WO2013018120A1 - Capacitive touch panel - Google Patents

Capacitive touch panel Download PDF

Info

Publication number
WO2013018120A1
WO2013018120A1 PCT/JP2011/004317 JP2011004317W WO2013018120A1 WO 2013018120 A1 WO2013018120 A1 WO 2013018120A1 JP 2011004317 W JP2011004317 W JP 2011004317W WO 2013018120 A1 WO2013018120 A1 WO 2013018120A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
input operation
detection electrodes
touch panel
input
Prior art date
Application number
PCT/JP2011/004317
Other languages
French (fr)
Japanese (ja)
Inventor
元俊 南部
Original Assignee
Smk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smk株式会社 filed Critical Smk株式会社
Priority to PCT/JP2011/004317 priority Critical patent/WO2013018120A1/en
Publication of WO2013018120A1 publication Critical patent/WO2013018120A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes

Definitions

  • the present invention relates to a capacitive touch panel that detects an input operation position of an input operation body from an arrangement position of a detection electrode where an input operation body such as a finger approaches and a capacitance of the finger increases.
  • various touch detection methods such as electrostatic capacitance method, resistive film method and optical method are used from the difference in detection method of input operation position. It is done.
  • a resistive touch panel a resistive film having a uniform resistance value per unit length is disposed along the input operation surface, and the distance between the detection electrode and the input operation position is specified from the resistance value of the input operation position.
  • To detect the operation position it is necessary to form the detection electrode and the resistance film arranged along the surface or the back of the input operation surface with an expensive transparent body so that the display installed on the back side can be seen visually Since the transmittance also decreases as a transparent body, there is a problem that the display is difficult to see.
  • plural pairs of light emitting elements and light receiving elements are disposed around the input operation surface to form a grid-like light path along the input operation surface, and the pairs whose light path is interrupted by the input operation
  • the input operation position is detected from the arrangement position of the light emitting element and the light receiving element, but similarly it is expensive because it is necessary to provide plural pairs of light emitting element and light receiving element, and also by foreign matter on the input operation surface.
  • the light path was interrupted and misrecognition occurred frequently.
  • the capacitive touch panel focuses on the fact that the floating capacitance (capacitance between the input operating body and the detection electrode) of the detection electrode to which the input operating body approaches due to the input operation increases.
  • the input operation position to the input operation surface on which the detection electrode is arranged is detected from the change in capacitance.
  • a large number of X-side detection electrodes and Y-side detection electrodes are intersected on the front and back of the insulating substrate.
  • An expression touch panel is known (patent document 1).
  • this capacitive touch panel is required to dispose a large number of X-side detection electrodes and Y-side detection electrodes along the input operation surface, and be formed of a transparent body so that the display on the back side can be viewed.
  • a capacitive touch panel in which a detection electrode is disposed only around the input operation surface and an input position is detected from a change in capacitance between the input operation body and the detection electrode (Patent Document 2).
  • a touch member made of a dielectric with a high dielectric constant is disposed along the entire input operation surface, and the capacitance between the input operation position and the detection electrode is The input operation position on the input operation surface is detected from the change in the capacitance which is enlarged by the touch member having a high dielectric constant compared with the inside and the detection sensitivity is increased to detect.
  • Patent Document 3 There is also known an electrostatic capacitance type detection device in which detection electrodes are arranged around an input operation surface so as to detect a three-dimensional input operation.
  • the capacitance type detection device described in Patent Document 3 has a pair of detection electrodes on both sides facing each other in the detection direction (for example, the X direction) around the input operation surface, and a pair of detection electrodes on the same input operation surface
  • the drive electrodes are arranged equidistantly from.
  • the capacitance between the pair of detection electrodes and the drive electrode is interrupted by the input operation body and changes, so the input operation
  • the input operation position in the X direction is detected from the difference in electrostatic capacitance for each detection electrode, which changes due to.
  • Detection of the input operation position in the Y direction orthogonal to the X direction is driven at equal distances from the pair of detection electrodes on both sides facing in the Y direction around the input operation surface and from the pair of detection electrodes on the same input operation surface
  • the electrodes are arranged, and similarly, the input operation position in the Y direction is detected.
  • the detection electrode and the drive electrode are switched to share the same electrode, and the number of electrodes disposed around the input operation surface Is halved.
  • detection of the input operation position in the Z direction orthogonal to the XY plane assuming another input operation surface orthogonal to the input operation surface, further includes a pair of detection electrodes and a pair of detection electrodes facing the periphery in the Z direction. Drive electrodes equidistant from the detection electrode are disposed, and similarly, the input operation position in the Z direction is detected.
  • the capacitance between the input operation body and the detection electrode does not change significantly, so it is necessary to touch the touch member to perform the input operation Yes, it is limited to detection of a two-dimensional input operation position parallel to the input operation surface. Furthermore, since the input operation can not be performed unless the touch member is touched, the operability is impaired, and the touch member which is touched by the input operation body to be transparent becomes dirty, the appearance is deteriorated, and the transmittance is lowered. There is.
  • the capacitance type detection device described in Patent Document 3 can detect a three-dimensional input operation, but assuming two types of input operation surfaces orthogonal to each other, at least one pair of input operation surfaces is provided for each input operation surface. It is necessary to arrange the detection electrode and the drive electrode of
  • this conventional electrostatic capacitance type detection device does not directly detect the electrostatic capacitance between the input operation body and the detection electrode to obtain the distance between the two, but each pair of detection by the presence of the input operation body Since the change in capacitance between the electrode and the drive electrode is not necessarily proportional to the distance between the input operation body and the detection electrode, the relative difference between the two indicates that the relative movement of the input operation body along the detection direction (input operation Motion) can not be detected up to the input operation position.
  • the detection accuracy drops sharply for the input operation away from the input operation surface.
  • the three-dimensional input operation away from the plane in which the detection electrode and the drive electrode are disposed can not be detected.
  • the present invention has been made in consideration of such conventional problems, and provides a capacitive touch panel capable of detecting an input operation position of a non-contact input operation only approaching an input operation surface.
  • the purpose is
  • Another object of the present invention is to provide a capacitive touch panel excellent in the visibility of the display disposed on the back side without disposing the transparent member on the input operation surface.
  • a capacitive touch panel capable of detecting an input operation position in the Z direction orthogonal to the XY direction parallel to the input operation surface can be provided only by arranging a limited number of detection electrodes around the input operation surface. The purpose is
  • a plurality of detection electrodes are disposed so as to be insulated from each other, and an arrangement position of each detection electrode, and electrostatics of each detection electrode and an input operation body
  • a capacitive touch panel for detecting an input operation position of an input operation body from a capacitance which comprises a plurality of detection electrodes arranged at predetermined intervals in an insulating case, an input operation body, and a plurality of detection electrodes.
  • Signal detection means for detecting the reception level of the alternating current detection signal appearing on each detection electrode through the electrostatic capacitance between each detection electrode and the input operation body, Based on the reception level of the AC detection signal detected by each signal detection means for each detection electrode, the relative distance between the input operation body and the arrangement position of each detection electrode is compared to detect the input operation position of the input operation body Equipped with input position detection means Characterized in that was.
  • the electrostatic capacitance Cm between the detection electrode and the input operation body is d between the detection electrode and the input operation body, the dielectric constant of vacuum is ⁇ 0 , the relative permittivity of air ⁇ is about 1, the input operation body and the detection electrode Let s be the opposing area of
  • the reception level Vi of the alternating current detection signal which is represented by the equation and is proportional to the capacitance Cm is inversely proportional to the distance d between the detection electrode and the input operation body.
  • the input position detection means compares the reception level Vi of the alternating current detection signal detected by the signal detection means for each detection electrode to obtain the distance between each detection electrode and the input operation body.
  • the output level Vs of the alternating current detection signal, the distance L in the detection direction between the pair of detection electrodes disposed along the detection direction of the input operation position, and the reception levels V0 and V1 of the alternating current detection signals appearing on the pair of respective detection electrodes If it is obtained, the input operation position along the detection direction and the input operation position in the direction orthogonal to the detection direction can be detected, and if a pair of detection electrodes are arranged in the XY directions orthogonal to each other, the XY direction and the XY plane It is possible to detect a three-dimensional input operation position in the Z direction orthogonal to.
  • a pair of detection electrodes X0 and detection electrodes X1 formed in an elongated strip shape are disposed along the inner edges of the window holes formed in the insulating case facing each other in the X direction.
  • the input position detection means compares the relative distance between the input operation body and the inner edge facing in the X direction based on the reception level of the alternating current detection signal detected from the detection electrode X0 and the detection electrode X1. To detect an input operation position x in the X direction with the input operation surface.
  • both detection electrodes X0 and detection electrodes X1 formed in an elongated strip shape are disposed along the inner edges facing in the X direction of the window holes formed in the insulating case, both detection electrodes X0 and detection electrodes X1 are on both sides In the input operation to the plane of the window hole arranged in the, the input operation position is located on the straight line connecting the detection electrode X0 and the detection electrode X1 in the X direction.
  • the distance between the detection electrode X0 and the detection electrode X1 facing in the X direction of the window hole is Lx
  • the reception level of the detection electrode X0 is Vx0
  • the reception level of the detection electrode X1 is Vx1
  • the distance d between the detection electrode and the input operator Assuming that the proportional constant of the reception level Vx1 that is inversely proportional to is k, from the detection electrode X0 to the detection electrode X1 when the input operation is performed on the input operation surface in the window hole in which the pair of detection electrodes X0 and detection electrodes X1 face each other
  • the input operation position x in the X direction is
  • the input position detection unit detects the input operation position x in the X direction from the known distance Lx and the reception levels Vx0 and Vx1 detected by the signal detection unit.
  • a pair of detection electrodes Y0 and detection electrodes Y1 formed in a strip shape respectively are disposed along the inner edges of the window holes orthogonal to the X direction in the Y direction,
  • the input position detection means compares the relative distance between the input operating body and the inner edge facing in the Y direction based on the reception level of the AC detection signal detected from the detection electrode Y0 and the detection electrode Y1, and An input operation position y in the Y direction, which is an input operation surface, is detected.
  • both detection electrodes Y0 and detection electrodes Y1 are on both sides.
  • the input operation position is located on the straight line connecting the detection electrode Y0 and the detection electrode Y1 in the Y direction.
  • the distance between the detection electrode Y0 and the detection electrode Y1 facing in the Y direction of the window hole is Ly
  • the reception level of the detection electrode Y0 is Vy0
  • the reception level of the detection electrode Y1 is Vy1
  • the distance d between the detection electrode and the input operator Assuming that the proportional constant of the reception level Vy1 is inversely proportional to k, from the detection electrode Y0 to the detection electrode Y1 when the input operation is performed on the input operation surface in the window hole in which the pair of detection electrodes Y0 and the detection electrode Y1 face each other.
  • the input operation position y in the Y-direction is
  • the input position detection means detects the input operation position y in the Y direction from the known distance Ly and the reception levels Vy0 and Vy1 detected by the signal detection means.
  • the window hole is formed in a rectangular shape
  • one of the pair of detection electrodes opposed by the window hole is a reference detection electrode
  • the other is an opposite detection electrode
  • the input position detection means The distance L in the opposite direction between the pair of detection electrodes, the output level Vs of the alternating current detection signal between the pair of detection electrodes and the input operation body, and the alternating current detection signal detected from the reference detection electrode and the opposite detection electrode
  • the input operation position r in the opposite direction from the reference detection electrode to the opposite detection electrode is detected from the reception levels V0 and V1, and the input operation position z in the Z direction orthogonal to the plane of the window is detected. It is characterized by
  • a plurality of divided detection electrodes each formed in an elongated strip shape are disposed so as to be mutually insulated along the inner edge of the window hole parallel to the X direction or the Y direction.
  • the detection means compares the reception levels of the alternating current detection signals detected from the divided detection electrodes, and X along the arrangement direction of the divided detection electrodes from the arrangement position of the divided detection electrodes at which the maximum reception level is detected. The input operation position in the direction or Y direction is detected.
  • the input operation position in the arrangement direction can be detected only by the detection electrodes arranged in one direction along the inner edge of the window hole.
  • the input operation position in the opposite direction orthogonal to the arrangement direction can be detected, and the detection electrode is arranged at a pair of opposite inner edges of the window hole. Only by this, it is possible to detect the input operation position in the X and Y directions with the opening surface of the window hole as the input operation surface.
  • the input operation body is not easily affected by stray capacitance due to a conductor such as a surrounding wiring pattern or an electronic component. Capacitance between detection electrodes can be accurately detected.
  • monitoring means is provided to monitor the potential of the conductive layer and detect potential fluctuations due to the contact between the input operating body and the conductive layer, the input operation itself which touches the input operating body to the conductive layer separately from the detection of the input operation position is also It can be detected.
  • the signal detection means makes the alternating current detection signal appearing on each of the detection electrodes more than the cycle of the alternating current detection signal. It is characterized in that it has an integration circuit that integrates over a long time, and uses the output level of the integration circuit as a reception level.
  • the signal detection means Since the AC detection signal appearing on the detection electrode according to the small capacitance between the input operation body and the detection electrode is integrated in a time sufficiently longer than the cycle of the AC detection signal, the signal detection means The input operation position can be detected from the reception level of the detection signal.
  • the first aspect of the present invention it is possible to detect an input operation position of a non-contact input operation that only causes an input operation body such as a finger to approach the input operation surface.
  • the input operation position in the X and Y directions parallel to the input operation surface is detected only by arranging a limited number of detection electrodes around the input operation surface. it can.
  • the input operation position in the X direction is detected without disposing the touch member made of a transparent electrode or a transparent dielectric on the input operation surface with the opening surface of the window hole of the insulating case as the input operation surface. It is possible to directly view the display disposed on the back side without interposing the transparent member.
  • the XY along the input operation surface without disposing the touch member made of the transparent electrode or the transparent dielectric on the input operation surface.
  • the position input operation direction can be detected, and the display disposed on the back side can be directly viewed without interposing the transparent member.
  • the input operation position in the detection direction along the input operation surface and the input operation position in the direction orthogonal to the input operation surface can be detected with the window hole of the insulating case as the input operation surface.
  • the window Even if it is a non-contact input operation that inserts an input operation object such as a finger into the window hole simply by arranging along the inner edge of the four elongated rectangular rectangular window holes, the window
  • the three-dimensional input operation position of the XY direction input position along the plane of the hole and the input position in the Z direction orthogonal to the plane of the window can be detected. Therefore, the input operation itself in the direction orthogonal to the input operation surface can be detected from the input operation position changing in the Z direction with the elapsed time.
  • the operation for accelerating the input operation body to approach the input operation surface is It can be recognized as an input operation equivalent to clicking.
  • the input operation position along the arrangement direction of the divided detection electrodes can be detected without arranging the pair of detection electrodes along the opposing inner edge by the window hole, and the divided detection electrodes and the window If another detection electrode is arranged at the opposing inner edge through the hole, only by arranging the detection electrode at the pair of opposing inner edges of the window, input operation in the X and Y directions with the opening surface of the window as the input operation surface The position can be detected.
  • the reception level of the alternating current detection signal which decreases in proportion to the distance between the input operating body and the detection electrode, can be obtained. And can be detected more accurately without the influence of surrounding conductors.
  • monitoring means for monitoring the potential of the conductive layer it is possible to detect an input operation in which the input operation body is touched on the conductive layer.
  • the reception level of the alternating current detection signal in which the micro capacitance of about 30 fF between the input operation body and the detection electrode is expanded. It is possible to detect the distance from the input operation body approaching the detection electrode in a non-contact manner without interposing a contact member with a high dielectric constant.
  • FIG. 2 is a block diagram showing a capacitive touch panel 1;
  • FIG. 2 is an equivalent circuit diagram of a power supply circuit of the capacitive touch panel 1;
  • FIG. 4 is a circuit diagram showing details of a signal detection circuit 13 and an integration processing circuit 14 of FIG. 3;
  • FIG. 2 is an equivalent circuit diagram of a signal detection circuit unit of the capacitive touch panel 1; It is a voltage waveform figure of each part shown to (a) (b) (c) of FIG.
  • It is a top view of electric capacity type touch panel 51 concerning a 3rd embodiment of the present invention.
  • It is a top view of electric capacity type touch panel 52 concerning a 4th embodiment of the present invention.
  • a capacitive touch panel (hereinafter referred to as a touch panel) 1 according to a first embodiment of the present invention will be described using FIGS. 1 to 7.
  • the touch panel 1 has a rectangular frame-shaped insulating case 20 as shown in FIG. 1 so that a horizontally long rectangular window hole 21 is formed on the inside, and the opening face of the window hole 21 is a finger as an input operation body
  • An input operation surface 21a is used to make an input operation by bringing 30 closer.
  • the inner edge 20a of the insulating case 20 adjacent to the window hole 21 is an inclined surface which inclines downward toward the center of the window hole 21 as shown in FIG.
  • a pair of detection electrodes Y0 and Y1 facing each other in the X direction and a pair of detection electrodes X0 and X1 facing each other in the X direction are integrally attached.
  • Each of the detection electrodes 11 (X0, X1, Y0, Y1) is formed in a strip shape, and is disposed substantially all along the attached inner edge 20a. Thereby, the finger 30 faces all the detection electrodes 11 regardless of the position of the input operation surface 21 a.
  • the opposing area with the finger 30 is maximized, and the electrostatic described later will be described.
  • the capacitance Cm is prevented from becoming a small value.
  • main circuit components constituting the touch panel 1 including the detection electrodes 11 are separately mounted on two types of non-vibration side circuit boards 2 and vibration side circuit boards 3.
  • a reference power supply circuit 4 consisting of a low voltage reference power supply line GND and a high voltage reference power supply line VCC at the ground potential is wired to the non-oscillating circuit board 2, and a DC voltage Vcc is applied between the low voltage reference power supply line GND and the high voltage reference power supply line VCC.
  • the DC power source 5 for applying the voltage is connected.
  • each circuit component such as the interface circuit 6 mounted on the non-oscillating circuit board 2 is connected to the reference power supply circuit 4 and driven by the output voltage Vcc of the DC power supply 5.
  • a vibration power supply circuit 7 including a low voltage vibration power supply line SGND and a high voltage vibration power supply line SVCC is wired.
  • the low voltage oscillating power supply line SGND is connected to the low voltage reference power supply line GND
  • the high voltage oscillating power supply line SVCC is connected to the high voltage reference power supply line VCC via the coils 8 and 9, respectively.
  • the inductances of the coil 8 and the coil 9 are both set to high impedance values with respect to an alternating current detection signal SG of the natural frequency f described later, and in this case, coils 8 and 9 of the same inductance L are used.
  • the oscillation circuit 15 serving as a transmission means for transmitting the natural frequency f of the AC detection signal SG is mounted on the vibration-side circuit board 3 and is branched via a bifurcated capacitance C 'via capacitors 17 and 18 for blocking the DC voltage.
  • the AC detection signal SG is connected to the low voltage reference power supply line GND of the reference power supply circuit 4 and the high voltage reference power supply line VCC.
  • capacitors 17 and 18 having a capacitance C ' are connected in parallel between the output of the oscillating circuit 15 on the oscillating power supply 7 side and the reference power supply circuit 4. Therefore, the combined capacitance is 2C
  • the combined inductance of the coils 8 and 9 connected in parallel between the reference power supply circuit 4 and the oscillating power supply circuit 7 is L / 2.
  • These capacitors and inductors are connected in series in a closed circuit in which an alternating current detection signal SG of a natural frequency f flows, and the amplitude (level) of the alternating current detection signal SG is Vsg.
  • Reference power supply circuit 4 at both ends of the coils 8 and 9 and oscillating power supply Assuming that the voltage between the circuits 7 is Vs, and the angular velocity represented by 2 ⁇ f is ⁇ (rad / sec),
  • the vibration power supply circuit 7 is theoretically calculated from the equation (1) with respect to the level of the alternating current detection signal SG.
  • the potential of the detection electrode 11 oscillates at infinity, and the potential of each detection electrode 11 connected to the oscillating power supply circuit 7 can also oscillate at infinity.
  • the actual touch panel 1 does not resonate at the frequency f 0 obtained from the equation (2) due to the influence of the inductances and stray capacitances of the reference power supply circuit 4 and the vibration power supply circuit 7, and the reference power supply circuit 4 and the vibration power supply circuit 7
  • the vibration power supply circuit 7 vibrates at an amplitude Vs expanded to a finite magnification with respect to the level Vsg of the AC detection signal SG due to an energy loss or the like when the AC detection signal SG flows.
  • the natural frequency f of the AC detection signal SG is adjusted in the vicinity of the resonance frequency f 0 and each detection electrode 11
  • the output level Vs of the alternating current detection signal SG oscillating relatively is set arbitrarily, and here, the output level Vs is 5V.
  • the natural frequency f of the AC detection signal SG can be set to any frequency, but the common operating noise of the frequency of the commercial AC power is not the constant potential of the input operating body 30 around the commercial AC power supply line. It is necessary to detect the alternating current detection signal SG of the natural frequency f from the detection electrodes 11 by discriminating it from the frequency of the commercial alternating current power source because it may be superimposed, and the frequency of the commercial alternating current power source and its harmonics are excluded. Is preferred.
  • Each of the detection electrodes 11 described above is connected to the high voltage oscillating power supply line SVCC, here, one of the low voltage oscillating power supply line SGND and the high voltage oscillating power supply line SVCC of the oscillating power supply circuit 7.
  • the operator's finger 30 vibrates at the output frequency Vs of the AC detection signal SG at the natural frequency f while part of the foot is grounded. Since the voltage of the output level Vs of the alternating current detection signal SG is generated between the two in the detection electrode 11 where the finger 30 approaches and the capacitance Cm with the finger 30 increases.
  • An alternating current detection signal SG of a natural frequency f appears from the detection electrode 11 to the finger 30 via the capacitance Cm. If this is viewed from the vibration power supply circuit 7 vibrating at the natural frequency f, the finger 30 as the input operation body vibrates at the natural frequency f of the alternating current detection signal SG with respect to the detection electrode 11 of constant potential.
  • FIG. 6 is an equivalent circuit diagram of the entire signal detection circuit unit for detecting the reception level Vi of the AC detection signal SG appearing on the detection electrode 11.
  • Cp represents a floating between the detection electrode 11 and the low voltage oscillating power supply line SGND.
  • the capacitance rp is the internal resistance value of the detection electrode 11, and R4 is the resistance value of the output resistance.
  • R4 is the resistance value of the output resistance.
  • the reception level Vi becomes a larger value closer to the output level Vs of the AC detection signal SG.
  • the equation (10) can not be applied, and the reception level Vi Becomes the output level Vs at the maximum.
  • an analog multiplexer 12 In order to detect the input operation position (x, y, z), as shown in FIG. 3, an analog multiplexer 12, a signal processing circuit 13, an integration processing circuit 14, and an A / D converter are provided on the vibration side circuit board 3. 19.
  • Each circuit element of MPU (microprocessor unit) 10 and oscillating circuit 15 is mounted, and connected to low voltage oscillating power supply line SGND and high voltage oscillating power supply line SVCC of oscillating power supply circuit 7, and output voltage Vcc from DC power supply 5 Receiving and operating.
  • the analog multiplexer 12 switches and connects each detection electrode 11 to the signal processing circuit 13 in a fixed cycle, here every 200 msec, by switching control from the MPU 10, and sequentially processes the AC detection signal SG appearing on each detection electrode 11 It is output to the circuit 13.
  • the signal processing circuit 13 includes a resonant circuit 23 for passing a signal in a frequency band centered on the natural frequency f of the AC detection signal, an amplification circuit 24 for impedance conversion, and a series between them. And a first analog switch ASW1 connected to the The resonance circuit 23 cuts low frequency components such as a DC signal and high frequency noise such as common mode noise from the signal appearing on the detection electrode 11 connected via the analog multiplexer 12, and amplifies only the AC detection signal SG in the latter stage amplification circuit Output to 24
  • the amplification circuit 24 is an impedance conversion element whose input impedance is close to infinity and whose output impedance is a minute value, and is an integration process connected to the output side of even a weak alternating current detection signal SG appearing on the detection electrode 11
  • the circuit 14 is made to operate.
  • the first analog switch ASW1 is open / close controlled by the MPU 10, and connects between the resonance circuit 23 and the amplification circuit 24 during an integration operation period (Tint) in which the integration processing circuit 14 performs integration operation described later, and offset adjustment described later Shut off during period (Tset).
  • Tint integration operation period
  • Tset offset adjustment period
  • the integration processing circuit 14 includes an integration operational amplifier 25, an integration resistor R 1 connected between the output of the signal processing circuit 14 and the inverting input terminal of the integration operational amplifier 25, and an integration operational amplifier 25.
  • the integration capacitor C1 connected between the inverting input terminal and the output terminal, and the second analog switch ASW2 connected in parallel to the integration capacitor C1 and whose opening and closing are controlled by the MPU 10 are provided.
  • the voltage of the AC detection signal input to the inverting input terminal of the integrating operational amplifier 25 via the integrating resistor R is Vin
  • the voltage output from the output terminal of the integrating operational amplifier 25 is Vout
  • the resistance value of the integrating resistor R1 If R and the capacity of the integration capacitor C1 are C, then
  • the voltage Vout obtained by integrating the input voltage Vin is output from the output terminal of the integration operational amplifier 25.
  • the second analog switch ASW2 is closed by the MPU 10 for a short time after the start of the offset adjustment period (Tset), and charges accumulated in the integration capacitor C1 quickly during the integration operation period (Tint) of the integration processing circuit 14
  • the charging voltage which is discharged and charged in the integration capacitor C in the integration operation period (Tint) immediately before the discharge operation does not affect the offset operation of the offset adjustment period (Tset) of the integration processing circuit 14 described later.
  • the integration processing circuit 14 is further provided with a feedback circuit unit in order to substantially eliminate the influence of the offset voltage ⁇ v.
  • this feedback circuit section includes a feedback operational amplifier 26, a third analog switch ASW3 connected between the output of the feedback operational amplifier 26 and the noninverting input terminal of the integration operational amplifier 25, and a third analog It is connected between the switch ASW3 and the non-inversion input terminal of the integrating operational amplifier 25 and comprises a holding capacitor 27 charged with the output voltage of the feedback operational amplifier 26.
  • the inverting input terminal of the feedback operational amplifier 26 is connected to the output of the integrating operational amplifier 25 via the resistor R2, and the non-inverting input terminal is connected to the input side of the integrating resistor R1.
  • the resistances of the resistors R3 and R2 connected between the inverting input terminal and the output terminal of the feedback operational amplifier 26 are equal, so that the feedback operational amplifier 26 is used for integration while the third analog switch ASW3 is closed and controlled.
  • the input voltage Vin input to the inverting input terminal of the operational amplifier 25 is used as a reference potential, and the difference between the output voltage Vout of the integrating operational amplifier 25 with respect to the input voltage Vin is amplified by gain -1 and fed back to the noninverting input terminal of the integrating operational amplifier 25 Act as you do.
  • the third analog switch ASW3 is closed and the input of the integration resistor R1 and each detection electrode 11 are cut off by the first analog switch ASW1 which is open controlled
  • the potential of the inverting input terminal of the integrating operational amplifier 25 is maintained at a constant input voltage Vin without the AC detection signal SG being input to the input side of the integrating resistor R1.
  • the integral value ⁇ (Vin + ⁇ v) ⁇ ⁇ t / CR is output after ⁇ t, but the feedback operational amplifier Since Vin + (Vin + ⁇ v) ⁇ ⁇ t / CR is input to the non-inverted input terminal of the integrating operational amplifier 25 and ⁇ t / CR is sufficiently smaller than 1, the output of the integrating operational amplifier 25 is offset by repeating this. It converges to the voltage ⁇ v and becomes stable.
  • the potential obtained by adding the offset voltage ⁇ v to the inverting input terminal of the integrating operational amplifier 25 becomes equal to the potential of the noninverting input terminal, and the holding capacitor 27 includes the noninverting input including the effect of the offset voltage ⁇ v.
  • a correction voltage is charged so that the differential voltage between the terminal and the inverting input terminal is zero. Therefore, the offset adjustment period (Tset) is set to a time sufficient for the output Vout of the integrating operational amplifier 25 to reach and stabilize the offset voltage ⁇ v, and the holding capacitor 27 is used when the output Vout of the integrating operational amplifier 25 is stabilized.
  • the capacitor of the capacitor which saturates is used for.
  • the MPU 10 controls to close the first analog switch ASW1 and opens the third analog switch ASW3 to shift to an integration operation period (Tint).
  • Tint an integration operation period
  • the integration operation period (Tint) by controlling the first analog switch ASW1 to be closed, the AC detection signal SG appearing on the detection electrode 11 selected and connected by the analog multiplexer 12 is integrated via the integration resistor R1. It is input to the inverting input terminal.
  • the correction voltage charged in the hold capacitor 27 is input to the non-inversion input terminal of the integration operational amplifier 25 during the offset adjustment period (Tset), and the offset voltage is
  • the differential voltage between the noninverting input terminal of the integrating operational amplifier 25 including ⁇ v and the inverting input terminal excluding the AC detection signal SG becomes 0, and the offset voltage ⁇ v shown in equation (13) is output to the output Vout of the integrating operational amplifier 25. It does not include the integrated error - ⁇ v ⁇ t / CR.
  • the MPU 10 is at the determination time t1 at the determination time t1 immediately before the end of the integration operation period (Tint) after the same time elapses in each integration operation period (Tint) from the start of the integration operation period (Tint).
  • the output Vout is output to the A / D converter 19 connected to the subsequent stage.
  • the integration operation period (Tint) is sufficiently shorter than the saturation time of the integration capacitor C1 determined by CR, and the voltage Vin of the AC detection signal SG is determined from the output Vout of the integration operational amplifier 25 which is its integral value at t1. Set to a distinguishable period.
  • the A / D converter 19 quantizes the output Vout of the integration operational amplifier 25 at t1 and outputs the result to the MPU 10.
  • the quantization data output from the A / D converter 19 represents the reception level Vi of the AC detection signal SG appearing on each detection electrode 11 selected and connected to the analog multiplexer 12 during the integration operation period (Tint), and the input position detection
  • the MPU 10 acting as a means detects the input operation position of the finger 30 from the reception level Vi of the AC detection signal SG appearing on each detection electrode 11.
  • the MPU 10 outputs the quantum output from the A / D converter 19.
  • the input operation position is calculated from the reception level Vi where the conversion data is 1 / n.
  • the reception level Vi of the AC detection signal SG output from the A / D converter 19 is Vx0, Vx1, and a pair of detection electrodes X0 facing in the X direction. Assuming that the distance between X1 is Lx and the finger 30 is at the input operation position P (x, z) shown in FIG. About the detection electrode X0
  • Each of the detection electrodes X0, X1, Y0, Y1 is disposed over the entire side of the inner edge of the rectangular window hole 21. Therefore, the finger on which at least one of the input operation surface 21a in the vertical direction is input operated 30 face the detection electrodes X0 and X1 in the X direction and the detection electrodes Y0 and Y1 in the Y direction, and from the expressions (14) to (17), the three-dimensional input operation position (x, y, z) can be detected.
  • the input positions (x, y) in the X and Y directions on the input operation surface 21a can be easily obtained from Vx0, Vx1, Vy0 and Vy1.
  • Input operation data including the input operation position (x, y, z) detected by the MPU 10 is output to the interface circuit 6 mounted on the non-oscillating circuit board 2 through the signal line 16 in which the direct current is isolated It is output from the circuit 6 to a host device using input operation data by USB communication, I 2 C communication or the like.
  • the electrostatic capacitance Cm between the finger 30 and the detection electrode 11 when the input operation is performed at a position 10 cm away from the detection electrode 11 as the input operation body is the facing area s between the finger 30 and the detection electrode 11 the 5 ⁇ 10 -4 (m 2) , a dielectric constant ⁇ 0 of vacuum, 8.854 ⁇ 10 -12 (F / m), as about 1 ⁇ dielectric constant of air, about 44.27 ⁇ 10 -15
  • the value F is extremely small, ie 44.27 fF.
  • the reception level Vi of the alternating current detection signal SG appearing on the detection electrode 11 is 1.13, where the proportional constant k is Cp / ( ⁇ 0 ⁇ ⁇ r ⁇ s) and the stray capacitance Cp is 50 pF in the equation (10). since 10 4, the output level Vs of the AC detection signal SG 5V, and to the the 10 -1 d, it is about 4.4MV, expanding this in integral processing circuit 14 calculates the distance d.
  • the MPU 19 While detecting the input operation position, the MPU 19 switches and controls the connection of the analog multiplexer 12 in a cycle of about 200 msec shown in FIG. 6, and detects each detection electrode 11 in the order of detection electrodes X0, X1, Y0, Y1. , And one cycle of switching and connecting all the detection electrodes X0, X1, Y0, Y1 is repeated.
  • One period connected to the signal processing circuit 13 for each detection electrode 11 includes the offset adjustment period Tset and the integration operation period Tint, and the MPU 19 performs the second period for a predetermined period immediately after the start of the offset adjustment period Tset as described above.
  • the analog switch ASW2 is closed, and the charge accumulated in the integration capacitor C1 is discharged during the integration operation period Tint immediately before that.
  • the first analog switch ASW1 is controlled to open and the third analog switch ASW3 is closed, whereby the output voltage Vo ⁇ (c) of the integration operational amplifier 25 is controlled to open ASW1 and is constant.
  • Offset voltage of the integration operational amplifier 25 at the end of the offset adjustment period Tset which converges and stabilizes on the potential at the potential difference between the input voltage (a) of the inverting input terminal and the offset voltage ⁇ v.
  • a charge voltage that cancels ⁇ v is charged to hold capacitor 27.
  • the MPU 19 performs control to close the first analog switch ASW1 and control to open the third analog switch ASW3 to shift to the integration operation period Tint.
  • the first analog switch ASW1 By controlling the first analog switch ASW1 to be closed, an AC detection signal SG that appears on the detection electrode 11 connected via the analog multiplexer 12 in that period is input from the signal processing circuit 13 to the integration processing circuit 14.
  • the third analog switch ASW3 is controlled to be opened, whereby the output of the feedback operational amplifier 26 is disconnected from the non-inverting input terminal of the integrating operational amplifier 25 and the charging voltage of the hold capacitor 27 is added. A charge voltage that cancels the offset voltage ⁇ v is applied to the 25 non-inverting input terminals.
  • the charging voltage ⁇ v ⁇ (b) of the hold capacitor 27 is input to the non-inverting input terminal of the integrating operational amplifier 25 and the inverting input with respect to the potential of (b)
  • the difference from the voltage (a) of the AC detection signal SG of the natural frequency of 187 kHz input to the terminal is integrated at the elapsed time t, inverted, and output from the integration operational amplifier 25 (c).
  • the slope of the output waveform of the integrating operational amplifier 25 appearing in a stepwise manner increases.
  • a determination time t1 is set immediately before the end of the integration operation period Tint and when the elapsed time Tc from the start of the integration operation period Tint is the same as the connection time with each detection electrode 11,
  • the output of the integration operational amplifier 25 at time t1 is output to the A / D converter 19 as the reception levels Vx0, Vx1, Vy0 and Vy1 of the AC detection signal SG appearing on the connected detection electrode 11.
  • the MPU 10 switches and controls the analog multiplexer 12 so as to connect the next detection electrode 11 to the signal processing circuit 13. Similarly, for the detection electrode 11, the offset adjustment period Tset and the integration operation period Repeat control of Tint.
  • the MPU 10 uses the reception levels Vx0, Vx1, Vy0, Vy1 input from the A / D converter 19 for each detection electrode 11 after one cycle of connecting all the detection electrodes X0, X1, Y0, Y1.
  • the three-dimensional input operation position (x, y, z) of the finger 30 is detected using the equations (14) to (17).
  • the two-dimensional input operation position (x, y) is obtained from the equations (19) and (20). ) To detect.
  • the detected input operation position (x, y) or the input operation position (x, y, z) is output to the upper device using the touch panel 1 as an input device as input operation data via the interface circuit 6 at any timing. Ru.
  • a pair of detection electrodes X0 and X1 or a pair of detection electrodes Y0 and Y1 are disposed in the opposing direction facing each other in the rectangular window holes 21, and the input position in the opposing direction
  • a plurality of divided detection electrodes 41 are arranged along the detection direction, and the reception level Vi of the alternating current detection signal SG similarly detected for each of the divided detection electrodes 41 is compared. Then, the input operation position in the detection direction may be detected.
  • the touch panels 50, 51 and 52 according to the other embodiments shown in FIGS. 8 to 10 will be different from the first embodiment in the drawings only in the configuration of the detection electrodes. The explanation is omitted.
  • FIG. 8 is a plan view of the capacitive touch panel 50 according to the second embodiment in which four types of detection electrodes X0, X1, Y0, and Y1 of the touch panel 1 are configured by a plurality of divided detection electrodes 41, respectively. .
  • a plurality of split detection electrodes X0 1, X0 2 ⁇ X0 n is, instead of the detection electrode X1
  • a plurality of split detection electrode X1 1, X1 2 ⁇ X1 n is the detection electrode instead of Y0
  • a plurality of split detection electrodes Y0 1, Y0 2 ⁇ Y0 n is, instead of the detection electrode Y1
  • the arrangement of the plurality of split detection electrodes Y1 1, Y1 2 ⁇ Y1 n is the respective detection electrodes 11 respectively Arranged along the position.
  • the MPU 10 controls the multiplexer 12 to sequentially connect all the divided detection electrodes 41 to the signal processing circuit 13, and detects the reception level Vi of the alternating current detection signal SG appearing on the divided detection electrodes 41 connected during each connection period.
  • the reception level Vi of is maximized, so that the input operation position (x, y) can be detected by relatively comparing the reception levels Vi of the divided detection electrodes 41 arranged in a line.
  • the sum of the reception levels Vi of the plurality of divided detection electrodes 41 arranged in a line in the same direction corresponds to the reception level Vi of the detection electrodes 11 according to the first embodiment arranged at the same position.
  • the input position in the opposite direction or the input position in the Z direction orthogonal to the opposite direction can also be detected, as compared with the sum of the reception levels Vi of the divided detection electrodes arranged opposite to each other.
  • FIG. 9 is a plan view of the capacitive touch panel 51 according to the third embodiment in which the detection electrodes Y0 and Y1 opposed to each other in the Y direction of the touch panel 1 are configured by a plurality of divided detection electrodes 41, respectively. That is, the detection electrodes X0, X1 is the same as the first embodiment, in place of the detecting electrodes Y0, a plurality of split detection electrodes Y0 1, Y0 2 ⁇ Y0 n is, instead of the detection electrode Y1, a plurality of split detection electrodes Y1 1, Y1 2 ⁇ Y1 n are those which are arranged along the arrangement positions of the detection electrodes 11, respectively.
  • the multiplexer 12 sequentially connects the detection electrodes X0 and X1 and all the divided detection electrodes 41 to the signal processing circuit 13, and detects the reception level Vi of the AC detection signal SG appearing on the detection electrodes 11 and 41 connected during each connection period.
  • MPU10 is a split detection electrodes Y0 1, Y0 2 ⁇ Y0 n sum Vsy0 reception level Vi of, as a reception level Vy0 detection electrodes Y0, split detection electrodes Y1 1, Y1 2 ⁇ Y1 n of the reception level Vi of
  • the input operation position (y, z) in the Y direction and the Z direction is detected from Vsy0 and Vsy1 with the sum Vsy1 as the reception level Vy1 of the detection electrode Y1.
  • the input operation position (x) in the X direction can be detected from the reception level Vx0 of the detection electrode X0 and the reception level Vx1 of the detection electrode X1 as in the first embodiment, but the second embodiment described above
  • the reception level Vi of the divided detection electrodes 41 arranged in a line in the same direction is relatively compared, and the position at which the maximum reception level Vi is detected in the X direction is the input operation position in the X direction. It can also be detected as (x).
  • FIG. 10 shows a capacitive touch panel 52 in which the detection electrodes X0 and X1 overlapping the detection of the input operation position (x) in the X direction are omitted in the touch panel 51 shown in FIG.
  • the split detection electrodes Y0 1, Y0 2 ⁇ Y0 n reception level split detection electrodes Y1 1 the sum Vsy0 of Vi of, Y1 2 ⁇ ⁇ Y1 n sum of the reception levels Vi of Vsy1, Y-direction an input operation position in the Z direction (y, z) and detects the, split detection electrodes Y0 1 arranged on the same level, Y0 2 ⁇ ⁇ Y0 n or split detection electrodes Y1 1, Y1 2 ⁇ Y1 n reception level Relatively compare Vi to detect the input operation position (x) in the X direction.
  • the inside of the window hole 21 to be the input operation surface 21a is a space, the visibility of the display disposed below the space is excellent, but it is not necessary to be the space.
  • a conductive sheet on which a conductive layer formed of a transparent material is formed is disposed on the entire back surface of the detection electrodes 11 and 41 including the window holes 21 and equipotential to the detection electrodes 11 and 41 such as the low voltage vibration power supply line SGND. If the shield layer is connected to the ground wire which is to be used, external noise does not intrude into the detection electrodes 11 and 41, and stray capacitance does not fluctuate unstablely, and the input operation position can be detected more accurately. .
  • a conductive sheet having a potential different from that of the input operation body 30 is bridged to a position where the input operation body 30 in the window 21 serving as the input operation surface 21a can contact, and monitoring means for monitoring the potential of the conductive sheet is provided.
  • monitoring means for monitoring the potential of the conductive sheet. For example, an input operation of touching the input operation body 30 to the conductive sheet can be detected from the potential fluctuation of the conductive sheet. Therefore, if a potential monitoring means is provided on the conductive sheet acting as the shield layer, it can also be used to detect an input operation.
  • the detection electrodes 11 and 41 are vibrated at the output level Vs of the AC detection signal SG with respect to the input operation body 30, and the relative potential of the output level Vs is generated between them.
  • the potential of the input operation body 30 may be varied at the output level Vs of the AC detection signal SG with the potentials 11 and 41 as a constant potential.
  • the input operation body 30 has been described using the finger 30 with which the operator performs an input operation, the input operation body 30 may be an operation body different from the operator, such as a dedicated input pen held by the operator.
  • the window hole formed in the rectangular outline can be made into any shape, and the detection electrodes are arranged at four corners of the window hole, for example, without arranging along the inner edge thereof.
  • the input operation position in the window may be detected from the distance to each detection electrode.
  • the detection electrode 11 Since the detection electrode has a large capacitance Cm between the detection electrodes in proportion to the area facing the input operation body and detection of the capacitance Cm is easy, the three-dimensional input operation position (x, x) on the input operation surface 21a In the above embodiment which also detects y and z), the detection electrode 11 is disposed along the inclined inner edge 20a of the insulating case 20, but the two-dimensional input operation position (x, x) on the input operation surface 21a When only y) is to be detected, it is desirable to arrange the detection electrode 11 along a vertical plane orthogonal to the input operation surface 21a, and the input operation in the Z direction mainly away from the input operation surface 21a in the vertical direction When detecting the position (z), it is desirable to arrange more horizontally.
  • the present invention is suitable for a capacitive touch panel in which a display element is disposed on the back side and detects an input operation without contact.
  • Capacitive touch panel 10 MPU (input position detection means) 11 detection electrode 14 integration processing circuit (signal detection means) 15 Oscillator circuit (transmission means) 20a inner edge 21 window hole 21a input operation surface 30 finger (input operation body) 41 Division detection electrode Cm Capacitance SG AC detection signal Vs Output level of AC detection signal Vi Reception level of AC detection signal

