WO2012171457A1 - 一种红外触摸屏的多点识别方法及系统 - Google Patents

一种红外触摸屏的多点识别方法及系统 Download PDF

Info

Publication number
WO2012171457A1
WO2012171457A1 PCT/CN2012/076815 CN2012076815W WO2012171457A1 WO 2012171457 A1 WO2012171457 A1 WO 2012171457A1 CN 2012076815 W CN2012076815 W CN 2012076815W WO 2012171457 A1 WO2012171457 A1 WO 2012171457A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical path
point
touch screen
image
area
Prior art date
Application number
PCT/CN2012/076815
Other languages
English (en)
French (fr)
Inventor
王武军
刘新斌
刘建军
叶新林
Original Assignee
北京汇冠新技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京汇冠新技术股份有限公司 filed Critical 北京汇冠新技术股份有限公司
Publication of WO2012171457A1 publication Critical patent/WO2012171457A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger

Definitions

  • the invention relates to a method and a system for identifying touch points of a touch screen, in particular to a multi-point recognition method and system for an infrared touch screen based on image processing. Background technique
  • touch screens have been widely used as a simple and convenient human-computer interaction device.
  • the types of touch screens mainly include resistive touch screens, capacitive touch screens, surface acoustic wave touch screens, optical touch screens, and infrared touch screens.
  • the infrared touch screen uses an infrared matrix densely arranged in the X and Y directions to detect and locate the user's touch operation.
  • the infrared touch screen is provided with a circuit board outer frame on the front side of the display.
  • the circuit board arranges the infrared transmitting tube and the infrared receiving tube on the four sides of the screen, and one-to-one correspondingly forms an infrared matrix which is horizontally and vertically crossed.
  • the touch object such as a finger blocks the two infrared rays passing through the position, so that the position of the touch point on the screen can be judged. Since the infrared touch screen has advantages of being free from current, voltage and static electricity, and is suitable for harsh environmental conditions, the infrared touch screen has a wide application range.
  • the method of identifying touch points on an infrared touch screen has gone through a process of recognizing one point to identifying two points and then identifying more points.
  • Multi-point (more than two points) recognition will inevitably become the trend of infrared touch screens, because multi-touch can not only display more dazzling display effects, but also achieve more touch functions.
  • the two-point identification method of the infrared touch screen is basically mature at present, and the key step in the recognition process is to remove ghost points, which are non-real touch points recognized on the infrared touch screen.
  • the method of logically judging can be used to remove ghost points. For example, according to the distance relationship between each corresponding quasi-touch point set in two (or more) logical screens (a subset of the set of optical paths obtained in one scan), the real Touch the point. The theoretical basis is that the real point has a small deviation in the scan results of each logical screen, and the ghost point deviation is large. This method of removing ghost points is simple and easy to implement, and the calculation amount is small, and the ability to remove ghosts is strong.
  • the technical problem to be solved by the present invention is to provide a multi-point recognition method and system for an infrared touch screen based on image processing.
  • the technical solution adopted by the present invention is as follows:
  • a multi-point identification method for an infrared touch screen includes the following steps:
  • Touch point information is extracted in the optical path image.
  • the multi-point identification method of the infrared touch screen as described above, wherein the method for generating the optical path image is as follows: collecting optical path data of the infrared touch screen in one recognition process;
  • the multi-point recognition method of the infrared touch screen wherein the method of extracting the touch point information is as follows:
  • the center coordinates and the contour area of each contour are calculated based on the contour information, and the center coordinates are used as touch point coordinates, and the contour area is used as a touch point area.
  • the multi-point recognition method of the infrared touch screen wherein the method of extracting the touch point information is as follows:
  • the center coordinates of the contour are calculated based on the contour information, and the center coordinates are used as touch point coordinates, and the contour area is used as a touch point area.
  • the multi-point identification method of the infrared touch screen as described above, wherein the method of the denoising process is as follows: performing the N-th etching operation continuously on the optical path image; or performing P-first etching and post-expansion operation on the optical path image first, and then The ⁇ -corrosion operation is further performed, and the ⁇ -expansion operation is performed.
  • the multi-point recognition method of the infrared touch screen as described above further includes the step of removing the ghost points according to the mutual relationship between the touch point information. Specifically, if one touch point area is smaller than one-half of the area of the touch area with the smallest area among the other touch points, the touch point is considered to be a ghost point, and is removed.
  • the multi-point recognition method of the infrared touch screen as described above in a single recognition process, it is first determined whether there is a touch point on the infrared touch screen according to the optical path data; if there is no touch point, the current recognition is ended.
  • the area where the touch point is located is first determined according to the optical path data; if there is the touch point area, the area corresponding to the touch point is generated corresponding to the optical path in the area The light path image; if there is no touch point area, the current recognition is ended.
  • the multi-point recognition method of the infrared touch screen as described above in a recognition process, first according to the light
  • the road data determines whether there is a touch point on the infrared touch screen; if there is a touch point, it continues to determine the area where the touch point is located according to the optical path data, and generates an optical path image corresponding to the optical path in the area in the area where the touch point is located, and then performs subsequent Recognition processing; if there is no touch point, this identification is ended.
  • a multi-point recognition system for an infrared touch screen comprising: an optical path image generating device for generating an optical path image corresponding to all optical paths of the infrared touch screen in one recognition process; and a touch for extracting touch point information in the optical path image Point information extraction device.
  • the multi-point recognition system of the infrared touch screen as described above, wherein the optical path image generating device includes an acquisition unit for collecting optical path data of the infrared touch screen in one recognition process; and configured to generate an initial optical path image that is preset to a size of the infrared touch screen.
  • the initial optical path image generating unit is configured to determine, according to the optical path data, whether each optical path is occluded, and if the optical path is not occluded, generate a line segment corresponding to the optical path at a corresponding position of the initial optical path image according to the preset ratio.
  • the optical path corresponds to the line segment generating unit.
  • the multi-point recognition system of the infrared touch screen as described above, wherein the touch point information extraction device includes a denoising unit for performing denoising processing on the optical path image, and the processed image is recorded as an image for segmenting the image A.
