WO2013018535A1 - Wireless communication system - Google Patents

Wireless communication system Download PDF

Info

Publication number
WO2013018535A1
WO2013018535A1 PCT/JP2012/068082 JP2012068082W WO2013018535A1 WO 2013018535 A1 WO2013018535 A1 WO 2013018535A1 JP 2012068082 W JP2012068082 W JP 2012068082W WO 2013018535 A1 WO2013018535 A1 WO 2013018535A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
reception
antenna
switching
antennas
Prior art date
Application number
PCT/JP2012/068082
Other languages
French (fr)
Japanese (ja)
Inventor
賢也 戸丸
博行 村上
小林 真也
笹浪 斉康
佐々木 金見
中村 学
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Publication of WO2013018535A1 publication Critical patent/WO2013018535A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03592Adaptation methods
    • H04L2025/03598Algorithms
    • H04L2025/03611Iterative algorithms
    • H04L2025/03656Initialisation

Definitions

  • the present invention relates to a radio communication system, and in particular, it can reduce the time required for re-convergence of an equalization coefficient caused by switching of a transmission antenna (transmission system) with transmission diversity using an inverse correlation antenna. Regarding technology.
  • a transmitting antenna and a receiving antenna are installed at two points where a line of sight can be secured.
  • the propagation model at two points can be approximated by a two-wave model of a direct wave and a reflected wave of one path.
  • the propagation model of the FWA system as illustrated in FIG. 11 there is a sea level between the transmission point (position of the antenna a on the transmission side) and the reception point (position of the antenna b on the reception side).
  • the path and path length change as the tide level changes.
  • the carrier phase of the reflected wave at the reception point varies.
  • the carrier phase difference between the direct wave and the reflected wave changes at the reception point, and as a result, the level of the received wave (combined wave) obtained by synthesizing the direct wave and the reflected wave varies.
  • FIG. 12 shows an example of fluctuations in the reception level when the inverse correlation is established.
  • the horizontal axis represents the tide level
  • the vertical axis represents the received electric field strength.
  • the condition for establishing the inverse correlation in FIG. 12 is that “in antenna b-1, when the difference between the carrier phase of the direct wave from antenna a and the carrier phase of the reflected wave is ⁇ , antenna a-2 The difference between the carrier phase of the direct wave from and the carrier phase of the reflected wave is ⁇ + 180 ° ”.
  • the difference in the path length between the direct wave and the reflected wave for the antenna b-1 is referred to as a path distance difference d1
  • the difference in the path length between the direct wave and the reflected wave for the antenna b-2 is referred to as a path distance difference d2.
  • FIG. 14 shows a variation example of the reception level when the inverse correlation is established and the implementation point of switching of the reception antenna
  • FIG. 15 shows the reception level when the inverse correlation is not established. Examples of fluctuations and points for switching the receiving antenna are shown.
  • the point where the receiving antenna is switched is indicated by a white circle “ ⁇ ”.
  • the reception level may be slightly decreased at the time of switching the reception antenna.
  • FIG. 15 shows that when the inverse correlation is not established, the reception level may be slightly decreased at the time of switching the reception antenna.
  • the reception levels at the time of switching of the receiving antennas are all the reception levels at the time of the lowest decrease shown in FIG. It will not drop to.
  • the effect of maintaining the reception level above a certain level in the selected diversity is increased by adding an anti-correlation establishment condition to the installation conditions of the two antennas b-1 and b-2 related to signal reception.
  • FIG. 16 shows an example of selection diversity using the characteristics of the TDD system. That is, at point B on the side of the antennas b-1 and b-2, reception diversity is performed in the time zone on the reception side, and transmission diversity is performed in the time zone on the transmission side. By implementing such transmission diversity, it is possible to keep the reception level at point A on the opposite device side (antenna a side) at a certain level or higher.
  • the reflected wave is delayed with respect to the direct wave.
  • this delay time becomes large with respect to the symbol period, the distortion of the frequency characteristic in the modulation wave band cannot be ignored.
  • equalization processing is usually performed in the time domain or frequency domain.
  • the propagation path is switched and the propagation path characteristics are changed as the receiving antenna is switched. For this reason, the reception quality is temporarily deteriorated when the reception antenna is switched, but in order to eliminate this deterioration, adjustment of parameters (equalization coefficients) used for equalization processing of the reception signal is required. .
  • the reception side needs to adjust parameters (equalization coefficient) used for equalization processing of the received signal. become.
  • Patent Document 1 when the correlation coefficient of two antennas is set to ⁇ 1 and a signal is received by two antennas, the reception input (for example, electric field strength) of one antenna is minimized.
  • the reception correlation for example, the electric field strength
  • the present invention relates to transmission diversity in which a signal is transmitted by selectively using any of a plurality of antennas having a predetermined correlation, and aims to improve communication quality deterioration immediately after switching of the transmission antenna. For the purpose.
  • the transmission side switches the transmission antenna switching timing to the opposite device side (reception side).
  • the receiving side changes the parameter for equalization (equalization coefficient) in synchronization with the notified switching timing.
  • the plurality of antennas having a predetermined correlation are, for example, two antennas having an inverse correlation. That is, on the receiving side, the switching timing of the transmitting antenna on the transmitting side can be grasped in advance, and it is possible to quickly cope with changes in propagation path characteristics accompanying switching of the transmitting antenna.
  • the first transmission / reception device transmits from a specific antenna of the second transmission / reception device.
  • a plurality of antennas having a predetermined correlation between the reception levels of the received signals and the reception levels of the signals transmitted from the specific antennas in the second transmission / reception apparatus and received by the plurality of antennas, respectively, Transmitting antenna switching means for switching an antenna for transmitting a signal to a specific antenna of the second transmitting / receiving apparatus to one of the plurality of antennas, and notifying the second transmitting / receiving apparatus of the switching timing by the transmitting antenna switching means Timing notification means, and the second transmission / reception device is notified by the first transmission / reception device. It was in synchronism with the switching timing, comprising the equalization coefficient changing means for changing the equalization coefficient used for equalization of signals received by said particular antenna.
  • the second transmission / reception apparatus can grasp in advance the transmission antenna switching timing in the first transmission / reception apparatus, and the equalization coefficient used for the equalization processing is synchronized with the switching timing. Since the change (initialization) is performed, the deterioration of the communication quality immediately after switching the transmission antenna is improved.
  • transmission and reception channel characteristics are substantially the same between the same antennas. For example, TDD duplexing is performed in which transmission and reception are performed in the same radio frequency band. A system system is preferred.
  • the first transmission / reception device in the configuration example includes two antennas, and the reception levels of signals transmitted from specific antennas of the second transmission / reception device are opposite to each other in the two antennas. It has a correlation.
  • the coefficient at the time of changing the equalization coefficient is set based on the condition that the reception levels of the two antennas included in the first transmission / reception apparatus have an inverse correlation with the configuration example described above. It is possible to reduce the time required for reconvergence of the equalization coefficient resulting from switching of the transmission system.
  • the transmitting apparatus has a plurality of propagation path characteristics having a predetermined correlation with a specific receiving antenna of the receiving apparatus.
  • a transmitting antenna, transmitting antenna switching means for switching an antenna for transmitting a signal to a specific receiving antenna of the receiving apparatus to one of the plurality of transmitting antennas, and notification of the switching timing by the transmitting antenna switching means to the receiving apparatus Timing notification means, and the reception device performs equalization to change an equalization coefficient used for equalization processing of a signal received by the specific reception antenna in synchronization with the switching timing notified from the transmission device Coefficient changing means is provided.
  • the receiving apparatus can grasp in advance the switching timing of the transmitting antenna in the transmitting apparatus, and the equalization coefficient used for the equalization process is changed (initialized) in synchronization with the switching timing. As a result, the deterioration of communication quality immediately after switching the transmission antenna is improved.
  • the transmitting apparatus has a plurality of propagation path characteristics having a predetermined correlation with a specific receiving antenna of the receiving apparatus.
  • the receiving apparatus can grasp in advance the switching timing of the transmitting antenna in the transmitting apparatus, and the parameter change (initialization) related to the received signal is performed in synchronization with the switching timing. Therefore, the deterioration of communication quality immediately after switching of the transmission antenna is improved.
  • FIG. 1 shows a configuration example of a wireless communication system according to an embodiment of the present invention.
  • the wireless communication system of this example is a TDD duplex system and has two transmission / reception devices.
  • reception diversity and transmission diversity are performed by the first transmission / reception apparatus located at point B (right side in the figure), and the second transmission / reception apparatus located at point A (right side in the figure) opposite to this.
  • a signal obtained as a result of performing transmission diversity on the B point side (first transmission / reception device) is received.
  • the second transmission / reception device located on the point A side includes an ENC unit (encoder unit) 11, a transmission baseband unit 12, a transmission RF unit 13, a TDD-SW unit (transmission / reception switching unit) in addition to the antenna a used for signal transmission / reception. ) 14, a reception RF unit 15, a reception baseband unit 16, a DEC unit (decoder unit) 17, a timing management unit 18, and a control unit 19.
  • the first transmission / reception device located on the point B side includes an ENC unit (encoder unit) 21, a transmission baseband unit 22, a transmission RF unit 23, a transmission system, in addition to the antennas b-1 and b-2 used for signal transmission / reception.
  • TDD-SW unit transmission / reception switching unit
  • reception RF units 26-1, 26-2 reception system selection unit
  • reception baseband unit 28 reception baseband unit
  • DEC unit decoder unit 29
  • timing management unit 30 a level measurement / comparison unit 31, and a control unit 32.
  • the two antennas b-1 and b-2 are arranged in a positional relationship that has an inverse correlation with each other.
  • the ENC unit 11 performs an encoding process on data (user data or control data) input as an object to be transmitted to the first transmission / reception device, and outputs a result signal to the transmission baseband unit 12. .
  • the transmission baseband unit 12 performs transmission baseband processing on the signal input from the ENC unit 11 and outputs the resulting signal to the transmission RF unit 13.
  • the transmission RF unit 13 performs transmission RF processing on the signal input from the transmission baseband unit 12 and outputs the resulting signal to the TDD-SW unit 14.
  • the TDD-SW unit 14 transmits a signal input from the transmission RF unit 13 to the first transmission / reception device through the antenna a, and receives the signal from the first transmission / reception device through the antenna a.
  • the state in which the received signal is output to the reception RF unit 15 is switched.
  • the reception RF unit 15 performs reception RF processing on the signal received from the first transmission / reception device input via the TDD-SW unit 14 and outputs the resultant signal to the reception baseband unit 16.
  • the reception baseband unit 16 performs reception baseband processing on the signal input from the reception RF unit 15 and outputs the resulting signal to the DEC 17.
  • the DEC 17 performs a decoding process on the signal input from the reception baseband unit 16 and outputs the result data (user data or control data).
  • the timing management unit 18 is a counter for confirming a position in a frame related to signal transmission / reception.
  • the control unit 19 performs predetermined control based on the counter value by the timing management unit 18.
  • the ENC unit 21 performs an encoding process on data (user data and control data) input as an object to be transmitted to the second transmission / reception device, and outputs a result signal to the transmission baseband unit 22.
  • the transmission baseband unit 22 performs transmission baseband processing on the signal input from the ENC unit 21 and outputs the resulting signal to the transmission RF unit 23.
  • the transmission RF unit 23 performs transmission RF processing on the signal input from the transmission baseband unit 22 and outputs the resultant signal to the transmission system selection unit 24.
  • the transmission system selection unit 24 outputs a signal input from the transmission RF unit 23 to the TDD-SW unit 25-1 under the control of the control unit 32 (a state in which the first transmission system is used), The state in which the signal input from the transmission RF unit 23 is output to the TDD-SW unit 25-2 (the state in which the second transmission system is used) is switched.
  • the first transmission system is configured by the antenna b-1, the TDD-SW unit 25-1, and the like
  • the second transmission system is configured by the antenna b-2, the TDD-SW unit 25-2, and the like.
  • the TDD-SW unit 25-1 transmits a signal input from the transmission system selection unit 24 to the second transmission / reception device via the antenna b-1 under the control of the control unit 32, and the antenna b-1.
  • the state of outputting the signal received from the second transmission / reception device to the reception RF unit 26-1 is switched.
  • the TDD-SW unit 25-2 transmits a signal input from the transmission system selection unit 24 to the second transmission / reception device through the antenna b-2 under the control of the control unit 32, and the antenna b-2.
  • the state of outputting the signal received from the second transmitting / receiving apparatus to the reception RF unit 26-2 is switched.
  • the reception RF unit 26-1 performs reception RF processing on the signal received from the second transmission / reception device input via the TDD-SW unit 25-1, and the resulting signal is received by the reception system selection unit 27 and Output to the level measurement / comparison unit 31.
  • the reception RF unit 26-2 performs reception RF processing on the signal received from the second transmission / reception device input via the TDD-SW unit 25-2, and the resultant signal is received by the reception system selection unit 27 and Output to the level measurement / comparison unit 31.
  • the reception system selection unit 27 outputs a signal input from the reception RF unit 26-1 to the reception baseband unit 28 (a state in which the first reception system is used), The state in which the signal input from the reception RF unit 26-2 is output to the reception baseband unit 28 (the state in which the second reception system is used) is switched.
  • the first receiving system includes an antenna b-1, a TDD-SW unit 25-1, a receiving RF unit 26-1, and the like
  • the second receiving system includes an antenna b-2 and a TDD-SW unit 25. -2, the reception RF unit 26-2, and the like.
  • the reception baseband unit 28 performs reception baseband processing on the signal input from the reception system selection unit 27 and outputs the resultant signal to the DEC 29.
  • the DEC 29 performs a decoding process on the signal input from the reception baseband unit 28 and outputs the result data (user data and control data).
  • the timing management unit 30 is a counter for confirming a position in a frame related to signal transmission / reception.
  • the level measurement / comparison unit 31 measures the levels (for example, power values) of the signal input from the reception RF unit 26-1 and the signal input from the reception RF unit 26-2, and compares these levels. Then, the information of the comparison result is output to the control unit 32.
  • the control unit 32 performs predetermined control based on the counter value by the timing management unit 30 and the information input from the level measurement / comparison unit.
  • the control unit 32 of the first transmission / reception apparatus switches the reception system to be used based on the information input from the level measurement / comparison unit 31.
  • the reception system selection unit 27 is controlled. Further, control is performed so as to change a parameter related to reception baseband processing in the reception baseband unit 28 together with switching of the reception system (for example, before switching of the reception system).
  • a parameter related to the reception baseband processing an equalization coefficient which is a parameter used for equalization processing of a received signal can be given.
  • the equalization coefficient is initialized according to the reception system after the switching with the switching of the reception system, and then updated (converged) based on a predetermined coefficient update algorithm.
  • the control unit 32 of the first transmission / reception apparatus determines the transmission system to be used based on the information input from the level measurement / comparison unit 31.
  • the transmission timing is determined, and the transmission system selection unit 24 is controlled to switch the transmission system in synchronization with the switching timing. Further, the switching timing information is notified to the second transmitting / receiving apparatus (point A side) prior to switching of the transmission system.
  • the control unit 19 of the second transmission / reception device performs control so as to change the parameters related to the reception baseband processing in the reception baseband unit 16 in synchronization with the notified switching timing.
  • an equalization coefficient which is a parameter used for equalization processing of a received signal can be given.
  • the equalization coefficient is initialized (changed) corresponding to the transmission system after switching in accordance with the switching of the transmission system in the first transmission / reception apparatus (point B side), and then based on a predetermined coefficient update algorithm. Updated (converged).
  • the first transmission / reception apparatus of this example is configured to determine the switching of the transmission system based on the level of the received signal in the same manner as the switching of the reception system.
  • the transmission and reception propagation paths performed between the two antennas are substantially the same, and the second transmission / reception apparatus for the level of the signal received by each reception system and the signal transmitted by the transmission system corresponding to the reception system
  • the reception level at the side is based on changing as well.
  • FIG. 2 shows an example of communication contents in the (n ⁇ 3) th frame
  • FIG. 3 shows an example of communication contents in the (n ⁇ 2) th frame
  • FIG. 5 shows an example of communication contents in the nth frame.
  • Step 1 operation at the n-3rd frame
  • the execution timing of reception diversity and transmission diversity is determined. That is, at point B (first transmitting / receiving apparatus), the levels of signals received by the two receiving systems are measured and compared, and the received level increases as the received level changes. Switch to the other receiving system. Also for the transmission system, switching to the transmission system configured by the same antenna as the reception system is determined. In this example, the reception system is not switched at the time of the current frame (n-3th frame) but at the time of the next frame (n-2th frame) (that is, switching is performed in the middle of the frame). Absent). The transmission system is not switched at this point.
  • Step 2 operation at the (n-2) th frame
  • parameters related to switching of the reception system and reception baseband processing for example, for example, in accordance with the timing of starting reception of the signal of the frame (n-2th frame)
  • Adjustment (change) of parameters related to propagation path characteristic compensation processing such as equalization coefficient is performed.
  • the transmission system is not switched at this point.
  • point A second transmission / reception device
  • Step 3 operation at the (n-1) th frame
  • a notification regarding transmit diversity is performed. That is, at point B (first transmitter / receiver), in order to notify point A (second transmitter / receiver) of the position (transmission system switching timing) of the frame for carrying out transmission diversity,
  • the control data is transmitted by being embedded in the frame (n-2th frame). In this example, switching of the transmission system is not performed at the time of the frame (n-1 frame), but is performed at the time of the next frame (n frame) (that is, not switched in the middle of the frame). .
  • the received control data signal is decoded to extract frame position information (specifying the transmission system switching timing), and at point B (first transmission / reception device). Prepare for switching transmission systems.
  • Step 4 operation at the n-th frame
  • the transmission system is switched in accordance with the timing at which transmission of the signal of the frame (n-th frame) is started.
  • point A second transmission / reception device
  • parameters related to reception baseband processing for example, propagation path characteristic compensation processing such as equalization coefficient
  • the transmission antenna transmission system
  • the point A On the second transmission / reception apparatus side, it is possible to avoid disturbance in the reception state during a temporary period until adaptation to changes in propagation path characteristics is completed.
  • the transmission antenna is switched to a frame immediately after the switching information (position information) is notified to the opposite side (point A side).
  • the present invention is not limited to this. It suffices if the switching process is performed in synchronism with both the second transmitting and receiving apparatuses. That is, for example, information “performed after several frames” (information on the frame position at which transmission system switching is performed) may be notified, and control based on the information may be performed by both apparatuses.
  • switching of the reception system and switching of the transmission system are determined based on the level of the signal received by each reception system, but the present invention is not limited to this.
  • a method of determining based on the result of measuring the spectrum of the received signal may be used.
  • the switching of the reception system and the switching of the transmission system are simultaneously determined, and the switching operation is performed respectively. Differently, switching may be determined at different timings.
  • the wireless communication system of this example is a TDD duplex system, and the first transmission / reception device and the second transmission / reception device are installed facing each other, and the reception level (for example, reception power) is set in the first transmission / reception device.
  • the antenna is provided so that the transition of) has an inverse correlation, and reception diversity is performed by switching the antenna.
  • the first transmission / reception apparatus performs transmission diversity in conjunction with reception diversity by antenna switching. That is, based on the timing at which the reception antenna is switched, transmission is also switched so as to be performed from the switched antenna side. Further, the first transmission / reception device transmits control data in addition to the user data in order to inform the second transmission / reception device of the timing for switching the transmission antenna.
  • switching timing information switching timing information
  • the second transmitting / receiving device determines from the received control data when the transmitting antenna is switched. Then, at a timing specified by the control data, a reception related parameter (for example, equalization coefficient) for changing the transmission antenna is changed.
  • the wireless communication system of the present example in synchronization with the implementation of transmission diversity using the inverse correlation characteristics between the antennas in the transmission side device (first transmission / reception device), the opposite reception side device (second transmission device) The reception-related parameter in the transmission / reception device is changed (approached) to an appropriate value.
  • Such a configuration is useful, for example, when the FWA system is used in an environment affected by tide level fluctuations.
  • reception baseband unit 28 side of the first transmission / reception device (point B side) is substantially the same processing as the reception baseband unit 16 side of the second transmission / reception device (point A side), I'll omit that explanation.
  • reception baseband processing for example, orthogonal modulation processing, decimation (sampling rate conversion) processing, reception filter processing, equalization processing, and the like are sequentially performed.
  • an equalization coefficient that is a parameter used in the equalization processing is initialized.
  • FIG. 9 shows an internal configuration example of the adaptive equalizer provided in the reception baseband unit 16. This example shows a case where the number of taps of the adaptive equalizer is 3, but various other tap numbers may be used.
  • the adaptive equalizer of this example includes three registers (Reg) 51-0 to 51-2, three (coefficient variable) multipliers 52-0 to 52-2, an adder (or an accumulator). 53), three registers (Reg) 61-0 to 61-2, three selection units 62-0 to 62-2, three adjustment units 63-0 to 63-2, A coefficient update unit 64 is provided, and a symbol determination unit 71, a reference signal unit 72, a switch 73, and an adder 74 are provided.
  • n 0, 1, and 2
  • k represents time (for example, a sample number)
  • x n (k) represents an input signal
  • y (k) represents an output signal
  • d Assume that (k) represents a desired signal
  • e n (k) represents an equalization error signal
  • w n (k) represents an equalization signal.
  • x n (k), y (k), d (k), e n (k), and w n (k) are complex numbers.
  • the input signal passes through three registers 51-0 to 51-2 connected in series.
  • the output signal x 0 (k) from the first register 51-0 is input to the first multiplier 52-0 and multiplied by the equalization coefficient w 0 (k), and the resulting signal is added to the adder 53. Is input.
  • the output signal x 1 (k) from the second register 51-1 is input to the second multiplier 52-1, multiplied by the equalization coefficient w 1 (k), and the resulting signal is added to the adder 53. Is input.
  • the output signal x 2 (k) from the third register 51-2 is input to the third multiplier 52-2 and multiplied by the equalization coefficient w 2 (k), and the resulting signal is added to the adder 53. Is input.
  • the adder 53 adds (synthesizes) the signals input from the three multipliers 52-0 to 52-2, and outputs a signal resulting from the addition as an output signal y (k).
  • the signal y (k) is input to the symbol determination unit 71 and the adder 74.
  • the symbol determination unit 71 determines a symbol for the signal y (k) input from the adder 53 and outputs a signal of the determined symbol.
  • the reference signal unit 72 stores in advance a reference signal equal to a predetermined symbol used for training in a memory or the like, and outputs the reference signal.
  • the switch 73 is controlled by the control unit 19, for example, selects the symbol signal from the symbol determination unit 71 as the desired signal d (k) and outputs it to the adder 74, and the reference signal from the reference signal unit 72. The state to be selected and output to the adder 74 is switched as the desired signal d (k).
  • the coefficient updating unit 64 outputs the input signals x 0 (k), x 1 (k), x 2 (k), the equalization error signal e (k), and the registers 61-0 to 61-2.
  • the equalization coefficients w 0 (k), w 1 (k), w 2 (k) are input, and the updated equalization coefficients w 0 (k + 1), w 1 (k + 1), w are input according to a predetermined coefficient update algorithm. 2 (k + 1) is calculated and output to each of the selectors 62-0 to 62-2.
  • the first selecting portion 62-0 equalization coefficient w 0 (k + 1) is output
  • the second selecting portion 62-1 equalization coefficient w 1 (k + 1) is output
  • the The equalization coefficient w 2 (k + 1) is output to the third selection unit 62-2.
  • the time (k + 1) of the output information is expressed with respect to the time k of the input information. However, in the process at the next time, this time (k + 1) is regarded as the time k again.
  • Each adjustment unit 63-0 to 63-2 inputs equalization coefficients w 0 (k), w 1 (k), and w 2 (k) output from the registers 61-0 to 61-2, respectively. Then, the adjustment is performed, and the adjusted equalization coefficient is output to each of the selection units 62-0 to 62-2. Specifically, the first adjustment unit 63-0 inputs the equalization coefficient w 0 (k) and outputs it after adjustment, and the second adjustment unit 63-1 inputs the equalization coefficient w 1 (k). Then, the third adjustment unit 63-2 receives the equalization coefficient w 1 (k) and outputs it after the adjustment. Further, each of the adjusting units 63-0 to 63-2 is controlled by a predetermined control signal (control_A) input from the control unit 19, for example.
  • control_A control signal
  • Each of the selection units 62-0 to 62-2 has equalized coefficients w 0 (k + 1), w 1 (k + 1), w 2 (k + 1) after being updated from the coefficient updating unit 64, respectively, where time (k + 1 ) Is again regarded as time k and considered as equalization coefficients w 0 (k), w 1 (k), w 2 (k).
  • time (k + 1 ) Is again regarded as time k and considered as equalization coefficients w 0 (k), w 1 (k), w 2 (k).
  • the adjusted equalization coefficient from each of the adjustment units 63-0 to 63-2 are input, and one of them is selected and output to each of the registers 61-0 to 61-2.
  • the first selection unit 62-0 performs input and output regarding the equalization coefficient w 0 (k)
  • the second selection unit 62-1 performs input and output regarding the equalization coefficient w 1 (k).
  • the third selection unit 62-2 performs input and output regarding the equalization coefficient w 2 (k).
  • each of the selection units 62-0 to 62-2 is synchronized with the switching of the transmission system in the first transmission / reception device (point B side). Then, the adjusted equalization coefficients from the selection units 62-0 to 62-2 are selected and output to the registers 61-0 to 61-2, and when the transmission system cannot be switched, the coefficient is updated. Control is performed so that the updated equalization coefficient from the unit 64 is selected and output to each of the registers 61-0 to 61-2. Thereby, the equalization coefficient w n (k) in the second transmission / reception apparatus (point A side) is initialized in synchronization with the switching of the transmission system in the first transmission / reception apparatus (point B side).
  • the registers 61-0 to 61-2 multiply the equalization coefficients w 0 (k), w 1 (k), and w 2 (k) input from the selection units 62-0 to 62-2, respectively. And outputs to the adjusting units 63-0 to 63-2 and the coefficient updating unit 64. Specifically, the first register 61-0 processes the equalization coefficient w 0 (k), the second register 61-1 processes the equalization coefficient w 1 (k), and the third register 61 -2 processes the equalization coefficient w 2 (k).
  • FIG. 10 shows an internal configuration example in the adjustment unit 63-0.
  • the adjusting unit 63-0 of this example includes a real part extracting unit 81, an imaginary part extracting unit 82, a -1 unit 83, a multiplier 84, a 0 unit 85, a selector 86, and a complex number converting unit 87.
  • the equalization coefficient w n (k) output from the register 61-0 (for the adjustment unit 63-0, w 0 (k)) is input to the real part extraction unit 81 and the imaginary part extraction unit 82.
  • the real part extraction unit 81 extracts the real part of the input equalization coefficient w n (k) and outputs it to the complex numbering unit 87.
  • the imaginary part extraction unit 82 extracts the imaginary part of the input equalization coefficient w n (k) and outputs it to the multiplier 84.
  • -1 unit 83 outputs a signal having a value of -1 to multiplier 84.
  • Multiplier 84 multiplies the imaginary part signal from imaginary part extraction part 82 by the -1 signal from -1 part 83, and outputs the signal of the multiplication result ( ⁇ 1 ⁇ imaginary part) to selector 86.
  • . 0 unit 85 outputs a signal having a value of 0 to selector 86.
  • the selector 86 switches between a state in which the signal from the multiplier 85 is selected and output to the complex numbering unit 87, and a state in which the signal from the 0 unit 85 is selected and output to the complex numbering unit 87. Further, the selector 86 is controlled by a predetermined control signal (control_A) for adjustment method control input from the control unit 19, for example.
  • control_A a predetermined control signal
  • the complex number conversion unit 87 Based on the signal of the real part input from the real number extraction unit 81 and the signal related to the imaginary part input from the selector 56, the complex number conversion unit 87 generates a complex number composed of these values and adjusts the signal. It outputs to the selection unit (selection unit 62-0 for the adjustment unit 63-0) as the already-equalized coefficient w n (k) (w 0 (k) for the adjustment unit 63-0).
  • the complex unit 87 calculates the imaginary part of the equalization coefficient w n (k) input to the adjustment unit 63-0. A value set to 0 (only the real part) is output as an adjusted equalization coefficient w n (k).
  • the code of the imaginary part is added to one or a plurality of equalization coefficients w n (k) converged so far in synchronization with the transmission system switching timing in the first transmitting / receiving apparatus (point B side).
  • the complex conjugate of each equalization coefficient is obtained, and each equalization coefficient w n (k) is initialized with the value (adjusted equalization coefficient).
  • the equalization coefficient w n (k) is updated based on a predetermined coefficient update algorithm.
  • the reason why the complex conjugate is obtained as the initial value of the equalization coefficient w n (k) at the time of switching the transmission system in the first transmission / reception apparatus (point B side) is that the selection diversity of the inverse correlation antenna as in this example Is implemented based on the fact that the modulation wave spectra (amplitude characteristics) of the reception signals of the two antennas having the inverse correlation are in the relationship as shown in FIGS. 6 (a) to 6 (h).
  • 6 (a) to 6 (h) show carrier phase discrimination between the direct wave and the reflected wave, that is, the modulated wave according to the carrier phase of the reflected wave (delayed wave) when the phase of the carrier of the direct wave is zero.
  • 6A to 6D show the receiving system on the reference side, which are 0 degrees (in-phase addition), +90 degrees, 180 degrees (reverse phase addition), and -90 degrees (+270 degrees), respectively. Shows the case.
  • FIGS. 6E to 6H show the reception system on the anticorrelation side, and are 180 degrees (antiphase addition), ⁇ 90 degrees (+270 degrees), 0 degrees (inphase addition), and +90, respectively. The case is shown.
  • FIGS. 6A to 6D correspond to FIGS.
  • 6E to 6H respectively.
  • the horizontal axis represents frequency and the vertical axis represents amplitude.
  • 6 (a) to 6 (h) show the received signal spectrum on the first transmitting / receiving device side.
  • the transmission and reception propagation paths performed by the same antenna are different. Since they are substantially the same, the signals transmitted from the respective antennas and received on the second transmitting / receiving device side also have the same modulated wave spectrum as in FIG.
  • the modulation wave spectrum of each antenna of the inverse correlation antenna has a certain correlation.
  • the timing at which switching between the reception system and the transmission system is performed based on the reception level of each reception system is, for example, (when +90 degrees to ⁇ 90 degrees) or ( ⁇ 90 degrees). To +90 degrees).
  • the modulated wave spectrum of the reflected wave in this case has left-right symmetry, that is, a characteristic that is reversed left and right around the DC component. This means that the complex conjugate can compensate the propagation path characteristic on the other antenna side if it is an equalization coefficient obtained to compensate the propagation path characteristic on the other antenna side.
  • phase characteristics can also be changed to the propagation path characteristics after antenna switching using complex conjugate.
  • the conditions that can be compensated can be satisfied.
  • each modulated wave spectrum at the time of antenna switching must be symmetrical. More specifically, among the frequency characteristics shown in each modulation wave spectrum, regarding the amplitude characteristics, when the center frequency is set as the inversion axis, one needs to be the same as the one obtained by inverting the other. As for the phase characteristics, after the left / right reversal, the sign of the phase itself must be reversed. If there is a premise that this is satisfied, the effect becomes more remarkable as the delay of the reflected wave with respect to the direct wave increases. However, if this delay becomes too large, reception quality in a period unrelated to diversity will be affected. For this reason, if such an influence can be ignored, the greater the delay, the clearer the effect of this example.
  • the magnitude of the delay time as described above is determined by the relationship between the device installation distance and the antenna installation height. For example, even if the distance is long, if the antenna installation height is low, the difference between the direct wave path length and the reflected wave path length does not increase. On the other hand, even if the distance is not long, if the antenna installation height is high, the difference between the direct wave path length and the reflected wave path length becomes large.
  • the relationship between the direct wave and the reflected wave is relatively simple, and the direct wave and the reflected wave between the diversity antennas are Since the relationship of the phase difference is maintained at about ⁇ / 2, the effect of this example is great. Also, in this example, since antenna switching is performed, for example, the configuration is more suitable for the TDD scheme than the FDD (Frequency Division Duplexing) scheme.
  • the reference antenna for example, antenna b-1 and the reference antenna have an inverse correlation relationship.
  • the arranged inverse correlation antenna for example, antenna b-2 is used, and the reception levels of the reference antenna and the inverse correlation antenna are detected (observed), and the transmission system to be used is determined based on the comparison of the respective levels.
  • the transmission system switching timing is notified to the second transmitting / receiving apparatus (point A side), and transmission system switching is performed in synchronization with the notified switching timing.
  • the equalization coefficient is initialized based on the equalization coefficient before switching in synchronization with the notified switching timing. This shortens the time required for re-convergence of the equalization coefficient in the second transmitter / receiver (point A side) due to switching of the transmission antenna (transmission system) in the first transmitter / receiver (point B). It is possible to do.
  • the initial value of the equalization coefficient at the time of switching is the complex conjugate of the equalization coefficient immediately before switching.
  • the complex conjugate of each coefficient is calculated based on the convergence value of the equalization coefficient immediately before the antenna switching. This is used as an initial value.
  • the equalization necessary immediately after execution of switching that occurs in association with switching of the transmission antenna (transmission system) The time required for coefficient reconvergence can be shortened.
  • the complex conjugate of the equalization coefficient immediately before switching is obtained, and this is calculated as the equalization coefficient at the start of the equalization coefficient reconvergence processing. Use the initial value.
  • the complex number conversion unit 87 includes the imaginary part of the equalization coefficient w n (k) input to the adjustment unit. 0 (only the real part) is output as the adjusted equalization coefficient w n (k).
  • the complex conjugate of the coefficient for compensating one propagation path characteristic becomes the coefficient itself for the other.
  • the state which set the imaginary part of the coefficient to 0 can be taken as the average value of the coefficient before calculating
  • the initial value of the equalization coefficient at the time of switching The real part of the equalization coefficient is left as it is, and the value obtained by zeroing the imaginary part is used.
  • the imaginary number of each coefficient is based on the convergence value of the equalization coefficient immediately before switching. The part is set to 0, and this is used as an initial value.
  • the transmission antenna transmission system
  • the additional follow-up time for different propagation path characteristics can be shortened, and the communication quality at the time of switching can be maintained. Further, for example, even when sea level fluctuations become large and the inverse correlation relationship is not ideal, it is possible to maintain the effect of shortening the time required for the equalization coefficient reconvergence processing.
  • a third embodiment of equalization coefficient initialization will be described.
  • the transmission antenna before switching is synchronized with the switching timing of the transmission system at point B (first transmitting / receiving apparatus).
  • the transmission antenna after switching is set by setting an equalization coefficient different from the equalization coefficient that is adaptively converged based on the reception result (received signal) of the signal transmitted from (changed to a different equalization coefficient)
  • An example of shortening the convergence time of the equalization coefficient for the reception result (reception signal) of the signal transmitted from is shown.
  • such different equalization coefficients are not limited to those shown in the first embodiment and the second embodiment described above, but various ones are available. May be used. This example will explain this.
  • the complex conjugate of the equalization coefficient immediately before the switching timing of the transmission system is used as the initial value.
  • the complex conjugate is not necessarily strictly complex, and other than the complex conjugate, It is conceivable that the convergence time of the equalization coefficient can be shortened by giving a coefficient that reduces the convergence after transmission system switching based on the equalization coefficient immediately before the transmission system switching timing. As such an example, a new equalization coefficient may be given based on the analysis result of the reception spectrum and the equalization coefficient immediately before the transmission system switching timing.
  • the real part of the equalization coefficient immediately before the transmission system switching timing is left as it is and the imaginary part is set to 0 as the initial value.
  • 0 is used for the imaginary part for the equalization coefficient immediately before the switching timing of the transmission system, while the real part of the convergence value up to immediately before is used for the real part.
  • a configuration in which 0, 1 or another predetermined value is used as the initial value may be implemented. Even if the initial value according to such a modification is used, it is expected that an effect of shortening the time required for convergence can be obtained.
  • an appropriate initial value can be set according to antenna characteristics or the like.
  • the first transmission / reception apparatus includes two transmission antennas having inverse correlation, and notifies the second transmission / reception apparatus (reception-side apparatus) of the transmission antenna switching timing.
  • the transmission antenna is switched later, and the second transmission / reception apparatus includes one reception antenna and one adaptive equalizer facing the two transmission antennas, and is synchronized with the switching timing notified from the first transmission / reception apparatus.
  • the equalization coefficient of the adaptive equalizer is changed using the relationship (inverse correlation) between the transmission antennas before and after switching.
  • the equalization coefficient after the change is obtained, for example, by calculation using an inverse correlation with the equalization coefficient before the change (immediately before switching the transmission antenna).
  • the equalization coefficient that is changed in synchronization with the transmission antenna switching timing is given based on the equalization coefficient at the transmission antenna switching timing (for example, immediately before). That is, the changed equalization coefficient is determined based on the equalization coefficient at the timing when the transmission antenna is switched.
  • a complex conjugate at the transmission antenna switching timing (for example, immediately before) is given as the equalization coefficient that is changed in synchronization with the transmission antenna switching timing. That is, the complex conjugate of the equalization coefficient at the timing when the transmission antenna is switched is determined as the changed equalization coefficient.
  • the equalization coefficient that is changed in synchronization with the transmission antenna switching timing is given as the real part the real part of the equalization coefficient at the transmission antenna switching timing (for example, immediately before), and the imaginary part Is given as 0.
  • the equalized coefficient after the change is determined with the real part of the equalization coefficient at the timing when the transmission antenna is switched as it is and the imaginary part being 0.
  • a predetermined value (initial value) is given as the equalization coefficient that is changed in synchronization with the switching timing of the transmission antenna. That is, a preset value is used as the equalization coefficient after change.
  • the first transmission / reception device includes three or more transmission antennas having a predetermined correlation
  • the transmission antenna switching timing is set to the second transmission / reception device (reception-side device).
  • the second transmission / reception apparatus includes one reception antenna and one adaptive equalizer facing the three or more transmission antennas, and the first transmission / reception apparatus In synchronization with the notified switching timing, the equalization coefficient of the adaptive equalizer is changed using the relationship (predetermined correlation) between the transmission antennas before and after switching.
  • the equalization coefficient after the change is obtained, for example, by calculation using a predetermined correlation with the equalization coefficient before the change (immediately before the transmission antenna is switched). Even in such a configuration, for example, in transmission diversity using three or more antennas having a predetermined correlation, it is possible to shorten the time required for reconvergence of equalization coefficients caused by switching of transmission systems. Is possible.
  • the three or more transmission antennas are installed and configured such that the transition of the reception level at each antenna has a correlation, for example, as in the configuration example in which two transmission antennas are switched.
  • the first transmitting / receiving device and the second transmitting / receiving device are configured so that the carrier phase difference between the direct wave and the reflected wave received by each antenna is different by 120 °.
  • the reception level can be kept above a certain level.
  • the difference between the phase of the direct wave and the phase of the delayed wave at an arbitrary timing is as follows.
  • the “specific correlation” is not “inverse correlation”, and the difference between the phase of the direct wave and the phase of the delayed wave in each antenna is 120 °.
  • a reference first antenna a second antenna having a 120 degree phase difference with respect to the first antenna, and a third antenna having a 240 degree phase difference with respect to the first antenna.
  • the reception levels for each of these are set so as to have a mutual relationship as shown in FIG.
  • the modulation spectrum of the carrier phase discrimination between the direct wave and the reflected wave for each antenna has a correlation as shown in FIG.
  • the horizontal axis represents the carrier phase difference between the direct wave and the reflected wave
  • the vertical axis represents the relative level.
  • the horizontal axis represents frequency and the vertical axis represents amplitude.
  • the reception level of the first antenna and the reception level of the third antenna are reversed at the timing (b) at which the reception level of the second antenna is minimized. Since the third antenna is larger, switching from the first antenna to the third antenna is performed at timing (b). Similarly, since the reception level of the third antenna and the reception level of the second antenna are reversed at timing (d) at which the reception level of the first antenna is minimized (timing (d)).
  • the transition of the signal level is shown in FIG. 14 and FIG. 7 are shown, but the present invention is not limited to this.
  • the transmission system is switched based on the reception level in each reception system of the first transmission / reception apparatus.
  • the transmission system before and after the transmission system switching is not dependent on the reception level in each reception system.
  • the equalization coefficient of the adaptive equalizer in the second transmission / reception apparatus may be initialized (changed) to approach an optimum value based on the relationship between the propagation path characteristics before and after the transmission system switching. it can.
  • the equalization coefficient of the adaptive equalizer in the second transmission / reception apparatus may be initialized (changed) to approach an optimum value based on the relationship between the propagation path characteristics before and after the transmission system switching. it can.
  • the first transmission / reception apparatus includes two or three shared antennas shared for signal transmission and reception, and the antenna used for signal transmission is based on the signal received by each shared antenna.
  • the antenna used for signal transmission may be selected by another method. That is, for example, the first transmission / reception apparatus includes two transmission antennas used for signal transmission and one reception antenna used for signal reception, and information related to signals transmitted from the respective transmission antennas is received by the second reception antenna.
  • the transmission antenna may be selectively switched based on the information received from the transmission / reception device.
  • the first invention is a wireless communication system having a first transmission / reception device and a second transmission / reception device that transmit / receive signals to / from each other.
  • the reception level of the signal transmitted from the antenna is equal to the reception level of the plurality of antennas having a predetermined correlation with each other and the signal transmitted from the specific antenna in the second transmission / reception apparatus and received by the plurality of antennas.
  • transmission antenna switching means for switching an antenna for transmitting a signal to a specific antenna of the second transmission / reception apparatus to one of the plurality of antennas, and the switching timing by the transmission antenna switching means for the second reception apparatus.
  • a timing notification means for notifying to the second transmission / reception device wherein the second transmission / reception device includes: In synchronization with the knowledge has been switching timing, the equipped with equalization coefficient changing means for changing the equalization coefficient used for equalization of signals received by a particular antenna, a wireless communication system, characterized in that.
  • the antenna that transmits the signal to the second transmission / reception device is switched to one of the plurality of antennas, A signal can always be transmitted by an antenna that is optimal for signal transmission, and the second transmission / reception device can grasp in advance the switching timing of the antenna that transmits the signal in the first transmission / reception device.
  • the equalization coefficient used for the equalization process is changed (initialized) in synchronization with the timing, the deterioration of the communication quality immediately after switching the transmission antenna is improved.
  • the reception levels of signals transmitted from specific antennas of the second transmission / reception device have a predetermined correlation with each other in the plurality of antennas of the first transmission / reception device. Since the antennas used for transmission are switched, the reception levels of the plurality of antennas have a correlation, and the equalization coefficient is based on the condition that the antennas used for signal transmission are switched based on the reception levels. Since the coefficient at the time of change can be set, it is possible to shorten the time required for reconvergence of the equalization coefficient due to switching of the transmission system.
  • the first transmission / reception device includes two antennas, and the two antennas are transmitted from specific antennas of the second transmission / reception device. It is a radio
  • the two antennas included in the first transmission / reception device have a reception level of a signal transmitted from a specific antenna of the second transmission / reception device.
  • the coefficient at the time of changing the equalization coefficient can be set based on the condition that each reception level has an inverse correlation. It is possible to shorten the time required for reconvergence of the equalization coefficient caused by system switching.
  • the transmitting apparatus has a plurality of transmissions whose propagation path characteristics with a specific receiving antenna of the receiving apparatus have a predetermined correlation
  • An antenna transmission antenna switching means for switching an antenna that transmits a signal to a specific reception antenna of the reception apparatus, to one of the plurality of transmission antennas, and timing for notifying the reception apparatus of switching timing by the transmission antenna switching means
  • An equalization coefficient for changing an equalization coefficient used for equalization processing of a signal received by the specific reception antenna in synchronization with the switching timing notified from the transmission apparatus.
  • a wireless communication system including a changing unit.
  • the receiving apparatus can grasp in advance the switching timing of the transmitting antenna in the transmitting apparatus, and changes the equalization coefficient used for equalization processing (initially) in synchronization with the switching timing. Therefore, the deterioration of the communication quality immediately after switching the transmission antenna is improved.
  • the coefficient at the time of changing the equalization coefficient can be set in consideration of the correlation. It is possible to shorten the time required for reconvergence of the equalization coefficient resulting from the switching of.
  • the correlation of the propagation path characteristics possessed by the plurality of transmission antennas of the transmission apparatus for example, the modulation wave spectrum (frequency characteristics) of the signals transmitted from the plurality of transmission antennas is as shown in FIG. 7 and the relationship shown in FIG.
  • the transmission antenna switching means is, for example, the timing management unit 30, the level measurement / comparison unit 31, the control unit 32, the transmission system selection unit in the above-described embodiment (FIG. 1). 24.
  • the timing notification unit includes the timing management unit 30, the control unit 32, and the components related to the function of transmitting signals (ENC unit 21, transmission baseband unit 22, transmission).
  • the equalization coefficient changing means is configured by, for example, the adaptive equalizer (FIG. 9) provided in the timing management unit 18, the control unit 19, and the reception baseband unit 16 in the above-described embodiment (FIG. 1).
  • the transmitting apparatus has a plurality of propagation path characteristics having a predetermined correlation with a specific receiving antenna of the receiving apparatus.
  • a transmission antenna, transmission antenna switching means for switching an antenna for transmitting a signal to a specific reception antenna of the reception apparatus to one of the plurality of antennas, and timing for notifying the reception apparatus of switching timing by the transmission antenna switching means Notification means, and the reception device further includes parameter changing means for changing a parameter related to processing for a signal received by the specific reception antenna in synchronization with the switching timing notified from the transmission device.
  • the receiving apparatus can grasp in advance the switching timing of the transmitting antenna in the transmitting apparatus, and changes (initialization) of parameters relating to processing on the received signal in synchronization with the switching timing. Therefore, the deterioration of communication quality immediately after the transmission antenna is switched is improved.
  • the propagation path characteristics for example, the modulated wave spectrum
  • the correlation is taken into account when changing parameters related to processing on the received signal.
  • a parameter can be set, and the parameter can be brought close to an optimum value when the parameter is changed due to switching of the transmission system.
  • the parameter changing means in the fourth invention is an adaptive equalizer (FIG. 9) provided in the timing management unit 18, the control unit 19, and the reception baseband unit 16, for example, in the above-described embodiment (FIG. 1). ) Etc.
  • 5th invention is the said transmission apparatus in the radio
  • the transmission device notifies the reception device of the switching timing of the transmission antenna in advance, and the reception device can grasp the timing in advance.
  • the reception apparatus uses, for example, an equalization coefficient used for equalization processing of the received signal. Can be changed (initialized) to a value based on the correlation in synchronization with the switching timing. As a result, it is possible to improve the degradation of communication quality immediately after switching of the transmission antenna in the transmission apparatus, and to shorten the time required for reconvergence of the equalization coefficient due to switching of the transmission system.
  • an equalization coefficient used for equalization processing of the received signal can be changed (initialized) to a value based on the correlation in synchronization with the switching timing.
  • a sixth invention includes a plurality of transmitting antennas having propagation path characteristics having a predetermined correlation between a receiving device that receives a signal by a specific receiving antenna and the specific receiving antenna of the receiving device, A transmitting apparatus that transmits a signal by switching an antenna that transmits a signal to a specific receiving antenna of the apparatus to one of the plurality of transmitting antennas, wherein the receiving apparatus includes: A switching timing acquisition unit that receives a signal notifying a timing for switching the plurality of transmission antennas from the transmission device and acquires a switching timing of the transmission antenna based on the received signal, and a switching acquired by the switching timing acquisition unit Equalization of signals received by the specific receiving antenna in synchronization with timing With an equalization coefficient changing means for changing the equalization coefficients used sense, it is a receiving apparatus according to claim.
  • the receiving apparatus can grasp in advance the transmission antenna switching timing in the transmitting apparatus, and changes the equalization coefficient used for equalization processing (initially) in synchronization with the switching timing. Therefore, the deterioration of the communication quality immediately after switching the transmission antenna is improved.
  • the coefficient when changing the equalization coefficient is set based on the correlation. It is possible to reduce the time required for reconvergence of the equalization coefficient resulting from switching of the transmission system.
  • the switching timing acquisition means in the sixth aspect of the invention comprises, for example, the antenna a, the reception RF unit 15, the reception baseband unit 16, the DEC 17, the control unit 19 and the like in the above-described embodiment (FIG. 1).
  • a seventh invention comprises a plurality of transmitting antennas having propagation path characteristics having a predetermined correlation between a receiving device that receives a signal by a specific receiving antenna and the specific receiving antenna of the receiving device, A transmitting device that switches to one of the transmitting antennas and transmits a signal to a specific receiving antenna of the receiving device, and a control method for the transmitting device and the receiving device in a wireless communication system, The receiving device is notified of the timing of switching a transmission antenna that transmits a signal to the receiving device, and the receiving device synchronizes with the switching timing notified from the transmitting device by the specific receiving antenna.
  • a control method for the transmitting apparatus and the receiving apparatus characterized in that an equalization coefficient used for equalization processing of a received signal is changed. .
  • the reception device can grasp in advance the switching timing of the transmission antenna in the transmission device, and changes the equalization coefficient used in the equalization processing (initially) in synchronization with the switching timing. Therefore, the deterioration of the communication quality immediately after switching the transmission antenna is improved.
  • the coefficient when changing the equalization coefficient is set based on the correlation. It is possible to reduce the time required for reconvergence of the equalization coefficient resulting from switching of the transmission system.
  • the eighth invention selects a plurality of antennas whose propagation path characteristics between a second transmitting / receiving apparatus that transmits / receives a signal using a specific antenna and a specific antenna of the second transmitting / receiving apparatus have a predetermined correlation
  • the eighth invention in the first transmission / reception device, by switching the antenna that transmits a signal to the second transmission / reception device to one of the plurality of antennas based on the reception level of the received signal, A signal can always be transmitted by an antenna that is optimal for signal transmission, and the second transmission / reception device can grasp in advance the switching timing of the antenna that transmits the signal in the first transmission / reception device.
  • the equalization coefficient used for the equalization process is changed (initialized) in synchronization with the timing, the deterioration of the communication quality immediately after switching the transmission antenna is improved.
  • the reception levels of signals transmitted from specific antennas of the second transmission / reception device have a predetermined correlation with each other in the plurality of antennas of the first transmission / reception device. Since the antennas used for transmission are switched, the reception levels of the plurality of antennas have a correlation, and the equalization coefficient is based on the condition that the antennas used for signal transmission are switched based on the reception levels. Since the coefficient at the time of change can be set, it is possible to shorten the time required for reconvergence of the equalization coefficient due to switching of the transmission system.
  • the present invention can reduce the time required for re-convergence of an equalization coefficient caused by switching of a transmission antenna (transmission system) with transmission diversity using an inverse correlation antenna, and is used for a wireless communication system. be able to.
  • ENC section encoder section
  • 12 transmission baseband section
  • 13 transmission RF section
  • 14 TDD-SW section (transmission / reception switching section)
  • 15 reception RF section
  • 16 reception baseband section
  • 17 DEC Part (decoder part)
  • 18 timing management part
  • 19 control part
  • 22 transmission baseband part
  • 24 transmission system selection part
  • 26-1, 26-2 reception RF unit
  • 27 reception system selection unit
  • 28 reception baseband unit
  • 29 DEC unit (decoder unit)
  • 30 Timing management unit
  • 31 Level measurement / comparison unit
  • 32 Control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

The present invention improves degradation of communication quality immediately after switching of transmission antennas in transmission diversity in which signals are transmitted by selectively using one of a plurality of antennas having a predetermined correlation. A control unit (32) of a first transmission/reception device (B side) determines a timing for switching the transmission system being used on the basis of information input from a level measurement/comparing unit (31), and controls a transmission system selecting unit (24) so as to switch the transmission system in synchronization with the switching timing. The information relating to the switching timing is notified to a second transmission/reception device (A side) prior to the switching of the transmission system. A control unit (19) of the second transmission/reception device performs a control to change a parameter related to reception baseband processing in a reception baseband unit (16) in synchronization with the notified switching timing.