Abstract

[Problem] To provide a capacitive touch panel having excellent visibility of a display disposed on the rear surface side, without disposing a transparent member on the operation input surface. [Solution] The receiving level of AC detection signals that appear in a plurality of detection electrodes via the capacitance between the detection electrodes and input operation units is essentially proportional to the distance between the detection electrodes and the input operation units. Therefore, the relative distances between the positions of the input operation units and the detection electrodes are compared on the basis of the receiving level of the AC detection signals detected in each of the detection electrodes, and the operation input positions of the operation input units are detected.

Description

静電容量式タッチパネルCapacitive touch panel
 本発明は、指などの入力操作体が接近して指との静電容量が増大する検出電極の配置位置から入力操作体の入力操作位置を検出する静電容量式タッチパネルに関する。 The present invention relates to a capacitive touch panel that detects an input operation position of an input operation body from an arrangement position of a detection electrode where an input operation body such as a finger approaches and a capacitance of the finger increases.
 電子機器のディスプレーに表示されたアイコンなどを指示入力するポインティングデバイスとしてタッチパネルには、入力操作位置の検出方法の相違から静電容量方式、抵抗膜方式、光学式など種々の検出方式のタッチパネルが用いられている。このうち、抵抗方式タッチパネルは、単位長さあたりの抵抗値が均一となる抵抗皮膜を入力操作面に沿って配置し、検出電極と入力操作位置との抵抗値から両者の距離を特定し、入力操作位置を検出するが、その背面側に設置されるディスプレーが目視できるように、入力操作面の表面若しくは背面に沿って配置される検出電極や抵抗膜を高価な透明体で形成する必要があり、透明体としても透過率が低下するので、ディスプレーが見づらいという問題がある。 As a touch device for pointing and inputting icons displayed on the display of electronic devices, various touch detection methods such as electrostatic capacitance method, resistive film method and optical method are used from the difference in detection method of input operation position. It is done. Among them, in the resistive touch panel, a resistive film having a uniform resistance value per unit length is disposed along the input operation surface, and the distance between the detection electrode and the input operation position is specified from the resistance value of the input operation position. To detect the operation position, it is necessary to form the detection electrode and the resistance film arranged along the surface or the back of the input operation surface with an expensive transparent body so that the display installed on the back side can be seen visually Since the transmittance also decreases as a transparent body, there is a problem that the display is difficult to see.
 また、光学式タッチパネルは、入力操作面の周囲に複数対の発光素子と受光素子を配設して入力操作面に沿って格子状の光路を形成し、入力操作により光路が遮られた対となる発光素子と受光素子の配設位置から入力操作位置を検出するが、同様に、複数対の発光素子と受光素子を設ける必要があるために高価であるとともに、入力操作面上の異物によっても光路が遮られ、誤認識が頻繁に発生した。 In the optical touch panel, plural pairs of light emitting elements and light receiving elements are disposed around the input operation surface to form a grid-like light path along the input operation surface, and the pairs whose light path is interrupted by the input operation The input operation position is detected from the arrangement position of the light emitting element and the light receiving element, but similarly it is expensive because it is necessary to provide plural pairs of light emitting element and light receiving element, and also by foreign matter on the input operation surface. The light path was interrupted and misrecognition occurred frequently.
 静電容量式タッチパネルは、入力操作により入力操作体が接近する検出電極の浮遊容量(入力操作体と検出電極間の静電容量)が増大することに着目し、入力操作体と検出電極間の静電容量の変化から検出電極が配置された入力操作面への入力操作位置を検出するもので、従来は、多数のX側検出電極とY側検出電極を絶縁基板の表裏で交差するようにマトリックス状に形成し、指などの入力操作体を接近させた付近で静電容量が増加するX側検出電極及びY側検出電極の配置位置から入力操作体による入力操作位置を検出する静電容量式タッチパネルが知られている(特許文献1)。 The capacitive touch panel focuses on the fact that the floating capacitance (capacitance between the input operating body and the detection electrode) of the detection electrode to which the input operating body approaches due to the input operation increases. The input operation position to the input operation surface on which the detection electrode is arranged is detected from the change in capacitance. Conventionally, a large number of X-side detection electrodes and Y-side detection electrodes are intersected on the front and back of the insulating substrate. Capacitance for detecting the input operation position by the input operation body from the arrangement position of the X-side detection electrode and the Y-side detection electrode which are formed in a matrix and the capacitance increases in the vicinity of the input operation body such as a finger. An expression touch panel is known (patent document 1).
 しかしながら、この静電容量式タッチパネルは、入力操作面に沿って多数のX側検出電極とY側検出電極を配置し、背面側のディスプレーを目視できるように透明体で形成する必要があり、高価になるという抵抗膜方式と同様な課題があり、更に、入力操作位置の検出分解能を上げるには、多数のX側検出電極とY側検出電極を密に配置する必要があり、全ての検出電極についての静電容量の変化を検出するので、短時間に入力操作位置を検出できなかった。 However, this capacitive touch panel is required to dispose a large number of X-side detection electrodes and Y-side detection electrodes along the input operation surface, and be formed of a transparent body so that the display on the back side can be viewed. In order to increase the detection resolution of the input operation position, it is necessary to closely arrange a large number of X-side detection electrodes and Y-side detection electrodes. Since the change in the capacitance of the sensor was detected, the input operation position could not be detected in a short time.
 そこで、入力操作面の周囲にのみ検出電極を配置し、入力操作体と検出電極間の静電容量の変化から入力位置を検出する静電容量式タッチパネルが提案されている(特許文献2)。この特許文献2に記載の静電容量式タッチパネルは、高誘電率の誘電体からなる感触部材を入力操作面に沿った全体に配置し、入力操作位置と検出電極間の静電容量を、空気中に比べて誘電率の高い感触部材により拡大し、検知感度を上げて検出する静電容量の変化から入力操作面上の入力操作位置を検出している。 Therefore, a capacitive touch panel has been proposed in which a detection electrode is disposed only around the input operation surface and an input position is detected from a change in capacitance between the input operation body and the detection electrode (Patent Document 2). In the capacitive touch panel described in Patent Document 2, a touch member made of a dielectric with a high dielectric constant is disposed along the entire input operation surface, and the capacitance between the input operation position and the detection electrode is The input operation position on the input operation surface is detected from the change in the capacitance which is enlarged by the touch member having a high dielectric constant compared with the inside and the detection sensitivity is increased to detect.
 また、入力操作面の周囲に検出電極を配置し、三次元の入力操作を検出可能とした静電容量式検出装置も知られている(特許文献3)。この特許文献3に記載の静電容量式検出装置は、入力操作面の周囲の検出方向(例えば、X方向)で対向する両側に一対の検出電極と、同一入力操作面上で一対の検出電極から等距離に駆動電極を配置する。入力操作面へ別の誘電体である入力操作体の入力操作があると、これらの一対の各検出電極と駆動電極間の静電容量がそれぞれ入力操作体により遮られて変化するので、入力操作により変化する各検出電極についての静電容量の差分からX方向の入力操作位置を検出する。 There is also known an electrostatic capacitance type detection device in which detection electrodes are arranged around an input operation surface so as to detect a three-dimensional input operation (Patent Document 3). The capacitance type detection device described in Patent Document 3 has a pair of detection electrodes on both sides facing each other in the detection direction (for example, the X direction) around the input operation surface, and a pair of detection electrodes on the same input operation surface The drive electrodes are arranged equidistantly from. When there is an input operation on the input operation body which is another dielectric on the input operation surface, the capacitance between the pair of detection electrodes and the drive electrode is interrupted by the input operation body and changes, so the input operation The input operation position in the X direction is detected from the difference in electrostatic capacitance for each detection electrode, which changes due to.
 X方向に直交するY方向の入力操作位置の検出は、上記入力操作面の周囲のY方向で対向する両側に一対の検出電極と、同一入力操作面上で一対の検出電極から等距離に駆動電極を配置し、同様にして、Y方向の入力操作位置を検出する。特許文献3に記載の検出装置では、X方向とY方向の入力操作位置を検出する際に、検出電極と駆動電極を切り換えて同一の電極を兼用し、入力操作面の周囲に配置する電極数を半減させている。 Detection of the input operation position in the Y direction orthogonal to the X direction is driven at equal distances from the pair of detection electrodes on both sides facing in the Y direction around the input operation surface and from the pair of detection electrodes on the same input operation surface The electrodes are arranged, and similarly, the input operation position in the Y direction is detected. In the detection device described in Patent Document 3, when detecting the input operation position in the X direction and the Y direction, the detection electrode and the drive electrode are switched to share the same electrode, and the number of electrodes disposed around the input operation surface Is halved.
 また、XY平面に直交するZ方向の入力操作位置の検出は、前記入力操作面に直交する別の入力操作面を想定して、更にその周囲にZ方向で対向する一対の検出電極と一対の検出電極から等距離の駆動電極を配置し、同様にして、Z方向の入力操作位置を検出する。 In addition, detection of the input operation position in the Z direction orthogonal to the XY plane, assuming another input operation surface orthogonal to the input operation surface, further includes a pair of detection electrodes and a pair of detection electrodes facing the periphery in the Z direction. Drive electrodes equidistant from the detection electrode are disposed, and similarly, the input operation position in the Z direction is detected.
特開2005-337773号公報Japanese Patent Application Publication No. 2005-337773 特開平8-171449号公報JP-A-8-171449 国際公開WO2008/093683号公報International Publication WO2008 / 093683
 特許文献1により開示されている静電容量式タッチパネルは、入力操作面上に多数の検出電極を配置するので、背面側にディスプレーを配置する場合には、透明導電体とする必要があるとともに、透明導電体としても完全な透明体ではないので、その透過率に限界があり、背面側のディスプレーの視認性にかけるという問題がある。 In the capacitive touch panel disclosed by Patent Document 1, since a large number of detection electrodes are disposed on the input operation surface, it is necessary to use a transparent conductor when disposing a display on the back side, Since the transparent conductor is not a perfect transparent body, its transmittance is limited, and there is a problem in that it affects the visibility of the display on the back side.
 この問題を解決するために入力操作面上に検出電極を配置しない構成とした特許文献2に記載の静電容量タッチパネルであっても、入力操作面に平行に感触部材を配置するので、透過率低下の問題は本質的に解決できない。 Even in the capacitive touch panel disclosed in Patent Document 2 in which the detection electrode is not disposed on the input operation surface in order to solve this problem, the touch member is disposed in parallel to the input operation surface, so the transmittance The problem of decline can not be solved essentially.
 また、指などの入力操作体を感触部材に触れて入力操作を行わなければ、入力操作体と検出電極間の静電容量が大幅に変化しないので、感触部材に触れて入力操作を行う必要があり、入力操作面に平行な二次元の入力操作位置の検出に限られる。更に、感触部材に触れなければ入力操作を行うことができないので操作性が損なわれるとともに、入力操作体が触れて透明体とする感触部材が汚れ、美観が損なわれたり、透過率が低下する問題がある。 In addition, if the touch operation member such as a finger is touched to the touch member to perform the input operation, the capacitance between the input operation body and the detection electrode does not change significantly, so it is necessary to touch the touch member to perform the input operation Yes, it is limited to detection of a two-dimensional input operation position parallel to the input operation surface. Furthermore, since the input operation can not be performed unless the touch member is touched, the operability is impaired, and the touch member which is touched by the input operation body to be transparent becomes dirty, the appearance is deteriorated, and the transmittance is lowered. There is.
 特許文献3に記載の静電容量式検出装置は、三次元の入力操作が検出できるが、互いに直交する二種類の入力操作面を想定して、各入力操作面毎にその平面上に少なくとも一対の検出電極と駆動電極を配置する必要がある。 The capacitance type detection device described in Patent Document 3 can detect a three-dimensional input operation, but assuming two types of input operation surfaces orthogonal to each other, at least one pair of input operation surfaces is provided for each input operation surface. It is necessary to arrange the detection electrode and the drive electrode of
 また、この従来の静電容量式検出装置は、入力操作体と検出電極との静電容量を直接検出して両者の距離を求めるものでなく、入力操作体が介在することによる一対の各検出電極と駆動電極間の静電容量の変化は、必ずしも入力操作体と検出電極間の距離に比例しないので、両者の差分からは、検出方向に沿った入力操作体の大凡の相対移動(入力操作のモーション)が検出できるだけであり、入力操作位置までは検出できない。 In addition, this conventional electrostatic capacitance type detection device does not directly detect the electrostatic capacitance between the input operation body and the detection electrode to obtain the distance between the two, but each pair of detection by the presence of the input operation body Since the change in capacitance between the electrode and the drive electrode is not necessarily proportional to the distance between the input operation body and the detection electrode, the relative difference between the two indicates that the relative movement of the input operation body along the detection direction (input operation Motion) can not be detected up to the input operation position.
 更に、入力操作面に沿って配置された検出電極と駆動電極間の静電容量の変化から入力操作を検出するので、入力操作面から離れた入力操作に対しては急激に検出精度が低下し、検出電極と駆動電極が配置された平面から離れた三次元の入力操作は検出できない。 Furthermore, since the input operation is detected from the change in electrostatic capacitance between the detection electrode and the drive electrode arranged along the input operation surface, the detection accuracy drops sharply for the input operation away from the input operation surface. The three-dimensional input operation away from the plane in which the detection electrode and the drive electrode are disposed can not be detected.
 本発明は、このような従来の問題点を考慮してなされたものであり、入力操作面に接近するだけの非接触の入力操作の入力操作位置を検出可能な静電容量式タッチパネルを提供することを目的とする。 The present invention has been made in consideration of such conventional problems, and provides a capacitive touch panel capable of detecting an input operation position of a non-contact input operation only approaching an input operation surface. The purpose is
 また、入力操作面に透明部材を配置することなく、背面側に配置されるディスプレーの視認性に優れた静電容量式タッチパネルを提供することを目的とする。 Another object of the present invention is to provide a capacitive touch panel excellent in the visibility of the display disposed on the back side without disposing the transparent member on the input operation surface.
 また、入力操作面の周囲に限られた数の検出電極を配置するだけで、入力操作面に平行なXY方向と直交するZ方向の入力操作位置を検出可能な静電容量式タッチパネルを提供することを目的とする。 In addition, a capacitive touch panel capable of detecting an input operation position in the Z direction orthogonal to the XY direction parallel to the input operation surface can be provided only by arranging a limited number of detection electrodes around the input operation surface. The purpose is
 上述の目的を達成するため、請求項1の静電容量式タッチパネルは、互いに絶縁して複数の検出電極が配置され、各検出電極の配置位置と、各検出電極と入力操作体との静電容量とから、入力操作体の入力操作位置を検出する静電容量式タッチパネルであって、絶縁ケースに所定間隔を隔てて配置される複数の検出電極と、入力操作体と複数の各検出電極との相対電位が変動する交流検出信号を発信する発信手段と、各検出電極と入力操作体間の静電容量を介して、各検出電極に表れる交流検出信号の受信レベルを検出する信号検出手段と、信号検出手段が各検出電極毎に検出した交流検出信号の受信レベルをもとに入力操作体と各検出電極の配置位置との相対距離を比較し、入力操作体の入力操作位置を検出する入力位置検出手段とを備えたことを特徴とする。 In order to achieve the above-mentioned object, in the capacitive touch panel according to claim 1, a plurality of detection electrodes are disposed so as to be insulated from each other, and an arrangement position of each detection electrode, and electrostatics of each detection electrode and an input operation body A capacitive touch panel for detecting an input operation position of an input operation body from a capacitance, which comprises a plurality of detection electrodes arranged at predetermined intervals in an insulating case, an input operation body, and a plurality of detection electrodes. Signal detection means for detecting the reception level of the alternating current detection signal appearing on each detection electrode through the electrostatic capacitance between each detection electrode and the input operation body, Based on the reception level of the AC detection signal detected by each signal detection means for each detection electrode, the relative distance between the input operation body and the arrangement position of each detection electrode is compared to detect the input operation position of the input operation body Equipped with input position detection means Characterized in that was.
 検出電極と入力操作体間の静電容量Cmは、検出電極と入力操作体間の距離をd、真空の誘電率をε、空気の比誘電率εを約1、入力操作体と検出電極の対向面積をsとして、 The electrostatic capacitance Cm between the detection electrode and the input operation body is d between the detection electrode and the input operation body, the dielectric constant of vacuum is ε 0 , the relative permittivity of air ε is about 1, the input operation body and the detection electrode Let s be the opposing area of
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
で表され、静電容量Cmに比例する交流検出信号の受信レベルViは、検出電極と入力操作体間の距離dに反比例する。 The reception level Vi of the alternating current detection signal which is represented by the equation and is proportional to the capacitance Cm is inversely proportional to the distance d between the detection electrode and the input operation body.
 入力位置検出手段は、信号検出手段が各検出電極毎に検出した交流検出信号の受信レベルViを比較することにより、各検出電極と入力操作体間の距離が得られる。 The input position detection means compares the reception level Vi of the alternating current detection signal detected by the signal detection means for each detection electrode to obtain the distance between each detection electrode and the input operation body.
 交流検出信号の出力レベルVsと、入力操作位置の検出方向に沿って配置される一対の検出電極間の検出方向の距離Lと、一対の各検出電極に表れる交流検出信号の受信レベルV0、V1が得られれば、検出方向に沿った入力操作位置と、検出方向に直交する方向の入力操作位置を検出でき、互いに直交するXY方向にそれぞれ一対の検出電極を配置すれば、XY方向とXY平面に直交するZ方向の3次元の入力操作位置を検出できる。 The output level Vs of the alternating current detection signal, the distance L in the detection direction between the pair of detection electrodes disposed along the detection direction of the input operation position, and the reception levels V0 and V1 of the alternating current detection signals appearing on the pair of respective detection electrodes If it is obtained, the input operation position along the detection direction and the input operation position in the direction orthogonal to the detection direction can be detected, and if a pair of detection electrodes are arranged in the XY directions orthogonal to each other, the XY direction and the XY plane It is possible to detect a three-dimensional input operation position in the Z direction orthogonal to.
 請求項4の静電容量式タッチパネルは、それぞれ細長帯状に形成された一組の検出電極X0と検出電極X1が、絶縁ケースに形成された窓孔のX方向で対向する内縁に沿って配置され、入力位置検出手段は、検出電極X0と検出電極X1から検出した交流検出信号の受信レベルをもとに入力操作体とX方向で対向する内縁との相対距離を比較し、窓孔の開口面を入力操作面とするX方向の入力操作位置xを検出することを特徴とする。 In the electrostatic capacitance type touch panel according to claim 4, a pair of detection electrodes X0 and detection electrodes X1 formed in an elongated strip shape are disposed along the inner edges of the window holes formed in the insulating case facing each other in the X direction. The input position detection means compares the relative distance between the input operation body and the inner edge facing in the X direction based on the reception level of the alternating current detection signal detected from the detection electrode X0 and the detection electrode X1. To detect an input operation position x in the X direction with the input operation surface.
