WO2013017677A2 - Module photovoltaïque avec échangeur thermique - Google Patents

Module photovoltaïque avec échangeur thermique Download PDF

Info

Publication number
WO2013017677A2
WO2013017677A2 PCT/EP2012/065212 EP2012065212W WO2013017677A2 WO 2013017677 A2 WO2013017677 A2 WO 2013017677A2 EP 2012065212 W EP2012065212 W EP 2012065212W WO 2013017677 A2 WO2013017677 A2 WO 2013017677A2
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic
heat transfer
heat exchanger
heat
transfer fluid
Prior art date
Application number
PCT/EP2012/065212
Other languages
English (en)
Other versions
WO2013017677A3 (fr
Inventor
Noël NICAISE
Original Assignee
Nicaise Noel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nicaise Noel filed Critical Nicaise Noel
Priority to EP12743722.6A priority Critical patent/EP2740161A2/fr
Priority to US14/236,890 priority patent/US20140150848A1/en
Publication of WO2013017677A2 publication Critical patent/WO2013017677A2/fr
Publication of WO2013017677A3 publication Critical patent/WO2013017677A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • H01L31/0521Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells using a gaseous or a liquid coolant, e.g. air flow ventilation, water circulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Definitions

  • the present invention relates to the field of photovoltaic panels with heat exchanger.
  • It relates more particularly to a device comprising solar capture modules comprising photovoltaic cells and heat exchangers, the assembly being arranged in such a way as to optimize the efficiency of the photovoltaic cells and to transport the heat energy sensed in an optimized manner.
  • the solar radiation capture modules constituting the solar panels are intended for photovoltaic or thermal use.
  • the solar panels currently used usually comprise either photovoltaic cells for producing electricity, or thermal sensors designed to recover the heat produced by absorption of solar radiation. It is nevertheless clear that the combination of the two functions in the same panel area would make it possible to multiply the possibilities of installing this type of device on the roofs of dwellings which are always limited in terms of area, especially if one takes into consideration the orientation with respect to the sun.
  • modules include photovoltaic cells and heat exchange means
  • the latter are not intended to transmit the heat energy captured, by heat transfer effect, to a water heater for example, but to participate in the cooling of the cells photovoltaic systems in order to increase the efficiency of the latter.
  • the presence of heat capture means is only intended to facilitate the cooling of the photovoltaic cells, the heat energy produced during the capture of solar radiation is not valued.
  • a planar module consisting of photovoltaic cells constitutes a layer of the device and is superimposed on a tubular network in which flows in a rectangular parallelepiped in the plane of photovoltaic cells.
  • Planar composite structures are thus obtained comprising a plane of photovoltaic cells under which is placed in contact with this plane, a cooling device which captures the thermal energy dissipated by the cells; this device may consist of a circulation of cooling fluid, gas or liquid.
  • the patent FR 2 924 664 (PROISY e.), For example describes a device having a set of photovoltaic cells on a first face intended to be exposed to solar radiation, a heat exchanger on a second face for the passage of a cooling fluid consisting in particular of pulsed air passage means.
  • the FR patent. 2,779,275 discloses a device formed of modules comprising photovoltaic cells covering the heat exchangers carrying the coolant. In this case, it is still a plate of photovoltaic cells covering a sheath containing a heat transfer fluid and arranged in a coil.
  • modules composed of photovoltaic cells, under the face of which is an aluminum plate covering a heat exchanger, with heat transfer fluid.
  • the assembly can meet the needs of electrical energy and liquid to be heated.
  • Patent EP 1693 901 (BIUCCHI S., MANTONVANI M.) discloses a hybrid device consisting of photovoltaic cells included in a closed circular chamber in the center of which is disposed a conical device reflector of light, intended to enclose the largest possible amount of photons in order to pass them on to the cells that cover the walls of the room. On a part of the walls of the chamber may also be arranged a heat exchanger without it being used for cooling the photovoltaic cells or to optimize the heat transfer fluid surface in contact with the sun's rays.
  • the object of the present invention is to remedy these drawbacks by proposing a device comprising solar capture modules comprising photovoltaic cells and heat exchangers, or more generally heat exchange means, the assembly being arranged to optimize the efficiency of the photovoltaic cells and to transport the heat energy produced in an optimized manner.
  • the subject of the invention is a photovoltaic module with a heat exchanger, comprising a plurality of panels consisting of photovoltaic cells, characterized in that it further comprises a load-bearing structure itself comprising a non-planar outer surface forming a exposure face defining a fairway with a flat central base bounded by two side walls, intended to be exposed to solar radiation and carrying the photovoltaic cell panels, and a heat transfer area having a surface intended to come into contact with a fluid coolant circulating on its surface.
  • the heat energy stored and produced by the photovoltaic cell panels is thus transmitted by the supporting structure to the coolant, said structure acting as a heat pipe.
  • the supporting structure consists of flattened conduits over substantially their entire length, arranged along the length of the channel and in which circulates a heat transfer fluid, said pipes forming a means of transporting said coolant inside the structure, said pipes forming the central base and the walls of the channel, the photovoltaic cell panels being fixed on the walls of said pipes exposed to solar radiation which form the exposure face of the structure, the walls internal pipes forming the heat transfer zone.
  • the central element and the lateral elements forming said means for transporting the coolant constitute cooling means for said photovoltaic cell panels.
  • the ducts forming the supporting structure are arranged to form a channel having substantially a U-shape in cross section.
  • the device according to the invention comprising an arrival element, or arrival transport means, of the heat transfer fluid and a starting element, or starting transport means, of said fluid, said conduits conduct the fluid. coolant from the means for transporting the heat transfer fluid to the means for transporting the heat transfer fluid.
  • said heat transfer fluid inlet and outlet means are configured so that they can be interconnected by a heat exchanger for cooling the heat transfer fluid after it passes through the supporting structure.
  • the heat transfer fluid inlet and outlet elements are configured so that they can be interconnected externally by a heat exchanger which carries out the cooling of the coolant after it has passed through the device.
  • the supporting structure is constituted by a block of good thermal conductor material having a non-planar exposure face forming a channel on the walls of which the panels of photovoltaic cells are fixed, and a heat transfer face forming an open cavity and a plate of conductive material forming a cover for this cavity.
  • Said cavity comprises a plurality of longitudinal grooves the ends of said grooves opening on two transverse grooves.
  • Said heat transfer face is configured such that when the cavity formed is covered by the cover plate, the longitudinal and transverse grooves form separate channels in which the heat transfer fluid circulates, the transverse pipes communicating with the two transverse pipes by their ends.
  • the lid is provided with two diametrically opposed holes arranged to open at opposite ends of the two pipes formed by the transverse grooves.
  • the transverse grooves are configured to form a distribution pipe heat transfer fluid at the inlet of the longitudinal ducts and a collector of the heat transfer fluid at the outlet of the longitudinal ducts.
  • Said transverse pipes each have a section that varies continuously along their length, the inlet and outlet ports of the heat transfer fluid being arranged to open on the widest ends of said pipes.
  • the lid comprises at each of the orifices means for fixing a connection element for connecting the device with an external system for circulating and conditioning the heat transfer fluid.
  • each module comprises a means of refraction and reflection of the sun's rays housed in the space delimited by the walls of the exposure face which carry the panels of photovoltaic cells.
  • a passive optical device is housed in the inner cavity of the channel, said device comprising two semi-transparent blades arranged so as to form the adjacent faces of a triangular prism the edge joining these two faces being directed out of the channel; said semi-reflecting strips being dimensioned so as to reflect a portion of the direct radiation received by the exposure face on one or the other of the walls of the channel.
  • the subject of the invention is also a photovoltaic panel with a heat exchanger, comprising a plurality of photovoltaic modules with heat exchangers according to the invention, juxtaposed with each other, the supporting structures of the various modules being mechanically associated to form a common load-bearing structure comprising an exposure face forming a plurality of channels on the walls of which are mounted the photovoltaic cell panels constituting the different modules and a heat transfer surface covering all the modules, the single supporting structure to optimize the space occupied by the panel thus formed.
  • said panel comprises a system for circulating the coolant and for conditioning the coolant, which system itself comprises a heat exchanger for cooling the coolant having passed through the cavity forming the heat exchange zone of the panel, before returning to the panel.
  • said panel further comprises, fixed on the most peripheral side walls of the supporting structure, two additional photovoltaic panels and two additional reflectors, one of said reflectors being fixed on each of the lateral edges of the supporting structure, these reflectors additional ones being arranged to reflect solar radiation to the panel with which it is associated.
  • the invention also relates to a global system for producing energy, characterized in that it comprises a plurality of photovoltaic panels according to the invention and means for using the heat produced in the heat exchanger to heat a reserve of water.
  • FIG. 1 shows a cross-sectional view of two solar capture modules according to a first embodiment of the invention
  • FIG. 2 represents a partial longitudinal sectional view, in a plane parallel to the laying plane of the module, of one of the ends of two solar capture modules according to the first embodiment, these modules being connected to the means of transport of coolant heat transfer fluid;
  • - Figure 3 shows a cross-sectional view of a module according to the first embodiment surrounded by two lateral cooling means and a central cooling means;
  • - Figure 4 shows a longitudinal section in top view of a photovoltaic panel with heat exchanger according to the first embodiment of the invention;
  • FIG. 5 shows a cross-sectional view of a module according to a variant of the first embodiment of the invention surrounded by two lateral cooling means and a central cooling means;
  • FIG. 6 an overview of a supporting structure of the device according to the invention in a second embodiment, the structure being common to two modules;
  • FIG. 10 a schematic front view of a photovoltaic panel with heat exchanger according to the invention.
  • the invention has the effect of allowing, knowing the available floor area for implanting solar collectors, to have a larger exposed area than the floor area by varying the volume effect of the surface. exposure of the modules of the device according to the invention, non-planar surface in principle.
  • the device according to the invention comprises a thermodynamic cooling means photovoltaic cells whose performance in electricity production are thus improved.
  • the device according to the invention consists of a photovoltaic module comprising a load-bearing structure having a non-planar solar exposure face forming a base wall bounded by side walls.
  • This surface defines a channel, a groove, whose flat base wall represents the bottom.
  • the lateral walls are more or less inclined, the angle of inclination with respect to the plane defined by the base wall, as well as the width of the base wall and the height of the side walls being a function of the desired illumination.
  • each of the walls, both the base wall and the side walls, is covered with a panel of photovoltaic cells.
  • the load bearing structure of the photovoltaic module has a heat exchange face defining a heat transfer zone in which circulates a heat transfer fluid.
  • the heat transfer zone of the structure is configured to maximize contact and heat exchange with the heat transfer fluid.
  • the heat transfer zone is configured and dimensioned so that during its circulation inside this zone, the coolant remains in contact with the heat exchange face of the structure for a sufficiently long time so that it recovers enough heat energy transmitted by the supporting structure so that the photovoltaic cells remain below their maximum temperature of use, given the expected sunlight, and preferably near the optimum temperature.
  • the heat transfer zone further includes a fluid inlet path terminated by an inlet port and a fluid exit path terminated by an exit port. These two paths are dimensioned and arranged inside the supporting structure so that between the inlet and the outlet, the heat transfer fluid travels the entire heat exchange zone with a flow rate preferably constant.
  • the inlet and outlet ports are furthermore provided with terminations for connecting the outlet orifice to the inlet orifice via an external heat exchanger, so as to evacuate and possibly to recover the heat energy transported by the heat transfer fluid after its passage in the heat exchange zone of the supporting structure.
  • the supporting structure that performs the heat transfer is made of a good thermal conductive material, brass, copper or aluminum, for example.
  • the thermal contact between the supporting structure and the solar capture means, the photovoltaic cell panels may furthermore, according to the embodiment, be reinforced by interposing an interface layer made of a good thermal conductive material, or a thermal conductive paste. between the two elements.
  • Figures 1 to 5 show, as an example of implementation, a first embodiment of the invention.
  • a photovoltaic panel with a heat exchanger comprises, as illustrated in FIG. 1, a set of photovoltaic modules 2 according to the invention, comprising photovoltaic transformation means, 3, 3 ' and 4, and heat conversion means 5, 1 1, or more precisely heat exchange.
  • the heat exchange means 5, 1 1 consist of means for circulating a heat transfer fluid along the heat exchange face of each module. These means have for each module a central element (1 1) in contact with the base (4) of each photovoltaic transformation means, and lateral elements (6) in contact with the side walls (3) of each of these means. They thus form a support for the photovoltaic transformation means, 3, 3 'and 4.
  • the photovoltaic transformation means 3, 3 'and 4 preferably photovoltaic cells, dissipate, when they are lit, thermal energy which is recovered by the heat-transforming means 5, 11 which are responsible for capturing and transferring the heat energy produced by the photovoltaic transformation means 3, 3 'and 4.
  • each photovoltaic module comprises three longitudinal and planar portions. These three parts are connected to each other on their longest sides.
  • the assembly forming a channel "U" closed at each end having a base face, or central portion 4a and two faces, or side portions 3a and 3a '.
  • the central portion 4 is bonded on each of its lengths to a lateral portion 3 and 3 '.
  • the assembly thus formed has a concave face 3a, 3a 'and 4a delimiting channel 14 or exposure face intended to be illuminated by solar radiation, and a convex face 3b, 3b' and 4b forming an external face for transfer of heat energy.
  • the flat base that constitutes the central part of the "U” is covered on one side 4a of a photovoltaic film responsible for receiving the solar radiation to transform them into electrical energy.