Description

無線通信システムWireless communication system
 本発明は、無線通信システムに関し、特に、逆相関アンテナを利用した送信ダイバーシティで、送信アンテナ(送信系)の切り換えに起因する等化係数の再収束などにおいて、その所要時間を短縮することができる技術に関する。 The present invention relates to a radio communication system, and in particular, it can reduce the time required for re-convergence of an equalization coefficient caused by switching of a transmission antenna (transmission system) with transmission diversity using an inverse correlation antenna. Regarding technology.
 FWA(Fixed Wireless Access)システムでは、見通しが確保できる2地点に送信アンテナと受信アンテナが設置される。この場合、2地点における伝搬モデルとしては、直接波と1パスの反射波との2波モデルで近似することができる。 ここで、図11に例示するようなFWAシステムの伝搬モデルにおいて、送信点(送信側のアンテナaの位置)と受信点(受信側のアンテナbの位置)との間に海面が存在し、更に、反射波の反射点が海面上に位置する場合について検討する。 まず、直接波に関しては、潮位が変動しても、キャリア位相が変化することはない。 一方、反射波に関しては、潮位の変動に伴って、経路及び経路長が変化する。その結果、受信点における反射波のキャリア位相には変動が生じる。 このため、受信点では、直接波と反射波のキャリア位相差が変化することになり、その結果、直接波と反射波を合成した受信波(合成波)のレベルが変動する。 In the FWA (Fixed Wireless Access) system, a transmitting antenna and a receiving antenna are installed at two points where a line of sight can be secured. In this case, the propagation model at two points can be approximated by a two-wave model of a direct wave and a reflected wave of one path. Here, in the propagation model of the FWA system as illustrated in FIG. 11, there is a sea level between the transmission point (position of the antenna a on the transmission side) and the reception point (position of the antenna b on the reception side). Consider the case where the reflection point of the reflected wave is located on the sea surface. First, for direct waves, even if the tide level fluctuates, the carrier phase does not change. On the other hand, for the reflected wave, the path and path length change as the tide level changes. As a result, the carrier phase of the reflected wave at the reception point varies. For this reason, the carrier phase difference between the direct wave and the reflected wave changes at the reception point, and as a result, the level of the received wave (combined wave) obtained by synthesizing the direct wave and the reflected wave varies.
 受信レベルが変動する場合、ダイバーシティの実施により、レベル変動の影響を軽減することができる。ダイバーシティには、各種の方式が存在する。例えば、図12に例示するように、信号の受信に係る2つのアンテナb-1,b-2をそれぞれ異なる位置に設置し、各々を適宜切り替える選択ダイバーシティ方式がある。 ここで、図12のような選択ダイバーシティ方式において、アンテナb-1,b-2の位置関係が後述の条件(逆相関成立条件)を満たすとき、アンテナb-1による受信レベルの変動と、アンテナb-2による受信レベルの変動との関係が、逆相関関係になる。図13には、逆相関関係が成立している場合の受信レベルの変動例を示してある。図13において、横軸は潮位を表しており、縦軸は受信電界強度を表している。 When the reception level fluctuates, the effect of level fluctuation can be reduced by implementing diversity. There are various types of diversity. For example, as illustrated in FIG. 12, there is a selection diversity system in which two antennas b-1 and b-2 related to signal reception are installed at different positions and are switched appropriately. Here, in the selection diversity system as shown in FIG. 12, when the positional relationship between the antennas b-1 and b-2 satisfies a condition (an anti-correlation establishment condition) described later, the fluctuation of the reception level by the antenna b-1 and the antenna The relationship with the fluctuation in the reception level due to b-2 is an inverse correlation. FIG. 13 shows an example of fluctuations in the reception level when the inverse correlation is established. In FIG. 13, the horizontal axis represents the tide level, and the vertical axis represents the received electric field strength.
 なお、図12における逆相関成立条件は、「アンテナb-1において、アンテナaからの直接波のキャリア位相と反射波のキャリア位相との差がδθであるとき、アンテナb-2において、アンテナaからの直接波のキャリア位相と反射波のキャリア位相との差がδθ+180°になること」である。 ここで、アンテナb-1に対する直接波と反射波の路程の差を路程差d1とし、アンテナb-2に対する直接波と反射波の路程の差を路程差d2とする。そして、位相で表現した上記の逆相関成立条件をキャリア波長での表現に言い換えると、逆相関成立条件は、「路程差d1と路程差d2の差が1/2波長になること」となる。従って、この条件を満たす位置関係でアンテナb-1,b-2を設置すれば良いことになる。 なお、より一般的には、「d1-d2=(2m+1)λ/2」の条件を満たす時、アンテナb-1,b-2は逆相関の関係が成立する。λはキャリア波長、mは0以上の整数である。 Note that the condition for establishing the inverse correlation in FIG. 12 is that “in antenna b-1, when the difference between the carrier phase of the direct wave from antenna a and the carrier phase of the reflected wave is δθ, antenna a-2 The difference between the carrier phase of the direct wave from and the carrier phase of the reflected wave is δθ + 180 ° ”. Here, the difference in the path length between the direct wave and the reflected wave for the antenna b-1 is referred to as a path distance difference d1, and the difference in the path length between the direct wave and the reflected wave for the antenna b-2 is referred to as a path distance difference d2. In other words, the above-described inverse correlation establishment condition expressed in phase is expressed in terms of carrier wavelength, and the inverse correlation establishment condition is “the difference between the path distance difference d1 and the path distance difference d2 is ½ wavelength”. Therefore, the antennas b-1 and b-2 need only be installed in a positional relationship that satisfies this condition. Note that, more generally, when the condition of “d1−d2 = (2m + 1) λ / 2” is satisfied, the antennas b-1 and b-2 have an inverse correlation relationship. λ is a carrier wavelength, and m is an integer of 0 or more.
 潮位に対する受信レベルの変動と、受信レベルの変動に対処するための受信アンテナの切り換えの実施について、図14、図15を参照して説明する。図14には、逆相関関係が成立している場合の受信レベルの変動例及び受信アンテナの切り換えの実施点を示してあり、図15には、逆相関関係が成立していない場合の受信レベルの変動例及び受信アンテナの切り換えの実施点を示してある。図14、図15では、受信アンテナの切り換えの実施点を白抜きの“○”で示している。 図15に示されるように、逆相関関係が成立していない場合には、受信アンテナの切り換えの実施時点において、受信レベルの低下がやや大きくなる場合がある。これに対し、図14に示されるように、逆相関関係が成立している場合には、受信アンテナの切り換えの実施時点の受信レベルは、全て、図15に示した最も低下した際の受信レベルにまで低下することはない。 つまり、信号の受信に係る2つのアンテナb-1,b-2の設置条件に逆相関成立条件を加えることで、選択ダイバーシティにおいて受信レベルを一定以上に保つ効果が大きくなるといえる。 The reception level change with respect to the tide level and the execution of switching of the reception antenna to deal with the reception level change will be described with reference to FIGS. FIG. 14 shows a variation example of the reception level when the inverse correlation is established and the implementation point of switching of the reception antenna, and FIG. 15 shows the reception level when the inverse correlation is not established. Examples of fluctuations and points for switching the receiving antenna are shown. In FIG. 14 and FIG. 15, the point where the receiving antenna is switched is indicated by a white circle “◯”. As shown in FIG. 15, when the inverse correlation is not established, the reception level may be slightly decreased at the time of switching the reception antenna. On the other hand, as shown in FIG. 14, when the inverse correlation is established, the reception levels at the time of switching of the receiving antennas are all the reception levels at the time of the lowest decrease shown in FIG. It will not drop to. In other words, it can be said that the effect of maintaining the reception level above a certain level in the selected diversity is increased by adding an anti-correlation establishment condition to the installation conditions of the two antennas b-1 and b-2 related to signal reception.
 ここで、複信方式としてTDD(Time Division Duplexing)を採用したシステムでは、上述した受信側の選択ダイバーシティ(受信ダイバーシティ)に加え、受信アンテナの切り換え制御に基づいた送信アンテナの切り換え(送信ダイバーシティ)も可能である。これは、TDDの場合には送受信を同一周波数のキャリアで行う、という特徴を有効に利用する方式である。 図16には、TDDシステムの特徴を利用した選択ダイバーシティの例を示してある。すなわち、アンテナb-1,b-2の側であるB点では、受信側の時間帯には受信ダイバーシティを行い、送信側の時間帯には送信ダイバーシティを行う。このような送信ダイバーシティの実施により、対向する装置側(アンテナaの側)であるA点の受信レベルも一定以上のレベルに保つことが可能になる。 Here, in a system that employs TDD (Time Division Duplexing) as a duplex method, in addition to the selection diversity (reception diversity) on the reception side, transmission antenna switching (transmission diversity) based on reception antenna switching control is also performed. Is possible. This is a method that effectively utilizes the feature that transmission and reception are performed with a carrier of the same frequency in the case of TDD. FIG. 16 shows an example of selection diversity using the characteristics of the TDD system. That is, at point B on the side of the antennas b-1 and b-2, reception diversity is performed in the time zone on the reception side, and transmission diversity is performed in the time zone on the transmission side. By implementing such transmission diversity, it is possible to keep the reception level at point A on the opposite device side (antenna a side) at a certain level or higher.
 次に、伝搬路特性の補償について説明する。 反射波は、直接波に対して遅延する。この遅延時間がシンボル周期に対して大きくなると、変調波帯域内の周波数特性の歪みが無視できなくなる。変調多値数を大きくするためには、このような伝搬路歪みの補償が必須となる。この場合には、通常、時間領域或いは周波数領域において等化処理が行われる。 ここで、アンテナ選択による受信ダイバーシティを実施する場合、受信アンテナの切り換えに伴って伝搬路が切り換わり、伝搬路特性も変化する。このため、受信アンテナの切り換え時には受信品質が一時的に劣化することになるが、この劣化を解消するために、受信信号の等化処理に用いるパラメータ(等化係数)の調整などが必要になる。 同様に、アンテナ選択による送信ダイバーシティを実施する場合にも、送信アンテナの切り換えに伴って伝搬路特性が変化する。このため、送信アンテナの切り換え時には受信品質が一時的に劣化することになり、この劣化を解消するために、受信側は受信信号の等化処理に用いるパラメータ(等化係数)の調整などが必要になる。 Next, compensation for propagation path characteristics will be described. The reflected wave is delayed with respect to the direct wave. When this delay time becomes large with respect to the symbol period, the distortion of the frequency characteristic in the modulation wave band cannot be ignored. In order to increase the modulation multi-level number, such propagation path distortion compensation is essential. In this case, equalization processing is usually performed in the time domain or frequency domain. Here, when receiving diversity by antenna selection is performed, the propagation path is switched and the propagation path characteristics are changed as the receiving antenna is switched. For this reason, the reception quality is temporarily deteriorated when the reception antenna is switched, but in order to eliminate this deterioration, adjustment of parameters (equalization coefficients) used for equalization processing of the reception signal is required. . Similarly, when performing transmission diversity by selecting an antenna, the propagation path characteristics change as the transmission antenna is switched. For this reason, the reception quality is temporarily deteriorated when the transmission antenna is switched, and in order to eliminate this deterioration, the reception side needs to adjust parameters (equalization coefficient) used for equalization processing of the received signal. become.
 なお、ダイバーシティに関し、これまでに種々の発明が提案されている。 例えば、特許文献1には、2つのアンテナの相関係数を-1として、2つのアンテナで信号を受信する場合に、一方のアンテナの受信入力(例えば、電界強度)が最小となったときに、他方のアンテナの受信入力(例えば、電界強度)が最大となる逆相関関係とする構成が開示されている。 It should be noted that various inventions have been proposed regarding diversity. For example, in Patent Document 1, when the correlation coefficient of two antennas is set to −1 and a signal is received by two antennas, the reception input (for example, electric field strength) of one antenna is minimized. A configuration is disclosed in which the reception correlation (for example, the electric field strength) of the other antenna has the maximum inverse correlation.
特開2002-135182号公報JP 2002-135182 A
 上述したようにアンテナ選択による送信ダイバーシティを実施する場合、対向する装置側(受信側)では、通信相手(送信側)がいつ送信アンテナを切り換えるか把握しておらず、実際に送信アンテナが切り換わった際の等化用パラメータ(等化係数)の調整などが遅延してしまうため、切り換え直後の通信品質が劣化することになる。 そこで、本発明では、所定の相関関係を有する複数のアンテナのうちのいずれかを選択的に使用して信号の送信を行う送信ダイバーシティに関し、送信アンテナの切り換え直後における通信品質の劣化の改善を図ることを目的とする。 As described above, when performing transmission diversity by antenna selection, the opposite device side (reception side) does not know when the communication partner (transmission side) switches the transmission antenna, and the transmission antenna actually switches. Adjustment of the equalization parameter (equalization coefficient) at the time of delay is delayed, so that the communication quality immediately after switching is deteriorated. Therefore, the present invention relates to transmission diversity in which a signal is transmitted by selectively using any of a plurality of antennas having a predetermined correlation, and aims to improve communication quality deterioration immediately after switching of the transmission antenna. For the purpose.
 上記課題を解決するために、本発明では、所定の相関関係を有する複数のアンテナを用いて送信ダイバーシティを実施するにあたり、送信側では、送信アンテナを切り換えるタイミングを対向する装置側(受信側)に通知し、受信側では、通知された切り換えタイミングに同期して等化用パラメータ(等化係数)などを変更する。 ここで、所定の相関関係を有する複数のアンテナとしては、例えば、逆相関関係を有する2つのアンテナである。 すなわち、受信側では、送信側における送信アンテナの切り換えタイミングを事前に把握でき、送信アンテナの切り換えに伴う伝搬路特性の変化への対応を速やかに行える。 In order to solve the above-described problem, in the present invention, when performing transmission diversity using a plurality of antennas having a predetermined correlation, the transmission side switches the transmission antenna switching timing to the opposite device side (reception side). The receiving side changes the parameter for equalization (equalization coefficient) in synchronization with the notified switching timing. Here, the plurality of antennas having a predetermined correlation are, for example, two antennas having an inverse correlation. That is, on the receiving side, the switching timing of the transmitting antenna on the transmitting side can be grasped in advance, and it is possible to quickly cope with changes in propagation path characteristics accompanying switching of the transmitting antenna.
 一構成例として、互いに信号の送受信を行う第1の送受信装置と第2の送受信装置とを有する無線通信システムにおいて、前記第1の送受信装置は、前記第2の送受信装置の特定のアンテナから送信される信号の受信レベルが互いに所定の相関関係を有する複数のアンテナと、前記第2の送受信装置における特定のアンテナから送信されて前記複数のアンテナによりそれぞれ受信される信号の受信レベルに基づいて、前記第2の送受信装置の特定のアンテナへ信号を送信するアンテナを前記複数のアンテナのいずれかに切り換える送信アンテナ切換手段と、前記送信アンテナ切換手段による切り換えタイミングを前記第2の送受信装置に通知するタイミング通知手段と、を備え、前記第2の送受信装置は、前記第1の送受信装置から通知された切り換えタイミングに同期して、前記特定のアンテナにより受信する信号の等化処理に用いる等化係数を変更する等化係数変更手段を備える。 当該構成によれば、第2の送受信装置では、第1の送受信装置における送信アンテナの切り換えタイミングを事前に把握することができ、当該切り換えタイミングに同期して、等化処理に用いる等化係数の変更(初期化)が実施されるため、送信アンテナの切り換え直後における通信品質の劣化が改善される。 なお、上記無線通信システムとしては、同一のアンテナ間において送信及び受信の伝搬路特性が実質的に同一であることが望ましく、例えば、送信及び受信を同一の無線周波数帯で行う、TDDによる複信方式システムが好適である。 As a configuration example, in a wireless communication system having a first transmission / reception device and a second transmission / reception device that transmit / receive signals to / from each other, the first transmission / reception device transmits from a specific antenna of the second transmission / reception device. A plurality of antennas having a predetermined correlation between the reception levels of the received signals and the reception levels of the signals transmitted from the specific antennas in the second transmission / reception apparatus and received by the plurality of antennas, respectively, Transmitting antenna switching means for switching an antenna for transmitting a signal to a specific antenna of the second transmitting / receiving apparatus to one of the plurality of antennas, and notifying the second transmitting / receiving apparatus of the switching timing by the transmitting antenna switching means Timing notification means, and the second transmission / reception device is notified by the first transmission / reception device. It was in synchronism with the switching timing, comprising the equalization coefficient changing means for changing the equalization coefficient used for equalization of signals received by said particular antenna. According to this configuration, the second transmission / reception apparatus can grasp in advance the transmission antenna switching timing in the first transmission / reception apparatus, and the equalization coefficient used for the equalization processing is synchronized with the switching timing. Since the change (initialization) is performed, the deterioration of the communication quality immediately after switching the transmission antenna is improved. Note that, in the above wireless communication system, it is desirable that transmission and reception channel characteristics are substantially the same between the same antennas. For example, TDD duplexing is performed in which transmission and reception are performed in the same radio frequency band. A system system is preferred.
 また、一構成例として、上記構成例の第1の送受信装置は2つのアンテナを備え、当該2つのアンテナにおいて、前記第2の送受信装置の特定のアンテナから送信される信号の受信レベルが互いに逆相関となる関係を有する。 当該構成によれば、上記構成例に対して、特に、第1の送受信装置が備える2つのアンテナの各受信レベルが逆相関関係を有するという条件に基づいて等化係数変更時の係数を設定することができ、送信系の切り換えに起因する等化係数の再収束において、その所要時間を短縮することが可能である。 As one configuration example, the first transmission / reception device in the configuration example includes two antennas, and the reception levels of signals transmitted from specific antennas of the second transmission / reception device are opposite to each other in the two antennas. It has a correlation. According to this configuration, the coefficient at the time of changing the equalization coefficient is set based on the condition that the reception levels of the two antennas included in the first transmission / reception apparatus have an inverse correlation with the configuration example described above. It is possible to reduce the time required for reconvergence of the equalization coefficient resulting from switching of the transmission system.
 また、一構成例として、対向する送信装置と受信装置を有する無線通信システムにおいて、前記送信装置は、前記受信装置の特定の受信アンテナとの間の伝搬路特性が所定の相関関係を有する複数の送信アンテナと、前記受信装置の特定の受信アンテナへ信号を送信するアンテナを前記複数の送信アンテナのいずれかに切り換える送信アンテナ切換手段と、前記送信アンテナ切換手段による切り換えタイミングを前記受信装置に通知するタイミング通知手段と、を備え、前記受信装置は、前記送信装置から通知された切り換えタイミングに同期して、前記特定の受信アンテナにより受信する信号の等化処理に用いる等化係数を変更する等化係数変更手段を備える。 当該構成によれば、受信装置では、送信装置における送信アンテナの切り換えタイミングを事前に把握することができ、当該切り換えタイミングに同期して、等化処理に用いる等化係数の変更(初期化)が実施されるため、送信アンテナの切り換え直後における通信品質の劣化が改善される。 Further, as a configuration example, in a radio communication system having a transmitting apparatus and a receiving apparatus facing each other, the transmitting apparatus has a plurality of propagation path characteristics having a predetermined correlation with a specific receiving antenna of the receiving apparatus. A transmitting antenna, transmitting antenna switching means for switching an antenna for transmitting a signal to a specific receiving antenna of the receiving apparatus to one of the plurality of transmitting antennas, and notification of the switching timing by the transmitting antenna switching means to the receiving apparatus Timing notification means, and the reception device performs equalization to change an equalization coefficient used for equalization processing of a signal received by the specific reception antenna in synchronization with the switching timing notified from the transmission device Coefficient changing means is provided. According to this configuration, the receiving apparatus can grasp in advance the switching timing of the transmitting antenna in the transmitting apparatus, and the equalization coefficient used for the equalization process is changed (initialized) in synchronization with the switching timing. As a result, the deterioration of communication quality immediately after switching the transmission antenna is improved.
 また、一構成例として、対向する送信装置と受信装置とを有する無線通信システムにおいて、前記送信装置は、前記受信装置の特定の受信アンテナとの間の伝搬路特性が所定の相関関係を有する複数の送信アンテナと、前記受信装置の特定の受信アンテナへ信号を送信するアンテナを前記複数のアンテナのいずれかに切り換える送信アンテナ切換手段と、前記送信アンテナ切換手段による切り換えタイミングを前記受信装置に通知するタイミング通知手段と、を備え、前記受信装置は、前記送信装置から通知された切り換えタイミングに同期して、前記特定の受信アンテナにより受信する信号に対する処理に関するパラメータを変更するパラメータ変更手段を備える。 当該構成によれば、受信装置では、送信装置における送信アンテナの切り換えタイミングを事前に把握することができ、当該切り換えタイミングに同期して、受信信号に対する処理に関するパラメータの変更(初期化)が実施されるため、送信アンテナの切り換え直後における通信品質の劣化が改善される。 Further, as a configuration example, in a wireless communication system having a transmitting apparatus and a receiving apparatus facing each other, the transmitting apparatus has a plurality of propagation path characteristics having a predetermined correlation with a specific receiving antenna of the receiving apparatus. Transmitting antenna, transmitting antenna switching means for switching an antenna for transmitting a signal to a specific receiving antenna of the receiving apparatus to any of the plurality of antennas, and notification of switching timing by the transmitting antenna switching means to the receiving apparatus Timing notification means, and the reception apparatus includes parameter change means for changing a parameter related to processing for a signal received by the specific reception antenna in synchronization with the switching timing notified from the transmission apparatus. According to this configuration, the receiving apparatus can grasp in advance the switching timing of the transmitting antenna in the transmitting apparatus, and the parameter change (initialization) related to the received signal is performed in synchronization with the switching timing. Therefore, the deterioration of communication quality immediately after switching of the transmission antenna is improved.
 本発明によれば、所定の相関関係を有する複数のアンテナのうちのいずれかを選択的に使用して信号の送信を行う送信ダイバーシティに関し、送信アンテナの切り換え直後における通信品質の劣化が改善される。 Advantageous Effects of Invention According to the present invention, regarding transmission diversity in which a signal is transmitted by selectively using any of a plurality of antennas having a predetermined correlation, communication quality degradation immediately after switching of transmission antennas is improved. .
本発明の一実施形態に係る無線通信システムの構成例を示す図である。It is a figure which shows the structural example of the radio | wireless communications system which concerns on one Embodiment of this invention. n-3番目のフレームにおける通信内容の例を示す図である。It is a figure which shows the example of the communication content in the n-3rd frame. n-2番目のフレームにおける通信内容の例を示す図である。It is a figure which shows the example of the communication content in the n-2nd frame. n-1番目のフレームにおける通信内容の例を示す図である。It is a figure which shows the example of the communication content in the (n-1) th frame. n番目のフレームにおける通信内容の例を示す図である。It is a figure which shows the example of the communication content in a nth frame. 各逆相関アンテナにおける直接波と反射波のキャリア位相差別の変調スペクトラムの例を示す図である。It is a figure which shows the example of the modulation spectrum of the carrier phase discrimination of the direct wave and reflected wave in each inverse correlation antenna. 相関関係にある3本のアンテナにおける受信レベルの例を示す図である。It is a figure which shows the example of the reception level in three antennas in correlation. 相関関係にある3本のアンテナにおけるキャリア位相別の変調スペクトラムの例を示す図である。It is a figure which shows the example of the modulation spectrum according to the carrier phase in three antennas in correlation. 適応等化器の内部の構成例を示す図である。It is a figure which shows the example of an internal structure of an adaptive equalizer. 調整部の内部の構成例を示す図である。It is a figure which shows the example of an internal structure of an adjustment part. FWAシステムの伝搬モデルの例を示す図である。It is a figure which shows the example of the propagation model of a FWA system. 受信アンテナ選択によるダイバーシティの例を示す図である。It is a figure which shows the example of the diversity by receiving antenna selection. 逆相相関条件が成立している場合の受信レベルの変動例を示す図である。It is a figure which shows the example of a fluctuation | variation of the reception level when a negative phase correlation condition is satisfied. 逆相関関係が成立している場合の受信レベルの変動例及び受信アンテナの切り換えの実施点を示す図である。It is a figure which shows the example of the fluctuation | variation of a reception level in case the reverse correlation is materialized, and the implementation point of switching of a receiving antenna. 逆相関関係が成立していない場合の受信レベルの変動例及び受信アンテナの切り換えの実施点を示す図である。It is a figure which shows the example of a change of the receiving level in case the inverse correlation is not materialized, and the implementation point of switching of a receiving antenna. TDDシステムの特徴を利用した選択ダイバーシティの例を示す図である。It is a figure which shows the example of the selection diversity using the characteristic of a TDD system.
 本発明の一実施形態について図面を参照して説明する。 図1には、本発明の一実施形態に係る無線通信システムの構成例を示してある。 本例の無線通信システムは、TDD複信方式のシステムであり、2つの送受信装置を有している。本例では、B点(図中右側)に位置する第1の送受信装置で、受信ダイバーシティ及び送信ダイバーシティを実施し、これに対向するA点(図中右側)に位置する第2の送受信装置で、B点側(第1の送受信装置)における送信ダイバーシティを実施した結果の信号を受信する構成となっている。 An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a configuration example of a wireless communication system according to an embodiment of the present invention. The wireless communication system of this example is a TDD duplex system and has two transmission / reception devices. In this example, reception diversity and transmission diversity are performed by the first transmission / reception apparatus located at point B (right side in the figure), and the second transmission / reception apparatus located at point A (right side in the figure) opposite to this. , A signal obtained as a result of performing transmission diversity on the B point side (first transmission / reception device) is received.
