WO2013016996A1 - 一种红外触摸屏多点识别方法及系统 - Google Patents

一种红外触摸屏多点识别方法及系统 Download PDF

Info

Publication number
WO2013016996A1
WO2013016996A1 PCT/CN2012/077831 CN2012077831W WO2013016996A1 WO 2013016996 A1 WO2013016996 A1 WO 2013016996A1 CN 2012077831 W CN2012077831 W CN 2012077831W WO 2013016996 A1 WO2013016996 A1 WO 2013016996A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
optical path
target
target point
touch screen
Prior art date
Application number
PCT/CN2012/077831
Other languages
English (en)
French (fr)
Inventor
李振宇
王武军
刘新斌
刘建军
叶新林
Original Assignee
北京汇冠新技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京汇冠新技术股份有限公司 filed Critical 北京汇冠新技术股份有限公司
Publication of WO2013016996A1 publication Critical patent/WO2013016996A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger

Definitions

  • the invention relates to an infrared touch screen multi-point recognition method and system, in particular to an infrared multi-point recognition method and system based on density clustering.
  • touch screens are widely used as a simple and convenient human-computer interaction device.
  • the types of touch screens mainly include resistive touch screens, capacitive touch screens, surface acoustic wave touch screens, optical touch screens, and infrared touch screens.
  • the infrared touch screen uses an infrared matrix densely arranged in the X and Y directions to detect and locate the user's touch operation.
  • the infrared touch screen is provided with a circuit board outer frame on the front side of the display.
  • the circuit board arranges the infrared transmitting tube and the infrared receiving tube on the four sides of the screen, and one-to-one correspondingly forms an infrared matrix which is horizontally and vertically crossed.
  • the touch object such as a finger blocks the two infrared rays passing through the position, so that the position of the touch point on the screen can be judged. Since the infrared touch screen has the advantages of being free from current, voltage and static interference, and being suitable for harsh environmental conditions, the infrared touch screen has a wide application range.
  • the identification method of touch points on the infrared touch screen has gone through the development process from identifying a point to recognizing two points and then identifying more points.
  • Multi-point (more than two points) recognition will inevitably become the trend of infrared touch screens, because multi-touch can not only display more dazzling display effects, but also achieve more touch functions.
  • the two-point identification method of the infrared touch screen is basically mature at present, and the key step in the recognition process is to remove ghost points, which are non-real touch points recognized on the infrared touch screen.
  • logical judgment methods can be used. For example, according to the distance relationship between each corresponding quasi-touch point set in two (or more) logic screens, the real touch points are directly filtered. The theoretical basis is: The real point has a small deviation in the scan results of each logical screen, and the ghost point deviation is large. This method of removing ghost points is simple and easy to implement, and the calculation amount is small, and the ability to remove ghosts is strong.
  • the technical problem to be solved by the present invention is to provide an infrared touch screen multi-point recognition method and system capable of improving accuracy.
  • the technical solution adopted by the present invention is as follows:
  • An infrared touch screen multi-point identification method includes the following steps:
  • Touch point information is extracted based on attributes associated with the optical path and the optical path data.
  • the pixel establishing the image is associated with the optical path
  • the properties are specifically:
  • the number of optical paths passing through each pixel and the position or serial number of the optical path passing through the pixel are recorded.
  • the specific step of extracting the touch point information may be: searching for a target point according to an attribute associated with the optical path and the optical path; and setting a density threshold And traversing each target point in turn, clustering the target points according to the clustering condition, and obtaining at least one cluster set;
  • the central coordinate of the target point in each cluster set and the area covered by the target point are calculated, and the central coordinate is taken as the coordinates of the touched point, and the area covered by the target point is taken as the area of the touched point.
  • the specific step of extracting the touch point information may be: searching for a target point according to an attribute associated with the pixel and the optical path and the optical path data; setting a density Threshold, traversing each target point in turn, clustering the target points according to the clustering condition, and obtaining at least one cluster set;
  • the center coordinates of the target points and the areas covered by the target points in the respective cluster sets that are not discarded are calculated, and the center coordinates are used as the coordinates of the touched points, and the area covered by the target points is taken as the area of the touched points.
  • the infrared touch screen multi-point identification method as described above, the method for finding a target point may be:
  • step 3 determines whether the current optical path is occluded, and if so, the number of optical paths associated with the current pixel is decreased by 1, and proceeds to step 4; otherwise, directly proceeds to step 4;
  • step 4 determines whether it has traversed all the optical paths through the current pixel, and if so, proceeds to step 5; otherwise, proceeds to step 2;
  • step 5 determines whether the number of optical paths associated with the current pixel becomes 0, and if so, marks the pixel as a target point, proceeds to step 6; otherwise, directly proceeds to step 6;
  • the method for searching for a target point may also be:
  • step 3 0, if yes, mark the pixel as a target point, go to step 3; otherwise, go directly to step 3;
  • the infrared touch screen multi-point recognition method as described above, the method for clustering the target points is as follows:
  • step 3 determining whether the target point density in the neighborhood of the current target point is greater than a set density threshold, and if so, using the target point as an element in a cluster set, proceeding to step 3; otherwise, discarding the target point, the gathering Class set After the completion, go to step 3;
  • step 3 Determine whether the target point has been traversed, and if so, end; otherwise, go to step 1.
  • the step of tracking the movement of the touch point is based on the distance between the position of the touch point at the previous moment and the position of the touch point at the current time.
  • An infrared touch screen multi-point identification method includes the following steps:
  • the data structure is a two-dimensional array
  • the data element is an array element
  • the attribute of establishing the data element associated with the optical path is specifically:
  • the number of optical paths passing through each data element and the position or sequence number of the optical path passing through the data element are recorded.
  • the infrared touch screen multi-point recognition method as described above, the specific step of extracting the touch point information may be: searching for a target point according to an attribute associated with the data element and the optical path and the optical path data; setting a density Threshold, traversing each target point in turn, clustering the target points according to the clustering condition, and obtaining at least one cluster set;
  • the central coordinate of the target point in each cluster set and the area covered by the target point are calculated, and the central coordinate is taken as the coordinates of the touched point, and the area covered by the target point is taken as the area of the touched point.
  • the specific step of extracting the touch point information may be: searching for a target point according to an attribute associated with the data element and the optical path and the optical path data; Density threshold, traversing each target point in turn, clustering the target points according to the clustering condition, and obtaining at least one cluster set;
  • the center coordinates of the target points and the areas covered by the target points in the respective cluster sets that are not discarded are calculated, and the center coordinates are used as the coordinates of the touched points, and the area covered by the target points is taken as the area of the touched points.
  • the infrared touch screen multi-point identification method as described above, the method for finding a target point may be:
  • step 3 determines whether the current optical path is occluded, and if so, the number of optical paths associated with the current data element is reduced by 1, and proceeds to step 4; otherwise, directly proceeds to step 4;
  • step 4 determines whether it has traversed all the optical paths through the current data element, and if so, proceeds to step 5; otherwise, proceeds to step 2;
  • step 5 determining whether the number of optical paths associated with the current data element becomes 0, and if so, marking the data element Record as a target point, proceed to step 6; otherwise, go directly to step 6;
  • step 6 Determine if all data elements have been processed, and if so, end; otherwise, go to step 1.
  • the method for searching for a target point may also be:
  • step 2 traversing again a data element passing through the occluded optical path, determining whether the number of optical paths passing through the data element becomes 0, and if so, marking the data element as a target point, proceeds to step 3; otherwise, directly proceeds to step 3 ;
  • the infrared touch screen multi-point recognition method as described above, the method for clustering the target points is as follows:
  • step 3 determining whether the target point density in the neighborhood of the current target point is greater than a set density threshold, and if so, using the target point as an element in a cluster set, proceeding to step 3; otherwise, discarding the target point, the gathering After the class is complete, go to step 3.
  • step 3 Determine whether the target point has been traversed, and if so, end; otherwise, go to step 1.
  • the step of tracking the movement of the touch point is based on the distance between the position of the touch point at the previous moment and the position of the touch point at the current time.
  • a multi-point recognition system for an infrared touch screen comprising:
  • a data acquisition device for collecting optical path data in one identification process
  • An image generating device for generating an image in a preset ratio to the size of the infrared touch screen
  • An attribute establishing means for establishing an attribute of a pixel of the image associated with an optical path on the infrared touch screen
  • a touch point information extracting means for extracting touch point information based on an attribute of the pixel associated with the optical path and the optical path data.
  • the attribute establishing means includes:
  • An optical path determining unit for determining an optical path passing through each pixel according to the preset ratio and the direction of the optical path
  • a position or serial number attribute recording unit for recording the number of optical paths passing through each pixel and the optical path passing through the pixel.
  • the touch point information extraction device includes:
  • a target point search unit for finding a target point based on an attribute associated with the pixel and the optical path and the optical path data
  • clustering unit for clustering target points according to clustering conditions, wherein the clustering unit sets a density threshold, sequentially traverses each target point, and clusters the target points according to the clustering condition to obtain at least one cluster.
  • the touch point calculation unit for calculating a coordinate of a touch point and an area of the touch point, the touch point calculation unit calculates a center coordinate of the target point in each cluster set and an area covered by the target point, and uses the center coordinate as a touch The coordinates of the point, the area covered by the target point as the area of the touch point.
  • the touch point information extraction device includes: a target point search unit for finding a target point according to an attribute associated with the pixel and the optical path and the optical path data;
  • a clustering unit for clustering target points according to clustering conditions
  • An area determining unit for sequentially determining whether an area covered by each cluster set is larger than the area threshold, the area determining unit sets an area threshold, and sequentially determines whether an area covered by each cluster set is larger than the area
  • the area judgment unit of the threshold if it is larger, the cluster set is used as a touch point; otherwise, the cluster set is discarded, and the next cluster set is determined until all cluster sets are determined;
  • a touch point calculation unit for calculating a coordinate of the touch point and an area of the touch point
  • the touch point calculation unit calculates a center coordinate of the target point in each cluster set that is not discarded, and an area covered by the target point, and the The center coordinate is used as the coordinates of the touched point, and the area covered by the target point is taken as the area of the touched point.
  • the infrared touch screen multi-point recognition system as described above, the system further comprising motion tracking means for tracking the movement of the touch point based on a distance between the position of the touch point according to the previous time and the position of the touch point of the current time.
  • Multi-point recognition system for infrared touch screen including
  • a data acquisition device for collecting optical path data in one identification process
  • a data structure generating apparatus for generating a data structure having a two-dimensional matrix arrangement property in a predetermined ratio to the size of the infrared touch screen
  • An attribute establishing means for establishing an attribute of a data element of the data structure associated with an optical path on the infrared touch screen
  • a touch point information extracting means for extracting touch point information based on an attribute of the data element associated with the optical path and the optical path data.
  • the attribute establishing means includes:
  • An optical path determining unit for determining an optical path passing through each of the data elements according to the preset ratio and the direction of the optical path;
  • a position or sequence attribute recording unit for recording the number of optical paths passing through each data element and the optical path passing through the data element.
  • the touch point information extraction device includes:
  • a target point search unit for finding a target point based on an attribute associated with the data element and the optical path and the optical path data
  • clustering unit for clustering target points according to clustering conditions, wherein the clustering unit sets a density threshold, sequentially traverses each target point, and clusters the target points according to the clustering condition to obtain at least one cluster.
  • a touch point calculation unit for calculating a coordinate of a touch point and an area of the touch point
  • the touch point calculation unit calculates a center coordinate of the target point in each cluster set and an area covered by the target point, and uses the center coordinate as a touch The coordinates of the point, the area covered by the target point as the area of the touch point.
  • the touch point information extraction device includes:
  • a target point search unit for finding a target point based on an attribute associated with the data element and the optical path and the optical path data
  • a clustering unit for clustering target points according to clustering conditions
  • An area judgment sheet for sequentially determining whether an area covered by each cluster set is larger than the area threshold
  • the area judging unit sets an area threshold, and sequentially determines whether an area covered by each cluster set is larger than an area judging unit of the area threshold. If it is larger, the cluster set is used as a touch point. Otherwise, Discarding the cluster set and judging the next cluster set until all cluster sets are determined;
  • a touch point calculation unit for calculating a coordinate of the touch point and an area of the touch point
  • the touch point calculation unit calculates a center coordinate of the target point in each cluster set that is not discarded, and an area covered by the target point, and the The center coordinate is used as the coordinates of the touched point, and the area covered by the target point is taken as the area of the touched point.
  • the infrared touch screen multi-point recognition system as described above, the system further comprising motion tracking means for tracking the movement of the touch point based on the distance between the position of the touch point at the previous moment and the position of the touch point at the current time.
  • the invention provides a multi-point recognition method and system for infrared touch screen based on density clustering, by establishing an association between a data element of a pixel/data structure of an image and an optical path, and changing a pixel/data structure of the image through the optical path data.
  • the number of optical paths associated with the data element is not limited to:
  • the data element of the pixel/data structure of an image is marked as the target point, According to the density of the target point of the mark, set the density threshold, cluster the target points, and focus on one type of target point as a touch point, and set the target point without cluster as background, such a slave image pixel or array
  • the target point is judged on the order of magnitude of the element, and the ghost point and the noise point can be effectively removed, and the recognition precision is high, and is suitable for the identification of any plurality of touch points.
  • FIG. 1 is a structural block diagram of a multi-point identification system of an infrared touch screen in Embodiment 1;
  • Embodiment 2 is a flow chart of a multi-point identification method of the infrared touch screen in Embodiment 1;
  • FIG. 3 is a flow chart showing a method for establishing an attribute of a pixel of an image and an optical path on the infrared touch screen by the attribute establishing means in Embodiment 1;
  • FIG. 4 is a schematic diagram of an attribute associated between a pixel and an optical path passing through the pixel in Embodiment 1;
  • FIG. 5 is a flowchart of a method of extracting touch point information by the touch point information extracting apparatus in Embodiment 1;
  • FIG. 6 is a flowchart of a method for finding a target point by a target point search unit in Embodiment 1;
  • FIG. 7 is a schematic diagram of a distribution of target points found by a target point search unit on an image in Embodiment 1;
  • FIG. 8 is a flowchart of a method for clustering target points by a clustering unit in Embodiment 1;
  • FIG. 9 is a flowchart of a method for finding a target point by a target point search unit in Embodiment 2;
  • Figure 10 is a block diagram showing the structure of a touch point information extracting apparatus in Embodiment 3.
  • FIG. 11 is a flowchart of a method of extracting touch point information by the touch point information extracting apparatus in Embodiment 3; and FIG. 12 is a block diagram showing a configuration of a multi-point recognition system of the infrared touch screen in Embodiment 4.
  • the embodiment provides a multi-point recognition system and a multi-point identification method for an infrared touch screen.
  • the multi-point identification system includes a data collection device 1, an image generation device 2, an attribute establishment device 3, and touch point information extraction.
  • the data acquisition device 1 is used to collect optical path data in one identification process.
  • the image generating device 2 is configured to generate an image in a predetermined ratio to the size of the infrared touch screen.
  • Attribute establishing means 3 for establishing a genus of pixels of said image associated with an optical path on said infrared touch screen Sex.