  • the photovoltaic film preferably consists of a set of photovoltaic cells covering the surface of the base 4a.
  • the two parts or side walls 3 and 3 ' are also covered over their entire surface with the face situated on the same side 3a, 3a' as the photovoltaic face 4a of the central part, of a photovoltaic film.
  • the inner part of the "U in other words the channel 14, thus constitutes a solar radiation trap dedicated to transforming this solar energy into electricity.
  • the solar radiation capture surface is thus increased relative to that obtained with a flat surface that would be equivalent to the area occupied by the central portion 4 of the "U".
  • the modules 2 constituting a photovoltaic panel with heat exchanger six modules for example, the Lateral and central heat transfer means 1 1 constitute the U-shaped frame of each of the modules 2.
  • the heat transfer means, which carry the photovoltaic cells on their surface, constitute the supporting structure of each photovoltaic module. .
  • the heat transfer means 5, 1 1 are hollow flattened copper pipes inside which circulates a coolant liquid 6. These pipes thus also form the heat exchange zone of the supporting structure, area that occupies here, therefore, the entire volume of the load-bearing structure formed by the pipes themselves.
  • Said heat transfer means in which circulates the coolant, are constituted, for example, copper pipes of thirty to thirty two millimeters in diameter, flattened and arranged longitudinally, as illustrated in Figure 1 in particular.
  • the pipes are about eight centimeters wide, which corresponds substantially to the passage height of the heat transfer fluid.
  • the thickness of the passage is then about two millimeters. It is perfectly conceivable to use pipes of different height as long as they are flat and allow to fulfill two functions, that of heat transfer fluid transport and that of the chassis.
  • the length of each of the pipes (5, 1 1) being fixed, the photovoltaic panel produced has a given base area.
  • the exploitable thermal surface is advantageously superior.
  • the floor area occupied by the panel is approximately equal to thirty three centimeters by thirty three centimeters, or about eleven square decimetres. While the exploitable area is about forty eight square decimetres.
  • Such a panel allows the assembly of one hundred and twenty solar cells of 0.5 V for 400 mA, 76 mm on 46 mm.
  • the glue used is preferably an electrically insulating glue.
  • the photovoltaic modules form U-shaped cavities so that the inner side walls 3a and 3a 'of the modules are substantially perpendicular to the base 4a.
  • these modules fulfill as much a role of absorption and transformation of photons into electricity as of reflection of these photons towards the central part 4a, thus making it possible to concentrate a larger quantity of photons in the module for transforming light radiation into electrical energy (photovoltaic module).
  • each side wall 3 and 3 ' ie the height of the walls of the channel
  • the surface of each wall is equal to one and a half times the area of the central part.
  • the total area of the photovoltaic cell panels is 4 times greater than the area required to position the complete module composed by these panels of photovoltaic cells.
  • the exchange surface is therefore greater than the sunlight area received.
  • the solar radiation capture surface is substantially greater than the area occupied on the ground by a photovoltaic module 2 according to the invention.
  • the device For a square meter of sunshine received, ie ground-level, surface taken by a flat photovoltaic panel, the device provides four square meters of exchange area.
  • the heat transport fluid transport pipes are connected on one side of the panel, at one of their ends, to a means for transporting the cold heat transfer fluid 7, which feeds the various pipes 6 in heat transfer fluid, while they are connected, at their other end, to the means for transporting the heated coolant 8 , or collector, which recovers the coolant after passing through the heat exchange zone of the device.
  • Said fluid transport means are, for example, collectors consisting of copper pipes thirty to thirty millimeters in diameter, welded to a hollow copper element sealing and transporting the heat transfer fluid to the inlet and outlet of each of the means of transport (5, 1 1) of said fluid, in other words the flattened pipes in which circulates the heat transfer fluid inside the device.
  • each of the "U" of the photovoltaic modules 2 are positioned means for reflection and refraction of the sun's rays. This is to trap the largest possible amount of solar radiation captured transformable by photovoltaic cells.
  • a reflector 9 made of rigid plastic or glass or any other material having known properties of reflection and / or refraction of the sun and substantially transparent and convex is placed at the bottom of each "U".
  • a semi-reflective flat plate 10 is positioned obliquely between two opposite lengths of the same diagonal of the rectangular parallelepiped formed by the "U”.
  • the reflector may consist of two rectangular plates connected on one of their length and forming an inverted V 13 inside the "U".
  • Figures 6 to 10 show, as an example of implementation also, a second embodiment of the invention.
  • each photovoltaic panel with heat exchanger comprises, as illustrated in FIGS. 6 and 7, a set of modules (2) comprising photovoltaic transformation means 3, 3 'and 4 and one bearing structure 62 comprising a heat transfer zone for evacuating the heat energy produced by the photovoltaic transformation means.
  • the heat transfer means comprise two elements 61 and 62, the element 62 constituting the supporting structure of the photovoltaic transformation means 3, 3 'and 4.
  • the supporting structure 62 is preferably, but not necessarily, common to a set of photovoltaic modules with heat exchanger according to the invention.
  • a common supporting structure advantageously makes it possible to juxtapose a set of devices on a minimal surface.
  • the structure 62 has an exposure face 63, intended to receive the solar radiation and a heat exchange face 64 which constitutes the heat transfer zone.
  • the exposure face 63 is constituted by a non-planar surface (ie not inscribed in a plane) forming, according to whether a structure is produced comprising one or more devices according to the invention, one or more channels 65, each channel being consisting of a flat base 66 and oblique walls 67 and 68, on which are mounted the photovoltaic cells which constitute the photovoltaic transformation means 3, 3 'and 4 of a module, or photovoltaic panels.
  • the heat exchange face 64 for its part, is a surface which comprises a set of longitudinal grooves, along the axis oy mentioned in FIG. 6, housed in the thickness of the material, which substantially cover the assembly of a central part of the heat exchange face 64, the periphery of the exchange face constituting a flat edge 72, as illustrated in FIG. 8.
  • transverse grooves 81 and 82 placed at the two ends 69 and 61 1 corresponding to the front and rear faces of the structure and which constitute two channels on which the longitudinal grooves 71 open.
  • transverse grooves 81 and 82 also made in the thickness of the material, have a section which varies continuously over their length, and therefore two ends of different sections.
  • these two grooves have substantially identical and each have an outer edge substantially parallel to the front wall or rear of the structure 62, as shown in Figure 8.
  • the two transverse grooves 81 and 82 are further arranged such that the narrower end 83 of the transverse groove 81 is positioned opposite the widest end 86 of the groove 82.
  • the grooves 71, 81 and 82 may have a section of variable shape, such as a triangular section, as shown in Figure 7, or a circular or rectangular section.
  • the bearing structure 62 is made of a material chosen for its thermal conduction qualities, a metallic material such as copper or aluminum, for example.
  • the supporting structure 62 is associated with a flat element 61 forming a cover which is intended to be mounted on the supporting structure, against the heat exchange face 64 so as to close the longitudinal 71 and transverse grooves 81 and 82 and to form a structure hollow hollow consists of a plurality of separate channels whose ends open into the two cavities formed by the grooves 81 and 82 also closed by the element 61.
  • These channels have the function of circulating the coolant inside the heat exchange zone so that the latter comes into contact with the surface 64.
  • the dimensions of the longitudinal grooves are preferably defined so to maximize the heat exchange surface.
  • the element 61 is preferably made of the same material as the supporting structure 62.
  • the longitudinal 71 and transverse grooves 81 and 82 are made in such a way that the fixing of the element 61 on the supporting structure 62 brings the inner face of the element 61 into contact with the edges of each of the flutes, so that each groove thus covered forms a separate channel from the other channels constituted by the other flutes.
  • the cover 61 is fixed on the heat exchange face 64 by screws 101, as shown in FIG. 10.
  • it then comprises holes 73 through which the screws pass to come to meet each other. housed in the threads 74 provided for this purpose on the structure 62.
  • this assembly can be carried out by any known sealing assembly, by welding or brazing the cover on the face 64 for example.
  • the cover 61 comprises, as shown in Figure 9, two orifices 91 and 92 which pass through from one side. These two orifices are positioned so as to open into one or the other of the cavities constituted by the transverse grooves 81 and 82 when the lid is mounted on the supporting structure 62, at the widest end of the cavity considered. These grooves are artificially materialized by dashed lines 93 and 94 in FIG. 9.
  • these orifices are surrounded by fixing points, threaded holes 95 for example, arranged so as to allow the attachment, by means of a flange, for example, of a nozzle or more generally of an interface, allowing connect a pipe to the device.
  • the photovoltaic modules consist of panels, themselves made of photovoltaic cells. Each module is thus housed in a channel 65, the panels constituting this module being arranged on the base 66 and the walls 67 and 68 of the corresponding channel. These panels are fixed on the walls 66, 67 and 68 by any means likely to ensure good thermal contact with these walls and, consequently, with the entire bearing structure 62.
  • the device according to the invention comprises a bearing structure which also constitutes the means for transferring thermal energy to a heat transfer fluid which circulates inside this structure through pipes, the photovoltaic modules being fixed directly on this supporting structure.
  • the device according to the invention is designed, in this second embodiment as in the first embodiment, to be associated with a fluid circulation circuit circulating a coolant fluid, a preferably cooled fluid, through the pipes. housed in the supporting structure.
  • the heat transfer fluid circulates in the hollow structure delimited by the face 64 of the supporting structure 62 and by the internal face of the cover 61.
  • the orifices 91 and 92 are equipped with means for connecting the pipes to the device, the connection nozzles 1002 and 1003, as shown in Figure 10, for example.
  • the coolant is thus introduced into the hollow structure through the inlet orifice 91 and opens into the distribution pipe formed by the transverse groove 81 where it is distributed in the pipes formed by the longitudinal grooves 71. After passing through the various longitudinal ducts, the fluid opens into the manifold constituted by the pipe formed by the transverse groove 82 and spring of the device through the outlet orifice 92 and is reintroduced into the circulation circuit.
  • grooves 81 and 82 advantageously makes it possible to form a distribution pipe and a manifold which ensure that the fluid is distributed in the various longitudinal pipes with a substantially constant pressure.
  • the heat transfer fluid thus comes into contact with the heat transfer face 64 of the supporting structure 62 in such a way that heat transfer occurs between the bearing structure and the fluid.
  • coolant the first transmitting to the second the thermal energy that is transmitted to it by the photovoltaic panels.
  • This exchange ensures the cooling of the supporting structure and consequently that of the photovoltaic panels.
  • the temperature of the heat transfer liquid at the outlet is higher than its inlet temperature.
  • the coolant circulation circuit is generally designed to ensure the injection into the device of a coolant whose temperature is lower than the temperature of the device in operation. It may for example consist of a set of distribution pipes connected to the inlet of the device according to the invention and a set of collection pipes connected to the outlet of the same device, these sets of pipes being mounted respectively on the outlet and the entry of a cooling system.
  • the device according to the invention comprises means for increasing the illumination of the photovoltaic cells constituting the panels arranged on the side walls of the surface. 'exposure.
  • These means are constituted here for each module of a hollow semi-reflective element 1004, of triangular section whose length is substantially equal to that of the channel 65 on the walls of which the panels 3, 3 'and 4 are arranged. As illustrated in FIG.
  • the direct light rays illuminating perpendicularly the exposure surface of the device are thus partially transmitted to the photovoltaic panel placed on the base 66 of the channel 65, as indicated by the arrow 1006, and partially reflected on the panels placed on the side walls 67 and 68, as indicated by the arrow 1007.
  • a panel fixed on a given wall advantageously receives at both direct radiation under a given incidence and radiation reflected by one or the other of the walls of the element 1004.
  • the proportions of direct illumination and reflection illumination are mainly a function of the index of reflection of the material and geometry of the device and the angle of incidence of solar irradiance on the wall considered.
  • the device according to the invention in an implementation variant of the second embodiment, may advantageously comprise on the most peripheral lateral walls of the supporting structure 62, which walls do not define no channel, two additional photovoltaic panels 1008 and 1009.
  • an additional reflector, 1013, 1014 is attached to each of the side edges 1015 and 1016 of the supporting structure.
  • These additional reflectors are arranged, as shown in Figure 10, so as to reflect solar radiation to the panel (1008, 1009) with which it is associated.
  • the cooling system of the coolant circulation circuit may consist, as has been said previously, in a simple system. cooling.
  • the device then simply plays the role of photovoltaic generator.
  • it may consist of a heat exchange system integrated for example with a hot water production system.
  • the device according to the invention advantageously plays both a role of an electric power generator and a solar hot water production system, so that the thermal energy dissipated by the photovoltaic panels is not evacuated in vain. The overall energy efficiency is thus significantly improved.
  • the solar hot water production system can be connected to a water balloon conventionally used in the implementation of solar water heaters, while the photovoltaic cells can be connected to a means of accumulation of electrical energy. In this way it is advantageously possible to have a complete system for producing electrical energy and thermal energy and for storing these energies.
  • the photovoltaic module with heat exchanger is a device which can advantageously be in unitary form comprising a bearing structure having an exposure face forming a channel with a base and side walls adapted to receive photovoltaic panels, the latter being fixed on the base and on the side walls, and having a heat transfer zone in which a heat transfer fluid is intended to circulate.
  • the supporting structure thus advantageously serves both as a support for photovoltaic transformation means and as a heat exchange structure.
  • the module according to the invention is generally intended to be associated with other identical modules to form structures of larger size, which are called solar panels, by simple juxtaposition of modules.
  • the modules forming the structure are made inseparably.
  • the carrier structure is then a continuous structure whose exposure face has a juxtaposition of channels 65 as shown in Figure 1 or Figure 10 for example.