 A点側に位置する第2の送受信装置は、信号の送受信に用いるアンテナaに加え、ENC部(エンコーダ部)11、送信ベースバンド部12、送信RF部13、TDD-SW部(送受信切り換え部)14、受信RF部15、受信ベースバンド部16、DEC部(デコーダ部)17、タイミング管理部18、制御部19を有する。 B点側に位置する第1の送受信装置は、信号の送受信に用いるアンテナb-1,b-2に加え、ENC部(エンコーダ部)21、送信ベースバンド部22、送信RF部23、送信系選択部24、TDD-SW部(送受信切り換え部)25-1,25-2、受信RF部26-1,26-2、受信系選択部27、受信ベースバンド部28、DEC部(デコーダ部)29、タイミング管理部30、レベル測定/比較部31、制御部32を有する。 本例の第1の送受信装置では、2つのアンテナb-1,b-2を互いに逆相関関係となるような位置関係で配置している。 The second transmission / reception device located on the point A side includes an ENC unit (encoder unit) 11, a transmission baseband unit 12, a transmission RF unit 13, a TDD-SW unit (transmission / reception switching unit) in addition to the antenna a used for signal transmission / reception. ) 14, a reception RF unit 15, a reception baseband unit 16, a DEC unit (decoder unit) 17, a timing management unit 18, and a control unit 19. The first transmission / reception device located on the point B side includes an ENC unit (encoder unit) 21, a transmission baseband unit 22, a transmission RF unit 23, a transmission system, in addition to the antennas b-1 and b-2 used for signal transmission / reception. Selection unit 24, TDD-SW unit (transmission / reception switching unit) 25-1, 25-2, reception RF units 26-1, 26-2, reception system selection unit 27, reception baseband unit 28, DEC unit (decoder unit) 29, a timing management unit 30, a level measurement / comparison unit 31, and a control unit 32. In the first transmission / reception apparatus of this example, the two antennas b-1 and b-2 are arranged in a positional relationship that has an inverse correlation with each other.
 第2の送受信装置(A点側)の各機能部について概略的に説明する。 ENC部11は、第1の送受信装置へ送信する対象として入力されたデータ(ユーザー用データや制御用データ)に対して符号化処理を行い、その結果の信号を送信ベースバンド部12へ出力する。 送信ベースバンド部12は、ENC部11から入力された信号に対して送信ベースバンド処理を行い、その結果の信号を送信RF部13へ出力する。 送信RF部13は、送信ベースバンド部12から入力された信号に対して送信RF処理を行い、その結果の信号をTDD-SW部14へ出力する。 TDD-SW部14は、制御部19による制御の下で、送信RF部13から入力された信号をアンテナaにより第1の送受信装置へ送信する状態と、アンテナaにより第1の送受信装置から受信した信号を受信RF部15へ出力する状態を切り換える。 Each function unit of the second transmission / reception device (point A side) will be schematically described. The ENC unit 11 performs an encoding process on data (user data or control data) input as an object to be transmitted to the first transmission / reception device, and outputs a result signal to the transmission baseband unit 12. . The transmission baseband unit 12 performs transmission baseband processing on the signal input from the ENC unit 11 and outputs the resulting signal to the transmission RF unit 13. The transmission RF unit 13 performs transmission RF processing on the signal input from the transmission baseband unit 12 and outputs the resulting signal to the TDD-SW unit 14. Under the control of the control unit 19, the TDD-SW unit 14 transmits a signal input from the transmission RF unit 13 to the first transmission / reception device through the antenna a, and receives the signal from the first transmission / reception device through the antenna a. The state in which the received signal is output to the reception RF unit 15 is switched.
 受信RF部15は、TDD-SW部14を介して入力される第1の送受信装置から受信した信号に対して受信RF処理を行い、その結果の信号を受信ベースバンド部16へ出力する。 受信ベースバンド部16は、受信RF部15から入力された信号に対して受信ベースバンド処理を行い、その結果の信号をDEC17へ出力する。 DEC17は、受信ベースバンド部16から入力された信号に対して復号化処理を行い、その結果のデータ(ユーザー用データや制御用データ)を出力する。 タイミング管理部18は、信号の送受信に係るフレーム中の位置を確認するためのカウンタである。 制御部19は、タイミング管理部18によるカウンタ値に基づいて、所定の制御を実施する。 The reception RF unit 15 performs reception RF processing on the signal received from the first transmission / reception device input via the TDD-SW unit 14 and outputs the resultant signal to the reception baseband unit 16. The reception baseband unit 16 performs reception baseband processing on the signal input from the reception RF unit 15 and outputs the resulting signal to the DEC 17. The DEC 17 performs a decoding process on the signal input from the reception baseband unit 16 and outputs the result data (user data or control data). The timing management unit 18 is a counter for confirming a position in a frame related to signal transmission / reception. The control unit 19 performs predetermined control based on the counter value by the timing management unit 18.
 第1の送受信装置(B点側)の各機能部について概略的に説明する。 ENC部21は、第2の送受信装置へ送信する対象として入力されたデータ(ユーザー用データや制御用データ)に対して符号化処理を行い、その結果の信号を送信ベースバンド部22へ出力する。 送信ベースバンド部22は、ENC部21から入力された信号に対して送信ベースバンド処理を行い、その結果の信号を送信RF部23へ出力する。 送信RF部23は、送信ベースバンド部22から入力された信号に対して送信RF処理を行い、その結果の信号を送信系選択部24へ出力する。 送信系選択部24は、制御部32による制御の下で、送信RF部23から入力された信号をTDD-SW部25-1へ出力する状態(第1の送信系を使用する状態)と、送信RF部23から入力された信号をTDD-SW部25-2へ出力する状態(第2の送信系を使用する状態)を切り換える。なお、第1の送信系は、アンテナb-1、TDD-SW部25-1等により構成され、第2の送信系は、アンテナb-2、TDD-SW部25-2等により構成される。 Each functional unit of the first transmission / reception device (point B side) will be schematically described. The ENC unit 21 performs an encoding process on data (user data and control data) input as an object to be transmitted to the second transmission / reception device, and outputs a result signal to the transmission baseband unit 22. . The transmission baseband unit 22 performs transmission baseband processing on the signal input from the ENC unit 21 and outputs the resulting signal to the transmission RF unit 23. The transmission RF unit 23 performs transmission RF processing on the signal input from the transmission baseband unit 22 and outputs the resultant signal to the transmission system selection unit 24. The transmission system selection unit 24 outputs a signal input from the transmission RF unit 23 to the TDD-SW unit 25-1 under the control of the control unit 32 (a state in which the first transmission system is used), The state in which the signal input from the transmission RF unit 23 is output to the TDD-SW unit 25-2 (the state in which the second transmission system is used) is switched. The first transmission system is configured by the antenna b-1, the TDD-SW unit 25-1, and the like, and the second transmission system is configured by the antenna b-2, the TDD-SW unit 25-2, and the like. .
 TDD-SW部25-1は、制御部32による制御の下で、送信系選択部24から入力された信号をアンテナb-1により第2の送受信装置へ送信する状態と、アンテナb-1により第2の送受信装置から受信した信号を受信RF部26-1へ出力する状態を切り換える。 TDD-SW部25-2は、制御部32による制御の下で、送信系選択部24から入力された信号をアンテナb-2により第2の送受信装置へ送信する状態と、アンテナb-2により第2の送受信装置から受信した信号を受信RF部26-2へ出力する状態を切り換える。 The TDD-SW unit 25-1 transmits a signal input from the transmission system selection unit 24 to the second transmission / reception device via the antenna b-1 under the control of the control unit 32, and the antenna b-1. The state of outputting the signal received from the second transmission / reception device to the reception RF unit 26-1 is switched. The TDD-SW unit 25-2 transmits a signal input from the transmission system selection unit 24 to the second transmission / reception device through the antenna b-2 under the control of the control unit 32, and the antenna b-2. The state of outputting the signal received from the second transmitting / receiving apparatus to the reception RF unit 26-2 is switched.
 受信RF部26-1は、TDD-SW部25-1を介して入力される第2の送受信装置から受信した信号に対して受信RF処理を行い、その結果の信号を受信系選択部27及びレベル測定/比較部31へ出力する。 受信RF部26-2は、TDD-SW部25-2を介して入力される第2の送受信装置から受信した信号に対して受信RF処理を行い、その結果の信号を受信系選択部27及びレベル測定/比較部31へ出力する。 The reception RF unit 26-1 performs reception RF processing on the signal received from the second transmission / reception device input via the TDD-SW unit 25-1, and the resulting signal is received by the reception system selection unit 27 and Output to the level measurement / comparison unit 31. The reception RF unit 26-2 performs reception RF processing on the signal received from the second transmission / reception device input via the TDD-SW unit 25-2, and the resultant signal is received by the reception system selection unit 27 and Output to the level measurement / comparison unit 31.
 受信系選択部27は、制御部32による制御の下で、受信RF部26-1から入力された信号を受信ベースバンド部28へ出力する状態(第1の受信系を使用する状態)と、受信RF部26-2から入力された信号を受信ベースバンド部28へ出力する状態(第2の受信系を使用する状態)を切り換える。なお、第1の受信系は、アンテナb-1、TDD-SW部25-1、受信RF部26-1等により構成され、第2の受信系は、アンテナb-2、TDD-SW部25-2、受信RF部26-2等により構成される。 受信ベースバンド部28は、受信系選択部27から入力された信号に対して受信ベースバンド処理を行い、その結果の信号をDEC29へ出力する。 DEC29は、受信ベースバンド部28から入力された信号に対して復号化処理を行い、その結果のデータ(ユーザー用データや制御用データ)を出力する。 Under the control of the control unit 32, the reception system selection unit 27 outputs a signal input from the reception RF unit 26-1 to the reception baseband unit 28 (a state in which the first reception system is used), The state in which the signal input from the reception RF unit 26-2 is output to the reception baseband unit 28 (the state in which the second reception system is used) is switched. Note that the first receiving system includes an antenna b-1, a TDD-SW unit 25-1, a receiving RF unit 26-1, and the like, and the second receiving system includes an antenna b-2 and a TDD-SW unit 25. -2, the reception RF unit 26-2, and the like. The reception baseband unit 28 performs reception baseband processing on the signal input from the reception system selection unit 27 and outputs the resultant signal to the DEC 29. The DEC 29 performs a decoding process on the signal input from the reception baseband unit 28 and outputs the result data (user data and control data).
 タイミング管理部30は、信号の送受信に係るフレーム中の位置を確認するためのカウンタである。 レベル測定/比較部31は、受信RF部26-1から入力された信号及び受信RF部26-2から入力された信号のレベル(例えば、電力の値)をそれぞれ測定し、これらのレベルを比較し、当該比較結果の情報を制御部32へ出力する。 制御部32は、タイミング管理部30によるカウンタ値及びレベル測定/比較部から入力された情報に基づいて、所定の制御を実施する。 The timing management unit 30 is a counter for confirming a position in a frame related to signal transmission / reception. The level measurement / comparison unit 31 measures the levels (for example, power values) of the signal input from the reception RF unit 26-1 and the signal input from the reception RF unit 26-2, and compares these levels. Then, the information of the comparison result is output to the control unit 32. The control unit 32 performs predetermined control based on the counter value by the timing management unit 30 and the information input from the level measurement / comparison unit.
 本例の無線通信システムに係る受信ダイバーシティでは、第1の送受信装置(B点側)の制御部32は、レベル測定/比較部31から入力された情報に基づいて、使用する受信系を切り換えるように受信系選択部27を制御する。また、受信系の切り換えと共に(例えば、受信系の切り換えの前に)、受信ベースバンド部28における受信ベースバンド処理に関するパラメータを変更するように制御する。 受信ベースバンド処理に関するパラメータとしては、一例として、受信信号の等化処理に用いるパラメータである等化係数が挙げられる。等化係数は、受信系の切り換えに伴って、切り換え後の受信系に対応した初期化が行われ、その後、所定の係数更新アルゴリズムに基づいて更新(収束)される。 In the reception diversity according to the wireless communication system of this example, the control unit 32 of the first transmission / reception apparatus (point B side) switches the reception system to be used based on the information input from the level measurement / comparison unit 31. The reception system selection unit 27 is controlled. Further, control is performed so as to change a parameter related to reception baseband processing in the reception baseband unit 28 together with switching of the reception system (for example, before switching of the reception system). As an example of the parameter related to the reception baseband processing, an equalization coefficient which is a parameter used for equalization processing of a received signal can be given. The equalization coefficient is initialized according to the reception system after the switching with the switching of the reception system, and then updated (converged) based on a predetermined coefficient update algorithm.
 また、本例の無線通信システムに係る送信ダイバーシティでは、第1の送受信装置(B点側)の制御部32は、レベル測定/比較部31から入力された情報に基づいて、使用する送信系を切り換えるタイミングを決定し、当該切り換えタイミングに同期して送信系を切り換えるように送信系選択部24を制御する。また、切り換えタイミングの情報は、送信系の切り換えに先立って第2の送受信装置(A点側)へ通知される。そして、第2の送受信装置の制御部19は、通知された切り換えタイミングに同期して、受信ベースバンド部16における受信ベースバンド処理に関するパラメータを変更するように制御する。 受信ベースバンド処理に関するパラメータとしては、一例として、受信信号の等化処理に用いるパラメータである等化係数が挙げられる。等化係数は、第1の送受信装置(B点側)における送信系の切り換えに伴って、切り換え後の送信系に対応した初期化(変更)が行われ、その後、所定の係数更新アルゴリズムに基づいて更新(収束)される。 In the transmission diversity according to the wireless communication system of this example, the control unit 32 of the first transmission / reception apparatus (point B side) determines the transmission system to be used based on the information input from the level measurement / comparison unit 31. The transmission timing is determined, and the transmission system selection unit 24 is controlled to switch the transmission system in synchronization with the switching timing. Further, the switching timing information is notified to the second transmitting / receiving apparatus (point A side) prior to switching of the transmission system. Then, the control unit 19 of the second transmission / reception device performs control so as to change the parameters related to the reception baseband processing in the reception baseband unit 16 in synchronization with the notified switching timing. As an example of the parameter related to the reception baseband processing, an equalization coefficient which is a parameter used for equalization processing of a received signal can be given. The equalization coefficient is initialized (changed) corresponding to the transmission system after switching in accordance with the switching of the transmission system in the first transmission / reception apparatus (point B side), and then based on a predetermined coefficient update algorithm. Updated (converged).
 なお、本例の第1の送受信装置は、受信系の切り換えと同様に受信信号のレベルに基づいて送信系の切り換えを決定する構成であるが、これは、本例の無線通信システムにおいて特定の2つのアンテナ間で行う送信と受信の伝搬路は実質的に同一であり、各受信系で受信した信号のレベルと、当該受信系に対応する送信系により送信される信号の第2の送受信装置側での受信レベルは同様に変化することに基づいている。 Note that the first transmission / reception apparatus of this example is configured to determine the switching of the transmission system based on the level of the received signal in the same manner as the switching of the reception system. The transmission and reception propagation paths performed between the two antennas are substantially the same, and the second transmission / reception apparatus for the level of the signal received by each reception system and the signal transmitted by the transmission system corresponding to the reception system The reception level at the side is based on changing as well.
 受信ダイバーシティから送信ダイバーシティまでの動作例について説明する。 本例では、以下の[ステップ1]~[ステップ4]に示すように、受信ダイバーシティの実施に連動して送信ダイバーシティを実施するものとする。 図2には、n-3番目のフレームにおける通信内容の例を示してあり、図3には、n-2番目のフレームにおける通信内容の例を示してあり、図4には、n-1番目のフレームにおける通信内容の例を示してあり、図5には、n番目のフレームにおける通信内容の例を示してある。 An example of operation from reception diversity to transmission diversity will be described. In this example, as shown in the following [Step 1] to [Step 4], transmission diversity is implemented in conjunction with the implementation of reception diversity. FIG. 2 shows an example of communication contents in the (n−3) th frame, FIG. 3 shows an example of communication contents in the (n−2) th frame, and FIG. An example of communication contents in the nth frame is shown, and FIG. 5 shows an example of communication contents in the nth frame.
 [ステップ1;n-3番目のフレーム時の動作]について、図2を参照して説明する。 n-3番目のフレームにおいて、受信ダイバーシティ及び送信ダイバーシティの実施タイミングを決定する。 すなわち、B点(第1の送受信装置)では、2つの受信系で受信された信号のレベルをそれぞれ測定して両者を比較し、受信レベルの大小の入れ替わりに応じて、受信レベルが大きくなった方の受信系への切り換えを決定する。送信系についても、当該受信系と同じアンテナで構成される送信系への切り換えを決定する。本例では、受信系の切り換えは、当該フレーム(n-3番目のフレーム)時点では実施せず、その次のフレーム(n-2番目のフレーム)時点で実施する(つまり、フレームの途中では切り換えない)。送信系の切り換えについてもこの時点では実施しない。 一方、A点(第2の送受信装置)では、この時点でのダイバーシティ関連の制御はない。 なお、受信系及び送信系の切り換えの決定は、受信レベルの大小の入れ替わりに応じて行われる態様だけでなく、測定された受信レベルを比較して、受信レベルの大きさが入れ替わると予測される場合に、大きくなると予測される方の受信系へ予め切り換えるように決定する態様をとってもよい。 [Step 1; operation at the n-3rd frame] will be described with reference to FIG. In the (n-3) th frame, the execution timing of reception diversity and transmission diversity is determined. That is, at point B (first transmitting / receiving apparatus), the levels of signals received by the two receiving systems are measured and compared, and the received level increases as the received level changes. Switch to the other receiving system. Also for the transmission system, switching to the transmission system configured by the same antenna as the reception system is determined. In this example, the reception system is not switched at the time of the current frame (n-3th frame) but at the time of the next frame (n-2th frame) (that is, switching is performed in the middle of the frame). Absent). The transmission system is not switched at this point. On the other hand, at point A (second transmission / reception device), there is no diversity-related control at this point. Note that the decision to switch between the reception system and the transmission system is predicted not only in the manner in which the reception level is switched depending on the switching of the reception level, but also by comparing the measured reception levels with the magnitude of the reception level being switched. In this case, a mode may be adopted in which it is determined in advance to switch to the receiving system that is predicted to increase.
 [ステップ2;n-2番目のフレーム時の動作]について、図3を参照して説明する。 n-2番目のフレームにおいて、受信ダイバーシティを実施する。 すなわち、B点(第1の送受信装置)では、当該フレーム(n-2番目のフレーム)の信号の受信を開始するタイミングに合わせて、受信系の切り換えと、受信ベースバンド処理に関するパラメータ(例えば、等化係数などの伝搬路特性補償処理に係るパラメータ)の調整(変更)を実施する。送信系の切り換えは、この時点では実施しない。 一方、A点(第2の送受信装置)では、この時点でのダイバーシティ関連の制御はない。 [Step 2; operation at the (n-2) th frame] will be described with reference to FIG. Execute reception diversity in the (n-2) th frame. That is, at point B (first transmission / reception device), parameters related to switching of the reception system and reception baseband processing (for example, for example, in accordance with the timing of starting reception of the signal of the frame (n-2th frame)) Adjustment (change) of parameters related to propagation path characteristic compensation processing such as equalization coefficient is performed. The transmission system is not switched at this point. On the other hand, at point A (second transmission / reception device), there is no diversity-related control at this point.
 [ステップ3;n-1番目のフレーム時の動作]について、図4を参照して説明する。 n-1番目のフレームにおいて、送信ダイバーシティに関する通知を行う。 すなわち、B点(第1の送受信装置)では、送信ダイバーシティを実施するフレームの位置(送信系の切り換えタイミング)をA点(第2の送受信装置)側に通知するために、そのフレーム位置情報を当該フレーム(n-2番目のフレーム)で送信する制御用データの信号に埋め込んで送信する。本例では、送信系の切り換えは、当該フレーム(n-1番目のフレーム)時点では実施せず、その次のフレーム(n番目のフレーム)時点で実施する(すなわち、フレームの途中では切り換えない)。 一方、A点(第2の送受信装置)では、受信した制御用データの信号をデコードしてフレーム位置情報を抽出(送信系の切り換えタイミングを特定)し、B点(第1の送受信装置)における送信系の切り換えに備える。 [Step 3; operation at the (n-1) th frame] will be described with reference to FIG. In the (n-1) th frame, a notification regarding transmit diversity is performed. That is, at point B (first transmitter / receiver), in order to notify point A (second transmitter / receiver) of the position (transmission system switching timing) of the frame for carrying out transmission diversity, The control data is transmitted by being embedded in the frame (n-2th frame). In this example, switching of the transmission system is not performed at the time of the frame (n-1 frame), but is performed at the time of the next frame (n frame) (that is, not switched in the middle of the frame). . On the other hand, at point A (second transmission / reception device), the received control data signal is decoded to extract frame position information (specifying the transmission system switching timing), and at point B (first transmission / reception device). Prepare for switching transmission systems.
 [ステップ4;n番目のフレーム時の動作]について、図5を参照して説明する。 n番目のフレームにおいて、送信ダイバーシティを実施する。 すなわち、B点(第1の送受信装置)では、当該フレーム(n番目のフレーム)の信号の送信を開始するタイミングに合わせて、送信系の切り換えを行う。 一方、A点(第2の送受信装置)では、当該フレーム(n番目のフレーム)の受信を開始するタイミングに合わせて、受信ベースバンド処理に関するパラメータ(例えば、等化係数などの伝搬路特性補償処理に係るパラメータ)の調整(変更)を実施する。 [Step 4; operation at the n-th frame] will be described with reference to FIG. Execute transmit diversity in the nth frame. That is, at point B (first transmission / reception device), the transmission system is switched in accordance with the timing at which transmission of the signal of the frame (n-th frame) is started. On the other hand, at point A (second transmission / reception device), parameters related to reception baseband processing (for example, propagation path characteristic compensation processing such as equalization coefficient) are synchronized with the timing at which reception of the frame (n-th frame) is started. Adjustment (change) of parameter).
 以上に述べたステップ1~ステップ4の手順を踏むことにより、B点(第1の送受信装置)における送信ダイバーシティのための送信アンテナ(送信系)の切り換え直後であっても、対向するA点(第2の送受信装置)側で、伝搬路特性の変化に対する適応が済むまでの一時的な期間における受信状態の乱れを回避できる。 なお、本例では、送信アンテナの切り換えを、対向側(A点側)に切り換え情報(位置情報)を通知した直後のフレームとしているが、これに限定するものではなく、第1の送受信装置及び第2の送受信装置の双方でタイミングを同期して切り換え処理がなされればよい。すなわち、例えば、“数フレーム後に実施”という情報(送信系の切り換えを実施するフレーム位置の情報)を通知し、当該情報に基づく制御を双方の装置で行うようにしてもよい。 By following the steps 1 to 4 described above, even when the transmission antenna (transmission system) for transmission diversity at the point B (first transmission / reception apparatus) has just been switched, the point A ( On the second transmission / reception apparatus side, it is possible to avoid disturbance in the reception state during a temporary period until adaptation to changes in propagation path characteristics is completed. In this example, the transmission antenna is switched to a frame immediately after the switching information (position information) is notified to the opposite side (point A side). However, the present invention is not limited to this. It suffices if the switching process is performed in synchronism with both the second transmitting and receiving apparatuses. That is, for example, information “performed after several frames” (information on the frame position at which transmission system switching is performed) may be notified, and control based on the information may be performed by both apparatuses.
 なお、本例では、受信系の切り換えを決定する手法として、各受信系で受信した信号のレベルに基づいて、受信系の切り換え及び送信系の切り換えを決定しているが、これに限られず、例えば、受信信号のスペクトルを測定した結果に基づいて決定するような手法が用いられてもよい。 In this example, as a method for determining the switching of the reception system, switching of the reception system and switching of the transmission system are determined based on the level of the signal received by each reception system, but the present invention is not limited to this. For example, a method of determining based on the result of measuring the spectrum of the received signal may be used.
 また、本例では好適な例として、受信系の切り換えと送信系の切り換えを同時に決定し、それぞれ切り換え動作を行うが、これに限られず、受信系の切り換えと送信系の切り換えを行う判断基準を異ならせて、それぞれ異なるタイミングで切り換えを決定するようにしてもよい。 In addition, as a preferable example in this example, the switching of the reception system and the switching of the transmission system are simultaneously determined, and the switching operation is performed respectively. Differently, switching may be determined at different timings.
 以上のように、本例の無線通信システムはTDD複信方式であり、第1の送受信装置と第2の送受信装置を対向させて設置し、第1の送受信装置に、受信レベル(例えば受信電力)の推移が逆相関の関係になるようにアンテナを設け、アンテナ切り換えによる受信ダイバーシティを行う。 更に、第1の送受信装置は、アンテナ切り換えによる受信ダイバーシティに連動して送信ダイバーシティを行う。すなわち、受信アンテナを切り換えたタイミングに基づき、送信も、切り換え後のアンテナ側から行うように切り換える。また、第1の送受信装置は、送信アンテナを切り換えるタイミングを第2の送受信装置に伝えるために、ユーザ用データのほかに制御用データを送信する。この制御用データに、送信アンテナがいつ切り換わるかを示す情報(切り換えタイミングの情報)を載せる。 一方、第2の送受信装置は、送信アンテナがいつ切り換わるかを、受信した制御用データの中から判断する。そして、制御用データで指定されたタイミングで、送信アンテナの切り換わりに対応するための受信関連パラメータ(例えば、等化係数)を変更する。 As described above, the wireless communication system of this example is a TDD duplex system, and the first transmission / reception device and the second transmission / reception device are installed facing each other, and the reception level (for example, reception power) is set in the first transmission / reception device. The antenna is provided so that the transition of) has an inverse correlation, and reception diversity is performed by switching the antenna. Furthermore, the first transmission / reception apparatus performs transmission diversity in conjunction with reception diversity by antenna switching. That is, based on the timing at which the reception antenna is switched, transmission is also switched so as to be performed from the switched antenna side. Further, the first transmission / reception device transmits control data in addition to the user data in order to inform the second transmission / reception device of the timing for switching the transmission antenna. Information (switching timing information) indicating when the transmission antenna is switched is placed on the control data. On the other hand, the second transmitting / receiving device determines from the received control data when the transmitting antenna is switched. Then, at a timing specified by the control data, a reception related parameter (for example, equalization coefficient) for changing the transmission antenna is changed.
 従って、本例の無線通信システムでは、送信側の装置(第1の送受信装置)におけるアンテナ間の逆相関特性を利用した送信ダイバーシティの実施に同期して、対向する受信側の装置(第2の送受信装置)における受信関連パラメータが適切な値に変更される(近づけられる)。このような構成は、例えば、潮位変動の影響がある環境でFWAシステムを使用する場合に有用である。 Therefore, in the wireless communication system of the present example, in synchronization with the implementation of transmission diversity using the inverse correlation characteristics between the antennas in the transmission side device (first transmission / reception device), the opposite reception side device (second transmission device) The reception-related parameter in the transmission / reception device is changed (approached) to an appropriate value. Such a configuration is useful, for example, when the FWA system is used in an environment affected by tide level fluctuations.