  • a segmentation extracting unit that extracts a touch point contour and records each contour information; a calculating unit that calculates a center coordinate of each contour based on the contour information.
  • the multi-point recognition system of the infrared touch screen as described above further includes a ghost point removing device for removing ghost points according to the mutual relationship between the touch point information after the touch point information is extracted.
  • the multi-point recognition system of the infrared touch screen as described above further comprising touch point area determining means for determining an area where the touch point is located according to the optical path data; the light path image generating means is configured to generate the area with the touch point The optical path image corresponding to the Zhongguang Road.
  • the multi-point recognition system of the infrared touch screen as described above further includes pre-determination means for determining whether there is a touch point on the infrared touch screen based on the optical path data.
  • the multi-point recognition system of the infrared touch screen as described above, further comprising: a pre-determination device for determining whether there is a touch point on the infrared touch screen according to the optical path data; a touch point region determining device for determining an area where the touch point is located according to the optical path data; The optical path image generating device is configured to generate an optical path image corresponding to the optical path in the region in the region where the touch point is located.
  • the invention provides a novel multi-point recognition method and system for infrared touch screen based on image processing, which is suitable for the recognition of any plurality of touch points, and has high recognition accuracy, no ghost points or few ghost points.
  • the optical path global information is used, so it has better robustness and anti-noise performance than other local optical path-based logic judgments, even if a few optical paths are not correct (such as optical path not being able to block or Under the condition that the optical path is lost, the correct touch point information can still be obtained. Since the denoising process is performed on the boundary portion of the target area, the influence on the position of the touched point is small; and the true shape of the touched point area can be restored, and the touch point obtained finally has high precision.
  • FIG. 1 is a structural block diagram of a multi-point identification system of an infrared touch screen in Embodiment 1;
  • Embodiment 2 is a flow chart of a multi-point identification method of the infrared touch screen in Embodiment 1;
  • Embodiment 3 is a flow chart showing a method of generating an optical path image in Embodiment 1;
  • Embodiment 4 is a flow chart of a method for extracting touch point information in Embodiment 1;
  • Figure 5 is a schematic diagram of an optical path image in Embodiment 1;
  • FIG. 6 is a first schematic diagram showing the effect of denoising the optical path image shown in FIG. 5 in FIG. 1;
  • FIG. 7 is a second schematic diagram showing the effect of denoising the optical path image shown in FIG. 5 in the first embodiment;
  • FIG. 9 is a schematic diagram showing the effect of extracting and extracting the image shown in FIG. 7;
  • FIG. 9 is a schematic diagram showing the effect of extracting touch point information from the image shown in FIG. 8 in Embodiment 1;
  • FIG. 10 is an infrared touch screen of Embodiment 2.
  • Figure 11 is a schematic view showing an initial optical path image in Embodiment 2.
  • Figure 12 is a schematic view showing the principle of optical path reverse pushing in Embodiment 2;
  • Figure 13 is a schematic view showing an optical path image in Embodiment 2.
  • 14 and 15 are block diagrams showing the structure of a multi-point recognition system of the infrared touch screen in the third embodiment. detailed description
  • This embodiment provides a multi-point identification system for an infrared touch screen.
  • the system includes an optical path image generating device 11 and a touch point information extracting device 12.
  • the optical path image generating device 11 includes an acquisition unit 111, an initial optical path image generating unit 112, and an optical path corresponding line segment generating unit 113.
  • the touch point information extracting device 12 includes a denoising unit 121, a segmentation extracting unit 122, and a calculating unit 123.
  • the optical path image generating device 11 is for generating an optical path image P corresponding to the optical path of the infrared touch panel in one recognition process.
  • the collecting unit 111 is configured to collect optical path data of the infrared touch screen in a single recognition process;
  • the initial optical path image generating unit 112 is configured to generate an initial optical path image ⁇ that is at a preset ratio M to the infrared touch screen size, and store the initial optical path image to The image storage area, the initial optical path image may be a pure white or pure black image;
  • the optical path corresponding line segment generating unit 113 is configured to determine whether each optical path is blocked according to the optical path data, and if the optical path is not blocked, according to a preset ratio ⁇ in the image storage A corresponding line of the initial optical path image in the area generates a line segment corresponding to the optical path to obtain an optical path image ⁇ .
  • the touch point information extracting means 12 is for extracting touch point information in the optical path image .
  • the denoising unit 121 is configured to perform denoising processing on the optical path image ,, remove noise in the optical path image ,, and record the processed image as an image.
  • the segmentation extracting unit 123 is configured to segment the image and extract the touch point contour. And calculating the contour information; the calculating unit 124 calculates the center coordinates and the contour area of each contour according to the contour information, and uses the center coordinates as the touch point coordinates and the contour area as the touch point area.
  • the system further includes a ghost point removing device (not shown in FIG. 1) for removing ghost points that may exist in the touched point according to the mutual relationship between the touched point information after the touch point information is extracted.
  • a ghost point removing device (not shown in FIG. 1) for removing ghost points that may exist in the touched point according to the mutual relationship between the touched point information after the touch point information is extracted.
  • the method for implementing multi-point identification in a recognition process in the embodiment includes the following steps:
  • the optical path image generating device 11 generates an optical path image ⁇ (201) corresponding to the optical path of the infrared touch panel in one recognition process.
  • the specific generation process includes the following steps:
  • the collecting unit 111 collects the optical path data (2011) of the infrared touch screen in one recognition process.
  • the initial optical path image generating unit 112 generates an initial optical path image (2012) which is preset to a size of the infrared touch screen.
  • the size of the touch screen and the size of the optical path image can be any ratio, and can be set according to the specific application environment. Preferably, it is 1 : 1, such that the coordinates of the optical path on the touch screen and the coordinates of the corresponding line segment of the optical path in the optical path image need not be converted.
  • the background color of the optical path image and the color of the corresponding line segment of the optical path should be different, and it is preferable to use two colors with strong contrast.