Abstract

Le dispositif selon l'invention est un module photovoltaïque à échangeur thermique, comportant une pluralité de panneaux constitués de cellules photovoltaïques, ainsi qu'une structure portante comportant elle- même une surface externe non plane formant une face d'exposition définissant un chenal avec une base centrale plane limitée par deux parois latérales, destinée à être exposée au rayonnement solaire et portant les panneaux de cellules photovoltaïques, et une zone de transfert thermique définissant un cavité présentant une surface interne destinée à entrer en contact avec un fluide caloporteur circulant dans la cavité. Le module transforme le rayonnement solaire reçu en électricité et transfert l'énergie calorifique emmagasinée et produite à un fluide caloporteur, qui après sons passage dans le module est dans un circuit de circulation comportant un échangeur de chaleur. Le caractère non plan de la face d'exposition permet d'accroître la surface de capture du rayonnement solaire et la puissance électrique produite pour une même surface de pose des panneaux photovoltaïques.

Description

Module photovoltaïque avec échangeur thermique Domaine de l'invention
La présente Invention concerne le domaine des panneaux photovoltaïques avec échangeur thermique.
Elle se rapporte plus particulière à un dispositif comportant des modules de capture solaire comprenant des cellules photovoltaïques et des échangeurs thermiques, l'ensemble étant disposé de façon à optimiser le rendement des cellules photovoltaïques et à transporter l'énergie calorifique captée de façon optimisée Contexte de l'invention - Art antérieur
Traditionnellement, les modules de capture du rayonnement solaires constituant les panneaux solaires sont destinés à un usage photovoltaïque ou bien thermique. Autrement dit, les panneaux solaires couramment mis en œuvre comportent généralement soit des cellules photovoltaïques destinées à produire de l'électricité, soit des capteurs thermiques conçus pour récupérer la chaleur produite par absorption du rayonnement solaire. Il est pourtant évident que la combinaison des deux fonctions dans une même surface de panneaux permettrait de multiplier les possibilités d'installation de ce type de dispositifs sur les toits des habitations qui sont toujours limités en termes de surface notamment si l'on prend en considération l'orientation par rapport au soleil.
Par ailleurs, lorsque des modules comporte des cellules photovoltaïques et des moyens d'échange thermiques, ces derniers ne sont pas destinés à transmettre l'énergie thermique captée, par effet Caloporteur, vers un chauffe eau par exemple, mais à participer au refroidissement des cellules photovoltaïques afin d'augmenter le rendement de ces dernières. Autrement dit, la présence de moyens de capture de chaleur n'a pour seul objet que de faciliter le refroidissement des cellules photovoltaïques, l'énergie calorifique produite lors de la capture du rayonnement solaire n'étant donc pas valorisée.
De plus, la plupart des panneaux utilisant des ensembles constitués de cellules photovoltaïques et d'échangeurs thermiques sont en général positionnés par couches planes. Par exemple, un module plan constitué de cellules photovoltaïques constitue une couche du dispositif et se superpose à un réseau tubulaire dans lequel circule dans un Parallélépipède rectangle sous le plan de cellules photovoltaïques. On obtient ainsi des structures mixtes planes comportant un plan de cellules photovoltaïques sous lequel est placé, en contact avec ce plan, un dispositif de refroidissement qui capture l'énergie thermique dissipée par les cellules ; ce dispositif pouvant consister en une circulation de fluide de refroidissement, gaz ou liquide.
Le brevet FR 2 924 664 (PROISY e.), par exemple décrit un dispositif présentant un ensemble de cellules photovoltaïques sur une première face destinée à être exposée au rayonnement solaire, un échangeur thermique sur une seconde face destiné au passage d'un fluide refroidissement constitué notamment de moyens de passage d'air puisé.
Des modules solaires que l'on pourra qualifier d'hybrides commencent à apparaître dans l'art antérieur et notamment à être commercialisés. Parmi la littérature, certains brevets décrivent des dispositifs qui tentent de répondre à cette problématique.
Le brevet FR. 2 779 275 (GARABEDIAN G.) décrit un dispositif formé de modules comprenant des cellules photovoltaïques couvrant les échangeurs thermiques transportant le fluide caloporteur. Dans ce cas, il s'agit encore d'une plaque de cellules photovoltaïques recouvrant une gaine renfermant un fluide Caloporteur et disposée en serpentin.
Un des dispositifs vendus dans le commerce reprend cette approche en proposant des modules, composés de cellules photovoltaïques, sous la face desquels se trouve une plaque en aluminium couvrant un échangeur thermique, avec fluide caloporteur. L'ensemble peut répondre à des besoins en énergie électrique et en liquide à chauffer.
Il en est de même avec les dispositifs décrits dans les brevets WO 01 /99203 (LUTZ P.), WO 2007/129985 (TOH P. S.), WO 2008/044250 (AGUGLIA J.) ou encore WO 2008/125264 (VINCENZ M,).
Le brevet EP 1693 901 (BIUCCHI S., MANTONVANI M.) décrit un dispositif hybride constitué de cellules photovoltaïques comprises dans une chambre circulaire fermée au centre de laquelle est disposé un dispositif Conique réflecteur de lumière, destinée à enfermer la plus grande quantité possible de photons afin de les répercuter sur les cellules qui recouvrent les parois de la pièce. Sur une partie des parois de la chambre peut également être disposé un échangeur thermique sans pour autant que celui-ci soit utilisé pour un refroidissement des cellules photovoltaïques ou pour optimiser la surface de liquide caloporteur en contact avec les rayons du soleil.
Toutefois, si ces derniers dispositifs répondent à une problématique hybride, ils ne permettent pas d'obtenir une surface d'échange optimisée que ce soit au niveau des cellules photovoltaïques ou des serpentins transportant les fluides caloporteurs. Autrement dit, les systèmes hybrides existants sont loin d'être optimisés que ce soit en termes de production d'électricité ou en termes d'exploitation de l'énergie calorifique produite et exploitée.
Ainsi, la plupart des capteurs solaires vendus actuellement dans le commerce, pour deux mètres carrés de surface, comprennent des serpentins caloporteurs de douze millimètres de diamètre pour une longueur de vingt mètres. En moyenne, la surface d'échange thermique utile entre le soleil et le liquide caloporteur est donc d'environ soixante quinze décimètres carrés. Or, Il est plus qu'envisageable d'augmenter au moins de moitié cette surface de contact au soleil de façon à augmenter la rentabilité de tels dispositifs ou en diminuant la surface totale ou en augmentant la surface de serpentin en Contact avec la chaleur du soleil, le tout dépendant d'une disposition nouvelle des éléments les uns par rapport aux autres. Autrement dit, il est possible d'optimiser les agencements relatifs des différents éléments, capteurs photovoltaïques et capteurs thermiques de façon à augmenter le rendement d'ensemble pour une surface de capture donnée, que ce soit en termes de production d'électricité qu'en termes d'utilisation de l'énergie calorifique produite.
L'art antérieur ne permet donc pas de résoudre de manière satisfaisante le problème de l'optimisation des modules destinés à produire de l'énergie électrique et calorifique à partir de l'ensoleillement naturel. Sommaire de l'invention
La présente invention a pour but de remédier à ces inconvénients, en proposant un dispositif comportant des modules de capture solaire comprenant des cellules photovoltaïques et des échangeurs thermiques, ou plus généralement des moyens d'échange thermique, l'ensemble étant disposé de façon à optimiser le rendement des cellules photovoltaïques et à transporter l'énergie calorifique produite de façon optimisée.
A cet effet, l'invention a pour objet un module photovoltaïque à échangeur thermique, comportant une pluralité de panneaux constitués de cellules photovoltaïques, caractérisé en ce qu'il comporte en outre une structure portante comportant elle-même une surface externe non plane formant une face d'exposition définissant un chenal avec une base centrale plane limitée par deux parois latérales, destinée à être exposée au rayonnement solaire et portant les panneaux de cellules photovoltaïques, et une zone de transfert thermique présentant une surface destinée a entrer en contact avec un fluide caloporteur circulant à sa surface.
Avantageusement, l'énergie calorifique emmagasinée et produite par les panneaux de cellules photovoltaïques est ainsi transmise par la structure portante au fluide caloporteur, ladite structure faisant office de caloduc.
Selon un premier mode de réalisation du dispositif selon l'invention la structure portante est constituée de canalisations aplaties sur sensiblement toute leur longueur, disposées selon la longueur du chenal et dans lesquelles circule un fluide caloporteur, lesdites canalisations formant un moyen de transport dudit fluide caloporteur à l'intérieur de la structure, lesdites canalisations formant la base centrale ainsi que les parois du chenal, les panneaux de cellules photovoltaïques étant fixés sur les parois desdites canalisations exposées au rayonnement solaire qui forment la face d'exposition de la structure, les parois internes des canalisations formant la zone de transfert thermique.
Avantageusement, l'élément central et les éléments latéraux formant lesdits moyens de transport du fluide caloporteur constituent des moyens de refroidissement desdits panneaux de cellules photovoltaïques.
Selon une caractéristique de ce mode de réalisation, les canalisations formant la structure portante sont agencées de façon à former un chenal ayant sensiblement une forme de U en coupe transversale. Selon une autre caractéristique, le dispositif selon l'invention comportant un élément d'arrivée, ou moyen de transport d'arrivée, du fluide caloporteur et un élément de départ, ou moyen de transport de départ, dudit fluide, lesdites canalisations conduisent le fluide caloporteur depuis le moyen de transport de fluide caloporteur d'arrivée vers le moyen de transport de fluide caloporteur de départ.
Selon une autre caractéristique, lesdits moyens d'arrivée et de départ de fluide caloporteur sont configurés pour pouvoir être reliés entre eux par un échangeur thermique de refroidissement du fluide caloporteur après son passage dans la structure portante. Autrement dit, selon une autre caractéristique, les éléments d'arrivée et de départ de fluide caloporteur sont configurés pour pouvoir être reliés entre eux, extérieurement, par un échangeur thermique qui réalise le refroidissement du fluide caloporteur après son passage dans le dispositif.
Selon un second mode de réalisation du dispositif selon l'invention la structure portante est constituée par un bloc de matériau bon conducteur thermique comportant une face d'exposition non plane formant une chenal sur les parois duquel sont fixés les panneaux de cellules photovoltaïques, et une face de transfert thermique formant une cavité ouverte et par une plaque en matériau conducteur formant un couvercle pour cette cavité.