 次に、第2の送受信装置(A点側)の受信ベースバンド部16における受信ベースバンド処理に関するパラメータの変更について説明する。なお、第1の送受信装置(B点側)の受信ベースバンド部28側については、第2の送受信装置(A点側)の受信ベースバンド部16側と概略的に同様な処理であるため、その説明は割愛する。 受信ベースバンド処理では、例えば、直交変調処理、デシメーション(サンプリングレートの変換)処理、受信フィルタ処理、等化処理などの各処理が順に実施される。 以下では、受信ベースバンド処理に関するパラメータを変更する例として、等化処理に用いるパラメータである等化係数を初期化する場合について説明する。 Next, a description will be given of a change in parameters related to reception baseband processing in the reception baseband unit 16 of the second transmission / reception device (point A side). Since the reception baseband unit 28 side of the first transmission / reception device (point B side) is substantially the same processing as the reception baseband unit 16 side of the second transmission / reception device (point A side), I'll omit that explanation. In the reception baseband processing, for example, orthogonal modulation processing, decimation (sampling rate conversion) processing, reception filter processing, equalization processing, and the like are sequentially performed. Hereinafter, as an example of changing the parameters related to the reception baseband processing, a case will be described in which an equalization coefficient that is a parameter used in the equalization processing is initialized.
(第1実施例) 等化係数の初期化の第1実施例を説明する。 図9には、受信ベースバンド部16に設けられる適応等化器の内部の構成例を示してある。 本例では、適応等化器のタップ数が3である場合を示すが、他の種々なタップ数が用いられてもよい。 本例の適応等化器は、3個のレジスタ(Reg)51-0~51-2、3個の(係数可変の)乗算器52-0~52-2、加算器(又は、累算器)53を備えており、また、3個のレジスタ(Reg)61-0~61-2、3個の選択部62-0~62-2、3個の調整部63-0~63-2、係数更新部64を備えており、また、シンボル判定部71、参照信号部72、スイッチ73、加算器74を備えている。 (First Example) A first example of equalization coefficient initialization will be described. FIG. 9 shows an internal configuration example of the adaptive equalizer provided in the reception baseband unit 16. This example shows a case where the number of taps of the adaptive equalizer is 3, but various other tap numbers may be used. The adaptive equalizer of this example includes three registers (Reg) 51-0 to 51-2, three (coefficient variable) multipliers 52-0 to 52-2, an adder (or an accumulator). 53), three registers (Reg) 61-0 to 61-2, three selection units 62-0 to 62-2, three adjustment units 63-0 to 63-2, A coefficient update unit 64 is provided, and a symbol determination unit 71, a reference signal unit 72, a switch 73, and an adder 74 are provided.
 また、本例では、n=0,1,2として、kが時刻(例えば、サンプル番号)を表すとし、x(k)が入力信号を表し、y(k)が出力信号を表し、d(k)が所望信号を表し、e(k)が等化誤差信号を表し、w(k)が等化信号を表すとする。 本例では、x(k)、y(k)、d(k)、e(k)、w(k)は、複素数である。 In this example, assuming that n = 0, 1, and 2, k represents time (for example, a sample number), x n (k) represents an input signal, y (k) represents an output signal, d Assume that (k) represents a desired signal, e n (k) represents an equalization error signal, and w n (k) represents an equalization signal. In this example, x n (k), y (k), d (k), e n (k), and w n (k) are complex numbers.
 本例の適応等化器において行われる動作の例を示す。 入力信号が、直列に接続された3個のレジスタ51-0~51-2を通過する。 第1のレジスタ51-0からの出力信号x(k)が、第1の乗算器52-0に入力されて等化係数w(k)を乗算され、その結果の信号が加算器53に入力される。 第2のレジスタ51-1からの出力信号x(k)が、第2の乗算器52-1に入力されて等化係数w(k)を乗算され、その結果の信号が加算器53に入力される。 第3のレジスタ51-2からの出力信号x(k)が、第3の乗算器52-2に入力されて等化係数w(k)を乗算され、その結果の信号が加算器53に入力される。 加算器53は、3個の乗算器52-0~52-2から入力された信号を加算(合成)し、当該加算結果の信号を出力信号y(k)として出力する。この信号y(k)は、シンボル判定部71及び加算器74に入力される。 An example of the operation performed in the adaptive equalizer of this example will be shown. The input signal passes through three registers 51-0 to 51-2 connected in series. The output signal x 0 (k) from the first register 51-0 is input to the first multiplier 52-0 and multiplied by the equalization coefficient w 0 (k), and the resulting signal is added to the adder 53. Is input. The output signal x 1 (k) from the second register 51-1 is input to the second multiplier 52-1, multiplied by the equalization coefficient w 1 (k), and the resulting signal is added to the adder 53. Is input. The output signal x 2 (k) from the third register 51-2 is input to the third multiplier 52-2 and multiplied by the equalization coefficient w 2 (k), and the resulting signal is added to the adder 53. Is input. The adder 53 adds (synthesizes) the signals input from the three multipliers 52-0 to 52-2, and outputs a signal resulting from the addition as an output signal y (k). The signal y (k) is input to the symbol determination unit 71 and the adder 74.
 シンボル判定部71は、加算器53から入力された信号y(k)についてシンボルを判定し、判定したシンボルの信号を出力する。 参照信号部72は、例えば、予め、トレーニングに用いられる所定のシンボルに等しい参照信号をメモリ等に記憶しており、その参照信号を出力する。 スイッチ73は、例えば制御部19により制御され、シンボル判定部71からのシンボルの信号を所望信号d(k)として選択して加算器74へ出力する状態と、参照信号部72からの参照信号を所望信号d(k)として選択して加算器74へ出力する状態を切り換える。 加算器74は、スイッチ73からの所望信号d(k)から、加算器73からの出力信号y(k)を減算し、当該減算結果の信号(等化誤差信号)e(k){=d(k)-y(k)}を係数更新部64へ出力する。 The symbol determination unit 71 determines a symbol for the signal y (k) input from the adder 53 and outputs a signal of the determined symbol. The reference signal unit 72 stores in advance a reference signal equal to a predetermined symbol used for training in a memory or the like, and outputs the reference signal. The switch 73 is controlled by the control unit 19, for example, selects the symbol signal from the symbol determination unit 71 as the desired signal d (k) and outputs it to the adder 74, and the reference signal from the reference signal unit 72. The state to be selected and output to the adder 74 is switched as the desired signal d (k). The adder 74 subtracts the output signal y (k) from the adder 73 from the desired signal d (k) from the switch 73, and the subtraction result signal (equalization error signal) e (k) {= d (K) −y (k)} is output to the coefficient updating unit 64.
 係数更新部64は、入力信号x(k),x(k),x(k)や、等化誤差信号e(k)や、各レジスタ61-0~61-2から出力される等化係数w(k),w(k),w(k)を入力し、所定の係数更新アルゴリズムに従って、更新後の等化係数w(k+1),w(k+1),w(k+1)を算出して各選択部62-0~62-2へ出力する。具体的には、第1の選択部62-0には等化係数w(k+1)が出力され、第2の選択部62-1には等化係数w(k+1)が出力され、第3の選択部62-2には等化係数w(k+1)が出力される。 なお、ここでは、入力情報の時刻kに対して出力情報の時刻(k+1)を用いて表したが、次の時刻における処理においては、この時刻(k+1)が再び時刻kとして扱われるとみなす。 The coefficient updating unit 64 outputs the input signals x 0 (k), x 1 (k), x 2 (k), the equalization error signal e (k), and the registers 61-0 to 61-2. The equalization coefficients w 0 (k), w 1 (k), w 2 (k) are input, and the updated equalization coefficients w 0 (k + 1), w 1 (k + 1), w are input according to a predetermined coefficient update algorithm. 2 (k + 1) is calculated and output to each of the selectors 62-0 to 62-2. Specifically, the first selecting portion 62-0 equalization coefficient w 0 (k + 1) is output, the second selecting portion 62-1 equalization coefficient w 1 (k + 1) is output, the The equalization coefficient w 2 (k + 1) is output to the third selection unit 62-2. Here, the time (k + 1) of the output information is expressed with respect to the time k of the input information. However, in the process at the next time, this time (k + 1) is regarded as the time k again.
 各調整部63-0~63-2は、それぞれ、各レジスタ61-0~61-2から出力される等化係数w(k),w(k),w(k)を入力し、調整を行って、調整済みの等化係数を各選択部62-0~62-2へ出力する。具体的には、第1の調整部63-0は等化係数w(k)を入力して調整後に出力し、第2の調整部63-1は等化係数w(k)を入力して調整後に出力し、第3の調整部63-2は等化係数w(k)を入力して調整後に出力する。 また、各調整部63-0~63-2は、例えば、制御部19から入力される所定の制御信号(制御_A)により制御される。 Each adjustment unit 63-0 to 63-2 inputs equalization coefficients w 0 (k), w 1 (k), and w 2 (k) output from the registers 61-0 to 61-2, respectively. Then, the adjustment is performed, and the adjusted equalization coefficient is output to each of the selection units 62-0 to 62-2. Specifically, the first adjustment unit 63-0 inputs the equalization coefficient w 0 (k) and outputs it after adjustment, and the second adjustment unit 63-1 inputs the equalization coefficient w 1 (k). Then, the third adjustment unit 63-2 receives the equalization coefficient w 1 (k) and outputs it after the adjustment. Further, each of the adjusting units 63-0 to 63-2 is controlled by a predetermined control signal (control_A) input from the control unit 19, for example.
 各選択部62-0~62-2は、それぞれ、係数更新部64からの更新後の等化係数w(k+1),w(k+1),w(k+1){ここでは、時刻(k+1)を再び時刻kとみなして、等化係数w(k),w(k),w(k)と考える。}と、各調整部63-0~63-2からの調整済みの等化係数を入力して、いずれか一方を選択して各レジスタ61-0~61-2へ出力する。具体的には、第1の選択部62-0は等化係数w(k)に関する入力及び出力を行い、第2の選択部62-1は等化係数w(k)に関する入力及び出力を行い、第3の選択部62-2は等化係数w(k)に関する入力及び出力を行う。 また、各選択部62-0~62-2は、例えば、制御部19から入力される所定の制御信号(制御_B)により制御される。 Each of the selection units 62-0 to 62-2 has equalized coefficients w 0 (k + 1), w 1 (k + 1), w 2 (k + 1) after being updated from the coefficient updating unit 64, respectively, where time (k + 1 ) Is again regarded as time k and considered as equalization coefficients w 0 (k), w 1 (k), w 2 (k). } And the adjusted equalization coefficient from each of the adjustment units 63-0 to 63-2 are input, and one of them is selected and output to each of the registers 61-0 to 61-2. Specifically, the first selection unit 62-0 performs input and output regarding the equalization coefficient w 0 (k), and the second selection unit 62-1 performs input and output regarding the equalization coefficient w 1 (k). The third selection unit 62-2 performs input and output regarding the equalization coefficient w 2 (k). Each of the selection units 62-0 to 62-2 is controlled by a predetermined control signal (control_B) input from the control unit 19, for example.
 ここで、本例に係る第2の送受信装置(A点側)では、各選択部62-0~62-2は、第1の送受信装置(B点側)において送信系が切り換えられることに同期して、各選択部62-0~62-2からの調整済みの等化係数を選択して各レジスタ61-0~61-2へ出力し、また、送信系が切り換えられないときには、係数更新部64からの更新後の等化係数を選択して各レジスタ61-0~61-2へ出力するように、制御される。これにより、第1の送受信装置(B点側)において送信系が切り換えられることに同期して、第2の送受信装置(A点側)における等化係数w(k)が初期化される。 Here, in the second transmission / reception device (point A side) according to this example, each of the selection units 62-0 to 62-2 is synchronized with the switching of the transmission system in the first transmission / reception device (point B side). Then, the adjusted equalization coefficients from the selection units 62-0 to 62-2 are selected and output to the registers 61-0 to 61-2, and when the transmission system cannot be switched, the coefficient is updated. Control is performed so that the updated equalization coefficient from the unit 64 is selected and output to each of the registers 61-0 to 61-2. Thereby, the equalization coefficient w n (k) in the second transmission / reception apparatus (point A side) is initialized in synchronization with the switching of the transmission system in the first transmission / reception apparatus (point B side).
 各レジスタ61-0~61-2は、それぞれ、各選択部62-0~62-2から入力された等化係数w(k),w(k),w(k)を各乗算器52-0~52-2へ出力するとともに、各調整部63-0~63-2及び係数更新部64へ出力する。具体的には、第1のレジスタ61-0は等化係数w(k)を処理し、第2のレジスタ61-1は等化係数w(k)を処理し、第3のレジスタ61-2は等化係数w(k)を処理する。 The registers 61-0 to 61-2 multiply the equalization coefficients w 0 (k), w 1 (k), and w 2 (k) input from the selection units 62-0 to 62-2, respectively. And outputs to the adjusting units 63-0 to 63-2 and the coefficient updating unit 64. Specifically, the first register 61-0 processes the equalization coefficient w 0 (k), the second register 61-1 processes the equalization coefficient w 1 (k), and the third register 61 -2 processes the equalization coefficient w 2 (k).
 図10には、調整部63-0内の内部の構成例を示してある。なお、他の調整部63-1,63-2についても同様である。 本例の調整部63-0は、実数部抽出部81、虚数部抽出部82、-1部83、乗算器84、0部85、選択器86、複素数化部87を備えている。 FIG. 10 shows an internal configuration example in the adjustment unit 63-0. The same applies to the other adjustment units 63-1 and 63-2. The adjusting unit 63-0 of this example includes a real part extracting unit 81, an imaginary part extracting unit 82, a -1 unit 83, a multiplier 84, a 0 unit 85, a selector 86, and a complex number converting unit 87.
 本例の調整部63-0において行われる動作の例を示す。なお、他の調整部63-1,63-2についても同様である。 レジスタ61-0から出力された等化係数w(k)(調整部63-0については、w(k))が、実数部抽出部81及び虚数部抽出部82に入力される。 実数部抽出部81は、入力された等化係数w(k)の実数部を抽出して複素数化部87へ出力する。 虚数部抽出部82は、入力された等化係数w(k)の虚数部を抽出して乗算器84へ出力する。 An example of the operation performed in the adjustment unit 63-0 of the present example is shown. The same applies to the other adjustment units 63-1 and 63-2. The equalization coefficient w n (k) output from the register 61-0 (for the adjustment unit 63-0, w 0 (k)) is input to the real part extraction unit 81 and the imaginary part extraction unit 82. The real part extraction unit 81 extracts the real part of the input equalization coefficient w n (k) and outputs it to the complex numbering unit 87. The imaginary part extraction unit 82 extracts the imaginary part of the input equalization coefficient w n (k) and outputs it to the multiplier 84.
 -1部83は、-1の値の信号を乗算器84へ出力する。 乗算器84は、虚数部抽出部82からの虚数部の信号と-1部83からの-1の信号を乗算し、当該乗算結果(-1×虚数部)の信号を選択器86へ出力する。 0部85は、0の値の信号を選択器86へ出力する。 -1 unit 83 outputs a signal having a value of -1 to multiplier 84. Multiplier 84 multiplies the imaginary part signal from imaginary part extraction part 82 by the -1 signal from -1 part 83, and outputs the signal of the multiplication result (−1 × imaginary part) to selector 86. . 0 unit 85 outputs a signal having a value of 0 to selector 86.
 選択器86は、乗算器85からの信号を選択して複素数化部87へ出力する状態と、0部85からの信号を選択して複素数化部87へ出力する状態を切り換える。 また、選択器86は、例えば、制御部19から入力される調整方法制御のための所定の制御信号(制御_A)により制御される。 The selector 86 switches between a state in which the signal from the multiplier 85 is selected and output to the complex numbering unit 87, and a state in which the signal from the 0 unit 85 is selected and output to the complex numbering unit 87. Further, the selector 86 is controlled by a predetermined control signal (control_A) for adjustment method control input from the control unit 19, for example.
 複素数化部87は、実数抽出部81から入力された実数部の信号と、選択器56から入力された虚数部に関する信号に基づいて、これらの値からなる複素数を生成して、その信号を調整済みの等化係数w(k)(調整部63-0については、w(k))として選択部(調整部63-0については、選択部62-0)へ出力する。 Based on the signal of the real part input from the real number extraction unit 81 and the signal related to the imaginary part input from the selector 56, the complex number conversion unit 87 generates a complex number composed of these values and adjusts the signal. It outputs to the selection unit (selection unit 62-0 for the adjustment unit 63-0) as the already-equalized coefficient w n (k) (w 0 (k) for the adjustment unit 63-0).
 ここで、選択器86により乗算器84からの信号(-1×虚数部)が選択された場合には、複素数化部87は、調整部63-0に入力された等化係数w(k)の虚数部の正負(±)を反転させたものを調整済みの等化係数w(k)として出力する。 また、選択器86により0部55からの信号(0)が選択された場合には、複素数化部87は、調整部63-0に入力された等化係数w(k)の虚数部を0としたもの(実数部のみ)を調整済みの等化係数w(k)として出力する。 Here, when the signal from the multiplier 84 by the selector 86 (-1 × imaginary part) has been selected, the complex unit 87, the equalization coefficients is input to the adjusting unit 63-0 w n (k ) Obtained by inverting the positive / negative (±) of the imaginary part is output as an adjusted equalization coefficient w n (k). Further, when the signal (0) from the 0 unit 55 is selected by the selector 86, the complex number unit 87 calculates the imaginary part of the equalization coefficient w n (k) input to the adjustment unit 63-0. A value set to 0 (only the real part) is output as an adjusted equalization coefficient w n (k).
 以下、本例では、選択器86により乗算器84からの信号(-1×虚数部)が選択された場合について説明する。 実際に第1の送受信装置(B点側)における送信系の切り換えタイミングに同期して、それまでに収束した1つ又は複数の等化係数w(k)に対して、虚数部の符号を反転することにより、各等化係数の複素共役を求め、その値(調整済みの等化係数)によりそれぞれの等化係数w(k)を初期化する。なお、第1の送受信装置(B点側)における送信系の切り換え以外の場合では、所定の係数更新アルゴリズムに基づいて、等化係数w(k)の更新処理を行う。 Hereinafter, in this example, a case where the signal from the multiplier 84 (−1 × imaginary part) is selected by the selector 86 will be described. Actually, the code of the imaginary part is added to one or a plurality of equalization coefficients w n (k) converged so far in synchronization with the transmission system switching timing in the first transmitting / receiving apparatus (point B side). By inversion, the complex conjugate of each equalization coefficient is obtained, and each equalization coefficient w n (k) is initialized with the value (adjusted equalization coefficient). In cases other than switching of the transmission system in the first transmission / reception device (point B side), the equalization coefficient w n (k) is updated based on a predetermined coefficient update algorithm.
 ここで、第1の送受信装置(B点側)における送信系の切り換え時における等化係数w(k)の初期値として複素共役を求める理由は、本例のような逆相関アンテナの選択ダイバーシティを実施する場合、逆相関関係にある2つのアンテナの受信信号の変調波スペクトラム(振幅特性)が、図6(a)~(h)に示されるような関係になることに基づく。 Here, the reason why the complex conjugate is obtained as the initial value of the equalization coefficient w n (k) at the time of switching the transmission system in the first transmission / reception apparatus (point B side) is that the selection diversity of the inverse correlation antenna as in this example Is implemented based on the fact that the modulation wave spectra (amplitude characteristics) of the reception signals of the two antennas having the inverse correlation are in the relationship as shown in FIGS. 6 (a) to 6 (h).
 図6(a)~(h)には、直接波と反射波のキャリア位相差別、つまり、直接波のキャリアの位相を0とした場合における、反射波(遅延波)のキャリア位相別の変調波スペクトラムの例を示してある。 図6(a)~(d)は、基準側の受信系について示してあり、それぞれ、0度(同相加算)、+90度、180度(逆相加算)、-90度(+270度)である場合を示している。また、図6(e)~(h)は、逆相関側の受信系について示してあり、それぞれ、180度(逆相加算)、-90度(+270度)、0度(同相加算)、+90度である場合を示している。また、図6(a)~(d)と図6(e)~(h)が、それぞれ、対応している。 図6(a)~(h)の各グラフでは、横軸は周波数を表しており、縦軸は振幅を表している。 図6(a)~(h)は第1の送受信装置側における受信信号のスペクトラムであるが、上述の通り、本例の無線通信システムにおいては、同一のアンテナで行う送信と受信の伝搬路が実質的に同一であるため、各アンテナから送信されて第2の送受信装置側において受信される信号も、それぞれ図6と同様の変調波スペクトラムを有する。 6 (a) to 6 (h) show carrier phase discrimination between the direct wave and the reflected wave, that is, the modulated wave according to the carrier phase of the reflected wave (delayed wave) when the phase of the carrier of the direct wave is zero. An example of a spectrum is shown. 6A to 6D show the receiving system on the reference side, which are 0 degrees (in-phase addition), +90 degrees, 180 degrees (reverse phase addition), and -90 degrees (+270 degrees), respectively. Shows the case. FIGS. 6E to 6H show the reception system on the anticorrelation side, and are 180 degrees (antiphase addition), −90 degrees (+270 degrees), 0 degrees (inphase addition), and +90, respectively. The case is shown. FIGS. 6A to 6D correspond to FIGS. 6E to 6H, respectively. 6 In each graph of FIGS. 6A to 6H, the horizontal axis represents frequency and the vertical axis represents amplitude. 6 (a) to 6 (h) show the received signal spectrum on the first transmitting / receiving device side. As described above, in the wireless communication system of this example, the transmission and reception propagation paths performed by the same antenna are different. Since they are substantially the same, the signals transmitted from the respective antennas and received on the second transmitting / receiving device side also have the same modulated wave spectrum as in FIG.
 ここで、図6に示す様に、逆相関アンテナの各アンテナの変調波スペクトラムは、一定の相関関係を有している。特に、本例において、各受信系の受信レベルに基づいて受信系及び送信系の切り換えが行われると想定されるタイミングは、例えば、(+90度から-90度になる場合)又は(-90度から+90度になる場合)である。この場合における反射波の変調波スペクトラムは、左右対称、つまり、DC成分を中心に左右反転させた特性になる。これは、一方のアンテナ側の伝搬路特性を補償するために求めた等化係数であれば、その複素共役が、もう一方のアンテナ側の伝搬路特性を補償できることを意味している。 なお、上記では変調波スペクトラムの振幅特性の関係に基づいて説明したが、逆相関関係にある2つのアンテナを用いることにより、位相特性についても、複素共役を用いてアンテナ切り換え後の伝搬路特性を補償できる条件を満たすことができる。 本例のような等化係数の初期化を実行することにより、アンテナの切り換え時に、異なる伝搬路特性への追加的な追従時間が不要になり、切り換え時における通信品質を維持することができる。 Here, as shown in FIG. 6, the modulation wave spectrum of each antenna of the inverse correlation antenna has a certain correlation. In particular, in this example, the timing at which switching between the reception system and the transmission system is performed based on the reception level of each reception system is, for example, (when +90 degrees to −90 degrees) or (−90 degrees). To +90 degrees). The modulated wave spectrum of the reflected wave in this case has left-right symmetry, that is, a characteristic that is reversed left and right around the DC component. This means that the complex conjugate can compensate the propagation path characteristic on the other antenna side if it is an equalization coefficient obtained to compensate the propagation path characteristic on the other antenna side. Although the above description has been based on the relationship between the amplitude characteristics of the modulated wave spectrum, by using two antennas having an inverse correlation, the phase characteristics can also be changed to the propagation path characteristics after antenna switching using complex conjugate. The conditions that can be compensated can be satisfied. By executing the initialization of the equalization coefficient as in this example, additional follow-up time for different propagation path characteristics is not required at the time of antenna switching, and communication quality at the time of switching can be maintained.
 次に、本例のような逆相関アンテナの選択ダイバーシティにおける等化係数の初期化に関し、効率的な適用条件について説明する。 まず、アンテナ切り換え時における各変調波スペクトラムが、左右対称になることが必要である。より具体的には、各変調波スペクトラムに示される周波数特性のうち、振幅特性に関しては、中心周波数を反転軸にしたとき、一方がもう一方を反転したものと同じになることが必要である。なお、位相特性に関しては、左右反転した後、位相自体の符号反転も必要となる。 これが満たされているという前提があるならば、直接波に対する反射波の遅延が大きくなるほど、効果が顕著になる。但し、この遅延があまりに大きくなりすぎると、ダイバーシティとは無関係な期間の受信品質に影響が出てくる。このため、このような影響が無視できる範囲あれば、遅延が大きいほど、本例の効果がはっきりわかるということである。 Next, an efficient application condition regarding initialization of the equalization coefficient in the selection diversity of the inverse correlation antenna as in this example will be described. First, each modulated wave spectrum at the time of antenna switching must be symmetrical. More specifically, among the frequency characteristics shown in each modulation wave spectrum, regarding the amplitude characteristics, when the center frequency is set as the inversion axis, one needs to be the same as the one obtained by inverting the other. As for the phase characteristics, after the left / right reversal, the sign of the phase itself must be reversed. If there is a premise that this is satisfied, the effect becomes more remarkable as the delay of the reflected wave with respect to the direct wave increases. However, if this delay becomes too large, reception quality in a period unrelated to diversity will be affected. For this reason, if such an influence can be ignored, the greater the delay, the clearer the effect of this example.
 前記のような遅延時間の大小は、装置設置距離とアンテナ設置高との関係で決まる。 例えば、距離が離れていても、アンテナ設置高が低ければ、直接波のパス長と反射波のパス長との差は、大きくならない。 反対に、距離が離れていなくても、アンテナ設置高が高ければ、直接波のパス長と反射波のパス長との差が、大きくなる。 The magnitude of the delay time as described above is determined by the relationship between the device installation distance and the antenna installation height. For example, even if the distance is long, if the antenna installation height is low, the difference between the direct wave path length and the reflected wave path length does not increase. On the other hand, even if the distance is not long, if the antenna installation height is high, the difference between the direct wave path length and the reflected wave path length becomes large.
 また、例えば、対向するアンテナが固定されており且つ伝搬路が海越えのような環境下では、直接波と反射波との関係が比較的単純であり、ダイバーシティアンテナ間における直接波と反射波との位相差の関係が凡そλ/2に保たれるため、本例の効果は大きい。 また、本例では、アンテナ切り換えを行うため、例えば、FDD(Frequency Division Duplexing)方式よりも、TDD方式に適合的な構成である。 Also, for example, in an environment where the opposing antenna is fixed and the propagation path is over the sea, the relationship between the direct wave and the reflected wave is relatively simple, and the direct wave and the reflected wave between the diversity antennas are Since the relationship of the phase difference is maintained at about λ / 2, the effect of this example is great. Also, in this example, since antenna switching is performed, for example, the configuration is more suitable for the TDD scheme than the FDD (Frequency Division Duplexing) scheme.
 以上のように、本例の無線通信システムでは、第1の送受信装置(B点側)において、基準アンテナ(例えば、アンテナb-1)と、基準アンテナに対して逆相関の関係になるように配置された逆相関アンテナ(例えば、アンテナb-2)を使用し、また、基準アンテナ及び逆相関アンテナの受信レベルを検出(観測)し、各々のレベルの比較に基づいて使用すべき送信系を決定し、送信系の切り換えタイミングを第2の送受信装置(A点側)に通知し、当該通知した切り換えタイミングに同期した送信系切り換えを実施する。そして、第2の送受信装置(A点側)おいて、通知された切り換えタイミングに同期して、切り換え前の等化係数に基づいて、等化係数を初期化する。これにより、第1の送受信装置(B点側)における送信アンテナ(送信系)の切り換えに起因する、第2の送受信装置(A点側)における等化係数の再収束のための所要時間を短縮することを可能とする。 As described above, in the wireless communication system of this example, in the first transmitting / receiving apparatus (point B side), the reference antenna (for example, antenna b-1) and the reference antenna have an inverse correlation relationship. The arranged inverse correlation antenna (for example, antenna b-2) is used, and the reception levels of the reference antenna and the inverse correlation antenna are detected (observed), and the transmission system to be used is determined based on the comparison of the respective levels. The transmission system switching timing is notified to the second transmitting / receiving apparatus (point A side), and transmission system switching is performed in synchronization with the notified switching timing. Then, in the second transmitting / receiving apparatus (point A side), the equalization coefficient is initialized based on the equalization coefficient before switching in synchronization with the notified switching timing. This shortens the time required for re-convergence of the equalization coefficient in the second transmitter / receiver (point A side) due to switching of the transmission antenna (transmission system) in the first transmitter / receiver (point B). It is possible to do.
 また、本例の無線通信システムでは、初期化用の等化係数を求める方法として、切り換え時における等化係数の初期値を、切り換え直前における等化係数の複素共役とする。このように、本例では、送信アンテナの切り換えタイミングに同期して等化係数を初期化する場合に、アンテナ切り換え直前における等化係数の収束値に基づいて、各々の係数の複素共役を算出し、これを初期値として使用する。 Also, in the wireless communication system of this example, as a method for obtaining the equalization coefficient for initialization, the initial value of the equalization coefficient at the time of switching is the complex conjugate of the equalization coefficient immediately before switching. Thus, in this example, when the equalization coefficient is initialized in synchronization with the transmission antenna switching timing, the complex conjugate of each coefficient is calculated based on the convergence value of the equalization coefficient immediately before the antenna switching. This is used as an initial value.
