WO2013017458A1 - Spectromètre à échelle - Google Patents

Spectromètre à échelle Download PDF

Info

Publication number
WO2013017458A1
WO2013017458A1 PCT/EP2012/064410 EP2012064410W WO2013017458A1 WO 2013017458 A1 WO2013017458 A1 WO 2013017458A1 EP 2012064410 W EP2012064410 W EP 2012064410W WO 2013017458 A1 WO2013017458 A1 WO 2013017458A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrometer according
echelle
grating
dispersion direction
exit surface
Prior art date
Application number
PCT/EP2012/064410
Other languages
German (de)
English (en)
Inventor
Hans-Jürgen DOBSCHAL
Jochen Müller
Original Assignee
Carl Zeiss Microscopy Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss Microscopy Gmbh filed Critical Carl Zeiss Microscopy Gmbh
Publication of WO2013017458A1 publication Critical patent/WO2013017458A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • G01J3/1809Echelle gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • G01J3/0259Monolithic

Definitions

  • the present invention relates to an echelle spectrometer.
  • Echelle spectrometers are usually used in areas where a spectrum with a large wavelength range is to be detected in high resolution at once. Particularly in the field of analytical chemistry in the qualitative and quantitative detection of elements, there is a need for an expansion of the resolvable spectral range while increasing the spectral resolution. Also in the field of astronomy in the recording of star spectra with high resolution Echelle spectrometers are used.
  • Known echelle spectrometers have an echelle grating for generating a dispersion spectrum and another grating or a dispersion prism in order to separate the partially successive diffraction orders from one another. Therefore, such echelle spectrometers have a variety of discrete optics and mechanical components, so that a high installation and adjustment effort is present and cost-effective production of Echelle spectrometer is not possible.
  • an echelle spectrometer with a detector and a monolithic transparent body, which has an entrance surface and an exit surface on the front side of the body and a reflective echelle mesh on the back side of the body, wherein a radiation beam entering the body via the entry surface is reflected at the echelle grating to the exit surface and thereby spectrally split in a first dispersion direction, passes through the exit surface and strikes the detector, wherein the body is designed so that it for the incoming via the entrance surface, reflected at the echelle and exiting via the exit surface beam a dispersing effect such provides that takes place transversely to the first dispersion direction, a separation of the diffraction orders of Echellegitters.
  • the dispersing effect of the transparent body transversely to the first dispersion direction can be provided by a prismatic formation of the transparent body and its wavelength-dependent refractive index.
  • the echelle grating is designed as an imaging grating. This achieves a further reduction of the optical elements.
  • the transparent body may be formed so that its prismatic effect can not be assigned a single dispersion direction for all wavelengths and diffraction orders.
  • each diffraction order may be assigned a dispersion direction averaged over the wavelength, and thus an average dispersion direction as a second dispersion direction.
  • the average dispersion direction of each diffraction order with the first dispersion direction each include an angle greater than 45 ° and in particular greater than 60 °.
  • the angle for at least one diffraction order can be 90 °.
  • the mean dispersion directions of the diffraction orders by z. B. a maximum of 10 ° -20 ° differ.
  • this difference exists between the mean dispersion direction of the lowest diffraction order and the highest diffraction order of the echelle lattice.
  • the lowest and highest orders of diffraction are understood to be the lowest order of diffraction used and the highest order of diffraction used.
  • the spectrometer according to the invention can be designed so that the separate diffraction orders of Echelle grid form a continuous spectrum.
  • the smallest wavelength of a first diffraction order of the Echelle grating of the largest Wavelength of the next higher diffraction order of the echelle lattice correspond.
  • the beam path of the radiation beam can be folded exactly once from the entrance surface via the echelle grating to the exit surface. This folding is realized by the reflection of Echelle grid.
  • This embodiment contributes to the compact design of the transparent body and thus of the spectrometer.
  • the back can be spherically curved, at least in the region of the echelle lattice. It is also possible that the back is formed, at least in the region of the echelle lattice, as a rotationally symmetric asphere or as a non-rotationally symmetric asphere, which may also be referred to as a free-form surface. Also, the front side may be formed in the region of the exit surface as a sphere, as a rotationally symmetric asphere or as non-rotationally symmetric asphere.
  • n refractive index of the transparent medium and may be, for example, 1.5
  • an ordinary glass such. B. BK7
  • quartz or fluorspar for the transparent body.
  • the transparent body can be made of plastic, glass or quartz.
  • the detector may have a flat detection area. This makes it possible to simultaneously detect the different diffraction bands spectrally resolved.
  • the rear side of the transparent body can be curved at least in the area of the echelle grating in such a way that upon reflection at the echelle grating, the beam is focused in the horizontal and vertical planes.
  • the horizontal plane is preferably the plane in which the first dispersion direction lies.
  • the beam can be focused in the horizontal and vertical plane when passing through the exit surface.
  • the exit surface can be used to reduce astigmatism and / or spectral field curvature. This is particularly advantageous because the exit surface is positioned close to the image field.
  • the entrance and exit surfaces on the front of the transparent body may be spaced apart or at least partially penetrated. In particular, it is possible that the entrance and exit surface part of the same area, for. B. are the same freeform surface.