Ladite cavité comporte une pluralité de cannelures longitudinales les extrémités des dites cannelures débouchant sur deux cannelures transversales. Ladite face de transfert thermique est configurée de telle façon que lorsque la cavité formée est recouverte par la plaque formant couvercle, les cannelures longitudinales et transversales forment des canalisations séparées dans lesquelles circule le fluide caloporteur, les canalisations transversales communiquant avec les deux canalisations transversales par leurs extrémités. Le couvercle est muni de deux orifices diamétralement opposés disposés de façon à déboucher aux extrémités opposées des deux canalisations formées par les cannelures transversales.
Selon une caractéristique de ce mode de réalisation, les cannelures transversales sont configurées pour former une canalisation de distribution du fluide caloporteur à l'entrée des canalisations longitudinales et un collecteur du fluide caloporteur en sortie des canalisations longitudinales. Lesdites canalisations transversales présentent chacune une section qui varie de manière continue sur leur longueur, les orifices d'entrée et de sortie du fluide caloporteur étant agencés de façon à déboucher sur les extrémités les plus larges desdites canalisations.
Selon une autre caractéristique, le couvercle comporte au niveau de chacun des orifices des moyens pour fixer un élément de connexion permettant le raccord du dispositif avec un système externe de circulation et de conditionnement du fluide caloporteur.
Selon un mode avantageux de réalisation, chaque module comporte un moyen de réfraction et de réflexion des rayons du soleil logé dans l'espace délimité par la les parois de la face d'exposition qui portent les panneaux de cellules photovoltaïques.
Selon une caractéristique de ce mode de réalisation, un dispositif optique passif est logé dans la cavité intérieure du chenal, ledit dispositif comportant deux lames semi-transparentes arrangées de façon à former les faces adjacentes d'un prisme triangulaire l'arête joignant ces deux faces étant dirigée vers l'extérieur du chenal; lesdites lames semi réfléchissantes étant dimensionnées de façon on réfléchir une partie du rayonnement direct reçu par la face d'exposition sur l'une ou l'autre des parois du chenal.
L'invention a également pour objet un panneau photovoltaïque à échangeur thermique, comportant une pluralité de modules photovoltaïques à échangeurs thermiques selon l'invention, juxtaposés les uns aux autres, les structures portantes des différents modules étant mécaniquement associées pour former une structure portante commune comportant une face d'exposition formant une pluralité de chenaux sur les parois desquels sont montés les panneaux de cellules photovoltaïques constituant les différents modules et une surface de transfert thermique couvrant la totalité des modules, la structure portante unique permettant d'optimiser la place occupée par le panneau ainsi formé. Selon une caractéristique, ledit panneau comporte un système réalisant circulation du fluide caloporteur et de conditionnement du fluide caloporteur, ce système comportant lui-même un échangeur thermique permettant de refroidir le fluide caloporteur ayant traversé la cavité formant la zone d'échange thermique du panneau, avant son renvoi vers le panneau.
Selon une autre caractéristique, ledit panneau comporte en outre, fixés sur les parois latérales les plus périphériques de la structure portante, deux panneaux photovoltaïques additionnels et deux réflecteurs additionnels, un desdits réflecteurs étant fixé sur chacun des bords latéraux de la structure portante, ces réflecteurs additionnels étant agencés de façon à réfléchir le rayonnement solaire vers le panneau auquel il est associé. L'invention a également pour objet un système global de production d'énergie, caractérisé en ce qu'il comporte une pluralité de panneaux photovoltaïques selon l'invention et des moyens pour utiliser la chaleur produit dans l'échangeur de chaleur pour chauffer une réserve d'eau. Brève description des dessins
D'autres caractéristiques et avantages de l'invention seront mieux compris à la lecture de la description qui va suivre, d'un exemple de réalisation en se réfèrent aux figures annexés sur lesquels :
- La figure 1 représente une vue en coupe transversale de deux modules de capture solaire selon un premier mode de réalisation de l'invention ;
- La figure 2 représente une vue en coupe longitudinale partielle, dans un plan parallèle au plan de pose du module, d'une des extrémités de deux modules de capture solaire selon le premier mode de réalisation, ces modules étant reliées au moyen de transport de fluide caloporteur « froid » ;
- La figure 3 représente une vue en coupe transversale d'un module selon le premier mode de réalisation entouré de deux moyens de refroidissement latéraux et d'un moyen de refroidissement central ; - La figure 4 représente une coupe longitudinale en vue de dessus, d'un panneau photovoltaïque à échangeur thermique selon le premier mode de réalisation de l'invention ;
- La figure 5 représente une vue en coupe transversale d'un module selon une variante du premier mode de réalisation de l'invention entouré de deux moyens de refroidissement latéraux et d'un moyen de refroidissement central ;
- la figure 6, une vue d'ensemble d'une structure portante du dispositif selon l'invention dans un second mode de réalisation, la structure étant commune à deux modules ;
- la figure 7, une vue en coupe transversale du dispositif selon l'invention dans ce second mode de réalisation ;
- la figure 8, une vue de dessous de la face d'échange thermique de la structure portante du dispositif selon l'invention dans un second mode de réalisation ;
- la figure 9, une vue de la face externe de l'élément formant le couvercle de la zone d'échange thermique de la structure portante du dispositif selon l'invention dans un second mode de réalisation ;
- la figure 10, une vue schématique de face d'un panneau photovoltaïque à échangeur thermique selon l'invention.
Description détaillée des modes préférés de réalisation.
Pour optimiser le rendement d'un dispositif modulaire classique de capture solaire hybride, il est donc nécessaire d'obtenir une surface d'échange supérieure à la surface d'ensoleillement reçue selon le plan sur lequel repose le dispositif. A ce titre l'invention a pour effet de permettre, connaissant la surface au sol disponible pour implanter des capteurs solaires, de disposer d'une surface exposée plus importante que la surface au sol en jouant sur l'effet de volume dont bénéficie la surface d'exposition des modules du dispositif selon l'invention, surface non plane par principe.
Toutefois, si la quantité de lumière absorbée dans la matière des cellules photovoltaïques sous forme de Photons, autrement dit la quantité d'énergie absorbée par les cellules photovoltaïques sous l'action du rayonnement solaire, augmente, la température des cellules augmente également. Or pour être efficaces, les cellules photovoltaïques doivent être maintenues à une certaine température et ne pas dépasser une température maximum limite. C'est une des raisons pour lesquelles le dispositif selon l'invention comprend un moyen de refroidissement thermodynamique des cellules photovoltaïques dont les performances en production d'électricité se trouvent ainsi améliorées.
A cet effet, le dispositif selon l'invention consiste en un module photovoltaïque comportant une structure portante présentant une face d'exposition aux rayons solaires, non plane, formant une paroi de base limitée par des parois latérales. Cette surface définit un chenal, une gorge, dont la paroi de base plane représente le fond. Selon l'invention, les parois latérales sont plus ou moins inclinées, l'angle d'inclinaison par rapport au plan défini par la paroi de base, ainsi que la largeur de la paroi de base et la hauteur des parois latérales étant fonction de l'éclairement désiré.
Selon l'invention chacune des parois, aussi bien la paroi de base que les parois latérales, est couverte d'un panneau de cellules photovoltaïques.
Par ailleurs, la structure portante du module photovoltaïque présente une face d'échange thermique définissant une zone de transfert thermique dans laquelle circule un fluide caloporteur. La zone de transfert thermique de la structure est configurée de façon à maximiser le contact et les échanges thermiques avec le fluide caloporteur.
Selon l'invention, la zone de transfert thermique est configurée et dimensionnée de telle façon que pendant sa circulation à l'intérieur de cette zone, le fluide caloporteur reste en contact avec la face d'échange thermique de la structure durant un temps suffisamment long pour qu'il récupère suffisamment de l'énergie calorifique transmise par la structure portante pour que les cellules photovoltaïques restent en deçà de leur température maximale d'utilisation, compte tenu de l'ensoleillement attendu, et de préférence au voisinage de la température optimale.
La zone de transfert thermique comporte en outre un chemin d'entrée du fluide terminé par un orifice d'entrée ainsi qu'un chemin de sortie du fluide terminé par un orifice de sortie. Ces deux chemins sont dimensionnés et agencés à l'intérieur de la structure portante de façons à ce qu'entre l'entrée et la sortie, le fluide caloporteur parcourt la totalité de la zone d'échange thermique avec un débit de préférence constant. Les orifices d'entrée et de sortie sont par ailleurs pourvu de terminaisons permettant de raccorder l'orifice de sortie sur l'orifice d'entrée par l'intermédiaire d'un échangeur thermique externe, de façon à évacuer et éventuellement à récupérer l'énergie calorifique transportée par le fluide caloporteur après son passage dans la zone d'échange thermique de la structure portante.
Selon l'invention, la structure portante qui réalise le transfert thermique est réalisée dans un matériau bon conducteur thermique, du laiton, du cuivre ou de l'aluminium par exemple.
Le contact thermique entre la structure portante et les moyens de capture solaire, les panneaux de cellules photovoltaïques, peut par ailleurs, selon le mode de réalisation, être renforcé en interposant une couche d'interface en matériau bon conducteur thermique, ou une pâte conductrice thermique entre les deux éléments.
Les figures 1 à 5 présentent, à titre d'exemple de mise en œuvre, un premier mode de réalisation de l'invention.
Selon ce premier mode de réalisation pris comme exemple non limitatif, un panneau photovoltaïque avec échangeur thermique comprend, comme l'illustre la figure 1 , un ensemble de modules 2 photovoltaïques selon l'invention, comprenant des moyens de transformation photovoltaïque, 3, 3' et 4, et des moyens de transformation calorifique 5, 1 1 , ou plus précisément d'échanges thermiques. Les moyens d'échanges thermiques 5, 1 1 sont constitués de moyens de circulation d'un fluide caloporteur le long de la face d'échange thermique de chaque module. Ces moyens présentent pour chaque module un élément central (1 1 ) en contact avec la base (4) de chaque moyen de transformation photovoltaïques, et des éléments latéraux (6) en contact avec les parois latérales (3) de chacun de ces moyens. Ils forment ainsi un support pour les moyens de transformation photovoltaïques, 3, 3' et 4.
Les moyens de transformation photovoltaïque 3, 3' et 4, des cellules photovoltaïques de préférence, dissipent, lorsqu'ils sont éclairés, de l'énergie thermique qui est récupérée par les moyens de transformation calorifique 5, 1 1 qui sont chargés de la capture et du transfert de l'énergie calorifique produite par les moyens de transformation photovoltaïques 3, 3' et 4.