 従って、本例の無線通信システムでは、現在のアンテナから逆相関の関係にあるアンテナへ送信系を切り換えるときに、送信アンテナ(送信系)の切り換えに伴って発生する切り換え実行直後に必要な等化係数再収束のための所要時間を短縮することができる。本例では、送信アンテナ(送信系)の切り換え直後の等化係数再収束処理について、切り換え直前の等化係数の複素共役を求め、これを等化係数再収束処理の開始時点における等化係数の初期値とする。 Therefore, in the wireless communication system of the present example, when switching the transmission system from the current antenna to the antenna having the inverse correlation, the equalization necessary immediately after execution of switching that occurs in association with switching of the transmission antenna (transmission system) The time required for coefficient reconvergence can be shortened. In this example, for the equalization coefficient reconvergence processing immediately after switching of the transmission antenna (transmission system), the complex conjugate of the equalization coefficient immediately before switching is obtained, and this is calculated as the equalization coefficient at the start of the equalization coefficient reconvergence processing. Use the initial value.
 このように、本例では、逆相関関係にある2つのアンテナを受信状況に応じて選択的に切り換えて送信に用いるアンテナ選択ダイバーシティ技術において、特に、送受信間で海越えを行うような環境下において、送信アンテナ(送信系)の切り換え時における等化係数の収束時間を効果的に短縮することができる。 As described above, in this example, in the antenna selection diversity technique that is used for transmission by selectively switching two antennas having inverse correlation according to the reception situation, particularly in an environment where the sea is crossed between transmission and reception. It is possible to effectively shorten the convergence time of the equalization coefficient when the transmission antenna (transmission system) is switched.
(第2実施例) 等化係数の初期化の第2実施例を説明する。 上記した第1実施例では、B点(第1の送受信装置)における送信系の切り換えタイミングに同期して実行する等化係数の初期値の算出として、直前までの等化係数の収束値の複素共役を求める場合を示した。これに対して、本例では、送信系の切り換えタイミングに同期して実行する等化係数の初期値の算出として、直前までの等化係数の収束値の実数部だけを使用する場合を示す。なお、本例では、実数部だけを使うということと、虚数部を0にするということとは、同じ意味である。 (Second Embodiment) A second embodiment of equalization coefficient initialization will be described. In the first embodiment described above, as a calculation of the initial value of the equalization coefficient executed in synchronization with the transmission system switching timing at point B (first transmission / reception device), the complex value of the convergence value of the equalization coefficient until immediately before is calculated. The case of obtaining the conjugate is shown. On the other hand, in this example, a case is shown in which only the real part of the convergence value of the equalization coefficient until just before is used as the calculation of the initial value of the equalization coefficient executed in synchronization with the transmission system switching timing. In this example, using only the real part and setting the imaginary part to 0 have the same meaning.
 以下、本例では、図10に示される調整部の選択器86により0部85からの信号(0)が選択された場合について説明する。 本例のように、選択器86により0部85からの信号(0)が選択された場合には、複素数化部87は、調整部に入力された等化係数w(k)の虚数部を0としたもの(実数部のみ)を調整済みの等化係数w(k)として出力する。 Hereinafter, in this example, the case where the signal (0) from the 0 unit 85 is selected by the selector 86 of the adjustment unit illustrated in FIG. 10 will be described. As in this example, when the signal (0) from the 0 unit 85 is selected by the selector 86, the complex number conversion unit 87 includes the imaginary part of the equalization coefficient w n (k) input to the adjustment unit. 0 (only the real part) is output as the adjusted equalization coefficient w n (k).
 各々のアンテナでの受信レベル推移において理想的な逆相関が成立するときには、一方の伝搬路特性を補償するための係数の複素共役は、もう一方のための係数そのものになる。そして、その係数の虚数部を0にした状態は、複素共役を求める前の係数と求めた後の係数との平均値ととらえることができる。従って、周波数特性としては、各々から同程度異なった特性になる。 When the ideal inverse correlation is established in the reception level transition at each antenna, the complex conjugate of the coefficient for compensating one propagation path characteristic becomes the coefficient itself for the other. And the state which set the imaginary part of the coefficient to 0 can be taken as the average value of the coefficient before calculating | requiring complex conjugate, and the coefficient after calculating | requiring. Accordingly, the frequency characteristics are different from each other by the same degree.
 以上のように、本例の無線通信システムでは、第2の送受信装置(A点側)における初期化用の等化係数を求める方法として、切り換え時における等化係数の初期値を、切り換え直前における等化係数の実数部をそのままとし虚数部を0化して求めた値とする。このように、本例では、送信アンテナ(送信系)の切り換えタイミングに同期して、等化係数を初期化する場合に、切り換え直前における等化係数の収束値に基づいて、各々の係数の虚数部を0とし、これを初期値として使用する。 As described above, in the wireless communication system of this example, as a method for obtaining the equalization coefficient for initialization in the second transmitting / receiving apparatus (point A side), the initial value of the equalization coefficient at the time of switching The real part of the equalization coefficient is left as it is, and the value obtained by zeroing the imaginary part is used. Thus, in this example, when the equalization coefficient is initialized in synchronization with the switching timing of the transmission antenna (transmission system), the imaginary number of each coefficient is based on the convergence value of the equalization coefficient immediately before switching. The part is set to 0, and this is used as an initial value.
 従って、本例の無線通信システムでは、送信アンテナ(送信系)の切り換え時に、異なる伝搬路特性への追加的な追従時間を短縮することができ、切り換え時における通信品質を維持することができる。更に、例えば、海面変動が大きくなり、逆相関の関係が理想的でなくなったような場合においても、等化係数再収束処理の所要時間の短縮効果を維持することが可能である。 Therefore, in the wireless communication system of this example, when the transmission antenna (transmission system) is switched, the additional follow-up time for different propagation path characteristics can be shortened, and the communication quality at the time of switching can be maintained. Further, for example, even when sea level fluctuations become large and the inverse correlation relationship is not ideal, it is possible to maintain the effect of shortening the time required for the equalization coefficient reconvergence processing.
(第3実施例) 等化係数の初期化の第3実施例を説明する。 上記した第1実施例や第2実施例では、第2の送受信装置(A点側)において、B点(第1の送受信装置)における送信系の切り換えタイミングに同期して、切り換え前の送信アンテナから送信された信号の受信結果(受信信号)に基づいて適応的に収束された等化係数とは異なる等化係数を設定する(異なる等化係数へ変更する)ことにより、切り換え後の送信アンテナから送信された信号の受信結果(受信信号)に対する等化係数の収束時間を短縮する例を示した。 ここで、このような異なる等化係数(送信系の切り換え後における等化係数の初期値)としては、上記した第1実施例や第2実施例に示したものに限られず、種々なものが用いられてもよい。 本例では、これについて説明する。 (Third embodiment) A third embodiment of equalization coefficient initialization will be described. In the first and second embodiments described above, in the second transmitting / receiving apparatus (point A side), the transmission antenna before switching is synchronized with the switching timing of the transmission system at point B (first transmitting / receiving apparatus). The transmission antenna after switching is set by setting an equalization coefficient different from the equalization coefficient that is adaptively converged based on the reception result (received signal) of the signal transmitted from (changed to a different equalization coefficient) An example of shortening the convergence time of the equalization coefficient for the reception result (reception signal) of the signal transmitted from is shown. Here, such different equalization coefficients (initial values of the equalization coefficients after switching of the transmission system) are not limited to those shown in the first embodiment and the second embodiment described above, but various ones are available. May be used. This example will explain this.
 上記した第1実施例では、送信系の切り換えタイミングの直前における等化係数の複素共役を初期値として使用する例を示したが、必ずしも厳密に複素共役である必要はなく、複素共役以外についても、送信系の切り換えタイミングの直前における等化係数に基づいて送信系切り換え後の収束が短縮される係数を与えることにより、等化係数の収束時間を短縮できる場合が考えられる。このような例として、受信スペクトラムの解析結果と送信系の切り換えタイミングの直前における等化係数に基づいて新たな等化係数を与えることなどが考えられる。 In the first embodiment described above, an example is shown in which the complex conjugate of the equalization coefficient immediately before the switching timing of the transmission system is used as the initial value. However, the complex conjugate is not necessarily strictly complex, and other than the complex conjugate, It is conceivable that the convergence time of the equalization coefficient can be shortened by giving a coefficient that reduces the convergence after transmission system switching based on the equalization coefficient immediately before the transmission system switching timing. As such an example, a new equalization coefficient may be given based on the analysis result of the reception spectrum and the equalization coefficient immediately before the transmission system switching timing.
 また、このような例として、上記した第2実施例では、送信系の切り換えタイミングの直前における等化係数の実数部をそのままとして虚数部を0としたものを初期値として使用する例を示した。 また、上記した第2実施例の変形例として、例えば、送信系の切り換えタイミングの直前における等化係数について虚数部に0を使用する一方で、実数部には直前までの収束値の実数部ではなく0や1或いは他の予め定められた値を使用したものを初期値とするような構成が実施されてもよい。このような変形例に係る初期値を使用しても、収束の所要時間の短縮効果が得られることが期待される。なお、この実数部として、0や1以外の値を使用する場合には、例えば、アンテナ特性等に応じて適切な初期値を設定するようなことが可能である。 As an example of this, in the second embodiment described above, an example is shown in which the real part of the equalization coefficient immediately before the transmission system switching timing is left as it is and the imaginary part is set to 0 as the initial value. . Further, as a modification of the second embodiment described above, for example, 0 is used for the imaginary part for the equalization coefficient immediately before the switching timing of the transmission system, while the real part of the convergence value up to immediately before is used for the real part. Alternatively, a configuration in which 0, 1 or another predetermined value is used as the initial value may be implemented. Even if the initial value according to such a modification is used, it is expected that an effect of shortening the time required for convergence can be obtained. When a value other than 0 or 1 is used as the real part, for example, an appropriate initial value can be set according to antenna characteristics or the like.
 以上のように、送信系の切り換え時における等化係数の初期値としては、種々な値が用いられてもよい。 一構成例として、第1の送受信装置(送信側の装置)は、逆相関関係にある2つの送信アンテナを備え、送信アンテナの切り換えタイミングを第2の送受信装置(受信側の装置)に通知した後に送信アンテナの切り換えを行い、第2の送受信装置は、前記2つの送信アンテナに対向する1つの受信アンテナと1つの適応等化器を備え、第1の送受信装置から通知された切り換えタイミングに同期して、切り換え前後の送信アンテナ間の関係(逆相関関係)を利用して適応等化器の等化係数を変更する。変更後の等化係数は、例えば、変更前(送信アンテナの切り換え直前)の等化係数に対して逆相関関係を利用した演算により求められる。 As described above, various values may be used as the initial value of the equalization coefficient when the transmission system is switched. As a configuration example, the first transmission / reception apparatus (transmission-side apparatus) includes two transmission antennas having inverse correlation, and notifies the second transmission / reception apparatus (reception-side apparatus) of the transmission antenna switching timing. The transmission antenna is switched later, and the second transmission / reception apparatus includes one reception antenna and one adaptive equalizer facing the two transmission antennas, and is synchronized with the switching timing notified from the first transmission / reception apparatus. Then, the equalization coefficient of the adaptive equalizer is changed using the relationship (inverse correlation) between the transmission antennas before and after switching. The equalization coefficient after the change is obtained, for example, by calculation using an inverse correlation with the equalization coefficient before the change (immediately before switching the transmission antenna).
 一構成例として、送信アンテナの切り換えタイミングに同期して変更される等化係数としては、送信アンテナの切り換えタイミング時(例えば、直前)の等化係数に基づいて与えられる。すなわち、送信アンテナが切り換えが行われるタイミングにおける等化係数に基づいて、変更後の等化係数を決定する。 一構成例として、送信アンテナの切り換えタイミングに同期して変更される等化係数としては、送信アンテナの切り換えタイミング時(例えば、直前)の複素共役が与えられる。すなわち、送信アンテナが切り換えが行われるタイミングにおける等化係数の複素共役を、変更後の等化係数として決定する。 一構成例として、送信アンテナの切り換えタイミングに同期して変更される等化係数としては、実数部として送信アンテナの切り換えタイミング時(例えば、直前)の等化係数の実数部が与えられ、虚数部として0が与えられる。すなわち、すなわち、送信アンテナが切り換えが行われるタイミングにおける等化係数の実数部をそのままとして虚数部を0としたものを、変更後の等化係数として決定する。 一構成例として、送信アンテナの切り換えタイミングに同期して変更される等化係数としては、予め定められた値(初期値)が与えられる。すなわち、変更後の等化係数として、予め設定された値を用いる。 As an example of the configuration, the equalization coefficient that is changed in synchronization with the transmission antenna switching timing is given based on the equalization coefficient at the transmission antenna switching timing (for example, immediately before). That is, the changed equalization coefficient is determined based on the equalization coefficient at the timing when the transmission antenna is switched. As an example of the configuration, a complex conjugate at the transmission antenna switching timing (for example, immediately before) is given as the equalization coefficient that is changed in synchronization with the transmission antenna switching timing. That is, the complex conjugate of the equalization coefficient at the timing when the transmission antenna is switched is determined as the changed equalization coefficient. As an example of the configuration, the equalization coefficient that is changed in synchronization with the transmission antenna switching timing is given as the real part the real part of the equalization coefficient at the transmission antenna switching timing (for example, immediately before), and the imaginary part Is given as 0. In other words, the equalized coefficient after the change is determined with the real part of the equalization coefficient at the timing when the transmission antenna is switched as it is and the imaginary part being 0. As a configuration example, a predetermined value (initial value) is given as the equalization coefficient that is changed in synchronization with the switching timing of the transmission antenna. That is, a preset value is used as the equalization coefficient after change.
 以上の説明では、2つの送信系を切り換える構成例を示したが、3つ以上の送信系を切り換える構成を実施することも可能である。すなわち、一構成例として、第1の送受信装置(送信側の装置)は、所定の相関関係を有する3つ以上の送信アンテナを備え、送信アンテナの切り換えタイミングを第2の送受信装置(受信側の装置)に通知した後に送信アンテナの切り換えを行い、第2の送受信装置は、前記3つ以上の送信アンテナに対向する1つの受信アンテナと1つの適応等化器を備え、第1の送受信装置から通知された切り換えタイミングに同期して、切り換え前後の送信アンテナ間の関係(所定の相関関係)を利用して適応等化器の等化係数を変更する。変更後の等化係数は、例えば、変更前(送信アンテナの切り換え直前)の等化係数に対して所定の相関関係を利用した演算により求められる。 このような構成においても、例えば、所定の相関関係を有する3つ以上のアンテナを用いた送信ダイバーシティで、送信系の切り換えに起因する等化係数の再収束において、その所要時間を短縮することが可能である。 ここで、上記3つ以上の送信アンテナは、例えば、2つの送信アンテナを切り換える構成例と同様、各アンテナにおける受信レベルの推移が相関関係を有するように設置、構成される。つまり、例えば3つの送信アンテナの場合には、各アンテナが受信する直接波と反射波のキャリア位相差がそれぞれ120°ずつ異なるように設置、構成され、第1の送受信装置、及び第2の送受信装置のいずれにおいても受信レベルを一定以上に保つことが可能になる。 In the above description, a configuration example in which two transmission systems are switched has been described. However, a configuration in which three or more transmission systems are switched may be implemented. That is, as a configuration example, the first transmission / reception device (transmission-side device) includes three or more transmission antennas having a predetermined correlation, and the transmission antenna switching timing is set to the second transmission / reception device (reception-side device). The second transmission / reception apparatus includes one reception antenna and one adaptive equalizer facing the three or more transmission antennas, and the first transmission / reception apparatus In synchronization with the notified switching timing, the equalization coefficient of the adaptive equalizer is changed using the relationship (predetermined correlation) between the transmission antennas before and after switching. The equalization coefficient after the change is obtained, for example, by calculation using a predetermined correlation with the equalization coefficient before the change (immediately before the transmission antenna is switched). Even in such a configuration, for example, in transmission diversity using three or more antennas having a predetermined correlation, it is possible to shorten the time required for reconvergence of equalization coefficients caused by switching of transmission systems. Is possible. Here, the three or more transmission antennas are installed and configured such that the transition of the reception level at each antenna has a correlation, for example, as in the configuration example in which two transmission antennas are switched. That is, in the case of three transmitting antennas, for example, the first transmitting / receiving device and the second transmitting / receiving device are configured so that the carrier phase difference between the direct wave and the reflected wave received by each antenna is different by 120 °. In any of the devices, the reception level can be kept above a certain level.
 更に一般的には、n本のアンテナ(n>=2)で、各アンテナ間の特定の相関を利用したアンテナ切り替えを行うことも可能である。 n本のアンテナで、任意のタイミングで、直接波の位相と遅延波の位相との差を求めたとき、各々が、以下のように表せればよい。
Figure JPOXMLDOC01-appb-M000001
 なお、kは0~n-1の整数であり、φは任意の定数である。
More generally, it is possible to perform antenna switching using a specific correlation between antennas with n antennas (n> = 2). When the difference between the phase of the direct wave and the phase of the delayed wave is obtained with n antennas at an arbitrary timing, each may be expressed as follows.
Figure JPOXMLDOC01-appb-M000001
Note that k is an integer from 0 to n−1, and φ 0 is an arbitrary constant.
 ここで、例えば上述の実施例のように、n=2(アンテナが2本)の場合、任意のタイミングにおける直接波の位相と遅延波の位相との差はそれぞれ以下の値となる。なお、φは任意なので、以降、簡単のためφ=0とする。
Figure JPOXMLDOC01-appb-M000002
 この場合、“特定の相関”は“逆相関”、つまりそれぞれのアンテナにおける直接波の位相と遅延波の位相との差が180°の関係となる。
Here, for example, as in the above-described embodiment, when n = 2 (two antennas), the difference between the phase of the direct wave and the phase of the delayed wave at an arbitrary timing is as follows. Since φ 0 is arbitrary, hereinafter, φ 0 = 0 is assumed for simplicity.
Figure JPOXMLDOC01-appb-M000002
In this case, the “specific correlation” is “inverse correlation”, that is, the relationship between the phase of the direct wave and the phase of the delayed wave at each antenna is 180 °.
 また、n=3(アンテナが3本)の場合、任意のタイミングにおける直接波の位相と遅延波の位相との差はそれぞれ以下の値となる。
Figure JPOXMLDOC01-appb-M000003
 この場合は、“特定の相関”は“逆相関”ではなく、それぞれのアンテナにおける直接波の位相と遅延波の位相との差が互いに120°の関係となる。このように、n本のアンテナ(n>=2)についても、同様に切り替えが可能な関係になるアンテナの組み合わせは存在する。
When n = 3 (three antennas), the difference between the phase of the direct wave and the phase of the delayed wave at an arbitrary timing is as follows.
Figure JPOXMLDOC01-appb-M000003
In this case, the “specific correlation” is not “inverse correlation”, and the difference between the phase of the direct wave and the phase of the delayed wave in each antenna is 120 °. Thus, there are combinations of antennas that can be switched similarly for n antennas (n> = 2).
 図7、図8は、n=3(アンテナが3本)の場合における受信レベルの相互関係、及び、スペクトラムの相互関係を示してある。 本例では、基準となる第1アンテナと、第1アンテナに対して120度の位相差を持たせた第2アンテナと、第1アンテナに対して240度の位相差を持たせた第3アンテナの各々についての受信レベルが、図7のような相互関係を有するように設定してある。この場合、各アンテナについての直接波と反射波のキャリア位相差別の変調スペクトラムは、図8のような相互関係を有する。なお、図7のグラフでは、横軸は直接波と反射波のキャリア位相差を表しており、縦軸は相対レベルを表している。また、図8のグラフでは、横軸は周波数を表しており、縦軸は振幅を表している。 7 and 8 show the correlation between the reception levels and the spectrum when n = 3 (three antennas). In this example, a reference first antenna, a second antenna having a 120 degree phase difference with respect to the first antenna, and a third antenna having a 240 degree phase difference with respect to the first antenna. The reception levels for each of these are set so as to have a mutual relationship as shown in FIG. In this case, the modulation spectrum of the carrier phase discrimination between the direct wave and the reflected wave for each antenna has a correlation as shown in FIG. In the graph of FIG. 7, the horizontal axis represents the carrier phase difference between the direct wave and the reflected wave, and the vertical axis represents the relative level. In the graph of FIG. 8, the horizontal axis represents frequency and the vertical axis represents amplitude.
 このような相互関係を有する第1~第3アンテナを設けた構成では、第2アンテナの受信レベルが最小となるタイミング(b)で第1アンテナの受信レベルと第3アンテナの受信レベルが逆転する(第3アンテナの方が大きくなる)ので、タイミング(b)で第1アンテナから第3アンテナへの切り換えを行う。同様に、第1アンテナの受信レベルが最小となるタイミング(d)で第3アンテナの受信レベルと第2アンテナの受信レベルが逆転する(第2アンテナの方が大きくなる)ので、タイミング(d)で第3アンテナから第2アンテナへの切り換えを行い、第3アンテナの受信レベルが最小となるタイミング(f)で第2アンテナの受信レベルと第1アンテナの受信レベルが逆転する(第1アンテナの方が大きくなる)ので、タイミング(f)で第2アンテナから第1アンテナへの切り換えを行う。 In the configuration in which the first to third antennas having such a mutual relationship are provided, the reception level of the first antenna and the reception level of the third antenna are reversed at the timing (b) at which the reception level of the second antenna is minimized. Since the third antenna is larger, switching from the first antenna to the third antenna is performed at timing (b). Similarly, since the reception level of the third antenna and the reception level of the second antenna are reversed at timing (d) at which the reception level of the first antenna is minimized (timing (d)). Is switched from the third antenna to the second antenna, and the reception level of the second antenna and the reception level of the first antenna are reversed at the timing (f) at which the reception level of the third antenna becomes minimum (the first antenna Therefore, switching from the second antenna to the first antenna is performed at timing (f).
 また、以上の説明では、第1の送受信装置(送信側)の複数の送信アンテナについて、切り換え前後の送信アンテナ間の関係(所定の相関関係)の好適な例として、信号レベルの推移が図13、図14や図7に示す関係となる場合を示したが、本発明はこれに限られるものではない。上述の実施例では、第1の送受信装置の各受信系における受信レベルに基づいて送信系の切り換えを行うが、各受信系における受信レベルに拠らず、送信系の切り換え前後の各送信系の伝搬路特性に所定の相関関係がある場合(例えば、複数の送信アンテナから送信される信号の変調波スペクトラム(周波数特性)が図6に示す様な関係となるように当該複数の送信アンテナが構成されている場合)、送信系切り換え前後の伝搬路特性の関係に基づいて第2の送受信装置における適応等化器の等化係数などを最適な値に近づくように初期化(変更)することができる。 これにより、上述の実施例と同様に、送信系の切り換えに起因する等化係数の再収束において、その所要時間を短縮することが可能である。 Further, in the above description, as a suitable example of the relationship between the transmission antennas before and after switching (predetermined correlation) for a plurality of transmission antennas of the first transmission / reception device (transmission side), the transition of the signal level is shown in FIG. 14 and FIG. 7 are shown, but the present invention is not limited to this. In the above-described embodiment, the transmission system is switched based on the reception level in each reception system of the first transmission / reception apparatus. However, the transmission system before and after the transmission system switching is not dependent on the reception level in each reception system. When there is a predetermined correlation in propagation path characteristics (for example, the plurality of transmission antennas are configured so that the modulation wave spectrum (frequency characteristics) of signals transmitted from the plurality of transmission antennas have a relation as shown in FIG. In other words, the equalization coefficient of the adaptive equalizer in the second transmission / reception apparatus may be initialized (changed) to approach an optimum value based on the relationship between the propagation path characteristics before and after the transmission system switching. it can. As a result, similar to the above-described embodiment, it is possible to shorten the time required for reconvergence of the equalization coefficient due to switching of the transmission system.
 また、以上の説明では、第1の送受信装置は、信号の送信及び受信に共用する2つ又は3つの共用アンテナを備え、各共用アンテナにより受信した信号に基づいて、信号の送信に用いるアンテナを選択的に切り換えているが、他の手法により、信号の送信に用いるアンテナを選択するようにしてもよい。すなわち、例えば、第1の送受信装置は、信号の送信に用いる2つの送信アンテナと信号の受信に用いる1つの受信アンテナを備え、各送信アンテナから送信した信号に係る情報を受信アンテナにより第2の送受信装置から受信し、当該情報に基づいて送信アンテナを選択的に切り換えるようにしてもよい。 In the above description, the first transmission / reception apparatus includes two or three shared antennas shared for signal transmission and reception, and the antenna used for signal transmission is based on the signal received by each shared antenna. Although the switching is selectively performed, the antenna used for signal transmission may be selected by another method. That is, for example, the first transmission / reception apparatus includes two transmission antennas used for signal transmission and one reception antenna used for signal reception, and information related to signals transmitted from the respective transmission antennas is received by the second reception antenna. The transmission antenna may be selectively switched based on the information received from the transmission / reception device.
