ギヤ列の係合状態の切り換え時に、前記クラッチに掛かる負荷である駆動系負荷が0であるときに前記クラッチを切断するように前記クラッチを操作することを特徴とする機械式自動変速装置の制御システム。
    An input shaft that is mounted on a vehicle and receives power from an internal combustion engine via a clutch, an output shaft that outputs power to drive wheels of the vehicle, and a plurality of gear trains provided on the input shaft and the output shaft And a plurality of switching means for switching the engagement states of the plurality of gear trains, and a transmission means for operating the plurality of switching means to increase and decrease and output the power input from the internal combustion engine,
    Control means for controlling the operation of the clutch and the plurality of switching means,
    The control means operates the clutch so as to disengage the clutch when a drive system load, which is a load applied to the clutch, is zero when the engagement state of the gear train is switched. Type automatic transmission control system.
  2.  前記内燃機関の運転状態を検出する運転状態検出手段を備え、
     前記制御手段は、前記運転状態検出手段にて検出される前記内燃機関の出力トルクと、予め設定される前記内燃機関の慣性モーメントと、前記運転状態検出手段にて検出される前記内燃機関の回転速度変化量とに基づいて前記駆動系負荷を算出することを特徴とする、請求項1に記載の機械式自動変速装置の制御システム。
    Comprising an operating state detecting means for detecting an operating state of the internal combustion engine;
    The control means includes an output torque of the internal combustion engine detected by the operating state detecting means, a preset inertia moment of the internal combustion engine, and a rotation of the internal combustion engine detected by the operating state detecting means. 2. The control system for a mechanical automatic transmission according to claim 1, wherein the drive system load is calculated based on a speed change amount.
  3.  前記車両の走行状態を検出する走行状態検出手段を備え、
     前記制御手段は、前記駆動系負荷と前記クラッチストロークとの関係をマップ管理し、前記走行状態検出手段にて検出される前記車両の走行状態に基づき前記マップを補正し、補正後の前記マップに基づき前記クラッチストロークを算出することを特徴とする、請求項1或いは2に記載の機械式自動変速装置の制御システム。
    A driving state detecting means for detecting the driving state of the vehicle;
    The control means manages a map of the relationship between the driving system load and the clutch stroke, corrects the map based on the traveling state of the vehicle detected by the traveling state detection means, and adds the corrected map to the map. The control system for a mechanical automatic transmission according to claim 1, wherein the clutch stroke is calculated based on the clutch stroke.
  4.  前記制御手段は、
     前記クラッチの入出力回転速度に基づき該クラッチの滑り状態と相関する滑り指標を算出するクラッチ滑り指標算出手段と、
     前記クラッチの切断方向への操作中に、前記クラッチ滑り指標算出手段により算出された滑り指標に基づき、前記クラッチが滑りを生じた半クラッチ状態になったか否かを判定する半クラッチ状態判定手段と、
     前記半クラッチ状態判定手段により半クラッチ状態の判定が下されたときに前記クラッチの操作速度を増加するクラッチ操作速度制御手段と、を備えることを特徴とする、請求項1から3のいずれか1項に記載の機械式自動変速装置の制御システム。
    The control means includes
    Clutch slip index calculating means for calculating a slip index correlated with the slip state of the clutch based on the input / output rotational speed of the clutch;
    Half-clutch state determining means for determining whether or not the clutch is in a half-clutch state in which the clutch has slipped, based on the slip index calculated by the clutch slip index calculating means during operation in the disengagement direction of the clutch; ,
    4. A clutch operation speed control means for increasing the operation speed of the clutch when the half clutch state determination is made by the half clutch state determination means. A control system for the mechanical automatic transmission described in the paragraph.
  5.  前記クラッチ操作速度制御手段は、前記半クラッチ状態の判定が下されたときに、前記クラッチの操作速度を所定の変化率で連続的に増加させることを特徴とする、請求項4に記載の機械式自動変速装置の制御システム。
     
    The machine according to claim 4, wherein the clutch operation speed control means continuously increases the operation speed of the clutch at a predetermined rate of change when the determination of the half-clutch state is made. Type automatic transmission control system.
PCT/JP2012/069085 2011-08-02 2012-07-27 System for controlling mechanical automatic gear system WO2013018671A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280029494.5A CN103608601A (en) 2011-08-02 2012-07-27 System for controlling mechanical automatic gear system
AU2012291146A AU2012291146B2 (en) 2011-08-02 2012-07-27 System for controlling mechanical automatic gear system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011169173A JP2013032805A (en) 2011-08-02 2011-08-02 System for controlling mechanical automatic transmission
JP2011-169173 2011-08-02
JP2011270213A JP5880828B2 (en) 2011-12-09 2011-12-09 Automatic transmission clutch control device
JP2011-270213 2011-12-09