  • the background color is white
  • the color path corresponding to the line segment is black
  • the initial light path image is an all-white image.
  • Coordinate transformation is required when generating the corresponding line segment of the optical path.
  • the starting point coordinate of the optical path is ( , y)
  • the starting point coordinate of the corresponding line segment of the optical path is ( ', )
  • / ' m/n
  • the end point coordinates of the corresponding line segment of the optical path can be calculated, and the line segment corresponding to the optical path generated by the start point and the end point is connected.
  • the generated optical path image 3 is as shown in FIG.
  • the touch point information extracting means 12 extracts touch point information in the optical path image P, as shown in FIG. 4, specifically the extraction process includes the following steps:
  • the denoising unit 121 performs denoising processing on the optical path image P to remove noise in the optical path image P, and records the processed image as an image (2021).
  • the denoising method may adopt a morphological method, and the present invention does not limit the specific denoising method as long as the noise in the optical path image can be removed.
  • This embodiment provides the following two specific methods for denoising: a. Continuously performing three etching operations on the optical path image P, and using a 3x3 circular template for the etched structural elements, and the obtained optical path image effect is as shown in FIG. 6. As can be seen from Figure 6, the image of the denoised optical path is still rough, but it is sufficient for subsequent processing.
  • the 2-segment extraction unit 122 performs segmentation processing on the image ⁇ , extracts the segmented touch point contours, and records each contour information (2022), the contour information including the contour point coordinates, that is, the coordinate set of the points on the contour edge. If the touch point outline is not extracted, it means that no touch point exists, and this recognition is ended.
  • Process P a divided image is segmented from the image P a communication area in white, as a candidate touch point.
  • the connected area smaller than the set area may be directly deleted as a ghost point, or may be reserved for subsequent processing, wherein the set area is determined according to a specific application environment.
  • the candidate touch points at this time are basically true touch points, but the existence of individual ghost points is not excluded. Individual ghost points can be removed by logical judgment, or they can be allowed to exist, and will not affect the recognition result of subsequent touch operations.
  • the calculation unit 123 calculates the center coordinates and the contour area (2023) of each contour based on the contour information, using the center coordinates as the touch point coordinates and the contour area as the touch point area.
  • the center coordinates of the contour can be calculated by, but not limited to, the following methods: 1 Calculate the average of all the contour point coordinates of the record, and use the average value as the center coordinate of the contour; 2 Calculate the average of the coordinates of all points in the contour, The average value is taken as the center coordinate of the contour, and the coordinates of all the points in the contour can be obtained by the coordinates of the contour edge points. Obviously, the center coordinates calculated using the coordinates of all points in the contour are more accurate.
  • the contour area can be calculated by, but not limited to, the following method: 1 Calculate the area of the circumscribed rectangle of the contour, and use the area as the contour area; 2 Calculate the number of points contained in the contour, and use the number as Contour area. Obviously, the contour area calculated by the second method is more accurate.
  • the ghost point removing device removes the ghost point according to the mutual relationship between the touch point information. For example, if one touch point area is smaller than one-half of the area of the touch area with the smallest area among the other touch points, the touch point is considered to be a ghost point and is removed. Other ways of judging can also be used to remove ghost points.
  • the touch point coordinates acquired at this time are the coordinates on the optical path image, and if necessary, the coordinates can be converted into touch screen coordinates according to the size ratio of the touch screen and the size ratio of the optical path image.
  • the system recognizes the touch point in a recognition process between 24ms and 26ms (the maximum time is more than 20ms for 20ms and 5ms for 24ms).
  • each step is to process the entire optical path image. Since the approximate position of each touch point area can be quickly obtained by the initial optical path data, the rough area set of the touch point can be obtained first, and subsequent operations are performed only for these areas. This processing speed is greatly improved, but the basic idea is the same as that of Embodiment 1.
  • the specific process is as follows:
  • an initial optical path image is generated which is at a preset ratio M to the infrared touch screen size, and the initial optical path image is a background.
  • the background color is black.
  • a rough area of candidate touch points is calculated based on the optical path data, which is approximately a rectangular area.
  • the system of the present embodiment adds a touch point area determining device 101 based on the first embodiment, as shown in FIG. These areas are initialized to white and touch points will be generated in these areas. If the candidate touch point area is not obtained after calculation based on the optical path data, it means that no touch point exists, and the current recognition is ended.
  • the initial optical path image when there are five touch points is as shown in FIG.
  • the rectangular, circular, and diamond-shaped targets represent touch-point regions of different sizes and shapes.
  • the starting and ending optical paths through the object are obtained by back-twisting (the left optical path represents the starting optical path, right
  • the side light path represents the end of the light path).
  • the left optical path represents the starting optical path
  • right The side light path represents the end of the light path.
  • the line segments corresponding to the optical paths in the left and right ranges are determined. From Figure 12 It can be seen that part of the optical path passing through the rectangular area also passes through the circular area at the same time. In order to avoid repeated generation, the optical paths of all areas are combined (that is, the same optical path generates only the corresponding line segment once).
  • the optical path image generated by the above-described initial optical path image shown in Fig. 11 is as shown in Fig. 13.
  • the subsequent processing is basically the same as that of the first embodiment, except that the first embodiment is to process the entire optical path image, and the present embodiment processes only the optical path image of the touched point region.
  • the present embodiment adds a pre-judgment device 141 based on the first embodiment or the second embodiment for predetermining the presence or absence of a touch point based on the optical path data. Any method in the prior art can be used for the method of judging, and details are not described herein again.
  • the pre-judging means 141 judges whether or not there is a touched point based on the optical path data. If there is no touch point, the current recognition is ended; if there is a touch point, the touch point is identified by the method of Embodiment 1 or Embodiment 2. This avoids unnecessary recognition processing and improves recognition efficiency. It is apparent that those skilled in the art can make various modifications and variations to the invention without departing from the spirit and scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of the inventions