  本明細書の記載事項には、少なくとも次の発明が含まれる。 すなわち、第1の発明は、互いに信号の送受信を行う第1の送受信装置と第2の送受信装置とを有する無線通信システムにおいて、前記第1の送受信装置は、前記第2の送受信装置の特定のアンテナから送信される信号の受信レベルが互いに所定の相関関係を有する複数のアンテナと、前記第2の送受信装置における特定のアンテナから送信されて前記複数のアンテナによりそれぞれ受信される信号の受信レベルに基づいて、前記第2の送受信装置の特定のアンテナへ信号を送信するアンテナを前記複数のアンテナのいずれかに切り換える送信アンテナ切換手段と、前記送信アンテナ切換手段による切り換えタイミングを前記第2の受信装置に通知するタイミング通知手段と、を備え、前記第2の送受信装置は、前記第1の送受信装置から通知された切り換えタイミングに同期して、前記特定のアンテナにより受信する信号の等化処理に用いる等化係数を変更する等化係数変更手段を備えた、ことを特徴とする無線通信システムである。 当該第1の発明によれば、第1の送受信装置では、受信される信号の受信レベルに基づいて、第2の送受信装置へ信号を送信するアンテナを複数のアンテナのいずれかに切り換えることで、常に信号の送信に最適なアンテナにより信号を送信することができるとともに、第2の送受信装置では、第1の送受信装置における信号を送信するアンテナの切り換えタイミングを事前に把握することができ、当該切り換えタイミングに同期して、等化処理に用いる等化係数の変更(初期化)が実施されるため、送信アンテナの切り換え直後における通信品質の劣化が改善される。特に、第1の送受信装置の複数のアンテナは、第2の送受信装置の特定のアンテナから送信される信号の受信レベルが互いに所定の相関関係を有しており、当該受信レベルに基づいて信号の送信に用いるアンテナの切り換えを行うことから、当該複数のアンテナの各受信レベルが相関関係を有し、当該受信レベルに基づいて信号の送信に用いるアンテナの切り換えを行うという条件に基づいて等化係数変更時の係数を設定することができるので、送信系の切り換えに起因する等化係数の再収束において、その所要時間を短縮することが可能である。 記載 The items described in this specification include at least the following inventions. That is, the first invention is a wireless communication system having a first transmission / reception device and a second transmission / reception device that transmit / receive signals to / from each other. The reception level of the signal transmitted from the antenna is equal to the reception level of the plurality of antennas having a predetermined correlation with each other and the signal transmitted from the specific antenna in the second transmission / reception apparatus and received by the plurality of antennas. Based on transmission antenna switching means for switching an antenna for transmitting a signal to a specific antenna of the second transmission / reception apparatus to one of the plurality of antennas, and the switching timing by the transmission antenna switching means for the second reception apparatus. A timing notification means for notifying to the second transmission / reception device, wherein the second transmission / reception device includes: In synchronization with the knowledge has been switching timing, the equipped with equalization coefficient changing means for changing the equalization coefficient used for equalization of signals received by a particular antenna, a wireless communication system, characterized in that. According to the first invention, in the first transmission / reception device, based on the reception level of the received signal, the antenna that transmits the signal to the second transmission / reception device is switched to one of the plurality of antennas, A signal can always be transmitted by an antenna that is optimal for signal transmission, and the second transmission / reception device can grasp in advance the switching timing of the antenna that transmits the signal in the first transmission / reception device. Since the equalization coefficient used for the equalization process is changed (initialized) in synchronization with the timing, the deterioration of the communication quality immediately after switching the transmission antenna is improved. In particular, the reception levels of signals transmitted from specific antennas of the second transmission / reception device have a predetermined correlation with each other in the plurality of antennas of the first transmission / reception device. Since the antennas used for transmission are switched, the reception levels of the plurality of antennas have a correlation, and the equalization coefficient is based on the condition that the antennas used for signal transmission are switched based on the reception levels. Since the coefficient at the time of change can be set, it is possible to shorten the time required for reconvergence of the equalization coefficient due to switching of the transmission system.
 第2の発明は、上記第1の発明に記載の無線通信システムにおいて、前記第1の送受信装置は2つのアンテナを備え、当該2つのアンテナは、前記第2の送受信装置の特定のアンテナから送信される信号の受信レベルが互いに逆相関となる関係を有することを特徴とする無線通信システムである。 当該第2の発明によれば、上記第1の発明に対して、前記第1の送受信装置が備える2つのアンテナが、前記第2の送受信装置の特定のアンテナから送信される信号の受信レベルが互いに逆相関となる関係を有しているため、特に、当該2つのアンテナは各受信レベルが逆相関関係を有するという条件に基づいて、等化係数変更時の係数を設定することができ、送信系の切り換えに起因する等化係数の再収束において、その所要時間を短縮することが可能である。 According to a second aspect of the present invention, in the wireless communication system according to the first aspect of the invention, the first transmission / reception device includes two antennas, and the two antennas are transmitted from specific antennas of the second transmission / reception device. It is a radio | wireless communications system characterized by having the relationship from which the reception level of the signal to be made becomes a reverse correlation mutually. According to the second invention, in contrast to the first invention, the two antennas included in the first transmission / reception device have a reception level of a signal transmitted from a specific antenna of the second transmission / reception device. Since the two antennas have a relationship that is inversely correlated with each other, in particular, the coefficient at the time of changing the equalization coefficient can be set based on the condition that each reception level has an inverse correlation. It is possible to shorten the time required for reconvergence of the equalization coefficient caused by system switching.
 第3の発明は、対向する送信装置と受信装置を有する無線通信システムにおいて、前記送信装置は、前記受信装置の特定の受信アンテナとの間の伝搬路特性が所定の相関関係を有する複数の送信アンテナと、前記受信装置の特定の受信アンテナへ信号を送信するアンテナを前記複数の送信アンテナのいずれかに切り換える送信アンテナ切換手段と、前記送信アンテナ切換手段による切り換えタイミングを前記受信装置に通知するタイミング通知手段と、を備え、前記受信装置は、前記送信装置から通知された切り換えタイミングに同期して、前記特定の受信アンテナにより受信する信号の等化処理に用いる等化係数を変更する等化係数変更手段を備えた、ことを特徴とする無線通信システムである。 当該第3の発明によれば、受信装置では、送信装置における送信アンテナの切り換えタイミングを事前に把握することができ、当該切り換えタイミングに同期して、等化処理に用いる等化係数の変更(初期化)が実施されるため、送信アンテナの切り換え直後における通信品質の劣化が改善される。特に、送信装置における切り換え前後の送信アンテナの伝搬路特性が所定の相関関係を有しているため、当該相関関係を考慮して、等化係数変更時の係数を設定することができ、送信系の切り換えに起因する等化係数の再収束において、その所要時間を短縮することが可能である。 前記送信装置の複数の送信アンテナが有する伝搬路特性の相関関係としては、例えば、複数の送信アンテナから送信される信号の変調波スペクトラム(周波数特性)が、図6に示す様な関係や、図7,図8に示す様な関係が考えられる。 According to a third aspect of the present invention, in the wireless communication system having a transmitting apparatus and a receiving apparatus facing each other, the transmitting apparatus has a plurality of transmissions whose propagation path characteristics with a specific receiving antenna of the receiving apparatus have a predetermined correlation An antenna, transmission antenna switching means for switching an antenna that transmits a signal to a specific reception antenna of the reception apparatus, to one of the plurality of transmission antennas, and timing for notifying the reception apparatus of switching timing by the transmission antenna switching means An equalization coefficient for changing an equalization coefficient used for equalization processing of a signal received by the specific reception antenna in synchronization with the switching timing notified from the transmission apparatus. A wireless communication system including a changing unit. According to the third aspect of the invention, the receiving apparatus can grasp in advance the switching timing of the transmitting antenna in the transmitting apparatus, and changes the equalization coefficient used for equalization processing (initially) in synchronization with the switching timing. Therefore, the deterioration of the communication quality immediately after switching the transmission antenna is improved. In particular, since the propagation path characteristics of the transmission antenna before and after switching in the transmission apparatus have a predetermined correlation, the coefficient at the time of changing the equalization coefficient can be set in consideration of the correlation. It is possible to shorten the time required for reconvergence of the equalization coefficient resulting from the switching of. As the correlation of the propagation path characteristics possessed by the plurality of transmission antennas of the transmission apparatus, for example, the modulation wave spectrum (frequency characteristics) of the signals transmitted from the plurality of transmission antennas is as shown in FIG. 7 and the relationship shown in FIG.
 なお、上記第1~第3の発明における、送信アンテナ切換手段は、例えば上述の実施形態(図1)においては、タイミング管理部30、レベル測定/比較部31、制御部32、送信系選択部24などにより構成される。また、タイミング通知手段は、例えば上述の実施形態(図1)においては、タイミング管理部30、制御部32、及び、信号を送信する機能に関する各構成(ENC部21、送信ベースバンド部22、送信RF部23、アンテナb、等)などにより構成される。また、等化係数変更手段は、例えば上述の実施形態(図1)においては、タイミング管理部18、制御部19、受信ベースバンド部16に設けられる適応等化器(図9)などにより構成される。 In the first to third inventions, the transmission antenna switching means is, for example, the timing management unit 30, the level measurement / comparison unit 31, the control unit 32, the transmission system selection unit in the above-described embodiment (FIG. 1). 24. In addition, for example, in the above-described embodiment (FIG. 1), the timing notification unit includes the timing management unit 30, the control unit 32, and the components related to the function of transmitting signals (ENC unit 21, transmission baseband unit 22, transmission). RF unit 23, antenna b, etc.). Further, the equalization coefficient changing means is configured by, for example, the adaptive equalizer (FIG. 9) provided in the timing management unit 18, the control unit 19, and the reception baseband unit 16 in the above-described embodiment (FIG. 1). The
 第4の発明は、対向する送信装置と受信装置とを有する無線通信システムにおいて、前記送信装置は、前記受信装置の特定の受信アンテナとの間の伝搬路特性が所定の相関関係を有する複数の送信アンテナと、前記受信装置の特定の受信アンテナへ信号を送信するアンテナを前記複数のアンテナのいずれかに切り換える送信アンテナ切換手段と、前記送信アンテナ切換手段による切り換えタイミングを前記受信装置に通知するタイミング通知手段と、を備え、前記受信装置は、前記送信装置から通知された切り換えタイミングに同期して、前記特定の受信アンテナにより受信する信号に対する処理に関するパラメータを変更するパラメータ変更手段を備えた、ことを特徴とする無線通信システムである。 当該第4の発明によれば、受信装置では、送信装置における送信アンテナの切り換えタイミングを事前に把握することができ、当該切り換えタイミングに同期して、受信信号に対する処理に関するパラメータの変更(初期化)が実施されるため、送信アンテナの切り換え直後における通信品質の劣化が改善される。特に、送信装置における切り換え前後の送信アンテナの伝搬路特性(例えば、変調波スペクトラム等)が所定の相関関係を有しているため、受信信号に対する処理に関するパラメータの変更時に、当該相関関係を考慮したパラメータを設定することができ、送信系の切り換えに起因するパラメータの変更において当該パラメータを最適値に近づけることが可能である。 According to a fourth aspect of the present invention, in the wireless communication system having a transmitting apparatus and a receiving apparatus facing each other, the transmitting apparatus has a plurality of propagation path characteristics having a predetermined correlation with a specific receiving antenna of the receiving apparatus. A transmission antenna, transmission antenna switching means for switching an antenna for transmitting a signal to a specific reception antenna of the reception apparatus to one of the plurality of antennas, and timing for notifying the reception apparatus of switching timing by the transmission antenna switching means Notification means, and the reception device further includes parameter changing means for changing a parameter related to processing for a signal received by the specific reception antenna in synchronization with the switching timing notified from the transmission device. Is a wireless communication system. According to the fourth aspect of the invention, the receiving apparatus can grasp in advance the switching timing of the transmitting antenna in the transmitting apparatus, and changes (initialization) of parameters relating to processing on the received signal in synchronization with the switching timing. Therefore, the deterioration of communication quality immediately after the transmission antenna is switched is improved. In particular, since the propagation path characteristics (for example, the modulated wave spectrum) of the transmission antenna before and after switching in the transmission apparatus have a predetermined correlation, the correlation is taken into account when changing parameters related to processing on the received signal. A parameter can be set, and the parameter can be brought close to an optimum value when the parameter is changed due to switching of the transmission system.
 なお、上記第4の発明における、パラメータ変更手段は、例えば上述の実施形態(図1)においては、タイミング管理部18、制御部19、受信ベースバンド部16に設けられる適応等化器(図9)などにより構成される。 Note that the parameter changing means in the fourth invention is an adaptive equalizer (FIG. 9) provided in the timing management unit 18, the control unit 19, and the reception baseband unit 16, for example, in the above-described embodiment (FIG. 1). ) Etc.
 第5の発明は、対向する送信装置と受信装置とを有する無線通信システムにおける前記送信装置であって、前記受信装置の特定の受信アンテナとの間の伝搬路特性が所定の相関関係を有する複数の送信アンテナと、前記受信装置の特定の受信アンテナへ信号を送信するアンテナを前記複数のアンテナのいずれかに切り換える送信アンテナ切換手段と、前記送信アンテナ切換手段による切り換えタイミングを前記受信装置に通知するタイミング通知手段と、を備えたことを特徴とする送信装置である。 当該第5の発明によれば、送信装置が送信アンテナの切り換えタイミングを事前に受信装置へ通知し、受信装置は当該タイミングを事前に把握することができる。特に、送信装置における切り換え前後の送信アンテナの伝搬路特性(例えば、変調波スペクトラム等)が所定の相関関係を有しているため、受信装置は、例えば受信信号の等化処理に用いる等化係数を、当該切り換えタイミングに同期して、当該相関関係に基づいた値に変更(初期化)することが可能である。これにより、送信装置における送信アンテナの切り換え直後における通信品質の劣化が改善されるとともに、送信系の切り換えに起因する等化係数の再収束において、その所要時間を短縮することが可能である。 5th invention is the said transmission apparatus in the radio | wireless communications system which has an opposing transmission apparatus and receiving apparatus, Comprising: The propagation path characteristic between the specific receiving antennas of the said receiving apparatus has several correlation Transmitting antenna, transmitting antenna switching means for switching an antenna for transmitting a signal to a specific receiving antenna of the receiving apparatus to any of the plurality of antennas, and notification of switching timing by the transmitting antenna switching means to the receiving apparatus And a timing notification means. According to the fifth aspect, the transmission device notifies the reception device of the switching timing of the transmission antenna in advance, and the reception device can grasp the timing in advance. In particular, since the propagation path characteristics (for example, modulated wave spectrum) of the transmission antenna before and after switching in the transmission apparatus have a predetermined correlation, the reception apparatus uses, for example, an equalization coefficient used for equalization processing of the received signal. Can be changed (initialized) to a value based on the correlation in synchronization with the switching timing. As a result, it is possible to improve the degradation of communication quality immediately after switching of the transmission antenna in the transmission apparatus, and to shorten the time required for reconvergence of the equalization coefficient due to switching of the transmission system.
 第6の発明は、特定の受信アンテナにより信号を受信する受信装置と、前記受信装置の特定の受信アンテナとの間の伝搬路特性が所定の相関関係を有する複数の送信アンテナを備え、前記受信装置の特定の受信アンテナに信号を送信するアンテナを前記複数の送信アンテナのいずれかに切り換えて信号を送信する送信装置と、を有する無線通信システムにおける前記受信装置であって、前記受信装置は、前記送信装置から前記複数の送信アンテナを切り換えるタイミングを通知する信号を受信し、受信した信号に基づき前記送信アンテナの切り換えタイミングを取得する切り換えタイミング取得手段と、前記切り換えタイミング取得手段により取得される切り換えタイミングに同期して、前記特定の受信アンテナにより受信する信号の等化処理に用いる等化係数を変更する等化係数変更手段を備えた、ことを特徴とする受信装置である。 当該第6の発明によれば、受信装置は、送信装置における送信アンテナの切り換えタイミングを事前に把握することができ、当該切り換えタイミングに同期して、等化処理に用いる等化係数の変更(初期化)が実施されるため、送信アンテナの切り換え直後における通信品質の劣化が改善される。特に、送信装置における切り換え前後の送信アンテナの伝搬路特性(例えば、変調波スペクトラム等)が所定の相関関係を有しているため、当該相関関係に基づいて等化係数変更時の係数を設定することができ、送信系の切り換えに起因する等化係数の再収束において、その所要時間を短縮することが可能である。 A sixth invention includes a plurality of transmitting antennas having propagation path characteristics having a predetermined correlation between a receiving device that receives a signal by a specific receiving antenna and the specific receiving antenna of the receiving device, A transmitting apparatus that transmits a signal by switching an antenna that transmits a signal to a specific receiving antenna of the apparatus to one of the plurality of transmitting antennas, wherein the receiving apparatus includes: A switching timing acquisition unit that receives a signal notifying a timing for switching the plurality of transmission antennas from the transmission device and acquires a switching timing of the transmission antenna based on the received signal, and a switching acquired by the switching timing acquisition unit Equalization of signals received by the specific receiving antenna in synchronization with timing With an equalization coefficient changing means for changing the equalization coefficients used sense, it is a receiving apparatus according to claim. According to the sixth aspect of the invention, the receiving apparatus can grasp in advance the transmission antenna switching timing in the transmitting apparatus, and changes the equalization coefficient used for equalization processing (initially) in synchronization with the switching timing. Therefore, the deterioration of the communication quality immediately after switching the transmission antenna is improved. In particular, since the propagation path characteristics (for example, modulated wave spectrum, etc.) of the transmission antenna before and after switching in the transmission apparatus have a predetermined correlation, the coefficient when changing the equalization coefficient is set based on the correlation. It is possible to reduce the time required for reconvergence of the equalization coefficient resulting from switching of the transmission system.
 なお、上記第6の発明における、切り換えタイミング取得手段は、例えば上述の実施形態(図1)においては、アンテナa、受信RF部15、受信ベースバンド部16、DEC17、制御部19などにより構成される。 Note that the switching timing acquisition means in the sixth aspect of the invention comprises, for example, the antenna a, the reception RF unit 15, the reception baseband unit 16, the DEC 17, the control unit 19 and the like in the above-described embodiment (FIG. 1). The
 第7の発明は、特定の受信アンテナにより信号を受信する受信装置と、前記受信装置の特定の受信アンテナとの間の伝搬路特性が所定の相関関係を有する複数の送信アンテナを備え、前記複数の送信アンテナのいずれかに切り換えて前記受信装置の特定の受信アンテナへ信号を送信する送信装置と、を有する無線通信システムにおける前記送信装置及び受信装置の制御方法であって、前記送信装置は、前記受信装置へ信号を送信する送信アンテナを切り換えるタイミングを前記受信装置に通知し、前記受信装置は、前記送信装置から通知された切り換えタイミングに同期して、前記送信装置から前記特定の受信アンテナにより受信する信号の等化処理に用いる等化係数を変更することを特徴とする前記送信装置及び受信装置の制御方法である。 当該第7の発明によれば、受信装置は、送信装置における送信アンテナの切り換えタイミングを事前に把握することができ、当該切り換えタイミングに同期して、等化処理に用いる等化係数の変更(初期化)が実施されるため、送信アンテナの切り換え直後における通信品質の劣化が改善される。特に、送信装置における切り換え前後の送信アンテナの伝搬路特性(例えば、変調波スペクトラム等)が所定の相関関係を有しているため、当該相関関係に基づいて等化係数変更時の係数を設定することができ、送信系の切り換えに起因する等化係数の再収束において、その所要時間を短縮することが可能である。 A seventh invention comprises a plurality of transmitting antennas having propagation path characteristics having a predetermined correlation between a receiving device that receives a signal by a specific receiving antenna and the specific receiving antenna of the receiving device, A transmitting device that switches to one of the transmitting antennas and transmits a signal to a specific receiving antenna of the receiving device, and a control method for the transmitting device and the receiving device in a wireless communication system, The receiving device is notified of the timing of switching a transmission antenna that transmits a signal to the receiving device, and the receiving device synchronizes with the switching timing notified from the transmitting device by the specific receiving antenna. A control method for the transmitting apparatus and the receiving apparatus, characterized in that an equalization coefficient used for equalization processing of a received signal is changed. . According to the seventh aspect of the invention, the reception device can grasp in advance the switching timing of the transmission antenna in the transmission device, and changes the equalization coefficient used in the equalization processing (initially) in synchronization with the switching timing. Therefore, the deterioration of the communication quality immediately after switching the transmission antenna is improved. In particular, since the propagation path characteristics (for example, modulated wave spectrum, etc.) of the transmission antenna before and after switching in the transmission apparatus have a predetermined correlation, the coefficient when changing the equalization coefficient is set based on the correlation. It is possible to reduce the time required for reconvergence of the equalization coefficient resulting from switching of the transmission system.
 第8の発明は、特定のアンテナにより信号を送受信する第2の送受信装置と、前記第2の送受信装置の特定のアンテナとの間の伝搬路特性が所定の相関関係を有する複数のアンテナを選択的に使用して信号を送受信する第1の送受信装置と、を有する無線通信システムにおける前記第1の送受信装置及び第2の送受信装置の制御方法であって、前記第1の送受信装置において、前記第2の送受信装置における特定のアンテナから送信されて前記複数のアンテナによりそれぞれ受信される信号の受信レベルに基づいて、前記第2の送受信装置の特定のアンテナへ信号を送信するアンテナを前記複数のアンテナのいずれかに切り換えるタイミングを決定する切り換えタイミング決定ステップと、前記第1の送受信装置において、前記切り換えタイミング決定ステップで決定された送信アンテナの切り換えタイミングを前記第2の送受信装置に通知する切り換えタイミング通知ステップと、前記第2の送受信装置において、前記第1の送受信装置から通知された送信アンテナの切り換えタイミングに同期して、前記第2の送受信装置から前記特定のアンテナにより受信する信号の等化処理に用いる等化係数を変更する等化係数変更ステップと、を備えることを特徴とする前記第1の送受信装置及び第2の送受信装置の制御方法である。 当該第8の発明によれば、第1の送受信装置では、受信される信号の受信レベルに基づいて、第2の送受信装置へ信号を送信するアンテナを複数のアンテナのいずれかに切り換えることで、常に信号の送信に最適なアンテナにより信号を送信することができるとともに、第2の送受信装置では、第1の送受信装置における信号を送信するアンテナの切り換えタイミングを事前に把握することができ、当該切り換えタイミングに同期して、等化処理に用いる等化係数の変更(初期化)が実施されるため、送信アンテナの切り換え直後における通信品質の劣化が改善される。特に、第1の送受信装置の複数のアンテナは、第2の送受信装置の特定のアンテナから送信される信号の受信レベルが互いに所定の相関関係を有しており、当該受信レベルに基づいて信号の送信に用いるアンテナの切り換えを行うことから、当該複数のアンテナの各受信レベルが相関関係を有し、当該受信レベルに基づいて信号の送信に用いるアンテナの切り換えを行うという条件に基づいて等化係数変更時の係数を設定することができるので、送信系の切り換えに起因する等化係数の再収束において、その所要時間を短縮することが可能である。 The eighth invention selects a plurality of antennas whose propagation path characteristics between a second transmitting / receiving apparatus that transmits / receives a signal using a specific antenna and a specific antenna of the second transmitting / receiving apparatus have a predetermined correlation A first transmission / reception device for transmitting and receiving a signal, and a control method for the first transmission / reception device and the second transmission / reception device in a wireless communication system, wherein the first transmission / reception device includes: Based on reception levels of signals transmitted from specific antennas in the second transmission / reception device and respectively received by the plurality of antennas, antennas for transmitting signals to the specific antennas of the second transmission / reception device A switching timing determining step for determining a timing for switching to any one of the antennas; and A switching timing notifying step for notifying the second transmitting / receiving device of the switching timing of the transmitting antenna determined in the timing determination step; and a switching of the transmitting antenna notified from the first transmitting / receiving device in the second transmitting / receiving device. An equalization coefficient changing step of changing an equalization coefficient used for equalization processing of a signal received from the second transmitting / receiving apparatus by the specific antenna in synchronization with the timing; This is a method for controlling the transmitting / receiving apparatus and the second transmitting / receiving apparatus. According to the eighth invention, in the first transmission / reception device, by switching the antenna that transmits a signal to the second transmission / reception device to one of the plurality of antennas based on the reception level of the received signal, A signal can always be transmitted by an antenna that is optimal for signal transmission, and the second transmission / reception device can grasp in advance the switching timing of the antenna that transmits the signal in the first transmission / reception device. Since the equalization coefficient used for the equalization process is changed (initialized) in synchronization with the timing, the deterioration of the communication quality immediately after switching the transmission antenna is improved. In particular, the reception levels of signals transmitted from specific antennas of the second transmission / reception device have a predetermined correlation with each other in the plurality of antennas of the first transmission / reception device. Since the antennas used for transmission are switched, the reception levels of the plurality of antennas have a correlation, and the equalization coefficient is based on the condition that the antennas used for signal transmission are switched based on the reception levels. Since the coefficient at the time of change can be set, it is possible to shorten the time required for reconvergence of the equalization coefficient due to switching of the transmission system.
 本発明は、逆相関アンテナを利用した送信ダイバーシティで、送信アンテナ(送信系)の切り換えに起因する等化係数の再収束などにおいて、その所要時間を短縮することができ、無線通信システムに利用することができる。 INDUSTRIAL APPLICABILITY The present invention can reduce the time required for re-convergence of an equalization coefficient caused by switching of a transmission antenna (transmission system) with transmission diversity using an inverse correlation antenna, and is used for a wireless communication system. be able to.
 11:ENC部(エンコーダ部)、 12:送信ベースバンド部、 13:送信RF部、 14:TDD-SW部(送受信切り換え部)、 15:受信RF部、 16:受信ベースバンド部、 17:DEC部(デコーダ部)、 18:タイミング管理部、 19:制御部、 21:ENC部(エンコーダ部)、 22:送信ベースバンド部、 23:送信RF部、 24:送信系選択部、 25-1,25-2:TDD-SW部(送受信切り換え部)、 26-1,26-2:受信RF部、 27:受信系選択部、 28:受信ベースバンド部、 29:DEC部(デコーダ部)、 30:タイミング管理部、 31:レベル測定/比較部、 32:制御部 11: ENC section (encoder section), 12: transmission baseband section, 13: transmission RF section, 14: TDD-SW section (transmission / reception switching section), 15: reception RF section, 16: reception baseband section, 17: DEC Part (decoder part), 18: timing management part, 19: control part, 21: ENC part (encoder part), 22: transmission baseband part, 23: transmission RF part, 24: transmission system selection part, 25-1, 25-2: TDD-SW unit (transmission / reception switching unit), 26-1, 26-2: reception RF unit, 27: reception system selection unit, 28: reception baseband unit, 29: DEC unit (decoder unit), 30 : Timing management unit, 31: Level measurement / comparison unit, 32: Control unit