 細長帯状に形成された一組の検出電極X0と検出電極X1が、絶縁ケースに形成された窓孔のX方向で対向する内縁に沿って配置されるので、検出電極X0と検出電極X1が両側に配置された窓孔の平面への入力操作では、入力操作位置は、X方向で検出電極X0と検出電極X1を結ぶ直線上に位置する。 Since a pair of detection electrodes X0 and detection electrodes X1 formed in an elongated strip shape are disposed along the inner edges facing in the X direction of the window holes formed in the insulating case, both detection electrodes X0 and detection electrodes X1 are on both sides In the input operation to the plane of the window hole arranged in the, the input operation position is located on the straight line connecting the detection electrode X0 and the detection electrode X1 in the X direction.
 窓孔のX方向で対向する検出電極X0と検出電極X1間の距離をLx、検出電極X0の受信レベルをVx0、検出電極X1の受信レベルをVx1、検出電極と入力操作体間の距離dに反比例する受信レベルVx1の比例定数をk、とすると、一組の検出電極X0と検出電極X1が対向する窓孔内の入力操作面へ入力操作を行ったときの検出電極X0から検出電極X1に向かうX方向の入力操作位置xは、 The distance between the detection electrode X0 and the detection electrode X1 facing in the X direction of the window hole is Lx, the reception level of the detection electrode X0 is Vx0, the reception level of the detection electrode X1 is Vx1, the distance d between the detection electrode and the input operator Assuming that the proportional constant of the reception level Vx1 that is inversely proportional to is k, from the detection electrode X0 to the detection electrode X1 when the input operation is performed on the input operation surface in the window hole in which the pair of detection electrodes X0 and detection electrodes X1 face each other The input operation position x in the X direction is
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
で表され、入力位置検出手段は、既知の距離Lxと、信号検出手段が検出した受信レベルVx0、Vx1とから、X方向の入力操作位置xを検出する。 The input position detection unit detects the input operation position x in the X direction from the known distance Lx and the reception levels Vx0 and Vx1 detected by the signal detection unit.
 請求項5の静電容量式タッチパネルは、それぞれ細長帯状に形成された一組の検出電極Y0と検出電極Y1が、X方向に直交する窓孔のY方向で対向する内縁に沿って配置され、入力位置検出手段は、検出電極Y0と検出電極Y1から検出した交流検出信号の受信レベルをもとに入力操作体とY方向で対向する内縁との相対距離を比較し、窓孔の開口面を入力操作面とするY方向の入力操作位置yを検出することを特徴とする。 In the capacitive touch panel according to claim 5, a pair of detection electrodes Y0 and detection electrodes Y1 formed in a strip shape respectively are disposed along the inner edges of the window holes orthogonal to the X direction in the Y direction, The input position detection means compares the relative distance between the input operating body and the inner edge facing in the Y direction based on the reception level of the AC detection signal detected from the detection electrode Y0 and the detection electrode Y1, and An input operation position y in the Y direction, which is an input operation surface, is detected.
 細長帯状に形成された一組の検出電極Y0と検出電極Y1が、絶縁ケースに形成された窓孔のY方向で対向する内縁に沿って配置されるので、検出電極Y0と検出電極Y1が両側に配置された窓孔の平面への入力操作では、入力操作位置は、Y方向で検出電極Y0と検出電極Y1を結ぶ直線上に位置する。 Since a pair of detection electrodes Y0 and detection electrodes Y1 formed in an elongated strip shape are disposed along the inner edges facing in the Y direction of the window holes formed in the insulating case, both detection electrodes Y0 and detection electrodes Y1 are on both sides. In the input operation to the plane of the window hole arranged in the above, the input operation position is located on the straight line connecting the detection electrode Y0 and the detection electrode Y1 in the Y direction.
 窓孔のY方向で対向する検出電極Y0と検出電極Y1間の距離をLy、検出電極Y0の受信レベルをVy0、検出電極Y1の受信レベルをVy1、検出電極と入力操作体間の距離dに反比例する受信レベルVy1の比例定数をk、とすると、一組の検出電極Y0と検出電極Y1が対向する窓孔内の入力操作面へ入力操作を行ったときの検出電極Y0から検出電極Y1に向かうY方向の入力操作位置yは、 The distance between the detection electrode Y0 and the detection electrode Y1 facing in the Y direction of the window hole is Ly, the reception level of the detection electrode Y0 is Vy0, the reception level of the detection electrode Y1 is Vy1, and the distance d between the detection electrode and the input operator Assuming that the proportional constant of the reception level Vy1 is inversely proportional to k, from the detection electrode Y0 to the detection electrode Y1 when the input operation is performed on the input operation surface in the window hole in which the pair of detection electrodes Y0 and the detection electrode Y1 face each other. The input operation position y in the Y-direction is
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
で表され、入力位置検出手段は、既知の距離Lyと、信号検出手段が検出した受信レベルVy0、Vy1とから、Y方向の入力操作位置yを検出する。 The input position detection means detects the input operation position y in the Y direction from the known distance Ly and the reception levels Vy0 and Vy1 detected by the signal detection means.
 請求項9の静電容量式タッチパネルは、窓孔が矩形状に形成され、窓孔で対向する一組の検出電極の一方を基準検出電極、他方を対向検出電極とし、入力位置検出手段は、前記一組の検出電極間の対向方向の距離L、前記一組の検出電極と入力操作体間の交流検出信号の出力レベルVsと、前記基準検出電極と前記対向検出電極から検出した交流検出信号の受信レベルV0、V1とから、前記基準検出電極から前記対向検出電極に向かう対向方向の入力操作位置rを検出するとともに、前記窓孔の平面に直交するZ方向の入力操作位置zを検出することを特徴とする。 In the capacitive touch panel according to claim 9, the window hole is formed in a rectangular shape, one of the pair of detection electrodes opposed by the window hole is a reference detection electrode, the other is an opposite detection electrode, and the input position detection means The distance L in the opposite direction between the pair of detection electrodes, the output level Vs of the alternating current detection signal between the pair of detection electrodes and the input operation body, and the alternating current detection signal detected from the reference detection electrode and the opposite detection electrode The input operation position r in the opposite direction from the reference detection electrode to the opposite detection electrode is detected from the reception levels V0 and V1, and the input operation position z in the Z direction orthogonal to the plane of the window is detected. It is characterized by
 対抗方向に沿った基準検出電極と入力操作位置間の距離をrとすれば、 Assuming that the distance between the reference detection electrode and the input operation position along the opposite direction is r,
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
の2式から、検出方向の入力操作位置rとZ方向の入力操作位置zが得られる。 From the equation (2), the input operation position r in the detection direction and the input operation position z in the Z direction are obtained.
 請求項12の静電容量式タッチパネルは、それぞれ細長帯状に形成された複数の分割検出電極が、X方向若しくはY方向に平行な前記窓孔の内縁に沿って互いに絶縁して配置され、入力位置検出手段は、前記各分割検出電極から検出した交流検出信号の受信レベルを比較し、最大の受信レベルが検出された前記分割検出電極の配置位置から、前記分割検出電極の配置方向に沿ったX方向若しくはY方向の入力操作位置を検出することを特徴とする。 In the capacitive touch panel according to claim 12, a plurality of divided detection electrodes each formed in an elongated strip shape are disposed so as to be mutually insulated along the inner edge of the window hole parallel to the X direction or the Y direction. The detection means compares the reception levels of the alternating current detection signals detected from the divided detection electrodes, and X along the arrangement direction of the divided detection electrodes from the arrangement position of the divided detection electrodes at which the maximum reception level is detected. The input operation position in the direction or Y direction is detected.
 入力操作体に最も接近した分割検出電極と入力操作体間の静電容量Cmが他の分割検出電極に比べて最大となるので、交流検出信号の最大の受信レベルが検出される。従って、窓孔の内縁に沿って一方向に配列する検出電極のみで、配列方向の入力操作位置を検出できる。 Since the capacitance Cm between the divided detection electrode closest to the input operation body and the input operation body is maximum as compared with the other divided detection electrodes, the maximum reception level of the AC detection signal is detected. Therefore, the input operation position in the arrangement direction can be detected only by the detection electrodes arranged in one direction along the inner edge of the window hole.
 分割検出電極と窓孔を介して対向する内縁に別の検出電極を配置すれば、配列方向に直交する対向方向の入力操作位置を検出でき、窓孔の対向する一対の内縁に検出電極を配置するだけで、窓孔の開口面を入力操作面とするXY方向の入力操作位置を検出できる。 If another detection electrode is arranged at the inner edge opposed to the divided detection electrode through the window hole, the input operation position in the opposite direction orthogonal to the arrangement direction can be detected, and the detection electrode is arranged at a pair of opposite inner edges of the window hole. Only by this, it is possible to detect the input operation position in the X and Y directions with the opening surface of the window hole as the input operation surface.
 請求項3、請求項7、請求項11、請求項14の静電容量式タッチパネルは、前記窓孔と複数の検出電極の背面側全体を覆う導電層を絶縁ケースの背面側に積層させたことを特徴とする。 In the electrostatic capacitance type touch panel according to claim 3, claim 11, claim 11 and claim 14, a conductive layer covering the entire back side of the window hole and the plurality of detection electrodes is laminated on the back side of the insulating case It is characterized by
 導電層を接地させれば、入力操作体と検出電極の背面側が導電層によって遮蔽されることにより、周囲の配線パターンや電子部品などの導電体による浮遊容量の影響を受けにくく、入力操作体と検出電極間の静電容量を正確に検出できる。 If the conductive layer is grounded, the back side of the input operation body and the detection electrode is shielded by the conductive layer, and therefore, the input operation body is not easily affected by stray capacitance due to a conductor such as a surrounding wiring pattern or an electronic component. Capacitance between detection electrodes can be accurately detected.
 また、導電層の電位を監視し、入力操作体と導電層の接触による電位変動を検出する監視手段を設ければ、入力操作位置の検出と別に導電層に入力操作体を触れる入力操作自体も検出できる。 In addition, if monitoring means is provided to monitor the potential of the conductive layer and detect potential fluctuations due to the contact between the input operating body and the conductive layer, the input operation itself which touches the input operating body to the conductive layer separately from the detection of the input operation position is also It can be detected.
 請求項2、請求項6、請求項8、請求項10、請求項13の静電容量式タッチパネルは、信号検出手段が、前記各検出電極に表れる交流検出信号を交流検出信号の周期より充分に長い時間で積分する積分回路を有し、積分回路の出力レベルを受信レベルとすることを特徴とする。 In the capacitive touch panel according to the second aspect, the sixth aspect, the tenth aspect, and the thirteenth aspect, the signal detection means makes the alternating current detection signal appearing on each of the detection electrodes more than the cycle of the alternating current detection signal. It is characterized in that it has an integration circuit that integrates over a long time, and uses the output level of the integration circuit as a reception level.
 入力操作体と検出電極間の微小な静電容量に応じて検出電極に表れる交流検出信号が、交流検出信号の周期より充分に長い時間で積分されるので、信号検出手段は、拡大させた交流検出信号の受信レベルから入力操作位置を検出できる。 Since the AC detection signal appearing on the detection electrode according to the small capacitance between the input operation body and the detection electrode is integrated in a time sufficiently longer than the cycle of the AC detection signal, the signal detection means The input operation position can be detected from the reception level of the detection signal.
 請求項1の発明によれば、指などの入力操作体を入力操作面へ接近するだけの非接触の入力操作の入力操作位置を検出できる。 According to the first aspect of the present invention, it is possible to detect an input operation position of a non-contact input operation that only causes an input operation body such as a finger to approach the input operation surface.
 また、入力操作面の周囲に限られた数の検出電極を配置するだけで、入力操作面に平行なXY方向の入力操作位置に加え、入力操作面に直交するZ方向の入力操作位置を検出できる。 In addition to the input operation position in the X and Y directions parallel to the input operation surface, the input operation position in the Z direction orthogonal to the input operation surface is detected only by arranging a limited number of detection electrodes around the input operation surface. it can.
 請求項4の発明によれば、絶縁ケースの窓孔の開口面を入力操作面として、入力操作面に透明電極や透明誘電体からなる感触部材を配置することなくX方向の入力操作位置を検出でき、背面側に配置されるディスプレーを透明部材を介在させることなく直接目視できる。 According to the invention of claim 4, the input operation position in the X direction is detected without disposing the touch member made of a transparent electrode or a transparent dielectric on the input operation surface with the opening surface of the window hole of the insulating case as the input operation surface. It is possible to directly view the display disposed on the back side without interposing the transparent member.
 また、入力操作体が接触する透明部材を介在させないので、指などの入力操作体が触れて透明部材が汚れ、ディスプレーが見づらくなるという問題がない。 In addition, since there is no transparent member in contact with the input operation body, there is no problem that the input operation body such as a finger is touched and the transparent member becomes dirty and the display becomes difficult to see.
 請求項5の発明によれば、絶縁ケースの窓孔の開口面を入力操作面として、入力操作面に透明電極や透明誘電体からなる感触部材を配置することなく、入力操作面に沿ったXY方向の入力操作位置を検出でき、背面側に配置されるディスプレーを透明部材を介在させることなく直接目視できる。 According to the invention of claim 5, with the opening surface of the window hole of the insulating case as the input operation surface, the XY along the input operation surface without disposing the touch member made of the transparent electrode or the transparent dielectric on the input operation surface. The position input operation direction can be detected, and the display disposed on the back side can be directly viewed without interposing the transparent member.
 また、4本の細長帯状の検出電極を用いるだけで、窓孔内に指などの入力操作体を挿入させるだけの非接触の入力操作であっても、そのXY方向の二次元の入力操作位置を検出できる。 In addition, even if it is a non-contact input operation for inserting an input operation body such as a finger into the window hole only by using four elongated detection electrodes, a two-dimensional input operation position in the XY direction Can be detected.
 請求項9の発明によれば、絶縁ケースの窓孔を入力操作面として、入力操作面に沿った検出方向の入力操作位置と、入力操作面に直交する方向の入力操作位置を検出できる。 According to the invention of claim 9, the input operation position in the detection direction along the input operation surface and the input operation position in the direction orthogonal to the input operation surface can be detected with the window hole of the insulating case as the input operation surface.
 また、4本の細長帯状の矩形上の窓孔の内縁に沿って配置するだけで、窓孔内に指などの入力操作体を挿入させるだけの非接触の入力操作であっても、その窓孔の平面に沿ったXY方向入力位置と、窓孔の平面に直交するZ方向の入力位置の三次元の入力操作位置を検出できる。従って、経過時間と共にZ方向に変化する入力操作位置から、入力操作面と直交する方向の入力操作自体を検出でき、例えば、入力操作面へ入力操作体を加速して接近させる操作をマウスの左クリック相当する入力操作として認識することができる。 In addition, even if it is a non-contact input operation that inserts an input operation object such as a finger into the window hole simply by arranging along the inner edge of the four elongated rectangular rectangular window holes, the window The three-dimensional input operation position of the XY direction input position along the plane of the hole and the input position in the Z direction orthogonal to the plane of the window can be detected. Therefore, the input operation itself in the direction orthogonal to the input operation surface can be detected from the input operation position changing in the Z direction with the elapsed time. For example, the operation for accelerating the input operation body to approach the input operation surface is It can be recognized as an input operation equivalent to clicking.
 請求項12の発明によれば、窓孔で対向する内縁に沿って一組の検出電極を配置することなく、分割検出電極の配列方向に沿った入力操作位置を検出でき、分割検出電極と窓孔を介して対向する内縁に別の検出電極を配置すれば、窓孔の対向する一対の内縁に検出電極を配置するだけで、窓孔の開口面を入力操作面とするXY方向の入力操作位置を検出できる。 According to the invention of claim 12, the input operation position along the arrangement direction of the divided detection electrodes can be detected without arranging the pair of detection electrodes along the opposing inner edge by the window hole, and the divided detection electrodes and the window If another detection electrode is arranged at the opposing inner edge through the hole, only by arranging the detection electrode at the pair of opposing inner edges of the window, input operation in the X and Y directions with the opening surface of the window as the input operation surface The position can be detected.
 請求項3、請求項7、請求項11、請求項14の発明よれば、導電層を接地することにより、入力操作体と検出電極間の距離に比例して減少する交流検出信号の受信レベルを、周囲の導電体の影響を受けずに、より正確に検出できる。 According to the inventions of claim 3, claim 11, claim 11 and claim 14, by grounding the conductive layer, the reception level of the alternating current detection signal, which decreases in proportion to the distance between the input operating body and the detection electrode, can be obtained. And can be detected more accurately without the influence of surrounding conductors.
 また、導電層の電位を監視する監視手段を設けることにより、導電層に入力操作体を触れる入力操作を検出できる。 In addition, by providing monitoring means for monitoring the potential of the conductive layer, it is possible to detect an input operation in which the input operation body is touched on the conductive layer.
 請求項2、請求項6、請求項8、請求項10、請求項13の発明よれば、入力操作体と検出電極間の30fF程度の微小な静電容量を拡大させた交流検出信号の受信レベルから検出でき、高誘電率の接触部材を介在させることなく、非接触で検出電極に接近する入力操作体との距離を検出できる。 According to the inventions of claim 2, claim 6, claim 8, claim 10, claim 13, the reception level of the alternating current detection signal in which the micro capacitance of about 30 fF between the input operation body and the detection electrode is expanded. It is possible to detect the distance from the input operation body approaching the detection electrode in a non-contact manner without interposing a contact member with a high dielectric constant.
本発明の第1実施の形態に係る静電容量式タッチパネル1の平面図である。It is a top view of electric capacity type touch panel 1 concerning a 1st embodiment of the present invention. 図1のA-A線断面図である。It is the sectional view on the AA line of FIG. 静電容量式タッチパネル1を示すブロック図である。FIG. 2 is a block diagram showing a capacitive touch panel 1; 静電容量式タッチパネル1の電源回路の等価回路図である。FIG. 2 is an equivalent circuit diagram of a power supply circuit of the capacitive touch panel 1; 図3の信号検出回路13と積分処理回路14の詳細を示す回路図である。FIG. 4 is a circuit diagram showing details of a signal detection circuit 13 and an integration processing circuit 14 of FIG. 3; 静電容量式タッチパネル1の信号検出回路部の等価回路図である。FIG. 2 is an equivalent circuit diagram of a signal detection circuit unit of the capacitive touch panel 1; 図5の(a)(b)(c)に示す各部の電圧波形図である。It is a voltage waveform figure of each part shown to (a) (b) (c) of FIG. 本発明の第2実施の形態に係る静電容量式タッチパネル50の平面図である。It is a top view of electric capacity type touch panel 50 concerning a 2nd embodiment of the present invention. 本発明の第3実施の形態に係る静電容量式タッチパネル51の平面図である。It is a top view of electric capacity type touch panel 51 concerning a 3rd embodiment of the present invention. 本発明の第4実施の形態に係る静電容量式タッチパネル52の平面図である。It is a top view of electric capacity type touch panel 52 concerning a 4th embodiment of the present invention.
 以下、本発明の第1実施の形態に係る静電容量式タッチパネル(以下、タッチパネルという)1を、図1乃至図7を用いて説明する。タッチパネル1は、図1に示すように、長方形枠状の絶縁ケース20とすることにより、その内方に横長長方形の窓孔21が形成され、窓孔21の開口面を入力操作体である指30を接近させて入力操作を行う入力操作面21aとしている。窓孔21に隣接する絶縁ケース20の内縁20aは、図2に示すように、窓孔21の中心に向かって下方に傾斜する傾斜面となっていて、互いに直交する4辺の内縁20aの表面に、それぞれX方向で対向する一組の検出電極X0、X1とY方向で対向する一組の検出電極Y0、Y1が一体に取り付けられている。 Hereinafter, a capacitive touch panel (hereinafter referred to as a touch panel) 1 according to a first embodiment of the present invention will be described using FIGS. 1 to 7. The touch panel 1 has a rectangular frame-shaped insulating case 20 as shown in FIG. 1 so that a horizontally long rectangular window hole 21 is formed on the inside, and the opening face of the window hole 21 is a finger as an input operation body An input operation surface 21a is used to make an input operation by bringing 30 closer. The inner edge 20a of the insulating case 20 adjacent to the window hole 21 is an inclined surface which inclines downward toward the center of the window hole 21 as shown in FIG. 2, and the surface of the inner edge 20a of four sides orthogonal to each other In addition, a pair of detection electrodes Y0 and Y1 facing each other in the X direction and a pair of detection electrodes X0 and X1 facing each other in the X direction are integrally attached.