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

本发明涉及一种红外触摸屏的多点识别方法及系统。本发明首先生成与红外触摸屏在一次识别过程中的光路对应的光路图像;然后在光路图像中提取触摸点信息。优选的,在一次识别过程中先根据光路数据判断红外触摸屏上是否存在触摸点;如果不存在,则在该次识别过程中不再进行识别处理。优选的,如果存在触摸点,则继续根据光路数据判断触摸点所在区域,对所述触摸点所在区域生成与所述区域中光路对应的光路图像;然后在所述光路图像中提取触摸点信息。本发明提出了一种全新的基于图像处理的红外触摸屏多点识别方法及系统,适合于任意多个触摸点的识别,识别准确率高、无鬼点或鬼点少(图2)。

Description

一种红外触摸屏的多点识别方法及系统
技术领域
本发明涉及一种触摸屏触摸点的识别方法及系统, 尤其是涉及一种基于 图像处理的红外触摸屏的多点识别方法及系统。 背景技术
随着触摸技术的发展, 触摸屏作为一种简单方便的人机交互设备得到广 泛应用。 目前, 触摸屏的种类主要包括电阻式触摸屏、 电容式触摸屏、 表面 声波触摸屏、 光学触摸屏和红外触摸屏等。 其中, 红外触摸屏是利用 X、 Y 方向上密布的红外线矩阵来检测并定位用户的触摸操作。 红外触摸屏在显示 器的前面安装一个电路板外框, 电路板在屏幕四边排布红外发射管和红外接 收管, 一一对应形成横竖交叉的红外线矩阵。 用户在触摸屏幕时, 手指等触 摸物会挡住经过该位置的横竖两条红外线, 因而可以判断出触摸点在屏幕上 的位置。 由于红外触摸屏具有不受电流、 电压和静电干扰, 适宜恶劣的环境 条件等优点, 因此红外触摸屏的应用范围较广。
红外触摸屏上触摸点的识别方法经历了从识别一点到识别两点, 再到识 别更多点的发展历程。 多点 (超过两点) 识别必然会成为红外触摸屏的发展 趋势, 因为多点触摸不仅可以显示出更炫丽的显示效果, 而且可以实现更多 的触摸功能。
红外触摸屏的两点识别方法目前已基本成熟, 识别过程中的关键步骤是 去除鬼点, 所述鬼点是指在红外触摸屏上识别出的非真实触摸点。 去除鬼点 可以采用逻辑判断方法, 例如, 根据两个 (或更多) 逻辑屏 (一次扫描得到 的光路集合的子集) 中, 各个对应准触摸点集之间的距离关系, 直接筛选真 实的触摸点。其理论基础是:真实点在各个逻辑屏的扫描结果中距离偏差小, 而鬼点偏差较大。这种去除鬼点方法简单易实现, 计算量小, 去鬼点能力强。 但是, 当触摸点多于两点时,不同逻辑屏上特定触摸点的对应关系不易确定, 因为当不同逻辑屏上点数相同时, 容易排序, 但是点数不同时, 如边角处某 一逻辑屏上点丢失, 则较难排序对齐, 而且点数自动判定较难。 在点数增加 时, 由于排序不成功而导致的错误识别发生几率也迅速增加。 因此, 这种方 法不适合于红外触摸屏上超过两点的多点识别。
目前市场上已经有部分厂家推出了具有多点 (10点)识别功能的红外触 摸屏, 但是在效果上存在诸多弊端。 例如, 鬼点多、 精度低, 而且要求触摸 点的面积较大。 发明内容
针对现有技术中存在的缺陷, 本发明所要解决的技术问题是提供一种基 于图像处理的红外触摸屏的多点识别方法及系统。 为解决上述技术问题, 本发明采用的技术方案如下:
一种红外触摸屏的多点识别方法, 包括以下步骤:
生成与红外触摸屏在一次识别过程中的光路对应的光路图像;
在所述光路图像中提取触摸点信息。 如上所述红外触摸屏的多点识别方法,其中,光路图像的生成方法如下: 采集红外触摸屏在一次识别过程中的光路数据;
生成与所述红外触摸屏尺寸成预设比例的初始光路图像;
根据所述光路数据判断每条光路是否被遮挡, 如果光路未被遮挡, 则根 据所述预设比例在所述初始光路图像的相应位置生成一条与该光路对应的线 段; 所述线段的颜色与所述初始光路图像的背景颜色不同。 如上所述红外触摸屏的多点识别方法, 其中, 提取触摸点信息的方法如 下:
对所述光路图像进行去噪处理, 去除所述光路图像中的噪声, 将处理后 的图像记为图像
对所述图像 A进行分割处理, 获得触摸点轮廓并记录各个轮廓信息; 如 果未获得触摸点轮廓, 则结束本次识别;
根据所述轮廓信息计算各个轮廓的中心坐标和轮廓面积, 将所述中心坐 标作为触摸点坐标, 轮廓面积作为触摸点面积。 如上所述红外触摸屏的多点识别方法, 其中, 提取触摸点信息的方法如 下:
对所述光路图像进行去噪处理, 去除所述光路图像中的噪声, 将处理后 的图像记为图像
对所述图像 A进行分割处理, 获得触摸点轮廓并记录各个轮廓信息; 如 果未获得触摸点轮廓, 则结束本次识别;
根据所述轮廓信息计算各个轮廓的轮廓面积;
对于轮廓面积大于设定阈值的轮廓, 根据所述轮廓信息计算轮廓的中心 坐标, 将所述中心坐标作为触摸点坐标, 所述轮廓面积作为触摸点面积。 如上所述红外触摸屏的多点识别方法, 其中, 去噪处理的方法如下: 对所述光路图像连续进行 N次腐蚀操作; 或者对所述光路图像先进行 P 次先腐蚀、 后膨胀操作, 然后再进行 β次腐蚀操作, β次膨胀操作。 所述 N
> 1 , Ρ > \ , β 。 如上所述红外触摸屏的多点识别方法, 还包括根据触摸点信息之间的相 互关系去除鬼点的步骤。 具体地, 如果一个触摸点面积小于其他触摸点中面 积最小的触摸点面积的二分之一, 则认为该触摸点为鬼点, 将其去除。 如上所述红外触摸屏的多点识别方法, 在一次识别过程中, 首先根据光 路数据判断红外触摸屏上是否存在触摸点; 如果不存在触摸点, 则结束本次 识别。 如上所述红外触摸屏的多点识别方法, 在一次识别过程中, 首先根据光 路数据判断触摸点所在区域; 如果存在触摸点区域, 则对所述触摸点所在区 域生成与所述区域中的光路对应的光路图像; 如果不存在触摸点区域, 则结 束本次识别。 如上所述红外触摸屏的多点识别方法, 在一次识别过程中, 首先根据光 路数据判断红外触摸屏上是否存在触摸点; 如果存在触摸点, 则继续根据光 路数据判断触摸点所在区域, 对所述触摸点所在区域生成与所述区域中的光 路对应的光路图像, 再进行后续识别处理; 如果不存在触摸点, 则结束本次 识别。 一种红外触摸屏的多点识别系统, 包括用于生成与红外触摸屏在一次识 别过程中的所有光路对应的光路图像的光路图像生成装置; 以及用于在所述 光路图像中提取触摸点信息的触摸点信息提取装置。 如上所述红外触摸屏的多点识别系统, 其中, 光路图像生成装置包括用 于采集红外触摸屏在一次识别过程中的光路数据的采集单元; 用于生成与红 外触摸屏尺寸成预设比例的初始光路图像的初始光路图像生成单元; 用于根 据光路数据判断每条光路是否被遮挡, 如果光路未被遮挡, 则根据所述预设 比例在所述初始光路图像的相应位置生成一条与该光路对应线段的光路对应 线段生成单元。 