Claims (4)

  1. 互いに信号の送受信を行う第1の送受信装置と第2の送受信装置とを有する無線通信システムにおいて、 前記第1の送受信装置は、前記第2の送受信装置の特定のアンテナから送信される信号の受信レベルが互いに所定の相関関係を有する複数のアンテナと、前記第2の送受信装置における特定のアンテナから送信されて前記複数のアンテナによりそれぞれ受信される信号の受信レベルに基づいて、前記第2の送受信装置の特定のアンテナへ信号を送信するアンテナを前記複数のアンテナのいずれかに切り換える送信アンテナ切換手段と、前記送信アンテナ切換手段による切り換えタイミングを前記第2の送受信装置に通知するタイミング通知手段と、を備え、 前記第2の送受信装置は、前記第1の送受信装置から通知された切り換えタイミングに同期して、前記特定のアンテナにより受信する信号の等化処理に用いる等化係数を変更する等化係数変更手段を備えた、 ことを特徴とする無線通信システム。 In a wireless communication system having a first transmission / reception device and a second transmission / reception device that transmit / receive signals to / from each other, the first transmission / reception device receives a signal transmitted from a specific antenna of the second transmission / reception device. The second transmission / reception based on a plurality of antennas whose levels have a predetermined correlation with each other, and reception levels of signals transmitted from a specific antenna in the second transmission / reception apparatus and received by the plurality of antennas, respectively. Transmission antenna switching means for switching an antenna that transmits a signal to a specific antenna of the apparatus to any one of the plurality of antennas, timing notification means for notifying the second transmission / reception apparatus of switching timing by the transmission antenna switching means, The second transmission / reception device includes a switching tag notified from the first transmission / reception device. In synchronism with the timing, with the equalization coefficient changing means for changing the equalization coefficient used for equalization of the received signal by the specific antenna, a wireless communication system, characterized in that.
  2. 請求項1に記載の無線通信システムにおいて、 前記第1の送受信装置は2つのアンテナを備え、当該2つのアンテナは、前記第2の送受信装置の特定のアンテナから送信される信号の受信レベルが互いに逆相関となる関係を有する、 ことを特徴とする無線通信システム。 2. The wireless communication system according to claim 1, wherein the first transmission / reception device includes two antennas, and the reception levels of signals transmitted from specific antennas of the second transmission / reception device are the two antennas. A wireless communication system characterized by having an inverse correlation.
  3. 対向する送信装置と受信装置とを有する無線通信システムにおいて、 前記送信装置は、前記受信装置の特定の受信アンテナとの間の伝搬路特性が所定の相関関係を有する複数の送信アンテナと、前記受信装置の特定の受信アンテナへ信号を送信するアンテナを前記複数の送信アンテナのいずれかに切り換える送信アンテナ切換手段と、前記送信アンテナ切換手段による切り換えタイミングを前記受信装置に通知するタイミング通知手段と、を備え、 前記受信装置は、前記送信装置から通知された切り換えタイミングに同期して、前記特定の受信アンテナにより受信する信号の等化処理に用いる等化係数を変更する等化係数変更手段を備えた、 ことを特徴とする無線通信システム。 In a wireless communication system having opposing transmission apparatuses and reception apparatuses, the transmission apparatus includes a plurality of transmission antennas having propagation path characteristics having a predetermined correlation with a specific reception antenna of the reception apparatus, and the reception Transmitting antenna switching means for switching an antenna for transmitting a signal to a specific receiving antenna of the apparatus to one of the plurality of transmitting antennas, and timing notification means for notifying the receiving apparatus of switching timing by the transmitting antenna switching means, The reception device includes an equalization coefficient changing unit that changes an equalization coefficient used for equalization processing of a signal received by the specific reception antenna in synchronization with the switching timing notified from the transmission device. A wireless communication system characterized by the above.
  4. 対向する送信装置と受信装置とを有する無線通信システムにおいて、 前記送信装置は、前記受信装置の特定の受信アンテナとの間の伝搬路特性が所定の相関関係を有する複数の送信アンテナと、前記受信装置の特定の受信アンテナへ信号を送信するアンテナを前記複数のアンテナのいずれかに切り換える送信アンテナ切換手段と、前記送信アンテナ切換手段による切り換えタイミングを前記受信装置に通知するタイミング通知手段と、を備え、 前記受信装置は、前記送信装置から通知された切り換えタイミングに同期して、前記特定の受信アンテナにより受信する信号に対する処理に関するパラメータを変更するパラメータ変更手段を備えた、 ことを特徴とする無線通信システム。 In a wireless communication system having opposing transmission apparatuses and reception apparatuses, the transmission apparatus includes a plurality of transmission antennas having propagation path characteristics having a predetermined correlation with a specific reception antenna of the reception apparatus, and the reception A transmission antenna switching means for switching an antenna that transmits a signal to a specific reception antenna of the apparatus to one of the plurality of antennas, and a timing notification means for notifying the reception apparatus of a switching timing by the transmission antenna switching means. The wireless communication device is characterized in that the receiving device includes parameter changing means for changing a parameter relating to processing for a signal received by the specific receiving antenna in synchronization with the switching timing notified from the transmitting device. system.
PCT/JP2012/068082 2011-08-01 2012-07-17 Wireless communication system WO2013018535A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-168299 2011-08-01
JP2011168299A JP5723240B2 (en) 2011-08-01 2011-08-01 Wireless communication system