Dans ce mode de réalisation, chaque module photovoltaïque comprend trois parties longitudinales et planes. Ces trois parties sont reliées entre elles sur leurs côtés les plus longs. L'ensemble formant un chenal en « U » fermé à chaque extrémité comportant une face de base, ou partie centrale 4a et deux faces, ou parties, latérales 3a et 3a'. La partie centrale 4 est liée sur chacune de ses longueurs à une partie latérale 3 et 3'. L'ensemble ainsi constitué présente une face concave 3a, 3a' et 4a délimitant le chenal 14 ou face d'exposition destinée à être éclairée par le rayonnement solaire, et une face convexe 3b, 3b' et 4b formant une face externe destinée au transfert d'énergie calorifique.
La base plane que constitue la partie centrale du « U» est recouverte sur une face 4a d'un film photovoltaïque chargé de recevoir les rayonnements solaires afin de les transformer en énergie électrique. Le film photovoltaïque est de préférence constitué d'un ensemble de cellules photovoltaïques couvrant la surface de la base 4a. En continuité de ce film photovoltaïque, les deux parties, ou parois, latérales 3 et 3' sont recouvertes également sur toute leur surface de la face située du même côté 3a, 3a' que la face photovoltaïque 4a de la partie centrale, d'un film photovoltaïque. La partie intérieure du « U », autrement dit du chenal 14, constitue ainsi un piège à rayonnement solaire dédié à la transformation de cette énergie solaire en électricité. La surface de captation du rayonnement solaire est ainsi augmentée par rapport à celle obtenue avec une surface plane qui serait l'équivalent de la surface occupée par la partie centrale 4 du « U ». Selon l'invention, comme l'illustre la figure 2, chaque extrémité des «
U» formés par les modules 2 est fermée par une paroi dont la face intérieure est recouverte d'un panneau de cellules photovoltaïques 12.
Dans ce mode de réalisation, les modules 2 constituant un panneau photovoltaïque avec échangeur thermique, six modules par exemple, les moyens de transformation calorifiques latéraux 5 et centraux 1 1 constituent le châssis en forme de « U » de chacun des modules 2. Autrement dit les moyens de transfert thermique, qui portent les cellules photovoltaïques sur leur surface, constituent la structure portante de chaque module photovoltaïque.
Pour un panneau de six modules, par exemple, on utilise ainsi six moyens de transformation calorifique, six éléments, centraux 1 1 constituant le fond des « U » et sept moyens de transformation calorifique, sept éléments, Latéraux 5 supportant les cotés de chaque « U ».
Selon ce premier mode de réalisation, les moyens de transformation Calorifique 5, 1 1 sont des tuyaux de cuivre aplatis creux à l'intérieur desquels circule un liquide caloporteur 6. Ces tuyaux forment ainsi également la zone d'échange thermique de la structure portante, zone qui occupe ici, de ce fait, la totalité du volume de la structure portante constituée par les tuyaux eux- mêmes.
Lesdits moyens de transformation calorifique, dans lesquels circule le fluide caloporteur, sont constitués, par exemple, de tuyaux de cuivre de trente à trente deux millimètres de diamètre, aplatis et disposés longitudinalement, comme l'illustre la figure 1 notamment.
Une fois aplatis, les tuyaux font une largeur de huit centimètres environ, ce qui correspond sensiblement à la hauteur de passage du fluide caloporteur. L'épaisseur de se passage est alors d'environ deux millimètres. II est parfaitement envisageable d'utiliser des tuyaux de hauteur différente tant qu'ils sont plats et permettent de remplir deux fonctions, celle de transport de fluide caloporteur et celle du châssis.
La longueur de chacun des tuyaux (5, 1 1 ) étant fixée, le panneau photovoltaïque réalisé présente une surface de base donnée La surface thermique exploitable en revanche s'avère avantageusement bien supérieure.
Ainsi, par exemple, pour des tuyaux présentant une longueur d'environ trente trois centimètres, la surface au sol occupée par le panneau est environ égale à trente trois centimètres sur trente trois centimètres, soit environ onze décimètres carrés. Tandis que la surface exploitable est d'environ quarante huit décimètres carrés.
Un tel panneau permet le montage de cent vingt cellules solaires de 0,5 V pour 400 mA, de 76 mm sur 46 mm.
Sur chacune des faces des tuyaux aplatis constituant le châssis sont collées les cellules photovoltaïques. La colle utilisée est de préférence une colle électriquement isolante. Dans ce premier mode de réalisation, comme l'illustre les figures 1 à
5, les modules photovoltaïques forment des cavités en forme de U de sorte que les parois latérales intérieures 3a et 3a' des modules sont sensiblement perpendiculaires à la base 4a. Compte tenu du caractère réfléchissant de la surface des cellules photovoltaïques utilisées ces modules remplissent autant un rôle d'absorption et transformation de photons en électricité que de réflexion de ces photons vers la partie centrale 4a, permettant ainsi de concentrer une plus grande quantité de photons dans le module de transformation du rayonnement lumineux en énergie électrique (module photovoltaïques).
Dans une forme préférée de ce mode de réalisation, La largeur de chaque paroi Latérale 3 et 3', autrement dit la hauteur des parois du chenal, est identique et une fois et demi supérieure à la largeur de la partie centrale 4. La surface de chaque paroi est donc égale à une fois et demie la surface de la partie centrale. Il en résulte que la surface totale des panneaux de cellules photovoltaïques est 4 fois supérieure à la surface nécessaire pour positionner le module complet composé par ces panneaux de cellules photovoltaïques. La surface d'échange est donc supérieure à la surface d'ensoleillement reçue. Autrement dit, la surface de capture du rayonnement solaire est sensiblement supérieure à la surface occupée au sol par un module photovoltaïque 2 selon l'invention. Pour un mètre carré d'ensoleillement reçu, c'est à dire d'emprise au sol, surface prise par un panneau photovoltaïque plan, le dispositif permet de disposer de quatre mètres carrés de surface d'échange.
Les tuyaux de transport du fluide caloporteur sont reliés d'un coté du panneau, par une de leurs extrémités, à un moyen de transport du fluide caloporteur froid 7, qui alimente les différents tuyaux 6 en fluide caloporteur, alors qu'ils sont reliés, par leur autre extrémité, au moyen de transport du fluide caloporteur réchauffé 8, ou collecteur, qui récupère le fluide caloporteur après son passage au sein de la zone d'échange thermique du dispositif.
Lesdits moyens de transport de fluide sont, par exemple, des collecteurs constitués de tuyaux de cuivre de trente à trente deux millimètres de diamètre, soudés à un élément de cuivre creux assurant l'étanchéité et le transport du fluide caloporteur vers les entrées et sorties de chacun des moyens de transport (5, 1 1 ) dudit fluide, autrement dit les tuyaux aplatis dans lequel circule le fluide caloporteur à l'intérieur du dispositif.
Selon une forme particulière de ce mode de réalisation, à intérieur de chacun des « U » des modules photovoltaïques 2 sont positionnés des moyens de réflexion et de réfraction des rayons du soleil. Ceci afin d'emprisonner la plus grande quantité possible des rayons solaires captés transformables par les cellules photovoltaïques.
Dans une première variante de cette forme de réalisation, illustrée par la figure 3, un réflecteur 9 en plastique rigide ou en verre ou tout autre matériau répondant à des propriétés connues de réflexion et/ou de réfraction du soleil et sensiblement transparent et convexe est posé au fond de chaque « U ». Alternativement, selon une autre variante illustrée sur la figure 3, une lame plane semi-réfléchissante 10 est positionné de biais entre deux longueurs opposées d'une même diagonale du parallélépipède rectangle formé par le « U ». Dans une autre variante encore, non illustrée sur les figures, le réflecteur peut consister en deux plaques rectangulaires reliées sur une de leur longueur et formant un V inversé 13 à l'intérieur du « U ». Les figures 6 à 10 présentent, à titre d'exemple de mise en œuvre également, un second mode de réalisation de l'invention.
Selon ce second mode de réalisation pris également comme exemple non limitatif, chaque panneau photovoltaïque avec échangeur thermique, comprend, comme l'illustre les figures 6 et 7, un ensemble de modules (2) comprenant des moyens de transformation photovoltaïques 3, 3' et 4 et une structure portante 62 comportant une zone de transfert thermique permettant d'évacuer l'énergie calorifique produite par les moyens de transformation photovoltaïques. Selon ce mode de réalisation, les moyens de transfert thermique comportent deux éléments 61 et 62, l'élément 62 constituant la structure portante des moyens de transformation photovoltaïques 3, 3' et 4.
Dans ce mode de réalisation la structure portante 62 est, de préférence mais non nécessairement, commune à un ensemble de modules photovoltaïques avec échangeur thermique selon l'invention. Cependant, une structure portante commune permet avantageusement de juxtaposer un ensemble de dispositifs sur une surface minimale.
La structure 62 comporte une face d'exposition 63, destinée à recevoir le rayonnement solaire et une face d'échange thermique 64 qui constitue la zone de transfert thermique.
La face d'exposition 63 est constituée par une surface non plane (i.e. non inscrite dans un plan) formant, selon que l'on réalise une structure comportant un ou plusieurs dispositifs selon l'invention, un ou plusieurs chenaux 65, chaque chenal étant constitué d'une base plane 66 et des parois obliques 67 et 68, sur lesquelles sont montées les cellules photovoltaïques qui constituent les moyens de transformation photovoltaïque 3, 3' et 4 d'un module, ou panneaux photovoltaïques.
La face d'échange thermique 64, quant à elle, est une surface qui comporte un ensemble de cannelures longitudinales, suivant l'axe oy mentionné sur la figure 6, logées dans l'épaisseur du matériau, qui couvrent sensiblement l'ensemble d'une partie centrale de la face d'échange thermique 64, la périphérie de la face d'échange constituant un bord plat 72, comme illustré sur la figure 8. Ces cannelures longitudinales, d'un diamètre défini, forment des canaux ouverts 71 .
Elle présente également deux cannelures transversales 81 et 82 de placées au niveau des deux extrémités 69 et 61 1 correspondant aux faces avant et arrière de la structure et qui constituent deux canaux sur lesquels débouchent les cannelures longitudinales 71 .
Ces cannelures transversales 81 et 82, également réalisées dans l'épaisseur du matériau, présentent une section qui varie continûment sur leur longueur, et donc deux extrémités de sections différentes. Préférentiellement, ces deux cannelures ont des formes sensiblement identiques et présentent chacune un bord externe sensiblement parallèle à la paroi avant ou arrière de la structure 62, comme illustré sur la figure 8.
Les deux cannelures transversales 81 et 82 sont en outre agencées de telle sorte que l'extrémité la plus étroite 83 de la cannelure transversale 81 est positionnée en regard de l'extrémité la plus large 86 de la cannelure 82.
Selon l'invention, les cannelures 71 , 81 et 82 peuvent présenter une section de forme variable, comme par exemple une section triangulaire, comme illustré par la figure 7, ou encore une section circulaire ou rectangulaire.
Du point de vue de la réalisation pratique, la structure portante 62 est réalisée dans un matériau choisi pour ses qualités de conduction thermique, un matériau métallique tel que le cuivre ou l'aluminium par exemple. La structure portante 62 est associée à un élément plan 61 formant couvercle qui est destiné à être monté sur la structure portante, contre la face d'échange thermique 64 de manière à fermer les cannelures longitudinales 71 et transversales 81 et 82 et à former une structure creuse étanche constituée d'une pluralité de canaux séparés dont les extrémités débouchent dans les deux cavités formées par les cannelures 81 et 82 également fermées par l'élément 61 .