  • the optical path determining unit 31 is configured to determine an optical path passing through each pixel according to the preset ratio and the direction of the optical path;
  • the attribute recording unit 32 is configured to record the number of optical paths passing through each pixel and the position or serial number of the optical path passing through the pixel. .
  • the touch point information extracting means 4 is configured to extract touch point information based on attributes associated with the optical path on the infrared touch screen and the optical path data.
  • the target point searching unit 41 is configured to search for a target point according to an attribute and optical path data associated between the pixel and the optical path;
  • the clustering unit 42 is configured to cluster the target point according to the clustering condition, and the clustering unit sets the density.
  • Threshold traversing each target point in turn, clustering the target points according to the clustering conditions, to obtain at least one cluster set;
  • the touch point calculating unit 44 is configured to use each cluster set as a touch point and calculate the touch point The coordinates and the area of the touched point; the touch point calculation unit 44 can calculate the center coordinate of the target point in each cluster set and the area covered by the target point, using the center coordinate as the coordinate of the touch point, and the area covered by the target point as the touch point Area.
  • the motion tracking device 5 is for tracking the touch point motion based on the distance between the position of the touch point at the previous moment and the position of the touch point at the current time.
  • a flowchart of a method for identifying multiple touch points by the system includes the following steps:
  • the data collection device 1 collects optical path data in a recognition process.
  • the optical path data includes an optical path between the infrared emitting element and the infrared receiving element that is collected after scanning, and the occlusion data can be represented by 1, and the unoccluded data can be represented by 0, then the optical path data is " A series of combinations of 0" and "1".
  • the image generating device 2 generates an image with a preset ratio of the size of the infrared touch screen, that is, generates an image that is proportional to the size of the infrared touch screen, and the ratio of the image size and the infrared touch screen is preferably 1:1, and the image is It may be an image with a single color in the background, preferably the background color of the image is black.
  • An attribute establishing device 3 is configured to establish an attribute associated with a pixel on the image and an optical path on the infrared touch screen.
  • a method for specifically establishing a property associated with a pixel and an optical path includes the following steps:
  • the optical path determining unit 31 determines the optical path passing through each pixel according to the preset ratio and the direction of the optical path.
  • the optical path passing through each pixel is determined according to the direction of the optical path, and is not necessarily the optical path actually passing through the pixel, because some optical paths may not pass through the pixel due to the occlusion of the touch object, as long as the optical path passes through the pixel. That is, the optical path should include all optical paths scanned between the infrared emitting element and the infrared receiving element, including both the optical path blocked by the touch object and the optical path not blocked by the touch object.
  • the attribute recording unit 32 records the number of optical paths passing through each pixel and the position or serial number of the optical path passing through the pixel.
  • the optical path through each pixel includes an occluded and unobstructed optical path, and the association between the pixel and the optical path is established by recording the number of optical paths passing through each pixel and the position or number of the optical path, for example, for a pixel (50) , 50), if there are 3 optical paths passing through the pixel, the serial numbers of the three optical paths are: 8, 8, and 12, then the attributes of the pixel can be recorded as the form shown in Figure 4, of course. It can also be recorded in other forms.
  • the touch point extraction device extracts touch point information according to an attribute of a pixel on the image and an optical path on the infrared touch screen and the optical path data.
  • the method for extracting touch point information may include the following steps:
  • the target point searching unit 41 searches for a target point according to an attribute associated with the pixel and the optical path and the optical path data.
  • the target point search unit 41 changes an attribute associated between the pixel and the optical path according to the occlusion condition of the optical path data in one recognition process, and preferably changes the number of optical paths associated with the pixel when the optical path associated with the pixel When the number of conditions satisfies certain conditions, the pixel is marked as a target point. As shown in Figure 6, the specific method can be used to find the target point:
  • the first optical path of the current pixel has not been traversed, the first optical path is traversed, otherwise, the second is traversed, and if the second is also traversed, the third is traversed, and so on.
  • step 3 determining whether the current optical path is occluded, and if so, subtracting 1 from the number of optical paths associated with the current pixel, and proceeding to step 4, for example, the number of optical paths associated with the current pixel is five, and if the current optical path is blocked, then The number of optical paths associated with the current pixel is decremented by 1, that is, the optical path associated with the current pixel is changed to four; otherwise, directly proceeds to step 4, that is, if the current optical path is not occluded, no processing is performed, and the process proceeds directly to the next step. step.
  • step 4 judge whether to traverse all the optical paths that have passed the current pixel, and if so, proceed to step 5; otherwise, go to step 2.
  • the color of the target point may be marked as the background color of the image Different colors, for example, can be marked as white, go to step 6; otherwise, go directly to step 6.
  • the above method may be more specifically described: traversing the first pixel, sequentially traversing the optical path associated with the pixel, that is, traversing the optical path passing through the pixel, for example, The number of optical paths associated with the pixel is 3, and it is determined whether the first optical path is occluded.
  • the number of optical paths associated with the pixel is decreased by 1, that is, the number of optical paths associated with the pixel becomes 2; Whether the two optical paths are blocked, if occluded, the number of optical paths associated with the pixel is further reduced by 1, that is, the number of optical paths associated with the pixel becomes 1; continue to determine whether the third optical path is blocked, if occluded Then, the number of optical paths associated with the pixel is further reduced by one, that is, the number of optical paths associated with the pixel becomes zero. At this time, the pixel is marked as a target point, which can be marked as white, and then the next pixel is processed.
  • the second method is continued to process the second pixel, the third pixel, ..., and so on. Until all pixels have been processed.
  • FIG. 7 the schematic diagram shows the distribution of the searched target points on the image.
  • the white point in the figure is the target point. It can be seen from the figure that except for a few isolated target points. , the found target points are gathered in different small areas.
  • FIG. 6 is only a schematic diagram, and the distribution of actual target points may be different.
  • the clustering unit 42 clusters the target points according to the clustering condition, so as to obtain at least one clustering set.
  • the clustering condition is preferably whether the density in the neighborhood of the target point is greater than a set threshold, that is, setting a
  • the density threshold is clustered by comparing the target point density in the neighborhood of the target point with the density threshold to obtain at least one cluster set.
  • step 3 determining whether the target point density in the neighborhood of the target point of the current traversal is greater than a preset density threshold, and if so, using the target point as an element in a cluster set, proceeding to step 3; otherwise, discarding the target point After the cluster is set, go to step 3.
  • step 3 Determine whether the target point has been traversed, and if so, end; otherwise, go to step 1.
  • the neighborhood of the target point is not specifically limited, and may be determined according to actual conditions, and may be 4 neighborhoods, 8 neighborhoods, 16 neighborhoods, etc. of the current target point, or may be a circle centered on the target point.
  • the radius can be 2 or 3 pixels, and can also be a square or a rectangle centered on the target point, and the length of the side is also determined according to actual needs.
  • the completion of the clustering setup described above means that the cluster set is established, that is, no new elements are added to the cluster set, if the target point density in the neighborhood is greater than the set density threshold in the subsequent step. The target point is then placed in another cluster set.
  • n is positive An integer that discards the target point until it traverses to a target point that does not satisfy the cluster set;
  • each cluster set is a set of at least one target point that continuously satisfies the clustering condition
  • the target point that does not satisfy the clustering condition is a demarcation point of the two cluster sets, for example, suppose a total of 50 search points are found.
  • Target point if the first 10 meet the clustering conditions, then the 10 target points are elements in a cluster set, and the 11th and 12th target points do not satisfy the clustering condition, and the 13th to 25th target points If satisfied, then the 13th to 25th target points are the elements in the second cluster set, the 26th is not satisfied, the 27th to 50th target points are satisfied, and the 27th to 50th target points are the third Cluster the elements in the collection.
  • the touch point calculation unit 44 treats each of the cluster sets as one touch point, and calculates coordinates of the touch point and an area of the touch point.
  • the touch point calculation unit 44 calculates the center coordinates of the target points in each cluster set and the area covered by the target points, and takes the center coordinates of the respective cluster sets as the coordinates of the respective touch points, and uses the area covered by the target points as the touch point. Area, where the central coordinate can be the average coordinate of the target point in a cluster set.
  • the motion tracking device 5 tracks the touch point motion according to the distance between the position of the touch point at the previous moment and the position of the touch point at the current time.
  • the two positions are the trajectories of the same touch point at different times, and the movement of the touch point can be tracked by this method.
  • the embodiment provides a multi-point recognition system for an infrared touch screen.
  • the system processes the attributes associated between pixels and optical paths by means of density clustering, identifies target points on the order of pixels, and then clusters the target points. To identify touch points, the accuracy of touch recognition can be improved.
  • the method for the target point searching unit 41 to search for the target point in step 2041 is to sequentially traverse each pixel, and determine whether the current pixel is the target point according to the occlusion condition of the optical path associated with the pixel.
  • the light path of the touch point is occluded. Therefore, in order to quickly recognize the touch point, only the pixels through which the blocked light path passes can be judged, and other pixels do not need to be judged.
  • the specific method for finding the target point is as follows:
  • step 2 traversing the pixel through which the occluded optical path passes again, determining whether the number of optical paths passing through the current pixel becomes 0, and if so, marking the pixel as a target point, in order to distinguish the background color from the target point, the color of the target point Marked as a different color from the background color, for example, can be marked as white, go to step 3; otherwise, go directly to step 3;
  • step 1 After the processing of step 1, the number of optical paths associated with the pixels through which the occluded optical path passes has changed, and then traversing the pixels processed in step 1, that is, traversing the pixels through which the occluded optical path passes, if The number of optical paths associated with the current pixel becomes 0, that is, the number of optical paths passing through the pixel becomes 0, the pixel is marked as a target point, and then proceeds to step 3, otherwise, directly proceeds to step 3.
  • the touch point information extracting device 4 extracts the touched point information by clustering the identified target points to obtain a plurality of cluster sets, and each cluster set is taken as one Touch points, in the actual application process, even if a series of cluster sets are obtained according to density clustering, these cluster sets are not necessarily all touch points, and some small cluster sets may be due to occlusion of actual touch points.
  • the touch point information extracting apparatus 4 may further include an area judging unit 43 for sequentially judging each cluster set to be covered.
  • the area judging unit sets an area threshold, and sequentially determines whether an area covered by each cluster set is larger than an area judging unit of the area threshold, and if it is larger, the cluster set is As a touch point, otherwise, discard the cluster set and judge the next cluster set until all the clusters are judged.
  • the collection of classes The collection of classes.
  • the touch point information extracting means 4 extracts the touch point information based on the attribute associated with the optical path on the image and the optical path on the infrared touch screen, and the touch point information is replaced by the following method:
  • the target point search unit 41 searches for a target point based on the attribute associated with the optical path on the infrared touch screen and the optical path data, and the search method of the specific target point can be the same as that of the first embodiment.
  • the clustering unit 42 sets the density threshold, sequentially traverses each target point, and clusters the target points according to the clustering condition to obtain at least one cluster set.
  • the specific clustering method is the same as that of the first embodiment.
  • the area judging unit 43 sets an area threshold, and sequentially determines whether the area covered by each cluster set is greater than a set area threshold. If it is larger, the cluster set is used as a touch point. Otherwise, the area is discarded. Clustering the set, judging the next cluster set until all cluster sets are determined.
  • the area covered by the target point in each cluster set is compared with the area threshold, if the area covered by the target point in the cluster set is smaller than the set area threshold, that is, if clustering
  • the target point in the set satisfies the clustering condition, but the area of the cluster set is small, such a cluster set cannot be used as a touch point, which may be due to the mutual occlusion of the real touch point, and should be discarded, so that Can reduce ghost points.
  • the touch point calculation unit 44 calculates the center coordinate of the target point and the area covered by the target point in each cluster set that are not discarded, and uses the center coordinate as the coordinate of the touch point, and the area covered by the target point is used as a touch The area of the point.
  • the cluster set with a smaller coverage area is removed as a ghost point, and the touch precision is further improved.
  • Embodiment 1 when the infrared touch screen multi-point recognition system performs the method of multi-point recognition, it is necessary to generate an image proportional to the size of the infrared touch screen, and then operate the pixels in the image, which involves The operation of numerical calculation of image pixels, convolution of images, and the like are generally time consuming.
  • this embodiment provides another infrared touch screen multi-point recognition system, as shown in FIG.
  • the multipoint identification system includes a data acquisition device ⁇ , a two-dimensional array generation device 2', an attribute establishment device 3', a touch point information extraction device 4', and a motion tracking device 5', wherein the attribute establishment device 3' includes an optical path
  • Data Acquisition Device ⁇ Used to collect optical path data during a single identification process.
  • the two-dimensional array generating device 2' is configured to generate a two-dimensional array of a predetermined ratio to the size of the infrared touch screen.
  • the attribute establishing means 3' is configured to establish an attribute of the array element of the two-dimensional array associated with the optical path on the infrared touch screen.
  • the optical path determining unit 3 is configured to determine an optical path passing through each array element according to the preset ratio and the direction of the optical path; the attribute recording unit 32' is configured to record the number of optical paths passing through each array element and the optical path passing through the array element. Location or serial number.
  • the touch point information extracting means 4' is for extracting touch point information based on the attribute of the array element associated with the optical path on the infrared touch screen and the optical path data.
  • the target point searching unit 4 is configured to search for a target point according to an attribute associated with the optical path between the array element and the infrared touch screen and the optical path data;
  • the clustering unit 42' is configured to target the target point according to the clustering condition Performing clustering;
  • the touch point calculation unit 44' is configured to use each cluster set as a touch point and calculate the coordinates of the touch point and the area of the touch point, and the touch point calculation unit 44' calculates the target point in each cluster set.
  • the central coordinate and the area covered by the target point, the central coordinate is taken as the coordinate of the touched point, and the area covered by the target point is taken as the area of the touched point.
  • the motion tracking device 5' is for tracking the touch point motion based on the distance between the position of the touch point at the previous moment and the position of the touch point at the current time.
  • the method for identifying a plurality of touch points by the multipoint identification system provided in this embodiment is the same as the method of Embodiment 1, Embodiment 2 or Embodiment 3, except that the image generation device 2 is replaced with the two-dimensional array generation device 2'.
  • the processing of all the pixels is changed to the processing of the array elements, and the pixels in the embodiment 1, the embodiment 2 or the embodiment 3 are all replaced by the array elements, and the following steps are specifically included:
  • Data acquisition device ⁇ Collect optical path data during a recognition process
  • the two-dimensional array generating device 2' generates a two-dimensional array that is at a preset ratio to the size of the infrared touch screen.
  • the attribute establishing means 3' is for establishing an attribute of the array element of the two-dimensional array associated with the optical path on the infrared touch screen.
  • the touch point information extracting means 4' is for extracting touch point information based on the attribute of the array element associated with the optical path on the infrared touch screen and the optical path data.
  • the two-dimensional array in Embodiment 4 may also have other data structures having two-dimensional matrix arrangement properties, such as Two-dimensional vector.
  • the present invention cover the modifications and the modifications of the invention