 各検出電極11(X0、X1、Y0、Y1)は、それぞれ細長帯状に形成され、取り付けられる内縁20aに沿ったほぼ全体に配置される。これにより、入力操作面21aのいずれの位置に指30をおいても、指30が全ての検出電極11に対向するようになっている。ここでは、各検出電極11を傾斜する内縁20aに沿って配置することにより、入力操作面21aの上方に指30が配置された際に、指30との対向面積が最大となり、後述する静電容量Cmが小さい値とならないようにしている。 Each of the detection electrodes 11 (X0, X1, Y0, Y1) is formed in a strip shape, and is disposed substantially all along the attached inner edge 20a. Thereby, the finger 30 faces all the detection electrodes 11 regardless of the position of the input operation surface 21 a. Here, by arranging each detection electrode 11 along the inclined inner edge 20a, when the finger 30 is arranged above the input operation surface 21a, the opposing area with the finger 30 is maximized, and the electrostatic described later will be described. The capacitance Cm is prevented from becoming a small value.
 図3に示すように、各検出電極11を含むタッチパネル1を構成する主要回路部品は、2種類の非振動側回路基板2と振動側回路基板3に分けて搭載されている。非振動回路基板2には、接地電位とした低圧基準電源線GNDと高圧基準電源線VCCとからなる基準電源回路4が配線され、低圧基準電源線GNDと高圧基準電源線VCC間に直流電圧Vccを印加するDC電源5が接続されている。これにより、非振動回路基板2に搭載されるインターフェース回路6等の各回路部品を基準電源回路4に接続し、DC電源5の出力電圧Vccにより駆動させている。 As shown in FIG. 3, main circuit components constituting the touch panel 1 including the detection electrodes 11 are separately mounted on two types of non-vibration side circuit boards 2 and vibration side circuit boards 3. A reference power supply circuit 4 consisting of a low voltage reference power supply line GND and a high voltage reference power supply line VCC at the ground potential is wired to the non-oscillating circuit board 2, and a DC voltage Vcc is applied between the low voltage reference power supply line GND and the high voltage reference power supply line VCC. The DC power source 5 for applying the voltage is connected. Thus, each circuit component such as the interface circuit 6 mounted on the non-oscillating circuit board 2 is connected to the reference power supply circuit 4 and driven by the output voltage Vcc of the DC power supply 5.
 また、振動側回路基板3には、低圧振動電源線SGNDと高圧振動電源線SVCCとからなる振動電源回路7が配線されている。低圧振動電源線SGNDは低圧基準電源線GNDと、高圧振動電源線SVCCは高圧基準電源線VCCと、それぞれコイル8、9を介して接続している。コイル8とコイル9のインダクタンスは、いずれも後述する固有周波数fの交流検出信号SGに対してハイインピーダンスとなる値に設定され、ここでは、同一のインダクタンスLのコイル8、9を用いている。 Further, on the vibration side circuit board 3, a vibration power supply circuit 7 including a low voltage vibration power supply line SGND and a high voltage vibration power supply line SVCC is wired. The low voltage oscillating power supply line SGND is connected to the low voltage reference power supply line GND, and the high voltage oscillating power supply line SVCC is connected to the high voltage reference power supply line VCC via the coils 8 and 9, respectively. The inductances of the coil 8 and the coil 9 are both set to high impedance values with respect to an alternating current detection signal SG of the natural frequency f described later, and in this case, coils 8 and 9 of the same inductance L are used.
 交流検出信号SGの固有周波数fを発信する発信手段となる発振回路15は、振動側回路基板3に搭載され、二股に分岐してそれぞれ直流電圧を遮断するキャパシタンスC’のコンデンサ17、18を介して交流検出信号SGを基準電源回路4の低圧基準電源線GNDと高圧基準電源線VCCに接続している。これにより、図3に示すように、基準電源回路4の低圧基準電源線GNDと高圧基準電源線VCCへ、固有周波数fの交流検出信号SGを同期させて出力すると、基準電源回路4の低圧基準電源線GNDが接地されて安定した電位にあるので、振動電源回路7の低圧振動電源線SGNDと高圧振動電源線SVCCの電位が同期して固有周波数fで変動し、両者間の電圧は、基準電源回路4と同じ直流出力電圧Vccとなる。交流検出信号SGの固有周波数fは、任意に調整することができるが、ここでは、187kHzの固有発振周波数の交流検出信号SGを出力する。 The oscillation circuit 15 serving as a transmission means for transmitting the natural frequency f of the AC detection signal SG is mounted on the vibration-side circuit board 3 and is branched via a bifurcated capacitance C 'via capacitors 17 and 18 for blocking the DC voltage. Thus, the AC detection signal SG is connected to the low voltage reference power supply line GND of the reference power supply circuit 4 and the high voltage reference power supply line VCC. Thus, as shown in FIG. 3, when the AC detection signal SG of the natural frequency f is synchronized and output to the low voltage reference power supply line GND of the reference power supply circuit 4 and the high voltage reference power supply line VCC Since the power supply line GND is grounded and is at a stable potential, the potentials of the low voltage oscillating power supply line SGND and the high voltage oscillating power supply line SVCC of the oscillating power supply circuit 7 are synchronized and fluctuate at the natural frequency f The same DC output voltage Vcc as that of the power supply circuit 4 is obtained. The natural frequency f of the alternating current detection signal SG can be adjusted arbitrarily, but here, an alternating current detection signal SG of a natural oscillation frequency of 187 kHz is output.
 固有周波数fの交流検出信号SGが基準電源回路4と振動電源回路7に流れる場合に、低圧基準電源線GNDと高圧基準電源線VCC間及び低圧振動電源線SGNDと高圧振動電源線SVCC間が近接して配線され、固有周波数fの帯域でこれらの電源線間は短絡しているとみなされ、基準電源回路4と振動電源回路7は、図4の等価回路図で示される。 When AC detection signal SG of natural frequency f flows to reference power supply circuit 4 and oscillating power supply circuit 7, proximity between low voltage reference power supply line GND and high voltage reference power supply line VCC and between low voltage oscillating power supply line SGND and high voltage oscillating power supply line SVCC It is considered that these power supply lines are short-circuited in the band of the natural frequency f, and the reference power supply circuit 4 and the oscillating power supply circuit 7 are shown in the equivalent circuit diagram of FIG.
 図4に示すように、振動電源回路7側の発振回路15の出力と基準電源回路4間には、並列にキャパシタンスC’のコンデンサ17、18が接続されているので、その合成キャパシタンスは、2C’であり、また、基準電源回路4と振動電源回路7間に並列に接続されるコイル8、9の合成インダクタンスは、L/2となる。これらのキャパシタとインダクタは、固有周波数fの交流検出信号SGが流れる閉回路において直列に接続され、交流検出信号SGの振幅(レベル)をVsg、コイル8、9両端の基準電源回路4と振動電源回路7間の電圧をVs、2πfで表される角速度をω(rad/sec)とすれば、 As shown in FIG. 4, capacitors 17 and 18 having a capacitance C 'are connected in parallel between the output of the oscillating circuit 15 on the oscillating power supply 7 side and the reference power supply circuit 4. Therefore, the combined capacitance is 2C The combined inductance of the coils 8 and 9 connected in parallel between the reference power supply circuit 4 and the oscillating power supply circuit 7 is L / 2. These capacitors and inductors are connected in series in a closed circuit in which an alternating current detection signal SG of a natural frequency f flows, and the amplitude (level) of the alternating current detection signal SG is Vsg. Reference power supply circuit 4 at both ends of the coils 8 and 9 and oscillating power supply Assuming that the voltage between the circuits 7 is Vs, and the angular velocity represented by 2πf is ω (rad / sec),
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
で表される。
ここで、図3に示す回路は、ωLC’=1で直列共振し、そのときの周波数fは、
Is represented by
Here, the circuit shown in FIG. 3 performs series resonance at ω 2 LC ′ = 1, and the frequency f 0 at that time is
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
となる。 It becomes.
 つまり、(2)式の関係から得られる共振周波数fを、交流検出信号SGの固有周波数fとすれば、交流検出信号SGのレベルに対して、(1)式から理論上振動電源回路7の電位が無限大で振動し、振動電源回路7に接続する各検出電極11の電位も無限大に振動させることができる。実際のタッチパネル1では、基準電源回路4と振動電源回路7のインダクタンス、浮遊容量などの影響から、(2)式から得る周波数fで共振せず、また、基準電源回路4と振動電源回路7に交流検出信号SGが流れる際のエネルギーロス等により、振動電源回路7は、交流検出信号SGのレベルVsgに対して有限倍率に拡大された振幅Vsで振動する。 That is, assuming that the resonance frequency f 0 obtained from the relation of the equation (2) is the natural frequency f of the alternating current detection signal SG, the vibration power supply circuit 7 is theoretically calculated from the equation (1) with respect to the level of the alternating current detection signal SG. The potential of the detection electrode 11 oscillates at infinity, and the potential of each detection electrode 11 connected to the oscillating power supply circuit 7 can also oscillate at infinity. The actual touch panel 1 does not resonate at the frequency f 0 obtained from the equation (2) due to the influence of the inductances and stray capacitances of the reference power supply circuit 4 and the vibration power supply circuit 7, and the reference power supply circuit 4 and the vibration power supply circuit 7 The vibration power supply circuit 7 vibrates at an amplitude Vs expanded to a finite magnification with respect to the level Vsg of the AC detection signal SG due to an energy loss or the like when the AC detection signal SG flows.
 更に、操作者の指30が触れることのある各検出電極11に大電圧を加えることはできないので、交流検出信号SGの固有周波数fを共振周波数fの近傍で調整し、各検出電極11が相対的に振動する交流検出信号SGの出力レベルVsを任意に設定し、ここでは、出力レベルVsを5Vとしている。 Furthermore, since a large voltage can not be applied to each detection electrode 11 to which the operator's finger 30 may touch, the natural frequency f of the AC detection signal SG is adjusted in the vicinity of the resonance frequency f 0 and each detection electrode 11 The output level Vs of the alternating current detection signal SG oscillating relatively is set arbitrarily, and here, the output level Vs is 5V.
 また、交流検出信号SGの固有周波数fについても、任意の周波数とすることができるが、商用交流電源線の周囲では、入力操作体30が定電位ではなく商用交流電源の周波数のコモンモードノイズが重畳することがあるので、各検出電極11から商用交流電源の周波数と識別して固有周波数fの交流検出信号SGを検出する必要があり、商用交流電源の周波数とその高調波を除く周波数とすることが好ましい。 Also, the natural frequency f of the AC detection signal SG can be set to any frequency, but the common operating noise of the frequency of the commercial AC power is not the constant potential of the input operating body 30 around the commercial AC power supply line. It is necessary to detect the alternating current detection signal SG of the natural frequency f from the detection electrodes 11 by discriminating it from the frequency of the commercial alternating current power source because it may be superimposed, and the frequency of the commercial alternating current power source and its harmonics are excluded. Is preferred.
 上述の各検出電極11は、振動電源回路7の低圧振動電源線SGNDと高圧振動電源線SVCCのいずれかの、ここでは高圧振動電源線SVCCに接続している。全ての各検出電極11が高圧振動電源線SVCCに接続することによって、交流検出信号SGの出力レベルVsで固有周波数fで振動する一方、足下などの一部が接地している操作者の指30の電位は定電位であるので、両者の間には、交流検出信号SGの出力レベルVsの電圧が発生し、指30が接近して指30との静電容量Cmが増大する検出電極11では、検出電極11から指30へ静電容量Cmを介して固有周波数fの交流検出信号SGがあらわれる。これを、固有周波数fで振動する振動電源回路7からみれば、定電位の検出電極11に対して入力操作体である指30が交流検出信号SGの固有周波数fで振動する。 Each of the detection electrodes 11 described above is connected to the high voltage oscillating power supply line SVCC, here, one of the low voltage oscillating power supply line SGND and the high voltage oscillating power supply line SVCC of the oscillating power supply circuit 7. By connecting all the detection electrodes 11 to the high voltage vibration power supply line SVCC, the operator's finger 30 vibrates at the output frequency Vs of the AC detection signal SG at the natural frequency f while part of the foot is grounded. Since the voltage of the output level Vs of the alternating current detection signal SG is generated between the two in the detection electrode 11 where the finger 30 approaches and the capacitance Cm with the finger 30 increases. An alternating current detection signal SG of a natural frequency f appears from the detection electrode 11 to the finger 30 via the capacitance Cm. If this is viewed from the vibration power supply circuit 7 vibrating at the natural frequency f, the finger 30 as the input operation body vibrates at the natural frequency f of the alternating current detection signal SG with respect to the detection electrode 11 of constant potential.
 各検出電極11と入力操作体30間の静電容量Cmは、検出電極と入力操作体間の距離をd、真空の誘電率をε、空気の比誘電率εを約1、入力操作体30と検出電極11の対向面積をsとして、Cm=ε・ε・s/dで表され、この静電容量Cmの交流検出信号に対するリアクタンスXcは、交流検出信号の固有周波数がfであるので、 The capacitance Cm between each detection electrode 11 and the input operating body 30 is d between the distance between the detection electrode and the input operating body, ε 0 for vacuum dielectric constant, approximately 1 for air relative dielectric constant ε, the input operating body the facing area 30 and the detection electrode 11 as s, represented by Cm = ε 0 · ε r · s / d, reactance Xc for the alternating-current detection signal of the electrostatic capacitance Cm is the natural frequency of the alternating-current detection signal at f Because there is
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
から、 From
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
で表される。 Is represented by
 図6は、検出電極11に表れる交流検出信号SGの受信レベルViを検出する信号検出回路部全体の等価回路図であり、図中、Cpは、検出電極11と低圧振動電源線SGND間の浮遊容量、rpは、検出電極11の内部抵抗値、R4は、出力抵抗の抵抗値である。 図中の等価回路図では、 FIG. 6 is an equivalent circuit diagram of the entire signal detection circuit unit for detecting the reception level Vi of the AC detection signal SG appearing on the detection electrode 11. In the figure, Cp represents a floating between the detection electrode 11 and the low voltage oscillating power supply line SGND. The capacitance rp is the internal resistance value of the detection electrode 11, and R4 is the resistance value of the output resistance. In the equivalent circuit diagram in the figure,
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
の関係が成り立ち、(3)式乃至(6)式から、 From the equations (3) to (6),
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
の関係が得られる。 Relationship is obtained.
 内部抵抗rpを0とし、R4がマルチプレクサ12を介して後述する積分用オペアンプA/D25に接続されるので無限大とすれば、(7)式は、 Assuming that the internal resistance rp is 0, and R4 is connected to the integrating operational amplifier A / D 25 described later via the multiplexer 12, if it is infinite, the equation (7) is
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
と置き換えられ、更に
数10pFの浮遊容量Cpに比べて静電容量Cmは数10fFと極めて小さいので、(7)式は、更に
Since the capacitance Cm is extremely small, such as several 10 fF, compared to the stray capacitance Cp of several 10 pF, equation (7) further
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
で表される。 Is represented by
 上述の通り、入力操作体30と検出電極11のCmは、 As described above, Cm of the input operation body 30 and the detection electrode 11 is
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
で表されるので、これを(8)式に代入して変形すれば、 Since it is represented by, if this is substituted in equation (8) and deformed,
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
となり、入力操作中に指30と検出電極11との対向面積sがほぼ変化しないものとして、(9)式中の(ε0・εr・s/Cp)は、定数であるので、これを1/kとおけば、検出電極11に表れる交流検出信号SGの受信レベルViは、 Therefore, assuming that the facing area s of the finger 30 and the detection electrode 11 does not substantially change during the input operation, (ε0 · εr · s / Cp) in the equation (9) is a constant. If k is given, the reception level Vi of the AC detection signal SG appearing on the detection electrode 11 is
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
となり、指30との距離dが近い検出電極11ほど、受信レベルViが交流検出信号SGの出力レベルVsに近づく大きな値となる。ただし、指30が検出電極11に近接し、その間の静電容量Cmが数10pFの浮遊容量Cpに比べて無視できない程度に大きくなった場合には(10)式を適用できず、受信レベルViは最大で出力レベルVsとなる。 Thus, as the detection electrode 11 is closer to the finger 30, the reception level Vi becomes a larger value closer to the output level Vs of the AC detection signal SG. However, when the finger 30 is close to the detection electrode 11 and the electrostatic capacitance Cm between the two is not large enough to be ignored compared to the stray capacitance Cp of several tens pF, the equation (10) can not be applied, and the reception level Vi Becomes the output level Vs at the maximum.
 (10)式を用いれば、複数の各検出電極11に表れる交流検出信号の受信レベルViを比較して、指30と各検出電極11間の距離を比較することができ、本実施の形態では、各検出電極11(X0、X1、Y0、Y1)の配置位置と、各検出電極11(X0、X1、Y0、Y1)の受信レベルViとから、入力操作面21aに平行なXY方向の入力操作位置(x、y)と入力操作面21aに直交するZ方向の入力操作位置zの3次元の入力操作位置を検出する。 By using the equation (10), it is possible to compare the distance between the finger 30 and each detection electrode 11 by comparing the reception levels Vi of the AC detection signals appearing on each of the plurality of detection electrodes 11, and in the present embodiment From the arrangement position of each detection electrode 11 (X0, X1, Y0, Y1) and the reception level Vi of each detection electrode 11 (X0, X1, Y0, Y1), input in the XY direction parallel to the input operation surface 21a A three-dimensional input operation position of the operation position (x, y) and the input operation position z in the Z direction orthogonal to the input operation surface 21a is detected.
 この入力操作位置(x、y、z)を検出するために、図3に示すように、振動側回路基板3には、アナログマルチプレクサ12、信号処理回路13、積分処理回路14、A/Dコンバータ19、MPU(マイクロプロセッサユニット)10及び発振回路15の各回路素子が搭載され、いずれも振動電源回路7の低圧振動電源線SGNDと高圧振動電源線SVCCに接続し、DC電源5から出力電圧Vccを受けて動作している。 In order to detect the input operation position (x, y, z), as shown in FIG. 3, an analog multiplexer 12, a signal processing circuit 13, an integration processing circuit 14, and an A / D converter are provided on the vibration side circuit board 3. 19. Each circuit element of MPU (microprocessor unit) 10 and oscillating circuit 15 is mounted, and connected to low voltage oscillating power supply line SGND and high voltage oscillating power supply line SVCC of oscillating power supply circuit 7, and output voltage Vcc from DC power supply 5 Receiving and operating.
 アナログマルチプレクサ12は、MPU10からの切り替え制御により、一定の周期、ここでは200msec毎に、各検出電極11を信号処理回路13へ切り換え接続し、各検出電極11に表れる交流検出信号SGを順に信号処理回路13へ出力している。 The analog multiplexer 12 switches and connects each detection electrode 11 to the signal processing circuit 13 in a fixed cycle, here every 200 msec, by switching control from the MPU 10, and sequentially processes the AC detection signal SG appearing on each detection electrode 11 It is output to the circuit 13.
 図5に示すように、信号処理回路13は、交流検出信号の固有周波数fを中心とする周波数帯域の信号を通過させる共振回路23と、インピーダンス変換用の増幅回路24と、これらの間に直列に接続される第1アナログスイッチASW1とからなっている。共振回路23は、アナログマルチプレクサ12を介して接続する検出電極11に表れる信号から、直流信号等の低周波成分とコモンモードノイズ等の高周波ノイズをカットし、交流検出信号SGのみを後段の増幅回路24へ出力する。増幅回路24は、入力インピーダンスが無限大に近く、出力インピーダンスが微小値であるインピーダンス変換素子で、検出電極11に表れる微弱な交流検出信号SGであっても、その出力側に接続される積分処理回路14が動作するようにしている。 As shown in FIG. 5, the signal processing circuit 13 includes a resonant circuit 23 for passing a signal in a frequency band centered on the natural frequency f of the AC detection signal, an amplification circuit 24 for impedance conversion, and a series between them. And a first analog switch ASW1 connected to the The resonance circuit 23 cuts low frequency components such as a DC signal and high frequency noise such as common mode noise from the signal appearing on the detection electrode 11 connected via the analog multiplexer 12, and amplifies only the AC detection signal SG in the latter stage amplification circuit Output to 24 The amplification circuit 24 is an impedance conversion element whose input impedance is close to infinity and whose output impedance is a minute value, and is an integration process connected to the output side of even a weak alternating current detection signal SG appearing on the detection electrode 11 The circuit 14 is made to operate.
 第1アナログスイッチASW1は、MPU10により開閉制御され、積分処理回路14が後述する積分動作を行っている積分動作期間(Tint)中に共振回路23と増幅回路24間を接続し、後述するオフセット調整期間(Tset)中に遮断する。これにより、オフセット調整期間(Tset)中に、交流検出信号SGが積分処理回路14に出力されないようにしている。 The first analog switch ASW1 is open / close controlled by the MPU 10, and connects between the resonance circuit 23 and the amplification circuit 24 during an integration operation period (Tint) in which the integration processing circuit 14 performs integration operation described later, and offset adjustment described later Shut off during period (Tset). Thus, the AC detection signal SG is not output to the integration processing circuit 14 during the offset adjustment period (Tset).