Ces canaux ont pour fonction de faire circuler le fluide caloporteur à l'intérieur de la zone d'échange thermique de façon à ce que ce dernier entre en contact avec la surface 64. A cet effet les dimensions des cannelures longitudinales sont définies préférentiellement de façon à maximiser la surface d'échange thermique.
Du point de vue de la réalisation pratique, l'élément 61 est préférentiellement réalisé dans le même matériau que la structure portante 62.
Il est à noter par ailleurs que les cannelures longitudinales 71 et transversales, 81 et 82, sont réalisées de telle façon que la fixation de l'élément 61 sur la structure portante 62 amène la face interne de l'élément 61 en contact avec les bord de chacune des cannelures, de sorte que chaque cannelure ainsi recouverte forme un canal séparé des autres canaux constitué par les autres cannelures.
Selon un mode de réalisation avantageux, le couvercle 61 est fixé sur la face d'échange thermique 64 par des vis 101 , comme illustré par la figure 10. A cet effet il comporte alors des trous 73 à travers lesquels passent les vis pour venir se loger dans les filetages 74 prévus à cet effet sur la structure 62. Pour renforcer l'étanchéité de l'assemblage il est par ailleurs possible d'interposer un joint entre ces deux pièces. Alternativement, cependant, cet assemblage peut être réalisé par tout moyen d'assemblage étanche connu, par soudage ou brasage du couvercle sur la face 64 par exemple.
Dans ce second mode de réalisation, le couvercle 61 comporte, comme l'illustre la figure 9, deux orifices 91 et 92 qui le traversent de part en part. Ces deux orifices sont positionnés de façon à déboucher dans l'une ou l'autre des cavités constituées par les cannelures transversales 81 et 82 lorsque le couvercle est monté sur la structure portante 62, au niveau de l'extrémité la plus large de la cavité considérée. Ces cannelures sont artificiellement matérialisées par des traits pointillés 93 et 94 sur la figure 9.
Préférentiellement, ces orifices sont entourés de points de fixation, des trous filetés 95 par exemple, agencés de façon à permettre la fixation, à l'aide d'une bride par exemple, d'une buse ou plus généralement d'une interface, permettant de raccorder un tuyau au dispositif. Les modules photovoltaïques sont constitués de panneaux, eux- mêmes constitués de cellules photovoltaïques. Chaque module est ainsi logé dans un chenal 65, les panneaux constituant ce module étant disposés sur la base 66 et les parois 67 et 68 du chenal correspondant. Ces panneaux sont fixés sur les parois 66, 67 et 68 par tout moyen susceptible d'assurer un bon contact thermique avec ces parois et, par suite, avec l'ensemble de la structure portante 62. Ainsi, l'énergie calorifique dissipée par les panneaux photovoltaïques peut être transmise à l'ensemble de la structure portante et, par suite, à la zone d'échange thermique. Ainsi, comme dans le premier mode de réalisation décrit, le dispositif selon l'invention comporte une structure portante qui constitue également les moyens de transfert d'énergie thermique à un fluide caloporteur qui circule à l'intérieur de cette structure au travers de canalisations, les modules photovoltaïques étant fixés directement sur cette structure portante.
En fonctionnement, le dispositif selon l'invention est conçu, dans ce second mode de réalisation comme dans le premier, pour être associé à un circuit de circulation de fluide qui fait circuler un fluide caloporteur, un fluide rafraîchi de préférence, à travers les canalisations logées dans la structure portante.
Dans le cas de ce second mode de réalisation plus précisément, le fluide caloporteur circule dans la structure creuse délimitée par la face 64 de la structure portante 62 et par la face interne du couvercle 61 . A cet effet les orifices 91 et 92 sont équipés de moyens permettant le raccordement de canalisations au dispositif, des buses de raccordement 1002 et 1003, comme illustré sur la figure 10, par exemple.
Le fluide caloporteur est ainsi introduit dans la structure creuse par l'orifice d'entrée 91 et débouche dans la canalisation de distribution formée par la cannelure transversale 81 où il est distribué dans les canalisations formées par les cannelures longitudinales 71 . Après son passage dans les différentes canalisations longitudinales, le fluide débouche dans le collecteur constitué par la canalisation formée par la cannelure transversale 82 et ressort du dispositif par l'orifice de sortie 92 et est réintroduit dans le circuit de circulation.
Il est à noter que la structure particulière des cannelures 81 et 82 permet avantageusement de former une canalisation de distribution et un collecteur qui assurent que le fluide est distribué dans les différentes canalisations longitudinales avec une pression sensiblement constante.
Durant son passage dans les canalisations formant la structure creuse, le fluide caloporteur entre ainsi largement en contact avec la face de transfert thermique 64 de la structure portante 62, de sorte qu'il se produit un transfert de chaleur entre la structure portante et le fluide caloporteur, la première transmettant au second l'énergie thermique qui lui est transmise par les panneaux photovoltaïques. Cet échange assure le refroidissement de la structure portante et par voie de conséquence celui des panneaux photovoltaïques. Par suite la température du liquide caloporteur en sortie est plus élevée que sa température en entrée.
Le circuit de circulation du fluide caloporteur est généralement conçu pour assurer l'injection dans le dispositif d'un fluide caloporteur dont la température est inférieure à la température du dispositif en fonctionnement. Il peut par exemple consister en un jeu de canalisations de distribution reliée à l'entrée du dispositif selon l'invention et un jeu de canalisations de collection relié à la sortie du même dispositif, ces jeux de canalisations étant montés respectivement sur la sortie et l'entrée d'une système de refroidissement.
On constitue ainsi un circuit fermé de circulation de fluide dans lequel le fluide caloporteur refroidi par le système de refroidissement est envoyé dans le dispositif, tandis que le fluide caloporteur réchauffé par son passage dans le dispositif est renvoyé au système de refroidissement.
Dans ce second mode de réalisation, de manière analogue à ce qui est réalisé dans le premier, le dispositif selon l'invention comporte des moyens permettant d'augmenter l'éclairement des cellules photovoltaïques constituant les panneaux disposés sur les parois latérales de la surface d'exposition. Ces moyens sont constitués ici pour chaque module d'un élément semi-réfléchissant 1004 creux, de section triangulaire dont la longueur est sensiblement égale à celle du chenal 65 sur les parois duquel les panneaux 3, 3' et 4 sont disposés. Comme l'illustre la figure 10, les rayons lumineux directs éclairant perpendiculairement la surface d'exposition du dispositif, représentés par la flèche 1005, sont ainsi partiellement transmis au panneau photovoltaïque placé sur la base 66 du chenal 65, comme l'indique la flèche 1006, et partiellement réfléchis sur les panneaux placés sur les parois latérales 67 et 68, comme l'indique la flèche 1007. Plus généralement, en fonction de l'incidence de l'éclairement solaire, un panneau fixé sur une paroi donnée reçoit avantageusement à la fois un rayonnement direct sous une incidence donnée et un rayonnement réfléchi par l'une ou l'autre des parois de l'élément 1004. Les proportions d'éclairement direct et d'éclairement par réflexion sont fonction principalement de l'indice de réflexion du matériau et de la géométrie du dispositif et de l'angle d'incidence de l'éclairement solaire sur la paroi considérée.
Afin d'accroître encore la puissance électrique produite, le dispositif selon l'invention, dans une variante de mise en œuvre du second mode de réalisation, peut avantageusement comporter sur les parois latérales les plus périphériques de la structure portante 62, parois qui ne définissent pas de chenal, deux panneaux photovoltaïques additionnels 1008 et 1009. Dans une telle configuration, un réflecteur additionnel, 1013, 1014 est fixé sur chacun des bords latéraux 1015 et 1016 de la structure portante. Ces réflecteurs additionnels sont agencés, comme l'illustre la figure 10, de façon à réfléchir le rayonnement solaire vers le panneau (1008, 1009) auquel il est associé.
Il est à noter que, du point de vue de l'utilisation, et quel que soit le mode de réalisation considéré, le système de refroidissement du circuit de circulation du fluide caloporteur peut consister, comme cela a été dit précédemment, en un simple système de refroidissement. Le dispositif joue alors simplement le rôle de générateur photovoltaïque. Cependant, de manière alternative, il peut consister en un système d'échange de chaleur intégré par exemple à un système de production d'eau chaude. Ainsi, couplé à un tel système, le dispositif selon l'invention joue avantageusement à la fois un rôle de générateur d'énergie électrique et de système de production d'eau chaude solaire, de sorte que l'énergie thermique dissipée par les panneaux photovoltaïques n'est pas évacuée en pure perte. Le rendement énergétique d'ensemble est ainsi sensiblement amélioré. Par ailleurs le système de production d'eau chaude solaire peut être relié un ballon d'eau utilisé classiquement dans la mise en œuvre de chauffe-eau solaire, tandis que les cellules photovoltaïques peuvent être, quant à elles, reliées à un moyen d'accumulation de l'énergie électrique. De la sorte il est avantageusement possible de disposer d'un système complet de production d'énergie électrique et d'énergie thermique et de stockage de ces énergies.
Comme le montre la description précédente, le module photovoltaïque avec échangeur thermique selon l'invention, est un dispositif qui peut avantageusement se présenter sous forme unitaire comportant une structure portante présentant une face d'exposition formant un chenal avec une base et des parois latérales apte à recevoir des panneau photovoltaïques, ceux-ci étant fixés sur la base et sur les parois latérales, et comportant une zone de transfert thermique dans laquelle un fluide caloporteur est destiné à circuler. La structure portante sert ainsi avantageusement à la fois de support aux moyens de transformation photovoltaïques et de structure d'échange thermique.
Cependant le module selon l'invention est généralement destiné à être associé à d'autres modules identiques pour constituer des structures de plus grande dimension, qu'il est convenu d'appeler panneaux solaires, par simple juxtaposition de modules. Dans ce cas cependant, afin d'optimiser l'encombrement d'ensemble, les modules formant la structure sont réalisé de manière indissociable. La structure porteuse est alors une structure continue dont la face d'exposition présente une juxtaposition de chenaux 65 comme illustré par la figure 1 ou la figure 10 par exemple.
Les modifications non substantielles qui découleraient de façon évidente, pour l'homme de l'art, de l'utilisation ou de la fabrication du dispositif selon l'invention dont le brevet est ici requis, sans en altérer les dispositions originales, n'en seraient que de simples équivalents techniques et entrent également dans le cadre de fa présente invention.