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Image Analysis (AREA)

Abstract

一种红外触摸屏的多点识别方法及系统。首先采集光路数据;其次,生成与所述红外触摸屏尺寸成预设比例的图像/数据结构;再次,建立像素/数据元素与红外触摸屏上的光路相关联的属性;然后,根据像素/数据元素与红外触摸屏上的光路相关联的属性以及所述光路数据提取触摸点信息。通过光路数据,改变与图像像素/数据元素相关联的光路的数量,当与某一个图像像素/数据元素相关联的光路数量变为零时,将该图像像素/数据元素标记为目标点,再根据标记的目标点的密度,将目标点聚类,聚为同一类的目标点即为一个触摸点,从图像像素或数据元素的数量级上判断目标点,能够有效去除鬼点及噪声点,识别精度高。

Description

一种红外触摸屏多点识别方法及系统 技术领域
本发明涉及一种红外触摸屏多点识别方法及系统, 尤其涉及一种基于密度聚类的红 外多点识别方法及系统。
背景技术
随着触摸技术的发展, 触摸屏作为一种简单方便的人机交互设备得到广泛应用。 目 前, 触摸屏的种类主要包括电阻式触摸屏、 电容式触摸屏、 表面声波触摸屏、 光学触摸 屏和红外触摸屏等。 其中, 红外触摸屏是利用 X、 Y方向上密布的红外线矩阵来检测并 定位用户的触摸操作。 红外触摸屏在显示器的前面安装一个电路板外框, 电路板在屏幕 四边排布红外发射管和红外接收管, 一一对应形成横竖交叉的红外线矩阵。 用户在触摸 屏幕时, 手指等触摸物会挡住经过该位置的横竖两条红外线, 因而可以判断出触摸点在 屏幕上的位置。 由于红外触摸屏具有不受电流、 电压和静电干扰, 适宜恶劣的环境条件 等优点, 因此红外触摸屏的应用范围较广。
红外触摸屏上触摸点的识别方法经历了从识别一点到识别两点, 再到识别更多点的 发展历程。 多点 (超过两点) 识别必然会成为红外触摸屏的发展趋势, 因为多点触摸不 仅可以显示出更炫丽的显示效果, 而且可以实现更多的触摸功能。
红外触摸屏的两点识别方法目前已基本成熟, 识别过程中的关键步骤是去除鬼点, 所述鬼点是指在红外触摸屏上识别出的非真实触摸点。去除鬼点可以采用逻辑判断方法, 例如, 根据两个 (或更多) 逻辑屏中, 各个对应准触摸点集之间的距离关系, 直接筛选 真实的触摸点。 其理论基础是: 真实点在各个逻辑屏的扫描结果中距离偏差小, 而鬼点 偏差较大。 这种去除鬼点方法简单易实现, 计算量小, 去鬼点能力强。 但是, 当触摸点 多于两点时, 不同逻辑屏上特定触摸点的对应关系不易确定, 因为当不同逻辑屏上点数 相同时, 容易排序, 但是点数不同时, 如边角处某一逻辑屏上点丢失, 则较难排序对齐, 而且点数自动判定较难。 在点数增加时, 由于排序不成功而导致的错误识别发生几率也 迅速增加。 因此, 这种方法不适合于红外触摸屏上超过两点的多点识别。
目前市场上已经有部分厂家推出了具有多点 (10点) 识别功能的红外触摸屏, 但是 在效果上存在诸多弊端。 例如, 鬼点多、 精度低, 而且要求触摸物的面积较大。
发明内容
针对现有技术中存在的缺陷, 本发明所要解决的技术问题是提供一种能够提高精度 的红外触摸屏多点识别方法及系统。 为解决上述技术问题, 本发明采用的技术方案如下:
一种红外触摸屏多点识别方法, 包括以下步骤:
采集在一次识别过程中的光路数据;
生成与所述红外触摸屏尺寸成预设比例的图像;
建立所述图像的像素与所述红外触摸屏上的光路相关联的属性;
根据所述像素与所述光路相关联的属性以及所述光路数据提取触摸点信息。
如上所述的红外触摸屏多点识别方法, 所述建立所述图像的像素与所述光路相关联 的属性具体为:
根据所述预设比例和所述光路的走向确定经过每一个像素的光路;
记录经过每一个像素的光路的数量以及经过该像素的光路的位置或序号。
如上所述的红外触摸屏多点识别方法, 所述提取触摸点信息的具体步骤可以为: 根据所述像素与所述光路之间相关联的属性以及所述光路数据查找目标点; 设定密度阈值, 依次遍历每一个目标点, 按照聚类条件对目标点进行聚类, 得到至 少一个聚类集合;
计算各个聚类集合内目标点的中心坐标和目标点所覆盖的面积, 将所述中心坐标作 为触摸点的坐标, 所述目标点所覆盖的面积作为触摸点的面积。
如上所述的红外触摸屏多点识别方法, 所述提取触摸点信息的具体步骤也可以为: 根据所述像素与所述光路之间相关联的属性以及所述光路数据查找目标点; 设定密度阈值, 依次遍历每一个目标点, 按照聚类条件对目标点进行聚类, 得到至 少一个聚类集合;
设定面积阈值, 依次判断每一个聚类集合所覆盖的面积是否大于所述面积阈值, 如 果大于, 则将该聚类集合作为一个触摸点, 否则, 舍弃该聚类集合, 判断下一个聚类集 合, 直到判断完所有聚类集合为止;
计算没被舍弃的各个聚类集合内目标点的中心坐标和目标点所覆盖的面积, 将所述 中心坐标作为触摸点的坐标, 所述目标点所覆盖的面积作为触摸点的面积。
如上所述的红外触摸屏多点识别方法, 所述查找目标点的方法可以为:
①遍历一个未遍历过的像素;
②遍历一个经过当前像素的未遍历过的光路;
③判断当前光路是否被遮挡, 若是, 则与当前像素相关联的光路的数量减 1, 并进 入步骤④; 否则, 直接进入步骤④;
④判断是否遍历完经过当前像素的所有光路, 若是, 则进入步骤⑤; 否则, 转至步 骤②;
⑤判断与当前像素相关联的光路的数量是否变为 0, 若是, 则将该像素标记为一个 目标点, 进入步骤⑥; 否则, 直接进入步骤⑥;
⑥判断所有像素是否处理完毕, 若是, 则结束; 否则, 转至步骤①。
如上所述的红外触摸屏多点识别方法, 所述查找目标点的方法也可以为:
①根据所述光路数据, 遍历每一个被遮挡的光路, 将与每一个被遮挡的光路所经过 的像素相关联的光路数量减 1 ;
②再次遍历被遮挡的光路经过的一个像素, 判断经过该像素的光路的数量是否变为
0, 若是, 则将该像素标记为一个目标点, 进入步骤③; 否则, 直接进入步骤③;
③判断是否处理完被遮挡的光路经过的所有像素, 若是, 则结束, 否则, 则转至步 骤②。
如上所述的红外触摸屏多点识别方法, 所述对目标点进行聚类的方法如下:
①遍历一个未遍历过的目标点;
②判断当前目标点的邻域内的目标点密度是否大于设定的密度阈值, 若是, 则将该 目标点作为一个聚类集合中的一个元素, 进入步骤③; 否则, 舍弃该目标点, 该聚类集 合完毕, 进入步骤③;
③判断目标点是否遍历完毕, 若是, 则结束; 否则, 转至步骤①。
如上所述的红外触摸屏多点识别方法, 所述方法还包括
根据前一时刻的触摸点的位置与当前时刻触摸点的位置之间的距离跟踪触摸点运动 的步骤。
一种红外触摸屏多点识别方法, 包括以下步骤:
采集在一次识别过程中的光路数据;
生成与所述红外触摸屏尺寸成预设比例的具有二维矩阵排列性质的数据结构; 建立所述数据结构的数据元素与所述红外触摸屏上的光路相关联的属性; 根据所述数据元素与所述光路相关联的属性以及所述光路数据提取触摸点信息。 如上所述的红外触摸屏多点识别方法, 所述数据结构为二维数组, 所述数据元素为 数组元素。
如上所述的红外触摸屏多点识别方法, 所述建立所述数据元素与所述光路相关联的 属性具体为:
根据所述预设比例和所述光路的走向确定经过每一个数据元素的光路;
记录经过每一个数据元素的光路的数量以及经过该数据元素的光路的位置或序号。 如上所述的红外触摸屏多点识别方法, 所述提取触摸点信息的具体步骤可以为: 根据所述数据元素与所述光路之间相关联的属性以及所述光路数据查找目标点; 设定密度阈值, 依次遍历每一个目标点, 按照聚类条件对目标点进行聚类, 得到至 少一个聚类集合;
计算各个聚类集合内目标点的中心坐标和目标点所覆盖的面积, 将所述中心坐标作 为触摸点的坐标, 所述目标点所覆盖的面积作为触摸点的面积。
如上所述的红外触摸屏多点识别方法, 所述提取触摸点信息的具体步骤也可以为: 根据所述数据元素与所述光路之间相关联的属性以及所述光路数据查找目标点; 设定密度阈值, 依次遍历每一个目标点, 按照聚类条件对目标点进行聚类, 得到至 少一个聚类集合;
设定面积阈值, 依次判断每一个聚类集合所覆盖的面积是否大于所述面积阈值, 如 果大于, 则将该聚类集合作为一个触摸点, 否则, 舍弃该聚类集合, 判断下一个聚类集 合, 直到判断完所有聚类集合为止;
计算没有被舍弃的各个聚类集合内目标点的中心坐标和目标点所覆盖的面积, 将所 述中心坐标作为触摸点的坐标, 所述目标点所覆盖的面积作为触摸点的面积。
如上所述的红外触摸屏多点识别方法, 所述查找目标点的方法可以为:
①遍历一个未遍历过的数据元素;
②遍历一个经过当前数据元素的未遍历过的光路;
③判断当前光路是否被遮挡, 若是, 则与当前数据元素相关联的光路的数量减 1, 并进入步骤④; 否则, 直接进入步骤④;
④判断是否遍历完经过当前数据元素的所有光路, 若是, 则进入步骤⑤; 否则, 转 至步骤②;
⑤判断与当前数据元素相关联的光路的数量是否变为 0, 若是, 则将该数据元素标 记为一个目标点, 进入步骤⑥; 否则, 直接进入步骤⑥;
⑥判断所有数据元素是否处理完毕, 若是, 则结束; 否则, 转至步骤①。
如上所述的红外触摸屏多点识别方法, 所述查找目标点的方法也可以为:
①根据所述光路数据, 遍历每一个被遮挡的光路, 将与每一个被遮挡的光路所经过 的数据元素相关联的光路数量减 1 ;
②再次遍历被遮挡的光路经过的一个数据元素, 判断经过该数据元素的光路的数量 是否变为 0, 若是, 则将该数据元素标记为一个目标点, 进入步骤③; 否则, 直接进入 步骤③;
③判断是否处理完被遮挡的光路经过的所有数据元素, 若是, 则结束, 否则, 则转 至步骤②。