Publications (1)

Publication Number Publication Date
WO2013018535A1 true WO2013018535A1 (en) 2013-02-07

Family

ID=47629063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068082 WO2013018535A1 (en) 2011-08-01 2012-07-17 Wireless communication system

Country Status (2)

Country Link
JP (1) JP5723240B2 (en)
WO (1) WO2013018535A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6985851B2 (en) * 2017-08-25 2021-12-22 日本放送協会 Transmitter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274828A (en) * 1990-03-23 1991-12-05 Nippondenso Co Ltd Selective diversity and tdma communication equipment
JP2002135182A (en) * 2000-10-20 2002-05-10 Hitachi Kokusai Electric Inc Diversity reception system
JP2002152092A (en) * 2000-11-08 2002-05-24 Hitachi Kokusai Electric Inc Data reproducing system and data reproducing unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274828A (en) * 1990-03-23 1991-12-05 Nippondenso Co Ltd Selective diversity and tdma communication equipment
JP2002135182A (en) * 2000-10-20 2002-05-10 Hitachi Kokusai Electric Inc Diversity reception system
JP2002152092A (en) * 2000-11-08 2002-05-24 Hitachi Kokusai Electric Inc Data reproducing system and data reproducing unit

Also Published As

Publication number Publication date
JP5723240B2 (en) 2015-05-27
JP2013034059A (en) 2013-02-14

Similar Documents

Publication Publication Date Title
JP4308870B2 (en) Interference rejection device with fast phase adaptation
EP1928137A2 (en) Method and system for low complexity conjugate gradient based equalization in a wireless system
WO2017183631A1 (en) Los-mimo demodulation device, communication device, los-mimo transmission system, los-mimo demodulation method and program
KR20010086140A (en) An adaptive digital beamforming receiver with π/2 phase shift to improve signal reception
WO2020209093A1 (en) Wireless communication system, wireless communication method, transmitting station device, and receiving station device
CA2601383A1 (en) Channel estimation enhanced lms equalizer
JP7196686B2 (en) Wireless communication system, wireless communication method, transmitting station device and receiving station device
US10608846B2 (en) Receiving device
JP5085269B2 (en) Wireless communication device
JP3925279B2 (en) Cross polarization interference cancellation system
JP5723240B2 (en) Wireless communication system
US11283492B2 (en) Wireless communication system, wireless communication method, transmitting station device and receiving station device
WO2020175280A1 (en) Wireless communication system, wireless communication method, transmitting station device, and receiving station device
US11153130B2 (en) Equalizer, receiving apparatus and receiving method
JP6619397B2 (en) Wireless communication system, receiving apparatus and communication method
JP5679431B2 (en) Receiver
US20190393936A1 (en) Transmission apparatus, transmission method, reception apparatus, and reception method
WO2018203461A1 (en) Transmission device, transmission method, reception device, and reception method
JP7289600B2 (en) radio receiver
JP2012023670A (en) Receiver for ofdm transmission system
JP7509230B2 (en) Wireless communication system, wireless communication method, and receiving device
JP5881453B2 (en) Equalizer, receiver, and equalization method
US11870517B2 (en) Wireless communication system, wireless communication method, transmitting station device and receiving station device
CA2628374C (en) Antenna array calibration for multi-input multi-output wireless communication systems
JP2009100357A (en) Waveform equalizer and its control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12820575

Country of ref document: EP

Kind code of ref document: A1