Claims

REVENDICATIONS
1 ) Module photovoltaïque à échangeur thermique, comportant une pluralité de panneaux constitués de cellules photovoltaïques, caractérisé en ce qu'il comporte en outre une structure portante comportant elle-même une surface externe non plane formant une
5 face d'exposition définissant un chenal avec une base centrale plane limitée par deux parois latérales, destinée à être exposée au rayonnement solaire et portant les panneaux de cellules photovoltaïques, et une zone de transfert thermique présentant une surface destinée a entrer en contact avec un fluide caloporteur o circulant à sa surface.
2) Module photovoltaïque à échangeur thermique selon la revendication 1 , caractérisé en ce que la structure portante est constituée de canalisations aplaties sur sensiblement toute leur5 longueur, disposées selon la longueur du chenal et dans lesquelles circule un fluide caloporteur, lesdites canalisations formant un moyen de transport dudit fluide caloporteur à l'intérieur de la structure, lesdites canalisations formant la base centrale ainsi que les parois du chenal, les panneaux de cellules photovoltaïques étant fixés sur les0 parois desdites canalisations exposées au rayonnement solaire qui forment la face d'exposition de la structure, les parois internes des canalisations formant la zone de transfert thermique.
3) Module photovoltaïque à échangeur thermique selon la5 revendication 2, caractérisé en ce que les canalisations formant la structure portante sont agencées de façon à former un chenal ayant sensiblement une forme de U en coupe transversale.
4) Module photovoltaïque à échangeur thermique selon l'une des0 revendications 2 ou 3, caractérisé en ce que lesdites canalisations (5,
1 1 ) conduisent un fluide caloporteur depuis un moyen de transport de fluide caloporteur d'arrivée (7) vers un moyen de transport du fluide caloporteur de départ (8) dudit dispositif (1 ). 5) Module photovoltaïque à échangeur thermique selon la revendication 4, caractérisé en ce que lesdits moyens d'arrivée (7) et de départ (8) de fluide caloporteur sont configurés pour pouvoir être reliés entre eux par un échangeur thermique de refroidissement du fluide caloporteur après son passage dans la structure portante.
6) Module photovoltaïque à échangeur thermique selon la revendication 1 , caractérisé en ce que la structure portante est constituée par un bloc de matériau bon conducteur thermique comportant une face d'exposition non plane formant une chenal sur les parois duquel sont fixés les panneaux de cellules photovoltaïques, et une face de transfert thermique formant une cavité ouverte et par une plaque en matériau conducteur formant un couvercle pour cette cavité, ladite cavité comportant une pluralité de cannelures longitudinales les extrémités des dites cannelures débouchant sur deux cannelures transversales, ladite face de transfert thermique étant configurée de telle façon que lorsque la cavité formée est recouverte par la plaque formant couvercle, les cannelures longitudinales et transversales forment des canalisations séparées dans lesquelles circule le fluide caloporteur, les canalisations transversales communiquant avec les deux canalisations transversales par leurs extrémités ; le couvercle étant muni de deux orifices diamétralement opposés disposés de façon à déboucher aux extrémités opposées des deux canalisations formées par les cannelures transversales.
7) Module photovoltaïque à échangeur thermique selon la revendication 6, caractérisé en ce que, les cannelures transversales étant configurées pour former une canalisation de distribution du fluide caloporteur à l'entrée des canalisations longitudinales et un collecteur du fluide caloporteur en sortie des canalisations longitudinales, lesdites canalisations transversales présentent chacune une section qui varie de manière continue sur leur longueur, les orifices d'entrée et de sortie du fluide caloporteur étant agencés de façon à déboucher sur les extrémités les plus larges desdites canalisations.
8) Module photovoltaïque à échangeur thermique selon l'une des revendications 6 ou 7, caractérisé en ce que le couvercle comporte au niveau de chacun des orifices des moyens pour fixer un élément de connexion permettant le raccord du dispositif avec un système externe de circulation et de conditionnement du fluide caloporteur.
9) Module photovoltaïque à échangeur thermique selon l'une quelconque des revendications précédentes, caractérisé en ce que l'intérieur en forme de U de la structure portante comprend un moyen de réfraction et de réflexion des rayons du soleil.
10) Module photovoltaïque à échangeur thermique selon la revendication 9, caractérisé en ce qu'un dispositif optique passif est logé dans la cavité intérieure du chenal, ledit dispositif comportant deux lames semi-transparentes arrangées de façon à former les faces adjacentes d'un prisme triangulaire l'arête joignant ces deux faces étant dirigée vers l'extérieur du chenal; lesdites lames semi réfléchissantes étant dimensionnées de façon à réfléchir une partie du rayonnement direct reçu par la face d'exposition sur l'une ou l'autre des parois du chenal.
1 1 ) Panneau photovoltaïque à échangeur thermique caractérisé en ce qu'il comporte une pluralité de modules photovoltaïques à échangeurs thermiques selon l'une quelconque des revendications précédentes, juxtaposés les uns aux autres, les structures portantes des différents modules étant mécaniquement associées pour former une structure portante commune comportant une face d'exposition formant une pluralité de chenaux sur les parois desquels sont montés les panneaux de cellules photovoltaïques constituant les différents modules et une surface de transfert thermique couvrant la totalité des modules, la structure portante unique permettant d'optimiser la place occupée par le panneau ainsi formé. 12) Panneau photovoltaïque à échangeur thermique selon la revendication 1 1 , caractérisé en ce qu'il comporte en outre un système réalisant la circulation du fluide caloporteur et de conditionnement du fluide caloporteur, ce système comportant lui- même un échangeur thermique permettant de refroidir le fluide caloporteur ayant traversé la cavité formant la zone d'échange thermique du panneau, avant son renvoi vers le panneau.
13) Panneau photovoltaïque à échangeur thermique selon l'une des revendications 1 1 ou 12, caractérisé en ce qu'il comporte en outre, fixés sur les parois latérales les plus périphériques de la structure portante (62), deux panneaux photovoltaïques additionnels (1008, 1009) et deux réflecteurs additionnels (101 3, 1014), un desdits réflecteurs étant fixé sur chacun des bords latéraux (1015, 1016) de la structure portante (62), ces réflecteurs additionnels étant agencés de façon à réfléchir le rayonnement solaire vers le panneau (1008, 1009) auquel il est associé.
14) Système global de production d'énergie, caractérisé en ce qu'il comporte des panneaux photovoltaïques selon l'une des revendications 1 1 à 13 et des moyens pour utiliser la chaleur produit dans l'échangeur de chaleur pour chauffer une réserve d'eau.
PCT/EP2012/065212 2011-08-04 2012-08-03 Module photovoltaïque avec échangeur thermique WO2013017677A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12743722.6A EP2740161A2 (fr) 2011-08-04 2012-08-03 Module photovoltaïque avec échangeur thermique
US14/236,890 US20140150848A1 (en) 2011-08-04 2012-08-03 Photovoltaic module with heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR11/02437 2011-08-04
FR1102437A FR2978815B1 (fr) 2011-08-04 2011-08-04 Module photovoltaique avec echangeur thermique