如上所述的红外触摸屏多点识别方法, 所述对目标点进行聚类的方法如下:
①遍历一个未遍历过的目标点;
②判断当前目标点的邻域内的目标点密度是否大于设定的密度阈值, 若是, 则将该 目标点作为一个聚类集合中的一个元素, 进入步骤③; 否则, 舍弃该目标点, 该聚类集 合完毕, 进入步骤③;
③判断目标点是否遍历完毕, 若是, 则结束; 否则, 转至步骤①。
如上所述的红外触摸屏多点识别方法, 所述方法还包括
根据前一时刻的触摸点的位置与当前时刻触摸点的位置之间的距离跟踪触摸点运动 的步骤。
一种红外触摸屏的多点识别系统, 包括:
用于采集在一次识别过程中的光路数据的数据采集装置;
用于生成与所述红外触摸屏尺寸成预设比例的图像的图像生成装置;
用于建立所述图像的像素与所述红外触摸屏上的光路相关联的属性的属性建立装 置;
用于根据所述像素与所述光路相关联的属性以及所述光路数据提取触摸点信息的触 摸点信息提取装置。
如上所述的红外触摸屏多点识别系统, 所述属性建立装置包括:
用于根据所述预设比例和所述光路的走向确定经过每一个像素的光路的光路确定单 元;
用于记录经过每一个像素的光路的数量以及经过该像素的光路的位置或序号属性记 录单元。
如上所述的红外触摸屏多点识别系统, 所述触摸点信息提取装置包括:
用于根据所述像素与所述光路之间相关联的属性以及所述光路数据查找目标点的目 标点查找单元;
用于按照聚类条件对目标点进行聚类的聚类单元, 所述聚类单元设定密度阈值, 依 次遍历每一个目标点, 按照聚类条件对目标点进行聚类, 得到至少一个聚类集合;
用于计算触摸点的坐标及触摸点的面积的触摸点计算单元, 所述触摸点计算单元计 算各个聚类集合内目标点的中心坐标和目标点所覆盖的面积, 将所述中心坐标作为触摸 点的坐标, 所述目标点所覆盖的面积作为触摸点的面积。 如上所述的红外触摸屏多点识别系统, 所述触摸点信息提取装置包括: 用于根据所述像素与所述光路之间相关联的属性以及所述光路数据查找目标点的目 标点查找单元;
用于按照聚类条件对目标点进行聚类的聚类单元;
用于依次判断每一个聚类集合所覆盖的面积是否大于所述面积阈值的面积判断单 元, 所述面积判断单元设定面积阈值, 依次判断每一个聚类集合所覆盖的面积是否大于 所述面积阈值的面积判断单元, 如果大于, 则将该聚类集合作为一个触摸点, 否则, 舍 弃该聚类集合, 判断下一个聚类集合, 直到判断完所有聚类集合为止;
用于计算触摸点的坐标及触摸点的面积的触摸点计算单元, 所述触摸点计算单元计 算没有被舍弃的各个聚类集合内目标点的中心坐标和目标点所覆盖的面积, 将所述中心 坐标作为触摸点的坐标, 所述目标点所覆盖的面积作为触摸点的面积。
如上所述的红外触摸屏多点识别系统, 所述系统还包括根据用于根据前一时刻的触 摸点的位置与当前时刻触摸点的位置之间的距离跟踪触摸点运动的运动跟踪装置。
一种红外触摸屏的多点识别系统, 包括
用于采集在一次识别过程中的光路数据的数据采集装置;
用于生成与所述红外触摸屏尺寸成预设比例的具有二维矩阵排列性质的数据结构的 数据结构生成装置;
用于建立所述数据结构的数据元素与所述红外触摸屏上的光路相关联的属性的属性 建立装置;
用于根据所述数据元素与所述光路相关联的属性以及所述光路数据提取触摸点信息 的触摸点信息提取装置。
如上所述的红外触摸屏多点识别系统, 所述属性建立装置包括:
用于根据所述预设比例和所述光路的走向确定经过每一个数据元素的光路的光路确 定单元;
用于记录经过每一个数据元素的光路的数量以及经过该数据元素的光路的位置或序 号属性记录单元。
如上所述的红外触摸屏多点识别系统, 所述触摸点信息提取装置包括:
用于根据所述数据元素与所述光路之间相关联的属性以及所述光路数据查找目标点 的目标点查找单元;
用于按照聚类条件对目标点进行聚类的聚类单元, 所述聚类单元设定密度阈值, 依 次遍历每一个目标点, 按照聚类条件对目标点进行聚类, 得到至少一个聚类集合;
用于计算触摸点的坐标及触摸点的面积的触摸点计算单元, 所述触摸点计算单元计 算各个聚类集合内目标点的中心坐标和目标点所覆盖的面积, 将所述中心坐标作为触摸 点的坐标, 所述目标点所覆盖的面积作为触摸点的面积。
如上所述的红外触摸屏多点识别系统, 所述触摸点信息提取装置包括:
用于根据所述数据元素与所述光路之间相关联的属性以及所述光路数据查找目标点 的目标点查找单元;
用于按照聚类条件对目标点进行聚类的聚类单元;
用于依次判断每一个聚类集合所覆盖的面积是否大于所述面积阈值的面积判断单 元, 所述面积判断单元设定面积阈值, 依次判断每一个聚类集合所覆盖的面积是否大于 所述面积阈值的面积判断单元, 如果大于, 则将该聚类集合作为一个触摸点, 否则, 舍 弃该聚类集合, 判断下一个聚类集合, 直到判断完所有聚类集合为止;
用于计算触摸点的坐标及触摸点的面积的触摸点计算单元, 所述触摸点计算单元计 算没有被舍弃的各个聚类集合内目标点的中心坐标和目标点所覆盖的面积, 将所述中心 坐标作为触摸点的坐标, 所述目标点所覆盖的面积作为触摸点的面积。
如上所述的红外触摸屏多点识别系统, 所述系统还包括用于根据前一时刻的触摸点 的位置与当前时刻触摸点的位置之间的距离跟踪触摸点运动的运动跟踪装置。
本发明提供了一种基于密度聚类的红外触摸屏多点识别方法和系统, 通过建立图像 的像素 /数据结构的数据元素与光路之间的关联, 通过光路数据, 改变与图像的像素 /数据 结构的数据元素相关联的光路的数量, 当与某一个图像的像素 /数据结构的数据元素相关 联的光路数量变为零时, 将该图像的像素 /数据结构的数据元素标记为目标点, 在根据标 记的目标点的密度, 设定密度阈值, 将目标点聚类, 聚为一类的目标点即为一个触摸点, 将没有聚类的目标点设置为背景, 这种从图像像素或数组元素的数量级上判断目标点, 能够有效去除鬼点及噪声点, 识别精度高, 适合于任意多个触摸点的识别。
附图说明
图 1是实施例 1中红外触摸屏的多点识别系统的结构框图;
图 2是实施例 1中红外触摸屏的多点识别方法的流程图;
图 3是实施例 1 中属性建立装置建立图像的像素与所述红外触摸屏上的光路相关联 的属性的方法的流程图;
图 4是实施例 1中一个像素与经过该像素的光路之间相关联的属性的一种方式; 图 5是实施例 1中触摸点信息提取装置提取触摸点信息的方法的流程图;
图 6是实施例 1中目标点查找单元查找目标点的方法的流程图;
图 7是实施例 1中目标点查找单元查找出的目标点在图像上的分布情况的示意图; 图 8是实施例 1中聚类单元对目标点进行聚类的方法的流程图;
图 9是实施例 2中目标点查找单元查找目标点的方法的流程图;
图 10是实施例 3中触摸点信息提取装置的结构框图;
图 11是实施例 3中触摸点信息提取装置提取触摸点信息的方法的流程图; 图 12是实施例 4中红外触摸屏的多点识别系统的结构框图。
具体实施方式
下面结合实施例和附图对本发明进行清楚完整地描述。
实施例 1
本实施例提供一种红外触摸屏的多点识别系统及多点识别方法, 如图 1所示, 该多 点识别系统包括数据采集装置 1、 图像生成装置 2、 属性建立装置 3、 触摸点信息提取装 置 4和运动跟踪装置 5, 其中属性建立装置 3包括光路确定单元 31和属性记录单元 32; 触摸点信息提取装置 4包括目标点查找单元 41、 聚类单元 42、 触摸点计算单元 44。
数据采集装置 1用于采集在一次识别过程中的光路数据。
图像生成装置 2用于生成与所述红外触摸屏尺寸成预设比例的图像。
属性建立装置 3 用于建立所述图像的像素与所述红外触摸屏上的光路相关联的属 性。其中光路确定单元 31用于根据所述预设比例和光路的走向确定经过每一个像素的光 路;属性记录单元 32用于记录经过每一个像素的光路的数量以及经过该像素的光路的位 置或序号。
触摸点信息提取装置 4用于根据所述像素与所述红外触摸屏上的光路相关联的属性 以及所述光路数据提取触摸点信息。其中目标点查找单元 41用于根据像素与光路之间相 关联的属性以及光路数据查找目标点; 聚类单元 42 用于按照聚类条件对目标点进行聚 类, 所述聚类单元设定密度阈值, 依次遍历每一个目标点, 按照聚类条件对目标点进行 聚类, 得到至少一个聚类集合; 触摸点计算单元 44用于将每一个聚类集合都作为一个触 摸点并计算触摸点的坐标及触摸点的面积;触摸点计算单元 44可以计算各个聚类集合内 目标点的中心坐标和目标点所覆盖的面积, 将中心坐标作为触摸点的坐标, 目标点所覆 盖的面积作为触摸点的面积。
运动跟踪装置 5用于根据前一时刻的触摸点的位置与当前时刻触摸点的位置之间的 距离跟踪触摸点运动。
如图 2所示, 为本实施例所述的系统识别多个触摸点的方法的流程图, 该方法包括 以下步骤:
201、 数据采集装置 1采集在一次识别过程中的光路数据。
该光路数据包含经过扫描后采集到的红外发射元件和红外接收元件之间遮挡与不遮 挡的光路, 如遮挡数据可以用 1表示, 没被遮挡的数据可以用 0表示, 那么这些光路数 据就是 "0"和 "1"的一系列组合。
202、 图像生成装置 2生成与所述红外触摸屏尺寸成预设比例的图像, 也即生成一幅 与红外触摸屏尺寸成一定比例的图像, 图像大小和红外触摸屏的比例优选为 1 :1, 该图像 可以是一幅背景为单一颜色的图像, 优选地图像的背景颜色为黑色。
203、属性建立装置 3用于建立所述图像上的像素与所述红外触摸屏上的光路相关联 的属性。
即记录每一个像素, 并将经过当前像素的光路作为该像素的属性记录下来, 将像素 与光路相关联, 一个像素可以对应多条光路。 如图 3, 具体建立像素与光路相关联的属 性的方法包括如下步骤:
2031、 光路确定单元 31根据预设比例和光路的走向确定经过每一个像素的光路。 经过每个像素的光路是根据光路的走向确定的, 并不一定是实际穿过该像素的光路, 因为有些光路可能会由于触摸物的遮挡而不能穿过该像素, 只要光路的走向经过该像素 即可, 所以所述的光路应该包括红外发射元件和红外接收元件之间扫描的所有光路, 既 包括被触摸物遮挡的光路, 也包括没被触摸物遮挡的光路。
2032、属性记录单元 32记录经过每一个像素的光路的数量以及经过该像素的光路的 位置或序号。
同样, 经过每一个像素的光路包括被遮挡的和没有被遮挡的光路, 通过记录经过每 一个像素的光路的数量以及光路的位置或序号建立像素和光路之间的关联, 例如, 对于 像素 (50, 50 ), 如果有 3条光路经过该像素, 这 3条光路的序号分别为: 第 8条、 第 10条、 第 12条, 那么该像素的属性可以记为图 4所示的形式, 当然也可以记为其他形 式。 204、触摸点提取装置根据所述图像上的像素与所述红外触摸屏上的光路相关联的属 性以及所述光路数据提取触摸点信息。
如图 5所示, 提取触摸点信息的方法可以包括以下步骤:
2041、 目标点查找单元 41根据所述像素与所述光路之间相关联的属性以及所述光路 数据查找目标点。
该目标点查找单元 41根据在一次识别过程中的光路数据的遮挡情况, 改变像素与光 路之间相关联的属性, 优选地, 改变与像素相关联的光路的数量, 当与像素相关联的光 路的数量满足一定条件时, 将该像素标记为目标点。 如图 6, 查找目标点具体可以采用如下方法:
①遍历一个未遍历过的像素, 实际上是, 依次处理图像上的每一个像素;
②遍历一个经过当前像素的未遍历过的光路。
如果经过当前像素的第一条光路没被遍历过, 则遍历第一条光路, 否则, 遍历第二 条, 如果第二条也被遍历过, 则遍历第三条, 依次类推。
③判断当前光路是否被遮挡, 若是, 则与当前像素相关联的光路的数量减 1, 并进 入步骤④, 例如, 与当前像素相关联的光路为 5条, 若果当前一条光路被遮挡, 那么将 与当前像素相关联的光路数减 1, 也即与当前像素相关联的光路变为 4条; 否则, 直接 进入步骤④, 也即如果当前光路没被遮挡, 则不做处理, 直接进入下一步。
④判断是否遍历完经过当前像素的所有光路, 若是, 则进入步骤⑤; 否则, 转至步 骤②。
艮卩, 如果经过一个像素的所有光路的遮挡情况都判断完毕, 则进入下一步, 否则, 按照同样的方法判断下一个像素。
⑤判断与当前像素相关联的光路的数量是否变为 0, 若是, 则将该像素标记为一个 目标点, 为了便于区分背景颜色和目标点, 可以将目标点的颜色标记为与图像的背景颜 色不同的颜色, 例如可以标记为白色, 进入步骤⑥; 否则, 直接进入步骤⑥。
⑥判断所有像素是否处理完毕, 若是, 则结束; 否则, 转至步骤①。
为了更清楚地说明上述查找目标点的方法, 可以对上述方法进行更具体的描述: 遍历第一个像素, 依次遍历与该像素相关联的光路, 也即遍历经过该像素的光路, 例如与该像素相关联的光路数为 3, 判断第一条光路是否被遮挡, 如果被遮挡, 则与该 像素相关联的光路数减 1, 即与该像素相关联的光路数变为 2; 继续判断第二条光路是否 被遮挡, 如果被遮挡, 则与该像素相关联的光路数再减 1, 即与该像素相关联的光路数 变为 1 ; 继续判断第三条光路是否被遮挡, 如果被遮挡, 则与该像素相关联的光路数再 减 1, 即与该像素相关联的光路数变为 0, 这时, 将该像素标记为一个目标点, 可以标记 为白色, 然后处理下一个像素。
如果该像素相关联的 3 条光路判断完毕后, 与该像素相关联的光路数不为 0, 则用 同样的方法继续处理第二像素, 第三个像素, ......, 依次类推, 直到处理完所有像素为 止。
由于触摸物都有一定的面积, 一个触摸物可能覆盖多个像素, 因此, 标记的目标点 基本上都聚集在几个不同的区域内, 由于噪声的存在, 也会有些孤立的目标点分布再图 像上, 如图 7所示, 示出了查找出的目标点在图像上的分布情况的示意图, 图中白色的 点即为目标点, 从图中可以看出, 除了少数孤立的目标点外, 查找出的目标点分别聚集 在不同的小区域内。 需要说明的是图 6只是示意图, 实际的目标点的分布情况可能不同。
2042、 聚类单元 42按照聚类条件对目标点进行聚类, 从而得到至少一个聚类集合, 该聚类条件优选为目标点的邻域内的密度是否大于设定的阈值,也即设定一个密度阈值, 通过目标点的邻域内的目标点密度与密度阈值的比较进行聚类,得到至少一个聚类集合。
如图 8, 具体聚类方法如下:
①遍历一个未遍历过的目标点, 也即如果第一次遍历的是第一个目标点, 那么第二 次遍历除第一次遍历的目标点之外的其他目标点, 每次遍历的目标点都不重复。
②判断当前遍历的目标点的邻域内的目标点密度是否大于预先设定的密度阈值, 若 是, 则将该目标点作为一个聚类集合中的一个元素, 进入步骤③; 否则, 舍弃该目标点, 该聚类集合完毕, 进入步骤③。
③判断目标点是否遍历完毕, 若是, 则结束; 否则, 转至步骤①。
对上述目标点的邻域不做具体限定, 可以根据实际情况来确定, 可以为当前目标点 的 4邻域、 8邻域、 16邻域等, 也可以为以该目标点为圆心的一个圆, 半径可以为 2个 或者 3个像素, 还可以为以该目标点为中心的正方形或者矩形, 其边长也根据实际需要 来定。
上述所述的聚类集合完毕是指该聚类集合建立完毕, 也即不再往该聚类集合中添加 新元素, 如果后面步骤中还有满足邻域内的目标点密度大于设定的密度阈值的目标点, 则将该目标点放入另一个聚类集合。
为了更清楚的说明本实施例的聚类方法, 下面做更具体的描述:
首先遍历第一个目标点, 设定一个密度阈值, 判断该目标点是否满足聚类条件, 如 果满足, 则将该目标点作为第一个聚类集合 C1中的一个元素;
继续判断第二个目标点, 如果该目标点还满足聚类条件, 则将该目标点作为 C1中的 第二个元素, 然后判断第 3个、 第 4个 第 n个目标点, n为正整数, 直到遍历到 一个不满足聚类集合的目标点, 则舍弃该目标点;
继续遍历下一个没被遍历过的目标点, 如果不满足聚类条件, 则继续遍历, 如果遍 历到一个目标点满足聚类条件, 则将该目标点作为第二个聚类集合中的第一个元素, 继 续遍历, 建立第二个聚类集合, 当再次遍历到一个不满足聚类集合的目标点时, 第二个 聚类集合结束;
继续遍历, 查找第三个聚类集合中的元素, ......, 直到遍历完所有的目标点。
实际上, 每一个聚类集合都是连续满足聚类条件的至少一个目标点的集合, 不满足 聚类条件的目标点是两个聚类集合的分界点, 例如, 假设一个共查找到 50个目标点, 如 果前 10个都满足聚类条件, 则这 10个目标点为一个聚类集合中的元素, 第 11个、 12 个目标点都不满足聚类条件, 第 13至 25个目标点满足, 则第 13至 25个目标点为第二 个聚类集合中的元素, 第 26个不满足, 第 27至第 50个目标点满足, 则第 27至第 50个 目标点为第三个聚类集合中的元素。
需要说明的是, 上述聚类集合可以只有一个, 这时对应的是单点触摸, 只有一个触 摸点。 2043、 触摸点计算单元 44将每一个所述聚类集合都作为一个触摸点, 并计算触摸点 的坐标及触摸点的面积。
触摸点计算单元 44计算各个聚类集合内目标点的中心坐标和目标点所覆盖的面积, 将各个聚类集合的中心坐标作为各个触摸点的坐标, 将目标点所覆盖的面积作为触摸点 的面积, 其中中心坐标可以为一个聚类集合中目标点的平均坐标。
205、运动跟踪装置 5根据前一时刻的触摸点的位置与当前时刻触摸点的位置之间的 距离跟踪触摸点运动。
如果前一时刻触摸点的位置与当前时刻触摸点的位置之间的距离小于一定的阈值, 则这两个位置为同一个触摸点不同时刻的轨迹, 通过这种方法可以跟踪触摸点的运动。
假设在连续两次识别过程中, 第一次识别出 5个触摸点, 分别为 Τ 、 Γ2、 Γ3、 Τ4、 Τ5, 第二次也识别 5个触摸点, 分别为 7V、 Τ2 '、 Γ3 '、 Τ4 '、 Τ5 '。 分别计算 TV 与 、 τ2、 r3、 τ4、 Γ5之间的距离, 将与 TV 距离最近的点与 7V 作为一个运动轨迹上的两个 点, 即这两点处在一个运动轨迹上, 属于同一个触摸物在不同时刻的两个不同位置。 采 用同样的方式判断 Γ2 '、 Γ3 '、 Γ4 '、 τ5'。
本实施例提供一种红外触摸屏的多点识别系统, 该系统通过密度聚类的方法处理像 素与光路之间相关联的属性, 从像素的数量级上识别目标点, 然后通过对目标点进行聚 类来识别触摸点, 可以提高触摸识别的精度。
实施例 2
在实施例 1中, 步骤 2041中目标点查找单元 41查找目标点的方法是依次遍历每一 个像素, 根据与该像素相关联的光路的遮挡情况来判断当前像素是否为目标点, 实际上, 经过触摸点的光路都是被遮挡的, 所以为了快速识别出触摸点, 可以只判断被遮挡的光 路通过的像素, 其他像素不需要判断, 如图 9, 具体查找目标点的方法如下:
①根据所述光路数据, 遍历每一个被遮挡的光路, 将与每一个被遮挡的光路所经过 的像素相关联的光路数量减 1。
遍历第一条被遮挡的光路, 如果该光路经过 m个像素, 其中 m为正整数, 将与该 m 个像素相关联的光路的数量减 1, 按照这样的方法, 处理所有被遮挡的光路及这些被遮 挡的光路所经过的像素, 将这些光路所经过的像素的光路数量减 1。
②再次遍历被遮挡的光路经过的像素, 判断经过当前像素的光路的数量是否变为 0, 若是, 则将该像素标记为一个目标点, 为了便于区分背景颜色和目标点, 将目标点的颜 色标记为与背景颜色不同的颜色, 例如可以标记为白色, 进入步骤③; 否则, 直接进入 步骤③;