 積分処理回路14は、図5に示すように、積分用オペアンプ25と、信号処理回路14の出力と積分用オペアンプ25の反転入力端子間に接続された積分用抵抗R1と、積分用オペアンプ25の反転入力端子と出力端子間に接続された積分用コンデンサC1と、積分用コンデンサC1に並列に接続され、MPU10により開閉制御される第2アナログスイッチASW2を備えている。 As shown in FIG. 5, the integration processing circuit 14 includes an integration operational amplifier 25, an integration resistor R 1 connected between the output of the signal processing circuit 14 and the inverting input terminal of the integration operational amplifier 25, and an integration operational amplifier 25. The integration capacitor C1 connected between the inverting input terminal and the output terminal, and the second analog switch ASW2 connected in parallel to the integration capacitor C1 and whose opening and closing are controlled by the MPU 10 are provided.
 積分用抵抗Rを介して積分用オペアンプ25の反転入力端子に入力される交流検出信号の電圧をVin、積分用オペアンプ25の出力端子から出力される電圧をVout、積分用抵抗R1の抵抗値をR、積分用コンデンサC1の容量をCとすれば、 The voltage of the AC detection signal input to the inverting input terminal of the integrating operational amplifier 25 via the integrating resistor R is Vin, the voltage output from the output terminal of the integrating operational amplifier 25 is Vout, and the resistance value of the integrating resistor R1 If R and the capacity of the integration capacitor C1 are C, then
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
で表され、積分用オペアンプ25の出力端子から入力電圧Vinを積分した電圧Voutが出力される。 The voltage Vout obtained by integrating the input voltage Vin is output from the output terminal of the integration operational amplifier 25.
 第2アナログスイッチASW2は、オフセット調整期間(Tset)開始後のわずかな時間、MPU10により閉じ制御され、積分処理回路14の積分動作期間(Tint)に積分用コンデンサC1に蓄積された電荷を速やかに放電し、その直前の積分動作期間(Tint)に積分用コンデンサCに充電された充電電圧が、後述する積分処理回路14のオフセット調整期間(Tset)のオフセット動作に影響しないようにしている。 The second analog switch ASW2 is closed by the MPU 10 for a short time after the start of the offset adjustment period (Tset), and charges accumulated in the integration capacitor C1 quickly during the integration operation period (Tint) of the integration processing circuit 14 The charging voltage which is discharged and charged in the integration capacitor C in the integration operation period (Tint) immediately before the discharge operation does not affect the offset operation of the offset adjustment period (Tset) of the integration processing circuit 14 described later.
 この積分用オペアンプ25の反転入力端子と非反転入力端子間には、積分用オペアンプ25のオフセット電圧やその他の要因による直流成分の誤差があり、これらを合わせた誤差電圧をオフセット電圧Δvで表すと、(11)式は、 There is an error of the DC component due to the offset voltage of the integrating operational amplifier 25 and other factors between the inverting input terminal and the noninverting input terminal of the integrating operational amplifier 25, and an error voltage obtained by combining these is represented by an offset voltage Δv. , (11),
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
で表され、オフセット電圧Δvは直流成分であるので、(12)式は、 Since the offset voltage Δv is a direct current component, equation (12) is
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
で表され、時間tの経過と共に、出力電圧Vout中のオフセット電圧Δvによる誤差が拡大する。 The error due to the offset voltage Δv in the output voltage Vout increases with the passage of time t.
 そこで、本実施の形態では、上記オフセット電圧Δvによる影響を実質的に解消させる目的で積分処理回路14に更にフィードバック回路部を設けている。このフィードバック回路部は、図5に示すように、帰還用オペアンプ26と、帰還用オペアンプ26の出力と積分用オペアンプ25の非反転入力端子間に接続された第3アナログスイッチASW3と、第3アナログスイッチASW3と積分用オペアンプ25の非反転入力端子間に接続され、帰還用オペアンプ26の出力電圧で充電されるホールド用コンデンサ27とから構成される。 Therefore, in the present embodiment, the integration processing circuit 14 is further provided with a feedback circuit unit in order to substantially eliminate the influence of the offset voltage Δv. As shown in FIG. 5, this feedback circuit section includes a feedback operational amplifier 26, a third analog switch ASW3 connected between the output of the feedback operational amplifier 26 and the noninverting input terminal of the integration operational amplifier 25, and a third analog It is connected between the switch ASW3 and the non-inversion input terminal of the integrating operational amplifier 25 and comprises a holding capacitor 27 charged with the output voltage of the feedback operational amplifier 26.
 帰還用オペアンプ26の反転入力端子は、抵抗R2を介して積分用オペアンプ25の出力に接続され、非反転入力端子は、積分用抵抗R1の入力側に接続している。帰還用オペアンプ26の反転入力端子と出力端子間に接続された抵抗R3と抵抗R2の抵抗値は等しく、従って、帰還用オペアンプ26は、第3アナログスイッチASW3が閉じ制御されている間、積分用オペアンプ25の反転入力端子に入力される入力電圧Vinを基準電位とし、入力電圧Vinに対する積分用オペアンプ25の出力電圧Voutの差分をゲイン-1で増幅し積分用オペアンプ25の非反転入力端子へ帰還するように作用する。 The inverting input terminal of the feedback operational amplifier 26 is connected to the output of the integrating operational amplifier 25 via the resistor R2, and the non-inverting input terminal is connected to the input side of the integrating resistor R1. The resistances of the resistors R3 and R2 connected between the inverting input terminal and the output terminal of the feedback operational amplifier 26 are equal, so that the feedback operational amplifier 26 is used for integration while the third analog switch ASW3 is closed and controlled. The input voltage Vin input to the inverting input terminal of the operational amplifier 25 is used as a reference potential, and the difference between the output voltage Vout of the integrating operational amplifier 25 with respect to the input voltage Vin is amplified by gain -1 and fed back to the noninverting input terminal of the integrating operational amplifier 25 Act as you do.
 MPU10により制御されるオフセット調整期間(Tset)中に、第3アナログスイッチASW3が閉じ制御されるとともに、積分用抵抗R1の入力と各検出電極11とは開制御される第1アナログスイッチASW1により遮断されるので、積分用抵抗R1の入力側には、交流検出信号SGが入力されることなく、積分用オペアンプ25の反転入力端子の電位は、一定の入力電圧Vinに保たれる。 During the offset adjustment period (Tset) controlled by the MPU 10, the third analog switch ASW3 is closed and the input of the integration resistor R1 and each detection electrode 11 are cut off by the first analog switch ASW1 which is open controlled Thus, the potential of the inverting input terminal of the integrating operational amplifier 25 is maintained at a constant input voltage Vin without the AC detection signal SG being input to the input side of the integrating resistor R1.
 積分用オペアンプ25の非反転入力端子に対して反転入力端子に上記オフセット電圧Δvが生じているものとすると、Δt後にその積分値-(Vin+Δv)・Δt/CRが出力されるが、帰還用オペアンプ26により、積分用オペアンプ25の非反転入力端子にVin+(Vin+Δv)・Δt/CRが入力され、Δt/CRが1より充分に小さいので、これを繰り返すことにより、積分用オペアンプ25の出力はオフセット電圧Δvに収束して安定する。この状態で、積分用オペアンプ25の反転入力端子にオフセット電圧Δvを加えた電位は、非反転入力端子の電位に等しくなり、ホールド用コンデンサ27には、オフセット電圧Δvの影響を含めて非反転入力端子と反転入力端子間の差電圧を0とする補正電圧が充電される。従って、オフセット調整期間(Tset)は、積分用オペアンプ25の出力Voutがオフセット電圧Δvに達して安定する充分な時間に設定し、ホールド用コンデンサ27は、積分用オペアンプ25の出力Voutが安定した際には飽和するキャパシタのコンデンサを用いる。 Assuming that the offset voltage Δv is generated at the inverting input terminal with respect to the non-inverting input terminal of the integrating operational amplifier 25, the integral value − (Vin + Δv) · Δt / CR is output after Δt, but the feedback operational amplifier Since Vin + (Vin + Δv) · Δt / CR is input to the non-inverted input terminal of the integrating operational amplifier 25 and Δt / CR is sufficiently smaller than 1, the output of the integrating operational amplifier 25 is offset by repeating this. It converges to the voltage Δv and becomes stable. In this state, the potential obtained by adding the offset voltage Δv to the inverting input terminal of the integrating operational amplifier 25 becomes equal to the potential of the noninverting input terminal, and the holding capacitor 27 includes the noninverting input including the effect of the offset voltage Δv. A correction voltage is charged so that the differential voltage between the terminal and the inverting input terminal is zero. Therefore, the offset adjustment period (Tset) is set to a time sufficient for the output Vout of the integrating operational amplifier 25 to reach and stabilize the offset voltage Δv, and the holding capacitor 27 is used when the output Vout of the integrating operational amplifier 25 is stabilized. The capacitor of the capacitor which saturates is used for.
 オフセット調整期間(Tset)の経過後、MPU10は、第1アナログスイッチASW1を閉じ制御すると共に、第3アナログスイッチASW3を開制御して、積分動作期間(Tint)に移行する。積分動作期間(Tint)では、第1アナログスイッチASW1を閉じ制御されることにより、アナログマルチプレクサ12で選択接続した検出電極11に表れる交流検出信号SGが積分用抵抗R1を介して積分用オペアンプ25の反転入力端子に入力される。また、第3アナログスイッチASW3が開制御されるので、オフセット調整期間(Tset)中に、ホールド用コンデンサ27に充電された上記補正電圧が積分用オペアンプ25の非反転入力端子に入力され、オフセット電圧Δvを含めた積分用オペアンプ25の非反転入力端子と交流検出信号SGを除いた反転入力端子間の差電圧が0となり、積分用オペアンプ25の出力Voutに(13)式に示すオフセット電圧Δvを積分した誤差-Δv・t/CRが含まれない。 After the offset adjustment period (Tset) has elapsed, the MPU 10 controls to close the first analog switch ASW1 and opens the third analog switch ASW3 to shift to an integration operation period (Tint). During the integration operation period (Tint), by controlling the first analog switch ASW1 to be closed, the AC detection signal SG appearing on the detection electrode 11 selected and connected by the analog multiplexer 12 is integrated via the integration resistor R1. It is input to the inverting input terminal. Further, since the third analog switch ASW3 is controlled to be opened, the correction voltage charged in the hold capacitor 27 is input to the non-inversion input terminal of the integration operational amplifier 25 during the offset adjustment period (Tset), and the offset voltage is The differential voltage between the noninverting input terminal of the integrating operational amplifier 25 including Δv and the inverting input terminal excluding the AC detection signal SG becomes 0, and the offset voltage Δv shown in equation (13) is output to the output Vout of the integrating operational amplifier 25. It does not include the integrated error -Δv · t / CR.
 その結果、微小な交流検出信号SGの電圧Vinのみが積分して拡大され、積分用オペアンプ25の出力Voutとして表れる。MPU10は、積分動作期間(Tint)の開始時から各積分動作期間(Tint)で同一の時間経過後であって、積分動作期間(Tint)が終了する直前の判定時t1に、判定時t1の出力Voutを後段に接続されたA/Dコンバータ19へ出力する。積分動作期間(Tint)は、CRで定まる積分用コンデンサC1の飽和時間より充分に短く、かつ交流検出信号SGの電圧Vinを、判定時t1にその積分値である積分用オペアンプ25の出力Voutから判別可能な期間に設定する。 As a result, only the voltage Vin of the minute AC detection signal SG is integrated and expanded, and appears as the output Vout of the integration operational amplifier 25. The MPU 10 is at the determination time t1 at the determination time t1 immediately before the end of the integration operation period (Tint) after the same time elapses in each integration operation period (Tint) from the start of the integration operation period (Tint). The output Vout is output to the A / D converter 19 connected to the subsequent stage. The integration operation period (Tint) is sufficiently shorter than the saturation time of the integration capacitor C1 determined by CR, and the voltage Vin of the AC detection signal SG is determined from the output Vout of the integration operational amplifier 25 which is its integral value at t1. Set to a distinguishable period.
 A/Dコンバータ19は、判定時t1の積分用オペアンプ25の出力Voutを量子化してMPU10へ出力する。 The A / D converter 19 quantizes the output Vout of the integration operational amplifier 25 at t1 and outputs the result to the MPU 10.
 A/Dコンバータ19から出力される量子化データは、その積分動作期間(Tint)中にアナログマルチプレクサ12が選択接続した各検出電極11に表れる交流検出信号SGの受信レベルViを表し、入力位置検出手段として作用するMPU10は、各検出電極11に表れる交流検出信号SGの受信レベルViから、指30の入力操作位置を検出する。交流検出信号SGの受信レベルViが信号処理回路13と積分回路14を通して量子化データが受信レベルViのn倍に増幅されている場合には、MPU10は、A/Dコンバータ19から出力される量子化データを1/nとした受信レベルViから入力操作位置を算出する。 The quantization data output from the A / D converter 19 represents the reception level Vi of the AC detection signal SG appearing on each detection electrode 11 selected and connected to the analog multiplexer 12 during the integration operation period (Tint), and the input position detection The MPU 10 acting as a means detects the input operation position of the finger 30 from the reception level Vi of the AC detection signal SG appearing on each detection electrode 11. When the reception level Vi of the AC detection signal SG is amplified to n times the reception level Vi through the signal processing circuit 13 and the integration circuit 14, the MPU 10 outputs the quantum output from the A / D converter 19. The input operation position is calculated from the reception level Vi where the conversion data is 1 / n.
 検出電極X0、X1をアナログマルチプレクサ12が接続した際に、A/Dコンバータ19から出力される交流検出信号SGの受信レベルViをそれぞれVx0、Vx1、X方向で対向する一組の検出電極X0、X1間の距離をLxとし、指30が図2に示す入力操作位置P(x、z)にあったとすると、(10)式から、
 検出電極X0について、
When the detection electrodes X0 and X1 are connected to the analog multiplexer 12, the reception level Vi of the AC detection signal SG output from the A / D converter 19 is Vx0, Vx1, and a pair of detection electrodes X0 facing in the X direction. Assuming that the distance between X1 is Lx and the finger 30 is at the input operation position P (x, z) shown in FIG.
About the detection electrode X0
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
と、検出電極X1について、 And the detection electrode X1,
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
が成り立ち、k、Lx、Vsが既知の値であるので、検出したVx0、Vx1を(14)式と(15)式に代入して、Lx-x、zが負ではないとの条件から、
検出電極X0からX方向の位置xと、入力操作面21aに直交するZ方向の位置zが得られる。
Since k, Lx, and Vs are known values, substituting the detected Vx0 and Vx1 into the equations (14) and (15), the condition that Lx−x, z is not negative,
The position x in the X direction from the detection electrode X0 and the position z in the Z direction orthogonal to the input operation surface 21a are obtained.
 交流検出信号SGの出力レベルVsの検出が困難である場合には、例えば、検出電極X0の入力操作位置(x(0)、z(0))で検出電極X1についての交流検出信号SGの受信レベルVx1(0、0)を検出し、(10)式に代入し、 When it is difficult to detect the output level Vs of the AC detection signal SG, for example, reception of the AC detection signal SG for the detection electrode X1 at the input operation position (x (0), z (0)) of the detection electrode X0 Detect the level Vx1 (0, 0) and substitute it into the equation (10),
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
から得てもよい。 It may be obtained from
 同様に、Y方向についても、検出電極Y0、Y1をアナログマルチプレクサ12が接続した際に、A/Dコンバータ19から出力される交流検出信号SGの受信レベルViをそれぞれVy0、Vy1、Y方向で対向する一組の検出電極Y0、Y1間の距離をLyとし、指30が入力操作位置P(y、z)にあったとすると、(10)式から、
 検出電極Y0について、
Similarly, in the Y direction, when the detection electrodes Y0 and Y1 are connected to the analog multiplexer 12, the reception level Vi of the AC detection signal SG output from the A / D converter 19 is opposite in the Vy0, Vy1, and Y directions, respectively. Assuming that the distance between the pair of detection electrodes Y0 and Y1 to be set is Ly and the finger 30 is at the input operation position P (y, z), from Expression (10),
About the detection electrode Y0
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
と、検出電極Y1について、 And the detection electrode Y1,
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
 が成り立ち、検出したVy0、Vy1を(16)式と(17)式に代入して、Ly-y、zが負ではないとの条件から、
検出電極Y0からY方向の位置yと、入力操作面21aに直交するZ方向の位置zが得られる。
From the condition that Ly-y, z is not negative, substituting the detected Vy0, Vy1 into the equations (16) and (17).
The position y in the Y direction from the detection electrode Y0 and the position z in the Z direction orthogonal to the input operation surface 21a are obtained.
 各検出電極X0、X1、Y0、Y1は、それぞれ矩形状の窓孔21の内縁の各辺全体に渡って配置されているので、少なくとも入力操作面21aの鉛直方向のいずれかを入力操作した指30は、X方向で検出電極X0、X1と、Y方向で検出電極Y0、Y1と対向し、(14)式乃至(17)式から、指30の三次元の入力操作位置(x、y、z)を検出できる。 Each of the detection electrodes X0, X1, Y0, Y1 is disposed over the entire side of the inner edge of the rectangular window hole 21. Therefore, the finger on which at least one of the input operation surface 21a in the vertical direction is input operated 30 face the detection electrodes X0 and X1 in the X direction and the detection electrodes Y0 and Y1 in the Y direction, and from the expressions (14) to (17), the three-dimensional input operation position (x, y, z) can be detected.
 特に、入力操作面21aへの入力操作に限り、二次元の入力操作位置(x、y)を検出するタッチパネル1とする場合には、X方向について、z=0とした(14)式と(15)式から、出力レベルVsを消去すれば、0≦x≦Lxから In particular, in the case of using the touch panel 1 for detecting a two-dimensional input operation position (x, y) only for the input operation on the input operation surface 21a, the equation (14) and z 15), if the output level Vs is eliminated, 0 ≦ x ≦ Lx
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
が得られ、(18)式をxについて解けば、 , And solving equation (18) for x,
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000029
となる。 It becomes.
 同様に、Y方向についても、(16)式、(17)式から、 Similarly, for the Y direction, from Eqs. (16) and (17),
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000030
が得られ、Vx0、Vx1、Vy0、Vy1から入力操作面21a上のXY方向の入力位置(x、y)が容易に得られる。 The input positions (x, y) in the X and Y directions on the input operation surface 21a can be easily obtained from Vx0, Vx1, Vy0 and Vy1.
 MPU10で検出した入力操作位置(x、y、z)を含む入力操作データは、直流が絶縁された信号線16を介して、非振動回路基板2に搭載されるインターフェース回路6に出力され、インターフェース回路6からUSB通信、IC通信等で入力操作データを利用する上位機器に出力される。 Input operation data including the input operation position (x, y, z) detected by the MPU 10 is output to the interface circuit 6 mounted on the non-oscillating circuit board 2 through the signal line 16 in which the direct current is isolated It is output from the circuit 6 to a host device using input operation data by USB communication, I 2 C communication or the like.
 以下、このように構成されたタッチパネル1により、指30の入力操作位置(x、y、z)を検出する動作を説明する。入力操作体である指30を検出電極11から10cm離れた位置へ入力操作を行ったとしたときの指30と検出電極11間の静電容量Cmは、指30と検出電極11との対向面積sを5・10-4(m)、真空の誘電率ε0を、8.854・10-12(F/m)、空気の比誘電率εを約1として、約44.27・10-15Fすなわち、44.27fFと極めて微小な値となる。 Hereinafter, an operation of detecting the input operation position (x, y, z) of the finger 30 by the touch panel 1 configured as described above will be described. The electrostatic capacitance Cm between the finger 30 and the detection electrode 11 when the input operation is performed at a position 10 cm away from the detection electrode 11 as the input operation body is the facing area s between the finger 30 and the detection electrode 11 the 5 · 10 -4 (m 2) , a dielectric constant ε0 of vacuum, 8.854 · 10 -12 (F / m), as about 1 ε dielectric constant of air, about 44.27 · 10 -15 The value F is extremely small, ie 44.27 fF.
 このとき、検出電極11に表れる交流検出信号SGの受信レベルViは、(10)式において、比例定数kは、Cp/(ε0・εr・s)から、浮遊容量Cpを50pFとして1.13・10であるので、交流検出信号SGの出力レベルVsを5V、dを10-1とすして、4.4mV程度であり、積分処理回路14においてこれを拡大して、距離dを求める。 At this time, the reception level Vi of the alternating current detection signal SG appearing on the detection electrode 11 is 1.13, where the proportional constant k is Cp / (ε0 · εr · s) and the stray capacitance Cp is 50 pF in the equation (10). since 10 4, the output level Vs of the AC detection signal SG 5V, and to the the 10 -1 d, it is about 4.4MV, expanding this in integral processing circuit 14 calculates the distance d.
 入力操作位置を検出する間、MPU19は、図6に示す約200msecの周期でアナログマルチプレクサ12の接続を切り換え制御し、検出電極X0、X1、Y0、Y1の順に各検出電極11を信号処理回路13へ接続し、全ての検出電極X0、X1、Y0、Y1を切り換え接続する一周期を繰り返す。各検出電極11毎に信号処理回路13へ接続する一期間は、オフセット調整期間Tsetと積分動作期間Tintとからなり、MPU19は、上述の通り、オフセット調整期間Tsetの開始直後から一定期間、第2アナログスイッチASW2を閉じ制御し、その直前の積分動作期間Tint中に積分用コンデンサC1に蓄積された電荷を放電させる。 While detecting the input operation position, the MPU 19 switches and controls the connection of the analog multiplexer 12 in a cycle of about 200 msec shown in FIG. 6, and detects each detection electrode 11 in the order of detection electrodes X0, X1, Y0, Y1. , And one cycle of switching and connecting all the detection electrodes X0, X1, Y0, Y1 is repeated. One period connected to the signal processing circuit 13 for each detection electrode 11 includes the offset adjustment period Tset and the integration operation period Tint, and the MPU 19 performs the second period for a predetermined period immediately after the start of the offset adjustment period Tset as described above. The analog switch ASW2 is closed, and the charge accumulated in the integration capacitor C1 is discharged during the integration operation period Tint immediately before that.