  • the entry surface may have a surface shape independent of the exit surface and be optimized separately in order to ensure the best possible optical performance parameters of the spectrometer.
  • the entry surface may be formed as a flat surface.
  • the spectrometer according to the invention is designed in particular for wavelengths from the visible wavelength range, ie for electromagnetic radiation having a wavelength in the range of 380-780 nm. Furthermore, the spectrometer according to the invention can additionally or alternatively be designed for the UV range and / or the I R range. So z. B. a wavelength range of 500-900 nm possible.
  • the spectrometer may comprise a housing in which the detector and the transparent body are arranged. The entrance slit can be formed on a wall of the housing.
  • the entrance slit can be realized, for example, by the exit-side end of an optical fiber.
  • FIG. 1 is a schematic perspective view of an embodiment of the Echelle spectrometer according to the invention
  • Fig. 2 is a perspective view of the transparent body of the Echelle spectrometer according to the invention
  • Fig. 3 is a side view of the transparent body of Fig. 2, and
  • Fig. 4 is a schematic representation of the incident on the detector diffraction bands of Echelle spectrometer according to the invention.
  • the echelle spectrometer 1 comprises a monolithic transparent body 2 and a detector 3.
  • the body 2 comprises a front side 4 and a back side 5, wherein the front side 4 is aspherical curved and in the back 5 has a spherical curvature.
  • the concave radius of curvature of the back 5 is 73.652 mm.
  • an imaging Echellegitter 6 is formed, which is here a blazed reflection grating with about 10 to 100 lines per mm.
  • the blaze angle is in the range between 50 ° and 80 °.
  • Fig. 1 the course of a beam S, which emanates from an entrance slit 7, shown schematically.
  • the beam S enters through the front side 4 in the transparent body and runs to the back 5, where it is reflected on Echellegitter 6 and in turn runs to the front 4, exits from this and strikes the detector 3.
  • the course of the beam S after entry through the front 4 to the back 5 is not shown in Fig. 1.
  • the beam path drawn in the transparent body 2 corresponds to the beam path after reflection on echelle grating 6.
  • the echelle grating 6 is designed such that upon reflection, a spectral splitting in a first dispersion direction D1 occurs, which is shown schematically in Fig. 2, in which only the transparent body 2 is shown in perspective.
  • the grid grooves of the echelle grating 6 are indicated by the dotted lines 8.
  • the front side 4 is curved and arranged relative to the spherical back 5, that the passing through the transparent body 2 beam S with a dispersing action transverse to the first dispersion direction D1 is applied. This is achieved by the prismatic formation of the transparent body 2, which can be seen in FIG. 2 and in particular in the side view of the transparent body 2 in FIG. 3.
  • the spectra of the individual diffraction orders impinge separately on the detector 3, as shown schematically in FIG. 4 for the seventh to thirteenth order of diffraction, which are used in the described embodiment and extend from left to right in each case.
  • B 7 is the seventh diffraction order
  • B 8 is the eighth diffraction order
  • ... is the thirteenth order of diffraction. Since the detector 3 has a flat detection area, it can simultaneously detect the spectra B 7 -B 13 shown in FIG. 4.
  • the detector 3 can therefore also be referred to as an area detector.
  • each diffraction order B 7 -B 13 a dispersion direction averaged over the wavelengths of each diffraction order.
  • the averaged dispersion direction D2 (which may also be referred to as the second dispersion direction D2) is perpendicular to the first dispersion direction, such. B. is shown schematically in Fig. 2.
  • the averaged dispersion directions D2 of the different diffraction orders are different from one another.
  • the mean dispersion direction of the seventh diffraction order of the average dispersion direction of the thirteenth order of diffraction by z. B. 10 ° -20 ° differ.
  • the averaged dispersion direction D2 of the seventh diffraction order is shown in FIGS. 2 and 3.
  • the echelle spectrometer 1 is here preferably designed such that the diffraction orders used (here seventh to thirteenth diffraction order) represent a continuous spectrum.
  • the spectrum can z. B. from 500-900 nm run.
  • the bandwidth of each individual diffraction order B 7 -B 13 corresponds approximately to the mean wavelength A M i tt e divided by the diffraction order n.
  • This can be clearly seen in Fig. 4, since with increasing diffraction order, the width (horizontal extent) of the respective diffraction order decreases on the detector 3.
  • the representation in FIG. 4 is chosen so that the wavelength increases from left to right and decreases from bottom to top. Thus, z.
  • the echelle mesh 6 in addition to the dispersing function, still has an imaging function.
  • the front side 4 is designed to realize error correcting functions. In particular, the astigmatism and the spectral field curvature are reduced by means of the front side 4.
  • the transparent body 2 thus combines four optical functions: two dispersing functions (echelle mesh 6 and prismatic formation between front and back 4, 5), an imaging function (echelle mesh 6) and an error-correcting function (front 4).
  • the front side 4 can be described by the following formula: he 2 66
  • the value is given for each parameter C j and to which xy polynomial it is assigned.
  • the parameter C 12 is 6.5461 10 "7 for the polynomial x 3 y.
  • the front side 4 is +5.5622 mm in the x direction relative to the rear side 5, +3.51 17 mm in the y direction and z + direction in the y direction
  • Spins are offset by -16.7275 mm, with rotations in the order of -25.0104 ° about the x-axis, -16.0487 ° about the y-axis, and -21, 3584 ° around the z-axis
  • the value of c is equal to the reciprocal of -15.81 14 mm.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