经过步骤①的处理后, 与被遮挡的光路所经过的像素相关联的光路的数量已经发生 变化, 然后遍历步骤①中处理过的像素, 也即遍历被遮挡的光路所经过的像素, 如果与 当前像素相关联的光路数量变为 0, 也即经过该像素的光路数变为 0, 则将该像素标记为 目标点, 然后进入步骤③, 否则, 直接进入步骤③。
实际上, 如果当前像素为目标点, 则经过该像素的光路应该都被遮挡。
③判断是否处理完被遮挡的光路经过的所有像素, 若是, 则结束, 否则, 则转至步 骤②。
实施例 3 在实施例 1和实施例 2中, 触摸点信息提取装置 4在提取触摸点信息时都是通过对 识别出的目标点进行聚类, 得到若干个聚类集合, 将每一个聚类集合作为一个触摸点, 在实际应用过程中, 即使是根据密度聚类得到一系列聚类集合, 这些聚类集合也不一定 全是触摸点, 可能由于实际触摸点的遮挡, 有些面积较小的聚类集合是由于实际触摸点 的遮挡产生的, 为了进一步减少误判的几率, 如图 10所示, 触摸点信息提取装置 4还可 以包括一个面积判断单元 43, 用于依次判断每一个聚类集合所覆盖的面积是否大于设定 的面积阈值, 该面积判断单元设定面积阈值, 依次判断每一个聚类集合所覆盖的面积是 否大于所述面积阈值的面积判断单元, 如果大于, 则将该聚类集合作为一个触摸点, 否 则, 舍弃该聚类集合, 判断下一个聚类集合, 直到判断完所有聚类集合为止。
如图 11, 相应地, 触摸点信息提取装置 4根据图像上的像素与红外触摸屏上的光路 相关联的属性以及所述光路数据提取触摸点信息用如下方法代替:
2041 ' 、 目标点查找单元 41根据所述像素与所述红外触摸屏上的光路之间相关联的 属性以及所述光路数据查找目标点, 具体目标点的查找方法可以与实施例 1相同。
2042' 、 聚类单元 42设定密度阈值, 依次遍历每一个目标点, 按照聚类条件对目标 点进行聚类, 得到至少一个聚类集合, 具体聚类的方法与实施例 1相同。
2043 ' 、 面积判断单元 43设定一个面积阈值, 依次判断每一个聚类集合所覆盖的面 积是否大于设定的面积阈值, 如果大于, 则将该聚类集合作为一个触摸点, 否则, 舍弃 该聚类集合, 判断下一个聚类集合, 直到判断完所有聚类集合为止。
通过设定一个面积阈值, 将每一个聚类集合中的目标点所覆盖的面积与面积阈值进 行比较, 如果聚类集合中目标点所覆盖的面积小于设定的面积阈值, 也即如果聚类集合 中的目标点满足聚类条件, 但是该聚类集合的面积很小, 这样的聚类集合不能作为一个 触摸点, 这可能是由于真实触摸点的相互遮挡造成的鬼点, 应该舍弃, 这样可以减少鬼 点。
2044' 、触摸点计算单元 44计算没有被舍弃的各个聚类集合内目标点的中心坐标和 目标点所覆盖的面积, 将该中心坐标作为触摸点的坐标, 该目标点所覆盖的面积作为触 摸点的面积。
本实施例通过设置一个聚类集合的面积阈值, 将覆盖面积较小的聚类集合作为鬼点 去除, 进一步提高了触摸精度。
实施例 4
本实施例基于实施例 1, 在实施例 1 中, 红外触摸屏多点识别系统执行多点识别的 方法时需要生成与红外触摸屏尺寸成比例的图像, 然后对图像中的像素进行操作, 涉及 到对图像像素的数值计算、 对图像的卷积等操作, 这些操作一般比较费时, 作为对实施 例 1和实施例 2的进一步改进, 本实施例提供另一种红外触摸屏多点识别系统, 如图 12 所示,该多点识别系统包括数据采集装置 Γ 、二维数组生成装置 2' 、属性建立装置 3 ' 、 触摸点信息提取装置 4' 和运动跟踪装置 5', 其中属性建立装置 3 ' 包括光路确定单元 31 ' 和属性记录单元 32' ; 触摸点信息提取装置 4' 包括目标点查找单元 4Γ 、 聚类单 元 42' 、 触摸点计算单元 44' 。
数据采集装置 Γ 用于采集在一次识别过程中的光路数据。
二维数组生成装置 2' 用于生成与所述红外触摸屏尺寸成预设比例的二维数组。 属性建立装置 3'用于建立所述二维数组的数组元素与所述红外触摸屏上的光路相关 联的属性。 其中光路确定单元 3Γ 用于根据所述预设比例和光路的走向确定经过每一个 数组元素的光路;属性记录单元 32'用于记录经过每一个数组元素的光路的数量以及经过 该数组元素的光路的位置或序号。
触摸点信息提取装置 4' 用于根据所述数组元素与所述红外触摸屏上的光路相关联 的属性以及所述光路数据提取触摸点信息。 其中目标点查找单元 4Γ 用于根据所述数组 元素与所述红外触摸屏上的光路之间相关联的属性以及所述光路数据查找目标点; 聚类 单元 42' 用于按照聚类条件对目标点进行聚类;触摸点计算单元 44' 用于将每一个聚类 集合都作为一个触摸点并计算触摸点的坐标及触摸点的面积, 触摸点计算单元 44' 计算 各个聚类集合内目标点的中心坐标和目标点所覆盖的面积, 将所述中心坐标作为触摸点 的坐标, 所述目标点所覆盖的面积面积作为触摸点的面积。
运动跟踪装置 5'用于根据前一时刻的触摸点的位置与当前时刻触摸点的位置之间的 距离跟踪触摸点运动。
本实施例提供的多点识别系统执行识别多个触摸点的方法与实施例 1、 实施例 2或 实施例 3 的方法相同, 只是将其中的图像生成装置 2替换为二维数组生成装置 2' , 将 所有对像素的处理都改为对数组元素的处理, 也即将实施例 1、 实施例 2或实施例 3 中 的像素统一都替换为数组元素, 具体包括以下步骤:
数据采集装置 Γ 采集在一次识别过程中的光路数据;
二维数组生成装置 2' 生成与所述红外触摸屏尺寸成预设比例的二维数组。
属性建立装置 3'用于建立所述二维数组的数组元素与所述红外触摸屏上的光路相关 联的属性。
触摸点信息提取装置 4' 用于根据所述数组元素与所述红外触摸屏上的光路相关联 的属性以及所述光路数据提取触摸点信息。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神 和范围, 例如, 实施例 4中的二维数组也可以其他具有二维矩阵排列性质的数据结构, 如二维向量。 这样, 倘若本发明的这些修改和变型属于本发明权利要求及其同等技术的 范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权利要求书
1 . 一种红外触摸屏多点识别方法, 其特征在于, 包括以下步骤:
采集在一次识别过程中的光路数据;
生成与所述红外触摸屏尺寸成预设比例的图像;
建立所述图像的像素与所述红外触摸屏上的光路相关联的属性;
根据所述像素与所述光路相关联的属性以及所述光路数据提取触摸点信息。
2.根据权利要求 1 所述的红外触摸屏多点识别方法, 其特征在于, 所述建立所述图 像的像素与所述光路相关联的属性具体为:
根据所述预设比例和所述光路的走向确定经过每一个像素的光路;
记录经过每一个像素的光路的数量以及经过该像素的光路的位置或序号。
3.根据权利要求 1 所述的红外触摸屏多点识别方法, 其特征在于, 所述提取触摸点 信息的具体步骤如下:
根据所述像素与所述光路之间相关联的属性以及所述光路数据查找目标点; 设定密度阈值, 依次遍历每一个目标点, 按照聚类条件对目标点进行聚类, 得到至 少一个聚类集合;
计算各个聚类集合内目标点的中心坐标和目标点所覆盖的面积, 将所述中心坐标作 为触摸点的坐标, 所述目标点所覆盖的面积作为触摸点的面积。
4.根据权利要求 1 所述的红外触摸屏多点识别方法, 其特征在于, 所述提取触摸点 信息的具体步骤如下:
根据所述像素与所述光路之间相关联的属性以及所述光路数据查找目标点; 设定密度阈值, 依次遍历每一个目标点, 按照聚类条件对目标点进行聚类, 得到至 少一个聚类集合;
设定面积阈值, 依次判断每一个聚类集合所覆盖的面积是否大于所述面积阈值, 如 果大于, 则将该聚类集合作为一个触摸点, 否则, 舍弃该聚类集合, 判断下一个聚类集 合, 直到判断完所有聚类集合为止;
计算没被舍弃的各个聚类集合内目标点的中心坐标和目标点所覆盖的面积, 将所述 中心坐标作为触摸点的坐标, 所述目标点所覆盖的面积作为触摸点的面积。
5.根据权利要求 3或 4所述的红外触摸屏多点识别方法, 其特征在于, 所述查找目 标点的方法如下:
①遍历一个未遍历过的像素;
②遍历一个经过当前像素的未遍历过的光路;
③判断当前光路是否被遮挡, 若是, 则与当前像素相关联的光路的数量减 1, 并进 入步骤④; 否则, 直接进入步骤④;
④判断是否遍历完经过当前像素的所有光路, 若是, 则进入步骤⑤; 否则, 转至步 骤②;
⑤判断与当前像素相关联的光路的数量是否变为 0, 若是, 则将该像素标记为一个 目标点, 进入步骤⑥; 否则, 直接进入步骤⑥;
⑥判断所有像素是否处理完毕, 若是, 则结束; 否则, 转至步骤①。
6.根据权利要求 3或 4所述的红外触摸屏多点识别方法, 其特征在于, 所述查找目 标点的方法如下:
①根据所述光路数据, 遍历每一个被遮挡的光路, 将与每一个被遮挡的光路所经过 的像素相关联的光路数量减 1 ;
②再次遍历被遮挡的光路经过的一个像素, 判断经过该像素的光路的数量是否变为 0, 若是, 则将该像素标记为一个目标点, 进入步骤③; 否则, 直接进入步骤③;
③判断是否处理完被遮挡的光路经过的所有像素, 若是, 则结束, 否则, 则转至步 骤②。
7.根据权利要求 3或 4所述的红外触摸屏多点识别方法, 其特征在于, 所述对目标 点进行聚类的方法如下:
①遍历一个未遍历过的目标点;
②判断当前目标点的邻域内的目标点密度是否大于设定的密度阈值, 若是, 则将该 目标点作为一个聚类集合中的一个元素, 进入步骤③; 否则, 舍弃该目标点, 该聚类集 合完毕, 进入步骤③;
③判断目标点是否遍历完毕, 若是, 则结束; 否则, 转至步骤①。