如上所述红外触摸屏的多点识别系统, 其中, 触摸点信息提取装置包括 用于对光路图像进行去噪处理的去噪单元, 将处理后的图像记为图像 用 于对图像 A进行分割处理, 提取触摸点轮廓并记录各个轮廓信息的分割提取 单元; 用于根据所述轮廓信息计算各个轮廓的中心坐标的计算单元。 如上所述红外触摸屏的多点识别系统, 还包括用于在提取出触摸点信息 后, 根据触摸点信息之间的相互关系去除鬼点的鬼点去除装置。 如上所述红外触摸屏的多点识别系统, 还包括用于根据光路数据确定触 摸点所在区域的触摸点区域确定装置; 所述光路图像生成装置用于对所述触 摸点所在区域生成与所述区域中光路对应的光路图像。 如上所述红外触摸屏的多点识别系统, 还包括用于根据光路数据判断红 外触摸屏上是否存在触摸点的预判断装置。 如上所述红外触摸屏的多点识别系统, 还包括用于根据光路数据判断红 外触摸屏上是否存在触摸点的预判断装置; 用于根据光路数据确定触摸点所 在区域的触摸点区域确定装置; 所述光路图像生成装置用于对所述触摸点所 在区域生成与所述区域中光路对应的光路图像。 本发明提出了一种全新的基于图像处理的红外触摸屏多点识别方法及系 统, 适合于任意多个触摸点的识别, 识别准确率高、 无鬼点或鬼点少。 由于 以图像处理为主, 采用的是光路全局信息, 因此相对于其他基于局部光路的 逻辑判断法具有更好的鲁棒性和抗噪性能, 即使在少数光路不正确 (如光路 挡不住或光路丢失) 的条件下, 仍能得到正确的触摸点信息。 由于去噪处理 都是针对目标区域的边界部分进行的, 因此对触摸点位置的影响较小; 而且 能够恢复触摸点区域的真实形状, 最终得到的触摸点精度高。 附图说明
图 1是实施例 1中红外触摸屏的多点识别系统结构框图;
图 2是实施例 1中红外触摸屏的多点识别方法的流程图;
图 3是实施例 1中生成光路图像的方法流程图;
图 4是实施例 1中提取触摸点信息的方法流程图;
图 5是实施例 1中的光路图像示意图;
图 6是实施例 1中对图 5所示的光路图像去噪后的效果示意图一; 图 7是实施例 1中对图 5所示的光路图像去噪后的效果示意图二; 图 8是实施例 1中对图 7所示图像进行分割和提取后的效果示意图; 图 9是实施例 1中对图 8所示图像提取触摸点信息后的效果示意图; 图 10是实施例 2中红外触摸屏的多点识别系统结构框图;
图 11是实施例 2中初始光路图像的示意图;
图 12是实施例 2中光路反推原理的示意图;
图 13是实施例 2中光路图像的示意图;
图 14和 15是实施例 3中红外触摸屏的多点识别系统结构框图。 具体实施方式
下面结合实施例和附图对本发明进行详细描述。
实施例 1
本实施例提供了一种红外触摸屏的多点识别系统。 如图 1所示, 该系统 包括光路图像生成装置 11和触摸点信息提取装置 12。 其中, 光路图像生成 装置 11包括采集单元 111、 初始光路图像生成单元 112和光路对应线段生成 单元 113, 触摸点信息提取装置 12包括去噪单元 121、 分割提取单元 122和 计算单元 123。
光路图像生成装置 11 用于生成与红外触摸屏在一次识别过程中的光路 对应的光路图像 P。 其中采集单元 111用于采集红外触摸屏在一次识别过程 中的光路数据; 初始光路图像生成单元 112用于生成与红外触摸屏尺寸成预 设比例 M的初始光路图像 Λ·, 并将初始光路图像存储到图像存储区, 初始光 路图像可以是纯白色或者纯黑色图像; 光路对应线段生成单元 113用于根据 光路数据判断每条光路是否被遮挡, 如果光路未被遮挡, 则根据预设比例 Μ 在图像存储区中初始光路图像 的相应位置生成一条与该光路对应的线段, 获得光路图像 Ρ。
触摸点信息提取装置 12用于在光路图像 Ρ中提取触摸点信息。 其中去 噪单元 121用于对光路图像 Ρ进行去噪处理, 去除光路图像 Ρ中的噪声, 将 处理后的图像记为图像 ^ 分割提取单元 123用于对图像 ^进行分割处理, 提取触摸点轮廓并记录各个轮廓信息; 计算单元 124根据所述轮廓信息计算 各个轮廓的中心坐标和轮廓面积, 将中心坐标作为触摸点坐标, 轮廓面积作 为触摸点面积。
优选的, 本系统还包括鬼点去除装置(图 1中未示出), 用于在提取出触 摸点信息后,根据触摸点信息之间的相互关系去除触摸点中可能存在的鬼点。 如图 2所示, 本实施例所述系统在一次识别过程中实现多点识别的方法 包括以下步骤:
( 1 ) 光路图像生成装置 11生成与红外触摸屏在一次识别过程中的光路 对应的光路图像 Ρ ( 201 )。
可以生成与一次识别过程中的所有光路对应的光路图像, 也可以生成与 一次识别过程中的部分光路对应的光路图像, 可根据具体应用环境确定。 显 然, 光路图像中的线段越多, 识别效果越好。
如图 3所示, 具体地生成过程包括以下步骤:
①采集单元 111采集红外触摸屏在一次识别过程中的光路数据 (2011 )。
②初始光路图像生成单元 112生成与红外触摸屏尺寸成预设比例的初始 光路图像 (2012 )。
触摸屏的尺寸与光路图像的尺寸可以是任意比例, 可以根据具体应用环 境设定。 优选为 1 : 1, 这样光路在触摸屏上的坐标和该光路对应线段在光路 图像中的坐标无需转换。
③根据光路数据判断一条光路是否被遮挡(2013 ), 如果该光路未被遮挡 ( 2014),则根据预设比例在初始光路图像的相应位置生成一条与该光路对应 的线段 (2015 ), 进入下一步。 如果被遮挡, 则直接进入下一步。
光路图像的背景颜色与光路对应线段的颜色应不同, 优选采用对比强烈 的两种颜色。本实施例中, 背景颜色采用白色, 光路对应线段颜色采用黑色, 初始光路图像为全白色的图像。
在生成光路对应线段时需要进行坐标转换。 设触摸屏的尺寸与光路图像 的尺寸比例 M=m/n, 光路的起点坐标为 ( ,_y), 该光路对应线段的起点坐标 为 ( ', ), 则 / '= m/n, y/y'= m/n , 由该公式可以计算出光路对应线段的 起点坐标。 采用同样的方法可以计算出光路对应线段的终点坐标, 连接起点 与终点生成光路对应的线段。
④如果所有光路均被判断完毕(2016 ), 则结束, 得到光路图像 Λ 否则, 获取下一个光路数据, 转至步骤③。
本实施例中, 生成的光路图像 3如图 5所示。
( 2 ) 触摸点信息提取装置 12在光路图像 P中提取触摸点信息, 如图 4 所示, 具体地提取过程包括以下步骤:
①去噪单元 121对光路图像 P进行去噪处理,去除光路图像 P中的噪声, 将处理后的图像记为图像 ( 2021 )。