 オフセット調整期間Tset中は、第1アナログスイッチASW1が開制御、第3アナログスイッチASW3が閉じ制御され、これにより、積分用オペアンプ25の出力電圧Vo・・(c)は、ASW1が開制御され一定の基準電圧となる反転入力端子の入力電圧(a)とオフセット電圧Δvの電位差での電位に収束して安定し、一定電圧に安定したオフセット調整期間Tsetの終了時には、積分用オペアンプ25のオフセット電圧Δvを相殺する充電電圧がホールド用コンデンサ27に充電される。 During the offset adjustment period Tset, the first analog switch ASW1 is controlled to open and the third analog switch ASW3 is closed, whereby the output voltage Vo ·· (c) of the integration operational amplifier 25 is controlled to open ASW1 and is constant. Offset voltage of the integration operational amplifier 25 at the end of the offset adjustment period Tset, which converges and stabilizes on the potential at the potential difference between the input voltage (a) of the inverting input terminal and the offset voltage Δv. A charge voltage that cancels Δv is charged to hold capacitor 27.
 続いて、MPU19は、第1アナログスイッチASW1を閉じ制御、第3アナログスイッチASW3を開制御し、積分動作期間Tintに移行させる。第1アナログスイッチASW1を閉じ制御されることにより、その期間内にアナログマルチプレクサ12を介して接続された検出電極11に表れる交流検出信号SGが信号処理回路13から積分処理回路14へ入力される。また、第3アナログスイッチASW3が開制御されることにより、積分用オペアンプ25の非反転入力端子から、帰還用オペアンプ26の出力が切り離されると共に、ホールド用コンデンサ27の充電電圧が加わり、積分用オペアンプ25の非反転入力端子にオフセット電圧Δvを相殺する充電電圧が加わる。 Subsequently, the MPU 19 performs control to close the first analog switch ASW1 and control to open the third analog switch ASW3 to shift to the integration operation period Tint. By controlling the first analog switch ASW1 to be closed, an AC detection signal SG that appears on the detection electrode 11 connected via the analog multiplexer 12 in that period is input from the signal processing circuit 13 to the integration processing circuit 14. Further, the third analog switch ASW3 is controlled to be opened, whereby the output of the feedback operational amplifier 26 is disconnected from the non-inverting input terminal of the integrating operational amplifier 25 and the charging voltage of the hold capacitor 27 is added. A charge voltage that cancels the offset voltage Δv is applied to the 25 non-inverting input terminals.
 図7に示すように、積分動作期間Tint中は、積分用オペアンプ25の非反転入力端子にホールド用コンデンサ27の充電電圧Δv・・(b)が入力され、この(b)の電位に対する反転入力端子に入力される固有周波数187kHzの交流検出信号SGの電圧(a)との差分が経過時間tで積分され、反転して積分用オペアンプ25から出力される(c)。図中、反転入力端子に入力される交流検出信号SGは、その電圧が高くなるほど、階段状に表れる積分用オペアンプ25の出力波形の傾斜が大きくなる。 As shown in FIG. 7, during the integration operation period Tint, the charging voltage Δv ·· (b) of the hold capacitor 27 is input to the non-inverting input terminal of the integrating operational amplifier 25 and the inverting input with respect to the potential of (b) The difference from the voltage (a) of the AC detection signal SG of the natural frequency of 187 kHz input to the terminal is integrated at the elapsed time t, inverted, and output from the integration operational amplifier 25 (c). In the drawing, as the voltage of the alternating current detection signal SG input to the inverting input terminal increases, the slope of the output waveform of the integrating operational amplifier 25 appearing in a stepwise manner increases.
 本実施の形態では、積分動作期間Tintが終了する直前であって、積分動作期間Tintの開始時からの経過時間Tcが各検出電極11との接続時間について同一となる判定時t1を設定し、この判定時t1の積分用オペアンプ25の出力を、接続した検出電極11に表れる交流検出信号SGの受信レベルVx0、Vx1、Vy0、Vy1として、A/Dコンバータ19へ出力する。 In this embodiment, a determination time t1 is set immediately before the end of the integration operation period Tint and when the elapsed time Tc from the start of the integration operation period Tint is the same as the connection time with each detection electrode 11, The output of the integration operational amplifier 25 at time t1 is output to the A / D converter 19 as the reception levels Vx0, Vx1, Vy0 and Vy1 of the AC detection signal SG appearing on the connected detection electrode 11.
 積分動作期間Tintの終了後、MPU10は、次の検出電極11を信号処理回路13へ接続するようにアナログマルチプレクサ12を切り換え制御し、その検出電極11について、同様にオフセット調整期間Tsetと積分動作期間Tintの制御を繰り返す。MPU10は、全ての検出電極X0、X1、Y0、Y1を接続した一周期の経過後に、各検出電極11についてA/Dコンバータ19から入力された受信レベルVx0、Vx1、Vy0、Vy1をもとに、(14)式乃至(17)式を用いて指30の三次元の入力操作位置(x、y、z)を検出する。また、入力操作面21a上の指30の入力操作位置(x、y)を検出するタッチパネル1とする場合には、(19)式と(20)式から二次元の入力操作位置(x、y)を検出する。 After completion of the integration operation period Tint, the MPU 10 switches and controls the analog multiplexer 12 so as to connect the next detection electrode 11 to the signal processing circuit 13. Similarly, for the detection electrode 11, the offset adjustment period Tset and the integration operation period Repeat control of Tint. The MPU 10 uses the reception levels Vx0, Vx1, Vy0, Vy1 input from the A / D converter 19 for each detection electrode 11 after one cycle of connecting all the detection electrodes X0, X1, Y0, Y1. The three-dimensional input operation position (x, y, z) of the finger 30 is detected using the equations (14) to (17). Further, in the case of using the touch panel 1 for detecting the input operation position (x, y) of the finger 30 on the input operation surface 21a, the two-dimensional input operation position (x, y) is obtained from the equations (19) and (20). ) To detect.
 検出した入力操作位置(x、y)若しくは入力操作位置(x、y、z)は、任意のタイミングで、インターフェース回路6を介して入力操作データとしてタッチパネル1を入力装置とする上位機器に出力される。 The detected input operation position (x, y) or the input operation position (x, y, z) is output to the upper device using the touch panel 1 as an input device as input operation data via the interface circuit 6 at any timing. Ru.
 第1実施の形態にかかるタッチパネル1では、矩形状の窓孔21で対向する対向方向に一組の検出電極X0、X1若しくは一組の検出電極Y0、Y1を配置し、対向方向での入力位置を検出したが、図8乃至図10に示すように、検出方向に沿って複数の分割検出電極41を配置し、各分割検出電極41について同様に検出する交流検出信号SGの受信レベルViを比較して検出方向の入力操作位置を検出してもよい。以下、図8乃至図10に示す他の実施の形態にかかるタッチパネル50、51、52では、検出電極の構成のみが異なるので、図中の第1実施の形態と共通する構成は同一番号を付してその説明を省略する。 In the touch panel 1 according to the first embodiment, a pair of detection electrodes X0 and X1 or a pair of detection electrodes Y0 and Y1 are disposed in the opposing direction facing each other in the rectangular window holes 21, and the input position in the opposing direction However, as shown in FIGS. 8 to 10, a plurality of divided detection electrodes 41 are arranged along the detection direction, and the reception level Vi of the alternating current detection signal SG similarly detected for each of the divided detection electrodes 41 is compared. Then, the input operation position in the detection direction may be detected. The touch panels 50, 51 and 52 according to the other embodiments shown in FIGS. 8 to 10 will be different from the first embodiment in the drawings only in the configuration of the detection electrodes. The explanation is omitted.
 図8は、タッチパネル1の4種類の検出電極X0、X1、Y0、Y1について、それぞれ複数の分割検出電極41で構成した第2の実施の形態にかかる静電容量式タッチパネル50の平面図である。すなわち、検出電極X0に代えて、複数の分割検出電極X0、X0・・X0が、検出電極X1に代えて、複数の分割検出電極X1、X1・・X1が、検出電極Y0に代えて、複数の分割検出電極Y0、Y0・・Y0が、検出電極Y1に代えて、複数の分割検出電極Y1、Y1・・Y1がそれぞれ各検出電極11の配置位置に沿って配置される。 FIG. 8 is a plan view of the capacitive touch panel 50 according to the second embodiment in which four types of detection electrodes X0, X1, Y0, and Y1 of the touch panel 1 are configured by a plurality of divided detection electrodes 41, respectively. . That is, instead of the detection electrodes X0, a plurality of split detection electrodes X0 1, X0 2 ·· X0 n is, instead of the detection electrode X1, a plurality of split detection electrode X1 1, X1 2 ·· X1 n is the detection electrode instead of Y0, a plurality of split detection electrodes Y0 1, Y0 2 ·· Y0 n is, instead of the detection electrode Y1, the arrangement of the plurality of split detection electrodes Y1 1, Y1 2 ·· Y1 n is the respective detection electrodes 11 respectively Arranged along the position.
 MPU10は、マルチプレクサ12を制御し、全ての分割検出電極41を順に信号処理回路13へ接続し、各接続期間中に接続した分割検出電極41に表れる交流検出信号SGの受信レベルViを検出する。図示する位置に指30を入力操作したとすると、同方向に一列に配置された複数の分割検出電極41のうち、入力操作位置のXY方向に配置された分割検出電極X0max、X1max、Y0max、Y1maxの受信レベルViが最大となるので、一列に配置された分割検出電極41の受信レベルViを相対比較して入力操作位置(x、y)を検出できる。 The MPU 10 controls the multiplexer 12 to sequentially connect all the divided detection electrodes 41 to the signal processing circuit 13, and detects the reception level Vi of the alternating current detection signal SG appearing on the divided detection electrodes 41 connected during each connection period. Assuming that the finger 30 is input to the position shown, among the plurality of divided detection electrodes 41 arranged in a line in the same direction, the divided detection electrodes X0max, X1max, Y0max, Y1max arranged in the XY direction of the input operation position. The reception level Vi of is maximized, so that the input operation position (x, y) can be detected by relatively comparing the reception levels Vi of the divided detection electrodes 41 arranged in a line.
 また、同方向に一列に配列され複数の分割検出電極41の受信レベルViの総和は、同位置に配置された第1実施の形態にかかる検出電極11の受信レベルViに相当するので、検出方向で対向して配置された分割検出電極の受信レベルViの総和と比較して、対向方向の入力位置、若しくは対向方向に直交するZ方向の入力位置も検出できる。 Further, the sum of the reception levels Vi of the plurality of divided detection electrodes 41 arranged in a line in the same direction corresponds to the reception level Vi of the detection electrodes 11 according to the first embodiment arranged at the same position. The input position in the opposite direction or the input position in the Z direction orthogonal to the opposite direction can also be detected, as compared with the sum of the reception levels Vi of the divided detection electrodes arranged opposite to each other.
 図9は、タッチパネル1のY方向で対向する検出電極Y0、Y1について、それぞれ複数の分割検出電極41で構成した第3の実施の形態にかかる静電容量式タッチパネル51の平面図である。すなわち、検出電極X0、X1は、第1実施の形態と同一で、検出電極Y0に代えて、複数の分割検出電極Y0、Y0・・Y0が、検出電極Y1に代えて、複数の分割検出電極Y1、Y1・・Y1がそれぞれ各検出電極11の配置位置に沿って配置されたものである。 FIG. 9 is a plan view of the capacitive touch panel 51 according to the third embodiment in which the detection electrodes Y0 and Y1 opposed to each other in the Y direction of the touch panel 1 are configured by a plurality of divided detection electrodes 41, respectively. That is, the detection electrodes X0, X1 is the same as the first embodiment, in place of the detecting electrodes Y0, a plurality of split detection electrodes Y0 1, Y0 2 ·· Y0 n is, instead of the detection electrode Y1, a plurality of split detection electrodes Y1 1, Y1 2 ·· Y1 n are those which are arranged along the arrangement positions of the detection electrodes 11, respectively.
 マルチプレクサ12は、検出電極X0、X1と全ての分割検出電極41を順に信号処理回路13へ接続し、各接続期間中に接続した検出電極11、41に表れる交流検出信号SGの受信レベルViを検出する。MPU10は、分割検出電極Y0、Y0・・Y0の受信レベルViの総和Vsy0を、検出電極Y0の受信レベルVy0として、分割検出電極Y1、Y1・・Y1の受信レベルViの総和Vsy1を、検出電極Y1の受信レベルVy1として、Vsy0とVsy1からY方向とZ方向の入力操作位置(y、z)を検出する。 The multiplexer 12 sequentially connects the detection electrodes X0 and X1 and all the divided detection electrodes 41 to the signal processing circuit 13, and detects the reception level Vi of the AC detection signal SG appearing on the detection electrodes 11 and 41 connected during each connection period. Do. MPU10 is a split detection electrodes Y0 1, Y0 2 ·· Y0 n sum Vsy0 reception level Vi of, as a reception level Vy0 detection electrodes Y0, split detection electrodes Y1 1, Y1 2 ·· Y1 n of the reception level Vi of The input operation position (y, z) in the Y direction and the Z direction is detected from Vsy0 and Vsy1 with the sum Vsy1 as the reception level Vy1 of the detection electrode Y1.
 また、X方向の入力操作位置(x)は、第1実施の形態と同様に、検出電極X0の受信レベルVx0と、検出電極X1の受信レベルVx1とから検出できるが、上述した第2の実施の形態での検出と同様に、同一方向に一列に配置された分割検出電極41の受信レベルViを相対比較し、X方向で最大の受信レベルViが検出される位置をX方向の入力操作位置(x)として検出することもできる。 Also, the input operation position (x) in the X direction can be detected from the reception level Vx0 of the detection electrode X0 and the reception level Vx1 of the detection electrode X1 as in the first embodiment, but the second embodiment described above In the same manner as the detection in the above embodiment, the reception level Vi of the divided detection electrodes 41 arranged in a line in the same direction is relatively compared, and the position at which the maximum reception level Vi is detected in the X direction is the input operation position in the X direction. It can also be detected as (x).
 このように、第1検出方向で対向する一組の検出電極11の少なくともいずれかを、複数の分割検出電極41とした場合には、第1検出方向と直交する第2検出方向に検出電極11を配置しなくても、第2検出方向の入力操作位置を検出できる。図10は、図9に示すタッチパネル51において、X方向の入力操作位置(x)の検出に重複する検出電極X0、X1を省略した静電容量式タッチパネル52を示す。 As described above, in the case where at least one of the pair of detection electrodes 11 opposed in the first detection direction is a plurality of divided detection electrodes 41, the detection electrodes 11 in the second detection direction orthogonal to the first detection direction. The input operation position in the second detection direction can be detected without arranging. FIG. 10 shows a capacitive touch panel 52 in which the detection electrodes X0 and X1 overlapping the detection of the input operation position (x) in the X direction are omitted in the touch panel 51 shown in FIG.
 このタッチパネル52によれば、分割検出電極Y0、Y0・・Y0の受信レベルViの総和Vsy0と分割検出電極Y1、Y1・・Y1の受信レベルViの総和Vsy1から、Y方向とZ方向の入力操作位置(y、z)を検出するとともに、同列に配置された分割検出電極Y0、Y0・・Y0若しくは分割検出電極Y1、Y1・・Y1の受信レベルViを相対比較してX方向の入力操作位置(x)を検出する。 According to the touch panel 52, the split detection electrodes Y0 1, Y0 2 ·· Y0 n reception level split detection electrodes Y1 1 the sum Vsy0 of Vi of, Y1 2 · · Y1 n sum of the reception levels Vi of Vsy1, Y-direction an input operation position in the Z direction (y, z) and detects the, split detection electrodes Y0 1 arranged on the same level, Y0 2 · · Y0 n or split detection electrodes Y1 1, Y1 2 ·· Y1 n reception level Relatively compare Vi to detect the input operation position (x) in the X direction.
 上述の各実施の形態では、入力操作面21aとなる窓孔21内を空間とするので、その下方に配置されるディスプレーの視認性に優れるが、必ずしも空間とする必要はない。例えば、透明材料で形成した導電層が形成された導電シートを、窓孔21を含む検出電極11、41の背面全体に配置し、低圧振動電源線SGND等検出電極11、41に対して等電位となる接地線に接続させてシールド層とすれば、検出電極11、41に対して外部ノイズが侵入したり、浮遊容量が不安定に変動することがなく、より精度良く入力操作位置を検出できる。 In each of the embodiments described above, since the inside of the window hole 21 to be the input operation surface 21a is a space, the visibility of the display disposed below the space is excellent, but it is not necessary to be the space. For example, a conductive sheet on which a conductive layer formed of a transparent material is formed is disposed on the entire back surface of the detection electrodes 11 and 41 including the window holes 21 and equipotential to the detection electrodes 11 and 41 such as the low voltage vibration power supply line SGND. If the shield layer is connected to the ground wire which is to be used, external noise does not intrude into the detection electrodes 11 and 41, and stray capacitance does not fluctuate unstablely, and the input operation position can be detected more accurately. .
 また、入力操作面21aとなる窓孔21内の入力操作体30が接触可能な位置に入力操作体30と異なる電位とした導電シートを掛け渡し、導電シートの電位を監視する監視手段を設ければ、導電シートの電位変動から入力操作体30を導電シートに触れる入力操作を検知することができる。従って、上記シールド層として作用する導電シートに電位監視手段を設ければ、入力操作の検知に兼用できる。 In addition, a conductive sheet having a potential different from that of the input operation body 30 is bridged to a position where the input operation body 30 in the window 21 serving as the input operation surface 21a can contact, and monitoring means for monitoring the potential of the conductive sheet is provided. For example, an input operation of touching the input operation body 30 to the conductive sheet can be detected from the potential fluctuation of the conductive sheet. Therefore, if a potential monitoring means is provided on the conductive sheet acting as the shield layer, it can also be used to detect an input operation.
 上述の実施の形態では、検出電極11、41を入力操作体30に対して交流検出信号SGの出力レベルVsで振動させ、両者の間に出力レベルVsの相対電位を発生させたが、検出電極11、41側を定電位として、入力操作体30の電位を交流検出信号SGの出力レベルVsで変動させてもよい。 In the above embodiment, the detection electrodes 11 and 41 are vibrated at the output level Vs of the AC detection signal SG with respect to the input operation body 30, and the relative potential of the output level Vs is generated between them. The potential of the input operation body 30 may be varied at the output level Vs of the AC detection signal SG with the potentials 11 and 41 as a constant potential.
 また、入力操作体30は、操作者が入力操作を行う指30で説明したが、操作者が握る専用入力ペンなど操作者と別の操作体であってもよい。 Further, although the input operation body 30 has been described using the finger 30 with which the operator performs an input operation, the input operation body 30 may be an operation body different from the operator, such as a dedicated input pen held by the operator.
 また、矩形状の輪郭に形成された窓孔は、任意の形状とすることができ、検出電極は、その内縁に沿って配置することなく、例えば、窓孔の四隅に配置し、四隅に配置した各検出電極との距離から、窓孔内の入力操作位置を検出するものであってもよい。 Moreover, the window hole formed in the rectangular outline can be made into any shape, and the detection electrodes are arranged at four corners of the window hole, for example, without arranging along the inner edge thereof. The input operation position in the window may be detected from the distance to each detection electrode.
 検出電極は入力操作体との対向面積に比例してその間の静電容量Cmが大きく、静電容量Cmの検出が容易になるので、入力操作面21a上の三次元の入力操作位置(x、y、z)も検出する上述の実施の形態では、絶縁ケース20の傾斜する内縁20aに沿って検出電極11を配置しているが、入力操作面21a上の二次元の入力操作位置(x、y)のみを検出する場合には、検出電極11を入力操作面21aに直交する鉛直面に沿って配置することが望ましく、また、主として入力操作面21aから鉛直方向に離れたZ方向の入力操作位置(z)を検出する場合には、より水平に配置するのが望ましい。 Since the detection electrode has a large capacitance Cm between the detection electrodes in proportion to the area facing the input operation body and detection of the capacitance Cm is easy, the three-dimensional input operation position (x, x) on the input operation surface 21a In the above embodiment which also detects y and z), the detection electrode 11 is disposed along the inclined inner edge 20a of the insulating case 20, but the two-dimensional input operation position (x, x) on the input operation surface 21a When only y) is to be detected, it is desirable to arrange the detection electrode 11 along a vertical plane orthogonal to the input operation surface 21a, and the input operation in the Z direction mainly away from the input operation surface 21a in the vertical direction When detecting the position (z), it is desirable to arrange more horizontally.
 本発明は、背面側に表示素子が配置され、非接触で入力操作を検出する静電容量式タッチパネルに適している。 The present invention is suitable for a capacitive touch panel in which a display element is disposed on the back side and detects an input operation without contact.
 1、50、51、52 静電容量式タッチパネル
 10   MPU(入力位置検出手段)
 11   検出電極
 14   積分処理回路(信号検出手段)
 15   発振回路(発信手段)
 20a  内縁
 21   窓孔
 21a  入力操作面
 30   指(入力操作体)
 41   分割検出電極
 Cm   静電容量
 SG   交流検出信号
 Vs   交流検出信号の出力レベル
 Vi   交流検出信号の受信レベル
1, 50, 51, 52 Capacitive touch panel 10 MPU (input position detection means)
11 detection electrode 14 integration processing circuit (signal detection means)
15 Oscillator circuit (transmission means)
20a inner edge 21 window hole 21a input operation surface 30 finger (input operation body)
41 Division detection electrode Cm Capacitance SG AC detection signal Vs Output level of AC detection signal Vi Reception level of AC detection signal