L'invention concerne un spectromètre à échelle comprenant un détecteur (3) et un corps transparent monolithique (2) qui présente une surface d'entrée et une surface de sortie sur une face avant (4) dudit corps (2) et un réseau à échelle réflectif (6) sur une face arrière (5) dudit corps (2), un faisceau de rayons (S) qui entre dans ledit corps (2) par l'intermédiaire de la surface d'entrée étant réfléchi au niveau du réseau à échelle (6) en direction de la surface de sortie et étant alors séparé spectralement dans une première direction de dispersion (D1), puis traversant la surface de sortie et arrivant sur le détecteur (3). Ledit corps (2) est conçu de sorte à produire un effet dispersant pour le faisceau de rayons (S) qui entre par l'intermédiaire de la surface d'entrée, est réfléchi au niveau du réseau à échelle (6) et sort par l'intermédiaire de la surface de sortie, de sorte à induire une séparation des ordres de diffraction du réseau à échelle (6) transversalement à la première direction de dispersion (D1).
PCT/EP2012/064410 2011-08-02 2012-07-23 Spectromètre à échelle WO2013017458A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011080278A DE102011080278A1 (de) 2011-08-02 2011-08-02 Echelle-Spektrometer
DE102011080278.9 2011-08-02

Publications (1)

Publication Number Publication Date
WO2013017458A1 true WO2013017458A1 (fr) 2013-02-07

Family

ID=46551562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/064410 WO2013017458A1 (fr) 2011-08-02 2012-07-23 Spectromètre à échelle

Country Status (2)

Country Link
DE (1) DE102011080278A1 (fr)
WO (1) WO2013017458A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019106443A1 (fr) * 2017-11-30 2019-06-06 Agilent Technologies, Inc. Systèmes et procédés polychromateurs
US10488254B2 (en) * 2016-01-14 2019-11-26 Analytik Jena Ag Spectrometer with two-dimensional spectrum