由图 5所示的光路图像可以看出, 由于光路的不连续, 相邻光路之间会 有小的缝隙, 从而导致光路图像中存在许多小的白色区域, 即噪声。 噪声的 存在会影响到对触摸点的判断, 因此需要先对光路图像进行去噪处理, 去除 光路图像中的噪声。
去噪方法可以采用形态学方法, 本发明不对具体的去噪方法进行限定, 只要能够去除光路图像中的噪声即可。本实施例提供如下两种具体去噪方法: a、 对光路图像 P连续进行 3次腐蚀操作, 腐蚀结构元素采用 3x3圆形 模板, 得到的光路图像效果如图 6所示。 从图 6中可以看出, 去噪后的光路 图像仍然比较粗糙, 但是已经足够满足后续处理的需要。
b、 对光路图像 P先进行 3次 "先腐蚀、 后膨胀"操作, 然后再进行 3 次腐蚀操作, 3次膨胀操作, 得到的光路图像效果如图 7所示。 显然, 图 7 所示图像效果较好, 相应地, 也会耗费更多的处理时间。
②分割提取单元 122对图像 ^进行分割处理,提取分割出的触摸点轮廓 并记录各个轮廓信息(2022), 所述轮廓信息包括轮廓点坐标, 即轮廓边缘上 点的坐标集合。 如果没有提取到触摸点轮廓, 则说明没有触摸点存在, 结束 本次识别。
分割图像 Pa的过程就是从图像 Pa中分割出白色连通区域, 作为候选触 摸点。 此时可以将小于设定面积的连通区域作为鬼点, 直接删除, 也可以留 待后续处理, 其中的设定面积根据具体应用环境确定。 此时的候选触摸点基 本上均是真实的触摸点, 但也不排除个别鬼点的存在。 个别鬼点可以通过逻 辑判断的方法去除, 也可以允许其存在, 不会对后续触摸操作的识别结果产 生影响。
分割图像并提取轮廓点坐标的方法为现有技术, 此处不再赘述。 本实施 例中, 图像 Pa经过分割和轮廓提取后的效果如图 8所示。
③计算单元 123 根据轮廓信息计算各个轮廓的中心坐标和轮廓面积 ( 2023 ) , 将中心坐标作为触摸点坐标, 轮廓面积作为触摸点面积。
轮廓的中心坐标可以采用但不限于下述方法计算: ①计算记录的所有轮 廓点坐标的平均值, 将该平均值作为轮廓的中心坐标; ②计算轮廓内全部点 的坐标的平均值, 将该平均值作为轮廓的中心坐标, 轮廓内全部点的坐标可 通过轮廓边缘点的坐标得到。 显然, 利用轮廓内全部点的坐标计算的中心坐 标更加精确。
轮廓面积可以采用但不限于下述方法计算: ①计算轮廓的外接矩形的面 积, 将该面积作为轮廓面积; ②计算轮廓内包含的点的数量, 将该数量作为 轮廓面积。 显然, 采用第二种方式计算的轮廓面积更加精确。
本实施例中, 在获得触摸点信息后, 鬼点去除装置根据触摸点信息之间 的相互关系去除鬼点。 例如, 如果一个触摸点面积小于其他触摸点中面积最 小的触摸点面积的二分之一, 则认为该触摸点为鬼点, 将其去除。 去除鬼点 的方式也可以采用其他逻辑判断方式。
此时获取的触摸点坐标为光路图像上的坐标, 如需要可以根据触摸屏的 尺寸与光路图像的尺寸比例 M将该坐标转换为触摸屏坐标。
本实施例中, 提取触摸点信息后的效果如图 9所示。
经过实验精确测速, 本实施例中系统在一次识别过程中识别触摸点的时 间在 24ms~26ms之间 ( 10点以上最多耗时 26ms, 5点耗时 24ms )。 实施例 2
在实施例 1中, 每个步骤都是对整幅光路图像进行处理的。 由于可以通 过最初的光路数据, 快速得到各个触摸点区域的大致位置, 因此可以先求取 触摸点的粗略区域集合, 后续操作只针对这些区域进行。 这样处理速度会大 大提高, 但基本思想与实施例 1相同。 具体过程如下:
首先, 生成与红外触摸屏尺寸成预设比例 M的初始光路图像, 该初始光 路图像均为背景。 本实施例中, 背景颜色为黑色。 根据光路数据计算得到候 选触摸点的粗略区域, 近似为一个个矩形区域。 为此, 本实施例所述系统在 实施例 1的基础上增加了触摸点区域确定装置 101, 如图 10所示。 将这些区 域初始化为白色, 触摸点将在这些区域里产生。 如果根据光路数据计算后没 有得到候选触摸点区域, 则说明没有触摸点存在, 结束本次识别。 本实施例 中, 存在 5个触摸点时的初始光路图像如图 11所示。
然后, 遍历初始光路图像中每个触摸点区域, 即白色区域, 针对白色区 域, 反推经过此区域的所有光路, 合并相同光路, 生成经过此区域且未被遮 挡的光路对应线段 (黑线), 得到光路图像。
光路反推原理如图 12所示。 图 12中矩形、 圆形和菱形目标代表大小和 形状不同的触摸点区域, 以矩形物体为例, 经过反推得到经过此物体的起始 光路和终止光路(左侧光路代表起始光路, 右侧光路代表终止光路)。 生成光 路图像过程中,只判断与左侧和右侧范围内的光路对应的线段。从图 12中可 以看到,经过矩形区域的部分光路同时也经过圆形区域, 为了避免重复生成, 对所有区域的光路进行合并 (即相同光路只生成一次对应线段)。
本实施例中,图 11所示的初始光路图像经过上述处理后生成的光路图像 如图 13所示。
得到光路图像后, 后续处理与实施例 1基本相同, 差别仅仅在于实施例 1 是对整个光路图像进行处理, 而本实施例只对触摸点区域的光路图像进行 处理。
实验结果表明: 使用本实施例中局部图像处理方式, 大大降低了系统耗 时。 当触摸屏上存在 5个触摸点时, 识别时间在 8ms左右; 当触摸屏上存在 10个触摸点时, 识别时间在 10ms左右。 与实施例 1相比, 大大提高了系统 的识别效率。 实施例 3
由于在一次识别过程中, 并非一定有触摸操作发生, 因此如果在一次识 别过程中没有发生触摸操作, 仍然按照实施例 1或 2中所述方式进行一遍处 理, 不仅没有必要, 而且会占用系统资源, 导致识别效率降低。
如图 14和 15所示, 本实施例在实施例 1或实施例 2的基础上增加预判 断装置 141, 用于根据光路数据预先判断触摸点是否存在。 具有判断方法可 以采用现有技术中的任何一种方法, 此处不再赘述。
在一次识别过程中, 采集到光路数据后, 首先由预判断装置 141根据光 路数据判断是否存在触摸点。 如果不存在触摸点, 则结束本次识别; 如果存 在触摸点, 再采用实施例 1或实施例 2中的方法识别触摸点。 这样能够避免 不必要的识别处理, 提高识别效率。 显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其同等技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权利要求:
1 . 一种红外触摸屏的多点识别方法, 其特征在于, 包括以下步骤: 生成与红外触摸屏在一次识别过程中的光路对应的光路图像;