Publications (1)

Publication Number Publication Date
WO2013018671A1 true WO2013018671A1 (en) 2013-02-07

Family

ID=47629195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069085 WO2013018671A1 (en) 2011-08-02 2012-07-27 System for controlling mechanical automatic gear system

Country Status (3)

Country Link
CN (1) CN103608601A (en)
AU (1) AU2012291146B2 (en)
WO (1) WO2013018671A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165204A (en) * 1999-12-13 2001-06-19 Isuzu Motors Ltd Control device for automatic clutch
JP2007211945A (en) * 2006-02-13 2007-08-23 Nissan Diesel Motor Co Ltd Shift control device for vehicle
JP2008025637A (en) * 2006-07-18 2008-02-07 Jatco Ltd Automatic transmission control device and its method
JP2008275036A (en) * 2007-04-27 2008-11-13 Hino Motors Ltd Drive device for vehicle, and learning method of clutch characteristic
JP2009006782A (en) * 2007-06-27 2009-01-15 Nissan Motor Co Ltd Control unit of vehicle
JP2010038176A (en) * 2008-07-31 2010-02-18 Toyota Motor Corp Clutch stroke control device
JP2010265776A (en) * 2009-05-12 2010-11-25 Toyota Motor Corp Control device for manual transmission for vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132663A (en) * 2004-11-05 2006-05-25 Mitsubishi Fuso Truck & Bus Corp Mechanical automatic transmission control device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165204A (en) * 1999-12-13 2001-06-19 Isuzu Motors Ltd Control device for automatic clutch
JP2007211945A (en) * 2006-02-13 2007-08-23 Nissan Diesel Motor Co Ltd Shift control device for vehicle
JP2008025637A (en) * 2006-07-18 2008-02-07 Jatco Ltd Automatic transmission control device and its method
JP2008275036A (en) * 2007-04-27 2008-11-13 Hino Motors Ltd Drive device for vehicle, and learning method of clutch characteristic
JP2009006782A (en) * 2007-06-27 2009-01-15 Nissan Motor Co Ltd Control unit of vehicle
JP2010038176A (en) * 2008-07-31 2010-02-18 Toyota Motor Corp Clutch stroke control device
JP2010265776A (en) * 2009-05-12 2010-11-25 Toyota Motor Corp Control device for manual transmission for vehicle

Also Published As

Publication number Publication date
AU2012291146B2 (en) 2015-10-29
CN103608601A (en) 2014-02-26

Similar Documents

Publication Publication Date Title
US9981663B2 (en) Control device for vehicle
JP5918946B2 (en) Vehicle power transmission control device
JP5278134B2 (en) Coasting control device
WO2011135697A1 (en) Gear shift instruction system for vehicles
US11041451B2 (en) Internal combustion engine control method and internal combustion engine control device
JP5158108B2 (en) Vehicle control device
WO2012086684A1 (en) Wheel loader
RU2606523C2 (en) Method of starting and shutting down engine and engine system
JP5409526B2 (en) Vehicle power transmission control device
JP2017129257A (en) Control device of power transmission device for vehicle
WO2009024305A2 (en) Method for handling drivetrain tolerances
KR101714239B1 (en) Method for controlling clutch of vehicles
JP2015068387A (en) Control device of vehicle
JP2013032805A (en) System for controlling mechanical automatic transmission
JP5704339B2 (en) Fine movement control device for vehicle
JP2013053727A (en) Vehicular power transmission controller
WO2013018671A1 (en) System for controlling mechanical automatic gear system
JP2012121433A (en) Power transmission control device for vehicle
KR102075135B1 (en) Control method for preventing backward moving of a vehicle
JP5310941B2 (en) Control device for vehicle engine
EP2868904B1 (en) Control device for internal combustion engine
JP5880828B2 (en) Automatic transmission clutch control device
JP4135462B2 (en) Drive system component protection control method
JP2009078592A (en) Stuck-state escaping device for vehicle
JP5879067B2 (en) Power transmission device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819453

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012291146

Country of ref document: AU

Date of ref document: 20120727

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12819453

Country of ref document: EP

Kind code of ref document: A1