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015200034A1 (de) * 2014-03-31 2015-10-01 Micro-Epsilon Optronic Gmbh Spektrometer
DE102014211240A1 (de) 2014-06-12 2015-12-17 Carl Zeiss Microscopy Gmbh Spektrometrisches Messinstrument und Verfahren zur Kopplung spektrometrischer Messinstrumente
DE102018100622B4 (de) 2018-01-12 2019-10-10 Ernst-Abbe-Hochschule Jena Simultanspektrometer mit einem planen reflektiven Beugungsgitter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0489286A2 (fr) * 1990-12-04 1992-06-10 Firma Carl Zeiss Spectromètre à alignement de diodes
US20050151966A1 (en) * 2004-01-08 2005-07-14 Muthukumaran Packirisamy Planar waveguide based grating device and spectrometer for species-specific wavelength detection
WO2006010367A2 (fr) * 2004-07-26 2006-02-02 Danmarks Tekniske Universitet Spectroscopie sur puce
DE102009040885A1 (de) * 2009-09-09 2011-03-10 Technische Universität München Vorrichtung zum Auslesen eines spektral selektiven Messaufnehmers und Messvorrichtung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6693745B1 (en) * 1999-09-14 2004-02-17 Corning Incorporated Athermal and high throughput gratings
US6977727B2 (en) * 2003-10-06 2005-12-20 The Regents Of The University Of California Compact imaging spectrometer utilizing immersed gratings

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0489286A2 (fr) * 1990-12-04 1992-06-10 Firma Carl Zeiss Spectromètre à alignement de diodes
US20050151966A1 (en) * 2004-01-08 2005-07-14 Muthukumaran Packirisamy Planar waveguide based grating device and spectrometer for species-specific wavelength detection
WO2006010367A2 (fr) * 2004-07-26 2006-02-02 Danmarks Tekniske Universitet Spectroscopie sur puce
DE102009040885A1 (de) * 2009-09-09 2011-03-10 Technische Universität München Vorrichtung zum Auslesen eines spektral selektiven Messaufnehmers und Messvorrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROBERT G. TULL ET AL: "The High-Reolution Cross-Dispersed Echelle White-Pupil Spectrometer of the McDonald Observatory 2.7-m Telescope", PUBLICATION OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, vol. 107, 30 March 1995 (1995-03-30), pages 251 - 264, XP002685668 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10488254B2 (en) * 2016-01-14 2019-11-26 Analytik Jena Ag Spectrometer with two-dimensional spectrum
WO2019106443A1 (fr) * 2017-11-30 2019-06-06 Agilent Technologies, Inc. Systèmes et procédés polychromateurs
US11579459B2 (en) 2017-11-30 2023-02-14 Agilent Technologies, Inc. Polychromator systems and methods

Also Published As

Publication number Publication date
DE102011080278A1 (de) 2013-02-07

Similar Documents

Publication Publication Date Title
EP2078975B1 (fr) Jumelles binoculaires avec télémètre
EP2516975B1 (fr) Appareil spectrometrique
DE102016124980A1 (de) Spektrometer mit Zweidimensionalem Spektrum
DE102014014983A1 (de) Optisches Filterelement für spektroskopische Einrichtungen zur Umwandlung von spektralen Informationen in Ortsinformationen
WO2013017458A1 (fr) Spectromètre à échelle
DE102006047913B4 (de) Hochempfindliche spektralanalytische Einheit
WO2012098192A1 (fr) Ensemble caméra pour véhicule à moteur
DE102009003413A1 (de) Echelle-Spektrometeranordnung mit interner Vordispersion
WO2015149759A1 (fr) Spectromètre
EP0442596B1 (fr) Polychromateur échelle
DE102018208684B4 (de) Monolithisch ausgestalteter spektralapparat
DE3614639C2 (fr)
EP2158460B1 (fr) Système de spectromètre
EP2088409B1 (fr) Spectromètre représentatif, notamment pour la reconnaissance à distance
DE60201596T2 (de) Breitband-Spektrometer mit einem einen asphärischen Korrekturspiegel aufweisenden Objektiv und einem zweifach vom Einfallsstrahl durchquerten Dispersionselement
EP3578938A1 (fr) Dispositif formant spectromètre
EP1316821A2 (fr) Dispositif optique, réseau Littrow pour un dispositif optique et son utilisation
WO2013017457A1 (fr) Spectromètre
DE102022110651B4 (de) Kompaktes optisches Spektrometer
DE102019113478A1 (de) Spektrometeranordnung
DE102018100622B4 (de) Simultanspektrometer mit einem planen reflektiven Beugungsgitter
WO2022161705A1 (fr) Ensemble optoélectronique
DE202022102679U1 (de) Optisches System für Periskopkameramodul
WO2014128065A1 (fr) Dispositif de modification du profil d'un rayon lumineux incident, en particulier élargisseur de faisceau
DE202020104658U1 (de) Infrarot-Spektrometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12738128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12738128

Country of ref document: EP

Kind code of ref document: A1