Claims (14)

  1. 互いに絶縁して複数の検出電極が配置され、各検出電極の配置位置と、各検出電極と入力操作体との静電容量とから、入力操作体の入力操作位置を検出する静電容量式タッチパネルであって、
     絶縁ケースに所定間隔を隔てて配置される複数の検出電極と、
     入力操作体と複数の各検出電極との相対電位が変動する交流検出信号を発信する発信手段と、
     前記各検出電極と入力操作体間の静電容量を介して、前記各検出電極に表れる交流検出信号の受信レベルを検出する信号検出手段と、
     前記信号検出手段が前記各検出電極毎に検出した交流検出信号の受信レベルをもとに入力操作体と前記各検出電極の配置位置との相対距離を比較し、入力操作体の入力操作位置を検出する入力位置検出手段とを備えたことを特徴とする静電容量式タッチパネル。
    A capacitive touch panel that detects an input operation position of an input operation body, in which a plurality of detection electrodes are arranged so as to be isolated from each other, and the arrangement position of each detection electrode and the electrostatic capacitance between each detection electrode and the input operation body And
    A plurality of detection electrodes disposed in the insulating case at predetermined intervals;
    Transmitting means for transmitting an alternating current detection signal in which the relative potential between the input operation body and each of the plurality of detection electrodes fluctuates;
    Signal detection means for detecting the reception level of the alternating current detection signal appearing on each of the detection electrodes via the capacitance between each of the detection electrodes and the input operation body;
    Based on the reception level of the alternating current detection signal detected by each of the detection electrodes, the signal detection means compares the relative distance between the input operation body and the arrangement position of each of the detection electrodes and determines the input operation position of the input operation body What is claimed is: 1. A capacitive touch panel comprising: input position detection means for detecting an electric potential.
  2. 信号検出手段は、前記各検出電極に表れる交流検出信号を交流検出信号の周期より充分に長い時間で積分する積分回路を有し、積分回路の出力レベルを受信レベルとすることを特徴とする請求項1に記載の静電容量式タッチパネル。 The signal detection means has an integration circuit that integrates the AC detection signal appearing on each of the detection electrodes in a time sufficiently longer than the cycle of the AC detection signal, and uses the output level of the integration circuit as a reception level. The capacitive touch panel according to item 1.
  3. 前記窓孔と複数の検出電極の背面側全体を覆う導電層を絶縁ケースの背面側に積層させたことを特徴とする請求項1又は2記載の静電容量式タッチパネル。 The electrostatic capacitance type touch panel according to claim 1 or 2, wherein a conductive layer covering the entire back side of the window hole and the plurality of detection electrodes is laminated on the back side of the insulating case.
  4. それぞれ細長帯状に形成された一組の検出電極X0と検出電極X1が、前記絶縁ケースに形成された窓孔のX方向で対向する内縁に沿って配置され、
     入力位置検出手段は、検出電極X0と検出電極X1から検出した交流検出信号の受信レベルをもとに入力操作体とX方向で対向する前記内縁との相対距離を比較し、前記窓孔の開口面を入力操作面とするX方向の入力操作位置xを検出することを特徴とする請求項1に記載の静電容量式タッチパネル。
    A pair of detection electrodes X0 and detection electrodes X1 each formed in an elongated strip shape are disposed along the inner edges opposite to each other in the X direction of the window holes formed in the insulating case,
    The input position detection means compares the relative distance between the input operation body and the inner edge facing in the X direction based on the reception level of the AC detection signal detected from the detection electrode X0 and the detection electrode X1, and the opening of the window hole 2. The capacitive touch panel according to claim 1, wherein an input operation position x in the X direction with the surface as the input operation surface is detected.
  5. それぞれ細長帯状に形成された一組の検出電極Y0と検出電極Y1が、X方向に直交する前記窓孔のY方向で対向する内縁に沿って配置され、
     入力位置検出手段は、検出電極Y0と検出電極Y1から検出した交流検出信号の受信レベルをもとに入力操作体とY方向で対向する前記内縁との相対距離を比較し、前記窓孔の開口面を入力操作面とするY方向の入力操作位置yを検出することを特徴とする請求項4に記載の静電容量式タッチパネル。
    A pair of detection electrodes Y0 and detection electrodes Y1 each formed in an elongated strip shape are disposed along the inner edges of the window holes in the Y direction opposite to each other orthogonal to the X direction,
    The input position detection means compares the relative distance between the input operation body and the inner edge facing in the Y direction based on the reception level of the alternating current detection signal detected from the detection electrode Y0 and the detection electrode Y1, and opens the window hole. 5. The capacitive touch panel according to claim 4, wherein an input operation position y in the Y direction having a surface as an input operation surface is detected.
  6. 信号検出手段は、前記各検出電極に表れる交流検出信号を交流検出信号の周期より充分に長い時間で積分する積分回路を有し、積分回路の出力レベルを受信レベルとすることを特徴とする請求項4又は5のいずれか1項に記載の静電容量式タッチパネル。 The signal detection means has an integration circuit that integrates the AC detection signal appearing on each of the detection electrodes in a time sufficiently longer than the cycle of the AC detection signal, and uses the output level of the integration circuit as a reception level. The capacitive touch panel according to any one of Items 4 and 5.
  7. 前記窓孔と複数の検出電極の背面側全体を覆う導電層を絶縁ケースの背面側に積層させたことを特徴とする請求項4又は5のいずれか1項に記載の静電容量式タッチパネル。 The electrostatic capacitance type touch panel according to any one of claims 4 or 5, wherein a conductive layer covering the entire back side of the window hole and the plurality of detection electrodes is laminated on the back side of the insulating case.
  8. 信号検出手段は、前記各検出電極に表れる交流検出信号を交流検出信号の周期より充分に長い時間で積分する積分回路を有し、積分回路の出力レベルを受信レベルとすることを特徴とする請求項7に記載の静電容量式タッチパネル。 The signal detection means has an integration circuit that integrates the AC detection signal appearing on each of the detection electrodes in a time sufficiently longer than the cycle of the AC detection signal, and uses the output level of the integration circuit as a reception level. The capacitive touch panel according to Item 7.
  9. 前記窓孔は矩形状に形成され、
     前記窓孔で対向する前記一組の検出電極の一方を基準検出電極、他方を対向検出電極とし、
     入力位置検出手段は、前記一組の検出電極間の対向方向の距離L、前記一組の検出電極と入力操作体間の交流検出信号の出力レベルVsと、前記基準検出電極と前記対向検出電極から検出した交流検出信号の受信レベルV0、V1とから、前記基準検出電極から前記対向検出電極に向かう対向方向の入力操作位置rを検出するとともに、前記窓孔の平面に直交するZ方向の入力操作位置zを検出することを特徴とする請求項4又は5のいずれか1項に記載の静電容量式タッチパネル。
    The window hole is formed in a rectangular shape,
    One of the pair of detection electrodes opposed by the window hole is a reference detection electrode, and the other is an opposite detection electrode.
    The input position detection means includes a distance L in the opposite direction between the pair of detection electrodes, an output level Vs of an alternating current detection signal between the pair of detection electrodes and the input operation body, the reference detection electrode and the opposite detection electrode Detecting the input operation position r in the opposite direction from the reference detection electrode to the opposite detection electrode from the reception levels V0 and V1 of the AC detection signal detected from the input, and the input in the Z direction orthogonal to the plane of the window The electrostatic capacitance type touch panel according to any one of claims 4 or 5, wherein the operation position z is detected.
  10. 信号検出手段は、前記各検出電極に表れる交流検出信号を交流検出信号の周期より充分に長い時間で積分する積分回路を有し、積分回路の出力レベルを受信レベルとすることを特徴とする請求項9に記載の静電容量式タッチパネル。 The signal detection means has an integration circuit that integrates the AC detection signal appearing on each of the detection electrodes in a time sufficiently longer than the cycle of the AC detection signal, and uses the output level of the integration circuit as a reception level. The capacitive touch panel according to item 9.
  11. 前記窓孔と複数の検出電極の背面側全体を覆う導電層を絶縁ケースの背面側に積層させたことを特徴とする請求項9に記載の静電容量式タッチパネル。 10. The capacitive touch panel according to claim 9, wherein a conductive layer covering the entire back side of the window hole and the plurality of detection electrodes is laminated on the back side of the insulating case.
  12. それぞれ細長帯状に形成された複数の分割検出電極が、X方向若しくはY方向に平行な前記窓孔の内縁に沿って互いに絶縁して配置され、
     入力位置検出手段は、前記各分割検出電極から検出した交流検出信号の受信レベルを比較し、最大の受信レベルが検出された前記分割検出電極の配置位置から、前記分割検出電極の配置方向に沿ったX方向若しくはY方向の入力操作位置を検出することを特徴とする請求項4又は5のいずれか1項に記載の静電容量式タッチパネル。
    A plurality of divided detection electrodes each formed in a strip shape are disposed so as to be mutually insulated along the inner edge of the window hole parallel to the X direction or the Y direction,
    The input position detection means compares the reception levels of the alternating current detection signals detected from the divided detection electrodes, and follows the arrangement direction of the divided detection electrodes from the arrangement position of the divided detection electrodes at which the maximum reception level is detected. The capacitive touch panel according to any one of claims 4 or 5, wherein the input operation position in the X direction or the Y direction is detected.
  13. 信号検出手段は、前記各検出電極に表れる交流検出信号を交流検出信号の周期より充分に長い時間で積分する積分回路を有し、積分回路の出力レベルを受信レベルとすることを特徴とする請求項12に記載の静電容量式タッチパネル。 The signal detection means has an integration circuit that integrates the AC detection signal appearing on each of the detection electrodes in a time sufficiently longer than the cycle of the AC detection signal, and uses the output level of the integration circuit as a reception level. The capacitive touch panel according to Item 12.
  14. 前記窓孔と複数の検出電極の背面側全体を覆う導電層を絶縁ケースの背面側に積層させたことを特徴とする請求項12に記載の静電容量式タッチパネル。 The electrostatic capacitance type touch panel according to claim 12, wherein a conductive layer covering the entire back side of the window hole and the plurality of detection electrodes is laminated on the back side of the insulating case.
PCT/JP2011/004317 2011-07-29 2011-07-29 Capacitive touch panel WO2013018120A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/004317 WO2013018120A1 (en) 2011-07-29 2011-07-29 Capacitive touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/004317 WO2013018120A1 (en) 2011-07-29 2011-07-29 Capacitive touch panel