在所述光路图像中提取触摸点信息。
2. 如权利要求 1所述的红外触摸屏的多点识别方法, 其特征在于, 所述 光路图像的生成方法如下:
采集红外触摸屏在一次识别过程中的光路数据;
生成与所述红外触摸屏尺寸成预设比例的初始光路图像;
根据所述光路数据判断每条光路是否被遮挡, 如果光路未被遮挡, 则根 据所述预设比例在所述初始光路图像的相应位置生成一条与该光路对应的线 段; 所述线段的颜色与所述初始光路图像的背景颜色不同。
3. 如权利要求 1所述的红外触摸屏的多点识别方法, 其特征在于, 所述 提取触摸点信息的方法如下:
对所述光路图像进行去噪处理, 将处理后的图像记为图像
对所述图像 A进行分割处理, 获得触摸点轮廓并记录各个轮廓信息; 如 果未获得触摸点轮廓, 则结束本次识别;
根据所述轮廓信息计算各个轮廓的中心坐标和轮廓面积, 将所述中心坐 标作为触摸点坐标, 轮廓面积作为触摸点面积。
4. 如权利要求 3所述的红外触摸屏的多点识别方法, 其特征在于, 所述 去噪处理的方法如下:
对所述光路图像连续进行 N次腐蚀操作, 所述 N > 1。
5. 如权利要求 3所述的红外触摸屏的多点识别方法, 其特征在于, 所述 去噪处理的方法如下:
对所述光路图像先进行 3次先腐蚀、 后膨胀操作, 然后再进行 β次腐蚀 操作, β次膨胀操作, 所述 ^ 1, β > 1。
6. 如权利要求 3所述的红外触摸屏的多点识别方法, 其特征在于: 所述 方法还包括根据触摸点信息之间的相互关系去除鬼点的步骤。
7. 如权利要求 6所述的红外触摸屏的多点识别方法, 其特征在于, 所述 去除鬼点的方法如下:
如果一个触摸点面积小于其他触摸点中面积最小的触摸点面积的二分之 一, 则认为该触摸点为鬼点, 将其去除。
8. 如权利要求 1所述的红外触摸屏的多点识别方法, 其特征在于, 所述 提取触摸点信息的方法如下:
对所述光路图像进行去噪处理, 去除所述光路图像中的噪声, 将处理后 的图像记为图像
对所述图像 A进行分割处理, 获得触摸点轮廓并记录各个轮廓信息; 如 果未获得触摸点轮廓, 则结束本次识别;
根据所述轮廓信息计算各个轮廓的轮廓面积;
对于轮廓面积大于设定阈值的轮廓, 根据所述轮廓信息计算轮廓的中心 坐标, 将所述中心坐标作为触摸点坐标, 所述轮廓面积作为触摸点面积。
9. 如权利要求 8所述的红外触摸屏的多点识别方法, 其特征在于, 所述 去噪处理的方法如下:
对所述光路图像连续进行 N次腐蚀操作, 所述 N > 1。
10. 如权利要求 8所述的红外触摸屏的多点识别方法, 其特征在于, 所 述去噪处理的方法如下:
对所述光路图像先进行 3次先腐蚀、 后膨胀操作, 然后再进行 β次腐蚀 操作, β次膨胀操作, 所述 ^ 1, β > 1。
11.如权利要求 1~10中任一项所述的红外触摸屏的多点识别方法,其特 征在于: 在一次识别过程中, 首先根据光路数据判断红外触摸屏上是否存在 触摸点; 如果不存在触摸点, 则结束本次识别。
12. 如权利要求 1~10 中任一项所述的红外触摸屏的多点识别方法, 其 特征在于: 在一次识别过程中, 首先根据光路数据判断触摸点所在区域; 如 果存在触摸点区域, 则对所述触摸点所在区域生成与所述区域中的光路对应 的光路图像, 再进行后续识别处理; 如果不存在触摸点区域, 则结束本次识 别。
13. 如权利要求 1~10 中任一项所述的红外触摸屏的多点识别方法, 其 特征在于: 在一次识别过程中, 首先根据光路数据判断红外触摸屏上是否存 在触摸点; 如果存在触摸点, 则继续根据光路数据判断触摸点所在区域, 对 所述触摸点所在区域生成与所述区域中的光路对应的光路图像, 再进行后续 识别处理; 如果不存在触摸点, 则结束本次识别。
14. 一种红外触摸屏的多点识别系统, 其特征在于: 所述系统包括用于 生成与红外触摸屏在一次识别过程中的光路对应的光路图像的光路图像生成 装置 (11 );
用于在所述光路图像中提取触摸点信息的触摸点信息提取装置 (12 )。
15. 如权利要求 14所述的红外触摸屏的多点识别系统, 其特征在于: 所 述光路图像生成装置 (11 ) 包括用于采集红外触摸屏在一次识别过程中光路 数据的采集单元 (111 );
用于生成与红外触摸屏尺寸成预设比例的初始光路图像的初始光路图像 生成单元 ( 112 );
用于根据光路数据判断每条光路是否被遮挡, 如果光路未被遮挡, 则根 据所述预设比例在所述初始光路图像的相应位置生成一条与该光路对应线段 的光路对应线段生成单元 (113 )。
16. 如权利要求 14所述的红外触摸屏的多点识别系统, 其特征在于: 所 述触摸点信息提取装置 (12 ) 包括用于对光路图像进行去噪处理的去噪单元
( 121 ), 将处理后的图像记为图像
用于对图像 A进行分割处理, 提取触摸点轮廓并记录各个轮廓信息的分 割提取单元 ( 123 );
用于根据所述轮廓信息计算轮廓的中心坐标的计算单元 (124 )。
17. 如权利要求 14所述的红外触摸屏的多点识别系统, 其特征在于: 所 述系统还包括用于在提取出触摸点信息后, 根据触摸点信息之间的相互关系 去除鬼点的鬼点去除装置。
18. 如权利要求 14~17中任一项所述的红外触摸屏的多点识别系统, 其 特征在于: 所述系统还包括用于根据光路数据确定触摸点所在区域的触摸点 区域确定装置 (101 ) ; 所述光路图像生成装置 (11 ) 用于对所述触摸点所在 区域生成与所述区域中光路对应的光路图像。
19. 如权利要求 14~17中任一项所述的红外触摸屏的多点识别系统, 其 特征在于: 所述系统还包括用于根据光路数据判断红外触摸屏上是否存在触 摸点的预判断装置 (141 )。
20. 如权利要求 14~17中任一项所述的红外触摸屏的多点识别系统, 其 特征在于: 所述系统还包括用于根据光路数据判断红外触摸屏上是否存在触 摸点的预判断装置 (141 ); 用于根据光路数据确定触摸点所在区域的触摸点 区域确定装置 (101 ) ; 所述光路图像生成装置 (11 ) 用于对所述触摸点所在 区域生成与所述区域中的光路对应的光路图像。
PCT/CN2012/076815 2011-06-13 2012-06-13 一种红外触摸屏的多点识别方法及系统 WO2012171457A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011101570530A CN102419662A (zh) 2011-06-13 2011-06-13 一种红外触摸屏的多点识别方法及系统
CN201110157053.0 2011-06-13