8.根据权利要求 3或 4所述的红外触摸屏多点识别方法, 其特征在于, 所述方法还 包括根据前一时刻的触摸点的位置与当前时刻触摸点的位置之间的距离跟踪触摸点运动 的步骤。
9. 一种红外触摸屏多点识别方法, 其特征在于, 包括以下步骤:
采集在一次识别过程中的光路数据;
生成与所述红外触摸屏尺寸成预设比例的具有二维矩阵排列性质的数据结构; 建立所述数据结构的数据元素与所述红外触摸屏上的光路相关联的属性; 根据所述数据元素与所述光路相关联的属性以及所述光路数据提取触摸点信息。
10. 根据权利要求 9 所述的红外触摸屏多点识别方法, 其特征在于, 所述数据结构 为二维数组, 所述数据元素为数组元素。
11.根据权利要求 9所述的红外触摸屏多点识别方法, 其特征在于, 所述建立所述数 据元素与所述光路相关联的属性具体为:
根据所述预设比例和所述光路的走向确定经过每一个数据元素的光路;
记录经过每一个数据元素的光路的数量以及经过该数据元素的光路的位置或序号。
12.根据权利要求 9所述的红外触摸屏多点识别方法, 其特征在于, 所述提取触摸点 信息的具体步骤如下:
根据所述数据元素与所述光路之间相关联的属性以及所述光路数据查找目标点; 设定密度阈值, 依次遍历每一个目标点, 按照聚类条件对目标点进行聚类, 得到至 少一个聚类集合;
计算各个聚类集合内目标点的中心坐标和目标点所覆盖的面积, 将所述中心坐标作 为触摸点的坐标, 所述目标点所覆盖的面积作为触摸点的面积。
13.根据权利要求 9所述的红外触摸屏多点识别方法, 其特征在于, 所述提取触摸点 信息的具体步骤如下:
根据所述数据元素与所述光路之间相关联的属性以及所述光路数据查找目标点; 设定密度阈值, 依次遍历每一个目标点, 按照聚类条件对目标点进行聚类, 得到至 少一个聚类集合;
设定面积阈值, 依次判断每一个聚类集合所覆盖的面积是否大于所述面积阈值, 如 果大于, 则将该聚类集合作为一个触摸点, 否则, 舍弃该聚类集合, 判断下一个聚类集 合, 直到判断完所有聚类集合为止;
计算没有被舍弃的各个聚类集合内目标点的中心坐标和目标点所覆盖的面积, 将所 述中心坐标作为触摸点的坐标, 所述目标点所覆盖的面积作为触摸点的面积。
14.根据权利要求 12或 13所述的红外触摸屏多点识别方法, 其特征在于, 所述查找 目标点的方法如下:
①遍历一个未遍历过的数据元素;
②遍历一个经过当前数据元素的未遍历过的光路;
③判断当前光路是否被遮挡, 若是, 则与当前数据元素相关联的光路的数量减 1, 并进入步骤④; 否则, 直接进入步骤④;
④判断是否遍历完经过当前数据元素的所有光路, 若是, 则进入步骤⑤; 否则, 转 至步骤②;
⑤判断与当前数据元素相关联的光路的数量是否变为 0, 若是, 则将该数据元素标 记为一个目标点, 进入步骤⑥; 否则, 直接进入步骤⑥;
⑥判断所有数据元素是否处理完毕, 若是, 则结束; 否则, 转至步骤①。
15.根据权利要求 12或 13所述的红外触摸屏多点识别方法, 其特征在于, 所述查找 目标点的方法如下:
①根据所述光路数据, 遍历每一个被遮挡的光路, 将与每一个被遮挡的光路所经过 的数据元素相关联的光路数量减 1 ;
②再次遍历被遮挡的光路经过的一个数据元素, 判断经过该数据元素的光路的数量 是否变为 0, 若是, 则将该数据元素标记为一个目标点, 进入步骤③; 否则, 直接进入 步骤③;
③判断是否处理完被遮挡的光路经过的所有数据元素, 若是, 则结束, 否则, 则转 至步骤②。
16.根据权利要求 12或 13所述的红外触摸屏多点识别方法, 其特征在于, 所述对目 标点进行聚类的方法如下:
①遍历一个未遍历过的目标点;
②判断当前目标点的邻域内的目标点密度是否大于设定的密度阈值, 若是, 则将该 目标点作为一个聚类集合中的一个元素, 进入步骤③; 否则, 舍弃该目标点, 该聚类集 合完毕, 进入步骤③;
③判断目标点是否遍历完毕, 若是, 则结束; 否则, 转至步骤①。
17.根据权利要求 12或 13所述的红外触摸屏多点识别方法, 其特征在于, 所述方法 还包括根据前一时刻的触摸点的位置与当前时刻触摸点的位置之间的距离跟踪触摸点运 动的步骤。
18. —种红外触摸屏的多点识别系统, 其特征在于, 包括
用于采集在一次识别过程中的光路数据的数据采集装置; 用于生成与所述红外触摸屏尺寸成预设比例的图像的图像生成装置; 用于建立所述图像的像素与所述红外触摸屏上的光路相关联的属性的属性建立装 置;
用于根据所述像素与所述光路相关联的属性以及所述光路数据提取触摸点信息的触 摸点信息提取装置。
19.根据权利要求 18 所述的红外触摸屏得多点识别系统, 其特征在于, 所述属性建 立装置包括:
用于根据所述预设比例和所述光路的走向确定经过每一个像素的光路的光路确定单 元;
用于记录经过每一个像素的光路的数量以及经过该像素的光路的位置或序号属性记 录单元。
20.根据权利要求 18 所述的红外触摸屏的多点识别系统, 其特征在于, 所述触摸点 信息提取装置包括:
用于根据所述像素与所述光路之间相关联的属性以及所述光路数据查找目标点的目 标点查找单元;
用于按照聚类条件对目标点进行聚类的聚类单元;
用于计算触摸点的坐标及触摸点的面积的触摸点计算单元, 所述触摸点计算单元计 算各个聚类集合内目标点的中心坐标和目标点所覆盖的面积, 将所述中心坐标作为触摸 点的坐标, 所述目标点所覆盖的面积作为触摸点的面积。
21.根据权利要求 18 所述的红外触摸屏的多点识别系统, 其特征在于, 所述触摸点 信息提取装置包括:
用于根据所述像素与所述光路之间相关联的属性以及所述光路数据查找目标点的目 标点查找单元;
用于按照聚类条件对目标点进行聚类的聚类单元, 所述聚类单元设定密度阈值, 依 次遍历每一个目标点, 按照聚类条件对目标点进行聚类, 得到至少一个聚类集合;
用于依次判断每一个聚类集合所覆盖的面积是否大于所述面积阈值的面积判断单 元, 所述面积判断单元设定面积阈值, 依次判断每一个聚类集合所覆盖的面积是否大于 所述面积阈值的面积判断单元, 如果大于, 则将该聚类集合作为一个触摸点, 否则, 舍 弃该聚类集合, 判断下一个聚类集合, 直到判断完所有聚类集合为止;
用于计算触摸点的坐标及触摸点的面积的触摸点计算单元, 所述触摸点计算单元计 算没有被舍弃的各个聚类集合内目标点的中心坐标和目标点所覆盖的面积, 将所述中心 坐标作为触摸点的坐标, 所述目标点所覆盖的面积作为触摸点的面积。
22. 根据权利要求 18至 21 中任一项所述的红外触摸屏的多点识别系统, 其特征在 于, 所述系统还包括用于根据前一时刻的触摸点的位置与当前时刻触摸点的位置之间的 距离跟踪触摸点运动的运动跟踪装置。
23. 一种红外触摸屏的多点识别系统, 其特征在于, 包括
用于采集在一次识别过程中的光路数据的数据采集装置;
用于生成与所述红外触摸屏尺寸成预设比例的具有二维矩阵排列性质的数据结构的 数据结构生成装置; 用于建立所述数据结构的数据元素与所述红外触摸屏上的光路相关联的属性的属性 建立装置;
用于根据所述数据元素与所述光路相关联的属性以及所述光路数据提取触摸点信息 的触摸点信息提取装置。
24.根据权利要求 23 所述的红外触摸屏得多点识别系统, 其特征在于, 所述属性建 立装置包括:
用于根据所述预设比例和所述光路的走向确定经过每一个数据元素的光路的光路确 定单元;
用于记录经过每一个数据元素的光路的数量以及经过该数据元素的光路的位置或序 号属性记录单元。
25.根据权利要求 23 所述的红外触摸屏的多点识别系统, 其特征在于, 所述触摸点 信息提取装置包括:
用于根据所述数据元素与所述光路之间相关联的属性以及所述光路数据查找目标点 的目标点查找单元;
用于按照聚类条件对目标点进行聚类的聚类单元, 所述聚类单元设定密度阈值, 依 次遍历每一个目标点, 按照聚类条件对目标点进行聚类, 得到至少一个聚类集合; 用于计算触摸点的坐标及触摸点的面积的触摸点计算单元, 所述触摸点计算单元计 算各个聚类集合内目标点的中心坐标和目标点所覆盖的面积, 将所述中心坐标作为触摸 点的坐标, 所述目标点所覆盖的面积作为触摸点的面积。
26.根据权利要求 23 所述的红外触摸屏的多点识别系统, 其特征在于, 所述触摸点 信息提取装置包括:
用于根据所述数据元素与所述光路之间相关联的属性以及所述光路数据查找目标点 的目标点查找单元;
用于按照聚类条件对目标点进行聚类的聚类单元;
用于依次判断每一个聚类集合所覆盖的面积是否大于所述面积阈值的面积判断单 元, 所述面积判断单元设定面积阈值, 依次判断每一个聚类集合所覆盖的面积是否大于 所述面积阈值的面积判断单元, 如果大于, 则将该聚类集合作为一个触摸点, 否则, 舍 弃该聚类集合, 判断下一个聚类集合, 直到判断完所有聚类集合为止;
用于计算触摸点的坐标及触摸点的面积的触摸点计算单元, 所述触摸点计算单元计 算没有被舍弃的各个聚类集合内目标点的中心坐标和目标点所覆盖的面积, 将所述中心 坐标作为触摸点的坐标, 所述目标点所覆盖的面积作为触摸点的面积。
27. 根据权利要求 23至 26 中任一项所述的红外触摸屏的多点识别系统, 其特征在 于, 所述系统还包括用于根据前一时刻的触摸点的位置与当前时刻触摸点的位置之间的 距离跟踪触摸点运动的运动跟踪装置。
PCT/CN2012/077831 2011-08-03 2012-06-29 一种红外触摸屏多点识别方法及系统 WO2013016996A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110221822.9 2011-08-03
CN201110221822.9A CN102419663B (zh) 2011-08-03 2011-08-03 一种红外触摸屏多点识别方法及系统