Publications (1)

Publication Number Publication Date
WO2013018120A1 true WO2013018120A1 (en) 2013-02-07

Family

ID=47628702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004317 WO2013018120A1 (en) 2011-07-29 2011-07-29 Capacitive touch panel

Country Status (1)

Country Link
WO (1) WO2013018120A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014191780A (en) * 2013-03-28 2014-10-06 Denso It Laboratory Inc Operation input device of air blower and control method of air blower
JP2015133158A (en) * 2015-04-22 2015-07-23 Smk株式会社 Static type touch panel
WO2015151338A1 (en) * 2014-03-31 2015-10-08 Smk株式会社 Capacitive touch panel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08171449A (en) * 1994-12-20 1996-07-02 Hosiden Corp Tactile coordinate input device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08171449A (en) * 1994-12-20 1996-07-02 Hosiden Corp Tactile coordinate input device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014191780A (en) * 2013-03-28 2014-10-06 Denso It Laboratory Inc Operation input device of air blower and control method of air blower
WO2015151338A1 (en) * 2014-03-31 2015-10-08 Smk株式会社 Capacitive touch panel
JP2015194813A (en) * 2014-03-31 2015-11-05 Smk株式会社 Capacitance type touch panel
JP2015133158A (en) * 2015-04-22 2015-07-23 Smk株式会社 Static type touch panel

Similar Documents

Publication Publication Date Title
JP5796527B2 (en) Capacitive touch panel
US9001080B2 (en) Touch-panel device
KR101410414B1 (en) Touch screen panel having function of sensing motion
KR102416377B1 (en) Electrode arrangement for gesture detection and tracking
US8854107B2 (en) Integrator circuit with inverting integrator and non-inverting integrator
TWI603248B (en) A touch sensing device and a detection method
CN110383221B (en) Input device and control method thereof
KR101389815B1 (en) Electrode arrangement for display device
JP5257481B2 (en) Capacitive touch panel
TWI530097B (en) Capacitive sensor system
JP5327408B1 (en) Touch panel device
JP2008157920A (en) Capacitance detecting device
WO2013018120A1 (en) Capacitive touch panel
WO2016147423A1 (en) Capacitive touch panel
WO2013021414A1 (en) Capacitance type input detection method
JP2014075069A (en) On-vehicle touch panel input device
JP2015156236A (en) Static type touch panel
JPWO2013018120A1 (en) Capacitive touch panel
JP2015133158A (en) Static type touch panel
JP2020123258A (en) Input device, input unit, and electronic apparatus utilizing input device
JPWO2013021414A1 (en) Capacitance type input detection method
JP2013069079A (en) Capacitive touch panel
WO2015151338A1 (en) Capacitive touch panel
JP2016009475A (en) Input device and detection method
JP2016009452A (en) Input device and detection method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013526601

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870338

Country of ref document: EP

Kind code of ref document: A1