Publications (2)

Publication Number Publication Date
WO2013017677A2 true WO2013017677A2 (fr) 2013-02-07
WO2013017677A3 WO2013017677A3 (fr) 2013-09-26

Family

ID=46634137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/065212 WO2013017677A2 (fr) 2011-08-04 2012-08-03 Module photovoltaïque avec échangeur thermique

Country Status (4)

Country Link
US (1) US20140150848A1 (fr)
EP (1) EP2740161A2 (fr)
FR (1) FR2978815B1 (fr)
WO (1) WO2013017677A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099560A1 (fr) * 2015-12-10 2017-06-15 Universite Internationale De Rabat Chauffage d'eau et refroidissement de cellules capteurs solaires à concentration
FR3078450A1 (fr) * 2018-02-27 2019-08-30 Charles Henri Lear Ensemble hybride eolien-photovoltaique de production d'energie non intermittente, pouvant supporter les cyclones

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10050584B2 (en) 2016-03-16 2018-08-14 Hardware Labs Performance Systems, Inc. Cooling apparatus for solar panels

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2779275A1 (fr) 1998-05-15 1999-12-03 Girayrd Garabedian Recipient transparent vide d'air, enveloppant un dispositif photovoltaique et un capteur thermique. recipient servant aussi d'isolant thermique pour toiture
WO2001099203A2 (fr) 2000-06-19 2001-12-27 Bekon Umwelschutz & Energietechnik Gmbh Capteur solaire hybride
EP1693901A1 (fr) 2005-02-22 2006-08-23 BIUCCHI, Sergio Generateur d'energie photovoltaique avec co-generation d'energie thermique
WO2007129985A1 (fr) 2006-05-08 2007-11-15 Grenzone Pte Ltd Panneau thermique solaire photovoltaïque intégré
WO2008044250A1 (fr) 2006-10-09 2008-04-17 S.I.E.M. S.R.L. Procédé de fabrication de panneaux solaires du type photovoltaïque et thermique combinés et panneau solaire correspondant
WO2008125264A1 (fr) 2007-04-11 2008-10-23 Vincenz, Manuela Collecteur pour la génération d'énergie électrique et thermique
FR2924664A1 (fr) 2007-12-11 2009-06-12 Zf Lenksysteme Gmbh Servomoteur electrique pour un systeme de direction assistee d'un vehicule

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347574A (ja) * 2002-05-28 2003-12-05 Ebara Corp 太陽電池モジュール
ES2242508B1 (es) * 2003-09-19 2006-11-01 Antonino A. Trimboli Longuetto Escudo termico para la climatizacion de edificios en general.
CN100541046C (zh) * 2006-04-30 2009-09-16 张纪文 一种聚光及聚热的太阳能设备装置
US20100154866A1 (en) * 2008-04-28 2010-06-24 Khan Sitara R Hybrid solar power system
SG168438A1 (en) * 2009-07-28 2011-02-28 Grenzone Pte Ltd Multiple functional roof and wall system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2779275A1 (fr) 1998-05-15 1999-12-03 Girayrd Garabedian Recipient transparent vide d'air, enveloppant un dispositif photovoltaique et un capteur thermique. recipient servant aussi d'isolant thermique pour toiture
WO2001099203A2 (fr) 2000-06-19 2001-12-27 Bekon Umwelschutz & Energietechnik Gmbh Capteur solaire hybride
EP1693901A1 (fr) 2005-02-22 2006-08-23 BIUCCHI, Sergio Generateur d'energie photovoltaique avec co-generation d'energie thermique
WO2007129985A1 (fr) 2006-05-08 2007-11-15 Grenzone Pte Ltd Panneau thermique solaire photovoltaïque intégré
WO2008044250A1 (fr) 2006-10-09 2008-04-17 S.I.E.M. S.R.L. Procédé de fabrication de panneaux solaires du type photovoltaïque et thermique combinés et panneau solaire correspondant
WO2008125264A1 (fr) 2007-04-11 2008-10-23 Vincenz, Manuela Collecteur pour la génération d'énergie électrique et thermique
FR2924664A1 (fr) 2007-12-11 2009-06-12 Zf Lenksysteme Gmbh Servomoteur electrique pour un systeme de direction assistee d'un vehicule

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2740161A2

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099560A1 (fr) * 2015-12-10 2017-06-15 Universite Internationale De Rabat Chauffage d'eau et refroidissement de cellules capteurs solaires à concentration
FR3078450A1 (fr) * 2018-02-27 2019-08-30 Charles Henri Lear Ensemble hybride eolien-photovoltaique de production d'energie non intermittente, pouvant supporter les cyclones

Also Published As

Publication number Publication date
FR2978815B1 (fr) 2017-06-16
FR2978815A1 (fr) 2013-02-08
WO2013017677A3 (fr) 2013-09-26
US20140150848A1 (en) 2014-06-05
EP2740161A2 (fr) 2014-06-11

Similar Documents

Publication Publication Date Title
EP2577181B1 (fr) Module pour absorbeur thermique de recepteur solaire, absorbeur comportant au moins un tel module et recepteur comportant au moins un tel absorbeur
EP2904343B1 (fr) Echangeur thermique pour systeme de stockage thermique
FR2932924A1 (fr) Dispositif de generation d'energie electrique, faisceau d'echange de chaleur comprenant un tel dispositif et echangeur de chaleur comprenant un tel faisceau
FR2941038A1 (fr) Concentrateur solaire statique optimal forme en spirale et muni de miroirs
FR2852087A1 (fr) Capteur solaire pour chauffe-eau
FR2962596A1 (fr) Systeme photovoltaique en panneaux avec reflecteurs de fresnel
EP4005008B1 (fr) Module et dispositif de refroidissement pour batterie et batterie correspondante
WO2011104479A1 (fr) Panneau solaire thermique a rendement eleve
EP2740161A2 (fr) Module photovoltaïque avec échangeur thermique
FR2787868A1 (fr) Capteur solaire pour chauffe-eau
EP2623909B1 (fr) Panneau photovoltaïque à récupération thermique
FR2926676A1 (fr) Capteur solaire hybride a support reflechissant et cellule photovoltaique arriere
FR2561362A1 (fr) Absorbeur plan pour capteur solaire, capteur solaire equipe d'un tel absorbeur et applications dudit absorbeur
WO2018127640A1 (fr) Dispositif d'échange thermique, notamment pour la régulation thermique d'une batterie d'un véhicule automobile
EP2405209A1 (fr) Dispositif d'admission et de mixage d'air pour pompe à chaleur
FR2995390A1 (fr) Module solaire hybride thermique et photovoltaique
EP3278393A1 (fr) Module de batterie, notamment pour véhicule automobile, et échangeur thermique pour module de batterie correspondant
EP3334033B1 (fr) Module photovoltaïque et panneau de modules photovoltaïques interconnectes
FR2945857A1 (fr) Dispositif permettant de concentrer les rayons solaires pour chauffer un fluide
FR2976055A1 (fr) Collecteur solaire plan d'epaisseur reduite et installation de recuperation de l'energie solaire comportant au moins un tel collecteur
WO2023217423A1 (fr) Panneau solaire photovoltaïque et thermique
FR3034568A1 (fr) Module de batterie, notamment pour vehicule automobile, et echangeur thermique pour module de batterie correspondant
FR2935786A1 (fr) Capteur solaire thermique
FR3135516A1 (fr) Panneau solaire photovoltaïque et thermique.
FR3097304A1 (fr) Absorbeur hybride de rayonnements pour centrale solaire, et procede de preparation d’un tel absorbeur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12743722

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2012743722

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012743722

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14236890

Country of ref document: US