Publications (1)

Publication Number Publication Date
WO2013016996A1 true WO2013016996A1 (zh) 2013-02-07

Family

ID=45944097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077831 WO2013016996A1 (zh) 2011-08-03 2012-06-29 一种红外触摸屏多点识别方法及系统

Country Status (2)

Country Link
CN (1) CN102419663B (zh)
WO (1) WO2013016996A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102419663B (zh) * 2011-08-03 2015-10-14 北京汇冠新技术股份有限公司 一种红外触摸屏多点识别方法及系统
CN102419664B (zh) * 2011-08-03 2014-04-02 北京汇冠新技术股份有限公司 一种红外触摸屏的多点识别方法及系统
CN103885644A (zh) * 2012-12-21 2014-06-25 北京汇冠新技术股份有限公司 一种提高红外触摸屏触摸精度的方法及其系统
CN103902104B (zh) * 2012-12-25 2017-03-08 北京汇冠新技术股份有限公司 用于红外触摸屏的扫描数据解析方法及装置
CN103970360B (zh) * 2013-01-30 2017-02-08 北京汇冠新技术股份有限公司 一种基于多点触摸的手势识别方法及系统
CN103399674B (zh) * 2013-08-01 2016-05-18 广东威创视讯科技股份有限公司 一种多点触摸检测方法及装置
CN103699273B (zh) * 2013-12-26 2016-09-21 广州视睿电子科技有限公司 红外触摸屏的触摸点识别方法及其系统
CN104238834B (zh) * 2014-09-28 2020-03-20 青岛海信电器股份有限公司 一种提高触控灵敏度的方法及系统
CN104615311B (zh) * 2015-02-10 2017-09-26 青岛海信电器股份有限公司 一种触摸屏定位方法、装置及触屏设备
CN106055169B (zh) * 2016-07-29 2019-04-02 创业保姆(广州)商务秘书有限公司 基于检测点密度值的防误触方法与其智能快递柜
CN110794994A (zh) * 2019-09-27 2020-02-14 深圳市天英联合教育股份有限公司 真实触点的确定方法及装置
CN114253417B (zh) * 2021-12-02 2024-02-02 Tcl华星光电技术有限公司 多触控点识别方法、装置、计算机可读介质及电子设备
CN114816130B (zh) * 2022-06-29 2022-09-20 长沙朗源电子科技有限公司 电子白板的书写识别方法、系统、存储介质和电子白板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080304084A1 (en) * 2006-09-29 2008-12-11 Kil-Sun Kim Multi Position Detecting Method and Area Detecting Method in Infrared Rays Type Touch Screen
CN102004586A (zh) * 2010-11-23 2011-04-06 广东威创视讯科技股份有限公司 一种触摸点定位装置及方法
CN102033658A (zh) * 2009-09-30 2011-04-27 北京汇冠新技术股份有限公司 一种触摸屏、触摸系统及其定位方法
CN102103441A (zh) * 2009-12-17 2011-06-22 乐金显示有限公司 检测触摸的方法以及光学触摸传感系统
CN102419663A (zh) * 2011-08-03 2012-04-18 北京汇冠新技术股份有限公司 一种红外触摸屏多点识别方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101075168B (zh) * 2007-06-22 2014-04-02 北京汇冠新技术股份有限公司 一种识别红外触摸屏上多个触摸点的方法
CN101727245B (zh) * 2008-10-15 2012-11-21 北京京东方光电科技有限公司 多点触摸定位方法及多点触摸屏
CN101876869A (zh) * 2009-04-30 2010-11-03 鸿富锦精密工业(深圳)有限公司 电子装置及控制电子装置进行输入的方法
CN101995997A (zh) * 2009-08-21 2011-03-30 厦门信烨联动传媒有限公司 一种多点红外线触摸屏及其触摸定位方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080304084A1 (en) * 2006-09-29 2008-12-11 Kil-Sun Kim Multi Position Detecting Method and Area Detecting Method in Infrared Rays Type Touch Screen
CN102033658A (zh) * 2009-09-30 2011-04-27 北京汇冠新技术股份有限公司 一种触摸屏、触摸系统及其定位方法
CN102103441A (zh) * 2009-12-17 2011-06-22 乐金显示有限公司 检测触摸的方法以及光学触摸传感系统
CN102004586A (zh) * 2010-11-23 2011-04-06 广东威创视讯科技股份有限公司 一种触摸点定位装置及方法
CN102419663A (zh) * 2011-08-03 2012-04-18 北京汇冠新技术股份有限公司 一种红外触摸屏多点识别方法及系统

Also Published As

Publication number Publication date
CN102419663A (zh) 2012-04-18
CN102419663B (zh) 2015-10-14

Similar Documents

Publication Publication Date Title
WO2013016996A1 (zh) 一种红外触摸屏多点识别方法及系统
CN100501657C (zh) 一种触摸屏装置及触摸屏装置的定位方法
CN102063618B (zh) 互动系统中的动态手势识别方法
KR102118408B1 (ko) 터치 감지 디바이스에서 터치 동작을 수행하는 방법
CN102231093B (zh) 一种屏幕定位控制方法及装置
CN103677441B (zh) 红外多点识别方法、红外多点识别装置和红外触摸屏
CN104615310B (zh) 一种确定候选触摸点的方法及装置
TWI471755B (zh) 能操控電氣設備作動模式的操控裝置
WO2014026568A1 (zh) 一种触摸轨迹跟踪方法
WO2011116538A1 (zh) 一种可同时识别触摸屏多个触点的识别方法
CN106095201B (zh) 一种投影交互系统的双击检测方法
WO2013016995A1 (zh) 一种红外触摸屏的多点识别方法及系统
CN109933276B (zh) 一种基于触摸大屏电子白板手写笔迹中手袖误触的判定方法
CN109948725A (zh) 基于地址-事件表达的神经网络目标检测装置
WO2012171457A1 (zh) 一种红外触摸屏的多点识别方法及系统
CN106067031A (zh) 基于人工纠错机制与深度学习网络协作机器视觉识别系统
WO2012072000A1 (zh) 一种触摸点定位方法、装置及触摸屏
CN104680142B (zh) 一种基于特征点集分割和rst不变特征的四联指比对方法
CN108255352B (zh) 一种投影交互系统中多点触摸实现方法及系统
CN107797648A (zh) 虚拟触摸系统和图像识别定位方法、计算机可读存储介质
CN111488897B (zh) 一种触摸物体的检测识别方法及其装置
WO2022047839A1 (zh) 一种红外触摸屏多点触摸识别方法、装置及设备
CN109871178A (zh) 一种基于图像识别的虚拟触摸屏系统
CN103389793B (zh) 人机交互方法和系统
KR101289883B1 (ko) 영역 별로 임계치를 다르게 적용한 마스크 이미지 생성 장치 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12819993

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 09/04/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12819993

Country of ref document: EP

Kind code of ref document: A1