Publications (1)

Publication Number Publication Date
WO2012171457A1 true WO2012171457A1 (zh) 2012-12-20

Family

ID=45944096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076815 WO2012171457A1 (zh) 2011-06-13 2012-06-13 一种红外触摸屏的多点识别方法及系统

Country Status (2)

Country Link
CN (1) CN102419662A (zh)
WO (1) WO2012171457A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102419662A (zh) * 2011-06-13 2012-04-18 北京汇冠新技术股份有限公司 一种红外触摸屏的多点识别方法及系统
CN103399674B (zh) * 2013-08-01 2016-05-18 广东威创视讯科技股份有限公司 一种多点触摸检测方法及装置
CN103984449B (zh) * 2014-05-30 2019-01-18 湖州佳格电子科技股份有限公司 一种触摸屏触摸区域定位方法
CN105094459B (zh) * 2015-03-20 2018-11-02 淮阴工学院 一种光学多点触摸定位方法
CN106896966A (zh) * 2017-03-15 2017-06-27 青岛海信电器股份有限公司 红外触摸屏中触点位置和形状信息存储的方法和装置
CN110083272B (zh) * 2019-05-06 2023-07-07 深圳市康冠商用科技有限公司 一种红外触摸框的触摸定位方法及相关装置
CN113495641A (zh) * 2020-04-07 2021-10-12 宇龙计算机通信科技(深圳)有限公司 触摸屏鬼点识别方法、装置、终端及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101145091A (zh) * 2007-11-01 2008-03-19 复旦大学 基于红外线摄像的触摸屏及其定位检测方法
CN101727245A (zh) * 2008-10-15 2010-06-09 北京京东方光电科技有限公司 多点触摸定位方法及多点触摸屏
US20100277437A1 (en) * 2009-04-30 2010-11-04 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd Electronic device and controlling method thereof
CN102419662A (zh) * 2011-06-13 2012-04-18 北京汇冠新技术股份有限公司 一种红外触摸屏的多点识别方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101145091A (zh) * 2007-11-01 2008-03-19 复旦大学 基于红外线摄像的触摸屏及其定位检测方法
CN101727245A (zh) * 2008-10-15 2010-06-09 北京京东方光电科技有限公司 多点触摸定位方法及多点触摸屏
US20100277437A1 (en) * 2009-04-30 2010-11-04 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd Electronic device and controlling method thereof
CN102419662A (zh) * 2011-06-13 2012-04-18 北京汇冠新技术股份有限公司 一种红外触摸屏的多点识别方法及系统

Also Published As

Publication number Publication date
CN102419662A (zh) 2012-04-18

Similar Documents

Publication Publication Date Title
WO2012171457A1 (zh) 一种红外触摸屏的多点识别方法及系统
KR101581954B1 (ko) 실시간으로 피사체의 손을 검출하기 위한 장치 및 방법
US9798428B2 (en) Touch detecting method, touch detecting system and touch terminal for touch sensor
US7916126B2 (en) Bottom-up watershed dataflow method and region-specific segmentation based on historic data to identify patches on a touch sensor panel
KR102118408B1 (ko) 터치 감지 디바이스에서 터치 동작을 수행하는 방법
US20130050076A1 (en) Method of recognizing a control command based on finger motion and mobile device using the same
TWI479431B (zh) 物件追蹤方法
US20150331541A1 (en) Method and apparatus for determining mistaken approaching or touching event
CN102419663B (zh) 一种红外触摸屏多点识别方法及系统
WO2013016995A1 (zh) 一种红外触摸屏的多点识别方法及系统
WO2014044180A1 (zh) 红外多点识别方法、红外多点识别装置和红外触摸屏
CN102096530A (zh) 一种多点触摸轨迹跟踪方法
CN106406638B (zh) 一种触摸点轮廓生成方法及设备
CN104299004A (zh) 一种基于多特征融合和指尖检测的手势识别方法
CN105373267A (zh) 一种红外触摸屏多点识别方法、装置及红外触摸屏
CN103870071A (zh) 一种触摸源识别方法及系统
KR102116791B1 (ko) 깊이 정보를 사용한 움직인 물체 검출 장치, 방법 및 컴퓨터 판독 가능한 기록 매체
CN108255352B (zh) 一种投影交互系统中多点触摸实现方法及系统
WO2012072000A1 (zh) 一种触摸点定位方法、装置及触摸屏
WO2021227295A1 (zh) 一种基于cnn的癌细胞多尺度缩放定位检测方法
CN105205786A (zh) 一种图像深度恢复方法及电子设备
CN104123026B (zh) 一种触摸屏触摸轨迹运动方向识别的方法
EP2715492A2 (en) Identifying contacts and contact attributes in touch sensor data using spatial and temporal features
CN105426020A (zh) 一种红外触摸屏多点识别方法、装置及红外触摸屏
TWI474234B (zh) 觸控板之多點定位方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12801140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12801140

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 19/02/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12801140

Country of ref document: EP

Kind code of ref document: A1